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ABSTRACT 

 

Engineered nanomaterials (ENMs) are increasingly incorporated into clean energy 

technologies due to observed improvement in technological and system performance. Though 

these materials could revolutionize many products and technologies, increased use of ENMs can 

also introduce uncertainty and risks that are difficult to predict. Increase in ENM use could 

significantly increase ENM releases to the environment across their life cycle, from material 

synthesis to end-of-life. To address knowledge gaps and uncertainties, this work assesses a 

portfolio of ENMs from a systems perspective. First, characterization and quantification methods 

were developed for three carbonaceous ENMs, fullerenes (C60, C70, and derivative PCBM), 

which have promising application in solar technologies. Empirical ecotoxicity assays and 

predation studies were performed to determine ecotoxicity and predation effects. Next, an 

integrated model predicted potential risks of ENM accumulation by estimating potential 

manufacturing locations, spatial concentrations, and potential ecological risks. This was followed 

by an adaption of portfolio optimization, a model traditionally used to optimize investment 

performance, to model potential environmental and economic risks and simultaneous 

performance benefits and inform safe nano-enabled design. 

Ecotoxicity findings demonstrate differences among fullerenes where organisms exposed 

to fullerenes also experienced significantly increased predation risk, underscoring the need to 

consider potential system-level effects. Based on manufacturing locations, potential ENM 

exposure may be within buffer distances of sensitive ecosystems. However, modeled ENM 

accumulation would only reach levels associated with ecotoxicity risk under extreme scenarios. 

Future ENM use-patterns can be informed by the portfolio optimization approach, where optimal 

portfolios are determined by the materials-mix that yielded the greatest overall performance 
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return while minimizing the portfolio risks. These novel methods and tools contribute to the 

knowledge of the benefits and risks of ENMs, which will help to guide more responsible and 

proactive policy and planning around ENM development and use.   
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CHAPTER 1: INTRODUCTION TO EMERGING CONTAMINANTS: ENGINEERED 

NANOMATERIALS (ENMS) 

 

Chemical release and exposure have historically led to unintended consequences such as 

threats to human fertility, intelligence, and survival (Colburn et al. 1996). Some of these 

instances include heavy metal poisoning in Japan, Minamata disease from Chisso Corporation’s 

mercury discharge, open-air testing of nuclear weapons in New Mexico, nuclear bombs in 

Hiroshima and Nagasaki, Project Bravo Bomb in Bikini Atoll, and ecosystem destruction from 

DDT and DDD pesticide accumulation (Newman 2009). Because of these alarming epidemics, 

the idea of pollution dilution (disposing and dispersing contaminants to large bodies of water) 

was replaced by the boomerang paradigm (Newman 2009), where environmental activists 

brought awareness to the unintended toxic and ecotoxic consequences from chemical exposure in 

the environment.  

 Public, regulatory, and voluntary chemical testing practices have been used to varying 

degrees of success. In response to rising concerns about chemical exposure impacts, the U.S. 

Environmental Protection Agency (EPA) formed the Toxic Substance Control Act (TSCA) in 

1976 to regulate the production, importation, use, and disposal of chemical substances and 

mixtures. One goal of TSCA was to also develop an inventory of health and environmental 

impact data to inform risk assessment of chemicals (Schmidt 2016). TSCA requires the tracking 

of chemical records (production, use, disposal) by any entity that is involved throughout the life 

cycle of a chemical.  There is currently an inventory of over 83,000 known substances being 

released, which increases regularly, with up to 50 substances recommended for testing each year 

(Schmidt 2016). If a substance is not recommended for testing, the consequences of exposure to 

that chemical are relatively unknown.  On the other hand, exhaustive chemical testing cannot 
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keep pace with the vast number of new chemicals introduced each year and is viewed as a 

potential disruption to innovation (Newman 2009).  

These challenges are only expected to grow as technological progress allows for an 

almost limitless creation of new chemicals. While these chemicals are being synthesized to help 

solve challenges, their introduction rarely considers the potential for unintended consequences. 

Take for example the case of plastic microbeads, which were introduced as an innovative part of 

personal care products such as toothpastes, hand sanitizer, and soaps for exfoliation purposes. 

However, the ultimate release of these microplastics was not adequately controlled by 

wastewater treatment infrastructure (Driedger et al. 2015), leading to increasing plastic pollution 

in oceans and freshwater ecosystems such as the Laurentian Great Lakes (Eriksen et al. 2013). 

Exposure to these microbeads led to lethal and sublethal impacts in organisms that consumed 

them (Cole et al. 2011), including growth inhibition and internal abrasions in fish (Mendoza et 

al. 2014).  The policy reaction to these concerns was the Microbead-Free Waters Act of 2015 

that banned the use of microbeads by July 2017 (FDA 2015). This example underscores the need 

for more proactive approaches to evaluating chemical risk, as opposed to traditional command 

and control strategies implemented only after such risks are realized. 

Emerging Contaminants of Concern: Engineered Nanomaterials (ENMs) 

 As demand for new and improved products and technologies increases, it is reasonable to 

expect a commensurate expansion of novel materials. Nanotechnology is a clear example of this 

expansion, as nano-scale materials and nano-enabled products have been touted as breakthroughs 

for commercial, medical, energy, and environmental applications described as a hotbed for an 

industrial revolution. Due to their unique properties and capabilities, a key emerging area for 
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ENMs is in clean energy technologies (Figure 1), including lithium-ion batteries, solar cells, fuel 

cells, and wind turbines (Hussein et al. 2015). 

 
Figure 1. Literature results for carbon-based nanomaterials used in clean energy generation and 

storage solutions.  

 An increase in clean energy technologies could help to displace fossil fuel use and the resulting 

greenhouse gas emissions. Further, research has shown that ENMs, such as carbon nanotubes 

(CNTs), can have net energy benefits despite the high amount of energy needed for purification 

and processing steps by minimizing energy and material requirements for products (Zhai et al. 

2016). ENMs are also commonly used in cosmetics, electronics, optics, and medicine (Keller et 

al. 2014; Woodrow Wilson Center 2009), to improve the performance and increase the benefits 

of the products. However, the increased use in products and technologies could significantly 

increase the potential for ENM releases to the environment.   

 The case of microbeads highlights the cause for concern: ENMs are even smaller than 

microbeads (with at least one dimension <100 nm) (Borm et al. 2006) and will face the similar 

large-scale release risks as their use in products continues to grow. Despite their potential to 

increase the efficiency of energy conversion and storage devices, it has yet to be fully determined 
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if the potential risks of ENM production and release outweigh the benefits they convey. In the 

literature, toxic and ecosystem-level impacts of ENM exposure have been reported (Salieri et al. 

2015; Jahan et al. 2017). There are also indirect environmental impacts associated with upstream 

energy and material consumption (Anctil et al. 2011; Eckelman et al. 2012). For instance, 

Eckelman et al. (2012) found that production impacts for CNTs upstream are often greater than 

direct impacts such as release in aquatic ecosystems. Similarly, the embodied energy for 

manufacturing larger fullerenes such as C70 is even greater, due to their energy-intensive 

purification processes and small production volumes (Anctil et al. 2011). Because the use of 

clean energy technologies will only continue to increase in response to climate change, fossil 

fuel depletion, and increasing renewable energy adoption, it is imperative for public, regulatory, 

and voluntary practices to effectively and proactively consider the potential for attendant ENM 

releases and environmental impacts. 

New guidelines for the development and commercialization of ENMs, including 

incentivizing sustainable nanotechnology development and adoption (Wiek et al. 2016), are 

needed to help ensure safe widespread nanotechnology adoption. Improvements to risk 

assessment can help to inform the magnitude of risk and identify ways to minimize unintended 

consequences.  

DISSERTATION MOTIVATION AND OBJECTIVE 

 

Problem Statement, Research Questions, and Novel Contribution 

Though these materials could revolutionize many products and technologies, ENMs can also 

create new risks that are difficult to predict proactively. ENMs may enter the environment at any 

point in their life cycle, creating direct release risks and indirect impacts from upstream energy 

and material consumption. These risks could be defined at the material level with the potential 
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for ultimate toxicity to aquatic organisms in freshwater ecosystems. There could be economic 

risks with a large investment of capital in commercialization of ENMs and an uncertain return on 

investment. Energy risks are also possible due to the high amount of energy required to produce 

ENMs and an uncertain return on energy performance. Finally, there is a likelihood of 

environmental risks from the consumption of energy and release of emissions, which can 

ultimately cause depletion of resources and can contribute to climate change and environmental 

degradation. To better understand these risks, it is important to consider the ecotoxicity of the 

materials, the magnitude and location of future accumulation, and the extent that the materials 

will be adopted for various technologies. Three research questions have been developed to 

address these emerging challenges: 

1. Could ENM life cycle releases significantly impact freshwater organisms?  

A specific class of carbon-based ENMs (CNMs), fullerenes (C60, C70, and PCBM), have been 

chosen due to their potential for use in a variety of product categories to inform potential impacts 

on freshwater organisms. While the potential risks of fullerene, C60 have been studied widely 

throughout the literature (Lovern et al. 2007; Baun et al. 2008; Bouchard et al. 2009; Benn et al. 

2011; Arndt et al. 2014), impact studies on ENM structure changes such as the addition of atoms 

(C70) or of functional groups (PCBM) remain scarce (Lovern et al. 2007; Bouchard et al. 2008; 

Bouchard et al. 2009; Benn et al. 2011).  To understand the tradeoffs of altering the structure of 

fullerene for increased performance benefits, methods were first developed to quantify and 

characterize all three forms of fullerenes (Chapter 2). Direct ecotoxicity was then evaluated to 

inform an environmental impact assessment of different ENM forms and susceptibility to 

predation was assessed experimentally. These ecotoxicity studies are the first to evaluate 
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different functional forms of fullerenes, chronic fullerene exposures over multiple generations of 

a model freshwater organism, and predation risk from exposed Daphnia spp. (Chapter 3).  

2. What are predicted regional volumes of ENM releases and where might they be released 

into freshwater ecosystems?  

Because direct data on nanomaterial production and release are scarce, a spatially explicit risk 

assessment model utilizes the predictive capacity of ArcGIS to estimate likely ENM release 

patterns, predicted environmental concentrations, and potential ecological risks. The model first 

identifies likely manufacturing sites on a regional basis. The proximity of the predicted likely 

locations to existing sensitive ecosystems and freshwater ecosystems are assessed to help inform 

spatial risks. Next, a material flow analysis (MFA) was used to predict regional volume of 

ENMs. Finally, predicted concentrations were then compared to known lethal dose 

concentrations for model organisms in order to assess the magnitude of risk and impact created 

upon release. The use of this combined methodology identifies pathways and potential 

sustainability impacts of ENMs and can also be used to predict spatially explicit risks for other 

emerging contaminants.  

3. How are ENMs likely to be adopted in renewable energy technologies given 

environmental and economic considerations? 

The use of ENMs in emerging products and technologies has inherent uncertainty that must be 

addressed to fully understand the tradeoffs of increased use. Current risk assessment and 

decision-making tools for these emerging materials cannot adequately account for uncertainty 

because of varying functional forms, unique environmental behavior, diverse economic costs, 

unknown supply and demand interactions, upstream emissions implications, and increasing use 

of these materials in diverse product applications (Som et al. 2010). In response to these 
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challenges, this work uses a novel adaptation of portfolio optimization, a model traditionally 

used to optimize financial investment portfolio performance. The results of this model inform the 

likely portfolio of ENM use in a range of products, while accounting for tradeoffs, uncertainty 

(numerical simulation and Monte Carlo analysis), and constraints. The utility of the model is in 

evaluating the cumulative impact of multiple materials, demonstrated via two case study 

applications that consider performance, environmental, and economic trade-offs. The trade-offs 

that may exist between investment of capital and environmental resources can inform the 

ultimate profitability and energy performance of products utilizing ENMs.  

 

The cumulative approaches and insights of this dissertation contribute to the literature and body 

of knowledge through the creation of novel methodologies and experiments that examine the 

tradeoffs of integrating ENMs in clean energy applications (Figure 2). 
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Figure 2. Overview of the challenges identified in the ENM literature and the novel methods and tools developed to assess the risks and benefits of ENMs.
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CHAPTER 2:  

ENM CHARACTERIZATION AND  

METHODS DEVELOPMENT: A CASE STUDY OF SPHERICAL FULLERENES 

 

Introduction 

In order to assess the potential for ecotoxicity and ecosystem-level impacts from ENM exposure, 

a specific group of carbon-based ENMs, spherical fullerenes (C60, C70) and a functionalized 

form (PCBM), were chosen due to their potential to improve the performance of clean energy 

technologies such as organic photovoltaic cells (OPVs) (Anctil et al. 2011). The first step in 

testing for ecotoxicity is to prepare the material samples for analysis. While the preparation 

methods are not necessarily novel, particularly for C60 (Fortner et al. 2005; Lovern et al. 2007; 

Baun et al. 2008; Bouchard et al. 2009; Benn et al. 2011; Arndt et al. 2014), the methods are 

inconsistent throughout the literature (Kennedy et al. 2009) and have never been tested for C70 

and PCBM. For instance, variations in the solvent type, temperature, light exposure, 

concentration, and/or preparation method can have a meaningful impact on size, structure, 

behavior, and ultimate toxicity of ENMs (Petersen et al. 2015).  In this chapter, methods for 

material solubilization, preparation of standards, initial size verification, extraction of materials, 

and concentration calculations were developed for C60 as well as two additional forms of C60, 

C70 and PCBM. 

