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Abstract
The focus of this thesis project was to investigate the impact of cold temperature 

conditions on the resistance of Vitis vinifera (grapevines) to powdery mildew, a phenomenon 

known as cold stress-induced disease resistance (SIDR).  The model organism Arabidopsis 

thaliana was used to determine specific defense mechanisms of plant-pathogen resistance.  An 

RNA-Seq time course experiment was performed for the two organisms: V. vinifera and A. 

thaliana.  The time-series datasets consisted of data points where samples were exposed to an 

acute (less than 4 hours) cold (below 8°C) temperature for set times prior to inoculation with 

powdery mildew.  The acute cold time points used ranged from 48 hours, 36 hours, 24 hours, and

12 hours prior to inoculation.  An untreated control group, which was not exposed to any acute 

cold treatment, was used to compare between the treatments.  The significant, differentially 

expressed genes were evaluated and mapped to the pathways of the respective organisms.

The outcome of this project was the identification of pathways, as well as potential 

genes of interest, involved with cold stress-induced disease resistance.  There has been limited 

research on genetic mechanisms of cold stress-induced disease resistance.  This project provides 

an improved understanding of the interactions between host stress and the epidemiology of the 

biotrophic pathogen powdery mildew.
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Introduction
According to the U.S. Department of Commerce (2017) liquor store sales of beer and 

wine contribute more than $50 billion to the U.S. economy.  This dollar amount does not 

consider the indirect economic impacts of the wine industries.  The American wine industry is 

responsible for the combined direct and indirect impact estimated at more than $200 billion 

(WineAmerica, 2017).  The primary agricultural product used in wine production is grapes.  In 

2013, the U.S. produced more than 7 million tons of grapes (Wineamerica, 2014).  While wine 

can be produced using any grape varieties in the Vitis genus, the most desired grapes come from 

the grapevine species Vitis vinifera. 

Grapevines need to cope with a number of environmental stresses as well diseases and

pests in order to thrive.  Of the possible pathogens, the fungal disease powdery mildew (PM) is 

considered among the most important diseases in the world for grapes (Gent et al., 2009), 

(Moyer, 2011).  The grapevine species of powdery mildew, Erysiphe necator, is native to eastern 

North America.  In 1845 the disease was introduced to European vineyards where it caused 

extensive losses as it spread rapidly throughout the continent (Wilcox, 2003).  Since these times 

control of powdery mildew has been a serious concern.  Left unchecked, powdery mildew can 

wipe out an entire crop on its own or make the crop susceptible to other pathogens or abiotic 

stresses.

Powdery Mildew Overview
Powdery mildew is an obligate biotrophic fungus meaning that it can only grow on 

living plant tissue.  A number agricultural crops are affected by powdery mildews, including 

artichoke, beans, beets, carrot, cucumber, eggplant, lettuce, melons, parsnips, peas, peppers, 

pumpkins, radicchio, radishes, squash, tomatillo, tomatoes, and turnips (UC-IPM, 2008).  
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Powdery mildews are caused by a broad range of genera and species residing in the order 

Erysiphales in the Fungi kingdom.  Most powdery mildew species are host-specific, meaning 

that each susceptible plant can only be infected by one (or few) species of powdery mildew.  

Grapevines in the species V. vinifera are infected by the powdery mildew species Erysiphe 

necator (syn Uncinula necator).  Symptoms of powdery mildew include white fungal growth on 

berries and leaves and dark lesions on infected vine (Figure 1).

Figure 1: Powdery mildew (Erysiphe necator) shown on grapes.

(Photo: L. J. Bettiga)

Life Cycle of Powdery Mildew

The disease lifespan of powdery mildew follows a yearly cycle (Figure 2).  During the

late summer, powdery mildew colonies begins to produce chasmothecia.  Chasmothecia contain 

ascospores which are the result of mating among individual powdery mildew colonies 
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(Martinson & Wilcox, 2013).  These hardened structures are responsible for initiating the disease

process during the start of the growing season in spring.  Starting in the Spring, as the 

temperature rises above 14-16° C, chasmothecia release ascospores which begin to infect nearby 

green tissue.  As the fungal colony grows, it produces conidia (spores) as a form of asexual 

reproduction.  These conidia are dispersed via airflow to surrounding plants.  When the conidia 

make contact with a suitable host the infection process begins.  According to Micali et al. (2008),

once a conidium/spore has landed on a viable host, this infection process begins in as little as 1 

hour.  As the fungi colony grows, it continues to produce conidia which continue to spread the 

infection through the summer months.

Figure 2: Grapevine powdery mildew (Erysiphe necator) life cycle.

(Drawing by R. Sticht.)
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Powdery Mildew Infection and Host Response
A set of complex cellular processes are deployed by both the plant host and the 

obligate biotroph powdery mildew during infection.  When a powdery mildew conidium has 

landed on a viable host, and the infection process has begun, the fungus will create an 

appressorium, the primary infection structure.  The newly formed appressorium will penetrate 

into the host cell wall, forming a haustorium, a specialized, intracellular structure, within the 

epidermal layer of the host plant (Figure 3).  The haustorium will serve as the active interface 

between the fungus and the host plant.  The fungus will retrieve necessary nutrients from the host

cells, while secreting proteins to counteract the host defense response.

app:appressorium, pp:penetration peg

Figure 3: Powdery mildew spore with appressorium formation

Plants have two major methods for disease resistance, basal defense and R-gene 

mediated defense.  The basal defense represents the first line of defense for the host.  Basal 

defenses look to be triggered by cell wall components which are released by the hydrolytic 

activity of enzymes secreted by the appressorium, as well as common features of the fungus, 
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known as pathogen-associated molecular patterns (PAMPs) (Gururani et al., 2012).  To overcome

this basal defense, the powdery mildew haustorium produces “effector” proteins which are used 

to interrupt the activation of host plant defenses.  Continuing this veritable arms race, plants have

developed defense responses known as effector triggered immunity (ETI).  ETI responses in 

plants are controlled by resistance (R) genes which encode proteins that interact with the effector

proteins, leading to defense responses in the host (Qiu, Feechan, & Dry, 2015).  Further, 

knockdown of susceptibility genes such as Mildew Locus-o (MLO) through RNA interference 

can reduced powdery mildew severity by up to 77% (Pessina et al. 2016).

Control Methods
In commercial vineyards, the control of powdery mildew generally requires the 

significant use of fungicides, as well rigorous canopy management (Gadoury et al., 2012).  

Fungicides are used to reduce the spread of infection.  Fungicide applications are determined by 

advisory systems that use a risk index for the vineyards (Bendek et al., 2007).  To calculate the 

risk of disease development for a vineyard, air temperature is used as input for the prediction 

model. In the state of California, over 15 million pounds of chemicals pesticides were used on 

grape crops in 2012 (Kegley et al. 2016).  The continued use of pesticides could have dangerous 

unseen side effects.  Most commonly used fungicides in vineyards consist of various sulfur 

preparations.  Exposure to sulfur can lead to irritation of the skin, eyes, and respiratory tract.  

This can be hazardous to people in the close proximity as well as to the environment (Youakim, 

2006), (Raanan et al., 2017).  On crops sensitive to sulfur or when several diseases need 

simulataneous control, site-specific fungisides are commonly used, which after extensive use can

also lead to resistance in the pathogen.  The susceptible pests are controlled, but host resistant 

individuals of the same species reproduce and increase in absence of competition (Gent et al., 



12

2009).  Over time, the resistant strains become the prevalent population spreading the infection.  

In the control of E. necator, conventional management with modern, organic fungicides has been

compromised on several occasions since 1980 by the evolution of fungicide resistance (Gadoury 

et al., 2012).  This makes host-resistance to PM a valuable and desirable trait.  Grape varieties 

with resistance to powdery mildew are currently being developed, using either conventional or 

transgenic approach (Fuller, Alston, & Sambucci, 2014).

Stress Induced Disease Resistance
Plants are subject to two main types of deleterious stresses during their lives, biotic 

and abiotic (Petrov, Hille, Mueller-Roeber, & Gechev, 2015).  An example of biotic stress is the 

plant’s intersection with the biotroph powdery mildew.  Abiotic stresses include extreme 

temperatures, high salinity, excessive light, water deprivation, pollutants such as ozone and 

herbicides, high concentrations of heavy metals, and excessive UV radiation (Petrov et al. 2015).

