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Abstract

The focus of this thesis project was to investigate the impact of cold temperature
conditions on the resistance of Vitis vinifera (grapevines) to powdery mildew, a phenomenon
known as cold stress-induced disease resistance (SIDR). The model organism Arabidopsis
thaliana was used to determine specific defense mechanisms of plant-pathogen resistance. An
RNA-Seq time course experiment was performed for the two organisms: V. vinifera and A.
thaliana. The time-series datasets consisted of data points where samples were exposed to an
acute (less than 4 hours) cold (below 8°C) temperature for set times prior to inoculation with
powdery mildew. The acute cold time points used ranged from 48 hours, 36 hours, 24 hours, and
12 hours prior to inoculation. An untreated control group, which was not exposed to any acute
cold treatment, was used to compare between the treatments. The significant, differentially
expressed genes were evaluated and mapped to the pathways of the respective organisms.

The outcome of this project was the identification of pathways, as well as potential
genes of interest, involved with cold stress-induced disease resistance. There has been limited
research on genetic mechanisms of cold stress-induced disease resistance. This project provides
an improved understanding of the interactions between host stress and the epidemiology of the

biotrophic pathogen powdery mildew.



Introduction

According to the U.S. Department of Commerce (2017) liquor store sales of beer and

wine contribute more than $50 billion to the U.S. economy. This dollar amount does not
consider the indirect economic impacts of the wine industries. The American wine industry is
responsible for the combined direct and indirect impact estimated at more than $200 billion
(WineAmerica, 2017). The primary agricultural product used in wine production is grapes. In
2013, the U.S. produced more than 7 million tons of grapes (Wineamerica, 2014). While wine
can be produced using any grape varieties in the Vitis genus, the most desired grapes come from
the grapevine species Vitis vinifera.

Grapevines need to cope with a number of environmental stresses as well diseases and
pests in order to thrive. Of the possible pathogens, the fungal disease powdery mildew (PM) is
considered among the most important diseases in the world for grapes (Gent et al., 2009),
(Moyer, 2011). The grapevine species of powdery mildew, Erysiphe necator, is native to eastern
North America. In 1845 the disease was introduced to European vineyards where it caused
extensive losses as it spread rapidly throughout the continent (Wilcox, 2003). Since these times
control of powdery mildew has been a serious concern. Left unchecked, powdery mildew can
wipe out an entire crop on its own or make the crop susceptible to other pathogens or abiotic

stresses.

Powdery Mildew Overview

Powdery mildew is an obligate biotrophic fungus meaning that it can only grow on
living plant tissue. A number agricultural crops are affected by powdery mildews, including
artichoke, beans, beets, carrot, cucumber, eggplant, lettuce, melons, parsnips, peas, peppers,

pumpkins, radicchio, radishes, squash, tomatillo, tomatoes, and turnips (UC-IPM, 2008).



Powdery mildews are caused by a broad range of genera and species residing in the order
Erysiphales in the Fungi kingdom. Most powdery mildew species are host-specific, meaning
that each susceptible plant can only be infected by one (or few) species of powdery mildew.
Grapevines in the species V. vinifera are infected by the powdery mildew species Erysiphe

necator (syn Uncinula necator). Symptoms of powdery mildew include white fungal growth on

berries and leaves and dark lesions on infected vine (Figure 1).

- 4 ‘]
(Photo: L. J. Bettiga)

Life Cycle of Powdery Mildew
The disease lifespan of powdery mildew follows a yearly cycle (Figure 2). During the
late summer, powdery mildew colonies begins to produce chasmothecia. Chasmothecia contain

ascospores which are the result of mating among individual powdery mildew colonies



9
(Martinson & Wilcox, 2013). These hardened structures are responsible for initiating the disease
process during the start of the growing season in spring. Starting in the Spring, as the
temperature rises above 14-16° C, chasmothecia release ascospores which begin to infect nearby
green tissue. As the fungal colony grows, it produces conidia (spores) as a form of asexual
reproduction. These conidia are dispersed via airflow to surrounding plants. When the conidia
make contact with a suitable host the infection process begins. According to Micali et al. (2008),
once a conidium/spore has landed on a viable host, this infection process begins in as little as 1
hour. As the fungi colony grows, it continues to produce conidia which continue to spread the

infection through the summer months.

Figure 2: Grapevine powdery mildew (Erysiphe necator) life cycle.

fungus overwinters q‘/m dormant buds
vy mhc}&d buds give rise

f.——-.- J'"Ilr/v \\ 3{} to young shoots

ascus t«‘.‘ completely coverad
containing R by fungus
i, OECOIPOres \"“u":;

QECORPOres are

devel / bud infected released in Q ] I:I.;.;- fungus
eveloping buds grape c‘uﬁlal" sprin 05 noH SPUIUIGFBS an
became infected L B

= . surface of

X % green shools
. | and leaves
cleistothecia are prudu:gd cumdm

=

an leaves, shoots and =3 \I ,
berries in
late summer fungus on leaves, (:) \ eonidia and ascospores

shoots and berries infect green tissue

,J p:ndl_lces canidia that
5 are spread by wind = "-i
|
™ il .nrm%?@@ m

e

(Drawing by R. Sticht.)



10

Powdery Mildew Infection and Host Response
A set of complex cellular processes are deployed by both the plant host and the

obligate biotroph powdery mildew during infection. When a powdery mildew conidium has
landed on a viable host, and the infection process has begun, the fungus will create an
appressorium, the primary infection structure. The newly formed appressorium will penetrate
into the host cell wall, forming a haustorium, a specialized, intracellular structure, within the
epidermal layer of the host plant (Figure 3). The haustorium will serve as the active interface
between the fungus and the host plant. The fungus will retrieve necessary nutrients from the host

cells, while secreting proteins to counteract the host defense response.

PP

cell wall

plasma
membrane

app:appressorium, pp:penetration peg
Figure 3: Powdery mildew spore with appressorium formation
Plants have two major methods for disease resistance, basal defense and R-gene
mediated defense. The basal defense represents the first line of defense for the host. Basal
defenses look to be triggered by cell wall components which are released by the hydrolytic

activity of enzymes secreted by the appressorium, as well as common features of the fungus,
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known as pathogen-associated molecular patterns (PAMPs) (Gururani et al., 2012). To overcome
this basal defense, the powdery mildew haustorium produces “effector” proteins which are used
to interrupt the activation of host plant defenses. Continuing this veritable arms race, plants have
developed defense responses known as effector triggered immunity (ETI). ETI responses in
plants are controlled by resistance (R) genes which encode proteins that interact with the effector
proteins, leading to defense responses in the host (Qiu, Feechan, & Dry, 2015). Further,
knockdown of susceptibility genes such as Mildew Locus-o (MLO) through RNA interference

can reduced powdery mildew severity by up to 77% (Pessina et al. 2016).

Control Methods

In commercial vineyards, the control of powdery mildew generally requires the
significant use of fungicides, as well rigorous canopy management (Gadoury et al., 2012).
Fungicides are used to reduce the spread of infection. Fungicide applications are determined by
advisory systems that use a risk index for the vineyards (Bendek et al., 2007). To calculate the
risk of disease development for a vineyard, air temperature is used as input for the prediction
model. In the state of California, over 15 million pounds of chemicals pesticides were used on
grape crops in 2012 (Kegley et al. 2016). The continued use of pesticides could have dangerous
unseen side effects. Most commonly used fungicides in vineyards consist of various sulfur
preparations. Exposure to sulfur can lead to irritation of the skin, eyes, and respiratory tract.
This can be hazardous to people in the close proximity as well as to the environment (Youakim,
2006), (Raanan et al., 2017). On crops sensitive to sulfur or when several diseases need
simulataneous control, site-specific fungisides are commonly used, which after extensive use can
also lead to resistance in the pathogen. The susceptible pests are controlled, but host resistant

individuals of the same species reproduce and increase in absence of competition (Gent et al.,
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2009). Over time, the resistant strains become the prevalent population spreading the infection.
In the control of E. necator, conventional management with modern, organic fungicides has been
compromised on several occasions since 1980 by the evolution of fungicide resistance (Gadoury
et al., 2012). This makes host-resistance to PM a valuable and desirable trait. Grape varieties
with resistance to powdery mildew are currently being developed, using either conventional or

transgenic approach (Fuller, Alston, & Sambucci, 2014).

Stress Induced Disease Resistance

Plants are subject to two main types of deleterious stresses during their lives, biotic
and abiotic (Petrov, Hille, Mueller-Roeber, & Gechev, 2015). An example of biotic stress is the
plant’s intersection with the biotroph powdery mildew. Abiotic stresses include extreme
temperatures, high salinity, excessive light, water deprivation, pollutants such as ozone and
herbicides, high concentrations of heavy metals, and excessive UV radiation (Petrov et al. 2015).
There is a phenomenon during powdery mildew infection where environmental stresses can have
a negative impact on the development of the fungus. The fungus develops on the outside of the
plant tissue making it susceptible to extreme conditions of the external environment. Recently,
this phenomenon has been observed in V. vinifera during acute cold events. These acute cold
events ranged from 5 minutes to 8 hours in duration with temperatures below 8 °C (Moyer et al.,
2010). Following these acute exposures, there was observed: “death of hyphal segments, and a
prolonged latency” associated with the infection (Moyer et al., 2016). This observed disease
resistance, however, was temporary. The resistance response diminished to basal levels within
48 hours following exposure. Moyer et al. (2010) proposed that the exposure of grape leaf tissue
to extreme temperatures either made host tissue unsuitable for colonization or activated a

temporary host defense response.
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Phenotyping results noted in Weldon et al., (manuscript in preparation) showed a
significant difference in the percent susceptibility of grapevine sample when exposed to an acute
cold treatment at 24 hours prior to inoculation with powdery mildew. In the same study, there
was a significant difference shown in percent susceptibility in the species Arabidopsis thaliana.
The percent susceptibility was reduced for samples exposed to an acute cold treatment at both 12
and 24 hours prior to inoculation with powdery mildew.

Moyer et al. (2016) presented three potential hypotheses for the cause of the cold-
SIDR response. The first hypothesis involved the cold temperature impacting photosynthesis
efficiency. The second hypothesis is that basic physiological responses to cold that mimic a short
term induction of “ontogenic resistance” type response. The short term response would include a
decrease in carbon assimilation and vegetative growth rate as well as an increase in calcium
signaling and reactive oxygen species (ROS) generation. The third hypothesis involved the
regulation of plant hormones signaling, Gibberellin biosynthesis and DELLA proteins and the
abscisic acid (ABA) pathway. Determining the exact host response is difficult though because of
the obligate biotrophic nature of E. necator. In vitro studies of the biochemical pathways that
lead to stress responses are challenging because those pathways can also be affected by the

powdery mildew infection. To assist in this task the use of a model organism is necessary.

Arabidopsis thaliana Overview

Arabidopsis thaliana is a small flowering plant that is a member of the mustard
(Brassicaceae) family. A. thaliana is used widely in biological sciences and there are extensive
genetic maps of the organism’s chromosomes. In addition, the rapid life cycle of the plant makes
it a model organism. The biological pathways of the organism have also been broadly annotated.