Methods Development 

 

Fullerene (C60) Solubilization 

To perform ecotoxicity testing of fullerenes, the materials first have to be solubilized in an 

aqueous solution to make the analysis more environmentally relevant and less likely to be 

influenced by residual solvent contamination (Kennedy et al. 2009). For instance, the use of 

solvents like tetrahydrofuran (THF) and sonication methods can contribute to toxicity effects of 

carbon nanotubes (Kennedy et al. 2009). C60 acute toxicity is also dependent on preparation 
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methods: juvenile largemouth bass assays with THF-prepared C60 resulted in 100% mortality 

whereas water-stirred C60 did not render acute lethal or sublethal effects (Zhu et al. 2006).  

Fullerenes are insoluble in water but can form agglomerates commonly known as n-C60 when 

stirred with water for extended periods of time. A literature review was performed to find the 

most environmentally relevant fullerene solubilization methods such as magnetic stirring and 

naphthalene adsorption, artificial seawater magnetic stirring, and various magnetic stirring and 

filtering methods (Appendix A). Ultimately, a standard protocol was developed where only 

deionized water or synthetic freshwater was used for stirring to simulate freshwater ecosystems 

in a controlled environment, extended magnetic stirring for a minimum of six weeks was used so 

additional solvents were not needed that could contribute to toxicity, and filtering methods were 

not used to simulate a sample taken from the environment. The standardized protocol developed 

for C60 was later used with different structures and functionalized forms of fullerene (C70 and 

PCBM).  

Magnetic Stirring Method 

Solubilization via magnetic stirring over a 28-day period was based on the methods by Pakarinen 

et al., where 100 mg of fullerene were measured into 500 mL of DI water (Pakarinen et al. 2011; 

Pakarinen et al. 2013). A butyl rubber stopper was used to plug the flask and Parafilm was used 

to secure the stopper to avoid evaporation. The flask was covered in aluminum foil to prevent 

exposure to light. The stir plate was set to the lowest stirring rate (150 rpm) so there was 

sufficient mixing without air bubbles. The solution was monitored throughout the experimental 

period to make sure that the fullerenes were solubilizing into the DI water. The set-up for the 

magnetic stirring of C60 is showing below in Figure 1. 
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Figure 1. Pictures A-C above depict the set-up for the solubilization of fullerene using the magnetic stirring method.  A) 

Fullerene powder added to the flask, B) fullerene powder beginning to stir in DI water, and C) Aluminum foil cover on the flask 

that was stirred for 28 days.  

Rotary Agitator Method 

To simulate a stream-like flow, rotary agitation over a 28-day period was also attempted, based 

on the methods by Pakarinen et al. Here, 100 mg of fullerene was measured into 500 mL of DI 

water (Pakarinen et al. 2011; Pakarinen et al. 2013). Parafilm was used to secure the top of the 2 

L Plastic Extraction Bottle to avoid evaporation. The bottle was covered in aluminum foil to 

prevent exposure to light. The bottle was placed in a DC-20 8-Place Rotary Agitator and was left 

stirring 24 hours a day, 7 days a week for the remainder of the experiment.  

Solubilization Results 

After 28 days, the magnetic stir plate method proved to be the best method for fullerene 

solubilization. The solution turned a light brown color after 28 days, which was similar to the 

results reported in the literature. The solution was then kept on the magnetic stir plate to find the 

optimal stirring length of time. After six weeks, the solution turned the dark brown color that was 

described in literature. The changes in color with varying stirring times can be seen in Figure 2. 
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Figure 2. After several weeks of stirring, the fullerene became soluble in the DI water to create an n-C60 solution. A) 200 mg/L 

n-C60 solution after five months of stirring, B) 200 mg/L n-C60 solution after three months of stirring, and C) shows the 200 

mg/L n-C60 solution after six weeks of stirring.  

The rotary agitator method did not result in a solubilized solution, even after five months of 

stirring, as shown in Figure 3. Thus, the magnetic stir plate method for solubilization was used 

for all future experiments. 

 

Figure 3. The results of the rotary agitator method are shown (A and B). In both pictures, the water is clear and the fullerene did 

not solubilize to form a brown n-C60 solution. The fullerenes were stirred in the rotary agitator for five months.   
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The first fullerene solubilization experiment was started on 10/10/14 (200 mg/L). The 

subsequent solubilization experiments were on 12/18/14 (200 mg/L), 1/15/15 (200 mg/L), 

2/19/15 (50 mg/L), 6/22/15 (200 mg/L), and 6/23/15 (200 mg/L). The other materials (PCBM 

and C70) were purchased from SES Research and 200 mg/L solutions were created using the 

same protocol. 

Verified Fullerene Agglomerate Size: TEM 

Initial characterization of n-C60 was performed using transmission electron microscopy (TEM) 

and the concentrations of fullerene were estimated using spectrophotometry.  Preliminary 

characterization analysis can be seen below in Figures 4 and 5, where the size of the fullerene 

agglomerates from the magnetic stirring method are shown. The images were taken using a 

JEOL 100CX TEM operated at 320 kV for Figure 4 and 19 kV for Figure 5. The fullerene 

sample was taken from a 200 mg/L sample of fullerene and DI water that had been stirring for 

three months. 10 microliters of the aqueous fullerene solution were added directly to the slide 

and was allowed to dry for one hour before viewing under the TEM.  

 

Figure 4.  TEM images of fullerene (200 mg/L) at 320 kV at various sizes of n-C60 agglomerates formed during extended 

magnetic stirring.  
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Figure 5.  TEM image of fullerene (200 mg/L) at 19 kV. Toluene Extraction with n-C60 

Toluene Extraction Methods 

Fullerene concentration in aqueous samples could not be measured directly, and therefore 

samples had to be extracted into a toluene matrix for analyzing concentration via standard 

spectroscopic methods. This extraction protocol was developed based on extensive literature 

review (Appendix A, Table 3). One challenge during the extraction process is the problem of 

emulsion during the mixing of the solution. Various chemical solutions were found to reduce this 

problem (e.g. NaCl, glacial acetic acid, and calcium chloride) (Appendix A, Table 3). However, 

NaCl was ultimately chosen because it had the highest extraction efficiency when compared to 

the other chemicals. Following the methods described by Fortner et al., the amount of n-C60, 

toluene, and 2% NaCl added to each vial were chosen (Fortner et al. 2005). 3 mL of n-C60 (from 

the solubilization experiments), 3 mL of toluene, and 1.5 mL of 2% NaCl were added to each 

sample. The n-C60 sample was filtered with 0.45-micrometer Millipore 13 mm filters. The n-

C60 was then added to the vial and 1.5 mL 2% NaCl was added as the next layer. Three mL of 

toluene was added to the top layer and the vials were vortexed for 5 minutes. Once the samples 

were vortexed, the toluene was removed with a pipette and added to a glass cuvette to measure 

the absorbance of the sample using UV-Vis spectrophotometry (Shimadzu 1800 UV-Vis Dual 
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Beam Spectrophotometer). Extractions were performed sequentially until absorbance was less 

than 0.02. Additionally, the extraction process was compared for filtered and unfiltered samples.  

Unfiltered C60 samples (Figure 6) were ultimately selected for our methods, which are more 

representative of an environmental sample that would be collected from the field (Bouchard and 

Ma 2008). The difference in color change for all three fullerenes can be observed in Figure 7. 

 
Figure 6. The glass exetainer vials with the unfiltered n-C60 before vortexing (A). The brown layer is the n-C60, the NaCl is the 

next layer, and the top layer is the toluene. The color change of the unfiltered n-C60 sample after vortexing the samples where the 

fullerene has moved from the water to the toluene layer where the fullerene is soluble and can be tested (B). 

 

Figure 7. PCBM 25 mg/L standard (a light red color) and C70 25 mg/L standard (bright orange color) both dissolved in toluene.  
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In order to find the detection wavelength specific to the brand of fullerenes used, a UV-Vis 

absorption spectrum on the Shimadzu 1800 UV-Vis spectrophotometer analyzed the peak 

wavelength for all three fullerenes (C60, C70, and PCBM) (Figure 8A-C) The wavelength with 

the highest peak was found to be 332 nm for C60, 334 nm for C70, and 331 nm for PCBM. 

These wavelengths were the standard absorbances used for all subsequent experiments.   

To correct for any small particles that may be in the solution, a turbidity blank was created to 

make sure all the fullerene was dissolved. If the absorbance at the turbidity blank was above 

0.010, the sample was vortexed again. To find a wavelength that is not influenced by fullerene, 

the UV-Vis absorbance spectra of the toluene/fullerene solution at multiple concentrations was 

compared to a toluene blank, yielding a suitable turbidity wavelength at 700 nm. The standard 

curves for all three fullerenes were linear within a 1-25 mg/L concentration range (Figure 9A-C). 

Above 25 mg/L, we performed a ten-fold dilution. 
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Figure 8. UV-Vis absorbance spectrum for the SES brand of C60 (A), C70 (B), and PCBM (C). The maximum absorbance peaks 

were 332 nm, 334 nm, and 331 nm, respectively.   
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Figure 9. Standard curves (0-25 mg/L) for A) C60, B) C70, and C) PCBM in toluene. Error bars indicate standard error of the 

mean. The number of replicates for the fullerenes were the following: C60 (n=12), C70 (n=7), and PCBM (n=6).  
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An extraction blank was found by using synthetic freshwater (SFW), NaCl, and toluene to run 

several toluene extractions without fullerene to ensure that all the elements necessary for the 

extraction were present minus the fullerene. The limit of the detection (LOD) was calculated 

following methods by Shrivastava and Gupta (2011). The LOD was found to be 0.0009 mg/L 

and the LOQ was found to be 0.003 mg/L. The mean absorbance of the blanks was 0.007, which 

was subtracted from all sample absorbance values prior to calculating the concentration using the 

standard curve. The total concentration in the original sample was calculated based on the total 

of all extractions for each sample.  The extraction efficiency was calculated for all three 

fullerenes from multiple extraction experiments, where most of the sample was extracted during 

the first extraction (Table 1). 

Table 1. Fullerene and toluene extraction efficiencies (%), standard deviation of the extraction percent, and standard error of the 

extraction percent for C60 (n=16), C70 (n=8), and PCBM (n=13) across a range of concentrations (~111-227 mg/L).  

  Extraction Efficiency 

Fullerene 1 2 3 

C60 83% 14% 3% 

Std Dev 0.10 0.08 0.02 

Std 

Error 0.02 0.02 0.01 

C70 91% 8% 1% 

Std Dev 0.08 0.07 0.01 

Std 

Error 0.03 0.02 0.01 

PCBM 91% 8% 1% 

Std Dev 0.05 0.05 0.01 

Std 

Error 0.01 0.01 0.00 
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Settling Effects: Time Series Experiment 

The fullerene suspension was observed to settle rapidly from solution. To test the impact of this 

settling, fullerene concentration was measured at various time points over a 5-day period. 10 mL 

of the solution were placed into a labeled scintillation vial and was used for only one time point. 

3 mL of the settled solution was pipetted from the center and 1 cm from the top. This sample was 

added to an exetainer and put on a rotary shaker for ten minutes before performing the toluene 

extraction protocol as shown in Figure 10. The samples were placed on the rotary shaker in order 

to resuspend the sample prior to analysis. The toluene extraction protocol was followed for each 

sample and the absorbance was read for the three extractions in order to calculate the 

concentrations at each time point. 

 

Figure 10. The n-C60 samples taken after different settling times were placed on the rotary shaker for ten minutes prior to the 

toluene extraction.   

The results for the settling experiment from March 5, 2015 to April 2, 2015 using 200 mg/L n-

C60 solutions can be seen below in Table 4. A scatter plot with error bars can be seen in Figure 

11 for the different time points tested (n=3). The largest drop in concentration was seen after 1 hr 

of settling. The concentration at zero min of settling is over the 200 mg/L initial concentration, 

which could be explained from sampling an area from the flask with large, concentrated 

agglomerates.   
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Figure 11.  Graph of fullerene concentration at different settling times with error bars calculated using standard error. The largest 

drop in concentration is after 1 hour of settling with a starting concentration of 200 mg/L.  

Based on these results, future experiments were designed to minimize the time in which 

fullerenes were handled or sampled after removing the mixture from the stir plate. For future 

experiments, all samples were taken from the stirred solution within five minutes after stopping 

stirring.  

Fullerene Use-Phase Releases: Organic Photovoltaic Cells (OPVs) 

Much of the methods development focused on the pristine and functionalized forms of fullerene.  

However, there are also potential risks of material exposure during the use phase of nano-

enabled products and technologies. To begin to develop methods to assess the ecotoxicity 

impacts from use-phase exposures, OPVs were created by colleagues at Michigan State 

University to test the impact of fullerene released from a clean energy application. The 

ecotoxicity of photovoltaic panels are scarce in the literature (Tammaro et al. 2016) and those 
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that exist are mainly for thin-film photovoltaics such as CdTe cells. It has been found that 

regulated handling of CdTe cells at end-of-life will not endanger the environment (Jäger-Waldau 

2009), but uncontrolled disposal could create environmental risks.  Furthermore, leaching data 

exists for new solar cells but there are limited studies on leachates from broken, weathered, or 

aged cells (Zimmermann et al. 2012). OPV leaching studies were performed using a long-term 

perspective of 123 days for various release pathways including those that reflected mishandling 

of OPVs during dismantling and disposal (Zimmermann et al. 2013).  To understand the 

potential environmental impact under different use-phase and disposal scenarios, methodology 

for OPV leaching was adapted from Zimmermann et al. and Brun et al. (Zimmermann et al. 

2013; Brun et al. 2016) (Figure 12).  

 

Figure 12.  Schematic of weathered and aged OPV cells as a representation of OPV end-of-life scenarios to be tested 

on Daphnia species for ecotoxicity effects. 

