Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

5-2019

Verification of SHA-256 and MD5 Hash Functions Using UVM

Dinesh Anand Bashkaran
dab8730@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Bashkaran, Dinesh Anand, "Verification of SHA-256 and MD5 Hash Functions Using UVM" (2019). Thesis.
Rochester Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10069?utm_source=repository.rit.edu%2Ftheses%2F10069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

VERIFICATION OF SHA-256 AND MD5 HASH FUNCTIONS USING UVM

by
Dinesh Anand Bashkaran

GRADUATE PAPER
Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING
KATE GLEASON COLLEGE OF ENGINEERING
ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK
MAY 2019

To my family, friends and Professor Mark A. Indovina for all of their endless love, support,

and encouragement throughout my career at Rochester Institute of Technology

Abstract

Data integrity assurance and data origin authentication are important security aspects in com-
merce, financial transfer, banking, software, email, data storage, etc. Cryptographic hash func-
tions specified by the National Institute of Standards and Technology (NIST) provides secure
algorithms for data security. Hash functions are designed to digest the data and produce a
hash message; a hash is a one-way function which is highly secured and difficult to invert. In
this paper, two such hash algorithms are verified using the Universal Verification Methodology
(UVM). UVM is IEEE 1800 standard developed to assist in the verification of digital designs;

it reduces the hurdle in verifying complex and sophisticated designs.

Declaration

I'hereby declare that except where specific reference is made to the work of others, the contents
of this paper are original and have not been submitted in whole or in part for consideration for
any other degree or qualification in this, or any other University. This paper is the result of my
own work and includes nothing which is the outcome of work done in collaboration, except

where specifically indicated in the text.

Dinesh Anand Bashkaran

May 2019

Acknowledgements

I would like to thank my advisor, professor, and mentor, Mark A. Indovina, for all of his
guidance and feedback throughout the entirety of this project. He is the reason for my love of
digital hardware design and drove me to pursue it as a career path. He has been a tremendous

help and a true friend during my graduate career at RIT.

Contents

Abstract ii
Declaration iii
Acknowledgements iv
Contents v
List of Figures viii
List of Tables ix
1 Introduction 1
1.1 ResearchGoals e 2

2 Bibliographical Research 3
3 Overview of Hash Functions 9
3.1 HashFunctions e 9
3.1.1 Preimageresistance 9

3.1.2 Second preimage resistance 10

3.1.3 Collision resistance v v v v e e 12

3.2 Construction of Hash Functions 12
32.1 MDS .. e 13

3.2.2 SHA-256 e 13

3.3 APPLICATIONS OF HASH FUNCTIONS 13
3.3.1 Datalntegrity L 13

3.3.2 Secured Digital Signature oL 14

3.3.3 Authentication e e e 14

4 Overview of UVM 15
4.1 Evolution of UVM e 15

Contents vi

4.2 UVM Scheduling Semantics 16
42.1 PreponedRegion oL 18

422 Pre-ActiveRegion Lo 18

423 ActiveRegion 18

424 Inactive Region 18

4.2.5 Non-Blocking Assignment Region 18

426 ObservedRegion 19

427 Reactive Region L. 19

42.8 PostponedRegion oL 19

43 Phasesof UVM 20
43.1 BuildPhase 20

432 RunPhase 20
4321 Reset. 20

4322 Configure 22

4323 Main 22

4324 Shutdown 22

433 Clean-upPhase 22

4.4 UVMfactory 22
4.4.1 UVM_Objects it 23

442 UVM_component v, 23

443 TypeOverride e 23

5 Custom UVM Backend Design 25
5.1 UVMIP-Level Design 25
5.1.1 UVM Environment for IP-Level 26

5.1.2 DesignFlow 29

5.2 UVMBIlock Level Design 30
5.2.1 UVM Environment for Block-Level: 30

5.2.2 VerificationFlow o . 33

6 Results and Discussion 35
6.1 SynthesisReport oL 35
6.2 SimulationReport. 35
7 Conclusion 44
7.1 Futurework 45

References 46

Contents vii
A Source Code for MD5 50
A.1 MDSInterface 50
A.2 MDS5 Sequence and Sequencero 53
A3 MDSDriver e e e 62
A4 MDSMonitor e e e 72
AS MDSAgent 77
A.6 MDS5 Scoreboard 79
A7 MDS5 Environment e e e 83
A.8 MD5SUVMPackage 85
A9 MDS5Test e 86
ATOMDSTop e e 88
B Source Code for SHA-256 90
B.1 SHA-256 Interface 90
B.2 SHA-256 Sequence and Sequencer 93
B.3 SHA-256Driver. e e 102
B.4 SHA-256MoONIitor v o e e e 113
B.5 SHA-256 Agent e 117
B.6 SHA-256 Scoreboard, 119
B.7 SHA-256 Environment 122
B.8 SHA-256 Package 124
B.9 SHA-256Test e e 125
B.10 SHA-256Top e 127
C Source Code for Combined MD5 and SHA-256 129
C.1 MD5 and SHA-256 Interface 129
C.2 MDS5 Sequence and Sequencer Lo 135
C.3 SHA-256 Sequence and Sequencer 144
C4 MDSDriver e e e 153
C.5 SHA-256Driver. e e e e e 164
C.6 MDS5SMoONItor v v v i i i i e e e e 175
C.7 SHA-256Monitor o o o it e e e 182
C.8 MDS5and SHA-256 Agent 186
C9 MDS5Scoreboard e 190
C.10 SHA-256 Scoreboard 193
C.11 MD5 and SHA-256 Environment 196
C.12 MD5 and SHA-256 UVM Package 198
C.13 MD5 and SHA-256 Test e 200
C.14 MD5 and SHA-256 Top o i i e 203

List of Figures

3.1
3.2
33

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5

Properties of Hash Function[1] 11
Merkle-Damgard model [1] 12
Digital Signature [1] L 14
UVM Scheduling [2] o 17
UVM_Phases [2] e 21
IP-Level Design 26
Block-Level Design 31
MDS5 and SHA-256 Area over Different technology 38
MD5 and SHA-256 Gate Count over Different technology 39
SHA-256 Coverage it 41
MDS5 Coverageo 42

MDS5 and SHA-256 Coverage o i i i 43

List of Tables

6.1 Synthesis Results . . .

6.2 Timing, Power Results

6.3 Coverage across different testcases

Chapter 1

Introduction

The motivation behind the development of SystemVerilog was to develop a unified language
to fulfill the needs of user to design and verify. It was initially promoted by Accellera sys-
tem initiative, after several revisions it became an IEEE standard of Hardware Description and
Verification Language (HDVL). SystemVerilog supports object-oriented programming (OOP)
concepts to provide diverse needs in verification and modeling. Despite providing enormous
features, SystemVerilog failed to adopt widespread practice. Numerous cultural and practical
challenges questioned the adoption of SystemVerilog, which paved way for new libraries, tool
kits and methodology guidance. This led to development of the Universal Verification Method-
ology (UVM), a library which is comprised of SystemVerilog and OOP concepts. UVM is a
class library used to create test environment and is a powerful package including support for
transaction-level modeling (TLM), phasing, re-usability etc. UVM provides infrastructure
which is reliable, robust and improves the quality of a testbench. In this project, such an envi-
ronment is used to verify the algorithm of hash functions. Hash functions maps any arbitrary
data to fixed size data, the values returned by hash functions are called hashes or digests. They

are an important and ubiquitous cryptography building block. The size of hash value depends

1.1 Research Goals 2

on the algorithm used to produce it. This project uses MDS5 and SHA-256 algorithm to build
hash functions, where MD35 produces a 128 bit hash (32 characters) and SHA-256 produces a

256 bit hash (64 characters).

1.1 Research Goals

To create an environment that can verify the hash functions MD5 and SHA-256. The following

tasks are considered for success of project.
1. Understand the algorithm of hash functions MD5 and SHA-256.

2. Build a testing environment in UVM and develop a connection between the test compo-

nents and RTL core of hash functions.
3. Analyze different test plans to verify the functionality of IP.
4. Analyze possible assertion driven methods.

5. Analyze the functionality and timing relation of RTL core in comparison with a software

model.
6. Collect the functionality and coverage test results.
7. Perform gate level simulation to verify the correctness on technology dependent netlist.

8. Achieve enough functional coverage to eliminate corner case bugs.

Chapter 2

Bibliographical Research

In any design, majority of the time is spent in verifying the design. Verification could be a
hurdle in product release and success in market but with the help of modern language and
tools, the time spent can be drastically reduced. The motivation behind verification is to check
the functionality of design. There are many techniques that can be used to build a testing en-
vironment. Without standardized techniques, verification could increase the cost of using in-
tellectual property (IP), electronic design automation (EDA) tools and increases the time spent
in verification. To address this issue, the verification language SystemVerilog was introduced
by IEEE Standard 1800. SystemVerilog provides powerful, reusable, flexible environment for
verification which counters the cost, complexity and time [3]. SystemVerilog integrates Verilog
Hardware Description Language (HDL) and OOP concepts and provides features like cover-
age, assertions, SystemVerilog DPI (Direct Programming Interface), and constrained random
stimulus.

SystemVerilog lacked certain features like macros to automate the creation of utility meth-
ods, metaprogramming, code patching which emerged the evolution of the UVM library. The

myth, “UVM is making amends for inadequacies of SystemVerilog”; was proved fallacious

by [4]. The paper discusses the certain features of UVM can be performed by SystemVerilog
in its own right. However, SystemVerilog lacks in macros which is still unanswered. UVM
outplays any other verification technique and its application programming interface (API) de-
fines a base class library (BPI) which is used to develop scalable and modular components for
functional verification. In fact, UVM has its own drawbacks which will be resolved in next
revision[5]. [6] is a book used as reference throughout the project. The author describes the
concepts of UVM from scratch and provides various examples where the concepts are imple-
mented. Overall this text provides adequate information about UVM along with a few case
studies which is enough to start building your own testbench.

Code coverage is one of the important features in a verification methodology. However,
the accuracy of code coverage is often disrupted by excitation of functional blocks. A cov-
erage method considering conditional checks and observations can significantly increase the
accuracy of code coverage [7]. The paper also addresses the issue with narrowed technique
which can be implemented in this project. Functional coverage is another aspect that exten-
sively gives the percentage of logic functions used. Functional coverage plays a vital when it
comes to implementation of complicated SOC with numerous IP in field-programmable gate
array (FPGA). One such implementation of Functional coverage in SystemC based on aspect
orientated programming is discussed in [8]. To verify the results of DUT, a reference model is
required which is usually developed in SystemC. SystemC is unified platform based on C++
developed by Open SystemC Initiative. It is composed of hardware class library and simula-
tion kernel. It can work in parallel in RTL and produce the results to compare in scoreboard
section. [9] discusses the usage of SystemC using case study, in fact the implementation can
be simply reproduced in this project. [10] is a good reference to understand the re-usability
of testbench. The DUT is I2C and AMBA AXI lite, both IP’s are verified using the same

framework in SystemVerilog. This paper provides ideas to build a single flexible framework

that can be used irrespective of DUT with minor changes. This approach would increase the
verification process of MD5 and SHA-256.

[1] is a very good reference to understand the algorithms used in hash functions. It is one
of the oldest papers published which discuss all the properties, features, benefits and applica-
tions of hash functions. This reference is extensively used to understand the hash functions.
Implementation of any algorithm is not easy even though the algorithm is understood to its ex-
treme. Paper [11] presents a good approach to implement hash functions in hardware. Stages
of hash functions are discussed from which the hash function can be constructed in any lan-
guage. Mathematical equations are used to describe the stages of hash functions. Overall, the
functions performed are OR, AND and XOR but, how it is performed is decided by the hash
function in the respective stage. [12] presents the hardware level implementation of SHA-256.
The algorithm is implemented in HDL, tested and verified using FPGA. The paper also dis-
cusses the benchmark and optimization solutions for the RTL. These results can be considered
as benchmark in developing hash functions at RTL level.

Hash functions are low collision resistant, if the two identical hash messages are generated
from two distinct input. H(A) = H(B), hash message of A and B are same but A != B, the
original message A and B are distinct. Hash function is collision free only if the generated hash
message is not identical for two distinct data. Reliability of hash functions against the attacks is
totally dependent on collision property of hash function. Paper [13] presents a unique approach
to increase the reliability of hash functions. Hash function can be made collision free using
this approach which deals with altering the mathematical equation in stages of operations. The
paper also provides a benchmark result, the chances of collision is 1/22. These references
stands out to be extremely helpful for designers to design hash functions in highly secured
manner. Though this project focuses mainly on verifying the hash functions using UVM,

research was made to understand the hash functions completely.

“How safe are the hash functions”, is unanswered so far in this context. [14] discusses the
vulnerability index of hash functions and provides an approach to increase the vulnerability
of hash functions against chain attacks. Any given hash function is constructed using sev-
eral nodes which together forms cycles. If a hash function is truly random then the length of
hash cycles is 2" /2. Depending on the size of n, the vulnerability of hash function increases.
Generally, for the value of N greater than 128 hash functions are considered safe from chain
attacks. However, there is no evident that commonly used hash function does have that prop-
erty. To attack a hash function, one must find a node and repeatedly hash from it until a cycle
is found. With the equation that decides the vulnerability index of Hash function, couple of
methods are proposed to increase the vulnerability of hash functions. The proposed algorithm
is used on MDS5 and SHA hash functions, it dramatically increased the vulnerability. When
hash functions are constructed using such algorithms, there are pretty much safe against chain
attacks.

Hash functions can be used on any arbitrary string to produce a fixed hash message. The
size of fixed message depends on the algorithm which are usually 128-512 bits. Certain appli-
cation requires variable hash message which becomes uncertain with fixed algorithm and fixed
hash message size. [15], provides an approach for MD5 hash function to produce variable hash
message without compromising the stages of algorithm. This provides high integrity algorithm
with user defined hash message. The only difference in proposed algorithm is the compres-
sion block after padding stage where the hash message is compressed to ‘n’ bits. This enables
MDS5 to take up to 512 bits and convert into user defined hash message making it flexible for
low end application. There are several hash functions but all of them do the same job. De-
pending on the application and the security level choosing hash function can be arduous. [16]
presents a solution to this by discussing the various hash functions and suitable application

for them. Database indexing, symbol tables, network processing algorithms are few real time

applications discussed with dynamic, cryptographic, robust and string hashing techniques. In
certain applications where the memory allocation for hash functions can be inadequate, a chain
hashing technique comes into play where the hash functions are linked using external memory.

[17] presents partial work of this project, verification of SHA-256 algorithm using UVM.
Paper presents the analysis of the SHA-256 algorithm, and a UVM platform is used to validate
SHA-256 as IP. In fact the same procedure can be reproduced to test the SHA-256 and MDS5.
This reference is used over the implementation of project. Note that although a few compo-
nents of testing environment might change with respect to DUT, the framework remains the
same. Saying that, SHA 256 or MD35 does not make a major difference in the UVM frame-
work. [18] is a good reference to understand the re-usability of UVM testing framework. The
paper presents the concepts of re-usability using few case studies.[17] can be reproduced to
construct a UVM framework for SHA-256 followed by [18] to reuse the framework for MD5
algorithm. These two are the most relevant and significant references used over the implemen-
tation of this project.[19] presents a method to implement automated verification. UVM 1is a
complete framework that includes coverage metrics, self-checking testbenches and automatic
test generation. Even though the DUT here is not complex but rather simple IP’s, complete
utilization of UVM is another goal.

While reliability and data integrity is one key feature of hash function, the performance is
yet unanswered. Especially when used in high end application where low latency is expected,
the algorithm is expected to process rapidly. In[20, 21] both references aim at same goal using
different approaches. The goal is to optimize the design by adjusting the longest delay path
in netlist to provide high throughput and low latency. To overcome this hurdle, unrolling is a
technique which focuses on multiple rounds of the core compression function in combinational
logic, which helps in reducing the number of clock cycles required to compute the hash. The

paper also discusses about pipelining the architecture for better throughput and low latency.

[22] provides a unique approach to optimize MDS5 using data dependency, data forwarding
and pipelining. The pipeline is 4 stages and the architecture of MDS5 is altered to minimize
the effect of data dependency. The architecture is tested on a Xilinx Virtex FPGA, benchmark
results 1040 M bps as throughput. This architecture seems to be the best design up to date.
[23] talks about the advantage of implementing MD5 on hardware rather than software.
Hardware implementations can be more immune to attacks and cannot be altered like software.
A Xilinx Virtex 5 FPGA is used to implement the MD5 hardware. The implementation was
performed on two ways, iterative looping and full loop unrolling. The overall throughput is 165
M bps. One such common way to increase the efficiency is to pipeline the stages of operation
[2]. The paper discusses the pipelined architecture of MDS5 through different stages. The
pipelined architecture is implemented in FPGA, with a 64 stage pipelined MDS architecture
the throughput is 725 M bps, which is 6 times more than non-pipelined version. [24-26]
are online reference for UVM which is extensively used to understand and implement Test
Bench.[27, 28] provides the source code for SHA-256 in Verilog and C. [29, 30] provides the

source code for MDS5 in Verilog and C.

Chapter 3

Overview of Hash Functions

This chapter discusses the basics concepts, construction and applications of hash functions.

3.1 Hash Functions

A hash function takes arbitrary data to produce fixed size hash message, the size of hash
message depends on hash algorithm. 7 = H(M), M is input, and h is hash message generated
by H algorithm. The reliability of the hash function depends on the algorithm and length of
the message generated. Merkle-Damgard model is commonly used hash algorithm in hash

functions. In general hash functions should have following properties,

3.1.1 Preimage resistance

If hash message h is given, it should be highly impossible to find message M such that & =
H(M). Hash functions are one-way property, hash h can be computed from message M but not

other way around.