There is a phenomenon during powdery mildew infection where environmental stresses can have

a negative impact on the development of the fungus.  The fungus develops on the outside of the 

plant tissue making it susceptible to extreme conditions of the external environment.  Recently, 

this phenomenon has been observed in V. vinifera during acute cold events.  These acute cold 

events ranged from 5 minutes to 8 hours in duration with temperatures below 8 ºC (Moyer et al., 

2010).  Following these acute exposures, there was observed: “death of hyphal segments, and a 

prolonged latency” associated with the infection (Moyer et al., 2016).  This observed disease 

resistance, however, was temporary.  The resistance response diminished to basal levels within 

48 hours following exposure.  Moyer et al. (2010) proposed that the exposure of grape leaf tissue

to extreme temperatures either made host tissue unsuitable for colonization or activated a 

temporary host defense response.
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Phenotyping results noted in Weldon et al., (manuscript in preparation) showed a 

significant difference in the percent susceptibility of grapevine sample when exposed to an acute 

cold treatment at 24 hours prior to inoculation with powdery mildew.  In the same study, there 

was a significant difference shown in percent susceptibility in the species Arabidopsis thaliana.  

The percent susceptibility was reduced for samples exposed to an acute cold treatment at both 12

and 24 hours prior to inoculation with powdery mildew.

Moyer et al. (2016) presented three potential hypotheses for the cause of the cold-

SIDR response.  The first hypothesis involved the cold temperature impacting photosynthesis 

efficiency.  The second hypothesis is that basic physiological responses to cold that mimic a short

term induction of “ontogenic resistance” type response.  The short term response would include a

decrease in carbon assimilation and vegetative growth rate as well as an increase in calcium 

signaling and reactive oxygen species (ROS) generation.  The third hypothesis involved the 

regulation of plant hormones signaling, Gibberellin biosynthesis and DELLA proteins and the 

abscisic acid (ABA) pathway.  Determining the exact host response is difficult though because of

the obligate biotrophic nature of E. necator.  In vitro studies of the biochemical pathways that 

lead to stress responses are challenging because those pathways can also be affected by the 

powdery mildew infection.  To assist in this task the use of a model organism is necessary.

Arabidopsis thaliana Overview
Arabidopsis thaliana is a small flowering plant that is a member of the mustard 

(Brassicaceae) family.  A. thaliana is used widely in biological sciences and there are extensive 

genetic maps of the organism’s chromosomes.  In addition, the rapid life cycle of the plant makes

it a model organism.  The biological pathways of the organism have also been broadly annotated.

Though A. thaliana follows the trend of only being susceptible to a certain species of powdery 



14

mildew, mutations in certain “non-host” genes allow it to be infected by other powdery mildew 

species.  Specifically, mutations in the PEN1 and PEN1/3 non-host genes make A. thaliana 

susceptible to infection by E. necator.  This susceptibility makes A. thaliana the model organism 

to use when investigating host defenses against grapevine powdery mildew.

RNA-Seq Analysis
High Throughput RNA sequencing (RNA-Seq) is a valuable technique for monitoring 

gene expression (Wang, Gerstein, & Snyder, 2009).  RNA-Seq utilizes mRNA transcripts to 

provide deep insight into an organism's gene expression.  With tradition RNA-Seq method,  the 

isolated mRNA transcript is randomly fragmented and converted into a cDNA library.  The 

cDNA fragments are then sequenced using a next-generation sequencing technology.  Gene 

expression is proportional to the total number of reads (cDNA fragments sequenced) 

corresponding to a given transcript of a gene.  A limitation of traditional RNA-Seq is that longer 

transcripts will produces more fragments/reads than shorter transcripts (Tandonnet & Torres, 

2016).  The 3' RNA-Seq method, overcomes this limitation by retaining only one fragment per 

transcript from the 3′ region.  Using this strategy, the expression levels are estimated directly by 

the number of reads corresponding to a single gene.

The focus of this thesis project was to test the hypothesis that the genes and gene 

pathways mentioned in the cold-SIDR review (Moyer et al., 2016) will have differential 

expression patterns in the treatment groups that correlate with the observed transient resistance 

phenotype.  An RNA-Seq analysis was performed to investigate the differentially expressed 

genes in each species, with the end goal of comparing and contrasting those genes between the 

organisms.
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Methods and Materials

Analysis Pipeline Overview

Figure 4: Cold-SIDR RNA-Seq Analysis Workflow
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Dataset Creation
To determine the gene homologs and pathways that contribute to the cold stress-

induced disease resistance (SIDR) in the two organisms (V. vinifera, A. thaliana) two datasets 

were obtained.  The datasets were created by William Weldon using the methods described in 

Weldon et al., manuscript in preparation.  An overview of the datasets are described below.

V. vinifera Dataset Creation

An experiment started with 15 leaves, with each leaf being subsampled into 5 disks (1 

cm in diameter), assigned to each of 5 treatment time points in total: untreated control (UTC), 12

hours post cold (hpc), 24 hpc, 36 hpc, and 48 hpc.  Each treatment group contained fifteen leaf 

disks, one disk from each leaf, positioned in one of fifteen positions on a petri dish (Figure 5).  

The position of the leaf disk was maintain between all treatment petri dishes because leaf disks 

from the same leaf are known to have similar resistance responses, which is a component of 

variability that can be accounted for statistically.  The time points reflected the hours since being 

cold treated for 4hrs at 4°C/39.2°F.  From these treated leaf disks five disks were removed and 

sent for RNA sequencing.  The remainder of the leaf disks were inoculated with powdery mildew

(Erysiphe necator).  Figure 6 shows the timeline for the experiment.  This experiment was 

repeated a total of 3 times.  The phenotypic responses for each treatment group were recorded to 

determine the percent susceptibility of each group to powdery mildew relative to the untreated 

control (UTC) group.
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Figure 5: Vitis vinifera Disk 
Placement

Figure 6: Vitis vinifera Sample Treatment Timeline

 24H prior to treatment, leaves 
collected

 48 hpc treatment performed

 36 hpc treatment performed

 24 hpc treatment performed

 12 hpc treatment performed

 All treatment groups inoculated

Prior to inoculation, 5 
leave samples (discs 
from all treatments 
groups) were removed, 
put into nitrogen, sent 
for RNA-seq. The rest 
of the leaves were 
inoculated for 
phenotype analysis

48 hpi, discs are stained preventing 
further PM growth

hpc – hours post cold
hpi – hours post inoculation
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A. thaliana Dataset Creation

Two lines of A. thaliana were used; wild-type Col-0 and a PEN1 mutant in Col-0 

background.  Each line followed the same experimental design.  An experiment started with 8 

seedlings per line per treatment.  There were 5 treatment time points in total: untreated control 

(UTC), 12 hours post cold (hpc), 24 hpc, 36 hpc, and 48 hpc, reflecting the hours since the 

initiation of cold treatment for 4hrs at 4°C (39.2°F)  To reduce variability due to environment, 

both lines were grown in the same petri dish for a given treatment in a split plot design (Figure 

7).  From the seedlings, 3-4 were removed and sent for RNA sequencing.  The remaining 

seedlings were inoculated with powdery mildew (E. necator).  The phenotypic responses for 

each treatment group were recorded to determine the percent susceptibility of each group to 

powdery mildew relative to the untreated control (UTC) group.  Figure 8 shows the treatment 

timeline for the experiment.  This experiment was repeated a total of 3 times.

Figure 7: Arabidopsis thaliana 
Seedling Placement
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Figure 8: Arabidopsis thaliana Sample Treatment Timeline

RNA-Seq Library Construction
The datasets for V. vinifera and A. thaliana were generated using 3’RNA-Seq library 

construction.  Both libraries were generated using the QuantSeq 3’ mRNA-Seq Library Prep Kit 

for Illumina.  Sequencing then took place using an Illumina NextSeq500 with an anticipated read

length of 75 bp.  The library construction and sequencing steps were performed by the Cornell 

University Biotechnology Resource Center, Ithaca, NY.

Preprocessing
A crucial step in the RNA-Seq pipeline is the initial quality control and preprocessing 

of the RNA sequence datasets.  Quality problems including low-confidence bases, sequence-

 24H prior to treatment, seedlings 
obtained

 48 hpc treatment performed

 36 hpc treatment performed

 24 hpc treatment performed

 12 hpc treatment performed

 All treatment groups inoculated

Prior to inoculation, 4 
seedlings were 
removed, put into 
nitrogen, sent for RNA-
seq. The rest of the 
seedlings were 
inoculated for 
phenotype analysis

48 hpi, seedlings are stained 
preventing further PM growth

hpc – hours post cold
hpi – hours post inoculation
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specific bias, polymerase chain reaction artifact, untrimmed adaptors, and sequence 

contamination may need to be addressed (Korpelainen et al., 2014).  First, the program FastQC 

(Andrews, 2010) was used to access the quality controls (QC) with regards to the sequence read 

files.  FastQC returns results pertaining to various aspects of sequencing data quality in a series 

of eleven modules (Figure 9).

Figure 9: FastQC Output Modules 

(FastQC documentation)

The FastQC results for the 90 samples of each dataset were parsed using a custom PERL script.