 
 

OPVs were placed into glass vials with SFW and were placed on shaker tables underneath UV-A 

light for three months to simulate weathering of the cells over time in the environment. The 
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treatments were the following: AFW control (A), C60 on a glass slide (C60), ClAlPc dye on a 

glass slide (Cl), glass slide with the solvent (GS), TPFB dye on a glass slide (TP), TPFB dye and 

C60 on a glass slide (TPC60). Each of the dye treatments were just the dye film deposited over 

glass. The control glass slides were sonicated in soap, DI water, and acetone followed by rinsing 

in boiling isopropanol and then exposure to O2 plasma. Once weathered, preliminary chronic 

ecotoxicity Daphnia studies were performed to look at both the long-term effects of weathered 

and aged OPV cells (Figures 13 and 14). 

 

 

Figure 13. The set-up for the weathering of OPV cells from the University of Michigan is shown where the cells were placed 

into a vial with artificial freshwater (SFW) and are shaking on a shaker table at a constant speed of 1 under UV-A lighting. This 

experiment was started on 7/6/17 and continued for three months before adding Daphnia to test the toxicity of the weathered 

cells. Vials were placed randomly to eliminate bias and were randomly moved to different locations throughout the experiment to 

ensure all sides had exposure to UV-A light. 
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Figure 14.  A close-up photograph of the OPV cells. The blue cell is representative of an OPV cell with just the dye (CIAIPc) 

and the green/yellow cell is a replicate of the dye and C60 combination.  The changes in color were noted over time and 

documented with photographs. 

Conclusion 

Methods for preparation and quantification (via toluene extraction) of fullerene (C60, C70) and a 

functional form of fullerene (PCBM) were reported here. Additionally, preliminary methods 

were developed for potential use-phase release of fullerene from OPV cells based on previous 

studies of solar cell leaching.  Due to the challenge of finding and replicating preparation 

methods from the literature for C60, these detailed methods are included for the benefit of other 

researchers to refer to the methods for future fullerene research. Because methods did not 

previously exist for the two other fullerene forms, C70 and PCBM, researchers can now refer to 

this chapter to find the relevant wavelength for absorbance and preparation methods for 

ecotoxicity. All the methods described in this chapter were used in Chapter 3, wherein the 

samples were prepared as described and were used for ecological impact testing for all three 

fullerene forms.  
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CHAPTER 3:  

CASCADING ECOLOGICAL IMPACTS OF FULLERENES IN FRESHWATER 

ECOSYSTEMS1 

 

Figure A. Overview of empirical studies: Fullerene exposure can create cascading ecological impacts that are not captured 

through acute toxicity assays alone. 

 
Introduction 

Evidence from the literature suggests that once ENMs are released into the environment they 

may also pose direct risks to natural ecosystems (Jahan et al. 2017), which are often assessed by 

methods such as freshwater ecotoxicity assays on model organisms (Cunningham et al. 2013).   

In Chapter 2, methods were developed to characterize and solubilize the three types of fullerenes 

(C60, C70, and PCBM) to calculate concentrations for ecotoxicity assay preparation.  Utilizing 

these methods, C60, C70, and PCBM were prepared in synthetic freshwater (SFW) to assess the 

risk of exposure in the environment and to identify differences among the fullerene forms. A 

large share of the literature on ENM ecotoxicity is focused on the most commonly utilized 

ENMs (i.e. TiO2, nano-Ag, C60, and carbon nanotubes) at the acute level. However, many of 

these studies have been critiqued for the variability of approach, scope, and results, even for the 

                                                      
1 This chapter is adapted from a forthcoming publication in Environmental Toxicology and Chemistry. To avoid 

repetitive citations, a blanket reference to the original manuscript is provided here: (Moore et al. 2019a) 
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same ENM (Juganson et al. 2015). Insights offered by the C60 ecotoxicity literature are often 

highly variable due to lack of uniform preparation and dispersal methods. In addition, while 

studies on pristine C60 are widely available in the literature, studies on other functional forms 

within this material class remain scarce. Life cycle analysis has shown that energy impacts of 

fullerene production increase with size (number of carbons) and additional purification and 

functionalization steps (Anctil et al. 2011), but no study has yet been carried out to determine if 

ecotoxicity impacts change across this suite of materials. This knowledge gap is particularly 

relevant given findings by Arndt et al. (2013a), who studied the generational effects of various 

fullerene and carbon nanotube (CNT) derivatives in D. magna and found that the toxicity of a 

nanomaterial is highly dependent on surface chemistry. Thus, different structures and 

functionalized forms could have varying fate, transport, and toxicity effects (Juganson et al. 

2015), parameters that are critical for carrying out proactive ENM risk assessment (Petersen et 

al. 2015).  

 By focusing on acute toxicity alone, chronic impacts, exposure across multiple species and 

generations, and trophic interactions cannot be predicted (Arndt et al. 2013a), limiting the ability 

to assess ecosystem level impacts (Bour et al. 2015). Intergenerational impacts of ENM exposure 

in model organisms may include decreased growth rate, maternal transfer of ENMs in the brood 

chamber, and lipid accumulation of ENMs over time (Arndt et al. 2013b). As reported for carbon 

nanotubes, ENMs can have sublethal chronic implications in which the material blocks the 

digestive tract or agglomerates on the surface of an exposed organism (Revel et al. 2015). At the 

ecosystem level, these outcomes could influence predation and/or trophic interactions. For 

example, decreased translucency of the zooplankton’s skeleton can increase selective predation 

by visual predators (Branstrator and Holl 2000) with potential for cascading trophic outcomes 
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(Mitra and Flynn 2006). These effects have not yet been assessed for ENM contaminants. 

Uncertainty surrounding direct and ecosystem-level impacts may be amplified by variability in 

material form as it enters the natural environment.  Through a life cycle lens, fullerenes can be 

released into the environment during the production stage (accidental release or process 

emissions), the product use phase (washing cosmetic products into the waste water), or at a 

product’s end-of-life (disposal of fullerene-containing products into landfills) (Eckelman et al. 

2012). Understanding the impact associated with the forms expected in realistic material release 

scenarios is therefore critical to holistic analysis of environmental risks.  

The study reported herein is the first to evaluate C60, C70, and PCBM at the organismal and 

community levels to determine how variability in material form may impact ecotoxicity analysis 

and, more broadly, potential for cascading effects on ecosystems from changes in key species 

interactions. Daphnia spp. are a model aquatic invertebrate for toxicity assessment and 

bioindicators that play a significant role in the food chain of freshwater ecosystems. As such, a 

decline in the Daphnia populations over several generations may have trophic-level impacts that 

disrupt community dynamics (Zöllner et al. 2003). Prior studies suggest that ENMs such as 

fullerenes may negatively affect the feeding rate and/or mobility of D. magna (Lovern et al. 

2007). We conducted acute fullerene assays to assess lethal and sub-lethal effects, such as heart 

rate, and chronic exposure assessments to understand longer-term and intergenerational effects. 

To assess potential impacts of fullerene bioaccumulation on species interactions, predation was 

evaluated on control and fullerene-exposed D. pulex to test the hypothesis that the carapace-

darkening effect of fullerene exposure increases susceptibility to predation by the visual predator 

Lepomis macrochirus (bluegill). 
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MATERIALS AND METHODS 

Preparation of fullerenes 

Fullerenes – C60 (99.5%), C70 (99.0%) and PCBM (99.0%) – were purchased from SES 

Research in 2014 (Houston, Texas, USA). The fullerenes were maintained in synthetic 

freshwater (SFW; moderately hard, pH 7.4-7.8; EPA 2002). Because fullerenes are hydrophobic, 

200 mg/L solutions of C60, C70, and PCBM were prepared following Pakarinen et al. (2011, 

2013) to mimic mixing in natural freshwater systems. Concentration of each fullerene form in 

their stock solutions were verified using an adaptation of Fortner et al. (2005). Briefly, a 2:2:1 

mixture of unfiltered CNM solution, toluene, and 2% NaCl were vortexed and then allowed to 

settle to aqueous and toluene layers, which were separated by pipette. This process was repeated 

three times with fresh toluene to ensure complete transfer to the organic fraction. The 

concentration of fullerenes extracted to the toluene fractions was estimated via absorbance at the 

peak absorbance value for each material on a Shimadzu 1800 UV-Vis spectrophotometer at 331 

nm (PCBM), 332 nm (C60), and 334 nm (C70) using standard suspensions prepared via serial 

dilution. 

Fullerene characterization 

The morphology of the three fullerene suspensions was analyzed via transmission electron 

microscopy (TEM) while the chemical composition and size distribution was characterized using 

three optical-analytical methods: Fourier transform infrared, Zeta potential analysis, and 

thermogravimetric analysis.  

Characterization of fullerene suspensions in SFW was performed using a JEOL 2010 

transmission electron microscope (TEM) operated at 15 kV. All three materials demonstrated 
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substantial agglomeration in TEM images (Figure 1A-C), reflecting the form in which the 

Daphnia were exposed. The fullerenes were also characterized at higher magnifications (150 kV 

and 200 kV) to view the size range of nanoscale fractions (≤ 20 nm) (Figure 1D-F). 

Fourier transform infrared (FTIR) was also performed for each fullerene. Each sample (~2 μL) 

was deposited with a Pasteur pipette between two KBr disks. Spectra were measured twice per 

sample using a FTIR spectroscopy (Shimadzu, IR Prestige 21, Kyoto, Japan) in the range of 

4000-600 cm-1, 40 scans, and a 4 cm-1 resolution (Gupta et al. 2018). 

phase analysis light scattering were used to estimate Zeta potential over three cycles. 
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Figure 1.  TEM characterization of C60 (A, D), C70 (B, E), and PCBM (C, F) agglomerates at 15 kV (A, B, C) kV, 150 kV (D), 

and 200 kV (E and F) in SFW.  

The zeta potential was estimated for each suspension (1 mL in quartz cuvettes 10 x 10 x 45 mm) 

on a Malvern Instrments Zeta-sizer Nano ZS equipped with a backscattering detector angle of 

173° and a 4 mW, 633 nm He-Ne laster at 25° C. Deionized water and SFW mediums were both 

tested since the zeta potential measurement is sensitive to changes in pH and the presence of 
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monovalent and polyvalent ions (Lowry et al. 2016). The hydrodynamic diameters, 

polydispersity index (PDI), and zeta potential were determined following methods by Gupta et 

al., (2018) where combined Doppler electrophoretic mobility of the fullerene particles in the 

solvents and phase analysis light scattering were used to estimate Zeta potential over three 

cycles. 

The composition profile of each fullerene suspension in SFW was measured on a TA Instruments 

Q500 Thermogravimetric analyzer (TGA) and the data were analyzed with the TA Instruments 

Universal Analysis 2000 software following methods by Gupta et al., where the sample was 

heated from 25°C to 950°C at 5°C/min under nitrogen atmosphere (Gupta et al. 2018).  

Daphnia rearing conditions with C60, C70, and PCBM 

D. magna and D. pulex were purchased from Aquatic BioSystems, Inc. (Fort Collins, Colorado, 

USA) in 2009 and maintained in standard conditions (16:8 hr light: dark, 20 C, fed 3.75E6 cells 

Pseudokirchneriella subcapitata per 250 mL culture every three days; Connelly 2015). The 

cultures were maintained in synthetic freshwater (SFW; moderately hard, pH 7.4-7.8; EPA 

2002). Individual Daphnia were isolated from the stock culture and maintained as subsample 

clone lines for six generations prior to initiation of fullerene exposure experiments.  

Acute and chronic exposures of Daphnia to fullerenes 

The 72-hr acute fullerene toxicity assays were performed following U.S. EPA 2002 Acute 

Toxicity Methods (EPA 2002) based on published work on C60 (Pakarinen et al. 2013). Both 

species, Daphnia magna (n = 10) and Daphnia pulex (n = 20), were exposed to 5, 10, 25, and 50 

mg/L of the solubilized solutions. Since acute results do not necessarily predict chronic effects, 

21-day exposure assays were performed for various life stages to determine longer-term 
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exposure effects, following U.S. EPA Ecological Effects Guidelines for Daphniid Chronic 

Toxicity Tests (EPA 1996), except where noted. Each life stage (neonate, juvenile, and egg-

stage) of D. pulex (n=10) was exposed to a measured concentration of 7 mg/L, which was 

calculated based on a predicted exposure scenario (see SD for details).  

Daphnia experimental set-up 

For both acute and chronic exposures, SFW and the requisite volume of fullerene solution were 

added to 30 mL glass scintillation vials with one juvenile (2-7 d old) Daphnia spp. added 

randomly to each vial. The Daphnia spp. were fed 1 mL P. subcapitata (1.5E7 cells / mL) at the 

start of the experiment and not fed again during the acute experiments. For chronic exposures, D. 

pulex were fed 1 mL P. subcapitata (1.5E7 cells / mL) every 72 hr. Survival and reproductive 

output were measured at 72 hr for acute assays and daily for chronic assays. Surviving D. pulex 

were stored for use in the predation assays and deceased individuals fixed in 85% ethanol for 

light microscopy. 

Measurement of sublethal effects: Daphnia heart rates 

To determine potential sublethal effects of the fullerenes, an acute (48-hr) heart rate experiment 

was conducted following methods adapted from Dzialowski et al. (2006). Changes in heart rate 

were studied because they are linked with both behavior and population dynamics (Lovern et al. 