3.1 Hash Functions 10

3.1.2 Second preimage resistance

Given message M1, it is highly impossible to find another message M2 such that M1 and M2

generate same hash h. 3.1

3.1 Hash Functions 11

find

Given |h(m)

Figure 2 Preimage resistance

Given | m, m,

h(my) | = |h(m;)

Figure 3 Second-preimage resistance

Find | m, and m,

so | h(m)

Figure 3.1: Properties of Hash Function[1]

3.2 Construction of Hash Functions 12

3.1.3 Collision resistance

It should be highly impossible to find two messages S1 and S2 such that S1 =152, but 4(S1) =
h(S2).

3.2 Construction of Hash Functions

Hash functions can be structured in several ways but the Merkle-Damgard model stands out
to be popular and reliable. It has been practiced successfully in hash functions like MDS5 and
SHA-2. In this model, the message is padded and divided into uniform length of blocks. The
compression function F processes the blocks in sequential order which generates intermediate
hash. The final compression function outputs the hash message. The size of the hash message
depends on the user implementation. If the compression function F is collision resistance,
so is the generated hash message. SHA-2 and MD5 follow Merkle-Damgard model. They
use operations like OR, XOR and AND for the compression functions. Collision-pairs was
founded that makes these algorithms vulnerable to collision attacks. Although there was no
evidence to support the successful attack against this algorithm. The results from, National
Institute of Standards and Technology (NIST) shows SHA-3 seems to be more secured than

other versions of SHA-2 algorithm.

Message with padding

Blockl Block 2 | Block3 (o @ ® @ Block n

Initial 0 o Hash
Value

Figure 3.2: Merkle-Damgard model [1]

3.3 APPLICATIONS OF HASH FUNCTIONS 13

3.2.1 MDS5

MDS5 is an implementation of Merkle-Damgard. MDS5 has 512 bits from M0-M15, sixteen
32-bit word. Internally, the hash state has state variables of four 32-bit word (A1, B1, C1,
D1). In the stages of computation, the state variables are changed to new 32-bit value by
the compression function F. MD5 has 64 stages of steps grouped in terms of 16 stages. First
16 stages are called Round one, second as Round two and so on. Every Round has unique
compression function. The final hash message is the concatenation of state variables Al, B1,

C1, D1 in last block of last Round.

3.2.2 SHA-256

SHA-2 can operate on four different modes, SHA-256, SHA-384, SHA-224,and SHA-512.
This project uses SHA-256 and discussion is only based on SHA-256. SHA-256 also uses the
Merkle-Damgard model and works similar to MD5. The message block size is 512 Bits like
MD?3, but the state variables are doubled to include 8 state variables. The operations performed

on each stage are AND, OR, XOR.

3.3 APPLICATIONS OF HASH FUNCTIONS

3.3.1 Data Integrity

After receiving data, the hash message can be generated and compared with another hash
message, which was generated from original data. Here, the original message should be sent
through a secure channel. If both the hash message are equal, then data was not modified

during the transmission. This is defined by the second preimage property of hash function.

3.3 APPLICATIONS OF HASH FUNCTIONS

3.3.2 Secured Digital Signature

Public-key algorithm combined with Hash functions evolves many applications, one such is
Digital Signature. Digital Signature can be generated by combination of Hash message and
Encryption from private-key. The Generated Text can be used as signature. The Signature

can be verified by decrypting the signature using public-key and comparing it with the hash

message.

Message

l

HASH

|

Private key ——s Encryption

|

Signature

Message Signature
HASH Decryption

«— Public key

N\

©
[

9

/

Figure 3.3: Digital Signature [1]

3.3.3 Authentication

The password of the user is hashed and sent to server, where it is compared by the server.

Every time the password is hashed, it is concatenated with random values generated by the

server. This allows high data-integrity.

Chapter 4

Overview of UVM

This section dives deep into UVM, and describes about different features, phases, transaction-

level modeling (TLM), semantics, test bench components etc.

4.1 Evolution of UVM

The initial version of UVM was released on Feb 28, 2011, after which UVM became a stand-
alone verification methodology. Since then UVM has undergone several changes to fix bugs

and add features. A few important features of UVM 1.0 were:
1. End-of-test objection mechanism to enhance the ease of clean up at end of simulation.
2. Call-back mechanism that would alter the existing behavior.
3. Report catcher to enhance report handling.
4. Heartbeat Mechanism to monitor the life of UVM components.

5. Register Level Modeling to enhance the verification of memory unit.

4.2 UVM Scheduling Semantics 16

6. TLM interface FIFO, resource database.

Around June 2014, UVM 2.0 was released. Further changes, bugs, features were improved; a

few important features are:

1. uvm_sequence_base::starting_phase has been replaced by set_starting_phase and

get_starting_phase. This change prevents modification of phase during run time.

2. uvm_sequence_base::set_automatic_phase_objection were added which avoids the ne-

cessity of calling raise_objection and drop_objection explicitly.

3. New methods like stop_request, stop_global_request, set_global_timeout,

uvm_test_done, do_kill_all etc.

Today, SystemVerilog and UVM is the preferred environment to verify from IP, Block, SOC,
chip level. Over years of practice, engineers have adapted themselves to the UVM environ-
ment. Even though UVM is sophisticated, it is highly flexible to provide the environment
for complex verification projects. Even a few Verification IPs (VIPs) were introduced which

became handy in creating UVM testbenchs.

4.2 UVM Scheduling Semantics

A single time slot (One clock period) is divided into multiple regions where several different
events are scheduled. UVM time scheduling has been improved from Verilog scheduling se-
mantics. This event scheduling provides clear and predictable interaction with DUT. Verifica-
tion Engineer should be aware of event scheduling to understand the core of UVM. Following

are the different region in event scheduling,

4.2 UVM Scheduling Semantics

17

Prev. Time Slot

Time Slot

‘Next Time Slot

Figure 4.1: UVM Scheduling [2]

4.2 UVM Scheduling Semantics 18

4.2.1 Preponed Region

The variables used in concurrent assertions are sampled in this region. The preponed region is

evaluated only once, and it happens right after advancing simulation time.

4.2.2 Pre-Active Region

Pre-Active region is for the PLI (Programming Language Interface) callback mechanism. It

allows user code to read and write values just before the active regions are evaluated.

4.2.3 Active Region

All the event that needs to be evaluated in corresponding clock period are placed in this region.
The order of execution can be processed in any order.

1: Execute blocking assignments, continuous assignments.

2: Execute the right-hand side (RHS) of non-blocking assignments and schedule updates
in the Non-blocking Assignment Events Region (NBA).

3: Execute $finish and $display commands.

4.2.4 Inactive Region

In this region all the events that needs to be evaluated after active events are placed. #0 blocking

assignments are placed in this region.

4.2.5 Non-Blocking Assignment Region

The RHS of non-blocking assignments which were evaluated in active region, is updated to

left-hand side (LHS) in this region. Since all the non-blocking assignments needs to be inde-

4.2 UVM Scheduling Semantics 19

pendent of each other, this region solves the issue.

4.2.6 Observed Region

The function of this region is to evaluate the concurrent assertions. The values required for
concurrent assertions were sampled in preponed region. The reason for this region is, assertion
should be evaluated once in every clock period. Depending on the result of assertion whether

pass/fail, the corresponding event is scheduled in reactive region.

4.2.7 Reactive Region

This region is allocated for events in program block. The functionality if this region is to
execute program block in any order. Since, this region is placed after active and non-active
region this can be used to avoid race condition. Another way of avoiding race condition is

using clocking block which would induce skew.
1. Execute program blocking assignments.
2. Execute pass/fail condition that were assigned in concurrent statements.
3. Execute program block continuous statements.

4. Update the LHS of non-blocking assignments in program block.

4.2.8 Postponed Region

$strobe and $monitor commands are executed in this region. The final updated value is re-
flected for the corresponding time slot. This region is also used to collect the functional cover-

age.

4.3 Phases of UVM 20

4.3 Phases of UVM

UVM phases were made to synchronize the behavior of testbench. This enables organized
flow from start of testbench until the end of simulation. UVM phases are mainly divided in

three categories build, run and clean up phases.

4.3.1 Build Phase

The build phase is responsible for two different functionalities. Building the phases and con-
necting the components. Components are constructed and connected at the start of simulation;
this happens in zero simulation time. UVM builds components that are registered in the factory
and connect them depending on how user defines the connection in connect phase. Once the

components are built and connection, the elaboration is done.

4.3.2 Run Phase

Run phase is were simulation starts and ends. Entire simulation happens in the run phases. Run
phase is time consuming and are usually defined in task. Run phase consists of resetting the
DUT, setting up the DUT, generation of randomized value, driving the value, monitoring the
value and comparing the results. Run phases is only terminated when the sequence is finished.

Run phase is further divided as,

4.3.2.1 Reset

This phase is reserved for reset behavior. This would generate reset and put the interface into
default state or send reset signals to DUT. The main motivation of having this phase ahead is

to bring the DUT into initial condition.

4.3 Phases of UVM

21

connect

end of elobaration

start of simmlation

Pre contiqure
conriqure
PoOSt conriqur

pre main

main

pOSt mAain

extract PIe Shutdown
shutdown

POST Shutaown

Figure 4.2: UVM_Phases [2]

4.4 UVM factory 22

4.3.2.2 Configure

This phase is used to configure the DUT. The configuration is done to make sure DUT is ready
to accept any transactions which is about to be sent in near future.

4.3.2.3 Main

Main phase is where the stimulus is generated and sent to DUT. User can have N number of test
cases or test sequence. Every test case is generating a random variable which is defined using
“rand” or “randc” system function. Main Phases is responsible for generating the stimulus

using random generator.

4.3.2.4 Shutdown

Shutdown is responsible to assure the stimulus generated in the main phases have propagated

through the DUT. It also makes sure any resultant data have been drained away.

4.3.3 Clean-up Phase

This phase is initialized once the simulation is done. This phase is responsible to collect the
data generated during the simulation run phase. It extracts the information such as reports,

errors etc.

4.4 UVM factory

UVM factory is a repository where the components of test bench are manufactured and stored.

Only one instance of factory is present in a simulation. All the testbench components needs to

4.4 UVM factory 23

be registered and created in the factory. There are two types namely components and objects

which can be registered and created in factory.

4.4.1 UVM_Objects

UVM objects are instance that is dynamic in nature and changes during the run time.
uvm_seq_item and uvm_sequence are the dynamic objects in testbench environment. User
can define and create objects for multiple sequence and transactions. They can be invoked
depending on the user needs. UVM objects are registered using uvm_object_utilis method and

then object is created for every single instance invoked.

4.4.2 UVM_component

UVM components are instance that is static in nature and does not change during the run time.
UVM components are static and built during the build phase of UVM. These components can
be considered as physical structure or building block of UVM environment. Driver, Sequencer,
monitor and scoreboard are examples of components. UVM components are registered using
uvm_component_utils method. Object are created every time when these components are

invoked.

4.4.3 Type Override

The component are created using type_id::create() method instead of new(). Both the methods
lets you create a object but new() does not let type override. When a object is created using
new() methods, the type of the object can not be changed. This means, once an object is created
and memory is allocated the behavior of the object cannot be altered. This is replaced using

type_id::create() which lets user to override the behavior of the object type. Again, this is

4.4 UVM factory 24

one enhancement that lets user to reuse the objects by changing its type. There are few UVM
override methods that enables user to replace the object instead of type. UVM gets highly

flexible here and provides multiple options to user.

Chapter 5

Custom UVM Backend Design

This chapter discusses the structure and design of the custom target-specific UVM framework.
UVM is reusable, factor-based environment which can enhance the productivity of verification.
UVM is generally used to verify at different level of abstraction from IP, block, chip level.
Verification is usually bottom-top approach which provides level of confidence for verification
engineers. Section 5.1 discusses the UVM Design for IP verification and Section 5.2 discusses

the UVM Design for Block Level Verification.

5.1 UVM IP-Level Design

UVM is sophisticated, but on the other hand it is flexible for user requirements. This overall
section describes how UVM environment could be developed for IP-Level Verification. IP
level is the low level of abstraction in verification process. SHA-256 and MD5 are the two
different IP used as DUT to verify its functionality. Next two sub-session describes the en-
vironment components of the UVM framework and the process flow between DUT/UVM/C

model. For IP level Verification, Generic UVM framework was used. This consists of Multi-

5.1 UVM IP-Level Design

26

UWM TOP LEVEL

UVM ENVIRONMENT

UVM SCOREBOARD

UVM AGENT

*

UVM MONITOR_1

REFERENCE

MODEL

UVM MONITOR_2

SEQ_1

SEQ_2

SEQ_N

LR

SEQUENCER

l

DRIVER

|

PHYSICAL INTERFACE OF DUT

1

MD-5 / SHA-256 Core

Figure 5.1: IP-Level Design

ple test sequence, sequencer, driver, couple of monitors, Scoreboard. The UVM continuously

interacts with the DUT and Reference model during “Run Phase” and compares the results of

DUT with reference model and updates the coverage. Phase objection were used to start the

sequencer and end the UVM in appropriate way.

5.1.1 UVM Environment for IP-Level

1. Sequence: UVM_Sequence is the base class, which can be extended to define streams

of test sequences for DUT. Here, 5 different test sequences are defined, however they

5.1 UVM IP-Level Design 27

only have 1 sequencer to run. In other words, only one test sequence can be active
at any point of simulation time. In order to run parallel test cases, DUT should be
configured in pipelined fashion. “set_arbitration(UVM_SEQ_ARB_USER)” was used
to arbitrate between the sequences. As mentioned, one sequence is selected among five
sequences. The sequence is selected based on the priority given as argument. Once, the
high priority sequence is completed, the next sequence is selected. In order to achieve
this, Multiple sequences are defined extending UVM_sequence class. Top level virtual
sequence is defined in which actual multiple sequences are instantiated and object are

created respectively. This virtual sequence is connected to the sequencer.

2. 2Sequencer: As mentioned, one sequencer is defined. Sequencer is intermediate con-
nection between the sequence and Driver. The connection between sequencer and driver
is static, which is connected using uvm_seq_port. The connection between sequencer
and sequence is dynamic and changes during run time depending on the logic inside the
virtual sequence. In this case, Priority is used to switch between the multiple sequences
in the virtual sequence. At any point of simulation time one sequence is connected to

the driver through the sequencer.

3. Driver: Driver drives the DUT using the random data generated in the sequence. In
other words, driver is heart of UVM environment which is responsible to extract the
random data from sequence and drive the DUT. Every DUT has its own method to drive
the Inputs and outputs. In MDS5, data is sent, and output is collected with some refer-
ence signals. In SHA-256, the data should be placed in some loop fashion and output is
collected with some reference signals. The communication between the Driver and the
sequence happens through UVM_seq_port. There are few methods like get_next_item,

which gets the next random value from sequence and item_done, which implies trans-

5.1 UVM IP-Level Design 28

action is completed. There are few non-blocking methods like get(), put() which can
be handy when more than one random value is required for 1 variable. The commu-
nication between the driver and the DUT happens through interface. Driver gets the
access to physical interface using the virtual interface which can be passed through the
uvm_config_db method. This is one of the excellent features added in UVM, which,
unlike SystemVerilog, eliminates passing virtual interface through all hierarchical level

until driver is reached.

4. Monitor: One monitor simply monitors the response from DUT. It collects the output
from DUT for every valid transaction. This is where UVM becomes transaction level
modeling ignoring low level abstraction noises from DUT. The collected value is sent
to Scoreboard using Analysis_port, which is discussed in scoreboard section. Another
monitor has reference model embedded in it. This reference model is simply C model
which is used to generate expected values. This monitor monitors the input to DUT for
every valid transaction and sends the same input to the reference model embedded inside

it. The output from reference model is collected and sent to scoreboard for comparison.

5. Agent: Agent provides high level abstraction of Sequence, Sequencer, Driver and x2
Monitor. Agent provides the environment to wrap these components. The components
are built and connected here. Agent holds analysis port which is connected to the analy-

sis port of Monitor. The other end of agent’s analysis port is connected to the scoreboard.

6. Scoreboard: Scoreboard is the component where results are compared and displayed.
Monitor sends the value to scoreboard using analysis port through agent. Scoreboard
gets these values for DUT and Reference model, compares them and updates the test
results. In other words, scoreboard is simply a subscriber to the monitor. Inside score-

board, there are 2 FIFOs that collects the value from DUT and reference model in each.

5.1 UVM IP-Level Design 29

This eliminates the synchronization issues between the two results.

7. Environment: The environment is the highest-level abstraction of UVM components
which wraps the Scoreboard and Agent. Components are built and connected in the
environment. To access any component in UVM framework, it needs to be accessed

through the environment.

5.1.2 Design Flow

It is obvious flow starts with randomization and ends at comparing the output with expected re-
sult. UVM works in top-bottom methodology, sequence is started on sequencer at UVM_test.
There is multiple sequence, but they all have only sequencer on which they can run. Every se-
quence shares single sequencer and only one can run at a point of time. To control this, virtual
sequence is used which decides what sequence will run when. Virtual sequence is configured
using priority, each sequence is provided with some level of priority. Once, this is called se-
quence starts sending randomized value to driver. Driver and sequence are connected using
peer to peer type connection called seq_item_port. They both work on system call protocols
get_next_item, item_done, get, put. They are blocking methods and waits for transaction to be
completed. Driver drives the DUT with the random value generated from sequence.

Monitor monitors the ports of DUT and captures every valid transaction. This eliminates
unwanted low-level abstraction noises. One monitor is provided with access to reference model
to generate expected result. This is done using DPI library which enables transaction between
SystemVerilog and C language. Both the monitors send the DUT output and reference output
to the analysis port. Scoreboard is connected to other end of the analysis port which samples
these values. The overall flow is synchronized using system methods raise_objection and

drop_objection. Once all the raised objections are dropped the simulation ends.

5.2 UVM Block Level Design 30

Assertions are defined in interface where direct access to input/output is available. As-
sertions run in parallel during Run phase during simulation time. This provides a level of
confidence to verify the functionality of DUT. Cover group consists cover points (input and
output) which monitors the toggling of bits. Cover group also provides code coverage which

implies how much of code is being executed.