The initial run of FastQC on the V. vinifera dataset showed that of the 90 sequence 

files, 3 prompted warnings for a check of overrepresented sequences.  As described in Table 1, 

this meant that those files contained sequences which were found to represent more than 0.1% of
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the total number of sequences in each file, which may be reasonable for expression data.  There 

were also 78 files which prompted warnings due to the GC content of their sequences.  For the 

A. thaliana dataset, the initial run of FastQC produced several failures, as well as several 

warnings.  Of the 90 sequence files, 78 proposed failures for the GC content of their respective 

sequences.  There were also 90 sequence files which prompted warning for overrepresented 

sequences.  The overrepresented sequence that caused the failure was composed of poly-G 

(Guanine) nucleotides.  An explanation for the poly-G sequences can be deduced by evaluating 

the sequencing method used.  The NextSeq platform uses a two-color chemistry system, where a 

"G" nucleotide is designated by the color "black" (no color).  When the nucleotide color signal is 

too weak to detect, it is determined to have no color and will be recognized as a "G" in the base 

calling stage (Chen, 2018).

To rule out the possibility of contamination or sample bias, these warnings were 

investigated further.  According to the NCBI, the V. vinifera genome assembly had a median GC 

content of 33.75%, while the A. thaliana genome assembly had median GC content of 36.15%.  

The 90 samples from the V. vinifera dataset had a median GC content of 39%.  The 90 samples 

from the A. thaliana dataset had a median GC content of 37%.  Since the datasets consisted of 

transcriptome sequencing, it was possible that the GC content of the transcriptome varied from 

the GC content of the genome.  Singh, Ming, and Yu (2016) found that the GC content for the 

coding sequences (CDS) in V. vinifera was ~44.5% while the GC content for the CDS in A. 

thaliana was ~44.1%.  Since this article's publication, new genome annotations for V. vinifera 

(Canaguier et al., 2017) and A. thaliana (Cheng et al., 2017) were released.  To account for the 

possible changes in the new genome annotations, the GC content for each annotation was 

calculated using BEDTools (Quinlan and Hall, 2010).  The GC content for the CDS in new 
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genome annotation for V. vinifera was ~38.8%.  The GC content for the CDS in new genome 

annotation for A. thaliana was ~42.1%.

To address the quality issues of the V. vinifera dataset a number of tools from the 

Fastx-Toolkit were used.  At the recommendation of the sequencing facility, the first 13 bases 

were removed from the 5' end of the sequence read using the Fastx Trimmer tool as this region 

contained sequencing errors due to random priming.  The FastX Quality Trimmer tool was used 

to remove low quality bases from the 3' end of each read.  The minimum Phred quality score 

used to initiate base trimming/removal was 20.  Sequence reads shorter than 38 bases were 

remove from the analysis.  The FastX Quality Filter tool was used to remove sequences reads 

with a low overall quality.  This quality filtering was processed in two stages.  The first stage 

removed sequences reads which failed the requirement of having 80% of the bases in the read 

above a Phred quality score of 20.  The second stage removed sequences reads that failed the 

requirement of having 100% of the bases in the read above a Phred quality score of 13.  The 

settings for these tools were selected to optimize the quality of the sequence files while 

maintaining a high number of sequence reads within each file.  The same set of tools and settings

were also used to address the quality issues of the A. thaliana dataset, with the addition of the 

FastX Artifact Filter to remove sequencing artifact.  A description for the tools and their 

respective settings for each organism are listed in Table 1.
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Table 1: FastX Quality Control Tools and Settings

Alignment
For both datasets, an alignment was performed between the sequence files and a 

reference genome.  For V. vinifera, reads were aligned to the 12xV2 genome and the Vcost.v3 

annotation (Canaguier et al., 2017).  For A. thaliana, reads were aligned to the Tair10 genome 

(Berardini et al., 2015) using the Araport11 annotation (Cheng et al., 2017).  The program STAR 

(Spliced Transcripts Alignment to a Reference) (Dobin et al., 2013) was used for this alignment 

step.  The settings used for the STAR are described in Table 2.

Table 2: STAR Alignment Settings

The STAR software output the aligned reads in a sequence alignment map (.sam) file format.  

This output was converted to a binary alignment map (.bam) file format using the command-line 
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program SAMtools (Li et al., 2009).  The settings used for the SAMtools are described in Table 

3.

Table 3: SAMtools settings used for post alignment processing

Gene Counting
In an RNA-Seq experiment, it is necessary to know how many reads fall within the 

exonic regions of each gene.  The python script HTSeq (htseq-count) v0.9.1 was used to 

determine these gene counts (Anders, Pyl, & Huber, 2015).  The datasets were separated by their 

respective treatments and were processed in parallel on the server.  The following settings were 

used for both the V. vinifera and A. thaliana datasets (Table 4).

Table 4: HTseq (htseq-count) Settings

Differential Expression
A differential expression analysis was performed separately for each of the datasets.  

The R package DESeq2 (Love, Huber, & Anders, 2014) was used with the output from HTSeq.  

Metadata about the samples were extracted from their filesnames using regular expression.  

Using the function DESeqDataSetFromHTSeqCount, the gene counts and metadata for the 
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samples were combined into a DESeqDataSet object.  The DESeqDataSet also contained an 

associated design formula, which is used to model the gene counts.

Three design formulas (models) were used for the V. vinifera dataset.  Each design 

formula was meant to identify specific genes of interest which followed a certain expression 

pattern.  All three designs included a “Disk Number” term in the formula.  This term was meant 

to control for leaf-to-leaf variability, as one disk from each leaf was assigned to each treatment 

and tracked.  Because a leaf could not be used in multiple independent experiments, experiment 

number was confounded with “Disk Number”, so was not used in the models.  The “Circadian 

Rhythm” term in the formula #2 was meant to account for variability due to the time of day when

the treatments were performed.  This was a binary variability where the UTC, 24hpc, 48hpc 

treatments were classified as day and the 12hpc, 36hpc were classified as night.  The “Percent 

Susceptibility” term was meant to identify genes with counts that could be explained by changes 

in the percent susceptibility of the treatment group.  This percent susceptibility was determined 

from results from the sample phenotyping.  The “Treatment Time” and “Treatment Time2” terms 

were meant to identify genes that fit the pattern of having a peak up or down regulation at the 

24hpc treatment group.  The “Treatment” term was meant to identify genes that show change in 

expression across the different treatment groups.  This term was a categorical (factor) variable 

with the UTC treatment serving as the reference group.  In DESeq2, a likelihood ratio test (LRT) 

was performed to compare how well the count data for a gene fit a “full model” (design formula 

with all variables) compared to a “reduced model,” with the variable(s) of primary interest 

removed.  The full and reduced models use for the V. vinifera analysis are illustrated in Table 5.
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Table 5: DESeq2 Experimental Design Formulas for Vitis vinifera, all of which control for leaf 
variability via the term Disk Number.

P-values generated by DESeq2 were adjusted for multiple testing using the Benjamini-Hochberg 

procedure (Benjamini & Hochberg, 1995).  An adjusted p-value ≤ 0.1 indicated that a gene was 

statistically significant.  The significant genes from the union of the three designs were combined

and used for further analysis.  Most of the tools used for further analysis of this gene set required 

that the genes be labeled using gene names from the V1 annotation.  The correspondence table 

available at

https://urgi.versailles.inra.fr/content/download/5723/43038/file/

list_genes_vitis_correspondencesV3_1.xlsx

was used to convert the Vcost.v3 gene names to V1 gene names.  For the instances when a V1 

gene name was not available for a gene, the Vcost.v3 gene name was left unchanged.  The 

columns for the output table of significant genes were the Vcost.v3 gene name, the V1 gene 

name, the 12hpc vs UTC log2 fold-change, the 24hpc vs UTC log2 fold-change, the 36hpc vs 

UTC log2 fold-change, and the 48hpc vs UTC log2 fold-change.

A single design formula (model) was used for the A. thaliana dataset (Table 6).

Table 6: DESeq2 Experimental Design Formula for Arabidopsis thaliana

The "Experiment" term in the model was meant to control for variability between the 3 different 

experiments.  The "Genotype" term was meant to control for variability between the two 

genotypes, Col-0 and PEN1.  The "Treatment" term represented the five treatments, 48hpc, 

https://urgi.versailles.inra.fr/content/download/5723/43038/file/list_genes_vitis_correspondencesV3_1.xlsx
https://urgi.versailles.inra.fr/content/download/5723/43038/file/list_genes_vitis_correspondencesV3_1.xlsx
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36hpc, 24hpc, 12hpc, and UTC.  In DESeq2, a Wald test was performed to generate pair-wise 

comparisons between a reference level and the remaining levels for each term.  An example of a 

pair-wise comparison for "Treatment" would be 12hpc vs UTC (reference level).  As with the V. 

vinifera analysis, an adjusted p-value ≤ 0.1 was used to indicated statistically significance for a 

gene.  The log-fold changes for the pair-wise comparisons were combined into a single table 

where the columns represented the gene name, 12hpc vs UTC, 24hpc vs UTC, 36hpc vs UTC, 

and 48hpc vs UTC.  The initial expression plots (see Results section) showed genes with outlier 

expression patterns.  These outlier expression patterns could be caused by samples with extreme 

counts relative to other samples which raised the mean count for the respective treatment group.  