2007; Pan et al. 2017). A single individual juvenile D. pulex was added to 30 mL glass 

scintillation vials containing either SFW (control) or a fullerene treatment (SFW with 7 mg/L 

fullerene; n=10). At 0-h, 24-h, and 48-h, each D. pulex was moved from the vial to a depression 

slide to view heart rates using a 40X compound microscope. Within 30 sec of placement on the 

slide, contractions of the heart were counted for three - 15 sec intervals and recorded using a 
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handheld tally counter. Reported rates represent the average beats per minute (BPM) of the three 

measurements. When heart rates were observed that were diminished to below one standard 

deviation of the mean heart rate for each treatment at 48-h, we hypothesized that the lower heart 

rate would ultimately lead to a fatal response. To test the hypothesis, we observed mortality of all 

samples within 12 hr of the final measurement.  

Use-Phase Exposure to Daphnia 

OPV cells (n = 10) were weathered following methods described in Chapter 2. Once weathered, 

preliminary chronic ecotoxicity Daphnia pulex studies were performed to look at both the long-

term effects of weathered and aged OPV cells. The OPV cells were removed from the vial after 

the weathering period. D. pulex were added directly to the vials with the leachate to assess the 

chronic lifespan and fecundity. 

Predation experiment 

Juvenile L. macrochirus were obtained from Carolina Biological Supply Co. (Burlington, North 

Carolina, USA) in 2017 and maintained in 38-liter aquaria in SFW. The tanks were maintained 

using standard aquarium filtration systems at room temperature (approximately 20° C) using 

established maintenance protocols (Nickum et al. 2004) and fed sinking shrimp pellets four times 

per week.  

Prior to feeding trials, food was withheld for one week to encourage prey drive and simulate 

natural starving periods (Frommen 2017). At the beginning of each trial (n=35 trials), one L. 

macrochirus was randomly transferred to a transparent 1 L aquarium and allowed a 2-hr 

acclimation period prior to feeding. A transfer pipette was used to gently and simultaneously 

introduce five controls and five fullerene-exposed D. pulex.  Observations of the D. pulex color 

and time of consumption were recorded using a video camera over a 10-minute period (a video 
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example of this predation trial is available at Moore 2017). At the end of each trial, experimental 

fish were transferred to a separate tank and remaining D. pulex discarded.  

Data analysis and statistical methods 

Acute effects of the increasing concentration of fullerenes on mortality of Daphnia spp. were 

compared for each material individually using a Chi-squared test of independence.  When 

significant effects were found, post hoc analysis was conducted using Chi-squared pair-wise 

comparisons between the control and each concentration of fullerene, with a Bonferroni 

correction for multiple pairwise comparisons. The chronic endpoints of mortality and fecundity 

were analyzed among material types (control, C60, C70 and PCBM) for each D. pulex lifestage 

group separately using one-way analysis of variance when assumptions of normality and 

homogeneity of variance were met, or a Kruskall-Wallis analysis when assumptions were 

violated. A Kruskall-Wallis analysis was used to analyze heart rate data at each time point (0-h, 

24-h, and 48-h) to determine sublethal differences among all treatments. To determine the 

probability of a fatal response after observing a heart rate below one standard deviation of the 

mean at 48-h, a Chi-squared test of independence was performed. Chronic effects of the OPV 

leachates on mortality of Daphnia pulex were compared for each treatment using one-way 

analysis of variance when assumptions of normality and homogeneity of variance were met, or a 

Kruskall-Wallis analysis when assumptions were violated.  Finally, a paired t-test was performed 

to determine differences in the number of control vs. fullerene-exposed D. pulex consumed by L. 

macrochirus.  Results were considered significant at p < 0.05. 
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RESULTS 

C60, C70, and PCBM characterization 

Characteristics of the three fullerenes provided by the manufacturer and measured from Zeta 

potential analysis and dynamic light scattering are summarized in Table 1. All three fullerene 

samples were negatively charged and polydisperse in nature. C60 was less aggregated compared 

with C70 and PCBM; while C60 was within the range of the nanometer scale, C70 and PCBM 

ranged in microns. The FTIR and TGA results can be found in Appendix B, in Figures S1-S6. 

Table 1. Characteristics of the three fullerenes. The polydispersity index (PDI), size (nm), and Zeta potential (mV) are averages 

of three sample replicates. 

Characteristic C60 C70 PCBM 

Purity1 (%) 99.50% 99.00% 99.00% 

PDI 0.5 0.9 0.7 

Size (nm)* 565.4 6459.0 1602.3 

Zeta of (mV)* -18.6 -24.3 -19.0 

Zeta (mV)** -19.1 -11.9 -7.5 

1. SES Research 

*Fullerenes in SFW 

**Fullerenes in deionized water   

 

C60, C70, and PCBM acute, chronic, and heart rate results 

The results presented here demonstrate lethal and sublethal impacts from C60, C70, and PCBM 

assays, with differences between species and among forms of fullerene.  C70 was the only 

fullerene to significantly increase mortality in D. magna, with mortality rates 3.5-5 times greater 

in the presence of C70 (p < 0.001; Figure 2A; Table 1). C70 also contributed to a significant 

increase in mortality in D. pulex (p = 0.003), but C60 also exhibited a minor effect (p = 0.045; 

Figure 2B; Table 1).  In post hoc analysis, only C70 at 10 and 50 mg/L significantly increased 

mortality relative to the control; no pairwise differences were significant for C60.  Sublethal 
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impacts were also observed in acute testing (Figure 2C and 2D) and chronic testing for all three 

fullerenes with visual darkening of the carapace observed (Figure 3). 

 

Figure 2. A) Percent mortality of D. magna (n = 10) and B) D. pulex (n = 20) for three fullerene materials at concentrations 

ranging from 0-50 mg/L in acute trials.  Values represent the proportion of individuals that died for a given material 

concentration during the experiment, with each experimental unit containing a single individual.  Significant differences between 

the control (0 mg/L results) and each concentration determined by post-hoc comparison within a material type are indicated by 

unique letters above each bar.  C) D. pulex ingestion of C70 (Zeiss 56X). D) D. magna exhibiting PCBM agglomeration on its 

carapace (Zeiss 80X).    

Minor chronic exposure effects for the endpoints of mortality (Figure 4A) and fecundity (Figure 

4B) were observed in D. pulex. Neonate lifespan was marginally reduced when exposed to 

PCBM, suggesting PCBM exposure early in the life cycle could impact D. pulex population 
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dynamics (Figure 4A; Table 1). At the egg-stage, exposure to C70 caused a slight decrease in D. 

pulex fecundity (survival and reproduction) compared to the C60 and PCBM exposure.  

 

 

Figure 3.  Light microscopy of egg-stage D. pulex (Zeiss 50X) post-chronic fullerene exposure. 
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Figure 4. A) Chronic impact of fullerenes (C60, C70, PCBM) on lifespan of D. pulex across different lifestages at 7 mg/L 

exposure and controls. B) Average offspring per daphniid (fecundity) results for all three materials and the control group at 7 

mg/L (B). Error bars indicate standard error of the mean.   

Table 2. Results of Chi-squared analysis for mortality in acute experiments for D. pulex and D. magna, analysis of variance or 

Kruskall-Wallis test for toxicity evaluation across lifestages in chronic experiments with D. pulex, and Kruskall-Wallis test and 

chi-squared analysis for heart rates for D. pulex. 

Test 
Species 

(lifestage) 

Main 

Effect 
df 2 p 

Acute 

D. magna 

(juvenile) 

C60 4 0.97 0.91 

C70 4 30.47 <0.001* 

PCBM 4 6.89 0.14 

D. pulex 

(juvenile) 

C60 4 9.77 0.045* 

C70 4 15.70 0.003* 

PCBM 4 4.70 0.32 

   df F p 

Chronic 

D. pulex 

(neonate) 

Lifespana 3 2.38 0.09 

Fecunditya 3 0.87 0.47 

D. pulex 

(juvenile) 

Lifespan 3 1.05 0.79 

Fecundity 3 0.31 0.96 

D. pulex (egg-

stage) 

Lifespan 3 7.60 0.06 

Fecundity 3 0.78 0.85 

   df F p 

 
D. pulex 

(juvenile) 
C60 1 0.0057 0.94 

  C70 1 0.052 0.82 

Heart rate (0-

h) 
 PCBM 1 0.24 0.65 

   df F p 

 
D. pulex 

(juvenile) 
C60 1 7.02 0.008* 
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  C70 1 8.71 0.003* 

Heart rate (24-

h) 
 PCBM 1 9.18 0.002* 

   df F p 

 
D. pulex 

(juvenile) 
C60 1 5.15 0.023* 

  C70 1 5.15 0.023* 

Heart rate (48-

h) 
 PCBM 1 2.06 0.151 

      

   df 2 p 

 
D. pulex 

(juvenile) 
C60 1 6.19 0.013* 

  C70 1 10.01 0.0016* 

Probability of 

lethal response 
 PCBM 1 3.28 0.070 

aANOVA testing requirements were met  

*p < 0.05 

Initial heart rates were similar among all treatments at 0-h, but were significantly elevated 

relative to the control in all three fullerene treatments (Figure 5) at 24-h. After the 24-h time 

point, not all individuals exhibited a lethal response at the same rate.  At 48-h, significant 

differences were observed relative to the control for C60 and C70 (Table 2). However, at this 

time point, a subset of individuals for each fullerene treatment had substantially diminished heart 

rates, leading to a lethal response within the following 12 hrs, whereas those that persisted 

beyond 48-h had consistently high heart rates between 24 and 48-h. A significant difference was 

not observed for PCBMrelative to the control at 48-h, likely because of the high variance 

associated with including persistent (those that lived past 60-h) and individuals closer to death. 

The mean for persistent individuals only in the PCBM treatment remains significantly higher 
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than the control (Table S1). A probability relationship between heart rates below one standard 

deviation of the mean heart rate at 48-h and an ultimate fatal response was tested and confirmed 

for C60 (p = 0.013) and C70 (p = 0.0016).  

 

Figure 5. Average heart rates (bpm), indicated by the darker circles, for D. pulex (n=10) at 0-, 24-, and 48-h for all treatments. 

The lighter circles are representative of individual heart rates measured at each time point and asteriks indicate a statistical 

difference (p < 0.05). Error bars indicate standard error of the mean.   

 

 



41 
 

Preliminary Use-Phase Results 

The only significant difference (p < 0.05) in lifespan among the D. pulex treatments was 

observed for the control treatment relative to all the OPV samples (Figure 6), indicating no 

statistical difference among the OPV treatments (dyes or C60 treatments).  There were no 

significant differences in fecundity for any of the studied treatments (Figure 7).   

 
Figure 6. Preliminary one-way analysis of variance of OPV treatment and control D. pulex lifespan (days) results performed in 

the JMP statistical software. Two post-hoc tests were used to compare the means (each pair student’s t and all pairs Tukey-

Kramer).  
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Figure 7. Preliminary one-way analysis of variance of OPV treatment and control D. pulex fecundity (average neonates/female) 

performed in the JMP statistical software. Two post-hoc tests were used to compare the means (each pair student’s t and all pairs 

Tukey-Kramer). There was no significant difference among any of the treatments. 

Because of the low concentration of C60 in the OPV samples, a visual darkening of the carapace 

and gut was not observed for C60 (dark brown) (Figure 8). However, the gut of the D. pulex 

TPFB dye treatment was a blue shade after exposure (Figure 9).   
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Figure 8. C60-exposed D. pulex after OPV cell weathering. Unlike the solubilized material studies, the carapace of the D. pulex 

does not show a visual darkening that could lead to predation impacts, which could be as a result of the low concentration of C60 

in the cell.  

 

Figure 9. TPFB dye-exposed D. pulex demonstrating the visual impact of the dye on the D.pulex, a blue shaded intestine.  

Predation Experiment Results 

L. macrochirus consumed D. pulex in the presence of their regular food in eight of the 35 trials; 

the low motivation to feed is consistent with stress observed during other feeding experiments 

(Schreck et al. 1997).  While 23% of L. macrochirus involved in the trials consumed the 

fullerene-exposed D. pulex, only 11% of bluegills consumed control D. pulex. The fullerene-

exposed D. pulex were consistently selected first and more quickly than unexposed daphniids 

(Figure 10A). A weighted rank order of consumption analysis indicated that fullerene-exposed 

D. pulex were consumed 65% faster than the controls. The effect of the darker carapace, due to 

material agglomeration verified by microscopy, on predation was apparent: significantly more 

exposed D. pulex were consumed (Figure 10B; t = -1.68, p = 0.008).  
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Figure 10. A) Timeline of L. macrochirus feeding for the eight successful trials.  Each line represents a seven-minute time period 

over which the fish was offered D. pulex. Filled circles are fullerene exposed; open circles are controls   B) Average fullerene-

exposed (grey) and control (clear) D. pulex consumed per fish. 

DISCUSSION 

The potential for unintended consequences from ENM release must be proactively evaluated to 

inform the design and adoption of these emerging materials. Many ENM toxicity studies 

describe the potential for impacts beyond mortality, emphasizing the need for the comprehensive 

testing of other endpoints. While guidelines have been created for the safe handling of ENMs 

(OSHA 2013), most are based on conventional chemical substances and do not consider the 

transformations, surface chemistry, and structure unique to ENMs. As results of this study 
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demonstrate, varying forms and functionalization of fullerene can yield significant differences in 

the overall fitness of Daphnia spp., highlighting the importance of risk assessment and 

ecotoxicity assays accounting for various ENM functionalization, size, shape, purity, and other 

unique properties (Som et al. 2010). Current risk assessment approaches (primarily acute 

ecotoxicity testing) are major bottlenecks in understanding holistic, system-level impacts of 

emerging materials such as nanomaterials. Long-term effects at more environmentally relevant 

concentrations, as well as the potential for indirect impacts on ecosystem-level effects, cannot be 

predicted from acute studies alone. 