5.2 UVM Block Level Design

Sha-256 and MDS5 were wrapped together as single block. They are instantiated and wired
through a top-level unit. UVM framework was developed to test this block which consists
of two independent IP’s. Testbench was modified to drive two different IP’s. One of the
interesting things was these two IP’s were driven, sampled, verified in parallel independent of

each other. Systemverilog Fork comes handy to perform parallel task.

5.2.1 UVM Environment for Block-Level:

1. Sequence: UVM_Sequence is the base class, which can be extended to define streams
of test sequences for DUT. Here, 5 different test sequences are defined, individually for
SHA-256 and MD5. Each DUT has its own sequencer on which one sequence would
run at a time. “set_arbitration(UVM_SEQ_ARB_USER)” was used to arbitrate between
the sequences. one sequence is selected among five sequences. The sequence is selected
based on the priority given as argument. Once, the high priority sequence is completed,
the next sequence is selected. In order to achieve this, Multiple sequences are defined
extending UVM_sequence class. Top level virtual sequence is defined in which actual
multiple sequences are instantiated and object are created respectively. This virtual se-

quence is connected to the sequencer.

5.2 UVM Block Level Design

31

UVM TOP LEVEL

UVM ENVIRONMENT

UVM SCOREBOARD

UVM AGENT

UVM MONITOR_1

REFERENCE

MODEL

UVM MONITOR_2

SEQ_lton SEQ_lton

SEQUENCER SEQUENCER
i i

DRIVER MD35 DRIVER SHA-26

PHYSICAL INTERFACE OF MDS and SHA 256

1

i |

MD-5 AND 5HA-256 Core

Figure 5.2: Block-Level Design

5.2 UVM Block Level Design 32

2. Sequencer: As mentioned, two sequencers were defined. Sequencer is intermediate
connection between the sequence and Driver. The connection between sequencer and
driver is static, which is connected using uvm_seq_port. The connection between se-
quencer and sequence is dynamic and changes during run time depending on the logic
inside the virtual sequence. In this case, Priority is used to switch between the multi-
ple sequences in the virtual sequence. At any point of simulation time one sequence is

connected to the driver through the sequencer.

3. Driver: Two Drivers were used to drive two DUT in parallel. Driver drives the DUT
using the random data generated in the sequence. In other words, driver is heart of UVM
environment which is responsible to extract the random data from sequence and drive the
DUT. In MDS35, data is sent, and output is collected with some reference signals. In SHA-
256, the data should be placed in some loop fashion and output is collected with some
reference signals. The communication between the Driver and the sequence happens
through UVM_seq_port. There are few methods like get_next_item, which gets the next
random value from sequence and item_done, which implies transaction is completed.
There are few non-blocking methods like get(), put() which can be handy when more
than one random value is required for 1 variable. The communication between the driver
and the DUT happens through interface. Driver gets the access to physical interface
using the virtual interface which can be passed through UVM_Config_DB method. This
is one of the excellent features added in UVM unlike SystemVerilog, which eliminates

passing virtual interface through all hierarchical level until driver is reached.

4. Monitor: One monitor simply monitors the response from both MD5 and SHA-256. It
collects the output from DUT for every valid transaction. This is where UVM becomes

transaction level modelling ignoring low level abstraction noises from DUT. The col-

5.2 UVM Block Level Design 33

lected value is sent to Scoreboard using Analysis_port, which is discussed in scoreboard
section. Another monitor has reference model embedded in it. This reference model is
simply C model which was used to generate expected values. This monitor monitors the
input to DUT for every valid transaction and sends the same input to the reference model
embedded inside it. The output from reference model is collected and sent to scoreboard

for comparison.

5. Agent: Agent provides the environment to wrap sequencer, driver and monitor. The
components are built and connected here. Agent holds analysis port which is connected
to the analysis port of Monitor. The other end of agent’s analysis port is connected to

the scoreboard.

6. Scoreboard: Scoreboard is the component where results are compared and displayed.
Monitor sends the value to scoreboard using analysis port through agent. Scoreboard
gets these values for DUT and Reference model, compares them and updates the test
results. In other words, scoreboard is simply a subscriber to the monitor. Inside score-
board, there are 4 FIFO that collects the value from DUT and reference model in each.

This eliminates the synchronization issues between the two results.

7. Environment: The environment is the highest-level abstraction of UVM components
which wraps the Scoreboard and Agent. Components are built and connected in the
environment. To access any component in UVM framework, it needs to be accessed

through the environment.

5.2.2 Verification Flow

The testbench starts with randomization and ends at comparing the output with expected result.

However, this testbench drives two DUTs, the SHA-256 and MDS5 parallel and irrespective

5.2 UVM Block Level Design 34

of each other. UVM works in top-down methodology; the sequence is started on sequencer
at uvm_test. There is multiple sequences for MDS5 and SHA-256, but they all have only one
sequencer on which they can run. Every sequence shares single sequencer and only one can run
at a point of time. To control this, virtual sequence is used which decides what sequence will
run when. Virtual sequence is configured using priority, each sequence is provided with some
level of priority. Once, this is called sequence starts sending randomized value to driver. Driver
and sequence are connected using peer to peer type connection called seq_item_port. They
both work on system call protocols get_next_item, item_done, get, put. They are blocking
methods and waits for transaction to be completed. Driver drives the DUT with the random
value generated from sequence.

Monitor monitors the ports of DUT and captures every valid transaction. This eliminates
unwanted low-level abstraction noises. One monitor is provided with access to reference model
to generate expected result. This is done using DPI library which enables transaction between
SystemVerilog and C language. Both the monitors send the DUT output and reference output
to the analysis port. Scoreboard is connected to other end of the analysis port which samples
these values. The overall flow is synchronized using system methods raise_objection and
drop_objection. Once all the raised objections are dropped the simulation ends.

Assertions are defined in interface where direct access to input/output is available. As-
sertions run in parallel during run phase during simulation time. This provides a level of
confidence to verify the functionality of DUT. Cover group consists cover points (input and
output) which monitors the toggling of bits. Cover group also provides code coverage which

implies how much of code is being executed.

Chapter 6

Results and Discussion

This chapter discusses the results of SHA-256 and MDS5. IP’s were successfully verified using
UVM environment as independent IP’s and as block level unit. MDS5 takes around 900ns for
every hash function and SHA-256 takes about 1400ns. Overall 3 testbench’s were made and

their source code is available in appendix.

6.1 Synthesis Report

The IP’s were synthesized on different technology 180 nm, 65 nm and 32 nm. The results are

compared and shown in the table6.16.2.

6.2 Simulation Report

SHA-256 and MD5 was verified in RTL level and Gate level simulation. The correctness of the
logic matches in RTL level matches gate level. Gate level simulation is technology dependent
and gives the exact timing results. Propagation delay of signals, and setup and hold time

issues can be monitored in gate level simulation. The test stimulus was generated for different

6.2 Simulation Report 36

combination of input, which was monitored using coverage. The comparison between number
of test cases and coverage is shown in table. Coverage increases as the number of test stimulus
increases which is shown in graph. Assertions were monitoring the protocols that DUT needs
to maintain at any point of time. Assertion is independent of test cases and is expected to
be passing at any point of time. As these assertions do not monitor the output, they cannot
verify the correctness of DUT. C model was used to generate expected results, which was used
to verify the correctness of device. The IP’s works as intended for different combination of
stimulus.

Overall time spent in simulation is enormous. For a 32-bit adder in a processor, there
are 4.2 billion test cases. Considering all other logic unit, verification of entire processor
would cost months of simulation. The motivation behind the block level verification is to
increase the simulation throughput. The block level IP verification environment drives both
MD5 and SHA-256 parallelly. This method becomes handy when large block of SOC needs to
be verified. However, this is limited to the resources available in work station. Here is where

UVM becomes flexible as per user needs and stands out on top of verification methodology.

6.2 Simulation Report

37

Table 6.1: Synthesis Results

SHA-256 Core | 180 nm | 32 nm | 65 nm
Ports 1858 1858 | 1858
Nets 7134 6802 | 6727
Cells 4763 4210 | 4355

Total Area (um?) | 152585 | 16959 | 19623

Gate Count 15304 | 12909 | 11777
MDS Core 180nm | 32nm | 65nm
Ports 665 661 661
Nets 5304 5534 | 4889
Cells 4564 | 4562 | 4157
Total Area (um?®) | 98877 | 16508 | 13306
Gate Count 9917 | 10860 | 12909

Table 6.2: Timing, Power Results

SHA-256 CORE | MD5 CORE
Timing @ 100 MHz
Required Time 0.8 19.7
Arrival Time -0.29 -3.2
Worst Slack 0.5 16.5
Power Consumption @ 100 MHz
Internal Power 3.8 mW 311.03 uW
Switching Power 630.2 uW 133.8 uW
Total Power 4.43 mW 30.7 nW

6.2 Simulation Report

38

170000
160000
150000
140000
130000
120000
110000
100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

o

AREA (um2)
180 nm 1 65 nm M 32 nm

152585

Figure 6.1: MD5 and SHA-256 Area over Different technology

6.2 Simulation Report

39

Gate Count

M 180 nm

18000

1165 nm

M 32nm

17000
16000
15000

13000
12000
11000
10000

15304

5“"'26&

Figure 6.2: MDS5 and SHA-256 Gate Count over Different technology

6.2 Simulation Report

40

Table 6.3: Coverage across different test cases

Test Cases SHA- 256 Core
Code Coverage % | Functional Coverage % | Assertion Coverage %
50 93.1 343 100
100 93.8 44.5 100
1000 93.87 73.82 100
10000 94.9 96.12 100
100000 95.12 97.1 100
1000000 98.23 100 100
MDS5 Core
50 89.77 8.4 100
100 90.4 55 100
1000 90.44 73.2 100
10000 90.49 96.2 100
100000 90.55 100 100
1000000 94.2 100 100
MD5 and SHA-256 Combined Core

50 92.5 23.9 100
100 93 62.15 100
1000 93.2 82.1 100
10000 93.2 98.5 100
100000 93.2 100 100
1000000 93.2 100 100

6.2 Simulation Report

41

-8 Code Coverage

120

Coverage for SHA-256

B- Functional Coverage

110

100

S0

80

70

€0

50

40

30

10 }gﬁ

¥
o PN O
1000 4000 4000 Lo0o”

Figure 6.3: SHA-256 Coverage

6.2 Simulation Report

42

Coverage for MD5

-B- Code Cowverage B- Functional Cowverage

120

110

100 a =]

80

70

€0

50

40

30

0+ T T T

L T
A0 400 4000 3,6000 i 4000 s

O

Figure 6.4: MDS5 Coverage

6.2 Simulation Report

43

-B@- Code Cowverage

Coverage for MD5 and SHA-256

8- Functional Coverage

120

110

100

S0

80

70

€0

50

A0 400

T
W o o0 o0
10 LQ.OG LQQG LOQDQ

Figure 6.5: MD5 and SHA-256 Coverage

Chapter 7

Conclusion

MDS5 and SHA-256 RTL cores were successfully verified using UVM and SystemVerilog. A
reference model in C language was used to generate expected values and imported into the
UVM framework. DUT output data was compared with expected model values to verify the
correctness of the each core. Assertions were used to verify the protocol over which each DUT
communicates. Additional assertions were used to check the DUT misbehavior. This provided
a level of confidence and ensured each RTL core functions properly.

The MDS5 Core takes 32-bit data which can contain up to 4.2 billion different combination
values. Randomizing without any constraints might end up not hitting several possible regions.
For this purpose, the randomization is divided in 5 regions (4.2 billion / 5), each covering a
region. Each region is embedded in a dedicated sequence and randomized several times to
ensure high coverage. This method increases the probability of finding corner cases. Cover-
age metrics were used to keep a track on randomization. A similar method was followed to
verify the SHA-256 core. Both cores achieved 100% functional coverage at 1 million input

combinations in every region. Note however code coverage remained close to 95%.

7.1 Future work 45

7.1 Future work

* From code coverage metrics, we can analyze that the code is not compact, therefore

certain RTL blocks can be rewritten to make the code more compact.

* MDS5 takes around 800 ns and SHA-256 takes 1400 ns for processing one input message.

The RTL could be optimized to improved to reduce these times.

e MDS5 and SHA-256 can process only one input at any point of time. Pipelining can be

introduced which would allow the cores to take streams of input data.

* The timing on few paths are not very great, therefore certain nets can be remodeled.

References

[1]

Bart Preneel. CRYPTOGRAPHIC HASH FUNCTIONS: AN OVERVIEW. In Proceed-
ings of the 6th International Computer Security and Virus Conference (ICSVC 1993),
volume 9., pages 461 — 479, 1993. URL: https://www.esat.kuleuven.be/cosic/

publications/article-289.pdf.

K. Jarvinen, M. Tommiska and J. Skytta. Hardware Implementation Analysis of the MD5
Hash Algorithm. Proceedings of the 38th Annual Hawaii International Conference on

System Sciences, Big Island, HI, USA, 2005.

IEEE Standard for Universal Verification Methodology Language Reference Manual,
2017.

K. Salah. A UVM-based smart functional verification platform: Concepts, pros, cons,
and opportunities. In 2014 9th International Design and Test Symposium (IDT), pages

94-99, December 2014. doi:10.1109/IDT.2014.7038594.

J. Bromley. If SystemVerilog is so good, why do we need the UVM? Sharing responsi-
bilities between libraries and the core language. In Proceedings of the 2013 Forum on

specification and Design Languages (FDL), pages 1-7, September 2013.

https://www.esat.kuleuven.be/cosic/publications/article-289.pdf
https://www.esat.kuleuven.be/cosic/publications/article-289.pdf
http://dx.doi.org/10.1109/IDT.2014.7038594

References 47

[6]

[10]

[11]

[12]

[13]

Ray Salemi. The UVM Primer: A Step-by-Step Introduction to the Universal Verification

Methodology. Boston Light Press, 2013.

B. Min and G. Choi. RTL functional verification using excitation and observation cover-
age,. Sixth IEEE International High-Level Design Validation and Test Workshop, Mon-
terey, CA, USA, 2001.

C. Kuznik and W. Muller. Aspect enhanced functional coverage driven verification in the

SystemC HDVL. International SoC Design Conference, 2011.

P. Ma, Q. Zhao, Y. Fan, M. Liu, and K. Li. The design and verification of packet
processing engine model using SystemC. In 2011 International Conference on Elec-
tronics, Communications and Control (ICECC), pages 1099-1101, September 2011.

doi:10.1109/ICECC.2011.6066395.

P. D. Mulani. SoC Level Verification Using System Verilog,. Second International Con-

ference on Emerging Trends in Engineering & Technology, Nagpur, 2009.

Jordan Cote Zhijie Shi, ChujiaoMa and Bing Wang. Hardware Implementation Of
Hash Functions. Springer Science+Business Media, LLC, 2012. doi:10.1007/

978-1-4419-8080-9_2.

Y. W. Hau M.Khalil, M.Nazrin. Implementation of SHA-2 Hash Function for a Digital
Signature System-on-Chip in FPGA. VLSI-eCAD Research Laboratory (VeCAD) Faculty

of Electrical Engineering Universiti Teknologi Malaysia (UTM), 2008.

Dengguo Feng XiaoyunWang and Hongbo Yu Xuejia Lai. Collisions for Hash Func-
tions MD4, MDS5, HAVAL-128 and RIPEMD, 2004. URL: http://eprint.iacr.org/

2004/199.

http://dx.doi.org/10.1109/ICECC.2011.6066395
http://dx.doi.org/10.1007/978-1-4419-8080-9_2
http://dx.doi.org/10.1007/978-1-4419-8080-9_2
http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2004/199

References 48

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. Lee. Hash Function Vulnerability Index and Hash Chain Attacks. In 2007 3rd
IEEE Workshop on Secure Network Protocols, pages 1-6, October 2007. doi:10.1109/

NPSEC.2007.4371616.

M. Wang and Y. Li. Hash Function with Variable Output Length. International Confer-

ence on Network and Information Systems for Computers, Wuhan, 2015.

M. Singh and D. Garg. Choosing Best Hashing Strategies and Hash Functions. In 2009
IEEE International Advance Computing Conference, pages 50-55, March 2009. doi:

10.1109/IADCC.2009.4808979.

X. Qiuyun, H. Ligang, L. Qiming, G. Shuqin, and W. Jinhui. The Verification of SHA-
256 IP using a semi-automatic UVM platform. In 2017 13th IEEE International Con-
ference on Electronic Measurement Instruments (ICEMI), pages 111-115, October 2017.

doi:10.1109/ICEMI.2017.8265733.

W. Ni and J. Zhang. Research of reusability based on UVM verification. IEEE 11th

International Conference on ASIC, 2015.

R. Madan, N. Kumar and S. Deb. Pragmatic approaches to implement self-checking
mechanism in UVM based TestBench,. International Conference on Advances in Com-

puter Engineering and Applications, Ghaziabad, 2015.

R. P. McEvoy, F. M. Crowe, C. C. Murphy and W. P. Marnane. Optimisation of the SHA-
2 family of hash functions on FPGAs. IEEE Computer Society Annual Symposium on

Emerging VLSI Technologies and Architectures (ISVLSI’06), Karlsruhe, 2006.

S. binti Suhaili and T. Watanabe. Design of high-throughput SHA-256 hash function
based on FPGA. 6th International Conference on Electrical Engineering and Informatics

(ICEEI), Langkawi, 2017.

http://dx.doi.org/10.1109/NPSEC.2007.4371616
http://dx.doi.org/10.1109/NPSEC.2007.4371616
http://dx.doi.org/10.1109/IADCC.2009.4808979
http://dx.doi.org/10.1109/IADCC.2009.4808979
http://dx.doi.org/10.1109/ICEMI.2017.8265733

References 49

[22] A.T.Hoang, K. Yamazaki and S. Oyanagi. Multi-stage Pipelining MDS5 Implementations
on FPGA with Data Forwarding. 6th International Symposium on Field-Programmable

Custom Computing Machines, Palo Alto, CA, 2008.