To overcome this issue, DESeq2 provided a method to shrink the log2 fold-change (LFC) for a 

gene towards zero if the information about that gene was low.  In this context low information 

refers to having samples with low counts or having highly dispersed sample counts.  This 

shrinkage method was applied using the lfcShrink function with the "type" parameter set to 

"Normal", which is the original DESeq2 shrinkage estimator (Love, Huber, & Anders, 2014).  

The shrunken LFC were combined into a single table as before and used for further analysis.

For the genotype comparison, a list of 16 genes with a documented association to the 

PEN1 gene was compiled (Table 7). This list was complied using the associated loci on the TAIR

description for the AT3G11820 gene locus (Swarbreck et al., 2008).
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Table 7: Genes with Documented Association to PEN1 gene

For both hosts, R v.3.5.2 was used for the analysis (R Core Team, 2018).  The ggplot2 

and pheatmap packages were used to produce the plots and heatmaps representing the gene 

expression levels across the treatment groups (H. Wickham, 2016), (Kolde, 2019).

Outlier analysis
During the gene counting step, outlier read counts can occur due to a number of 

factors, including RNA extraction methods, experimental design, and the specified settings for 

the counting software.  The presence of outliers in an RNA-Seq experiment can drastically 
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influence differential expression testing results (Li & Tibshirani, 2013).  To screen for outliers, 

DESeq2 utilizes the Cook's distance to measure how a single observation impacts the count 

prediction model.  This method of screening is generally sufficient, but can leave DESeq2 

potentially susceptible to extreme outliers present in skewed or biased datasets (George, Bowyer,

Crabtree, & Chang, 2015).  To overcome this limitation, George et al. (2015) suggested 

implementing an iterative leave-one-out approach to outlier detection.  This approach was 

applied to both datasets.

Due to the high number of biological replicates in the V. vinifera dataset, a threshold 

level of 90 flagged genes was used to qualify a sample for removal from the analysis.  Sample 

count quality controls were performed using the plot functions from DESeq2 (Love, Huber, & 

Anders, 2014), ggplot2 (H. Wickham, 2016), and base R (R Core Team, 2018).  A PCA plot was 

performed on the V. vinifera dataset, with the samples colored by experiment.  Table 8 shows the 

number of biological replicates per treatment for the V. vinifera dataset, after removing the 

outlier samples.  The differential expression analysis was performed using DESeq2 with the 

outliers removed.

Table 8: Vitis vinifera samples used for DESeq2 analysis, 
after filtering samples for outlier counts

For the A. thaliana dataset, the iterative leave-one-out approach (George et al., 2015) 

was repeated.  Due to the lower number of biological replicates in this dataset, all samples were 

included in the analysis.  The default settings for DESeq2 were used for outlier identification and

correction. Table 9 shows the number of biological replicates for the A. thaliana dataset used for 

the analysis.
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Table 9: Arabidopsis thaliana samples used for DESeq2 analysis, 
with no outlier count filtering

Cluster Analysis
A cluster analysis was performed to determine groups of genes that had similar 

expression patterns across treatments.  The R package "Mfuzz" (Futschik, 2005) provided a 

function, kmeans2, which performed a k-means clustering based on the number of centroids 

provided.  A workflow was devised for objectively choosing the optimum number of centroids 

and well as the clusters of interest.  The workflow evaluated using between 6 and 15 cluster 

centroids, inclusively.

Objective Cluster Analysis Workflow:
1) For each cluster centroid setting (6:15):

A. For each time point, in each cluster:

1) Calculate the mean LFC for that time point.

2) Calculate the LFC deviation for that time point.

B. Calculate the mean (average) deviation across all the time points for each cluster.

2) Using the mean deviation for each cluster, each cluster centroid setting was ranked by its 

median mean deviation.  The minimum mean deviation for this ranking represented the 

optimum centroid setting because all of the clusters are group more tightly together 

compared to the other settings.

3) Using the optimum cluster centroid setting:

A. Calculate the absolute mean LFC at the treatment group of interest* between the 

clusters.

B. Order the clusters by decreasing absolute mean LFC.

*The treatment group of interest depended on the organism due to time of maximum resistance
phenotype.  For V. vinifera the 24hpc treatment group was used.  For A. thaliana the 12hpc

treatment groups was used.
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Functional Annotation of Significant Genes
The initial proposal for this project included the Gene Ontology (GO) (The Gene 

Ontology Consortium, 2019) as the sole source of functional information for the significant 

genes between the two datasets.  At the time of this project’s completion, however, the functional

information maintained by the GO for V. vinifera was limited.  Of the total number of 

differentially expressed genes for V. vinifera, about 44% (1161 out of 2654 genes) were either 

unclassified or their ‘gene id’ was not found in the database.  As an alternative, functional 

annotations for genes were determined using information from the VitisNet knowledgebase 

(Grimplet et al., 2012).  Gene accession numbers were used as unique identifiers to map each to 

associated gene ontology term, plant ontology terms, pathways associations, known Arabidopsis 

thaliana homologs, and other functional information.  Genes that did not map to any VitisNet 

information were annotated using the GO in an attempt to provide some type of functional 

information.

The functional information maintained by the GO for A. thaliana was of higher 

quality.  Of the total number of differentially expressed genes for A. thaliana, only 19% (138 out 

of 726 genes) were either unclassified or their gene id was not found in the database.  Functional 

terms were also more specific than those terms for V. vinifera.  Significant genes between both 

the Col-0 and PEN1 genotypes were also functionally annotated to aid in the comparison.

A gene enrichment analysis was performed for both organisms using the agriGO (Tian

et al., 2017) platform, a web-tool optimized for agricultural gene ontology analyses.  For V. 

vinifera, the Gramene Release 50 gene list was used as the background reference gene list.  For 

A. thaliana, the TAIR10 (2017) gene list was used as the background reference.
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Pathway Analysis
The focus of this study was to determine the pathways affected by cold-SIDR.  

Pathway annotations from the PlantCyc database (Schläpfer et al., 2017) were used to determine 

the pathways affected in V. vinifera and A. thaliana.  The databases for each organism were 

obtained and integrated into the web resource VitisPathways (Osier, 2016).  Each cluster of 

significant genes was submitted separately for analysis.  Enriched pathways for each cluster were

determined using 1000 permutations and a permuted p-value of <0.05.  The results were 

converted into a tab-separated value (TSV) file and read into R for further data processing.  

Heatmaps were made in R v.3.5.2 using the pheatmap package (R Core Team, 2018; Kolde, 

2019).  The color scale for the heatmaps were based on the permuted p-value.

Organism Comparison
Gene homolog information was used to assist making a comparison between the two 

organisms.  A. thaliana homologs for V. vinifera genes were available from the VitisNet 

knowledgebase (Grimplet et al., 2012).  For V. vinifera genes missing homologs information, 

potential homologs were retrieved from the Ensembl BioMart portal (Smedley et al., 2015) using

the plants genes release #42.  Still separated in clusters, gene homologs from either V. vinifera or 

A. thaliana were mapped to the significant genes for both datasets.  The homologs genes for the 

clusters were submitted to VitisPathways using the appropriate pathway database.  Enriched 

pathways were determined using 1000 permutations and a permuted p-value of <0.05.  Result 

processing and visualization were the same as methods used for the pathways analysis for the 

significant genes.
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Results

Preprocessing
For the V. vinifera dataset, the initial and final read counts following the preprocessing

steps are summarized in Table 10.

Table 10: Vitis vinifera Preprocessing Read Count Summary Statistics per Replicate

There was a large gap between the minimum and maximum read count for the samples, which 

persisted after the FastX processing.  Also, the mean number of reads is larger than the median 

both before and after processing.  This is a potential indication that there are more samples with 

read counts below the mean than above the mean.

For the A. thaliana dataset, the initial and final read counts following the 

preprocessing steps are summarized in Table 11.

Table 11: Arabidopsis thaliana Preprocessing Read Count Summary Statistics

Similar to the V. vinifera dataset, there is a large gap between the maximum and minimum 

sample read counts which remains after the FastX processing.  Again, similar to V. vinifera, the 

read counts has a distribution that is to the right.  The standard deviation is smaller than that of 

the V. vinifera dataset indicating that the read counts for the A. thaliana samples cluster more 

closely to the mean count.  This is also likely due to the low read counts across the samples in the

A. thaliana dataset.
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Alignment
For all 90 V. vinifera samples, the STAR software produced a high number of read 

alignments, with 90.1%, of the reads on average uniquely mapping to the genome (Figure 10).  