Though 4. thaliana follows the trend of only being susceptible to a certain species of powdery
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mildew, mutations in certain “non-host” genes allow it to be infected by other powdery mildew
species. Specifically, mutations in the PEN1 and PEN1/3 non-host genes make A. thaliana
susceptible to infection by E. necator. This susceptibility makes 4. thaliana the model organism

to use when investigating host defenses against grapevine powdery mildew.

RNA-Seq Analysis
High Throughput RNA sequencing (RNA-Seq) is a valuable technique for monitoring

gene expression (Wang, Gerstein, & Snyder, 2009). RNA-Seq utilizes mRNA transcripts to
provide deep insight into an organism's gene expression. With tradition RNA-Seq method, the
isolated mRNA transcript is randomly fragmented and converted into a cDNA library. The
cDNA fragments are then sequenced using a next-generation sequencing technology. Gene
expression is proportional to the total number of reads (cDNA fragments sequenced)
corresponding to a given transcript of a gene. A limitation of traditional RNA-Seq is that longer
transcripts will produces more fragments/reads than shorter transcripts (Tandonnet & Torres,
2016). The 3' RNA-Seq method, overcomes this limitation by retaining only one fragment per
transcript from the 3’ region. Using this strategy, the expression levels are estimated directly by
the number of reads corresponding to a single gene.

The focus of this thesis project was to test the hypothesis that the genes and gene
pathways mentioned in the cold-SIDR review (Moyer et al., 2016) will have differential
expression patterns in the treatment groups that correlate with the observed transient resistance
phenotype. An RNA-Seq analysis was performed to investigate the differentially expressed
genes in each species, with the end goal of comparing and contrasting those genes between the

organisms.
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Figure 4: Cold-SIDR RNA-Seq Analysis Workflow
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Dataset Creation

To determine the gene homologs and pathways that contribute to the cold stress-
induced disease resistance (SIDR) in the two organisms (V. vinifera, A. thaliana) two datasets
were obtained. The datasets were created by William Weldon using the methods described in
Weldon et al., manuscript in preparation. An overview of the datasets are described below.

V. vinifera Dataset Creation

An experiment started with 15 leaves, with each leaf being subsampled into 5 disks (1
cm in diameter), assigned to each of 5 treatment time points in total: untreated control (UTC), 12
hours post cold (hpc), 24 hpc, 36 hpc, and 48 hpc. Each treatment group contained fifteen leaf
disks, one disk from each leaf, positioned in one of fifteen positions on a petri dish (Figure 5).
The position of the leaf disk was maintain between all treatment petri dishes because leaf disks
from the same leaf are known to have similar resistance responses, which is a component of
variability that can be accounted for statistically. The time points reflected the hours since being
cold treated for 4hrs at 4°C/39.2°F. From these treated leaf disks five disks were removed and
sent for RNA sequencing. The remainder of the leaf disks were inoculated with powdery mildew
(Erysiphe necator). Figure 6 shows the timeline for the experiment. This experiment was
repeated a total of 3 times. The phenotypic responses for each treatment group were recorded to
determine the percent susceptibility of each group to powdery mildew relative to the untreated

control (UTC) group.



Figure 5: Vitis vinifera Disk
Placement
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Figure 6: Vitis vinifera Sample Treatment Timeline
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A. thaliana Dataset Creation

Two lines of 4. thaliana were used; wild-type Col-0 and a PEN1 mutant in Col-0
background. Each line followed the same experimental design. An experiment started with 8
seedlings per line per treatment. There were 5 treatment time points in total: untreated control
(UTC), 12 hours post cold (hpc), 24 hpc, 36 hpc, and 48 hpc, reflecting the hours since the
initiation of cold treatment for 4hrs at 4°C (39.2°F) To reduce variability due to environment,
both lines were grown in the same petri dish for a given treatment in a split plot design (Figure
7). From the seedlings, 3-4 were removed and sent for RNA sequencing. The remaining
seedlings were inoculated with powdery mildew (E. necator). The phenotypic responses for
each treatment group were recorded to determine the percent susceptibility of each group to
powdery mildew relative to the untreated control (UTC) group. Figure 8 shows the treatment

timeline for the experiment. This experiment was repeated a total of 3 times.

Figure 7: Arabidopsis thaliana
Seedling Placement

8 seedlings | 8 seedlings




Figure 8: Arabidopsis thaliana Sample Treatment Timeline
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RNA-Seq Library Construction

The datasets for V. vinifera and A. thaliana were generated using 3’RNA-Seq library

construction. Both libraries were generated using the QuantSeq 3° mRNA-Seq Library Prep Kit

48 hpi, seedlings are stained
preventing further PM growth
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for Illumina. Sequencing then took place using an Illumina NextSeq500 with an anticipated read

length of 75 bp. The library construction and sequencing steps were performed by the Cornell

University Biotechnology Resource Center, Ithaca, NY.

Preprocessing

A crucial step in the RNA-Seq pipeline is the initial quality control and preprocessing

of the RNA sequence datasets. Quality problems including low-confidence bases, sequence-



specific bias, polymerase chain reaction artifact, untrimmed adaptors, and sequence

contamination may need to be addressed (Korpelainen et al., 2014). First, the program FastQC

(Andrews, 2010) was used to access the quality controls (QC) with regards to the sequence read

files. FastQC returns results pertaining to various aspects of sequencing data quality in a series

of eleven modules (Figure 9).

Figure 9: FastQC Output Modules

Basic statistics

A summary description of the reads in the file, including file name,
assumed quality score encoding scheme, number of sequences, se-
quence lengths, and GO content.

Per base sequence quality

A plot representing the distributions of the quality scores for cach nu-
cleotide position for the set of reads, depicted as box-and-whisker
plots for cach position.

Per sequence quality scores

A plot describing the distribution of mean sequence quality scores.
The x-axis holds mean sequence quality scores while the y-axis repre-
sents the number of reads having that mean quality score.

Per base sequence content

A plot of the percent content of cach nucleotide for cach position
within the read length over the whaole set of reads.

Per sequence GO content

A plot of the mean GC content distribution over the set of reads. The
x-axis represents the range of possible mean GC content percent val-
ues, while the y-axis provides the number of reads with each mean GC
content.

Per base M content

A plot of the percent *MN™ {indeterminate nucleotide) over the entire
set of reads by nucleotide position.

Sequence Length Distribu-
tion

A plot of the lengths of the reads in the set. The x-axis shows the
range of read lengths seen, while the y-axis provides the number of
reads with each length.

Sequence Duplication Levels

A plot of the percent of reads duplicated at a given level (y-axis)
against the ranege of levels of duplication {x-axis).

Overrepresented sequences

A list of any reads found to each compose greater than 0.1% of the
entire set of reads, if any do so.

Adapter Content

A plot of the percent of reads in which established adapter sequences
have been detected (y-axis) against nucleotide position within the read
{x-axis).

Kmer Content

A plot and list of those 7-mers found to have a significant location
bias in reads.

(FastQC documentation)

The FastQC results for the 90 samples of each dataset were parsed using a custom PERL script.

The initial run of FastQC on the V. vinifera dataset showed that of the 90 sequence

files, 3 prompted warnings for a check of overrepresented sequences. As described in Table 1,

this meant that those files contained sequences which were found to represent more than 0.1% of
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the total number of sequences in each file, which may be reasonable for expression data. There
were also 78 files which prompted warnings due to the GC content of their sequences. For the
A. thaliana dataset, the initial run of FastQC produced several failures, as well as several
warnings. Of the 90 sequence files, 78 proposed failures for the GC content of their respective
sequences. There were also 90 sequence files which prompted warning for overrepresented
sequences. The overrepresented sequence that caused the failure was composed of poly-G
(Guanine) nucleotides. An explanation for the poly-G sequences can be deduced by evaluating
the sequencing method used. The NextSeq platform uses a two-color chemistry system, where a
"G" nucleotide is designated by the color "black" (no color). When the nucleotide color signal is
too weak to detect, it is determined to have no color and will be recognized as a "G" in the base
calling stage (Chen, 2018).

To rule out the possibility of contamination or sample bias, these warnings were
investigated further. According to the NCBI, the V. vinifera genome assembly had a median GC
content of 33.75%, while the A. thaliana genome assembly had median GC content of 36.15%.
The 90 samples from the V. vinifera dataset had a median GC content of 39%. The 90 samples
from the A. thaliana dataset had a median GC content of 37%. Since the datasets consisted of
transcriptome sequencing, it was possible that the GC content of the transcriptome varied from
the GC content of the genome. Singh, Ming, and Yu (2016) found that the GC content for the
coding sequences (CDS) in V. vinifera was ~44.5% while the GC content for the CDS in 4.
thaliana was ~44.1%. Since this article's publication, new genome annotations for V. vinifera
(Canaguier et al., 2017) and A. thaliana (Cheng et al., 2017) were released. To account for the
possible changes in the new genome annotations, the GC content for each annotation was

calculated using BEDTools (Quinlan and Hall, 2010). The GC content for the CDS in new
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genome annotation for V. vinifera was ~38.8%. The GC content for the CDS in new genome
annotation for 4. thaliana was ~42.1%.

To address the quality issues of the V. vinifera dataset a number of tools from the
Fastx-Toolkit were used. At the recommendation of the sequencing facility, the first 13 bases
were removed from the 5' end of the sequence read using the Fastx Trimmer tool as this region
contained sequencing errors due to random priming. The FastX Quality Trimmer tool was used
to remove low quality bases from the 3' end of each read. The minimum Phred quality score
used to initiate base trimming/removal was 20. Sequence reads shorter than 38 bases were
remove from the analysis. The FastX Quality Filter tool was used to remove sequences reads
with a low overall quality. This quality filtering was processed in two stages. The first stage
removed sequences reads which failed the requirement of having 80% of the bases in the read
above a Phred quality score of 20. The second stage removed sequences reads that failed the
requirement of having 100% of the bases in the read above a Phred quality score of 13. The
settings for these tools were selected to optimize the quality of the sequence files while
maintaining a high number of sequence reads within each file. The same set of tools and settings
were also used to address the quality issues of the A. thaliana dataset, with the addition of the
FastX Artifact Filter to remove sequencing artifact. A description for the tools and their

respective settings for each organism are listed in Table 1.
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I winifera
Tool Setting Flag Description
FastX Trummer 13 Trim the first 13 bases from 5" end of read
FastX Quality Trimmer 120 Quality threshold — nucleotides with lower quality will be trimmed (from the end of the sequence)
Fast® Quality Trimumer -1 38 Minimuin length - sequences shorter than this (after trimming) will be discarded.
Fastq Quality Filter Part | -0 20 Minimum quality score to keep. (Phred Score = 20)
Fastq Quality Filter Part | -p B0 Minimum percent of bases that must have [-q] quality (= 80% of bases with Phred score = 20)
Fastq Quality Filter Part 2 -q13 Minimum quality score to keep. (Phred Score = 13)
Fastq Quality Filter Part 2 -p 100D Minimum percent of bases that must have [-q] quality { 100% of bases with Phred score > 13)
A. thaliang
Tool Setting Flag Description
FastX Artifact Filter Default Settings Filters sequencing artifact (reads with all but 3 wlentical bases)
FastX Trinmmer -f13 Tritn the first 13 bases from 5 end of read
FastX Quality Trimmer -t 20 Quality threshold — nucleotides with lower quality will be trinmed (from the end of the sequence)
FastX Quality Trinuner -1 38 Minimuin length - sequences shorter than this (after trimming) will be discarded.
Fastq Quality Filter Part | - 20 Minmim quality score to keep. (Phred Score = 20)
Fastq Quality Filter Part 1 -p BO Minimum percent of bases that must have [-q] quality (= 80% of bases with Phred score > 20)
Fastq Quality Filter Part 2 -q 13 Minimium quality score to keep. (Phred Score = 13)
Fastq Quality Filter Part 2 -p 100 Minimuim percent of bases that must have [-q] quality (100% of bases with Phred score > 13)

Table 1: FastX Quality Control Tools and Settings

Alignment

For both datasets, an alignment was performed between the sequence files and a
reference genome. For V. vinifera, reads were aligned to the 12xV2 genome and the Vcost.v3
annotation (Canaguier et al., 2017). For A. thaliana, reads were aligned to the Tair10 genome
(Berardini et al., 2015) using the Araport11 annotation (Cheng et al., 2017). The program STAR
(Spliced Transcripts Alignment to a Reference) (Dobin et al., 2013) was used for this alignment

step. The settings used for the STAR are described in Table 2.