Our results for C60 acute and chronic toxicity align with past studies where C60 was not found 

to be significantly toxic at environmentally relevant concentrations (Pakarinen et al. 2013).  

However, acute and chronic impacts were observed here for forms of fullerenes that are 

potentially more relevant to realistic integration of these materials in technologies like organic 

photovoltaics (Anctil et al. 2011). For example, C70, which can provide up to a 30% better 

energy efficiency performance in solar applications than C60 (Anctil et al. 2011), showed 

increased acute mortality in both D. magna and D. pulex at environmentally relevant 

concentrations. There are also impacts on fecundity and lifespan as demonstrated in chronic 

testing. For instance, chronic exposure to PCBM at the pre-egg stage could have implications for 

the reproductive cycle, and population growth and dynamics. At the egg-stage, exposure to C70 

caused a decrease in D. pulex fecundity compared to C60 and PCBM, suggesting that 

populations may vary across different types of fullerene exposures, underscoring the need to 

characterize the associated variability in toxicity impacts.  
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The toxicity results observed can be interpreted considering physical and chemical 

characteristics of the materials. Empirical characterization demonstrated that all three fullerenes 

have a negative surface charge, are stable at lower temperatures, and are considered weak 

aggregates, which was also observed by rapid settling after material stirring ceased. In deionized 

water, C60 forms the most stable suspension of all three fullerenes. However, in SFW, the matrix 

most representative of the natural environment, C70 has the most negative zeta potential, 

suggesting that it is the most stable in the SFW medium, which may lead to a greater probability 

of C70 exposure to water column organisms.  Further, the greatest lethality was associated with 

C70, which is the largest aggregate and may cause gut blockage if ingested by Daphnia species 

(in D. pulex, which are smaller than D. magna, the midgut cells are about 30 microns in height; 

Schultz and Kennedy 1976). The D. pulex shown in Figure 2C ingested C70 and did not clear it 

within the experimental duration, potentially due to blockage of the digestive tract. In the 

functionalized form (PCBM), the methyl ester functional group has surface properties known to 

increase adsorption to biological surfaces (Salciccioli et al. 2012), which is consistent with the 

observed material agglomeration on the outside of the organism’s carapace (Figure 2D). In fact, 

in cases when the fullerene material aggregates reacted with the exoskeleton, immobilization was 

observed in both Daphnia species, a result observed more frequently with increasing fullerene 

concentration. 

Additionally, our results demonstrate the importance of capturing sublethal effects across 

multiple species and trophic levels due to the observed physical changes due to fullerene 

exposure, namely carapace darkening, enhanced heart rate, and gut blockage. These findings are 

consistent with past C60 and C70 studies where fullerene aggregates were found in the D. 

magna gut after chronic exposure, decreasing fecundity and causing stress from the inability to 
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feed (Seda et al. 2012). However, because gallic acid was used to stabilize the C70, toxicity 

results may not be attributable to C70 alone. Nonetheless, the accumulation of fullerenes in the 

daphniid’s gut could lead to entry into other tissues through the gut and cause oxidative stress as 

found with other ENMs like nano-silver (Pakrashi et al. 2017). The increased heart rate observed 

at 24-h for all fullerenes suggests a physiological stress response (Figure 5), that for some 

individuals was followed by substantially reduced heart rate at 48-h, and closely by death. While 

the results were significant for all three fullerenes at 24-h, a greater number of individuals 

succumbed more rapidly in the PCBM treatment than in the C60 or C70 treatments.  This could 

be explained by the characteristics of PCBM, where due to the surface properties and size of the 

material, PCBM could adsorb to theDaphnia producing an earlier fatal response after exposure. 

This result demonstrates that fullerenes could have both a physiological and physical impact 

on Daphnia species, which could lead to population-level effects (Lovern et al. 2007).  

In addition to lethal and sublethal implications of fullerene exposure for Daphnia spp., the 

darkening of the carapace and gut also have potential cascading ecological impacts. The clear 

preference of the visual predator L. macrochirus for the darker D. pulex suggests an indirect 

ecological effect of fullerene on daphniid mortality (Branstrator and Holl 2000).  Selective 

predation enhances mortality risks associated with fullerene exposure.  In an actual freshwater 

environment, the interaction between predator and prey could differ depending on the location, 

season, legacy contaminants, and other factors (Chamberlain et al. 2014). However, this 

experiment clearly highlights the need for broadening impact assessment studies to include 

ecological scales. 

To provide insights about how ENMs such as fullerenes interact with and influence the health of 

ecosystems, material assessment approaches must incorporate more comprehensive endpoints for 
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long-term, multispecies, multi-generation, and trophic level studies.  The results reported herein 

highlight a clear need and opportunity to update risk assessment of emerging materials. Changes 

in the form of fullerene can increase acute and chronic impacts with this study showing C70 

causing significant toxicity at the acute level. The alteration of the daphnia carapace color and 

resulting increase in predation risk informs the potential for cascading effects such as reduced 

biodiversity from species loss and the potential for bioaccumulation up the food chain. Further, 

there were no significant differences observed for the different OPV treatments, but additional 

research is needed to explore the potential impacts of use-phase exposure in clean energy 

technologies. With this expanded perspective on fullerenes, a more informed approach to 

research, decision-making, and policy can be used to help reduce negative economic, 

environmental, and human health implications that may result from the increasing use of 

emerging materials. 

ENMs may present an opportunity to mitigate many existing pollution problems (Zhang and 

Fang 2010), and holistic analysis may ultimately find that these benefits outweigh those observed 

with ecotoxicity as assayed here. For example, if C70 or PCBM are integrated into solar cells, 

the efficiency of these renewable energy systems is expected to increase (Brabec et al. 2010), 

leading to potential displacement of electricity generated from coal and natural gas. Avoiding 

fossil fuel combustion itself has significant benefit to ecosystem health, through reduction in 

release of toxic heavy metals (mercury, arsenic), compounds that affect human health (SO2, CO), 

and waste streams (coal ash) containing heavy metals and polycyclic aromatic hydrocarbons 

(Holdren et al. 2000).   

However, the true costs and benefits of ENM integration cannot be fully assessed without 

concurrent advances in risk assessment methods and empirical studies that capture the true 
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variability in ENM form, ecotoxicity, and ecological impacts. Many existing risk assessment 

models typically treat ENM production and use as spatially implicit, without considering the 

specific geographic location of potential emissions. By not considering geographical context, 

ENM accumulation or ecotoxicity impacts may be underestimated if occurring in ecologically 

sensitive areas. Therefore, in the next chapter, this knowledge gap is addressed by introducing an 

integrated predictive model that forecasts likely ENM manufacturing locations and potential 

emission to critical environmental and freshwater ecosystems. The potential concentrations of 

these emissions are then compared to measured ecotoxicity results, like the studies in this 

chapter, to inform the magnitude of risk. 
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CHAPTER 4: SPATIAL PERSPECTIVE INFORMS POTENTIAL FOR 

NANOMATERIAL ACCUMULATION RISKS2 

 

Introduction 

With an estimated value of $11.8 billion by 2025 (Mordor Intelligence, 2016), the ENM global 

market is growing rapidly. With increases in their production and use, the likelihood of 

environmental exposure and potential for environmental risks also increases, as demonstrated by 

the potential for toxicity and cascading ecological impacts of fullerenes in Chapter 3. After better 

understanding the risk of toxicity if fullerenes were to enter the environment, the next steps in 

this research effort were to better understand 1) where ENMs could potentially be released 

during their life cycle, 2) what potential concentrations could accumulate in the environment 

over an extended period of time, and 3) how these concentrations relate to measured toxicity 

results.  

ENMs can enter environmental compartments (e.g. air, water, soil, sediment) at various stages of 

their life cycle, including material synthesis, use, and end-of-life (Köhler et al. 2008, Klaine et al. 

2008, Som et al. 2010). These emissions may result in direct aquatic ecotoxicity and trophic 

ecosystem impacts (Farré et al. 2009, Von der Kammer et al. 2012, Juganson et al. 2015,) as well 

as indirect ecotoxicity due to upstream energy and material consumption (Anctil et al. 2011, 

Eckelman et al. 2012). To better understand these risks, research must consider the extent to 

which these materials will be manufactured, the location and volume of future emissions, and the 

ultimate toxicity and potential for ecosystem level impacts. Because of the need for a systems 

perspective for ENM assessment (Babbitt and Moore 2018), Industrial Ecology methods are 

well-equipped to assess the benefits and risks of ENMs. Tools such as material flow analysis 

                                                      
2 This chapter is adapted from a publication submitted to the Journal of Industrial Ecology. To avoid repetitive 

citations, a blanket reference to the original manuscript is provided here: (Moore et al. 2019b) 
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(MFA), life cycle assessment (LCA), multi-criteria decision analysis (MCDA), and 

environmental risk assessment (ERA), have been adopted to estimate ENM life cycle impacts 

and determine the ultimate risk of release. For instance, MFA has been applied to estimate ENM 

concentrations in environmental and technical compartments (Gottschalk and Nowack, 

2011, Smita et al., 2012, Ging et al., 2014, Yang and Westerhoff, 2014, Song et al., 2017). LCA 

has been utilized to quantify the cumulative energy and ecotoxicity impacts ENMs including 

fullerenes, nano-silver, and carbon nanotubes (Anctil et al., 2011, Eckelman et al., 2012, 

Pourzahedi and Eckelman 2015, Hicks et al., 2017), demonstrating the need to account for 

upstream emissions from embodied energy as well as direct impacts such as release in aquatic 

ecosystems. Further, MCDA and ERA studies (Linkov et al., 2007, Hassellöv et al., 2008, Coll et 

al., 2015) have provided insights for ENM characterization and have highlighted the importance 

of accounting for variability and uncertainty of potential concentrations and experimental data.  

Much of the ENM assessment literature has applied average values to capture national and global 

impacts. While these data choices are necessary due to lack of more disaggregated information, 

they may lead to three key challenges: 1) limits to our understanding of risks for a specific area, 

2) potential underestimates of life cycle release risks, and 3) lack of modeling that considers 

accumulation within a spatial and time boundary. Spatial tools have helped to advance various 

disciplines including green infrastructure design (Snäll et al. 2015), urban planning (Daniel et al. 

2018), biofuels (Sharma et al. 2017), drug delivery (Winner et al. 2016), and yet have been less 

frequently used in Industrial Ecology (Wu et al. 2017). Broader literature has acknowledged the 

utility of joining traditional risk assessment tools with geospatial modeling (Guinee et al. 2011, 

Xu et al. 2015), as spatial tools can account for regional differences in biophysical land 

characteristics (Geyer et al. 2010), industrial production factors, and environmental flows (Mutel 

https://www.sciencedirect.com/science/article/pii/S0269749116301555#bib40
https://www.sciencedirect.com/science/article/pii/S0269749116301555#bib40
https://www.sciencedirect.com/science/article/pii/S0269749116301555#bib108
https://www.sciencedirect.com/science/article/pii/S0269749116301555#bib38
https://www.sciencedirect.com/science/article/pii/S0269749116301555#bib125
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et al. 2011). Further, emissions of ENMs can vary during different life stages, particularly at end-

of-life. National or global values are too coarse of scale for potential differences in wastewater 

and solid waste treatment (Gottschalk et al. 2015). Regional and local analyses have been 

proposed (Mutel et al. 2011) where impact assessment methods are combined with life cycle 

inventory data to better inform LCA uncertainty at the regional and/or local level (Mutel et al. 

2011). In addition, ENM time-dependent studies have been proposed that can help capture 

accumulation over time, though many existing analyses assume a static time scale (Sun et al. 

2016). However, these concepts have not yet been widely applied to ENM assessments.  

The few studies that have investigated spatial dimensions of ENMs demonstrate the utility of 

calculating material flows with a spatial perspective. For example, depending on the 

environment, there may be variable concentrations due to local dilution factors (Gottschalk et al. 

2011), climate variations (Parker and Keller 2019), or a range of ENM residence times (Keller et 

al. 2013), which are critical factors for determining ENM exposure risk to ecosystems. In 

addition to physical differences among different areas, demographic factors (e.g. education level, 

age, and population density) can play a role in how ENMs may be released from products for a 

given area (Keller and Lazareva 2013), ultimately impacting the location and magnitude of 

potential ENM emissions.  For instance, different age and education levels may influence 

product or technology adoption as demonstrated with electric vehicle adoption in the United 

States (Li et al. 2017). ENMs can accumulate in sediment and other environmental sinks over 

time (Sun et al. 2016) as well as in ecological organisms such as multi-walled carbon nanotubes 

in Zebrafish (Maes et al. 2014) and copper-based ENMs in earthworms (Tatsi et al. 2018). 

Regional ENM studies highlight the need to question whether current ENM emission assessment 

methods are able to accurately predict differences over space and time. Therefore, to address 
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these spatio-temporal ENM emission knowledge gaps, this analysis will contribute to the 

Industrial Ecology and ENM literature through the development of an integrated modeling tool 

that predicts future ENM production locations, assesses spatial variation in ENM concentrations, 

and estimates ecological risks for defined geographic locations. We also discuss how results can 

inform future ENM and/or other emerging contaminant emission modeling, use, regulation and 

policy for various regions.  

Materials and Methods 

 

2.1 Overview of Integrated Risk Assessment Model 

 

The innovative nature of ENMs necessitates an innovative approach and a complete systems 

perspective. The modeling framework used here (Figure 1) is demonstrated using four case study 

ENMs (Section 2.2) likely to be integrated in lithium-ion batteries (LIBs), which represent a 

growing technology sector within the clean energy landscape. First, in the predictive capacity of 

the geographic information system (GIS) software, ArcGIS Pro (Skilodimou et al. 2019) was 

used to estimate future ENM manufacturing locations for a case study region (Section 2.3). 