The minimum value was 87.1%.  The percentages of uniquely mapped reads are shown.  The 

mean percent of uniquely mapped reads for the A. thaliana dataset was 96.8% (Figure 11), with a

minimum of 90.1%.  For both datasets, the minimum percent of mapped reads were within the 

range of the expected mapped reads recommended by Conesa et al. (2016) to indicate high 

overall sequence accuracy (70-90%).
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         * Red Line Indicates the Mean Percent of Uniquely Mapped Reads

Figure 10: STAR Reads Uniquely Mapped to Vitis vinifera
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         * Red Line Indicates the Mean Percent of Uniquely Mapped Reads

Figure 11: STAR Reads Uniquely Mapped to Arabidopsis thaliana
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Gene Counting
For the V. vinifera dataset, Figure 12* shows the distribution of the reads counts per 

sample.  The samples had a mean of 3,059,445 reads counted and assigned to distinct gene 

positions (Figure 12-green line).  The smallest number of reads counted was 1,100,654 and the 

largest was 5,896,608.  The mean number of reads categorized as uncounted was 1,664,959 

(Figure 12-blue line).  The maximum number of uncounted reads for a sample was 3,352,702, 

though this sample also had the largest number of total reads.

*Note: Figures 12-14 show the distribution of the reads counts per sample show the 

total reads, the total reads counted, and the total uncounted reads.  These regions are organized 

from front to back, with the total uncounted in front, total counted behind that, and the total 

number of reads in the back.  If the region of uncounted reads is placed at the end of the top 

region of the counted reads, the total of the two will equal the total number of reads for the 

sample.
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Figure 12: Vitis vinifera - HTSeq Read Count Distribution
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For the Col-0 samples, Figure 13* shows the distribution of reads per sample, colored 

by the total number of read, total reads counted, and total of reads uncounted. The samples had a 

mean of 3,059,445 reads counted and assigned to distinct gene positions (Figure 13-green line).  

The smallest number of read counted was 1,100,654 and the largest was 5,896,608.  The mean 

number of reads uncounted was 312,498 reads (Figure 13–blue line).

Figure 13: Arabidopsis thaliana - Col-0 - HTSeq Read Count Distribution
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Figure 14* shows the distribution of reads per sample for the PEN1 samples.  The 

PEN1 samples had a mean of 2,783,801 of reads counted (Figure 14-green line).  For the PEN1 

samples, the minimum number of reads counted was 959,305 and the maximum number was 

5,608,963.  The mean number of reads uncounted was 381,325 reads (Figure 14–blue line).

Figure 14: Arabidopsis thaliana - PEN1 - HTSeq Read Count Distribution
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A pattern that could be observed between the two datasets was that more total reads 

generally led to more reads being counted for a gene.  It can also be observed that the V. vinifera 

has more reads that are uncounted compared to either the Col-0 or PEN1 datasets.  Reads that are

classified as "uncounted" either map to a region of the genome that does not contain an annotated

gene, or that the read mapped to multiple regions or multiple genes.

Differential Expression
Prior to the differential expression analysis, a PCA plot was performed on the V. 

vinifera dataset, with the samples colored by experiment (Figure 15).  The samples from 

experiment #3 were clustered away from the other two experiments.  Based on this clustering, 

samples from experiment #3 were removed.

Figure 15: Vitis vinifera PCA for all samples
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For the V. vinifera dataset, the 3 model approach as described in Methods identified 

2654 significant genes, of which 55 genes were identified in all three models.  The exact number 

of genes generated by each model is represented in Figure 16.

Figure 16: Venn diagram showing overlapping significant genes by model

The “treatment” model produced the largest number of differentially expressed genes, followed 

by the “time^2” model, and then the percent susceptibility model.  Due to the nature of the 

likelihood ratio test, the exact number of differentially expressed genes at each treatment cannot 

be determined.  Figure 17 shows the expression profiles for the DEGs relative to the UTC 

treatment group.  The gene expressions were converted to log2 fold-change (LFC) to make the 

results more intuitive.  This way, the expression ratios are treated symmetrically, so a gene that is
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up-regulated by a factor of 2 has a log2 (ratio) of 1 and a gene that is down-regulated by a factor 

of 2 has a log2 (ratio) of -1. A majority of the DEGs had a LFC between -1 and 1.  Some genes 

extended beyond this threshold, reaching a maximum LFC of 4.11 or a minimum LFC of -2.42.

Figure 17: Vitis vinifera Expression Profiles for Significant Genes

Genes with the largest positive LFC occurred in the 48hpc treatment group.  Genes 

with the largest negative LFC occurred in the 24hpc treatment group.  There were groups of 

genes that appeared to follow similar expression patterns of up or down regulation.  The heatmap
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shown in Figure 18 illustrates this, with the colors indicating the log2-fold change relative to the 

UTC.  Finding these groups of similar expressed genes were the focus of the cluster analysis.

Figure 18: Heatmap showing all Significant Vitis vinifera genes, colored by log2 fold-change

For the A. thaliana dataset, the Wald Analysis identified 731 significant differentially 

expressed genes.  The Wald test produces a count of genes that were differentially expressed for 

each pair-wise comparison.  For the different treatments, the 24hpc versus UTC pair-wise 
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comparison produced the largest number of differentially expressed genes, with 640.  The 12hpc 

versus UTC pair-wise comparison produced the second largest number of genes with 111.  The 

48hpc versus UTC pair-wise comparison identified 5 genes as differentially expressed.  No genes

were reported as differentially expressed for the 36hpc treatment relative to the UTC.  The 

unshrunken expression patterns for these genes can be seen in Figure 19.

Figure 19: Arabidopsis thaliana Unshrunken Expression Profiles for Significant Genes
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A single gene (AT4G12500) shows a large down-regulation in all the treatments relative to the 

UTC.  Further investigation showed that the gene had a single sample in the UTC group with a 

gene count above 600, while the gene count for the other samples, including the other UTC 

samples were below 50.  This outlier sample can be seen in Figure 20.

Figure 20: Arabidopsis thaliana - Gene Count Outlier

Other genes were found to have outlier samples either inflating or deflating the gene’s expression

profile. As described in Methods and Materials, the LFCs for the gene expression profiles were 

shrunken based the evidence for the gene.
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Figure 21 shows the resulting shrunken expression profiles for the A. thaliana dataset. 

The expression profiles have a more compact LFC than that of the V. vinifera results.  The 

maximum LFC was 1.00 and the minimum LFC was -0.57.  The shape is similar to the 

expression profiles for the V. vinifera with genes being up or down regulated at 24hpc and 

transitioning to an expression pattern similar to the UTC at 36hpc.  In contrast to the V. vinifera, 

the genes with the largest LFC reside in the 12hpc treatment group.

Figure 21: Arabidopsis thaliana Shrunken Expression Profiles for Significant Genes
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The pair-wise comparison between the Col-0 and PEN1 genotypes produced 134 

significant genes that were differentially expressed.  The LFC for the significant genes were also 

shrunken to reduce the effect of outlier samples.  The minimum shrunken LFC was -0.78 and the 

maximum was 0.72.  The PEN1 gene had the largest negative LFC relative to the Col-0 

genotype.  The sixteen genes with a documented association with PEN1 (Table 7) were not 

identified as significantly differentially expressed relative to the Col-0 genotype.

Cluster Analysis
The objective cluster analysis performed on the gene expression values produced an 

optimum number of 13 clusters for the V. vinifera dataset (Figure 22).  Taking into account 

previous observation of the cold-SIDR phenotypic response, the clusters of interest were 

determined by focusing on genes with expression changes at the 24hpc treatment.  Six of the 13 

clusters had negative mean LFC at 24hpc.  The remaining 7 clusters had a positive mean LFC at 

24hpc.  The 13 clusters were ranked based on their absolute-LFC at 24hpc.  Cluster #2 showed 

the largest absolute-LFC with mean LFC of -0.98.  The general pattern for cluster #2 is that the 

genes showed a down-regulation at 24hpc with relatively low differential expression at the 

12hpc, 36hpc, and 48hpc treatments.  Cluster #3 showed the second largest absolute-LFC with a 

mean LFC of 0.75.  The general pattern for cluster #3 is that gene showed up-regulation at 24hpc

with relatively low differential expression in the other treatment groups.  Cluster #13 showed the 

third largest absolute-LFC with a mean LFC of 0.41.  Cluster #13 also included the genes with 

the largest LFC relative to the UTC so those genes were investigated more closely as well.