Flag Setting Description
--runThreadN & Specify the number of threads
Specify the max number of multiple alignments allowed
--outFilterbMultimapNmax 10 for a read: if exceeded, the read is considered unmapped

Specify the max number of mismatches per pair relative

to read length: for 2x100b, max number of mismatches
--outFilterdismatchMNoverLmax 0.04 is 0.04*200=8 for the paired read

Filter out alignments that contain non-canonical

unannotated junctions when using annotated splice

junctions database. The annotated non-canonical

==outFilterntronMotifs RemoveMoncanonicalUnannotated junctions will be kept.
Uncompresses the input files and sends output to STAR
-readFilesCommand gunzip -¢ as input

Table 2: STAR Alignment Settings
The STAR software output the aligned reads in a sequence alignment map (.sam) file format.

This output was converted to a binary alignment map (.bam) file format using the command-line
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program SAMtools (Li et al., 2009). The settings used for the SAMtools are described in Table

3.

K vinifera

Setting Flag Description
sort -n Sort alignments by read name
=i 2 Number of additional threads to use

A. thaliana

Setting Flag Description
sort Sort alignments by leftmost coordinates
- & Number of additional threads to use

Table 3: SAMtools settings used for post alignment processing

Gene Counting

In an RNA-Seq experiment, it is necessary to know how many reads fall within the
exonic regions of each gene. The python script HTSeq (htseq-count) v0.9.1 was used to
determine these gene counts (Anders, Pyl, & Huber, 2015). The datasets were separated by their
respective treatments and were processed in parallel on the server. The following settings were

used for both the V. vinifera and A. thaliana datasets (Table 4).

Flag Setting Description
--stranded no Whether the data 1s from a strand-specific assay
--nounique none If the read is associated with more than one feature, the read is counted as
ambiguous and not counted for any features.
--order name Alignment files have been sorted by read name

Table 4: HTseq (htseq-count) Settings

Differential Expression

A differential expression analysis was performed separately for each of the datasets.
The R package DESeq2 (Love, Huber, & Anders, 2014) was used with the output from HTSeq.
Metadata about the samples were extracted from their filesnames using regular expression.

Using the function DESeqDataSetFromHTSeqCount, the gene counts and metadata for the
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samples were combined into a DESeqDataSet object. The DESeqDataSet also contained an
associated design formula, which is used to model the gene counts.

Three design formulas (models) were used for the V. vinifera dataset. Each design
formula was meant to identify specific genes of interest which followed a certain expression
pattern. All three designs included a “Disk Number” term in the formula. This term was meant
to control for leaf-to-leaf variability, as one disk from each leaf was assigned to each treatment
and tracked. Because a leaf could not be used in multiple independent experiments, experiment
number was confounded with “Disk Number”, so was not used in the models. The “Circadian
Rhythm” term in the formula #2 was meant to account for variability due to the time of day when
the treatments were performed. This was a binary variability where the UTC, 24hpc, 48hpc
treatments were classified as day and the 12hpc, 36hpc were classified as night. The “Percent
Susceptibility” term was meant to identify genes with counts that could be explained by changes
in the percent susceptibility of the treatment group. This percent susceptibility was determined

2’ terms

from results from the sample phenotyping. The “Treatment Time” and “Treatment Time
were meant to identify genes that fit the pattern of having a peak up or down regulation at the
24hpc treatment group. The “Treatment” term was meant to identify genes that show change in
expression across the different treatment groups. This term was a categorical (factor) variable
with the UTC treatment serving as the reference group. In DESeq2, a likelihood ratio test (LRT)
was performed to compare how well the count data for a gene fit a “full model” (design formula

with all variables) compared to a “reduced model,” with the variable(s) of primary interest

removed. The full and reduced models use for the V. vinifera analysis are illustrated in Table 5.
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i Type Design Formula Explanation

Full |~ Disc Number+ Treatment Identify genes which changed between the treatment groups, while
1 - controlling for leaf variability

Reduced |~ Disc Number

Full |~ Disc Number + Circadian Rhythm + Percent Susceptibilit Identify genes which are explained by a change in % susceptibility,
based on phenotypic observations, while controlling for leaf

variability and circadian rhythm

Full |~ Disc Number + Treatment Time + Treatment Time? Identify genes which change in either an up-down or down-up pattern,
3 - while controlling for leaf variability

Reduced |~ Disc Number

[¥]

Reduced |~ Disc Mumber + Circadian Rhythm

Table 5: DESeq2 Experimental Design Formulas for Vitis vinifera, all of which control for leaf
variability via the term Disk Number.

P-values generated by DESeq2 were adjusted for multiple testing using the Benjamini-Hochberg
procedure (Benjamini & Hochberg, 1995). An adjusted p-value < 0.1 indicated that a gene was
statistically significant. The significant genes from the union of the three designs were combined
and used for further analysis. Most of the tools used for further analysis of this gene set required
that the genes be labeled using gene names from the V1 annotation. The correspondence table
available at

https://urgi.versailles.inra.fr/content/download/5723/43038/file/

list genes vitis correspondencesV3 1.xIsx

was used to convert the Vcost.v3 gene names to V1 gene names. For the instances when a V1
gene name was not available for a gene, the Vcost.v3 gene name was left unchanged. The
columns for the output table of significant genes were the Vcost.v3 gene name, the V1 gene
name, the 12hpc vs UTC log, fold-change, the 24hpc vs UTC log, fold-change, the 36hpc vs
UTC log, fold-change, and the 48hpc vs UTC log, fold-change.

A single design formula (model) was used for the A. thaliana dataset (Table 6).

it Design Formula Explanation
1 - Experiment + Genotype + Treatment Identify genes while controlling for treatment, genotype, or experiment

Table 6: DESeq2 Experimental Design Formula for Arabidopsis thaliana

The "Experiment" term in the model was meant to control for variability between the 3 different
experiments. The "Genotype" term was meant to control for variability between the two

genotypes, Col-0 and PEN1. The "Treatment" term represented the five treatments, 48hpc,


https://urgi.versailles.inra.fr/content/download/5723/43038/file/list_genes_vitis_correspondencesV3_1.xlsx
https://urgi.versailles.inra.fr/content/download/5723/43038/file/list_genes_vitis_correspondencesV3_1.xlsx
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36hpc, 24hpc, 12hpc, and UTC. In DESeq2, a Wald test was performed to generate pair-wise
comparisons between a reference level and the remaining levels for each term. An example of a
pair-wise comparison for "Treatment" would be 12hpc vs UTC (reference level). As with the V.
vinifera analysis, an adjusted p-value < 0.1 was used to indicated statistically significance for a
gene. The log-fold changes for the pair-wise comparisons were combined into a single table
where the columns represented the gene name, 12hpc vs UTC, 24hpc vs UTC, 36hpc vs UTC,
and 48hpc vs UTC. The initial expression plots (see Results section) showed genes with outlier
expression patterns. These outlier expression patterns could be caused by samples with extreme
counts relative to other samples which raised the mean count for the respective treatment group.
To overcome this issue, DESeq2 provided a method to shrink the log, fold-change (LFC) for a
gene towards zero if the information about that gene was low. In this context low information
refers to having samples with low counts or having highly dispersed sample counts. This
shrinkage method was applied using the /fcShrink function with the "type" parameter set to
"Normal", which is the original DESeq2 shrinkage estimator (Love, Huber, & Anders, 2014).
The shrunken LFC were combined into a single table as before and used for further analysis.

For the genotype comparison, a list of 16 genes with a documented association to the
PENI1 gene was compiled (Table 7). This list was complied using the associated loci on the TAIR

description for the AT3G11820 gene locus (Swarbreck et al., 2008).



Araportll ID

Gene Name
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Description

AT3IG11820

AT1G12360

AT1G04TS0

AT3G52400

ATIGOT040

AT3IGABO0

ATAG16144

ATAG26090

AT3IG0OB530

AT3G11130

AT1G5SET0

AT5GE1210

AT2GA44450

AT2G20990

AT5GAB240
AT2G33110

ATAGI2650

ATAG 15340

PENI, SYRI, 5YPI121, ATSYRI

KEU, KEULE, SEC11

VAMPT21, VAMPTEB

SYP122
RPMI, RPS3
ATEDSI, EDS1

AMSH3

RPS2

ATCHCZ, CHCZ2

ATCHCI1, CHC1

ABCG36, PORE, PENZ

ATSNAP33, SNAP33, SNP33

BGLUZG, PENZ

SYTI, SYTA

ATKATI, KAT1
VAMPT23

KAT3, KC1

04C11, ATPENI, PENI

Encodes a syntaxin localized at the plasma membrane (SYR1, Syntaxin Related Protein 1, also known
as SYP121, PENETRATIOML/PENI). SYRL/PEM1 is a member of the SNARE superfamily proteins.
SMARE proteins are involved in cell signaling, vesicle traffic, growth and development.

Encodes a Secl protein and expressed throughout the plant. physically interacts with Syntaxinl and is
required for cytokinesis

Encodes vesicle-associated membrane protein 7B (VAMP7B, or VAMP721). Required for cell plate
formation. VAMP721 interacts with KAT1 and KC1 K+ channels, affects channel gating and suppresses
the K+ current within the physiclogical voltage range. Post-transcriptionally regulated by CRT1/2 under
ER stress.

Syntaxin protein, invohved in the negative regulation of defense pathways such as programmed cell
death, salicylic acid signalling pattway, jasmonic acid signalling pattwsay

Contains an M-terminal tripartite nucleotide binding site and a C-terminal tandem array of leucine-rich
repeats. Confers resistance to Pseudomonas syringae strains that carry the avirulence genes avrB
and avrRpml.