These locations, and their proximity to critical environmental areas and water bodies, are then 

used to assess potential emission patterns, environmental concentrations, and ecological risks. 

Next, likely manufacturing locations are predicted, assuming that ENM-use will continue to 

grow according to best available estimates. Mass flow modeling calculates potential 

environmental accumulation using known release rates, subsequently informing spatial 

concentrations in a critical environmental area over several years (Section 2.4). When the time 

scale is considered, accumulation over a single year may have negligible effects. Over several 

years, however, the accumulation of ENMs could pose ecological risks (Geissen et al. 2015). 

Finally, these potential spatial concentrations are compared to established lethal dose 
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concentrations for relevant model organisms as one example risk metric (Section 2.5).  Using 

readily available data, this framework can also be applied to other ENMs or emerging 

contaminants, manufacturing locations, and/or risk endpoints to inform spatially explicit risks as 

emerging materials enter the market.  

 

Figure 1. Spatially Explicit ENM Risk Model: Overview of the modeling framework utilized to estimate spatial risk of ENM 

emissions.  A) Likely ENM manufacturing locations for our case study area., B) Mass flow calculations used to determine ENM 

emissions into environmental compartments, and C) Spatial risk assessment of potential concentrations compared to established 

lethal concentration values for relevant model organisms. 

2.2 Case Study: ENMs for Batteries 

ENMs have the potential to improve the performance of clean energy technologies, demonstrated 

by the increasing research and application of ENMs in lithium-ion batteries (LIBs) (Shen et al. 

2017, Liu et al. 2017, Xu et al. 2018, Moore et al. 2018). As battery price falls and the demand 

for electric vehicle LIBs grows (Olivetti et al. 2018), it is likely that ENM demand will also rise 

given their promise for improving LIB performance. Further, the incumbent material for LIB 
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anodes (negative electrodes) is graphite, which may face increasing supply risks (Olivetti et al. 

2018), leading to greater interest in ENM substitutes. Four ENM anode materials were chosen 

based on the frequency of their appearance in the LIB literature and the degree to which they 

would represent varying levels of environmental risks.   

Graphene Touted as a “wonder material” (Kaplan and Woloschyn 2014), graphene is capable of 

advancing lithium-ion battery anode capacity, lifespan, and efficiency (Zhou et al. 2017, 

Raccichini et al. 2017, Ababtain et al. 2018, Zhamu et al. 2018). Graphene is not considered a 

new chemical substance in the Environmental Protection Agency (EPA) Toxic Substance 

Control Act (TSCA) (EPA TSCA Inventory, 2018) and is instead regulated as graphite, despite 

differences in properties, structure, and fabrication methods.  

Silicon/Single-walled carbon nanotube (Si/SWNT) Another high-performance LIB anode 

chemistry combines Si and SWNT to increase the energy density of the cell and improve the 

capacity retention and cycling stability (Lin et al. 2014, Lee et al. 2016, Gattu et al. 2017). Both 

Si and SWNT are currently regulated under TSCA (EPA TSCA Inventory, 2018), yet in a worst-

case scenario, could be accidentally released during production (Garvey et al. 2018). 

SiO2 In addition to bulk Si anode chemistries, nano-SiO2 is an anode additive explored in the 

LIB literature. SiO2 enables increased long-term cycling stability, improved capacity and 

cyclability, and a higher Coulombic efficiency (Liu et al. 2014, Zhou et al. 2015, Jiang et al. 

2018). Similar to graphene, nano-SiO2 is not considered a new chemical substance and is 

regulated under TSCA as Si (EPA TSCA Inventory, 2018). This chemistry was chosen to 

provide a risk comparison between Si and nano-SiO2 if released during manufacturing.  

Fullerene (C60) The final high-performance anode chemistry modeled is C60, capable of 

improving the capacity retention, discharge capacity, and current density of a LIB cell (Hudaya 
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et al. 2015, Enggar et al. 2018). While fullerene is currently regulated under TSCA, this 

chemistry was added as a risk comparison between the varying carbonaceous ENMs.  

In this study, we compare the four case study materials by assuming that the likely ENM location 

would produce only one type of anode, which may contain a single ENM as an additive to 

graphite or multiple ENMs combined as a graphite replacement (Figure 2). This approach allows 

for comparison of risks (e.g. toxicity and accumulation) relative to the respective material sets 

required to achieve the same functional performance in a LIB cell.  

 

 
Figure 2. A comparison of potential ENM emissions is performed by assuming the ENM factory is producing a single type of 

anode on location (A or B or C or D), rather than all the materials at once, to calculate the potential spatial concentrations and 

compare the spatial risks across materials. 

 

2.1 Targeted Study Area: Post-Rust Belt New York 

As the ENM market continues to grow, it is likely that new production locations will open in the 

United States to meet market demand. One potential scenario is that this production activity 

takes place in areas with historical precedent for manufacturing (Hobor 2016). In fact, a trend 

towards revitalizing U.S. ‘Rust Belt’ cities has seen conversion of traditional manufacturing 

capability into new businesses and manufacturing (Tisher 2013, Wilson and Wouters 2016, 

Hobor 2016). The decline of US manufacturing over the past 75 years (High 2003) has led to 

brown fields, empty lots, and abandoned factories (Bjelland 2004, Schilling and Logan 2008), 
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which offer potential for redevelopment and economic revitalization. Due to the growing 

investment in lakeside post-rust belt cities (Schilling and Logan 2008), it is highly probable that 

many of these regions could revitalize manufacturing locations for new high-tech industries (e.g. 

LIBs, ENMs). Central and Western Upstate New York, northwest of the New York metropolitan 

area, was chosen because of the presence of several post-rust belt cities, existing chemical 

manufacturing industries, and the vast available land cover (Goe et al. 2015).  

2.3 Data Collection and Geospatial Modeling 

 

Data Collection and Transformation 

To determine ENM manufacturing release locations, we first assume a business-as-usual (BAU) 

scenario (as shown in Figure 1, part A). As described in Section 2.2, it is likely that future 

manufacturing locations (e.g. ENM facilities) would be located at or near existing manufacturing 

locations of the same type (e.g. chemical production) for location revitalization or new 

construction. Thus, manufacturing location addresses were geocoded in ArcGIS Pro from the 

2016 Environmental Protection Agency (EPA) Toxic Release Inventory (TRI) dataset (Appendix 

C, Table S1), which reports toxic chemical locations, volumes, and disposal practices for various 

U.S. industrial locations. To consider regions that may be prioritized for economic development, 

a second scenario with the objective of economic investment is also assessed, assuming that a 

state government is likely to invest in areas with high unemployment rates and areas historically 

known to have a skilled workforce for manufacturing. U.S. Census unemployment percentage 

data (Table S1) were collected and joined to Upstate NY county locations to determine the 

highest areas of unemployment for this scenario.  

The ArcGIS Pro Model Builder feature and Spatial Analyst toolset was used to calculate the 

Euclidean distance, the straight-line distance between any two points. In the model, this distance 

is calculated from the center of the input data (e.g. EPA TRI and/or unemployment data) to the 
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center of predicted outputs (likely locations). For each predicted output, the distance to the input 

data is then minimized to optimally predict the location of future manufacturing locations within 

a source distance range of 40-km (Quik et al. 2015) based on the scenario objective (e.g. close to 

existing manufacturing and/or close to high unemployment areas). The range of 40-km was 

considered rather than a single data point to account for the uncertainty in the estimate. Then, 

inputs are transformed into a single output of likely locations of a manufacturing facility using 

the Weighted Overlay tool, which combines data inputs on a common measurement scale (ESRI 

2018) and assigns weights to rank the inputs. In the BAU scenario, we assigned a 100% 

weighting to chemical manufacturing locations. For the economic investment scenario, we 

assumed equal levels of importance for both parameters: 50% weighting to chemical 

manufacturing locations and 50% weighting to high areas of unemployment. However, changes 

in weightings did not impact overall results. These location assumptions were verified by 

downloading and geocoding manufacturing locations listed for sale in Upstate NY from LoopNet 

Commercial Real Estate, one of the largest commercial real estate online marketplaces with over 

500,000 listings (CoStar Group, Inc., 2018).  The locations of facilities for sale were compared to 

existing chemical manufacturing operations and to the model-generated facility siting predictions 

for both scenarios. In all cases, a majority of the likely locations were within a one-mile distance 

of actual facilities, confirming that existing manufacturing plants could be purchased and 

revitalized for new industries in these areas (Figure S5).   

Buffer Analysis Spatial Risk Assessment  

To characterize the spatial risk of ENM release, the Buffer Analysis method in ArcGIS Pro was 

used to calculate the area that is likely to be affected of the likely manufacturing locations.  A 2-

km and 5-km buffer distance was chosen based on findings from a previous study, where Ag and 
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CeO2 ENM concentrations were found close to the source (Quik et al. 2015). Data from the 

National Hydrography Dataset (NHD), the New York Department of Environmental 

Conservation (DEC) Critical Environmental Area Dataset, and the United States Geological 

Survey (USGS) National Land Cover Dataset (NLCD) were collected to show the proximity of 

potential manufacturing locations to freshwater ecosystems and existing vulnerable ecosystems 

(Table S2). Next, for three case study watersheds, 10-m (10-m x 10-m) digital elevation model 

(DEM) (USGS) data were collected and used as inputs for the ArcGIS Spatial Analyst Tool, 

Flow Direction, to assess where pollutants could flow if released into the watershed and if ENM 

emissions could potentially interact with existing vulnerable ecosystems (Baun et al. 2008). 

2.4 Mass Flow Modeling 

To determine the magnitude of ENM emissions from likely locations, the production amount was 

calculated for each case study material. Estimates were based on a known U.S. electric vehicle 

manufacturer’s graphite plant, which produces 35,200 tons of spherical graphite for LIB anodes 

(USGS 2018). The ENMs proposed as anode additives were modeled as being produced in 

proportions relative to graphite that were determined from literature and a baseline anode (Table 

S3) modeled in the Argonne National Lab BatPac model (Nelson et al. 2017).  Potential 

environmental emissions from such a facility were estimated (Equation 1), such that MP is the total 

ENM mass produced at the facility (mg), MB is the ENM mass (mg) integrated in battery 

production, MR is the total mass released (mg) into different compartments according to MC,i, 

where i includes releases to air (MA), wastewater (MWW), and landfill (ML).  RT is the low or high 

total release rate (%), and RC,i is the low or high specific compartment release rate (%).  A bounded 

uniform distribution of data (low and high) was chosen to account for the uncertainty in the 

underlying data. This range was assumed since there is an equal probability of the data being within 

the range of the lowest value (realistic scenario) and the highest value (worst-case scenario).  
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𝑀𝐶,𝑖 = (𝑀𝑃 − 𝑀𝐵) ∗ 𝑅𝐶,𝑖                                                                                   Equation 1.  

 

 

We assumed all ENMs in this study not captured for battery production (MB) were either released 

into a landfill (ML) or into the environment (MA and MWW) (Figure 3), with mass percentage 

estimates applied from the literature (Table 1).  In natural environments, ENMs could go through 

physical or chemical processes (e.g. dispersion, agglomeration, oxidation, dissolution, 

sedimentation) depending on their unique properties, the environmental conditions, and weather 

changes (Kidd and Westerhoff 2018). For example, some ENMs (e.g. SWNT) have poor solubility 

(O’Connell et al. 2001), and therefore, it is likely that they will partition into the sediment after 

release into freshwater. Due to lack of partitioning data from wastewater sludge and effluent to 

freshwater and sediment for all case study materials, we performed a worst-case scenario analysis. 

In the first scenario, we assumed that the percentage of the ENM mass not released to the 

wastewater sludge (MS) after wastewater treatment was released completely into the effluent (ME) 

and remained in the water column. Alternatively, in the second scenario, we assume 100% of the 

ENMs released into the effluent discharge into the sediment (Msd). While we acknowledge that the 

ENMs will likely transform (Keller et al. 2013), material specific transformation was not addressed 

in this study. 
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Figure 3. Mass flows from ENM total production at a single manufacturing location (MP) to the battery application 

(MB). MR is the total mass estimated to be released into compartments, MC, i. where MA is the air, ML is the landfill, 

MWW is wastewater, ME is effluent, MS is the sludge, and Msd is the sediment compartment 
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Table 1. ENM mass percentage estimates used in the study to calculate the total potential ENM emissions during 

manufacturing. From the estimated total, potential ENM emissions were estimated for specific environmental 

compartments: air, landfill, and wastewater. The emissions from waste water into the water column (effluent) and 

sediment were also estimated. 

ENM Mass Percentage Estimates Low (%) High (%) 

% total release (RT)* 0.1 2 

% of total release to air (RA)* 10 40 

% of total release to landfill (RL)* 80 20 

% of total release to wastewater (Rw)*  10 40 

% from wastewater to residue (RS)* 97 75 

% from wastewater into effluent (RE)* 

or sediment (RSd) 
3 25 

*Keller et al. 2013 

 
  

 

To determine the amount of ENM that may accumulate in a freshwater system over time, a 

median annual production growth of 5% was assumed (Giese et al. 2018) using Equation 2, 

where Mτ,t is the total mass over time (mg/year), M is the total mass released or the mass for a 

given compartment (mg) for a given year (i), and Y is accumulation time (years), up to 50 years 

in this scenario. 

𝑀𝜏,𝑡 = ∑ 𝑀𝑖−1 ∗ (1 + 0.05)𝑌
𝑖=1               Equation 2. 