For the A. thaliana, the objective cluster analysis also determined an optimum number

of 13 clusters (Figure 23).  Previous observations (Weldon et al., manuscript in preparation) of 

the cold-SIDR phenotype in A. thaliana suggested the clusters of interest should have expression



49

changes during the 12hpc or 24hpc treatment, not at the 36 or 48hpc treatment.  Some clusters 

showed up-regulation in 12hpc and down-regulation in 24hpc, with minimal expression in either 

36hpc or 48hpc.  Genes in clusters #2, #4, and #6 showed up-regulation in the 12hpc treatment, 

while genes in cluster #9 showed down-regulation at 12hpc.  In the 24hpc treatment group, 

clusters #4, #9, and #10 showed up-regulation, while clusters #6, #3, and #11 showed down-

regulation.
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Figure 22: Vitis vinifera Gene Expression Clusters
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Figure 23: Arabidopsis thaliana Gene Expression Clusters



52

Functional Annotation
The significant V. vinifera genes were mapped to available functional information 

from the VitisNet knowledgebase.  Of the 2,654 genes, 483 had a functional annotation that was 

listed as either “Unknown”, “Unclear”, “Unknown protein”, or “No hit.”  Of those 483 genes, 

121 had accompanying information from the Gene Ontology, so a possible associated function 

could be deduced.  For 72 genes no functional or supporting information was available due to 

those genes being identified by a Vcost.v3 gene name.  All clusters were functionally annotated, 

but the results of the cluster analysis led the focus for further investigation to clusters #2, #3, 

#13.  Figures 24, 25, 26 show the Gene Ontology terms for biological process (requiring at least 

two differentially expressed genes involved in the process), along with the number of genes 

associated with each term for clusters of interest.

For cluster #2, 20 of the 42 genes were functionally associated with metabolism.  Four

other genes were functionally associated with signaling.  There were also 3 genes functioning as 

transcription factors for gene regulation.  For the cluster, 31 genes mapped to 24 GO biological 

process terms.  Eight GO terms had at least 2 genes associated to them, with oxidation reduction,

metabolic process, and photosynthesis/ light harvesting, having 8 genes, 5 genes, and 4 genes, 

respectively.

For cluster #3, 26 of the 78 genes were functionally associated with metabolism, 

including carbohydrate, protein, and lipid.  Fourteen genes were associated signaling, including 

hormone signaling and signaling pathways.  Two genes were associated with stress response and 

3 genes were from gene families with diverse functions.  For the cluster, 48 genes mapped to 75 

GO biological process terms, with 16 GO terms mapping to 2 or more genes.  Metabolic process,

oxidation reduction, and regulation of transcription, DNA-dependent were the top terms, with 7, 
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6, and 5 genes, respectively.  Genes mapped to terms involving subclasses of transcription 

regulation, which if these terms were combined, transcription regulation would be the term with 

the most genes.

For cluster #13, 5 of the 18 genes were associated with glutathione metabolism.  Three

genes were associated with proteolysis, specifically protease inhibition.  Two other genes were 

associated with starch and sucrose metabolism.  The function of auxin signaling and the 

transcript factor WRKY each had 1 gene associated with them.  The remaining genes involved 

stress responses.  For the cluster, 15 genes mapped to 12 GO biological terms.  Four GO terms 

had 2 or more genes mapped to them.  The terms toxin catabolic process, glutathione metabolic 

process, and response to wounding had the largest number of genes, with 5, 4, and 3, 

respectively.

The enrichment analysis reported limited results for all three clusters.  For cluster #2, 

no GO terms were significantly overrepresented for any ontology category.  For cluster #3, starch

metabolic process was the only biological process term that overrepresented.  Two terms, 

chloroplast stroma and plastid stroma, were significantly overrepresented for the cellular 

component ontology category.  For cluster #13, two biological process terms, response to stress 

and response to stimulus, were overrepresented.  There were also nine molecular function terms 

involving peptidase activity or protein binding which were overrepresented.
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Figure 24: Vitis vinifera - 24hpc down-regulated (cluster #2) biological process GO terms
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Figure 25: Vitis vinifera - 24hpc up-regulated (cluster #3) biological process GO terms
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Figure 26: Vitis vinifera – Max up-regulated (cluster #13) biological process GO terms
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For the A. thaliana dataset, functional information was available from the Gene 

Ontology for 588 genes.  All clusters were functionally annotated, though the focus was on the 

clusters of interest, based on the expression patterns at 12hpc and 24hpc as described in the 

cluster analysis section.

Clusters showing up-regulation at 12hpc included cluster #2, #4, and #6.  For cluster 

#2, 54 of the 64 genes mapped to 143 GO terms, and 39 GO terms were associated with 2 or 

more genes.  The top terms included response to wounding with 9 genes, response to abscisic 

acid with 9 genes, and response to water deprivation with 8 genes.  It can be noted that a number 

of defense response terms are also present with associated gene numbers ranging from 2 to 7.  

For the 18 genes in cluster #4, 14 mapped to 40 GO terms.  Of these terms, only 4 mapped to 

more than 1 gene.  Biological process, response to abscisic acid, and response to cold were the 

top terms with 5, 3, and 2 genes, respectively.  Cluster #6 had 41 of 51 genes that mapped to a 

total of 85 terms.  Seventeen of those terms mapped to at least 2 genes.  The top terms for this 

cluster were regulation of transcription, DNA-templated with 8 genes, biological process with 8 

genes, and response to salt stress with 4 genes.  Similar to cluster #2, cluster #6 also included 

some defense response terms.

Cluster #9 showed down-regulation in the 12hpc treatment group.  Of the 24 genes in 

the cluster, 23 genes mapped to a total of 81 GO terms.  Of those terms, 16 had 2 or more 

associated genes.  The top terms included response to karrikin and response to auxin with 8 

genes each and response to salt stress and regulation of transcription, DNA-templated with 4 

genes each.

Clusters showing up-regulation at 24hpc included cluster #4, cluster #9, and cluster 

#10.  The functional information for clusters #4 and #10 are the same as listed above.  For cluster

#10, 36 of the 45 genes mapped to 90 GO terms.  For these terms, 14 terms were associated with 
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2 or more genes.  Two terms, response to cadmium ion and biological process ties for the top 

number of genes with 4 genes each.  Response to cold, protein folding, and chloroplast 

organization were the next top terms with 3 genes each.

Clusters showing down-regulation at 24hpc included clusters #6, #3, and #11.  The 

functional information for clusters #6 is the same as listed above.  For clusters #3, 41 of the 50 

genes mapped to 105 GO terms.  For these terms, 20 terms were associated with 2 or more 

genes.  Biological process was the top term with 7 genes.  Defense response to bacterium was the

next largest term with 5 genes.  Response to salt stress and protein phosphorylation were the next

top terms with 4 genes each.  For cluster #11, 51 of the 67 genes mapped to 103 GO terms.  Of 

these terms, 25 terms had 2 more or more genes associated with them.  Response to salt stress 

was the largest term with 7 genes.  Regulation of transcription, DNA-templated and biological 

process were the next largest terms with 5 genes each.  Two terms, response to oxidative stress 

and response to cadmium ion, tied for the next largest with 4 genes apiece.

Figures 27, 28, 29, and 30 show the enriched biological process (BP) terms for the 

clusters from the AgriGO analyses.  The size of the point corresponds to the number of genes 

associated to each term.  The color represents the false discovery rate, following a cutoff off 

0.05.  The gene ratio, which represents the number of genes associated to the GO relative to the 

number of total genes in the cluster, shown on the x-axis.  There is the general trend that the 

larger the number of genes associated with a term, the larger the gene ratio.

Figure 31 shows the GO terms for the up and down genes between the PEN1 and Col-

0 genotypes.  The PEN1 genotype had 82 genes that were up-regulated compared to the Col-0 

genotype.  Of those genes, 51 genes mapped to 104 GO terms.  Thirteen GO terms mapped to 2 

or more genes.  The top term was biological process with 16 genes.  The second largest term was

DNA-templated regulation of transcription with 6 genes.  The GO terms oxidation-reduction 
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process and multicellular organism development were the next largest, each with 4 genes 

associated with them.  The PEN1 genotype had 52 genes down-regulated compared to the Col-0 

genotype and 37 of those genes had 87 GO terms associated with them.  Thirteen of those genes 

had 2 or more genes mapped to them.  The top GO term was biological process with 11 genes.  