[23] H. M. Heys J. Deepakumara and R. Venkatesan. FPGA implementation of MD35 hash
algorithm. In Canadian Conference on Electrical and Computer Engineering 2001. Con-

ference Proceedings (Cat. No.OITH8555), volume 2, 2001.

[24] Chris Spear. SystemVerilog for Verification. Springer Science+Business Media, LLC,
2012.

[25] Accellera Systems Initiative (Accellera). Universal Verification Methodology (UVM) 1.2
User’s Guide, October 2015.

[26] Verification Guide, 2016. SystemVerilog and UVM Resources. URL: https://wuw.

verificationguide.com/p/home.html.

[27] SHA 256 Verilog source code. URL: https://github.com/secworks/sha256/tree/

master/src/rtl.

[28] SHA 256 Reference Model in C. URL: https://github.com/B-Con/

crypto-algorithms/blob/master/sha256.c.

[29] MD?5 Verilog Source Code. URL: https://github.com/stass/md5_core.

[30] MD5 Reference Model in C. URL: https://openwall.info/wiki/people/solar/

software/public-domain-source-code/md5.

https://www.verificationguide.com/p/home.html
https://www.verificationguide.com/p/home.html
https://github.com/secworks/sha256/tree/master/src/rtl
https://github.com/secworks/sha256/tree/master/src/rtl
https://github.com/B-Con/crypto-algorithms/blob/master/sha256.c
https://github.com/B-Con/crypto-algorithms/blob/master/sha256.c
https://github.com/stass/md5_core
https://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
https://openwall.info/wiki/people/solar/software/public-domain-source-code/md5

Appendix A

Source Code for MD5

A.1 MDS5 Interface

interface md5 _ interface

2

logic clk ;

logic reset ;

logic rdy_i ;

logic [31:0] msg_i ;
logic [127:0] hash_o ;
logic rdy_o ;

logic busy_o ;

logic [31:0] syn;

A.1 MD5 Interface

51

sequence assertreset

(rdy_o == 1'bl) ;

endsequence

property assert_reset

@(posedge clk)

(reset == 1'bl) |—> ##3 assertreset ;

endproperty
assertion_reset

$display ("Data

sequence rdybusy ;
(rdy_o == 1'b0) ;
endsequence
property rdy_busy
@(posedge clk)

assert property (assert_reset) else

sending failed") ;

b

(busy_o == 1'bl) |—> rdybusy ;

endproperty

assertion_rdy_busy

assert property (rdy_busy) else S$display

(" Ready and Busy asserted concurrently") ;

A.1 MD5 Interface

52

hashO : assert property (@(posedge clk) ## 1 hash_o != 128"

HO) else $display (" Ready and Busy asserted concurrently"
)

endinterface : md5_interface

A.2 MD5 Sequence and Sequencer

53

A.2 MDS Sequence and Sequencer

class md5_seq_item extends uvm_sequence_item ;

virtual md5_interface vif;

logic [127:0] hash_o ;
bit rdy_o;
string modelout ;

bit rdy_i;

rand bit [7:0] num ;
rand bit [7:0] upper ;
rand bit [7:0] lower ;
rand bit [31:0] msgl ;
rand bit [31:0] msg2 ;
rand bit [7:0] msg3 ;
rand bit [7:0] msg4 ;
rand bit [31:0] msg_i ;
bit [31:0] msg ;

bit [31:0] sequ

constraint new_con { msgl[7:0] inside { [48:57],

[97:122] }; }

[65:90],

A.2 MD5 Sequence and Sequencer 54

constraint new_conl { msgl[15:8] inside { [48:57], [65:90],
[97:122] }; }

constraint new_con2 { msgl[23:16] inside { [48:57], [65:90],
[97:122] }; }

constraint new_con3 { msgl[31:24] inside { [48:57], [65:90],
[97:122] }; }

rand byte unsigned temp [];
constraint str_len {temp.size() == 4; }
constraint temp_str_ascii { foreach (temp[i]) temp[i] inside {

[65:90], [97:122] }; }

function new(string name="");
super .new (name) ;

endfunction: new

‘uvm_object_utils_begin (md5_seq_item)
“uvm_field_int (hash_o, UVM_ALL ON)
“uvm_field_int(rdy_o, UVM_ALL_ON)
“uvm_field_int(rdy_i, UVM_ALL _ON)
“uvm_field_int(msg_i, UVM_ALL_ON)

‘uvm_object_utils_end

A.2 MD5 Sequence and Sequencer

55

endclass: md5_seq_item

class md5_sequencel extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (mdS5S_sequencel)

function new(string name="");
super .new(name) ;

endfunction: new

task body ()
integer 1 ;
md5_seq_item req;
req = mdS5_seq_item:: type_id:: create (.name("req"),
contxt(get_full_name()));
start_item (req);
assert(req.randomize());
finish_item (req);

endtask :body

endclass : md5_sequencel

A.2 MD5 Sequence and Sequencer 56

class md5_sequence2 extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (md5_sequence?2)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

md5_seq_item req;

req = md5_seq_item::type_id:: create (.name("req"),
contxt(get_full_name()));

start_item (req);

assert(req.randomize ());

finish_item (req);

endtask :body

endclass : md5_sequence?2

class md5_sequence3 extends uvm_sequence #(md5_seq_item);

A.2 MD5 Sequence and Sequencer

57

‘uvm_object_utils (mdS5_sequence3)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1

)

mdS5_seq_item req;

req = md5_seq_item::type_id:: create (.name("req"),
contxt(get_full_name()));

start_item (req);

assert(req.randomize ());

finish_item (req);

endtask :body

endclass : md5_sequence3

class md5_sequence2 extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (md5_sequence4)

A.2 MD5 Sequence and Sequencer

58

function new(string name="");
super .new (name) ;

endfunction: new

task body ()
integer 1 ;

md5_seq_item req;

req = md5_seq_item::type_id:: create (.name("req"),
contxt(get_full_name()));

start_item (req);

assert(req.randomize ());

finish_item(req);

endtask :body

endclass : md5_sequence4

class md5_sequence extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (md5_sequence)

function new(string name="mdS5_sequence");

A.2 MD5 Sequence and Sequencer

super .new(name) ;

endfunction: new

md5_sequencel seql ;

mdS5_sequence2 seq2 ;

mdS5_sequence2 seq3 ;

mdS5_sequence2 seq4 ;

mdS5_sequence2 seqS ;

task

seql
seq2
seq3
seq4
seqsd

body () ;

= md5_sequencel :
= md5_sequence?2 ::
= md5_sequence3 ::
= md5_sequence4 ::

= md5_sequenceS ::

stype_id ::
type_id ::
type_id ::
type_id ::

type_id ::

create ("seql");
create ("seq2");
create ("seq3");
create ("seq4");

create ("seq5");

m_sequencer. set_arbitration (UVM_SEQ_ARB_USER) ;

fork

begin

end

end

repeat (4) begin

seql . start (m_sequencer,

this , 100);

A.2 MD5 Sequence and Sequencer

60

begin
repeat(4) begin
seq2.start (m_sequencer,
end
end
begin
repeat(4) begin
seq3.start (m_sequencer,
end
end
begin
repeat(4) begin
seq4 . start (m_sequencer,
end
end
begin
repeat(4) begin
seqd.start (m_sequencer,
end
end
join

endtask

endclass : md5_sequence

this ,

this ,

this ,

this ,

:body

200);

300);

400) ;

500);

A.2 MD5 Sequence and Sequencer

61

typedef uvm_sequencer#(md5_seq_item) md5_sequencer;

A.3 MD5 Driver

62

A.3 MDS5 Driver

import "DPI-C" context function string string_sv2c (input

string str);

class

md5_driver extends uvm_driver #(md5_seq_item) ;

bit [31:0] infake ;

bit [127:0] outfake ;

‘uvm_component_utils (md5_driver)

virtual mdS5_interface vif;

mdS5_seq_item req ;

md5_seq_item req_cg ;

covergroup md5_cg ;

msg_in: coverpoint req.msg_i;

msg_in_valid : coverpoint vif.hash_o

)

A.3 MD5 Driver

63

cross req.msg_i, vif.hash_o ;

endgroup: mdS5_cg

function void display ();
$display ("[%tns] input = %h", $time, req_cg.msg_i);

endfunction : display

function new (string name, uvm_component parent);
super.new(name, parent);
mdS5_cg = new;

endfunction : new

function void build_phase (uvm_phase phase);
super . build_phase (phase);
void '(uvm_resource_db#(virtual md5_interface) ::
read_by_name
(.scope("ifs"), .name("mdS5_interface"), .val(vif)));

endfunction: build_phase

A.3 MD5 Driver

64

function string get_str ();
string str ;

foreach (req.templ[i])

str = { str, string '(req.temp[i])
return Str;

endfunction

task run_phase (uvm_phase phase);
drive () ;

endtask : run_phase

virtual task drive();

string randomi ;

integer counter = 0 , state = 0 ;
integer j ;

string modelin ;

string modelout ;

string rtloutstring ;

bit [127:0] modeloutb;

string dummy = "hello";

logic [127:0] rtlout ;

bit [7:0] checkl = 8'H61;

string check2 ;

}

b

A.3 MD5 Driver

bit [127:0] checksum = 128 'Habcd1234abcd1234abcd1234abcd1234;

forever begin

if (counter == 0) begin
vif.reset <= 1 ;

#10;

vif.reset <= 0 ;

#10;

vif.syn <=1 ;
seq_item_port.get_next_item (req);
state = 1 ;

end

@(posedge vif.clk)

begin

case (state)

1: begin

vif.syn = 0 ;

vif.rdy_i = 1'bl ;

for (j = 0; j < 16; j =3 + 1) begin

if (j == 0)

begin

req.msg = {req.msgl, req.msg2 , req.msg3 , req.msgd} ;

A.3 MD5 Driver

66

infake = req.msg ;
outfake = vif.hash o ;
modelin = req.msgl ;

vif.msg_i =

string_sv2c

req.msgl ;

(modelin) ;

modelout = myscript(dummy) ;
end

else if (j == 1)

vif.msg_i1i = 1<<31;

else if (j == 14)

vif.msg_i

else

vif.msg_i
#10;

end
counter = ¢
if (counter
end

2: begin
vif.rdy_i =

counter = ¢

32"'h20000000;

0;

ounter + 1 ;
== 1) state =
1'b0 ;

ounter + 1 ;

if (vif.rdy_o)

begin

rtlout = {v

if .hash_o} ;

A.3 MD5 Driver

67

rtloutstring =myscript2(rtlout);
end

if (counter == 70) state = 3 ;
end

3: begin

myscript3 (modelout, rtloutstring ,

req_cg = req ;

mdS_cg.sample () ;

state = 0;

counter = 0 ;
seq_item_port.item_done () ;
end

endcase

end

end

endtask : drive

endclass : md5_driver

function string myscript (string data)

string str3;
string str4;
static integer 1 = 0 ;

integer j ;

modelin) ;

2

A.3 MD5 Driver

i=i%2

if (j == 0) str3 = data ;
if (j == 1) str4 = data ;
i=1+1 ;

return str3 ;
endfunction : myscript

export "DPI-C" function myscript;

function string myscript2 (bit [127:0] data);

reg [3:0] in [32];

bit [3:0] extract ;

static string out ="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'";
string outl ;

static integer 1 =0 ;

reg [127:0] indata;

indata = data ;

in [31] indata [3:0] ;

in [30] = indata [7:4] ;

in [29] = 1indata [11:8] ;
in [28] = indata [15:12] ;
in [27] = indata [19:16] ;
in [26] = indata [23:20] ;

in [25] = indata [27:24] ;
in [24] = indata [31:28] ;
in [23] = indata [35:32] ;

A.3 MD5 Driver

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

in

for (

[22]
[21]
[20]
[19]
[18]
[17]
[16]
[15]
[14]
[13]
[12]
[11]
[10]
[9]
[8]
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]

begin

i

indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata
indata

indata

[39:
[43
[47
[51
[55
[59
[63
[67
[71
[75
[79
[83:
[87:

36]

:40]
:44]
48]
:52]
:56]
:60]
164]
:68]
1721
:76]

80]
84]

[91:88] ;

[95:92] ;

[99:96] ;

[103:
[107:
[111:
[115:
[119:
[123:
[127:

0 ; 1< 32 ;

100]
104]
108]
112]
116]
120]
124]

1 =

i

)

A.3 MD5 Driver

70

if (in[i] == 4'b0000) out.putc(i,"0");
if (in[i] == 4'b0001) out.putc(i,"1");
if (in[i] == 4'b0010) out.putc(i,"2");
if (in[i] == 4'b0011) out.putc(i,"3");
if (in[1] == 4'b0100) out.putc(i,"4");

if (in[1] == 4'b0101) out.putc(i,"5");
if (in[1] == 4'b0110) out.putc(i,"6");
if (in[1] == 4'b0111) out.putc(i,"7");

if (in[1] == 4'b1000) out.putc(i,"8");
if (in[i]== 4'b1001) out.putc(i,"9");
if (in[i]

= 4'b1010) out.putc(i,"a");
if (in[i]== 4'b1011) out.putc(i,"b");
if (in[1]== 4'b1100) out.putc(i,"c");

if (in[i1] == 4'b1101) out.putc(i,"d");
if (in[1] == 4'b1110) out.putc(i,"e");
if (in[i] == 4'bl111) out.putc(i,"f");

end
return out,;

endfunction : myscript2

function void myscript3 (string model,rtl , in)
static integer 1 = 0 ;

static integer j = 0 ;

9

A.3 MD5 Driver 71

if (model == rtl)
begin
1 =1+ 1
$display ("———TEST COUNT:%d time : %0t INPUT
CHARACTER: %s RTL OUTPUT 1is: %S

MODEL OUTPUT is: %s———> 'TEST PASS'",i,

$time, in,rtl , model);

end
else
begin
=3+ 13
$display (" TEST SEQUENCE fail
count: %d Performed at time :%0t RTL
OUTPUT is: %S MODEL OUTPUT is: %s
> Test fail", i, $time, rtl, model);
end

endfunction : myscript3

A.4 MD5 Monitor

72

A.4 MDS5 Monitor

import "DPI-C" function string_sv2c (input string str, output
string modelcheck) ;

import "DPI-C" context function string string_sv2c (input
string str);

class md5_monitor_before extends uvm_monitor;

‘uvm_component_utils (md5_monitor_before)

logic [15:0] yome [10] ;

string str, strl , str2, str3, strd, str5, str6;
bit [31:0] check ;

bit modelcheck ;

string classin ;

virtual md5_interface vif;

uvm_analysis_port #(mdS5_seq_item) mon_ap_before;

function new ();

super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual md5_interface) ::read_by_name

A.4 MD5 Monitor

(.scope("ifs"), .name("mdS5_interface"), .val(vif)));
mon_ap_before = new (.name("mon_ap_before"), .parent(this));

endfunction: build_phase

task run_phase (uvm_phase phase);

mdS5_seq_item req ;

req = mdS5_seq_item::type_id:: create
(.name("req"), .contxt(get_full_name()));
str5 = "hello from class " ;

forever begin
@ (posedge vif.clk , vif.rdy_o);
begin

if (vif.rdy_o) begin

if (!vif.busy_o)begin

req.hash_o = vif.hash_o;

req . modelout = hello from scoreboard"

2

A.4 MD5 Monitor 74

/] $display (" The value from monitor %h", req.
hash o) ;
mon_ap_before. write (req) ;
//yome = main() ;
/] $display ("%s ", yome);
end

end

end

end

endtask : run_phase

endclass : md5_monitor_before

/1 1

/1 1

class md5_monitor_after extends uvm_monitor;
“uvm_component_utils(md5_monitor_after)

virtual md5_interface vif;

/1
/!l analysis port, to send the transaction to scoreboard

/1

uvm_analysis_port #(mdS5_seq_item) mon_ap_after;

/1

// Handler // coverage

A.4 MD5 Monitor

/1

/!l define sequence handler
md5_seq_item req ;

/1l sequence handler for coverage
md5_seq_item req_cg ;

/1

// new — constructor

/1

function new (string name, uvm_component parent);
super .new(name, parent);
// md5_cg = new ;
endfunction : new
// run_phase — convert the signal level activity to
transaction level.
/1 1.e, sample the values on interface signal and assigns to
transaction class fields
task run_phase (uvm_phase phase);
bit [31:0] a ;
integer counter = 0 , state = 0 ;
req = md5_seq_item::type_id::create
(.name("req"), .contxt(get_full_name()));
forever begin
@(posedge vif.clk);
begin
if (vif.syn == 1'bl)

A.4 MDS Monitor 76
begin
state = 1 ;
end
if(state == 1)
begin
//req.msgl = vif.msg_i [31:24];
counter = counter + 1 ;
a = req.sequ;
end
if (counter == 1)
begin
state = 0 ;
/la = {req.msgl, req.msg2, req.msg3, req.msg4d
}
// $display ("The value from the monitor
phase is 9H" , a);
counter = 0 ;
mon_ap_after. write (req);
end
end
end

endtask: run_phase

endclass : md5_monitor_after

A.5 MD5 Agent 77

A.S MDS Agent

class md5_agent extends uvm_agent;

‘uvm_component_utils (md5_agent)
uvm_analysis_port#(mdS5_seq_item) agent_ap_before;
uvm_analysis_port#(md5_seq_item) agent_ap_after;

md5_sequencer sequencer;

md5_driver driver;

md5_monitor_before mdS5_mon_before;

mdS5_monitor_after md5_mon_after

’

function new (string name, uvm_component parent);
super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