                                                        

 

The potential spatial concentrations for freshwater ecosystem ENM emissions were calculated 

(Equations 6-7), where Cw,t is the low or high ENM concentration in the water column from 

effluent release (mg/L) over time, ME is the low or high ENM mass released into the water 

column (mg), and V is the freshwater volume for a given freshwater body (L).  

𝐶𝑤,𝑡 =
𝑀𝐸

𝑉
                                                                                               Equation 3.      
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The ENM sediment concentration was calculated (Equation 4) for the top 3 cm of the sediment 

layer (Gottschalk et al. 2010), where CS,t is the low or high ENM concentration in the sediment 

over time (mg/kg), MS is the low or high ENM mass released into the sediment (mg), Sw is the 

surface area of the water body (m2), , and 𝜌 is the dry density of the sediment (kg/m3) (Tables 

S12, S15, S18). 

𝐶𝑆,𝑡 =
𝑀𝑆

𝑆𝑤∗0.03
𝜌⁄                                                                                             Equation 4.  

 

2.5 Ecotoxicity Risk Assessment   

The projected aqueous and sediment concentrations for all case study materials were compared 

to literature reports of concentrations at which toxicity to ecologically relevant model organisms 

have been observed (using the LD50, or dose that causes the death of 50% of a population) 

(Table S5). Daphnia magna are water column model organisms commonly used in ecotoxicity 

experiments due to their significant role in the freshwater ecosystem food chain (Zöllner et al. 

2003) As filter feeders, D. magna have a high likelihood of ingesting pollutants in the water 

because they filter 16.6 mL/h of water on average (Lovern and Klaper 2006) and are considered 

bioindicator organisms. Thus, D. magna LD50 values are included in this model and compared 

to potential environmental concentrations of ENMs to provide insight for potential ENM 

exposure impacts in freshwater ecosystems. The LD50 values used for comparison were the 

lowest concentrations shown to be the LD50 in the literature, to assess the worst possible impacts 

of accumulation. While LD50 values may have shortcomings (e.g. variability and uncertainty) 

(Rowan 1983), this metric is still widely used in the ecotoxicity community and can provide 

preliminary risk assessment until more data are available. Because of the complex environmental 

transformations of ENMs (Dale et al. 2015), there are not enough ecotoxicity data to fully 

characterize the risk of emission to sediments for all case study materials. However, release to 
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the sediment is the most realistic exposure due to the settling properties of many of the ENMs. 

As an example, the risk of SWNT sediment release is considered for two sediment dwelling 

model organisms, Lumbriculus variegatus and Hyallela Azteca (Table S11), organisms regularly 

used as bioindicators of sediment health (Petersen et al. 2008, Wallis et al. 2014).  

 

3.0 Results and Discussion 

 

The results presented here demonstrate the added insight gained when release estimates from the 

manufacturing phase of the ENM life cycle are combined with spatially-explicit siting and 

ecosystem data. First, the potential spatial distributions of ENM manufacturing locations are 

presented. From these likely locations, we demonstrate the proximity of the manufacturing 

locations to water bodies and critical environmental areas. Next, potential environmental 

concentrations are calculated for three example ENM locations near significant water bodies, 

including a location near one of the Laurentian Great Lakes. While these examples are specific to 

Upstate NY, the three water bodies may be considered representative of temperate water bodies 

globally. The spatially-explicit concentrations are then compared to the reported concentrations 

at which case study materials create ecotoxicity impacts, illustrating the utility of spatial models 

to inform ENM risk analysis.  

 

3.1 Likely ENM Manufacturing Locations 

 

As ENM demand and adoption in LIBs and other applications increases, manufacturing of ENMs 

will also increase worldwide. The predictive capacity of this geospatial tool can determine the 

likely spatial distribution of future ENM manufacturing locations and thus identify potential 

release locations. This study identified likely manufacturing locations under two scenarios. The 

first objective scenario assessed the revitalization of existing manufacturing locations (BAU) and 
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the second scenario combined the objectives of revitalization as well as job creation (economic 

investment). The BAU scenario suggests ENM manufacturers will likely locate in the same 

locations as past chemical manufacturers (Figure 4A). Assuming Upstate NY will invest in new 

industries to create jobs, weighted overlay results (Figure 4B) display areas where 

unemployment co-occurs with the existing chemical manufacturing locations (Figure S1). In 

areas of high unemployment and existing manufacturing locations, the areas were classified as a 

“high” likelihood of a revitalized manufacturing location and areas of low unemployment and 

fewer manufacturing locations were classified as a “low” likelihood. 

To validate these likely locations, we compared the results with industrial addresses for sale 

(Figure S3 and S4), demonstrating a confirmed pattern of areas likely to see new industries and 

investment in the coming years. For both scenarios, a spatial pattern was observed; the existing 

and likely locations are typically located near interstate highways (Figure S7). Manufacturing 

facilities are historically located close to interstate connections in rural areas to reduce 

transportation costs (Woodward 1992, Forkenbrock and Foster 1996). While shown here for 

Upstate NY, this method is adaptable for other regions, as the underlying data sources (U.S. EPA 

TRI database and U.S. Census unemployment data) are available for all U.S. states. 
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Figure 4. BAU scenario (A) and economic investment scenario (B) for likely ENM manufacturing sites relative to the hydrologic 

unit (HUC) 8-digit watersheds. In the economic investment scenario, the black areas indicate areas of high unemployment and 

existing chemical manufacturing locations, predicting potential areas for investment and revitalization and the light gray areas 

indicate low unemployment and fewer existing manufacturing locations.  
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3.2 Proximity of Likely ENM Facilities to Sensitive Ecosystems 

 

The spatial distribution of likely ENM manufacturing locations were next layered over spatial 

data characterizing potentially sensitive ecosystems in the same spatial boundary: water bodies 

and critical environmental areas defined by New York State Department of Environmental 

Conservation (NYDEC) in Upstate NY. Results estimate the percentage of surface water and 

critical environmental areas within these distances of the ENM manufacturing locations. The 

potential presence of ENM facilities near sensitive ecosystems implies the need to determine the 

risk of release in these locations.  

 

Figure 5. 2-km and 5-km buffer analysis for the BAU ENM location scenario. The buffer analysis allows the calculation of the 

area and distance of potentially sensitive ecosystems to potential ENM manufacturing locations, where ENMs could be released 

into the environment. 
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In addition to calculating the distance to freshwater ecosystems, we can identify the proximity of 

manufacturing to critical environmental areas. In the BAU scenario, 79% of total area of critical 

environmental areas in Upstate NY fell within the total buffer area (2-km) and 80% fell within 5-

km. Different land characteristics and existing vulnerabilities can influence the overall impact of 

release. For instance, if ENMs are released into an already polluted area with legacy 

contaminants or in a threatened habitat (e.g. wetland), the combination of an existing condition 

and an emerging risk could result in a greater overall environmental impact (Banni et al. 2016). 

Thus, by using proactive decision tools that can predict potential ENM manufacturing locations, 

we can inform ENM location siting decisions that reduce potential release risks.  

In the BAU scenario, 89% of the total surface water area in Upstate NY are within a 2-km radius 

buffer (excluding Lake Ontario) and 90% are within a 5-km radius buffer of a potential ENM 

manufacturing location (excluding Lake Ontario). The results for both the BAU and economic 

investment scenario were in agreement; a similar trend was observed in the percentage of critical 

environmental areas and freshwater ecosystems within the buffer distances of the manufacturing 

facilities (Figure S8). The fate of ENMs during wastewater treatment is still uncertain 

(Westerhoff et al. 2018). Therefore, knowledge of manufacturing locations with onsite 

wastewater treatment and their proximity to nearby sensitive ecosystems and watersheds can 

help inform ENM emission risks and regulations proactively.  

 

3.3 ENM Release Risk Assessment: Upstate NY Lake Examples 

 

To demonstrate the difference in the magnitude of ENM emission risk over space and 

accumulation time, three lakes near former Upstate NY rust-belt cities were identified based on 

their proximity to likely ENM manufacturing locations (under the BAU scenario). Additionally, 

each lake is representative of an ENM emission scenario that could occur in water bodies with 
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similar attributes across the U.S. For example, one likely manufacturing location is 3.8 miles 

from Lake Ontario, one of the Laurentian Great Lakes (Figure 6A), the largest surface freshwater 

system on Earth. This water body is an example of an ENM emission case wherein accidental 

discharge may ultimately reach a large ecosystem through the watershed. Seneca Lake spans four 

Upstate NY counties and is 0.1 miles from a likely manufacturing location (Figure 6B). This lake 

is representative of relatively deep oligotrophic water bodies (> 180 m) with a long residence 

time (>12 yr) and relatively undeveloped watershed (Michel and Kraemer 1995). The Seneca 

Lake region is well-known for its agricultural opportunities and recreational fishing as well as a 

salt mine on the south end of the lake (NY DEC).  Finally, Onondaga Lake in Syracuse, NY 

(Figure 6C) is 0.3 miles from one of the likely ENM manufacturing locations. This lake is 

representative of water bodies with a short residence time (90-180 days), historical industrial 

pollution, as well as existing large industrial operations close to the lake shore (Figure S5). 

(Rowell 1996; Onondaga County 2013).  
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Figure 6. Distance of BAU case study locations (black) to Lake Ontario (A), Seneca Lake (B), and Onondaga Lake (C). The 

flow direction of water in these locations shows how ENM contaminants could flow through the watershed if accidentally 

released from one of these locations. 
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The potential ENM environmental emissions and resultant accumulation were calculated for the 

water column and sediment (Table S12-20) for Lake Ontario, Seneca Lake, and Onondaga Lake. 

We assumed that the ENMs were not reactive and therefore did not transform, but rather stayed 

in the environmental compartments according to the defined scenarios.  The potential 

accumulation was calculated annually for each material, for an accumulation period of 50 years. 

These levels were compared to concentrations shown to have a toxic impact (LD50) for the 

water column organism D. magna. To address the risk of accumulation in the sediment, LD50 

ranges for sediment dwelling organisms were calculated for SWNT. Low and high accumulation 

results are shown here for two of the most commonly used ENMs in batteries, SWNT (water 

column and sediment) and SiO2 (water column) for the Lake Onondaga emission scenario 

(Figure 7). For context, risk associated with accumulation of a well-known pollutant in 

freshwater ecosystems, methylmercury (EPA ECOTOX 2018) is also displayed. All case study 

material results for each scenario are included in the Supplemental Information (Figures S9-

S13).  
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Figure 7. The low and high potential environmental accumulation (mg/L) in Onondaga Lake over time compared to the Daphnia 

magna LD50 values for SWNT, SiO2, and a reference pollutant, methylmercury. SWNT reaches the LD50 value after about 20 

years of accumulation in the high scenario while SiO2 reaches the LD50 value under the high scenario at about 8 years of 

accumulation. However, neither of the ENMs reach their LD50 values under the low accumulation scenario, even after 50 years 

(note the change in scale for low accumulation). 

Onondaga Lake in Syracuse, NY, flows north to Lake Ontario, has a 738-square km watershed, 

and is infamous for industrial pollution during the 20th century (NY DEC). It was declared an 

EPA Superfund site in 1994 and has since met water quality standards (NY DEC). While some 

manufacturing facilities in this area treat wastewater on site, the remaining facilities utilize the 

city’s wastewater treatment plant. In either case, effluents are discharged directly into the lake. 

Under the high release scenario, the potential emissions for graphene and SiO2 reach their LD50 

values between 5 and 10 years of ENM accumulation, and SWNT reaches its LD50 in between 

10 and 25 years. However, because of the short residence time of the lake (90-180 days), the 

average time that water remains in the water body, it is likely that the ENMs would flow out of 
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Onondaga Lake if they were to remain in the water column. Thus, the more likely scenario for 

ENM accumulation in Onondaga Lake would be if ENMs were to settle and accumulate in the 

sediment, which is likely considering most of the ENMs studied here are insoluble in water 

(Zhao et al. 2002; Fortner et al. 2005; Tang et al. 2008). This is confirmed by past modeling 

studies, where predicted ENM concentrations were higher in the sediment than in the water 

column (Parker and Keller 2019), and deposition is rapid, particularly for water insoluble ENMs.  

 

 Seneca Lake is the largest of the Upstate New York Finger Lakes with a 1,184-square km 

watershed. There are point and nonpoint sources of pollution in the Seneca Lake watershed, 

including municipal and onsite wastewater treatment and runoff associated primarily with 

agriculture and CAFOs (Halfman 2011). Most of the wastewater is treated at one of the local 

wastewater treatment plants (Greer and Schreiber 2010) and effluent is either directly released 

into Seneca Lake or into Keuka Lake (NY DEC), which ultimately flows into Seneca Lake. The 

residence time of Seneca Lake is 12-18.1 years (NYSDEC 1996) and the lake is typically 

stratified because of the great depth. Based on the volume of the lake, graphene reaches its D. 

magna LD50 value in between 50 and 75 years of accumulation and SiO2 reaching the LD50 

value in between 75 and 100 years. This lake has the longest residence time in this study, yet it is 

likely that ENMs in the water column will flow out of the lake before accumulating to a level 

associated with toxicity risk. However, if the ENMs were to rapidly deposit into nearshore 

sediment, they could accumulate and reach toxic levels for sediment dwelling organisms. The 

Finger Lakes are also prone to nutrient and other pollution due to the vast agriculture in the area 

(Halfman 2011), which could interact with ENMs and lead to unintended consequences. 