Component of R gene-mediated disease resistance in Arabidopsis thaliana with homology to eukaryotic
lipases.

Eprzsodes AMSH3, a deubiquitinating enzyme that hydrolyzes K48- and K63-linked ubiguitin chains in
vitro. Required for intracellular trafficking and vacuole biogenesis.

Encodes a plasma membrane protein with leucine-rich repeat, leucine zipper, and P loop domains that
confers resistance to Pseudomonas syringae infection by interacting with the avirulence gene avrRpt2.
RPS2 protein interacts directly with plasma membrane associated protein RIN4 and this interaction is
disrupted by avrRpt2. The mRNA is cell-to-cell mobile.

CHCZ2 heavy chain subunit of clathrin. Involved in vesicle mediated trafficking. Mutants show reduced
rates of endocytosis and defects clathrin mediated exocytosis Mutants have increased drought toler-
ance due to defects in stomatal movement.

CHC1 heavy chain subunit of clathrin. Imvohlved in vesicle mediated trafficking. Mutants show reduced
rates of endocytosis and defects clathrin mediated exocytosis. Mutants also have increased dehydra-
tion tolerance which may be related to the overall slower stomatal aperture dynamics. Overall growth is
affected.

ATP binding cassette transporter. Localized to the plasma membrane in uninfected cells. In infected
leaves, the protein concentrated at infection sites. Contributes to nonhost resistance to inappropriate
pathogens that enter by direct penetration in a salicylic acid-dependent manner. Required for mio resis-
tance. Has Cd transporter activity (Cd2+ extrusion pump) and contributes to heavy metal resistance.
The mRNA is cel-to-cell mobile.

Membrane localized t-SNARE SMAPZ5 homologue, probably invohved in cytokinesis and cel plate for-
mation The mRMNA is cell-to-cell mobile.

Encodes a gycosyl hydrolase that localizes to peroxisomes and acts as a component of an inducible
preinvasion resistance mechanism. Required for mio resistance. The mRMA is cell-to-cell mobile.
Encodes a protein specifically localized to the ER-PM boundary with similarity to synaptotagmins, a
class of membrane trafficking proteins.

Encodes a potassium channel protein (KAT1). ABA triggers KAT1 endocytosis both in epidermal cells
as well as guard cells. Upon removal of ABA, KAT1 is recycled back to the plasma membrane.
hember of VAMPT2 Gene Family

Encodes KAT3, a member of the Shaker family of voltage-gated potassium channel subunits. Does not
form functional potassium channel on its own. Involved in down-regulating AKT1 and KAT1 channel ac-
tivity by forming heteromers with AKT1 or KATL.

Encodes a protein that catalyzes the production of the tricyclic triterpene arabidiol when expressed in
yeast.

Table 7: Genes with Documented Association to PENI gene

For both hosts, R v.3.5.2 was used for the analysis (R Core Team, 2018). The ggplot2

and pheatmap packages were used to produce the plots and heatmaps representing the gene

expression levels across the treatment groups (H. Wickham, 2016), (Kolde, 2019).

Outlier analysis

During the gene counting step, outlier read counts can occur due to a number of

factors, including RNA extraction methods, experimental design, and the specified settings for

the counting software. The presence of outliers in an RNA-Seq experiment can drastically
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influence differential expression testing results (Li & Tibshirani, 2013). To screen for outliers,
DESeq? utilizes the Cook's distance to measure how a single observation impacts the count
prediction model. This method of screening is generally sufficient, but can leave DESeq2
potentially susceptible to extreme outliers present in skewed or biased datasets (George, Bowyer,
Crabtree, & Chang, 2015). To overcome this limitation, George et al. (2015) suggested
implementing an iterative leave-one-out approach to outlier detection. This approach was
applied to both datasets.

Due to the high number of biological replicates in the V. vinifera dataset, a threshold
level of 90 flagged genes was used to qualify a sample for removal from the analysis. Sample
count quality controls were performed using the plot functions from DESeq2 (Love, Huber, &
Anders, 2014), ggplot2 (H. Wickham, 2016), and base R (R Core Team, 2018). A PCA plot was
performed on the V. vinifera dataset, with the samples colored by experiment. Table 8 shows the
number of biological replicates per treatment for the V. vinifera dataset, after removing the
outlier samples. The differential expression analysis was performed using DESeq2 with the

outliers removed.

Treatment UTC 12hpc 24hpc 36hpc 4Bhpc
# of Samples 10 10 10 9 10

Table 8: Vitis vinifera samples used for DESeq?2 analysis,
after filtering samples for outlier counts

For the A4. thaliana dataset, the iterative leave-one-out approach (George et al., 2015)
was repeated. Due to the lower number of biological replicates in this dataset, all samples were
included in the analysis. The default settings for DESeq2 were used for outlier identification and
correction. Table 9 shows the number of biological replicates for the 4. thaliana dataset used for

the analysis.
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Treatment UTC 1zhpc 24hpc 36hpc 48hpc
# of Col-0 Samples 9 9 9 9 9
# of Pen-1 Samples 9 9 9 9 9

Table 9: Arabidopsis thaliana samples used for DESeq2 analysis,
with no outlier count filtering

Cluster Analysis

A cluster analysis was performed to determine groups of genes that had similar
expression patterns across treatments. The R package "Mfuzz" (Futschik, 2005) provided a
function, kmeans2, which performed a k-means clustering based on the number of centroids
provided. A workflow was devised for objectively choosing the optimum number of centroids
and well as the clusters of interest. The workflow evaluated using between 6 and 15 cluster

centroids, inclusively.

Objective Cluster Analysis Workflow:
1) For each cluster centroid setting (6:15):
A. For each time point, in each cluster:
1) Calculate the mean LFC for that time point.
2) Calculate the LFC deviation for that time point.
B. Calculate the mean (average) deviation across all the time points for each cluster.
2) Using the mean deviation for each cluster, each cluster centroid setting was ranked by its
median mean deviation. The minimum mean deviation for this ranking represented the
optimum centroid setting because all of the clusters are group more tightly together
compared to the other settings.
3) Using the optimum cluster centroid setting:
A. Calculate the absolute mean LFC at the treatment group of interest* between the
clusters.

B. Order the clusters by decreasing absolute mean LFC.

*The treatment group of interest depended on the organism due to time of maximum resistance
phenotype. For V. vinifera the 24hpc treatment group was used. For A. thaliana the 12hpc
treatment groups was used.
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Functional Annotation of Significant Genes
The initial proposal for this project included the Gene Ontology (GO) (The Gene

Ontology Consortium, 2019) as the sole source of functional information for the significant
genes between the two datasets. At the time of this project’s completion, however, the functional
information maintained by the GO for V. vinifera was limited. Of the total number of
differentially expressed genes for V. vinifera, about 44% (1161 out of 2654 genes) were either
unclassified or their ‘gene id” was not found in the database. As an alternative, functional
annotations for genes were determined using information from the VitisNet knowledgebase
(Grimplet et al., 2012). Gene accession numbers were used as unique identifiers to map each to
associated gene ontology term, plant ontology terms, pathways associations, known Arabidopsis
thaliana homologs, and other functional information. Genes that did not map to any VitisNet
information were annotated using the GO in an attempt to provide some type of functional
information.

The functional information maintained by the GO for 4. thaliana was of higher
quality. Of the total number of differentially expressed genes for A. thaliana, only 19% (138 out
of 726 genes) were either unclassified or their gene id was not found in the database. Functional
terms were also more specific than those terms for V. vinifera. Significant genes between both
the Col-0 and PEN1 genotypes were also functionally annotated to aid in the comparison.

A gene enrichment analysis was performed for both organisms using the agriGO (Tian
et al., 2017) platform, a web-tool optimized for agricultural gene ontology analyses. For V.
vinifera, the Gramene Release 50 gene list was used as the background reference gene list. For

A. thaliana, the TAIR10 (2017) gene list was used as the background reference.
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Pathway Analysis
The focus of this study was to determine the pathways affected by cold-SIDR.

Pathway annotations from the PlantCyc database (Schlépfer et al., 2017) were used to determine
the pathways affected in V. vinifera and A. thaliana. The databases for each organism were
obtained and integrated into the web resource VitisPathways (Osier, 2016). Each cluster of
significant genes was submitted separately for analysis. Enriched pathways for each cluster were
determined using 1000 permutations and a permuted p-value of <0.05. The results were
converted into a tab-separated value (TSV) file and read into R for further data processing.
Heatmaps were made in R v.3.5.2 using the pheatmap package (R Core Team, 2018; Kolde,

2019). The color scale for the heatmaps were based on the permuted p-value.

Organism Comparison

Gene homolog information was used to assist making a comparison between the two
organisms. A. thaliana homologs for V. vinifera genes were available from the VitisNet
knowledgebase (Grimplet et al., 2012). For V. vinifera genes missing homologs information,
potential homologs were retrieved from the Ensembl BioMart portal (Smedley et al., 2015) using
the plants genes release #42. Still separated in clusters, gene homologs from either V. vinifera or
A. thaliana were mapped to the significant genes for both datasets. The homologs genes for the
clusters were submitted to VitisPathways using the appropriate pathway database. Enriched
pathways were determined using 1000 permutations and a permuted p-value of <0.05. Result
processing and visualization were the same as methods used for the pathways analysis for the

significant genes.
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Results

Preprocessing

For the V. vinifera dataset, the initial and final read counts following the preprocessing

steps are summarized in Table 10.

Minimum 1st Quartile  Median  3rd Quartile  Maximum Mean  Standard Dev.
Initial Counts | 2,059,331 3.837.500 5.113,182 6.755.654 9940120 [5321.273 1843200
Final Counts | 1.836,703 | 3435506 | 4608237 0096526 BO53438 | 4789809 1.673.346

Table 10: Vitis vinifera Preprocessing Read Count Summary Statistics per Replicate
There was a large gap between the minimum and maximum read count for the samples, which
persisted after the FastX processing. Also, the mean number of reads is larger than the median
both before and after processing. This is a potential indication that there are more samples with
read counts below the mean than above the mean.

For the A. thaliana dataset, the initial and final read counts following the

preprocessing steps are summarized in Table 11.