The second largest GO term was defense response with 5 genes.  The next largest terms with 3 

genes each were the GO terms response to fungus, response to abscisic acid, DNA-templated 

regulation of transcription, and regulation of stomatal movement.
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Figure 27: Arabidopsis thaliana - 12hpc up-regulated (clusters #2, #4, #6) – enriched BP GO terms
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Figure 28: Arabidopsis thaliana - 12hpc down-regulated (cluster #9) – enriched BP GO terms
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Figure 29: Arabidopsis thaliana - 24hpc up-regulated (clusters #4, #9, #10) – enriched BP GO terms
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Figure 30: Arabidopsis thaliana - 24hpc down-regulated (clusters #3, #6, #11) – enriched BP GO terms
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Figure 31: Arabidopsis thaliana Biological Process GO terms for PEN1 compared to Col-0
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Pathway Analysis
The clusters for V. vinifera were submitted to VitisPathways to determine their 

associated pathways.  Heatmaps were created showing the clusters, ranked by their mean LFC at 

24hpc, with the color scales of the heatmap based on the permuted p-value.  The significant 

pathways for the 7 gene clusters with a positive mean LFC are shown in Figure 32.  Focusing on 

cluster #3, circadian rhythm, HSFs, Starch and sucrose metabolism, pseudo ARR-B, Cytokinin 

signaling, and AP2 EREBP were determined significant.  Other clusters with a positive mean 

LFC shared some, though not all of these pathways.
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Figure 32: Up-regulated Pathways for Vitis vinifera Clusters

The significant pathways for the 6 gene clusters with a negative mean LFC are shown 

in Figure 33.  Focusing on cluster #2, photosynthesis related pathways, specifically antenna 

proteins and transport electron carriers, were down regulated in this cluster.  Other clusters 

shared this down-regulation in photosynthesis activity.  The pathway Porters cat 30 to 64 refers 

to transporter categories 30 through 64.  This pathway, along with the transport electron carriers 

pathway, show that cellular respiration was down-regulated.
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Figure 33: Down-regulated Pathways for Vitis vinifera Clusters

The significant pathways for the 5 gene clusters for A. thaliana with an up-regulation 

at 12hpc are shown in Figure 34.  As with the functional annotation, the focus was on the clusters

of interest as described above.  Custer #2 which had the largest mean LFC at 12hpc, had 5 

pathways significantly up-regulated.  Two pathways with the lowest permuted p-value were the 

coumarin biosynthesis pathway and the jasmonic signaling pathway.  Coumarin are found in 

higher plants where they originate from the phenylpropanoid pathway (Bourgaud et al., 2006).  
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The jasmonic signaling pathway involves a class of plant hormones that play essential roles 

throughout development, including during plant reproduction, leaf senescence, and in response to

many biotic and abiotic stresses (Larrieu & Vernoux, 2016).  Cluster #4 showed multiple 

pathways associated with choline and phosphatidylcholine biosynthesis.  As a fundamental 

metabolite, choline, contributes to the synthesis of the membrane phospholipid, 

phosphatidylcholine, which accounts for 40 to 60% of lipids in non-plastid plant membranes 

(Schläpfer et al., 2017).  The inosine-5'-phosphate biosynthesis II, purine nucleotides de novo 

biosynthesis II, and starch degradation II pathways are involved with cellular metabolism.  

Cluster #6 showed 11 pathways significantly up-regulated.  Four pathways involved asparagine 

or aspartate biosynthesis.  According to the PlantCyc database, aspartate and asparagine are 

involved in protein synthesis and the transportation of nitrogen throughout the plant (Schläpfer et

al., 2017).  The remaining pathways look to deal with cellular metabolism and secondary 

metabolites.
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Figure 34: 12hpc up-regulated pathways for Arabidopsis thaliana clusters

The significant pathways for the 8 gene clusters for A. thaliana with a down-

regulation at 12hpc are shown in Figure 35.  Cluster #9 which had the largest negative mean LFC

at 12hpc, had 10 pathways significantly down-regulated.  Four of these pathways, involve 

secondary metabolite biosynthesis, such as the flavonoid biosynthesis, phlorizin biosynthesis, 

and pinobanksin biosynthesis pathways.  The resveratrol biosynthesis pathway produces the 

polyphenol resveratrol which is formed as a general response to biotic and abiotic stresses 
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(Schläpfer et al., 2017).  Four polyamine pathways, including the spermidine biosynthesis I and 

the spermine biosynthesis pathways, showed up-regulation in cluster #9.  As examples of 

polyamines, spermidine and spermine show involvement in many biological processes, including

nucleic acid binding, membrane stabilization, and enzyme stimulation (Schläpfer et al., 2017).

Figure 35: 12hpc down-regulated pathways for Arabidopsis thaliana clusters
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The significant pathways for the 7 gene clusters for A. thaliana with an up-regulation 

at 24hpc are shown in Figure 36. The clusters of interest include cluster #4, #9, and #10.  

Descriptions of the significant pathways for cluster #4 and #9 are the same as above.  For cluster 

#10, ten pathways were shown to be significantly enriched.  Two pathways were associated with 

4-hydroxybenzoate biosynthesis.  4-hydroxybenzoate is widespread in plants and play a major 

role in plant defense against pathogens (Caspi et al., 2016).  The simple coumarins biosynthesis 

pathway is associated with the synthesis of secondary metabolites.  Three pathways involve 

either methionine biosynthesis or degradation.  The S-adenosyl-L-methionine (SAM) cycle II 

also showed enrichment.  The sucrose degradation VI (anaerobic) pathway contributes to energy 

and substrate production for plant growth (Schläpfer et al., 2017).
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Figure 36: 24hpc up-regulated pathways for Arabidopsis thaliana clusters

The significant pathways for the 6 gene clusters for A. thaliana with a down-

regulation at 24hpc are shown in Figure 37. The clusters of interest include cluster #6, #3 and 

#11.  Descriptions of the significant pathways for cluster #6 are the same as above.  For clusters 

#3 and #11, ten pathways were shown to be significantly enriched.  The four pathways with the 

lowest permuted p-value showed involvement with either amino acid degradation or amino acid 

biosynthesis.
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Figure 37: 24hpc down-regulated pathways for Arabidopsis thaliana clusters

The significant pathways that showed up and down regulated in the PEN1 genotype 

compared to the Col-0 genotype are shown in Table 12.  Four of the pathways in PEN1 showed 

associations to the ethylene synthesis.  Ethylene synthesis can be induced by environmental 

stress, as well as other plant growth hormones (Schläpfer et al., 2017).  Other pathways showed 

association to generating energy and precursor metabolites, specifically the pentose phosphate 
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pathways.  Two pathways down-regulated in the PEN1 involve glucosinolate breakdown.  

Glucosinolates play an important role in plant defense (Schläpfer et al., 2017).

Table 12: Significant pathways for PEN1 genotype

Organism Comparison
For V. vinifera, the significant genes were mapped to the best matching A. thaliana 

gene homolog.  Table 13 shows the number of homologs mapped to the significant genes for 

each cluster.

Table 13: Gene homolog counts for clusters, by 
organism

Some of the genes from the V. vinifera clusters did not have any available homologs as so were 

underrepresented in the preceding pathways analysis.  Some of the genes from the A. thaliana 
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clusters mapped to multiple V. vinifera genes.  Table 14 shows the intersection between the V. 

vinifera genes with A. thaliana homologs and the A. thaliana dataset, limited to the clusters of 

interest for each dataset.  Two A. thaliana homologs, AT3G52180 and AT5G24470, were found 

to be consistent between the V. vinifera cluster #3 and A. thaliana clusters #2, #4, and #6.  One 

A. thaliana homolog, AT4G17090, was found to intersect between the V. vinifera cluster #3 and 

A. thaliana clusters #4, #9, and #10.

Table 14: Vitis vinifera Homologs Intersected with Arabidopsis thaliana Dataset by Cluster of 
Interest

This intersection was consistent between the A. thaliana genes with V. vinifera homologs and the

V. vinifera dataset.  A pathways analysis was performed for the homologs for each organism.

The AraCyc pathway was used for the A. thaliana homologs of the significant V. 

vinifera genes.  Cluster #2 from the V. vinifera dataset showed several pathways involved with 

the biosynthesis of flavonoids.  Two pathways, ricinoleate biosynthesis pathway and the vestitol 

and sativan biosynthesis pathway, were also shown as enriched.  These two pathways have 

associations with plant defense response (Caspi et al., 2016).  Cluster #3 from the V. vinifera 

dataset showed multiple pathways associated with the biosynthesis of choline and its 

phospholipid product, phosphatidylcholine.  The spermidine hydroxycinnamic acid conjugates 

biosynthesis pathway and the glycine biosynthesis II pathway also showed significant 

enrichment.