A.5 MD5 Agent 78

agent_ap_before = new(.name("agent_ap_before"), .parent(this))

agent_ap_after = new(.name("agent_ap_after"), .parent(this));

sequencer = md5_sequencer ::type_id:: create (.name("
sequencer"), .parent(this));

driver = mdS_driver::type_id:: create (.name("driver"),

.parent(this));
md5_mon_before = md5S_monitor_before::type_id:: create (.name("
md5_mon_before"), .parent(this));
mdS5_mon_after = md5_monitor_after:: type_id:: create (.name("
mdS5_mon_after"), .parent(this));

endfunction: build_phase

function void connect_phase (uvm_phase phase);
super.connect_phase (phase);
driver.seq_item_port.connect(sequencer.seq_item_export);
md5_mon_before. mon_ap_before.connect(agent_ap_before);
md5_mon_after. mon_ap_after.connect(agent_ap_after);
endfunction: connect_phase

endclass : md5_agent

A.6 MD5 Scoreboard 79

A.6 MD5 Scoreboard

‘uvm_analysis_imp_decl (_before)

“uvm_analysis_imp_decl (_after)

class md5_scoreboard extends uvm_scoreboard;

‘uvm_component_utils (mdS5_scoreboard)

uvm_analysis_export #(md5_seq_item) sb_export_before;

uvm_analysis_export #(md5_seq_item) sb_export_after;

uvm_tlm_analysis_fifo #(md5_seq_item) before_fifo;

uvm_tlm_analysis_fifo #(md5_seq_item) after_fifo;

mdS5_seq_item transaction_before;

md5_seq_item transaction_after;

function new(string name, uvm_component parent);

A.6 MD5 Scoreboard 80

super .new(name, parent);

transaction_before new("transaction_before");

transaction_after new("transaction_after");

endfunction: new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

sb_export_before = new("sb_export_before", this
)5

sb_export_after = new("sb_export_after", this)

before_ fifo = new("before_fifo", this);

after_fifo = new("after_fifo", this);

endfunction: build_phase

A.6 MD5 Scoreboard 81

function void connect_phase (uvm_phase phase);
sb_export_before.connect(before_fifo.analysis_export);
sb_export_after.connect(after_fifo.analysis_export);

endfunction: connect_phase

task run();
forever begin
before_fifo.get(transaction_before);

after_fifo.get(transaction_after);

compare () ;
end

endtask: run

virtual function void compare();

A.6 MD5 Scoreboard 82

“uvm_info (" code works until SB" , UVM LOW) ;
if (transaction_before.out == transaction_after.out) begin
‘uvm_info ("compare", {"Test: OK!"}, UVM_LOW) ;
end else begin
“uvm_info ("compare", {"Test: Fail!"}, UVM LOW) ;
end
endfunction: compare

endclass: md5_scoreboard

A.7 MD5 Environment 83

A.7 MDS5 Environment

class md5_env extends uvm_env;

‘uvm_component_utils (md5_env)

mdS5_agent agent;

md5_scoreboard sb;

function new(string name, uvm_component parent);
super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

A.7 MD5 Environment 84

agent = mdS5_agent:: type_id:: create (.name("agent"),
parent(this));
sb = md5_scoreboard:: type_id:: create (.name("sb"),
.parent(this));

endfunction: build_phase

function void connect_phase (uvm_phase phase);
super .connect_phase (phase) ;
agent.agent_ap_before.connect(sb.sb_export_before);
agent.agent_ap_after.connect(sb.sb_export_after);

endfunction: connect_phase

endclass : md5_env

A.8 MD5 UVM Package

A.8 MDS UVM Package

package md5_pkg;

import uvm_pkg::#;

“include "mdS5_sequencer.sv"
“include "md5_monitor.sv"
“include "md5 _driver.sv"
“include "md5_agent.sv"
“include "md5_scoreboard.sv
“include "mdS5_config.sv"
“include "md5_env.sv"
“include "md5 ctl_test.sv"

endpackage: md5_pkg

A.9 MD5 Test

86

A.9 MDS5 Test

class md5_ctl_test extends uvm_test;

‘uvm_component_utils(md5_ctl_test)

mdS5_env env;

function new(string name = "md5_test" ,uvm_component parent=
null);
super .new(name, parent) ;

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

env = mdS5_env::type_id:: create (.name("env"), .parent(this));

A.9 MD5 Test

87

endfunction : build_phase

task run_phase (uvm_phase phase);

md5_sequence mdS5_seq;

phase.raise_objection (.obj(this));

md5_seq = md5_sequence ::type_id:: create (.name("mdS_seq"),
contxt(get_full_name()));

assert(mdS5_seq.randomize ());

mdS5S_seq. start(env.agent.sequencer);

phase.drop_objection (. obj(this));

endtask: run_phase

endclass : md5_ct]l_test

A.10 MDS5 Top

88

A.10 MDS5 Top

“include "uvm_macros.svh"
“include "md5_pkg.sv"
“include "mdS5_interface.sv"
module test;

import uvm_pkg::*;

import md5S_pkg::;

md5_interface vif () ;

md5_ctl top (vif.clk, vif.rdy_i, vif.msg_i, vif.reset,

hash_o, vif.rdy_o, vif.busy_o);

initial

begin

uvm_resource_db#(virtual md5_interface) :: set
(.scope("ifs"), .name("md5_interface"), .val(vif));

$display ("—— Test Started ")

run_test () ;

$display ("—— end test—— ") ;
end

initial

begin

vif.clk = 1'b0 ;

end

always

vif.

A.10 MDS5 Top

89

begin
#5 vif.clk = ~vif.clk ;

end

initial

begin

$timeformat(—9,2,"ns", 16);
$set_coverage_db_name ("md5_ctl");
“ifdef SDFSCAN

$sdf_annotate ("sdf/md5_ctl_scan.sdf",
“endif

end

endmodule

test.top);

Appendix B

Source Code for SHA-256

B.1 SHA-256 Interface

interface sha256_ interface ;

logic
logic
logic
logic
logic
logic

logic

clk ;

reset ;

[31:0] text_i ;
[31:0] text_o ;
[2:0] cmd_i ;
cmd w_i

[3:0] cmd_o;

B.1 SHA-256 Interface 91

sequence resetreset ;
(text_o == 32'b0) ;
endsequence

property reset_reset ;

@(posedge clk)

(reset == 1'bl) |—> ##1 resetreset ;
endproperty
assertion_reset_reset : assert property (reset_reset) else

$display (" Text_o misbehaviour with respect to reset")

b

sequence resetresetcmd ;
(cmd_o == 3'b0) ;
endsequence

property reset_reset_cmd ;

@(posedge clk)

(reset == 1'bl) |—> ##1 resetresetcmd ;
endproperty
assertion_reset_reset_cmd : assert property (reset_reset_cmd

) else $display ("cmd_o misbehaviour with respect to

reset") ;

B.1 SHA-256 Interface

92

endinterface : sha256 _interface

B.2 SHA-256 Sequence and Sequencer 93

B.2 SHA-256 Sequence and Sequencer

class sha256_seq_item extends uvm_sequence_item ;
virtual sha256 interface vif;

rand bit [447:0] cga ;

rand bit [447:0] cgb ;

rand bit [7:0] msgd ;

rand bit [31:0] msg5 ;

rand byte unsigned a [];
constraint str_len {a.size() == 56; }
constraint temp_str_ascii { foreach (a[i]) a[1] inside {

[48:57], [65:90], [97:122] }; }

function new(string name="");
super .new(name) ;

endfunction: new

‘uvm_object_utils_begin (sha256_seq_item)
“uvm_field_int(cga, UVM_ALL ON)
“uvm_field_int(cgb, UVM_ALL ON)

B.2 SHA-256 Sequence and Sequencer 94

“uvm_field_int (msg4, UVM_ALL_ON)
“uvm_field_int (msg5, UVM_ALL_ON)
‘uvm_object_utils_end

endclass: sha256_seq_item

class sha256_sequencel extends uvm_sequence #(sha256_seq_item)

‘uvm_object_utils (sha256_sequencel)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

B.2 SHA-256 Sequence and Sequencer 95

finish_item (req);
end
endtask :body

endclass : sha256_sequencel

class sha256_sequence2 extends uvm_sequence #(sha256_seq_item)

‘uvm_object_utils (sha256_sequence?2)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

B.2 SHA-256 Sequence and Sequencer 96

finish_item (req);
end
endtask :body

endclass : sha256_sequence?2

class sha256_sequence3 extends uvm_sequence #(sha256_seq_item)

"uvm_object_utils (sha256_sequence3)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

B.2 SHA-256 Sequence and Sequencer 97

finish_item (req);
end
endtask :body

endclass : sha256_sequence3

class sha256_sequence4 extends uvm_sequence #(sha256_seq_item)

"uvm_object_utils (sha256_sequence4)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

B.2 SHA-256 Sequence and Sequencer 98

finish_item (req);
end
endtask :body

endclass : sha256_sequence4d

class sha256_sequence5S extends uvm_sequence #(sha256_seq_item)

‘uvm_object_utils (sha256_sequencel)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

B.2 SHA-256 Sequence and Sequencer

finish_item (req);
end
endtask :body

endclass : sha256_sequence$

class sha256_sequence extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (sha256_sequence)

function new(string name="mdS5_sequence");
super .new (name) ;

endfunction: new

sha256_sequencel seql ;
sha256_sequence2 seq2 ;
sha256_sequence3 seq3 ;
sha256_sequenced4 seq4 ;
sha256_sequence5 seq5

task body () ;

seql = sha256_sequencel ::type_id:: create("seql");

seq2 sha256_sequence2 :: type_id :: create ("seq2");

B.2 SHA-256 Sequence and Sequencer 100

seq3 sha256_sequence3 :: type_id:: create ("seq3");

seq4

sha256_sequenced :: type_id :: create ("seq4");

seq5 = sha256_sequence5::type_id::create("seq5");

m_sequencer.set_arbitration (UVM_SEQ_ARB_USER) ;

fork

begin

repeat(200000) begin

seql . start (m_sequencer, this, 100);
end

end

begin

repeat(200000) begin

seq2.start (m_sequencer, this, 200);
end

end

begin
repeat(200000) begin

seq3.start (m_sequencer, this, 300);

B.2 SHA-256 Sequence and Sequencer

101

end

end

begin

repeat(200000) begin

seq4 . start (m_sequencer, this, 400);
end

end

begin

repeat(200000) begin

seq5.start (m_sequencer, this, 500);
end

end

join
endtask :body

endclass : sha256_sequence

typedef uvm_sequencer#(sha256_seq_item)

sha256_sequencer;

B.3 SHA-256 Driver 102

B.3 SHA-256 Driver

import "DPI-C" context function string cscript (input string
str , output string);

import "DPI-C" function void hello ();

“define SHA256_TEST)

abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
“define SHA256_TEST_PADDING {1'b1,63'b0,448 'b0,64 "'d448}

class sha256_driver extends uvm_driver #(sha256_seq_item);
bit [447:0] infake ;
bit [127:0] outfake

b

‘uvm_component_utils (sha256_driver)

virtual sha256 interface vif;

sha256_seq_item req

9

sha256_seq_item req_cg

9

B.3 SHA-256 Driver 103

covergroup sha256_cg ;

X coverpoint req.cga ;

y coverpoint vif.text_o ;
cross req.cga, vif.text_o ;

endgroup : sha256_cg

function new (string name, uvm_component parent);
super .new(name, parent);
sha256_cg = new;

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual sha256_interface) ::read_by_name
(.scope("ifs"), .name("sha256_interface"), .val(vif)));

endfunction: build_phase

function string get_str ();

B.3 SHA-256 Driver

104

string str ;

foreach (req.a[i])

str = { str, string '(req.a[i]) } ;
return str;

endfunction

/1

/1l run phase

/1

task run_phase (uvm_phase phase);

drive () ;

endtask : run_phase

/1

// drive — transaction level to signal level

// drives the value's from seq_item to interface

/1

virtual task drive();

/1l properties of task

integer 1i;

reg [1023:0] all_message;

reg [511:0] tmp_i;

logic [255:0] tmp_o;

integer counter = 0 , state = 0 ;
bit [447:0] randomvalue ;

string modelin ;

string modelout;

signals

B.3 SHA-256 Driver 105

string rtlstring;

string dpistring ;

forever begin

if (counter == 0) begin
vif.reset <= 1 ;

#10;

vif.reset <= 0 ;

#10;
seq_item_port.get_next_item (req);
state = 1 ;

end

@(posedge vif.clk)
begin

case (state)

1: begin

vif.cmd_1 = 3'b000;

vif.cmd w_1 = 1'b0;

#100;
modelin = get_str ();
infake = modelin ;

randomvalue = modelin;

B.3 SHA-256 Driver

106

/] $display (" The random string generated is %s and in bit

Jdh", get_str(), randomvalue);
// all_message = {randomvalue ,1'bl1,63'b0,448'b0,64 'd448 };
all_message = {randomvalue ,"SHA256_TEST_PADDING };
/] $display (" all messages %h " , all_message);

tmp_1 = all_message[1023:512];

vif.cmd_w_i = 1'bl;

@(posedge vif.clk);

vif.cmd_i = 3'b010;

for (i=0;i<165i=i+1)

begin

@(posedge vif.clk);

vif.cmd w_1 = 1'b0;

vif.text_i = tmp_i[16%32—1:15%32];

tmp_i = tmp_i << 32;

end

@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
while (vif.cmd_o[3])

@(posedge vif.clk);

18

B.3 SHA-256 Driver 107

#100;
counter = counter + 1 ;
state = 2 ;

end

2: begin

tmp_i = all_message[511:0];
@(posedge vif.clk);
vif.cmd_i = 3'b110;
vif.cmd w i1 = 1'bl;

for (i=0;i<165i=i1+1)

begin

@(posedge vif.clk);
vif.cmd w_1 = 1'b0;
vif.text_i = tmp_i[16%32—1:15%32];
tmp_i = tmp_i << 32;

end

@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);

while (vif.cmd_o[3])
@(posedge vif.clk);
@(posedge vif.clk);

B.3 SHA-256 Driver

108

@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
vif.cmd_i = 3'b001;
vif.cmd_w_i = 1'bl;
@(posedge vif.clk);
vif.cmd_w_i = 1'b0;
for (1i=0;1<8;i=i+1)
begin

@(posedge vif.clk);
#1;

tmp_o[31:0] = vif.text_o ;

"

/] $display (" the output is %h vif.text_o);
if (1 <7) tmp_o = tmp_o << 32 ;

end

/] $display (" The final output is %h " , tmp_o);
rtlstring = myscript2 (tmp_o);

cscript (modelin, dpistring);

modelout = myscriptl ("hello");

/] $display (" the final output from RTL is %s"

/] $display (" the final output from model is %s"

rtlstring)

dpistring

B.3 SHA-256 Driver

109

end

3: begin

sha256_cg.sample () ;

script3 (modelout, rtlstring , modelin);
state = 0 ;
counter = 0 ;

seq_item_port.item_done () ;
end

endcase

end

end

endtask : drive

endclass : sha256_driver

function string myscriptl (string data)
string str3;

string str4;

static integer 1 = 0 ;
integer j

] =1%2 ;

if (j == 0) str3 = data ;

if (j == 1) str4 = data ;

b

B.3 SHA-256 Driver 110

return str3 ;
endfunction : myscriptl

export "DPI-C" function myscriptl;

function string myscript2 (bit [255:0] hexvalue) ;

static string out =

dddadaadadaadadaaaaadadadaaadaaadaaadaddaadadaadaadaadaadaadaaaddaaadaadaaaaaaaaaaaaaaaaaa

",
)

bit [3:0] temp;

integer 1 ;

for (i =0 ; i<64 ;1 =1+1)

begin

temp [3:0] = hexvalue [255:252] ;

hexvalue [255:0] = {hexvalue[251:0], 4'b0};

if (temp == 4'b0000) out.putc(i,"0");
if (temp == 4'b0001) out.putc(i,"1");
if (temp == 4'b0010) out.putc(1,"2");
if (temp == 4'b0011) out.putc(i,"3");
if (temp == 4'b0100) out.putc(1,"4");
if (temp == 4'b0101) out.putc(1,"5");
if (temp == 4'b0110) out.putc(i,"6");

if (temp == 4'b0111) out.putc(1,"7");

B.3 SHA-256 Driver

111

if (temp == 4'b1000) out.putc(1,"8");
if (temp == 4'b1001) out.putc(1,"9");
if (temp == 4'b1010) out.putc(i,"a");
if (temp == 4'b1011) out.putc(i,"b");
if (temp == 4'b1100) out.putc(i,"c");
if (temp == 4'b1101) out.putc(1,"d");
if (temp == 4'b1110) out.putc(i,"e");
if (temp == 4'bl111) out.putc(1,"f");
end

return out,;

endfunction: myscript2

function void script3 (string model,rtl, in) ;
static integer 1 = 0 ;
static integer j = 0 ;

$display (" \n ") ;

if (model == rtl)
begin
i =1+ 1 ;
$display ("——INPUT:%s |IRTL OUTPUT is:%S |IMODEL

OUTPUT is: %s———> 'TEST PASS'" .,in,rtl , model);

end

else

begin

B.3 SHA-256 Driver 112

j =] +1;
$display ("— TEST SEQUENCE fail count: %d
Performed at time :%0t RTL OUTPUT 1is: %S

MODEL OUTPUT is : %s >

Test fail", i, S$time, rtl, model);

end

endfunction : script3

B.4 SHA-256 Monitor 113

B.4 SHA-256 Monitor

import "DPI-C" function string_sv2c (input string str, output
string modelcheck) ;
import "DPI-C" context function string string_sv2c (input

string str);

class sha256_monitor_before extends uvm_monitor;
‘uvm_component_utils (sha256_monitor_before)
logic [15:0] yome [10] ;

string str, strl, str2, str3, strd, str5, str6;
bit [31:0] check ;

bit modelcheck ;

string classin

b

virtual sha256 interface vif;

uvm_analysis_port #(sha256_seq_item) mon_ap_before;