Minimum 1st Quartile  Median 3rd Quartile  Maximum Mean  Standard Dev.
Initial Counts | 1,255,504 [ 2.,593.330 | 3099480 3675016 7218345 | 3310981 1.123431
Final Counts | 1,083,552 | 2335518 2680044 3,293,006 GA81.624 | 294835336 1006544

Table 11: Arabidopsis thaliana Preprocessing Read Count Summary Statistics

Similar to the V. vinifera dataset, there is a large gap between the maximum and minimum
sample read counts which remains after the FastX processing. Again, similar to V. vinifera, the
read counts has a distribution that is to the right. The standard deviation is smaller than that of
the V. vinifera dataset indicating that the read counts for the 4. thaliana samples cluster more
closely to the mean count. This is also likely due to the low read counts across the samples in the

A. thaliana dataset.
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Alignment
For all 90 V. vinifera samples, the STAR software produced a high number of read

alignments, with 90.1%, of the reads on average uniquely mapping to the genome (Figure 10).
The minimum value was 87.1%. The percentages of uniquely mapped reads are shown. The
mean percent of uniquely mapped reads for the 4. thaliana dataset was 96.8% (Figure 11), with a
minimum of 90.1%. For both datasets, the minimum percent of mapped reads were within the
range of the expected mapped reads recommended by Conesa et al. (2016) to indicate high

overall sequence accuracy (70-90%).
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STAR - Reads Mapped Uniquely

Vitis vinifera

10000

Q0,00

50,00

T0.00

60.00

S0.00

10,00
20.00
1000

40.00

paddeyy speay Jo o,

0.00

£10 93 £1 L0 _SMA
F10_93_#1_3Ln_SMA
£10_93 £1 3L SWA
T10_93_T1_2Ln s
11a 93 11200
£10 53 01 2Ln’s

£10 €3 £ oLn s
710 §4 T 0Un s
11a_£4_1 200 s
s1a 93 s1 adysy
¥1a_93_p1_adysgy
£10 93 €1 dysy
T1a 93 _z1_»dysy
11a_9a_11_adygy
10 53 01 2dygy
r1a 3 & adygy =
£1a s3 & »dyse
T1a_c3 ¢ adyst s
11a_s3 o adysy
sig £d s adygy s
r1a_£d_ v odysy
£1a_£4 £ 2dysty s
710 4 ¢ adysty
11a_gd_1 adysy s
S10 93 §1 adygg
+1a 93 +1 2dyog
€10 93 £1 dyog
Tia 93 zi_adyog
11a_ga_11_adyog
£10 3 01 adyog

Tia £3 ¢ adyog
11a_s3 9 adysg =
s1a £4 5 adygg
¥1a_gd_+_adyos s
f1a_£4 £ adyog
710 g4 ¢ adyge s
11a_g3_1 adygg
10 93 g1 adypg
¥l 93 +1 2dysg
€10 93 £1 2dysg
Tia 93 z1_adypg
11a_ga_11_adypyg
£1a L “o1 adypz

10 €3 + adypz
£1a_g4_£ 2dypz s
710 €3 ¢ adypz
1a_g3_1 adypg
€10 93 g1 _adygy
F1a 93 F1 adygg
£1a 93 g1 _adyg
Tia 9d o1 adygg
1a 93 11 2dyzy
s1a 3 o1 dyz)
+1a s3 6 adyzi
£1a_c3 g adygy
i sd L oadyzys
11a_s3_ 9 adyg)
S1a_g4_g adyg) s
Fia 4 ¢ odygy s
£10 €3 £ adyzy =
10 £3 ¢ adyzy s
g €3 1 adyzo

Sample

* Red Line Indicates the Mean Percent of Uniquely Mapped Reads

Figure 10: STAR Reads Uniquely Mapped to Vitis vinifera



STAR - Reads Mapped Uniquely

Arabidopsis thaliana

36

100.00%
90.00%
80.00%
70.00%
- 60.00%
-
]
ﬁ” 50.00%
2
2 40.00%
(=B
a1
= 30.00%
L
2 20.00%
=
10.00%
0.00%
fRESREANErRBRNpERERAB AR AR F AR A AR AR AR AR AR AR AR PR B RPN R A R PR R BP o HARIRIARS
HIHIHImImImIBIEIBIN HIHImm DBBIEIE -|Iv—| mmmmmlm EHHmmImIB EIBIHIHIHIDIHIDIEIBIEIHIHIHml ImIBIEIEImHIH mIm EEIBII‘J -|Iv—|I BBEBIEIE HﬁlmmmIBEIBIHIH HImImImIEIBIEI
E: ::ﬁ:w:m: D:""\-:WI 0_\Ill-1:lul I'U I Il‘-\- I I Ir':l 'U ' DIl‘-\- I 'U I II"'\-I IO\IEI:I::Q:M: D:"'\-:W:U\:EI:I Iul I I I I I ||—1 I I Ir‘-\-I I I IIJ I.IJ I Il‘-\-I I I I II"-\- I I Iul::q:m: D: "'\-:W:U\:
LDLOL DLW LDOLUDLDL LWL
gEEREY ggg%gg%gg%gg%ggEgg&ggéggéggégg 55555555%?§§§§§§§§§§§§§ggggﬁggEggggggggggggg%%EEiiiii
=== = == =R - - = gUUgUUgUDUUDUUUUDU HHHHHHHHH
asaasaasa.uu.BSwBSwaauaSU“ﬂuﬂ“uﬂ“u“aaaaaaaaaaﬁé@éé@éé@i@éi@éi@éi@éiééiééié@&é@&ééiiiiiiiii
alalalaltlalaltlala alala *I*IE EI*IE EIEIEEI*E‘E* EEEEEEE EE**E** ‘tatE*EIEIEIEIKIEIEIKIEI*EEI* alalg | |g | |g | |_g | |_g | IEEIEIEEIEI‘*‘!E*EE X1
Sample

* Red Line Indicates the Mean Percent of Uniquely Mapped Reads

Figure 11: STAR Reads Uniquely Mapped to Arabidopsis thaliana
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Gene Counting

For the V. vinifera dataset, Figure 12* shows the distribution of the reads counts per
sample. The samples had a mean of 3,059,445 reads counted and assigned to distinct gene
positions (Figure 12-green line). The smallest number of reads counted was 1,100,654 and the
largest was 5,896,608. The mean number of reads categorized as uncounted was 1,664,959
(Figure 12-blue line). The maximum number of uncounted reads for a sample was 3,352,702,
though this sample also had the largest number of total reads.

*Note: Figures 12-14 show the distribution of the reads counts per sample show the
total reads, the total reads counted, and the total uncounted reads. These regions are organized
from front to back, with the total uncounted in front, total counted behind that, and the total
number of reads in the back. If the region of uncounted reads is placed at the end of the top
region of the counted reads, the total of the two will equal the total number of reads for the

sample.



V. vinifera 2018 HTseq Read Breakdown

Vitis_12hpc_3 E3 D
Vitis_24hpc_6_E5 D
Vitis_24hpc 5 E3_D

Vitis UTC"8"E5 D

Vitis_ UTC_7_E5 D
Vitis 36hpc_ 1~ E3 D1
Vitis 48hpc_T1_E6 D11 -

Vitis UTC_9_E5 D14~
Vitis_48hpc_3"E3 D13 -
Vitis_ 24hpc_15_E6_D15-
Vitis_12hpc 5 E3 D15~
Vitis_24hpc_14_E6_D14 -
Vitis UTC_14_E6_D14 -
Vitis 48hpc_9 E5 D14 -

=“NwWo—=w

Vitis_ T2hpc_T1_E6 D11 -
Vitis_48hpc_10_E5_D15 -
Vitis_24hﬁc_1 1"E6 D11~
Vitis_48hpc_6_E5 D11 -

Vitis_ UTC_6_E5 D11 -
Vitis_48hpc 12 E6 D12 -
Vitis UTC_10_E5_D15-
Vitis 36hpc_6_E5 D11 -
Vitis_ 24hpc_ 3" E3 D13 -
Vitis_48hpc_T3_E6 D13 -
Vitis_48hpc_4 E3 D14 -
Vitis_12hpc_2 E3 D12~
Vitis_36hpc_7_E5 D12 -
Vitis_T2hpc_T0_E5 D15~
Vitis_36hpc_11_E6_D11 -
Vitis_24hpc_4 E3 D14 -
Vitis 24hpc T3 E6 D13 -
Vitis UTC_13_E6 D13 -
Vitis " 12hpc_9"E5 D14 -
Vitis_48hpc_8 E5 D13 -
Vitis_48hpc_T4_E6 D14 -

Vitis_36hpc_8_E5 D13 -
Vitis_48hpc 5 E3 D15~
Vitis_36hpc_9_E5 D14 -
Vitis 36hpc 3 E3 D13~
Vitis 36hpc 5 E3 D15 -
Vitis_ T2hpc_15_E6_D15-
Vitis_24hpc 8 E5 D13~
Vitis_ UTC_T5_E6_D15-
Vitis 48hpc_7 E5 D12-
Vitis_T2hpc_T4_E6_D14 -
Vitis_48hpc 1_E3 D11 -
Vitis 36hpc 2 E3 D12~

Vitis UTC_1"E3 D11 -
Vitis 24hpc 7 E5 D12-
Vitis_T2hpc_ 12 E6 D12 -
Vitis_12hpc 6 E5 D11 -
Vitis 24hpc_T0_E5 D15 -

Vitis UTC 5 E3 D15~
Vitis_T2hpc_ 4 E3 D14 -
Vitis_24hpc 12 E6 D12 -
Vitis_UTC_12_E6 _D12-
Vitis_T2hpc_13_E6_D13 -
Vitis_24hpc 9 E5 D14-
Vitis_48hpc 2 E3 D12~
Vitis 36hpc T2"E6 D12 -

Vitis UTC_3 E3 D13~
Vitis_ T2hpc_7_E5 D12~
Vitis 36hpc_4_E3 D14 -
Vitis_48hpc_T15 E6 D15~
Vitis 36hpc_14_E6_D14 -

Vitis UTC_4_E3 D14 -
Vitis 24hpc 1"E3 D11 -
Vitis_ UTC_T1_E6 D11 -
Vitis 24hpec 2 E3 D12 -

Vitis_UTC 2 E3 D12~
Vitis_36hpc_13_E6_D13 -
Vitis_12hpc 8 E5 D13 -
Vitis_12hpc_1_E3 D11 -
Vitis_36hpc_T5 E6_D15 -
Vitis_36hpc_10_E5_D15 -

Sample

om im 2m 3m 4m 5m 6m 7m

Reads (millions)

Totals . TotalReads . TotalCounted . UnCounted

Figure 12: Vitis vinifera - HTSeq Read Count Distribution
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For the Col-0 samples, Figure 13* shows the distribution of reads per sample, colored
by the total number of read, total reads counted, and total of reads uncounted. The samples had a
mean of 3,059,445 reads counted and assigned to distinct gene positions (Figure 13-green line).
The smallest number of read counted was 1,100,654 and the largest was 5,896,608. The mean

number of reads uncounted was 312,498 reads (Figure 13—blue line).

A. thaliana Col-0 2018 HTseq Read Breakdown
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Figure 13: Arabidopsis thaliana - Col-0 - HTSeq Read Count Distribution



Figure 14* shows the distribution of reads per sample for the PEN1 samples. The
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PEN1 samples had a mean of 2,783,801 of reads counted (Figure 14-green line). For the PEN1

samples, the minimum number of reads counted was 959,305 and the maximum number was

5,608,963. The mean number of reads uncounted was 381,325 reads (Figure 14-blue line).

A. thaliana Pen-1 2018 HTseq Read Breakdown
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Figure 14: Arabidopsis thaliana - PENI - HTSeq Read Count Distribution
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A pattern that could be observed between the two datasets was that more total reads
generally led to more reads being counted for a gene. It can also be observed that the V. vinifera
has more reads that are uncounted compared to either the Col-0 or PEN1 datasets. Reads that are
classified as "uncounted" either map to a region of the genome that does not contain an annotated

gene, or that the read mapped to multiple regions or multiple genes.