76

The VitisNet pathway was used for the V. vinifera homologs from the significant A. 

thaliana genes.  Focusing on the A. thaliana clusters up-regulated at 12hpc, there were several 

pathway results that overlapped with the V. vinifera pathways up-regulated at 24hpc.  These 

overlapping pathways include cytokinin signaling, circadian rhythm, and pseudoARR-B.  The 

auxin and WRKY pathways also showed enrichment in A. thaliana, though these overlaps were 

not with the 24hpc up-regulated cluster in V. vinifera (cluster #3), they did overlap with other up-

regulated V. vinifera clusters.  Cluster #9, the down-regulated 12hpc A. thaliana cluster, showed 

enrichment for flavonoid biosynthesis, phenylpropanoid biosynthesis, and transporter categories 

1 to 6.  These results did not overlapped any of the V. vinifera pathways, however, they were 

consistent with the AraCyc pathway results for this cluster.  For the A. thaliana clusters up-

regulated at 24hpc, there looked to be some overlap with the methionine metabolism and 

methane metabolism pathways.  The A. thaliana clusters down-regulated at 24hpc overlapped 

with the 24hpc down-regulated cluster in V. vinifera (cluster #2) showing enrichment of the 

photosynthesis pathway, indicating a down-regulation of the pathway.

Discussion
Three hypotheses by Moyer et al. (2016) were introduced at the beginning of this 

project to explain the cold-SIDR response.  The first hypothesis involved the cold temperature 

impacting photosynthesis efficiency.  The second hypothesis is that basic physiological responses

to cold may impart some form of disease resistance.  The third hypothesis involved the 

regulation of plant hormones signaling impacting plant cell growth and elongation.  The results 

from this project show that the two datasets show mixed support for these hypotheses.  This 

project also produced additional genes and pathways which could confer the cold-SIDR 

resistance. 
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Hypothesis #1

Regarding the first hypothesis, the V. vinifera dataset showed support.  Genes in 

cluster #2 showed patterns of down-regulation at 24hpc.  Based on the functional information for

the genes, metabolism and photosynthesis looked to be down-regulated.  This is also supported 

by the results from the pathways analysis which identified the photosynthesis related pathways, 

specifically antenna proteins and transport electron carriers being down-regulated for this cluster.

Other clusters showing down-regulation at 24hpc (Figure 33) were also associated with 

photosynthetic activity.  This is consistent with the expectation that cold temperature would lead 

to decreased levels of photosynthetic activity.

The A. thaliana dataset showed support for this hypothesis as well.  Functional and 

pathway results for the clusters of interest show an increases in starch and carbohydrate 

breakdown.  While not directly implicated in the photosynthesis pathway, starch and 

carbohydrate breakdown fuels plant metabolism and growth when they are unable to 

photosynthesize (Streb & Zeeman, 2012).

Hypothesis #2

Regarding hypothesis number two, the V. vinifera dataset showed some support.  In 

cluster #3, no genes were directly labeled as cold response (COR) genes, but 18 genes had a A. 

thaliana homolog characterized as a COR gene.  Two specific homologs, COR27 and COR28, 

showed a range of up-regulation in all of the treatment group, but showed their highest up-

regulation in the 24hpc treatment group.  As photosynthesis is down-regulated, reactive oxygen 

species (ROS) accumulate in the cells.  These ROS can act as signaling molecules in the 

response pathways.  Evidence for the presence of these ROS is present in cluster #3.  Genes 

mapped to GO terms involving oxidation reduction and response to oxidative stress.  Closer 

inspection showed up-regulation of peroxisome activity.
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Results from the A. thaliana dataset showed several cold response (COR) genes with 

up-regulation during the 12hpc and 24hpc treatments.  One COR gene of particular interest 

would be COR413PM1 (AT2G15970) which codes a cold regulate plasma membrane protein.  

Adherence of the plasma membrane to the cell wall was shown to impact invasion success in 

other biotrophic fungi (Mellersh & Heath, 2001).  The exact function of COR413PM1 in 

conferring stress tolerance is currently unknown.  The protein has homologs which are 

implicated in conferring osmotic stress tolerance, in addition to cold tolerance (Garwe, Thomson,

& Mundree, 2003).  Evidence for the presence of these ROS is also present in the A. thaliana 

dataset, most noteworthy in cluster #2.  Twenty of the 64 genes showed enrichment for response 

to an oxygen-containing compound.  Clusters #3 and #11 were also enriched for gene associated 

with response to oxidative stress at 24hpc.

Hypothesis #3

The third hypothesis involved the regulation of plant hormone signaling, impacting 

plant growth.  The V. vinifera dataset showed mixed support for this hypothesis as well.  Genes 

associated with the Gibberellin biosynthesis pathway showed down-regulation.  The review by 

Moyer et al. (2016) mentioned that abscisic acid (ABA) could be responsible for the cold-SIDR 

response.  Of the V. vinifera genes associated with ABA, 10 showed up-regulation and 13 genes 

were down-regulated.  The expression strength of these genes was rather low, with a LFC 

ranging from 0.5 to -0.6 and most having between 0.2 and -0.1.  Some genes showing up-

regulation had no characterized function, however, their Arabidopsis orthologs were involved 

with leaf senescence and response to ABA.

The A. thaliana results provided more solid evidence for this hypothesis, specifically 

the 12hpc enrichment results for cluster #2 (Figure 26).  Fifteen of the 64 genes associated with a

response to ABA were significantly overrepresented.
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Additional Considerations

This project also produced additional findings that were not included in the three 

hypotheses.  First, the jasmonic acid (JA) pathway showed up-regulation in both V. vinifera and 

A. thaliana datasets, occurring in the clusters of interest to cold-SIDR.  Classically, salicylic acid 

(SA) signaling is associated with biotroph resistance, while JA signaling plays an important role 

in necrotrophic pathogen resistance (Duan et al., 2014).  In most cases of dicotyledonous plants, 

the JA and SA signaling pathways are expected to interact antagonistically (Tamaoki et al., 

2013).  This generalization is disputed in grapevine as JA signaling has been implicated in host 

resistance against biotrophs (Belhadj et al., 2006) (Guerreiro et al., 2016).

Plants have evolved with a variety of responses to cope with both abiotic and biotic 

stress.  The interaction between biotic and abiotic stress responses is orchestrated by hormone 

signaling pathways that may induce or antagonize one another (Atkinson & Urwin, 2012).  Cold-

SIDR is an example of one of such response.  Transcription factors, ROS, and other signaling 

responses are key components of this pathway crosstalk.  Several of these key components were 

expressed and up-regulated in the clusters of interest in both organisms.  The challenging 

element is that even at low expression levels, these signaling components can initiate cascades 

leading to many genes being highly expressed.

The role of PEN1 in the cold-SIDR response remains unclear at a molecular level.  

Though no genes with a documented association with PEN1 were differentially expressed, 

additional genes of interest are reflected in genes also down-regulated in the PEN1 genotype 

compared to the Col-0.  The second largest negative log2 fold-change was the gene CNGC12 

(AT2G46450).  CNGC12 has been related to defense response and acts as a positive regulator of 

resistance against avirulent fungal pathogen (Swarbreck et al., 2008).  CNGC12 has been found 

to play a significant role in Ca2
+ signaling, which leads to the mediation of several physiological 
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processes, including senescence (Abdel-Hamid, Chin, Moeder, & Yoshioka, 2011).  The third 

largest negative log2 fold-change was the gene, QQS (AT3G30720), which appears to modulate 

carbon/nitrogen allocation in Arabidopsis (Swarbreck et al., 2008).  Recently, QQS has been 

linked with increased resistance to viruses, bacteria and fungi in Arabidopsis and soybean (Qi et 

al., 2019).  Further investigation is needed to understand the connections between PEN1 and 

these additional down-regulated genes.

Future Directions

Further research should be done to investigate if the gene expression profiles vary 

depending on the time of day that the cold event occurs.  This could be achieved by performing a

project similar to this one but invert the time of day that the cold treatments were applied to the 

12hpc, 24hpc, 36hpc, and 48hpc treatments.  This would assist in determining if the cold-SIDR 

response is a function of the cold response genes or if it is rooted in genes responsible for 

circadian rhythm.  Another focus would be investigating cold-SIDR with methods that account 

for alternative splicing.  Although not highly characterized in plants, it is likely that alternative 

splicing can lead to major changes in response to both abiotic and biotic stresses (Calixto et al., 

2018).  Lastly, the continued development of pathway architectures involved with stress response

is necessary to elucidate the mechanism of cold-SIDR.
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Conclusion
Cold-SIDR is a phenomenon resulting in decrease susceptibility to biotroph infection 

following exposure to an acute (less than 4 hours) cold (below 8°C) event.  This phenomenon 

has been observed in the species V. vinifera and A. thaliana, as well as other plant species.  The 

exact genetic mechanism of cold-SIDR remains unknown.  The results of this project provide 

support for the several hypotheses for explaining the cold-SIDR response.  Understanding the 

mechanism behind cold-SIDR would allow for improved disease prediction models.  With more 

accurate models, the total amount of fungicides applied could be reduced while simultaneously 

preventing severe disease development.
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