B.4 SHA-256 Monitor 114

function new (string name, uvm_component parent);
super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual sha256_interface) ::read_by_name
(.scope("ifs"), .name("sha256_interface"), .val(vif)));
mon_ap_before = new (.name("mon_ap_before"), .parent(this));

endfunction: build_phase

task run_phase (uvm_phase phase);
sha256_seq_item req ;

req = sha256_seq_item ::type_id:: create
(.name("req"), .contxt(get_full_name()));

strS = "hello from class ;

endtask : run_phase

B.4 SHA-256 Monitor 115

endclass : sha256_monitor_before

// ——— monitor after/ checksum-————//
class sha256_monitor_after extends uvm_monitor;

‘uvm_component_utils(sha256_monitor_after)

//
// Virtual Interface

/1

virtual sha256 interface vif;

/1

// analysis port, to send the transaction to scoreboard

/1

uvm_analysis_port #(sha256_seq_item) mon_ap_after;

/1

/1 Handler // coverage

/1

// define sequence handler

sha256_seq_item req ;

/1 sequence handler for coverage
mdS5_seq_item req_cg ;

/1

// new — constructor

/1

function new (string name, uvm_component parent);

B.4 SHA-256 Monitor 116

super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual sha256_interface) ::read_by_name
(.scope("ifs"), .name("sha256_interface"), .val(vif)));
mon_ap_after= new (.name("mon_ap_after"), .parent(this));

endfunction: build_phase

task run_phase (uvm_phase phase);

bit [31:0] a ;

integer counter = 0 , state = 0 ;

req = sha256_seq_item::type_id:: create
(.name("req"), .contxt(get_full_name()));
endtask: run_phase

endclass : sha256_monitor_after

B.5 SHA-256 Agent 117

B.S SHA-256 Agent

class sha256_agent extends uvm_agent;

‘uvm_component_utils (sha256_agent)

uvm_analysis_port#(sha256_seq_item) agent_ap_before;

uvm_analysis_port#(sha256_seq_item) agent_ap_after;

sha256_sequencer sequencer;
sha256_driver driver;
sha256_monitor_before sha256_mon_before;

sha256 _monitor_after sha256_mon_after

9

function new (string name, uvm_component parent);
super .new(name, parent);

endfunction : new

B.5 SHA-256 Agent 118

function void build_phase (uvm_phase phase);

super . build_phase (phase);

agent_ap_before = new(.name("agent_ap_before"), .parent(this))

agent_ap_after = new(.name("agent_ap_after"), .parent(this));

sequencer = sha256_sequencer::type_id:: create (.name("
sequencer"), .parent(this));

driver = sha256_driver::type_id:: create (.name("driver

"), .parent(this));

sha256_mon_before = sha256_monitor_before :: type_id ::
create (.name("sha256_mon_before"), .parent(this));

sha256_mon_after = sha256_monitor_after :: type_id ::
create (.name("sha256_mon_after"), .parent(this));

endfunction: build_phase

function void connect_phase (uvm_phase phase);

super .connect_phase (phase) ;
driver.seq_item_port.connect(sequencer.seq_item_export);
sha256_mon_before. mon_ap_before.connect(agent_ap_before);
sha256_mon_after. mon_ap_after.connect(agent_ap_after);
endfunction: connect_phase

endclass : sha256_agent

B.6 SHA-256 Scoreboard 119

B.6 SHA-256 Scoreboard

‘uvm_analysis_imp_decl (_before)
“uvm_analysis_imp_decl (_after)

export "DPI-C" function my_sv_function;

class sha256_scoreboard extends uvm_scoreboard;

“uvm_component_utils(sha256_scoreboard)

uvm_analysis_export #(sha256_seq_item) sb_export_before;
uvm_analysis_export #(sha256_seq_item) sb_export_after;
uvm_tlm_analysis_fifo #(sha256_seq_item) before_fifo;
uvm_tlm_analysis_fifo #(sha256_seq_item) after_fifo;
sha256_seq_item transaction_before;

sha256_seq_item transaction_after;

function new(string name, uvm_component parent);
super .new(name, parent);

transaction_before

new("transaction_before");

transaction_after

new("transaction_after");

endfunction: new

function void build_phase (uvm_phase phase);
super . build_phase (phase);

sb_export_before = new("sb_export_before", this);

B.6 SHA-256 Scoreboard 120

sb_export_after new("sb_export_after", this);

before_ fifo new("before_fifo", this);

after_fifo new (" after_fifo", this);

endfunction: build_phase

function void connect_phase (uvm_phase phase);
sb_export_before.connect(before_fifo.analysis_export);
sb_export_after.connect(after_fifo.analysis_export);

endfunction: connect_phase

task run();

forever begin
before_fifo.get(transaction_before);
after_fifo.get(transaction_after);
compare () ;

end

endtask: run

virtual function void compare();

“uvm_info (" code works until SB" , UVM LOW) ;

if (transaction_before.out == transaction_after.out) begin
‘uvm_info ("compare", {"Test: OK!"}, UVM_LOW) ;

end else begin

“uvm_info ("compare", {"Test: Fail!"}, UVM LOW) ;

end

B.6 SHA-256 Scoreboard 121

endfunction: compare

endclass: sha256_scoreboard

B.7 SHA-256 Environment

122

B.7 SHA-256 Environment

class sha256_env extends uvm_env;

‘uvm_component_utils (sha256_env)

sha256_agent agent;

sha256_scoreboard sb;

function new(string name, uvm_component parent);
super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);
super . build_phase (phase);
agent = sha256_agent::type_id :: create (.name("agent"),

parent(this));

sb = sha256_scoreboard :: type_id:: create (.name("sb"),

parent(this));

B.7 SHA-256 Environment 123

endfunction: build_phase

function void connect_phase (uvm_phase phase);

super .connect_phase (phase) ;
agent.agent_ap_before.connect(sb.sb_export_before);
agent.agent_ap_after.connect(sb.sb_export_after);
endfunction: connect_phase

endclass : sha256_env

B.8 SHA-256 Package 124

B.8 SHA-256 Package

package sha256_pkg;

import uvm_pkg::#;

“include "sha256_sequencer.sv"
“include "sha256_monitor.sv"
“include "sha256 driver.sv"
“include "sha256_agent.sv"
“include "sha256_scoreboard.sv"
“include "sha256_config.sv"
“include "sha256_env.sv"

“include "sha256 test.sv"

endpackage: sha256_pkg

B.9 SHA-256 Test 125

B.9 SHA-256 Test

class sha256_test extends uvm_test;

‘uvm_component_utils (sha256_test)

sha256_env env;

function new(string name = "sha256_test" ,uvm_component parent=
null);
super .new(name, parent) ;

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

env = sha256_env ::type_id::create (.name("env"), .parent(this))

endfunction : build_phase

B.9 SHA-256 Test 126

task run_phase (uvm_phase phase);

sha256_sequence sha256_seq;

phase.raise_objection (.obj(this));

sha256_seq = sha256_sequence ::type_id:: create (.name("
sha256_seq"), .contxt(get_full_name()));

assert(sha256_seq.randomize ());

sha256_seq.start(env.agent.sequencer);

phase.drop_objection (. obj(this));

endtask: run_phase

endclass : sha256_ test

B.10 SHA-256 Top 127

B.10 SHA-256 Top

“include "uvm_macros.svh"

“include "sha256_pkg.sv"

“include "sha256 interface.sv"

import "DPI-C" function void main() ;

module test;

import uvm_pkg::;

import sha256_pkg::x*;

sha256_interface vif () ;

sha256 top (vif.clk, vif.reset, vif.text_i, vif.text_o, vif.
cmd_i, vif.cmd_w_i, vif.cmd_o);

initial

begin

uvm_resource_db#(virtual sha256_interface) :: set

(.scope("ifs"), .name("sha256_interface"), .val(vif));

$display ("—SHA—-256 Test Started ")
run_test () ;
$display (" ——end test—— ") ;

end

initial
begin
vif.clk = 1'b0 ;

vif.reset = 1'b0;

B.10 SHA-256 Top 128

end

always

begin

#5 vif.clk = ~vif.clk ;

end

initial

begin

$timeformat(—9,2,"ns", 16);
$set_coverage_db_name ("sha256");
“ifdef SDFSCAN

$sdf_annotate ("sdf/md5_ctl_scan.sdf", test.top);
“endif

end

endmodule

Appendix C

Source Code for Combined MDS5 and
SHA-256

C.1 MDS5 and SHA-256 Interface

interface md5_interface ;

logic clk ;

logic reset ;

logic rdy_i ;

logic [31:0] msg_i ;
logic [127:0] hash_o ;
logic rdy_o ;

logic busy_o ;

logic [31:0] syn;

C.1 MD5 and SHA-256 Interface 130

logic s_clk ;

logic s_reset ;

logic [31:0] text_i ;
logic [31:0] text_o ;
logic [2:0] cmd_i ;
logic cmd_w_i ;

logic [3:0] cmd_o;

logic scan_in0 ;
logic scan_en;
logic test_mode;

logic scan_outO;

sequence assertreset
(rdy_o == 1'bl) ;

endsequence

property assert_reset
@(posedge clk)
(reset == 1'bl) |—> ##3 assertreset ;

endproperty

C.1 MD5 and SHA-256 Interface 131

assertion_reset : assert property (assert_reset) else

$display ("Data sending failed") ;

sequence rdybusy ;
(rdy_o == 1'b0) ;

endsequence

property rdy_busy ;
@(posedge clk)
(busy_o == 1'bl) |—> rdybusy ;

endproperty

assertion_rdy_busy : assert property (rdy_busy) else S$display

(" Ready and Busy asserted concurrently") ;

hashO : assert property (@(posedge clk) ## 1 hash_o != 128"

HO) else $display (" Ready and Busy asserted concurrently"
)

C.1 MD5 and SHA-256 Interface

132

sequence resetreset ;
(text_o == 32'b0) ;

endsequence

property reset_reset ;
@(posedge s_clk)
(reset ==

endproperty

assertion_reset_reset : assert property (

1'bl)

|—> ##1 resetreset

2

reset_reset) else

$display (" Text_o misbehaviour with respect to reset"

sequence resetresetcmd ;
(cmd_o == 3'b0) ;

endsequence
property reset_reset_cmd ;
@(posedge s_clk)

(reset ==

endproperty

1'bl)

|—> ##1

b

resetresetcmd

C.1 MD5 and SHA-256 Interface 133

assertion_reset_reset_cmd : assert property (reset_reset_cmd
) else $display ("cmd_o misbehaviour with respect to

reset") ;

sequence assertreset ;
(rdy_o == 1'bl) ;
endsequence

property assert_reset ;

@(posedge clk)

(reset == 1'bl) |—> ##3 assertreset ;
endproperty
assertion_reset : assert property (assert_reset) else

$display ("Data sending failed") ;

sequence rdybusy ;

(rdy_o == 1'b0) ;

endsequence

property rdy_busy ;

@(posedge clk)

(busy_o == 1'bl) |—> rdybusy ;

endproperty

C.1 MD5 and SHA-256 Interface 134

assertion_rdy_busy : assert property (rdy_busy) else S$display

(" Ready and Busy asserted concurrently")

b

hashO : assert property (@(posedge clk) ## 1 hash_o != 128"

HO) else $display (" Ready and Busy asserted concurrently"
) s

endinterface : md5 _interface

C.2 MDS5 Sequence and Sequencer

135

C.2 MDS Sequence and Sequencer

class md5_seq_item extends uvm_sequence_item ;

virtual md5_interface vif;

logic [127:0] hash_o ;
bit rdy_o;
string modelout ;

bit rdy_i;

rand bit [7:0] num ;
rand bit [7:0] upper ;
rand bit [7:0] lower ;
rand bit [31:0] msgl ;
rand bit [31:0] msg2 ;
rand bit [7:0] msg3 ;
rand bit [7:0] msg4 ;
rand bit [31:0] msg_i ;
bit [31:0] msg ;

bit [31:0] sequ

constraint new_con { msgl[7:0] inside { [48:57],

[97:122] }; }

[65:90],

C.2 MD5 Sequence and Sequencer 136

constraint new_conl { msgl[15:8] inside { [48:57], [65:90],
[97:122] }; }

constraint new_con2 { msgl[23:16] inside { [48:57], [65:90],
[97:122] }; }

constraint new_con3 { msgl[31:24] inside { [48:57], [65:90],
[97:122] }; }

rand byte unsigned temp [];
constraint str_len {temp.size() == 4; }
constraint temp_str_ascii { foreach (temp[i]) temp[i] inside {

[65:90], [97:122] }; }

function new(string name="");
super .new (name) ;

endfunction: new

‘uvm_object_utils_begin (md5_seq_item)
“uvm_field_int (hash_o, UVM_ALL ON)
“uvm_field_int(rdy_o, UVM_ALL_ON)
“uvm_field_int(rdy_i, UVM_ALL _ON)
“uvm_field_int(msg_i, UVM_ALL_ON)

‘uvm_object_utils_end

C.2 MDS5 Sequence and Sequencer 137

endclass: md5_seq_item

class md5_sequencel extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (mdS5S_sequencel)

function new(string name="");
super .new(name) ;

endfunction: new

task body ()
integer 1 ;

md5_seq_item req;

req = mdS5_seq_item:: type_id:: create (.name("req"),

contxt(get_full_name()));

start_item (req);

assert(req.randomize());

finish_item (req);

endtask :body

endclass : md5_sequencel

C.2 MD5 Sequence and Sequencer 138

class md5_sequence2 extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (md5_sequence?2)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

md5_seq_item req;

req = md5_seq_item::type_id:: create (.name("req"),
contxt(get_full_name()));

start_item (req);

assert(req.randomize ());

finish_item (req);

endtask :body

endclass : md5_sequence?2

class md5_sequence3 extends uvm_sequence #(md5_seq_item);

C.2 MD5 Sequence and Sequencer 139

‘uvm_object_utils (mdS5_sequence3)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1

mdS5_seq_item req;

req = md5_seq_item::type_id:: create (.name("req"),
contxt(get_full_name()));

start_item (req);

assert(req.randomize ());

finish_item (req);

endtask :body

endclass : md5_sequence3

class md5_sequence2 extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (md5_sequence4)

C.2 MDS5 Sequence and Sequencer 140

function new(string name="");
super .new (name) ;

endfunction: new

task body ()
integer 1 ;

md5_seq_item req;

req = md5_seq_item::type_id:: create (.name("req"),
contxt(get_full_name()));

start_item (req);

assert(req.randomize ());

finish_item(req);

endtask :body

endclass : md5_sequence4

class md5_sequence extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (md5_sequence)

function new(string name="mdS5_sequence");

C.2 MDS5 Sequence and Sequencer 141

super .new(name) ;

endfunction: new

md5_sequencel seql ;
mdS5_sequence2 seq2 ;
mdS5_sequence2 seq3 ;
mdS5_sequence2 seq4 ;

mdS5_sequence2 seqS ;

task body () ;

seql = md5_sequencel ::type_id:: create("seql");
seq2 = mdS5_sequence2 ::type_id:: create("seq2");
seq3 = md5_sequence3 ::type_id:: create("seq3");
seq4 = md5_sequenced ::type_id::create("seq4");

seq5 = md5_sequenceS::type_id::create("seq5");

m_sequencer. set_arbitration (UVM_SEQ_ARB_USER) ;

fork
begin

repeat (4) begin

seql .start (m_sequencer, this, 100);
end

end

C.2 MD5 Sequence and Sequencer

142

begin
repeat(4) begin
seq2.start (m_sequencer,
end
end
begin
repeat(4) begin
seq3.start (m_sequencer,
end
end
begin
repeat(4) begin
seq4 . start (m_sequencer,
end
end
begin
repeat(4) begin
seqd.start (m_sequencer,
end
end
join

endtask

endclass : md5_sequence

this ,

this ,

this ,

this ,

:body

200);

300);

400) ;

500);

C.2 MDS5 Sequence and Sequencer 143

typedef uvm_sequencer#(md5_seq_item) md5_sequencer;

C.3 SHA-256 Sequence and Sequencer 144

C.3 SHA-256 Sequence and Sequencer

class sha256_seq_item extends uvm_sequence_item ;
virtual sha256 interface vif;

rand bit [447:0] cga ;

rand bit [447:0] cgb ;

rand bit [7:0] msgd ;

rand bit [31:0] msg5 ;

rand byte unsigned a [];
constraint str_len {a.size() == 56; }
constraint temp_str_ascii { foreach (a[i]) a[1] inside {

[48:57], [65:90], [97:122] }; }

function new(string name="");
super .new(name) ;

endfunction: new

‘uvm_object_utils_begin (sha256_seq_item)
“uvm_field_int(cga, UVM_ALL ON)
“uvm_field_int(cgb, UVM_ALL ON)

C.3 SHA-256 Sequence and Sequencer 145

“uvm_field_int (msg4, UVM_ALL_ON)
“uvm_field_int (msg5, UVM_ALL_ON)
‘uvm_object_utils_end

endclass: sha256_seq_item

class sha256_sequencel extends uvm_sequence #(sha256_seq_item)

‘uvm_object_utils (sha256_sequencel)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

C.3 SHA-256 Sequence and Sequencer 146

finish_item (req);
end
endtask :body

endclass : sha256_sequencel

class sha256_sequence2 extends uvm_sequence #(sha256_seq_item)

‘uvm_object_utils (sha256_sequence?2)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

C.3 SHA-256 Sequence and Sequencer 147

finish_item (req);
end
endtask :body

endclass : sha256_sequence?2

class sha256_sequence3 extends uvm_sequence #(sha256_seq_item)

"uvm_object_utils (sha256_sequence3)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

C.3 SHA-256 Sequence and Sequencer 148

finish_item (req);
end
endtask :body

endclass : sha256_sequence3

class sha256_sequence4 extends uvm_sequence #(sha256_seq_item)

"uvm_object_utils (sha256_sequence4)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

C.3 SHA-256 Sequence and Sequencer 149

finish_item (req);
end
endtask :body

endclass : sha256_sequence4d

class sha256_sequence5S extends uvm_sequence #(sha256_seq_item)