Differential Expression

Prior to the differential expression analysis, a PCA plot was performed on the V.
vinifera dataset, with the samples colored by experiment (Figure 15). The samples from
experiment #3 were clustered away from the other two experiments. Based on this clustering,

samples from experiment #3 were removed.

Vitis 2018 - All Samples - PCA Plot
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Figure 15: Vitis vinifera PCA for all samples
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For the V. vinifera dataset, the 3 model approach as described in Methods identified
2654 significant genes, of which 55 genes were identified in all three models. The exact number

of genes generated by each model is represented in Figure 16.
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Figure 16: Venn diagram showing overlapping significant genes by model
The “treatment” model produced the largest number of differentially expressed genes, followed
by the “time”2” model, and then the percent susceptibility model. Due to the nature of the
likelihood ratio test, the exact number of differentially expressed genes at each treatment cannot
be determined. Figure 17 shows the expression profiles for the DEGs relative to the UTC
treatment group. The gene expressions were converted to log, fold-change (LFC) to make the

results more intuitive. This way, the expression ratios are treated symmetrically, so a gene that is
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up-regulated by a factor of 2 has a log, (ratio) of 1 and a gene that is down-regulated by a factor
of 2 has a log, (ratio) of -1. A majority of the DEGs had a LFC between -1 and 1. Some genes

extended beyond this threshold, reaching a maximum LFC of 4.11 or a minimum LFC of -2.42.

Expression Profiles for Significant Genes Intersect from 3 Models
3 Models: %Sucept, Treatment, Time”*2 Dataset: No_E3_and_No_Outliers Sig Genes: 2654

Log2FoldChange

LoFC12vsUTC LoFC24vsUTC LoFC36vsUTC LoFC48vsUTC
Pair-Wise Comparison

Figure 17: Vitis vinifera Expression Profiles for Significant Genes

Genes with the largest positive LFC occurred in the 48hpc treatment group. Genes
with the largest negative LFC occurred in the 24hpc treatment group. There were groups of

genes that appeared to follow similar expression patterns of up or down regulation. The heatmap
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shown in Figure 18 illustrates this, with the colors indicating the log,-fold change relative to the

UTC. Finding these groups of similar expressed genes were the focus of the cluster analysis.
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Figure 18: Heatmap showing all Significant Vitis vinifera genes, colored by log; fold-change
For the A. thaliana dataset, the Wald Analysis identified 731 significant differentially
expressed genes. The Wald test produces a count of genes that were differentially expressed for

each pair-wise comparison. For the different treatments, the 24hpc versus UTC pair-wise
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comparison produced the largest number of differentially expressed genes, with 640. The 12hpc
versus UTC pair-wise comparison produced the second largest number of genes with 111. The
48hpc versus UTC pair-wise comparison identified 5 genes as differentially expressed. No genes
were reported as differentially expressed for the 36hpc treatment relative to the UTC. The
unshrunken expression patterns for these genes can be seen in Figure 19.

Unshrunken Expression Profiles for Genes
Dataset: All_Experiments Sig Genes: 731
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Pair-Wise Comparison

Figure 19: Arabidopsis thaliana Unshrunken Expression Profiles for Significant Genes
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A single gene (AT4G12500) shows a large down-regulation in all the treatments relative to the
UTC. Further investigation showed that the gene had a single sample in the UTC group with a
gene count above 600, while the gene count for the other samples, including the other UTC

samples were below 50. This outlier sample can be seen in Figure 20.

Gene:AT4G12500
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® Colo
400 - A Pent
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>
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0- » @ o L o
U'II'C 12PI1pc 24;1pc 36rl1pc 48fl1pc

Sample

Figure 20: Arabidopsis thaliana - Gene Count Outlier
Other genes were found to have outlier samples either inflating or deflating the gene’s expression

profile. As described in Methods and Materials, the LFCs for the gene expression profiles were

shrunken based the evidence for the gene.
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Figure 21 shows the resulting shrunken expression profiles for the A. thaliana dataset.

The expression profiles have a more compact LFC than that of the V. vinifera results. The
maximum LFC was 1.00 and the minimum LFC was -0.57. The shape is similar to the
expression profiles for the V. vinifera with genes being up or down regulated at 24hpc and
transitioning to an expression pattern similar to the UTC at 36hpc. In contrast to the V. vinifera,
the genes with the largest LFC reside in the 12hpc treatment group.

Shrunken Expression Profiles for Genes
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Figure 21: Arabidopsis thaliana Shrunken Expression Profiles for Significant Genes
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The pair-wise comparison between the Col-0 and PEN1 genotypes produced 134
significant genes that were differentially expressed. The LFC for the significant genes were also
shrunken to reduce the effect of outlier samples. The minimum shrunken LFC was -0.78 and the
maximum was 0.72. The PENI gene had the largest negative LFC relative to the Col-0
genotype. The sixteen genes with a documented association with PEN1 (Table 7) were not

identified as significantly differentially expressed relative to the Col-0 genotype.

Cluster Analysis

The objective cluster analysis performed on the gene expression values produced an
optimum number of 13 clusters for the V. vinifera dataset (Figure 22). Taking into account
previous observation of the cold-SIDR phenotypic response, the clusters of interest were
determined by focusing on genes with expression changes at the 24hpc treatment. Six of the 13
clusters had negative mean LFC at 24hpc. The remaining 7 clusters had a positive mean LFC at
24hpc. The 13 clusters were ranked based on their absolute-LFC at 24hpc. Cluster #2 showed
the largest absolute-LFC with mean LFC of -0.98. The general pattern for cluster #2 is that the
genes showed a down-regulation at 24hpc with relatively low differential expression at the
12hpc, 36hpc, and 48hpc treatments. Cluster #3 showed the second largest absolute-LFC with a
mean LFC of 0.75. The general pattern for cluster #3 is that gene showed up-regulation at 24hpc
with relatively low differential expression in the other treatment groups. Cluster #13 showed the
third largest absolute-LFC with a mean LFC of 0.41. Cluster #13 also included the genes with
the largest LFC relative to the UTC so those genes were investigated more closely as well.

For the A. thaliana, the objective cluster analysis also determined an optimum number
of 13 clusters (Figure 23). Previous observations (Weldon et al., manuscript in preparation) of

the cold-SIDR phenotype in 4. thaliana suggested the clusters of interest should have expression



49
changes during the 12hpc or 24hpc treatment, not at the 36 or 48hpc treatment. Some clusters
showed up-regulation in 12hpc and down-regulation in 24hpc, with minimal expression in either
36hpc or 48hpc. Genes in clusters #2, #4, and #6 showed up-regulation in the 12hpc treatment,
while genes in cluster #9 showed down-regulation at 12hpc. In the 24hpc treatment group,
clusters #4, #9, and #10 showed up-regulation, while clusters #6, #3, and #11 showed down-

regulation.
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Functional Annotation

The significant V. vinifera genes were mapped to available functional information
from the VitisNet knowledgebase. Of the 2,654 genes, 483 had a functional annotation that was
listed as either “Unknown”, “Unclear”, “Unknown protein”, or “No hit.” Of those 483 genes,
121 had accompanying information from the Gene Ontology, so a possible associated function
could be deduced. For 72 genes no functional or supporting information was available due to
those genes being identified by a Vcost.v3 gene name. All clusters were functionally annotated,
but the results of the cluster analysis led the focus for further investigation to clusters #2, #3,
#13. Figures 24, 25, 26 show the Gene Ontology terms for biological process (requiring at least
two differentially expressed genes involved in the process), along with the number of genes
associated with each term for clusters of interest.

For cluster #2, 20 of the 42 genes were functionally associated with metabolism. Four
other genes were functionally associated with signaling. There were also 3 genes functioning as
transcription factors for gene regulation. For the cluster, 31 genes mapped to 24 GO biological
process terms. Eight GO terms had at least 2 genes associated to them, with oxidation reduction,
metabolic process, and photosynthesis/ light harvesting, having 8 genes, 5 genes, and 4 genes,
respectively.

For cluster #3, 26 of the 78 genes were functionally associated with metabolism,
including carbohydrate, protein, and lipid. Fourteen genes were associated signaling, including
hormone signaling and signaling pathways. Two genes were associated with stress response and
3 genes were from gene families with diverse functions. For the cluster, 48 genes mapped to 75
GO biological process terms, with 16 GO terms mapping to 2 or more genes. Metabolic process,

oxidation reduction, and regulation of transcription, DNA-dependent were the top terms, with 7,
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6, and 5 genes, respectively. Genes mapped to terms involving subclasses of transcription
regulation, which if these terms were combined, transcription regulation would be the term with
the most genes.

For cluster #13, 5 of the 18 genes were associated with glutathione metabolism. Three
genes were associated with proteolysis, specifically protease inhibition. Two other genes were
associated with starch and sucrose metabolism. The function of auxin signaling and the
transcript factor WRKY each had 1 gene associated with them. The remaining genes involved
stress responses. For the cluster, 15 genes mapped to 12 GO biological terms. Four GO terms
had 2 or more genes mapped to them. The terms toxin catabolic process, glutathione metabolic
process, and response to wounding had the largest number of genes, with 5, 4, and 3,
respectively.

The enrichment analysis reported limited results for all three clusters. For cluster #2,
no GO terms were significantly overrepresented for any ontology category. For cluster #3, starch
metabolic process was the only biological process term that overrepresented. Two terms,
chloroplast stroma and plastid stroma, were significantly overrepresented for the cellular
component ontology category. For cluster #13, two biological process terms, response to stress
and response to stimulus, were overrepresented. There were also nine molecular function terms

involving peptidase activity or protein binding which were overrepresented.
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V. vinifera 24hpc Up-regulated Functional Annotation Via Gene Ontology Biological Process Terms
(Limited to Terms with 2 or more genes)
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V. vinifera Max L2FC Up-regulated Functional Annotation Via Gene Ontology Biological Process Terms
(Limited to Terms with 2 or more genes)
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For the A. thaliana dataset, functional information was available from the Gene
Ontology for 588 genes. All clusters were functionally annotated, though the focus was on the
clusters of interest, based on the expression patterns at 12hpc and 24hpc as described in the
cluster analysis section.

Clusters showing up-regulation at 12hpc included cluster #2, #4, and #6. For cluster
#2, 54 of the 64 genes mapped to 143 GO terms, and 39 GO terms were associated with 2 or
more genes. The top terms included response to wounding with 9 genes, response to abscisic
acid with 9 genes, and response to water deprivation with 8 genes. It can be noted that a number
of defense response terms are also present with associated gene numbers ranging from 2 to 7.
For the 18 genes in cluster #4, 14 mapped to 40 GO terms. Of these terms, only 4 mapped to
more than 1 gene. Biological process, response to abscisic acid, and response to cold were the
top terms with 5, 3, and 2 genes, respectively. Cluster #6 had 41 of 51 genes that mapped to a
total of 85 terms. Seventeen of those terms mapped to at least 2 genes. The top terms for this
cluster were regulation of transcription, DNA-templated with 8 genes, biological process with 8
genes, and response to salt stress with 4 genes. Similar to cluster #2, cluster #6 also included
some defense response terms.

Cluster #9 showed down-regulation in the 12hpc treatment group. Of the 24 genes in
the cluster, 23 genes mapped to a total of 81 GO terms. Of those terms, 16 had 2 or more
associated genes. The top terms included response to karrikin and response to auxin with 8
genes each and response to salt stress and regulation of transcription, DNA-templated with 4
genes each.

Clusters showing up-regulation at 24hpc included cluster #4, cluster #9, and cluster
#10. The functional information for clusters #4 and #10 are the same as listed above. For cluster

#10, 36 of the 45 genes mapped to 90 GO terms. For these terms, 14 terms were associated with
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2 or more genes. Two terms, response to cadmium ion and biological process ties for the top
number of genes with 4 genes each. Response to cold, protein folding, and chloroplast
organization were the next top terms with 3 genes each.

Clusters showing down-regulation at 24hpc included clusters #6, #3, and #11. The
functional information for clusters #6 is the same as listed above. For clusters #3, 41 of the 50
genes mapped to 105 GO terms. For these terms, 20 terms were associated with 2 or more
genes. Biological process was the top term with 7 genes. Defense response to bacterium was the
next largest term with 5 genes. Response to salt stress and protein phosphorylation were the next
top terms with 4 genes each. For cluster #11, 51 of the 67 genes mapped to 103 GO terms. Of
these terms, 25 terms had 2 more or more genes associated with them. Response to salt stress
was the largest term with 7 genes. Regulation of transcription, DNA-templated and biological
process were the next largest terms with 5 genes each. Two terms, response to oxidative stress
and response to cadmium ion, tied for the next largest with 4 genes apiece.

Figures 27, 28, 29, and 30 show the enriched biological process (BP) terms for the
clusters from the AgriGO analyses. The size of the point corresponds to the number of genes
associated to each term. The color represents the false discovery rate, following a cutoff off
0.05. The gene ratio, which represents the number of genes associated to the GO relative to the
number of total genes in the cluster, shown on the x-axis. There is the general trend that the
larger the number of genes associated with a term, the larger the gene ratio.

Figure 31 shows the GO terms for the up and down genes between the PEN1 and Col-
0 genotypes. The PEN1 genotype had 82 genes that were up-regulated compared to the Col-0
genotype. Of those genes, 51 genes mapped to 104 GO terms. Thirteen GO terms mapped to 2
or more genes. The top term was biological process with 16 genes. The second largest term was

DNA-templated regulation of transcription with 6 genes. The GO terms oxidation-reduction



59
process and multicellular organism development were the next largest, each with 4 genes
associated with them. The PEN1 genotype had 52 genes down-regulated compared to the Col-0
genotype and 37 of those genes had 87 GO terms associated with them. Thirteen of those genes
had 2 or more genes mapped to them. The top GO term was biological process with 11 genes.
The second largest GO term was defense response with 5 genes. The next largest terms with 3
genes each were the GO terms response to fungus, response to abscisic acid, DNA-templated

regulation of transcription, and regulation of stomatal movement.
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A. thaliana 12hpc Down-regulated Gene Entrichment Analysis Via Gene Ontology Biological Process Terms
(FDR cutoff < 0.05, Terms with > 5 genes)
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A. thaliana 24hpc Up-regulated Gene Entrichment Analysis Via Gene Ontology Biological Process Terms
(FDR cutoff < 0.05, Terms with > 5 genes)
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Figure 29: Arabidopsis thaliana - 24hpc up-regulated (clusters #4, #9, #10) — enriched BP GO terms
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A. thaliana 24hpc Down-regulated Gene Entrichment Analysis Via Gene Ontology Biological Process Terms
(FDR cutoff < 0.05, Terms with > 5 genes)
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A. thaliana Pen-1 Vs Col-0 Genes Functionally Annotated Via Gene Ontology Biological Process Terms
(Limited to Terms with 2 or more genes)
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Pathway Analysis

The clusters for V. vinifera were submitted to VitisPathways to determine their
associated pathways. Heatmaps were created showing the clusters, ranked by their mean LFC at
24hpc, with the color scales of the heatmap based on the permuted p-value. The significant
pathways for the 7 gene clusters with a positive mean LFC are shown in Figure 32. Focusing on
cluster #3, circadian rhythm, HSFs, Starch and sucrose metabolism, pseudo ARR-B, Cytokinin
signaling, and AP2 EREBP were determined significant. Other clusters with a positive mean

LFC shared some, though not all of these pathways.
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Figure 32: Up-regulated Pathways for Vitis vinifera Clusters

The significant pathways for the 6 gene clusters with a negative mean LFC are shown
in Figure 33. Focusing on cluster #2, photosynthesis related pathways, specifically antenna
proteins and transport electron carriers, were down regulated in this cluster. Other clusters
shared this down-regulation in photosynthesis activity. The pathway Porters cat 30 to 64 refers
to transporter categories 30 through 64. This pathway, along with the transport electron carriers

pathway, show that cellular respiration was down-regulated.



7 DownReg Clusters VitisPathways Results
(Clusters Ranked by MeanL2FC at 24hpc)
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Figure 33: Down-regulated Pathways for Vitis vinifera Clusters

Clusters

The significant pathways for the 5 gene clusters for A. thaliana with an up-regulation

at 12hpc are shown in Figure 34. As with the functional annotation, the focus was on the clusters

of interest as described above. Custer #2 which had the largest mean LFC at 12hpc, had 5

pathways significantly up-regulated. Two pathways with the lowest permuted p-value were the

coumarin biosynthesis pathway and the jasmonic signaling pathway. Coumarin are found in

higher plants where they originate from the phenylpropanoid pathway (Bourgaud et al., 2006).
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The jasmonic signaling pathway involves a class of plant hormones that play essential roles
throughout development, including during plant reproduction, leaf senescence, and in response to
many biotic and abiotic stresses (Larrieu & Vernoux, 2016). Cluster #4 showed multiple
pathways associated with choline and phosphatidylcholine biosynthesis. As a fundamental
metabolite, choline, contributes to the synthesis of the membrane phospholipid,
phosphatidylcholine, which accounts for 40 to 60% of lipids in non-plastid plant membranes
(Schlépfer et al., 2017). The inosine-5'-phosphate biosynthesis II, purine nucleotides de novo
biosynthesis II, and starch degradation II pathways are involved with cellular metabolism.
Cluster #6 showed 11 pathways significantly up-regulated. Four pathways involved asparagine
or aspartate biosynthesis. According to the PlantCyc database, aspartate and asparagine are
involved in protein synthesis and the transportation of nitrogen throughout the plant (Schlépfer et
al., 2017). The remaining pathways look to deal with cellular metabolism and secondary

metabolites.
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AraCyc Pathway Results for 5 Up-regulated Clusters
(Clusters Ranked by MeanL2FC at 12hpc)
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Figure 34: 12hpc up-regulated pathways for Arabidopsis thaliana clusters

The significant pathways for the 8 gene clusters for A. thaliana with a down-
regulation at 12hpc are shown in Figure 35. Cluster #9 which had the largest negative mean LFC
at 12hpc, had 10 pathways significantly down-regulated. Four of these pathways, involve
secondary metabolite biosynthesis, such as the flavonoid biosynthesis, phlorizin biosynthesis,
and pinobanksin biosynthesis pathways. The resveratrol biosynthesis pathway produces the

polyphenol resveratrol which is formed as a general response to biotic and abiotic stresses
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(Schldpfer et al., 2017). Four polyamine pathways, including the spermidine biosynthesis I and

the spermine biosynthesis pathways, showed up-regulation in cluster #9. As examples of

polyamines, spermidine and spermine show involvement in many biological processes, including

nucleic acid binding, membrane stabilization, and enzyme stimulation (Schlédpfer et al., 2017).
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Figure 35: 12hpc down-regulated pathways for Arabidopsis thaliana clusters
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The significant pathways for the 7 gene clusters for A. thaliana with an up-regulation
at 24hpc are shown in Figure 36. The clusters of interest include cluster #4, #9, and #10.
Descriptions of the significant pathways for cluster #4 and #9 are the same as above. For cluster
#10, ten pathways were shown to be significantly enriched. Two pathways were associated with
4-hydroxybenzoate biosynthesis. 4-hydroxybenzoate is widespread in plants and play a major
role in plant defense against pathogens (Caspi et al., 2016). The simple coumarins biosynthesis
pathway is associated with the synthesis of secondary metabolites. Three pathways involve
either methionine biosynthesis or degradation. The S-adenosyl-L-methionine (SAM) cycle II
also showed enrichment. The sucrose degradation VI (anaerobic) pathway contributes to energy

and substrate production for plant growth (Schlédpfer et al., 2017).
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Figure 36: 24hpc up-regulated pathways for Arabidopsis thaliana clusters

The significant pathways for the 6 gene clusters for A. thaliana with a down-
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Permuted
P-Value
0.04

0.03

0.02

regulation at 24hpc are shown in Figure 37. The clusters of interest include cluster #6, #3 and

#11. Descriptions of the significant pathways for cluster #6 are the same as above. For clusters

#3 and #11, ten pathways were shown to be significantly enriched. The four pathways with the

lowest permuted p-value showed involvement with either amino acid degradation or amino acid

biosynthesis.
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AraCyc Pathway Results for 6 Down-regulated Clusters
(Clusters Ranked by MeanL2FC at 24hpc)
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Figure 37: 24hpc down-regulated pathways for Arabidopsis thaliana clusters

The significant pathways that showed up and down regulated in the PEN1 genotype
compared to the Col-0 genotype are shown in Table 12. Four of the pathways in PEN1 showed
associations to the ethylene synthesis. Ethylene synthesis can be induced by environmental
stress, as well as other plant growth hormones (Schlipfer et al., 2017). Other pathways showed

association to generating energy and precursor metabolites, specifically the pentose phosphate
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pathways. Two pathways down-regulated in the PEN1 involve glucosinolate breakdown.

Glucosinolates play an important role in plant defense (Schlépfer et al., 2017).

Up-reqgulated Down-requlated
Thiosulfate Disproportionation |1l (rhodanese)  Glucosinolate Breakdown
S-Adenosyl-L-Methionine Biosynthesis Glucosinolate Breakdown (via Thiocyanate- Forming Protein)
Pentose Phosphate Pathway (oxidative Branch) Coumarin Biosynthesis (wvia 2-Coumarate)
Flavin Biosynthesis | (bacteria and Plants) Tetrapyrrole Biosynthesis |
Methionine Degradation | (to Homocysteine) Heme Biosynthesis |
Pentose Phosphate Pathway Superpathway Of Proto- And Siroheme Biosynthesis
S-Adenosyl-L-Methionine Cycle 1l Adenosing Mucleotides De Movo Biosynthesis

Ethylene Biosynthesis | (plants)
Table 12: Significant pathways for PENI genotype

Organism Comparison

For V. vinifera, the significant genes were mapped to the best matching 4. thaliana
gene homolog. Table 13 shows the number of homologs mapped to the significant genes for

each cluster.