‘uvm_object_utils (sha256_sequencel)

function new(string name="");
super .new(name) ;

endfunction: new

task body();
integer 1 ;

sha256_seq_item req;

i =35;

repeat(i) begin

req = sha256_seq_item ::type_id::create (.name("req"), .contxt(
get_full_name()));

start_item (req);

assert(req.randomize ());

C.3 SHA-256 Sequence and Sequencer 150

finish_item (req);
end
endtask :body

endclass : sha256_sequence$

class sha256_sequence extends uvm_sequence #(md5_seq_item);

‘uvm_object_utils (sha256_sequence)

function new(string name="mdS5_sequence");
super .new (name) ;

endfunction: new

sha256_sequencel seql ;
sha256_sequence2 seq2 ;
sha256_sequence3 seq3 ;
sha256_sequenced4 seq4 ;
sha256_sequence5 seq5

task body () ;

seql = sha256_sequencel ::type_id:: create("seql");

seq2 sha256_sequence2 :: type_id :: create ("seq2");

C.3 SHA-256 Sequence and Sequencer 151

seq3 sha256_sequence3 :: type_id:: create ("seq3");

seq4

sha256_sequenced :: type_id :: create ("seq4");

seq5 = sha256_sequence5::type_id::create("seq5");

m_sequencer.set_arbitration (UVM_SEQ_ARB_USER) ;

fork

begin

repeat(200000) begin

seql . start (m_sequencer, this, 100);
end

end

begin

repeat(200000) begin

seq2.start (m_sequencer, this, 200);
end

end

begin
repeat(200000) begin

seq3.start (m_sequencer, this, 300);

C.3 SHA-256 Sequence and Sequencer

152

end

end

begin

repeat(200000) begin

seq4 . start (m_sequencer, this, 400);
end

end

begin

repeat(200000) begin

seq5.start (m_sequencer, this, 500);
end

end

join
endtask :body

endclass : sha256_sequence

typedef uvm_sequencer#(sha256_seq_item)

sha256_sequencer;

C.4 MD5 Driver 153

C.4 MDS5 Driver

import "DPI-C" context function string string_sv2c (input

string str);

class md5_driver extends uvm_driver #(md5_seq_item);
bit [31:0] infake ;
bit [127:0] outfake ;

‘uvm_component_utils (md5_driver)

virtual mdS5_interface vif;

mdS5_seq_item req ;

md5_seq_item req_cg ;

covergroup md5_cg ;
msg_in: coverpoint req.msg_i;

msg_in_valid : coverpoint vif.hash_o ;

C.4 MD5 Driver 154

cross req.msg_i, vif.hash_o ;

endgroup: mdS5_cg

function void display ();
$display ("[%tns] input = %h", $time, req_cg.msg_i);

endfunction : display

function new (string name, uvm_component parent);
super.new(name, parent);
mdS5_cg = new;

endfunction : new

function void build_phase (uvm_phase phase);
super . build_phase (phase);
void '(uvm_resource_db#(virtual md5_interface) ::
read_by_name
(.scope("ifs"), .name("mdS5_interface"), .val(vif)));

endfunction: build_phase

C.4 MD5 Driver 155

function string get_str ();

string str ;

foreach (req.templ[i])

str = { str, string '(req.temp[i]) } ;
return Str;

endfunction

task run_phase (uvm_phase phase);
drive () ;

endtask : run_phase

virtual task drive();

string randomi ;

integer counter = 0 , state = 0 ;
integer j ;

string modelin ;

string modelout ;

string rtloutstring ;

bit [127:0] modeloutb;

string dummy = "hello";

C.4 MD5 Driver 156

logic [127:0] rtlout ;

bit [7:0] checkl = 8'H61;
string check2 ;
bit [127:0] checksum = 128'Habcd1234abcdl1234abcd1234abcd1234;

forever begin

if (counter == 0) begin
vif.reset <= 1 ;

#10;

vif.reset <= 0 ;

#10;

vif.syn <=1 ;
seq_item_port.get_next_item (req);
state = 1 ;

end

@(posedge vif.clk)

begin

case (state)

1: begin

vif.syn = 0 ;

vif.rdy_i = 1'bl ;

C.4 MDS5 Diriver 157

for (j = 0; j < 16; j =3 + 1) begin
if (j == 0)
begin

req.msg = {req.msgl, req.msg2 , req.msg3 , req.msgd} ;

infake = req.msg ;
outfake = vif.hash o ;
modelin = req.msgl ;
vif.msg_1i = req.msgl ;

string_sv2c (modelin) ;

modelout = myscript(dummy) ;
end
else if (j == 1)

vif.msg_1 = 1<<31;
else if (j == 14)
32'h20000000;

vif.msg_i
else

vif.msg_i 0;

#10;

end

counter = counter + 1 ;

if (counter == 1) state = 2 ;
end

2: begin

vif.rdy_i = 1'b0 ;

C.4 MD5 Driver 158

counter = counter + 1 ;

if (vif.rdy_o)

begin

rtlout = {vif.hash_o} ;

rtloutstring =myscript2(rtlout);

end

if (counter == 70) state = 3 ;

end

3: begin

myscript3 (modelout, rtloutstring , modelin);

req_cg = req ;

mdS_cg.sample () ;

state = 0;

counter = 0 ;
seq_item_port.item_done () ;
end

endcase

end

end

endtask : drive

endclass : md5_driver

C.4 MD5 Driver 159

function string myscript (string data) ;
string str3;

string str4;

static integer i = 0 ;
integer j ;

j=1%2 ;

if (j == 0) str3 = data ;
if (j == 1) str4 = data ;
i=1+1;

return str3 ;

endfunction : myscript

export "DPI-C" function myscript;

function string myscript2 (bit [127:0] data);

reg [3:0] in [32];

bit [3:0] extract ;

static string out ="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
string outl ;

static integer 1 =0 ;

reg [127:0] indata;

indata = data ;
in [31] = 1indata [3:0] ;
in [30] = indata [7:4] ;

in [29]

indata [11:8] ;

in [28] indata [15:12] ;

C.4 MD5 Driver 160

in [27] = 1indata [19:16] ;
in [26] = indata [23:20] ;
in [25] = indata [27:24] ;
in [24] = indata [31:28] ;

in [23] = indata [35:32] ;

in [22] = indata [39:36] ;
in [21] = indata [43:40] ;
in [20] = indata [47:44] ;
in [19] = indata [51:48] ;

in [18] = indata [55:52] ;
in [17] = 1indata [59:56] ;
in [16] = indata [63:60] ;
in [15] = indata [67:64] ;

in [14] = indata [71:68] ;
in [13] = indata [75:72] ;
in [12] = indata [79:76] ;
in [11] = indata [83:80] ;

in [10] = indata [87:84] ;
in [9] = indata [91:88] ;
in [8] = indata [95:92] ;
in [7] = indata [99:96] ;

in [6] = 1indata [103:100] ;
in [5] = indata [107:104] ;
in [4] = indata [111:108] ;

in [3] = indata [115:112] ;

C.4 MD5 Driver

161

in [2]

in [1]
in [0]

for (1 =

begin
if
if
if
if
if
if
if
if

if
if
if
if
if
if
if

if

end

return out

indata [119:116] ;

indata [123:120] ;

indata [127:124] ;

0 ; 1 <

(in[1]
(in[i]
(in[1]
(in[1]
(in[i]
(in[1]
(in[i]
(in[i]

(in[i]

(in[i]=
(in[1i]

b

32

1 o= 1

4'50000)
4'b0001)
4'b0010)
4'b0011)
4'b0100)
4'b0101)
4'b0110)
4'b0111)

)

out.putc(i,"0");

out .

out .

out

putc(i,"1");
putc(i,"2");

.putC(i,"3");

out .

out .

out .

out

putc(i,"4");
putc(i,"5");
putc(i,"6");

cputc (i,"7");

4'b1000) out.putc(i,"8");

4'b1001) out.putc(1,"9");

== 4'b1010) out.putc(i,"a");

4'b1011) out.putc(i,"b");

4'b1100) out.putc(i,"c");

4'b1101) out.putc(i,"d");

4'b1110) out.putc(i,"e");

4'b1111) out.putc(i,"f");

C.4 MD5 Driver 162

endfunction : myscript2

function void myscript3 (string model, rtl , in)

2

static integer i = 0 ;
static integer j = 0 ;
if (model == rtl)
begin
1 =1+ 1 ;
$display ("———TEST COUNT:%d time : %0t INPUT
CHARACTER: %s RTL OUTPUT is: %S

MODEL OUTPUT is: %s———> 'TEST PASS'",i,

$time, in,rtl , model);

end
else
begin
=3+ 1
$display (" TEST SEQUENCE fail
count: %d Performed at time :%0t RTL
OUTPUT is: %S MODEL OUTPUT is: %s
> Test fail", i, $time, rtl, model);
end

endfunction : myscript3

C.4 MD5 Driver 163

C.5 SHA-256 Driver 164

C.5 SHA-256 Driver

import "DPI-C" context function string cscript (input string
str , output string);

import "DPI-C" function void hello ();

“define SHA256_TEST !
abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"

“define SHA256_TEST_PADDING {1'b1,63'b0,448 'b0,64 "'d448}

class sha256_driver extends uvm_driver #(sha256_seq_item);
bit [447:0] infake ;
bit [127:0] outfake ;

‘uvm_component_utils (sha256_driver)

virtual sha256 interface vif;

sha256_seq_item req ;

sha256_seq_item req_cg

C.5 SHA-256 Driver 165

covergroup sha256_cg ;

X coverpoint req.cga ;

y coverpoint vif.text_o ;
cross req.cga, vif.text_o ;

endgroup : sha256_cg

function new (string name, uvm_component parent);
super .new(name, parent);
sha256_cg = new;

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual sha256_interface) ::read_by_name
(.scope("ifs"), .name("sha256_interface"), .val(vif)));

endfunction: build_phase

function string get_str ();

C.5 SHA-256 Driver

166

string str ;

foreach (req.a[i])

str = { str, string '(req.a[i]) } ;
return str;

endfunction

/1

/1l run phase

/1

task run_phase (uvm_phase phase);

drive () ;

endtask : run_phase

/1

// drive — transaction level to signal level

// drives the value's from seq_item to interface

/1

virtual task drive();

/1l properties of task

integer 1i;

reg [1023:0] all_message;

reg [511:0] tmp_i;

logic [255:0] tmp_o;

integer counter = 0 , state = 0 ;
bit [447:0] randomvalue ;

string modelin ;

string modelout;

signals

C.5 SHA-256 Driver 167

string rtlstring;

string dpistring ;

forever begin

if (counter == 0) begin
vif.reset <= 1 ;

#10;

vif.reset <= 0 ;

#10;
seq_item_port.get_next_item (req);
state = 1 ;

end

@(posedge vif.clk)
begin

case (state)

1: begin

vif.cmd_1 = 3'b000;

vif.cmd w_1 = 1'b0;

#100;
modelin = get_str ();
infake = modelin ;

randomvalue = modelin;

C.5 SHA-256 Driver

168

/] $display (" The random string generated is %s and in bit

Jdh", get_str(), randomvalue);
// all_message = {randomvalue ,1'bl1,63'b0,448'b0,64 'd448 };
all_message = {randomvalue ,"SHA256_TEST_PADDING };
/] $display (" all messages %h " , all_message);

tmp_1 = all_message[1023:512];

vif.cmd_w_i = 1'bl;

@(posedge vif.clk);

vif.cmd_i = 3'b010;

for (i=0;i<165i=i+1)

begin

@(posedge vif.clk);

vif.cmd w_1 = 1'b0;

vif.text_i = tmp_i[16%32—1:15%32];

tmp_i = tmp_i << 32;

end

@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
while (vif.cmd_o[3])

@(posedge vif.clk);

18

C.5 SHA-256 Driver 169

#100;
counter = counter + 1 ;
state = 2 ;

end

2: begin

tmp_i = all_message[511:0];
@(posedge vif.clk);
vif.cmd_i = 3'b110;
vif.cmd w i1 = 1'bl;

for (i=0;i<165i=i1+1)

begin

@(posedge vif.clk);
vif.cmd w_1 = 1'b0;
vif.text_i = tmp_i[16%32—1:15%32];
tmp_i = tmp_i << 32;

end

@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);

while (vif.cmd_o[3])
@(posedge vif.clk);
@(posedge vif.clk);

C.5 SHA-256 Driver

170

@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
@(posedge vif.clk);
vif.cmd_i = 3'b001;
vif.cmd_w_i = 1'bl;
@(posedge vif.clk);
vif.cmd_w_i = 1'b0;
for (1i=0;1<8;i=i+1)
begin

@(posedge vif.clk);
#1;

tmp_o[31:0] = vif.text_o ;

"

/] $display (" the output is %h vif.text_o);
if (1 <7) tmp_o = tmp_o << 32 ;

end

/] $display (" The final output is %h " , tmp_o);
rtlstring = myscript2 (tmp_o);

cscript (modelin, dpistring);

modelout = myscriptl ("hello");

/] $display (" the final output from RTL is %s"

/] $display (" the final output from model is %s"

rtlstring)

dpistring

C.5 SHA-256 Driver

171

end

3: begin

sha256_cg.sample () ;

script3 (modelout, rtlstring , modelin);
state = 0 ;
counter = 0 ;

seq_item_port.item_done () ;
end

endcase

end

end

endtask : drive

endclass : sha256_driver

function string myscriptl (string data)
string str3;

string str4;

static integer 1 = 0 ;
integer j

] =1%2 ;

if (j == 0) str3 = data ;

if (j == 1) str4 = data ;

b

C.5 SHA-256 Driver 172

return str3 ;
endfunction : myscriptl

export "DPI-C" function myscriptl;

function string myscript2 (bit [255:0] hexvalue) ;

static string out =

dddadaadadaadadaaaaadadadaaadaaadaaadaddaadadaadaadaadaadaadaaaddaaadaadaaaaaaaaaaaaaaaaaa

",
)

bit [3:0] temp;

integer 1 ;

for (i =0 ; i<64 ;1 =1+1)

begin

temp [3:0] = hexvalue [255:252] ;

hexvalue [255:0] = {hexvalue[251:0], 4'b0};

if (temp == 4'b0000) out.putc(i,"0");
if (temp == 4'b0001) out.putc(i,"1");
if (temp == 4'b0010) out.putc(1,"2");
if (temp == 4'b0011) out.putc(i,"3");
if (temp == 4'b0100) out.putc(1,"4");
if (temp == 4'b0101) out.putc(1,"5");
if (temp == 4'b0110) out.putc(i,"6");

if (temp == 4'b0111) out.putc(1,"7");

C.5 SHA-256 Driver

173

if (temp == 4'b1000) out.putc(1,"8");
if (temp == 4'b1001) out.putc(1,"9");
if (temp == 4'b1010) out.putc(i,"a");
if (temp == 4'b1011) out.putc(i,"b");
if (temp == 4'b1100) out.putc(i,"c");
if (temp == 4'b1101) out.putc(1,"d");
if (temp == 4'b1110) out.putc(i,"e");
if (temp == 4'bl111) out.putc(1,"f");
end

return out,;

endfunction: myscript2

function void script3 (string model,rtl, in) ;
static integer 1 = 0 ;

static integer j = 0 ;

$display (" \n ") ;
if (model == rtl)

begin

$display ("——INPUT:%s |IRTL OUTPUT is:%S |IMODEL
OUTPUT is: %s———> 'TEST PASS'" .,in,rtl , model);

end

else

begin

C.5 SHA-256 Driver 174

j =] +1;
$display ("— TEST SEQUENCE fail count: %d
Performed at time :%0t RTL OUTPUT 1is: %S

MODEL OUTPUT is : %s >

Test fail", i, S$time, rtl, model);

end

endfunction : script3

C.6 MD5 Monitor 175

C.6 MDS Monitor

// import "DPI-C" function string_sv2c (input string str,
output string modelcheck);

//import "DPI-C" context function string string_sv2c (input
string str);

class md5_monitor_before extends uvm_monitor;

‘uvm_component_utils (mdS5S_monitor_before)

logic [15:0] yome [10] ;

string str, strl , str2, str3, strd4, str5, str6;
bit [31:0] check ;

bit modelcheck ;

string classin ;

/1

// Virtual Interface

/1

virtual mdS5_interface vif;

/1

// analysis port, to send the transaction to scoreboard

/1

uvm_analysis_port #(mdS5_seq_item) mon_ap_before;

C.6 MD5 Monitor

176

/1

// new — constructor

/1l
function new (string name, uvm_component parent);

super .new(name, parent);

endfunction : new

/1

// build_phase — getting the interface handle
/1

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual md5_interface) ::read_by_name
(.scope("ifs"), .name("mdS5_interface"), .val(vif)));
mon_ap_before = new (.name("mon_ap_before"), .parent(this));

endfunction: build_phase

// run_phase — convert the signal level activity to
transaction level.
// i.e, sample the values on interface signal and assigns

transaction class fields

to

C.6 MD5 Monitor 177

task run_phase (uvm_phase phase);

mdS5_seq_item req

b

req = md5_seq_item::type_id::create
(.name("req"), .contxt(get_full_name()));
strS5 = "hello from class " ;

forever begin
@ (posedge vif.clk , vif.rdy_o);
begin

if (vif.rdy_o) begin

if (!vif.busy_o)begin
req.hash_o = vif.hash_o;

req . modelout = hello from scoreboard"

b

mon_ap_before. write (req) ;

end
end
end
end

endtask : run_phase

C.6 MD5 Monitor 178

endclass : md5_monitor_before

/1 //
// ——— monitor after/ checksum————//
// //

class md5_monitor_after extends uvm_monitor;

‘uvm_component_utils (mdS5_monitor_after)

/1

// Virtual Interface

/1

virtual md5_interface vif;

/1

// analysis port, to send the transaction to scoreboard

/1

uvm_analysis_port #(mdS5_seq_item) mon_ap_after;

/1
/! Handler // coverage

/1

// define sequence handler

md5_seq_item req ;

C.6 MD5 Monitor 179

md5_seq_item req_cg ;

function new (string name, uvm_component parent);

super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);
super . build_phase (phase);

void '(uvm_resource_db#(virtual md5_interface) ::read_by_name

(.scope("ifs"), .name("md5_interface"), .val(
vif)));
mon_ap_after= new (.name("mon_ap_after"), .parent(this));

endfunction: build_phase

C.6 MD5 Monitor 180

// run_phase — convert the signal level activity to
transaction level.
// i.e, sample the values on interface signal and assigns to

transaction class fields

task run_phase (uvm_phase phase);
bit [31:0] a ;
integer counter = 0 , state = 0 ;
req = md5_seq_item::type_id::create

(.name("req"), .contxt(get_full_name()));

forever begin
@(posedge vif.clk);

begin

if (vif.syn == 1'bl)
begin
state = 1 ;
end
if(state == 1)
begin

/lreq.msgl = vif . msg_1 [31:24];

C.6 MD5 Monitor 181

counter = counter + 1 ;
a = req.sequ;
end
if (counter == 1)
begin
state = 0 ;
/la = {req.msgl, req.msg2, req.msg3, req.msg4
b
/] $display ("The value from the monitor after
phase 1s 9H" , a);
counter = 0 ;
mon_ap_after. write (req);
end
end
end

endtask: run_phase

endclass : md5_monitor_after

C.7 SHA-256 Monitor 182

C.7 SHA-256 Monitor

import "DPI-C" function string_sv2c (input string str, output
string modelcheck) ;
import "DPI-C" context function string string_sv2c (input

string str);

class sha256_monitor_before extends uvm_monitor;
‘uvm_component_utils (sha256_monitor_before)
logic [15:0] yome [10] ;

string str, strl, str2, str3, strd, str5, str6;
bit [31:0] check ;

bit modelcheck ;

string classin

b

virtual sha256 interface vif;

uvm_analysis_port #(sha256_seq_item) mon_ap_before;

C.7 SHA-256 Monitor 183

function new (string name, uvm_component parent);
super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual sha256_interface) ::read_by_name
(.scope("ifs"), .name("sha256_interface"), .val(vif)));
mon_ap_before = new (.name("mon_ap_before"), .parent(this));

endfunction: build_phase

task run_phase (uvm_phase phase);
sha256_seq_item req ;

req = sha256_seq_item ::type_id:: create
(.name("req"), .contxt(get_full_name()));

strS = "hello from class ;

endtask : run_phase

C.7 SHA-256 Monitor 184

endclass : sha256_monitor_before

// ——— monitor after/ checksum-————//
class sha256_monitor_after extends uvm_monitor;

‘uvm_component_utils(sha256_monitor_after)

//
// Virtual Interface

/1

virtual sha256 interface vif;

/1

// analysis port, to send the transaction to scoreboard

/1

uvm_analysis_port #(sha256_seq_item) mon_ap_after;

/1

/1 Handler // coverage

/1

// define sequence handler

sha256_seq_item req ;

/1 sequence handler for coverage
mdS5_seq_item req_cg ;

/1

// new — constructor

/1

function new (string name, uvm_component parent);

C.7 SHA-256 Monitor 185

super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

void '(uvm_resource_db#(virtual sha256_interface) ::read_by_name
(.scope("ifs"), .name("sha256_interface"), .val(vif)));
mon_ap_after= new (.name("mon_ap_after"), .parent(this));

endfunction: build_phase

task run_phase (uvm_phase phase);

bit [31:0] a ;

integer counter = 0 , state = 0 ;

req = sha256_seq_item::type_id:: create
(.name("req"), .contxt(get_full_name()));s
endtask: run_phase

endclass : sha256_monitor_after

C.8 MD5 and SHA-256 Agent 186

C.8 MDS and SHA-256 Agent

class md5_agent extends uvm_agent;

‘uvm_component_utils (md5_agent)

uvm_analysis_port#(md5_seq_item) agent_ap_before;
uvm_analysis_port#(md5_seq_item) agent_ap_after;
uvm_analysis_port#(sha256_seq_item) sha_agent_ap_before;

uvm_analysis_port#(sha256_seq_item) sha_agent_ap_after;

md5_sequencer sequencer;

md5_driver driver;

sha256_sequencer sha_seqr ;
sha256_driver sha_driver ;
md5_monitor_before mdS5_mon_before;
mdS5_monitor_after md5 _mon_after ;
sha256_monitor_before sha256_mon_before;

sha256_monitor_after sha256_mon_after ;

C.8 MD5 and SHA-256 Agent 187

function new (string name, uvm_component parent);
super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

agent_ap_before = new(.name("agent_ap_before"), .parent(this))
agent_ap_after = new(.name("agent_ap_after"), .parent(this));
sha_agent_ap_before = new (.name("sha_agent_ap_before"),

parent(this));

sha_agent_ap_after new (.name("sha_agent_ap_after"),

parent(this));

sequencer = md5_sequencer ::type_id:: create (.name("
sequencer"), .parent(this));
driver = mdS5_driver::type_id:: create (.name("driver"),

.parent(this));

sha_seqr = sha256_sequencer::type_id:: create (.name("
sha_seqr"), .parent(this));
sha_driver = sha256_driver::type_id:: create (.name("

sha_driver"), .parent(this));

C.8 MD5 and SHA-256 Agent 188

md5_mon_before = md5_monitor_before:: type_id:: create (.name("
md5_mon_before"), .parent(this));
md5_mon_after = md5_monitor_after:: type_id:: create (.name("

mdS5_mon_after"), .parent(this));

sha256_mon_before = sha256_monitor_before :: type_id ::
create (.name("sha256_mon_before"), .parent(this));

sha256_mon_after = sha256_monitor_after :: type_id ::
create (.name("sha256_mon_after"), .parent(this));

endfunction: build_phase

function void connect_phase (uvm_phase phase);

super .connect_phase (phase) ;

driver.seq_item_port.connect(sequencer.seq_item_export);

sha_driver.seq_item_port.connect(sha_seqr.seq_item_export);

md5_mon_before. mon_ap_before.connect(agent_ap_before);

md5_mon_after. mon_ap_after.connect(agent_ap_after);

sha256_mon_before. mon_ap_before.connect(sha_agent_ap_before);

sha256_mon_after. mon_ap_after.connect(sha_agent_ap_after);

C.8 MD5 and SHA-256 Agent 189

endfunction: connect_phase

endclass : md5_agent

C.9 MD5 Scoreboard 190

C.9 MDS5 Scoreboard

‘uvm_analysis_imp_decl (_before)

“uvm_analysis_imp_decl (_after)

class md5_scoreboard extends uvm_scoreboard;
‘uvm_component_utils (mdS5_scoreboard)
uvm_analysis_export #(md5_seq_item) sb_export_before;
uvm_analysis_export #(md5_seq_item) sb_export_after;
uvm_tlm_analysis_fifo #(md5_seq_item) before_fifo;
uvm_tlm_analysis_fifo #(md5_seq_item) after_fifo;
mdS5_seq_item transaction_before;

md5_seq_item transaction_after;

function new(string name, uvm_component parent);
super .new(name, parent);

transaction_before

new("transaction_before");

transaction_after

new("transaction_after");

endfunction: new

function void build_phase (uvm_phase phase);

C.9 MD5 Scoreboard 191

super . build_phase (phase);

sb_export_before = new("sb_export_before", this);
sb_export_after = new("sb_export_after", this);
before_ fifo = new("before_fifo", this);
after_fifo = new("after_fifo", this);

endfunction: build_phase

function void connect_phase (uvm_phase phase);
sb_export_before.connect(before_fifo.analysis_export);
sb_export_after.connect(after_fifo.analysis_export);

endfunction: connect_phase

task run();
forever begin
before_fifo.get(transaction_before);

after_fifo.get(transaction_after);

compare () ;

end

C.9 MD5 Scoreboard 192

endtask: run

virtual function void compare();

“uvm_info (" code works until SB" , UVM LOW) ;

if (transaction_before.out == transaction_after.out) begin
‘uvm_info ("compare", {"Test: OK!"}, UVM_LOW) ;

end else begin

“uvm_info ("compare", {"Test: Fail!"}, UVM_LOW) ;

end

endfunction: compare

endclass: md5_scoreboard

C.10 SHA-256 Scoreboard 193

C.10 SHA-256 Scoreboard

‘uvm_analysis_imp_decl (_before)
“uvm_analysis_imp_decl (_after)

export "DPI-C" function my_sv_function;

class sha256_scoreboard extends uvm_scoreboard;

‘uvm_component_utils (sha256_scoreboard)

uvm_analysis_export #(sha256_seq_item)
sb_export_before;

uvm_analysis_export #(sha256_seq_item) sb_export_after

’

uvm_tlm_analysis_fifo #(sha256_seq_item) before_fifo;

uvm_tlm_analysis_fifo #(sha256_seq_item) after_fifo;

sha256_seq_item transaction_before;

sha256_seq_item transaction_after;

function new(string name, uvm_component parent);

super .new(name, parent);

transaction_before = new ("

transaction_before");

C.10 SHA-256 Scoreboard 194

transaction_after = new("
transaction_after");

endfunction: new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

sb_export_before = new ("
sb_export_before", this);
sb_export_after = new("sb_export_after

", this);

before fifo

new("before_fifo",
this);

after_fifo = new("after_fifo",
this);

endfunction: build_phase

function void connect_phase (uvm_phase phase);
sb_export_before.connect(before_fifo.
analysis_export);
sb_export_after.connect(after_fifo.
analysis_export);

endfunction: connect_phase

C.10 SHA-256 Scoreboard 195

task run();
forever begin
before_fifo.get(transaction_before);

after_fifo.get(transaction_after);

compare () ;
end

endtask: run

virtual function void compare () ;

“uvm_info (" code works until SB" , UVM_LOW)

i

if (transaction_before.out == transaction_after
.out) begin
“uvm_info ("compare", {"Test: OK!"},
UVM_LOW) ;

end else begin
“uvm_info ("compare", {"Test: Fail!"},
UVM_LOW) ;
end
endfunction: compare

endclass: sha256_scoreboard

C.11 MDS5 and SHA-256 Environment 196

C.11 MDS and SHA-256 Environment

class md5_env extends uvm_env;

‘uvm_component_utils (md5_env)

mdS5_agent agent;

md5_scoreboard sb;

sha256_scoreboard sha256_sb ;

function new(string name, uvm_component parent);

super .new(name, parent);

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

agent = md5_agent::type_id :: create (.name("agent"), .parent(
this));

sb = md5_scoreboard:: type_id:: create (.name("sb"), .parent

(this));

C.11 MDS5 and SHA-256 Environment 197

sha256_sb = sha256_scoreboard:: type_id:: create (.name ("
sha256_sb"), .parent(this));

endfunction: build_phase

function void connect_phase (uvm_phase phase);

super .connect_phase (phase) ;
agent.agent_ap_before.connect(sb.sb_export_before);
agent.agent_ap_after.connect(sb.sb_export_after);
agent.sha_agent_ap_before.connect(sha256_sb.sb_export_before);
agent.sha_agent_ap_after.connect(sha256_sb.sb_export_after);
endfunction: connect_phase

endclass : md5_env

C.12 MD5 and SHA-256 UVM Package 198

C.12 MDS and SHA-256 UVM Package

package md5sha256_pkg;

import uvm_pkg::#;

“include "md5_sequencer.sv"
“include "sha256_sequencer.sv"
“include "sha256_driver.sv"

“include "mdS5_driver.sv"

“include "md5_monitor.sv"
“include "sha256_monitor.sv"

“include "md5_agent.sv"

“include "mdS5_scoreboard.sv"
“include "sha256_scoreboard.sv"
“include "mdS5_config.sv"
“include "md5_env.sv"

“include "md5_sha256 test.sv"

C.12 MD5 and SHA-256 UVM Package 199

endpackage: mdS5sha256_pkg

C.13 MD5 and SHA-256 Test 200

C.13 MDS and SHA-256 Test

class md5_sha256_test extends uvm_test;

‘uvm_component_utils (md5_sha256_test)

md5_env env;

function new(string name = "md5_test" ,uvm_component parent=
null);
super .new(name, parent) ;

endfunction : new

function void build_phase (uvm_phase phase);

super . build_phase (phase);

env = md5_env::type_id:: create (.name("env"), .parent(this));

endfunction : build_phase

C.13 MD5 and SHA-256 Test 201

task run_phase (uvm_phase phase);

md5_sequence mdS5_seq;

sha256_sequence sha256_seq ;

phase.raise_objection (.obj(this));

md5_seq = md5_sequence::type_id:: create (.name("md5_seq"),
contxt(get_full_name()));

sha256_seq = sha256_sequence::type_id::create (.name("
sha256_seq"), .contxt(get_full_name()));

assert (mdS5_seq.randomize ()) ;

assert(sha256_seq.randomize ());

fork
begin
sha256_seq.start(env.agent.sha_seqr) ;

end

begin
md5_seq. start(env.agent.sequencer);
end

join

phase.drop_objection (. obj(this));
endtask: run_phase

endclass :md5_sha256 test

C.13 MD5 and SHA-256 Test 202

C.14 MD5 and SHA-256 Top 203

C.14 MDS and SHA-256 Top

“include "uvm_macros.svh"

“include "md5sha256_pkg.sv"
“include "mdS5_interface.sv"

import "DPI-C" function void main() ;
module test;

import uvm_pkg::;

import mdS5sha256_pkg::*;

md5_interface vif () ;

md5_sha256 top (vif.clk, vif.reset, vif.s_clk, vif.s_reset,
vif.text_1, vif.text o, vif.cmd i, vif.cmd w_ i, vif.cmd o,
vif.scan_in0O, vif.scan_en, vif.test_mode, vif.scan_outO,

vif.rdy_i, vif.msg_i, vif.hash_o, vif.rdy_o, vif.busy_o);

initial

begin

uvm_resource_db#(virtual md5_interface) :: set
(.scope("ifs"), .name("md5_interface"), .val(vif));

$display ("—— Test Started ") o

C.14 MD5 and SHA-256 Top 204

run_test () ;
$display (" ——end test—— ")

end

initial

begin

vif.clk = 1'b0 ;
vif.s_clk = 1'b0 ;
end

always

begin

#5 vif.s_clk = ~vif.s_clk ;
end

always

begin

#5 vif.clk = ~vif.clk ;

end

initial

begin

$timeformat(—9,2,"ns", 16);
$set_coverage_db_name ("md5_sha256");

“ifdef SDFSCAN

C.14 MD5 and SHA-256 Top 205

$sdf_annotate ("sdf/md5_sha256_scan.sdf", test.top);
“endif
end

endmodule

	Verification of SHA-256 and MD5 Hash Functions Using UVM
	Recommended Citation

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals

	2 Bibliographical Research
	3 Overview of Hash Functions
	3.1 Hash Functions
	3.1.1 Preimage resistance
	3.1.2 Second preimage resistance
	3.1.3 Collision resistance

	3.2 Construction of Hash Functions
	3.2.1 MD5
	3.2.2 SHA-256

	3.3 APPLICATIONS OF HASH FUNCTIONS
	3.3.1 Data Integrity
	3.3.2 Secured Digital Signature
	3.3.3 Authentication

	4 Overview of UVM
	4.1 Evolution of UVM
	4.2 UVM Scheduling Semantics
	4.2.1 Preponed Region
	4.2.2 Pre-Active Region
	4.2.3 Active Region
	4.2.4 Inactive Region
	4.2.5 Non-Blocking Assignment Region
	4.2.6 Observed Region
	4.2.7 Reactive Region
	4.2.8 Postponed Region

	4.3 Phases of UVM
	4.3.1 Build Phase
	4.3.2 Run Phase
	4.3.2.1 Reset
	4.3.2.2 Configure
	4.3.2.3 Main
	4.3.2.4 Shutdown

	4.3.3 Clean-up Phase

	4.4 UVM factory
	4.4.1 UVM_Objects
	4.4.2 UVM_component
	4.4.3 Type Override

	5 Custom UVM Backend Design
	5.1 UVM IP-Level Design
	5.1.1 UVM Environment for IP-Level
	5.1.2 Design Flow

	5.2 UVM Block Level Design
	5.2.1 UVM Environment for Block-Level:
	5.2.2 Verification Flow

	6 Results and Discussion
	6.1 Synthesis Report
	6.2 Simulation Report

	7 Conclusion
	7.1 Future work

	References
	A Source Code for MD5
	A.1 MD5 Interface
	A.2 MD5 Sequence and Sequencer
	A.3 MD5 Driver
	A.4 MD5 Monitor
	A.5 MD5 Agent
	A.6 MD5 Scoreboard
	A.7 MD5 Environment
	A.8 MD5 UVM Package
	A.9 MD5 Test
	A.10 MD5 Top

	B Source Code for SHA-256
	B.1 SHA-256 Interface
	B.2 SHA-256 Sequence and Sequencer
	B.3 SHA-256 Driver
	B.4 SHA-256 Monitor
	B.5 SHA-256 Agent
	B.6 SHA-256 Scoreboard
	B.7 SHA-256 Environment
	B.8 SHA-256 Package
	B.9 SHA-256 Test
	B.10 SHA-256 Top

	C Source Code for Combined MD5 and SHA-256
	C.1 MD5 and SHA-256 Interface
	C.2 MD5 Sequence and Sequencer
	C.3 SHA-256 Sequence and Sequencer
	C.4 MD5 Driver
	C.5 SHA-256 Driver
	C.6 MD5 Monitor
	C.7 SHA-256 Monitor
	C.8 MD5 and SHA-256 Agent
	C.9 MD5 Scoreboard
	C.10 SHA-256 Scoreboard
	C.11 MD5 and SHA-256 Environment
	C.12 MD5 and SHA-256 UVM Package
	C.13 MD5 and SHA-256 Test
	C.14 MD5 and SHA-256 Top