¥ vinifera
Cluster Significant Genes Homologs
2 42 34
3 TR (if!
13 15 Q
A. thaliana
Cluster Significant Genes Homologs
2 G G
3 50 BE
4 18 24
6 31 Gl
9 24 76
10 45 39
11 iy 38
Table 13: Gene homolog counts for clusters, by
organism

Some of the genes from the V. vinifera clusters did not have any available homologs as so were

underrepresented in the preceding pathways analysis. Some of the genes from the 4. thaliana
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clusters mapped to multiple V. vinifera genes. Table 14 shows the intersection between the V.
vinifera genes with A. thaliana homologs and the A. thaliana dataset, limited to the clusters of
interest for each dataset. Two A. thaliana homologs, AT3G52180 and AT5G24470, were found
to be consistent between the V. vinifera cluster #3 and A4. thaliana clusters #2, #4, and #6. One
A. thaliana homolog, AT4G17090, was found to intersect between the V. vinifera cluster #3 and

A. thaliana clusters #4, #9, and #10.

Significant Genes from Arabidopsis thaliana Datas et

12Zhpec 24hpc
Vitis Up-Regulated [Cluster #2, #4, #6) Up-Regulated [Cluster #4, #9, #10)

vinifera Up-

Genes  regulated 2 1
with Ara-  (Cluster #3)
bidopsis Down-regulated (Cluster #9) Down-regulated [Cluster #3, #6, #11)

thaliana O ow -
homologs  regulated 0 0

([Cluster #2)

Table 14: Vitis vinifera Homologs Intersected with Arabidopsis thaliana Dataset by Cluster of
Interest

This intersection was consistent between the 4. thaliana genes with V. vinifera homologs and the
V. vinifera dataset. A pathways analysis was performed for the homologs for each organism.
The AraCyc pathway was used for the 4. thaliana homologs of the significant V.
vinifera genes. Cluster #2 from the V. vinifera dataset showed several pathways involved with
the biosynthesis of flavonoids. Two pathways, ricinoleate biosynthesis pathway and the vestitol
and sativan biosynthesis pathway, were also shown as enriched. These two pathways have
associations with plant defense response (Caspi et al., 2016). Cluster #3 from the V. vinifera
dataset showed multiple pathways associated with the biosynthesis of choline and its
phospholipid product, phosphatidylcholine. The spermidine hydroxycinnamic acid conjugates
biosynthesis pathway and the glycine biosynthesis II pathway also showed significant

enrichment.



76

The VitisNet pathway was used for the V. vinifera homologs from the significant 4.
thaliana genes. Focusing on the A. thaliana clusters up-regulated at 12hpc, there were several
pathway results that overlapped with the V. vinifera pathways up-regulated at 24hpc. These
overlapping pathways include cytokinin signaling, circadian rhythm, and pseudoARR-B. The
auxin and WRKY pathways also showed enrichment in 4. thaliana, though these overlaps were
not with the 24hpc up-regulated cluster in V. vinifera (cluster #3), they did overlap with other up-
regulated V. vinifera clusters. Cluster #9, the down-regulated 12hpc A. thaliana cluster, showed
enrichment for flavonoid biosynthesis, phenylpropanoid biosynthesis, and transporter categories
1 to 6. These results did not overlapped any of the V. vinifera pathways, however, they were
consistent with the AraCyc pathway results for this cluster. For the A. thaliana clusters up-
regulated at 24hpc, there looked to be some overlap with the methionine metabolism and
methane metabolism pathways. The 4. thaliana clusters down-regulated at 24hpc overlapped
with the 24hpc down-regulated cluster in V. vinifera (cluster #2) showing enrichment of the

photosynthesis pathway, indicating a down-regulation of the pathway.

Discussion
Three hypotheses by Moyer et al. (2016) were introduced at the beginning of this

project to explain the cold-SIDR response. The first hypothesis involved the cold temperature
impacting photosynthesis efficiency. The second hypothesis is that basic physiological responses
to cold may impart some form of disease resistance. The third hypothesis involved the
regulation of plant hormones signaling impacting plant cell growth and elongation. The results
from this project show that the two datasets show mixed support for these hypotheses. This
project also produced additional genes and pathways which could confer the cold-SIDR

resistance.
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Hypothesis #1
Regarding the first hypothesis, the V. vinifera dataset showed support. Genes in

cluster #2 showed patterns of down-regulation at 24hpc. Based on the functional information for
the genes, metabolism and photosynthesis looked to be down-regulated. This is also supported
by the results from the pathways analysis which identified the photosynthesis related pathways,
specifically antenna proteins and transport electron carriers being down-regulated for this cluster.
Other clusters showing down-regulation at 24hpc (Figure 33) were also associated with
photosynthetic activity. This is consistent with the expectation that cold temperature would lead
to decreased levels of photosynthetic activity.

The A. thaliana dataset showed support for this hypothesis as well. Functional and
pathway results for the clusters of interest show an increases in starch and carbohydrate
breakdown. While not directly implicated in the photosynthesis pathway, starch and
carbohydrate breakdown fuels plant metabolism and growth when they are unable to
photosynthesize (Streb & Zeeman, 2012).

Hypothesis #2

Regarding hypothesis number two, the V. vinifera dataset showed some support. In
cluster #3, no genes were directly labeled as cold response (COR) genes, but 18 genes had a A.
thaliana homolog characterized as a COR gene. Two specific homologs, COR27 and COR28,
showed a range of up-regulation in all of the treatment group, but showed their highest up-
regulation in the 24hpc treatment group. As photosynthesis is down-regulated, reactive oxygen
species (ROS) accumulate in the cells. These ROS can act as signaling molecules in the
response pathways. Evidence for the presence of these ROS is present in cluster #3. Genes
mapped to GO terms involving oxidation reduction and response to oxidative stress. Closer

inspection showed up-regulation of peroxisome activity.
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Results from the 4. thaliana dataset showed several cold response (COR) genes with
up-regulation during the 12hpc and 24hpc treatments. One COR gene of particular interest
would be COR413PM1 (AT2G15970) which codes a cold regulate plasma membrane protein.
Adherence of the plasma membrane to the cell wall was shown to impact invasion success in
other biotrophic fungi (Mellersh & Heath, 2001). The exact function of COR413PM1 in
conferring stress tolerance is currently unknown. The protein has homologs which are
implicated in conferring osmotic stress tolerance, in addition to cold tolerance (Garwe, Thomson,
& Mundree, 2003). Evidence for the presence of these ROS is also present in the 4. thaliana
dataset, most noteworthy in cluster #2. Twenty of the 64 genes showed enrichment for response
to an oxygen-containing compound. Clusters #3 and #11 were also enriched for gene associated
with response to oxidative stress at 24hpc.
Hypothesis #3

The third hypothesis involved the regulation of plant hormone signaling, impacting
plant growth. The V. vinifera dataset showed mixed support for this hypothesis as well. Genes
associated with the Gibberellin biosynthesis pathway showed down-regulation. The review by
Moyer et al. (2016) mentioned that abscisic acid (ABA) could be responsible for the cold-SIDR
response. Of the V. vinifera genes associated with ABA, 10 showed up-regulation and 13 genes
were down-regulated. The expression strength of these genes was rather low, with a LFC
ranging from 0.5 to -0.6 and most having between 0.2 and -0.1. Some genes showing up-
regulation had no characterized function, however, their Arabidopsis orthologs were involved
with leaf senescence and response to ABA.

The A. thaliana results provided more solid evidence for this hypothesis, specifically
the 12hpc enrichment results for cluster #2 (Figure 26). Fifteen of the 64 genes associated with a

response to ABA were significantly overrepresented.
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Additional Considerations

This project also produced additional findings that were not included in the three
hypotheses. First, the jasmonic acid (JA) pathway showed up-regulation in both V. vinifera and
A. thaliana datasets, occurring in the clusters of interest to cold-SIDR. Classically, salicylic acid
(SA) signaling is associated with biotroph resistance, while JA signaling plays an important role
in necrotrophic pathogen resistance (Duan et al., 2014). In most cases of dicotyledonous plants,
the JA and SA signaling pathways are expected to interact antagonistically (Tamaoki et al.,
2013). This generalization is disputed in grapevine as JA signaling has been implicated in host
resistance against biotrophs (Belhadj et al., 2006) (Guerreiro et al., 2016).

Plants have evolved with a variety of responses to cope with both abiotic and biotic
stress. The interaction between biotic and abiotic stress responses is orchestrated by hormone
signaling pathways that may induce or antagonize one another (Atkinson & Urwin, 2012). Cold-
SIDR is an example of one of such response. Transcription factors, ROS, and other signaling
responses are key components of this pathway crosstalk. Several of these key components were
expressed and up-regulated in the clusters of interest in both organisms. The challenging
element is that even at low expression levels, these signaling components can initiate cascades
leading to many genes being highly expressed.

The role of PENI1 in the cold-SIDR response remains unclear at a molecular level.
Though no genes with a documented association with PEN1 were differentially expressed,
additional genes of interest are reflected in genes also down-regulated in the PEN1 genotype
compared to the Col-0. The second largest negative log, fold-change was the gene CNGC12
(AT2G46450). CNGC12 has been related to defense response and acts as a positive regulator of
resistance against avirulent fungal pathogen (Swarbreck et al., 2008). CNGC12 has been found

to play a significant role in Ca," signaling, which leads to the mediation of several physiological
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processes, including senescence (Abdel-Hamid, Chin, Moeder, & Yoshioka, 2011). The third
largest negative log, fold-change was the gene, QQS (AT3G30720), which appears to modulate
carbon/nitrogen allocation in Arabidopsis (Swarbreck et al., 2008). Recently, QQS has been
linked with increased resistance to viruses, bacteria and fungi in Arabidopsis and soybean (Qi et
al., 2019). Further investigation is needed to understand the connections between PEN1 and
these additional down-regulated genes.

Future Directions

Further research should be done to investigate if the gene expression profiles vary
depending on the time of day that the cold event occurs. This could be achieved by performing a
project similar to this one but invert the time of day that the cold treatments were applied to the
12hpc, 24hpc, 36hpc, and 48hpc treatments. This would assist in determining if the cold-SIDR
response is a function of the cold response genes or if it is rooted in genes responsible for
circadian rhythm. Another focus would be investigating cold-SIDR with methods that account
for alternative splicing. Although not highly characterized in plants, it is likely that alternative
splicing can lead to major changes in response to both abiotic and biotic stresses (Calixto et al.,
2018). Lastly, the continued development of pathway architectures involved with stress response

is necessary to elucidate the mechanism of cold-SIDR.
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Conclusion

Cold-SIDR is a phenomenon resulting in decrease susceptibility to biotroph infection

following exposure to an acute (less than 4 hours) cold (below 8°C) event. This phenomenon
has been observed in the species V. vinifera and A. thaliana, as well as other plant species. The
exact genetic mechanism of cold-SIDR remains unknown. The results of this project provide
support for the several hypotheses for explaining the cold-SIDR response. Understanding the
mechanism behind cold-SIDR would allow for improved disease prediction models. With more
accurate models, the total amount of fungicides applied could be reduced while simultaneously

preventing severe disease development.
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