 

The third case study is the Frank E. Vanlare wastewater treatment on the shore of Lake Ontario, 

that discharges effluent Lake Ontario. Lake Ontario has a watershed area of 6,371-square km and 

is one of the Laurentian Great Lakes, the largest surface freshwater system on Earth. Lakes in 

this region are vulnerable due to industrial discharge, landfill leachate, and chemical runoff 
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(Hallett and Brooksbank 1986). The residence time of the lake is 6 years (NOAA), which is 

relatively short compared to Seneca Lake. Due to the large lake volume, accumulation effects 

over the 50-year period were negligible; none of the ENM case study materials were close to 

reaching the reported LD50 values for D. magna.  

 

These results suggest that the risk of ENM accumulation is dependent on a number of factors 

including ENM fate and behavior characteristics (e.g. solubility), lake depth, retention time, and 

ENM deposition in shallow or nearshore parts of the lake, as previously seen in hydrodynamic 

modeling of phosphorous and other nutrients (León et al. 2005). Further, the risk associated with 

ENM release is higher because of the historical pollution, which could lead to cascading 

ecosystem impacts (Fleeger et al. 2003); therefore, it may not be advisable to revitalize a location 

near this type of ecosystem. If ENMs were to accumulate from an accidental direct release, 

higher accumulation levels would be observed over time, suggesting that there are scenarios that 

could increase ENM accumulation risk in all three lakes, but overall the risks are relatively low 

because of the residence time or size of the lake in this study. Further, in this study, it was 

assumed that the materials are non-reactive, but transformations of the ENMs might lead to 

higher or lower toxicity (Wiesner et al. 2006). Results confirm that there is a need to improve 

assessment of ENM impacts to benthic organisms with various uptake pathways (Quik et al. 

2015) to account for varying ENM properties and differences in potential release locations. 

Currently, there is not sufficient toxicity data to assess the risk of accumulation in the sediment 

and thus the risk for many ENMs is relatively unknown. 

These results highlight the many challenges to the regulation of ENMs, and it remains uncertain 

as to whether the potential benefits outweigh the potential risks (Lai et al. 2018). For example, 

ENMs have different risks compared to their bulk counterparts (Keller et al. 2013, Lai et al. 
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2018) and therefore it is uncertain if current regulations for bulk materials are appropriate for 

ENMs; some studies have found that materials can be more toxic at the nano-size (Nel et al. 

2006). In this study, we evaluate bulk Si and nano-SiO2. We found that nano-SiO2 has a 

reported LD50 value of 1.73 mg/L and can be more toxic than bulk Si, particularly in smaller 

freshwater ecosystems (Table S10). By using a futuristic perspective to predict where ENMs 

might be produced and subsequently released, this model can proactively inform future ENM 

release modeling, risk, use, and policy for various regions. 

3.4 Sensitivity of Modeling Inputs on Evaluating Potential ENM Risks 

Because of the scarcity of ENM fate and transport data as well as the uncertainty of existing data 

(Garvey et al. 2018), many assumptions were made throughout the modeling process. First, 

uncertainty was accounted for by increasing the range of possible manufacturing location 

distances (up to 40-km from existing address) based on previous studies. The low and high 

emission scenario was informed by bounded ENM release percentages, where the low scenario 

represented a more realistic scenario and the high scenario represented a worst-case scenario. To 

demonstrate the sensitivity of the input values to the output results and potential magnitude of 

risk, a disruptive innovation scenario was performed, assuming that ENM production increases 

from increased electric vehicle adoption (Moore et al. 2018). A ten-fold increase was evaluated 

for the low and high emission scenarios as shown in Table S21 and Figure S14, where the low 

scenario results still do not reach measured toxicity values. Results did show that precaution 

should be taken to ensure that the worst-case disruptive innovation scenario risk is minimized, 

since the LD50 value is reached in less than a year for SiO2 and graphene, and within 10 years 

for SWNT and C60. Further, the LD50 values used in this study for comparison were the most 
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toxic LD50 values found in the literature. If the full range of LD50 values were considered for all 

ENMs (Table S6) the risks would be further reduced. 

Conclusion 

Because of the potential risks posed by incorporating ENMs into consumer products and energy 

technologies, like LIBs, it is critical to take a proactive approach to analyzing risks associated 

with manufacture, use, and disposal of ENM-enabled technologies. In order to properly address 

these concerns, decision tools are needed that can account for differences in emissions over 

various production years and spatial boundaries.  In this study, the predictive capacity of 

geospatial modeling has been joined with material flow modeling and ecotoxicity risk 

assessment. This tool has been demonstrated using a case study of ENMs well suited for LIB 

anodes, due to the increasing demand for battery-powered EVs. However, this tool can more 

generally be applied to emerging materials to proactively inform the potential risks of 

manufacturing in a given location. 

As the use of ENMs increases over space and time, it will become increasingly difficult to 

thoroughly evaluate all the new ENMs coming onto the market; there is high uncertainty in much 

of the reported data and many knowledge gaps remain. For instance, there is a lack of monitoring 

and quantification tools as well as reliable data due to business privacy (Keller et al. 2013; Lai et 

al. 2018). Despite these limitations, predictive modeling tools can help to rank and prioritize 

ENMs to test (Lai et al. 2018, Falinski et al. 2018) and integrated methodology applied here 

addresses some of the nano-knowledge gaps and challenges. As shown throughout this analysis, 

the Great Lakes watershed could be impacted by nanomaterial release during the manufacturing 

phase. If all possibilities were considered (other uses and disposal routes), the likelihood of 

ENMs entering a freshwater ecosystem would increase. Further, it is important to consider 

releases into other types of ecosystems (e.g. terrestrial ecosystems) (Zuverza-Mena et al. 2017) 
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as well as potential bioaccumulation and cascading effects, which could impact many levels of 

the food chain. The results also underscore the importance of reliable fate and transport data, 

taking into account the proximity to water bodies and sensitive ecosystems, available LD50 data, 

and accumulation time.  

The model applied here provides a starting point for predicting future locations of potential ENM 

emissions during manufacturing, which could be combined with other predictive modeling tools 

to proactively determine ecosystem risks. For instance, the predictive spatial model could also be 

adapted with additional Census data to determine environmental justice implications (e.g. siting 

and accumulation near low-income communities). The model can be applied to other emerging 

pollutants/applications and geographic locations using readily available national data. The use of 

a spatial and temporal perspective adds value to evaluating life cycle nanomaterial tradeoffs and 

can ultimately inform ENM siting, use, and disposal decisions.    

However, there are limitations in this approach that should be highlighted relative to the findings 

and interpretations. For instance, the fate and transport of ENMs is still uncertain and variable due 

to the unknowns in the flow path from the source to the material’s fate in a freshwater environment. 

The time scale could be long (e.g. years) if the release of the material sorbs to natural organic 

matter or it could be relatively short (e.g. days) if the release of the material is carried through 

wastewater or with another solvent. This study focuses on the utility of adding a spatial 

perspective, and the location of the release and resulting fate and transport is largely dependent on 

the landscape in which the release occurs. Therefore, future work could expand upon this initial 

model and also take into account vegetation cover, imperviousness, hydrodynamics of receiving 

waters, etc. in addition to the sensitive areas and freshwater ecosystems studied here to further 

improve this model.   



78 
 

 It is important to be able to contextualize the potential ENM risks against the benefit that ENMs 

provide. The tool in this chapter can help to determine the potential spatial risk and proactively 

inform where ENM (or other emerging material) manufacturing will minimize risks while 

increasing the performance benefits of LIBs or other clean energy technologies. However, tools 

that can assess the risks as well as the benefits that the materials convey are necessary toguide safe 

nano-enabled product design, use, and disposal at end-of-life.  Current risk assessment and 

decision-making tools for materials do not adequately account for these tradeoffs as well as the 

uncertainty of ENMs (varying functional forms, unique environmental behavior, economic costs, 

unknown supply and demand, upstream emissions, and increased use of ENMs in diverse 

applications). Thus, the complex challenges of the ENM system necessitate a novel approach. In 

the next chapter, the adaptation of an investment portfolio optimization model is demonstrated for 

environmental and economic optimization of ENM use in clean energy technologies. From a 

sustainability perspective, improved clean energy technologies could help extend product 

lifespans, reduce fossil energy consumption, and substitute ENMs for scarce incumbent materials. 
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CHAPTER 5: PORTFOLIO OPTIMIZATION OF NANOMATERIAL USE IN CLEAN 

ENERGY TECHNOLOGIES3 

 
Introduction 

The potential environmental risks of ENM exposure were assessed in Chapter 3 and 4, but these 

risks must be considered relative to the performance, energy, or environmental benefits conferred 

by integrating ENMs into products and technologies, particularly clean energy systems. As first-

generation power plants are phased out, resilient energy generation and storage will become 

increasingly important to meet long-term goals like the Sustainable Development Goals, a 

directive led by the United Nations to address global sustainability challenges (Schwerhoff and 

Sy 2017; UN 2015). In this changing energy landscape, ENMs are a promising solution for cost-

effective and efficient renewable energy infrastructure because of their conductive, optical, and 

thermal properties (Hussein 2015). In many applications, ENMs offer improved performance and 

competitive costs; however, they also pose unique economic and environmental risks 

(Savolainen et al. 2013). These risks span across ENM manufacturing, their use in products, and 

their ultimate disposal or release at end-of-life. For example, forecasted growth in nano-

applications may increase ENM releases to the environment, where their ultimate transport, fate, 

and resulting ecological impacts are still poorly understood (Arndt et al. 2014; Kunhirkrishnan et 

al. 2015; Baalousha et al. 2016; Markus et al. 2017). Considering risk at the material level, some 

ENMs are believed to contribute to aquatic ecotoxicity in freshwater ecosystems (Gao et al. 

2009; Eckelman et al. 2012; Kunhikrishnan et al. 2015). There are also economic risks 

associated with ENM manufacturing:  commercialization requires a large capital investment, 

however there is currently significant uncertainty associated with expected return on that 

                                                      
3 This chapter has been adapted from a manuscript published in Environmental Science and Technology in 2018. To 

avoid repetitive citations, a blanket citation is included here: Moore et al. 2018 
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investment (Osman et al. 2006). At a systems-level, risks also hinge on relative performance 

gains that ENM-enabled technologies provide, for example, the increased clean energy that can 

be produced (due to nano-enabled efficiency gains), compared to energy-intense manufacturing 

processes required to synthesize ENMs (Anctil et al. 2011; Zhai et al. 2016; Pourzahedi et al. 

2017). These uncertainties are further confounded by complexity in the ENM supply chain, in 

that no single material is representative of all ENMs; each has different properties, performances, 

prices, and environmental impacts, all of which change from initial production to  

functionalization, incorporation into a product, and ultimate use in a final application (Anctil et 

al. 2011; Anctil et al. 2013).  

Given the challenge of mitigating risks for a complex material portfolio, effective tools are 

needed for proactive environmental and economic analyses. It stands to reason that such tools 

may draw inspiration from other fields concerned with maximizing benefit and minimizing risk 

given future uncertainty. Specifically, we hypothesize that an analogous system of financial 

investment tools, namely, analysis of risks and returns of stock portfolios, can be adapted for 

analysis of risks and returns of ENM portfolios, where a choice must be made about investing in 

uncertain technologies with variable environmental and economic outcomes associated with 

changing market conditions.  

Portfolio optimization models have been traditionally used to analyze financial markets and help 

investors assemble efficient portfolios that offer a high return objective and a small variance of 

historical returns given a variety of investment options (Kolm et al. 2014). ENM portfolio 

optimization will similarly be used to propose portfolios of ENMs for renewable energy 

applications that provide the highest return in terms of energy performance and smallest 

uncertainty in terms of economic and environmental risks. The analogy between financial stocks 
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and ENMs revolves around the challenge of predicting future performance, given current 

uncertainty. For example, future stock returns cannot be directly predicted from past 

performance, and are influenced by changes within a company, financial market, and the broader 

economic environment. Similarly, future adoption and performance of new technologies, like 

ENMs, can vary with application, technological progress, demand for ENM-enabled products 

relative to demand for competing alternatives, and the broader economic, environmental, and 

regulatory landscape.   In the financial domain, investors seek to mitigate uncertainties by 

selecting a diverse portfolio of stocks, such that if some underperform, others may offset losses. 

Thus, it stands to reason that a similar diversification may lead to more effective “technological 

investments,” such as research funding, basic and applied research investigations, technology 

commercialization, policy incentives, etc.  

This adaptation builds on a limited body of literature in which portfolio-based tools (Kolm et al. 

2014) have been applied in other non-financial market contexts, including optimization of fuel 

mix diversity (Roques et al. 2008), science policy (Wallace and Rafols 2015), renewable energy 

investment portfolios (Muñoz et al. 2009), and wind power deployment (Roques et al. 2010). For 

example, portfolio optimization demonstrated that diversification of fuels can increase resilience 

of an electricity system under fuel scarcity or price increases (Roques et al. 2008). In Spanish 

electricity markets (Muñoz et al. 2009), portfolio optimization was used to determine the 

optimal, normal, and pessimistic portfolios for renewable energy technologies with results 

highlighting the importance of subsidized tariffs. Finally, in wind power deployment, portfolio 

optimization’s efficient frontier was critical in determining optimal geographic locations of wind 

farms to maximize power generation of overall European wind portfolios (Roques et al. 2010).  



82 
 

While portfolio optimization has rarely been merged with environmental analysis tools, other 

decision tools have been proposed to address ENM tradeoffs. Linkov et al. established a 

framework for analyzing risks and benefits of emerging ENMs through multi-criteria decision 

analysis (MCDA) combined with risk assessment under different stakeholder preferences 

(Linkov et al. 2007). This methodology has proven successful for selection of an optimal 

nanomaterial and has frequently been combined with LCA, e.g., Hicks’ tradeoff analysis of the 

utility of nanosilver in textiles (Hicks 2017) and Scott et al.’s LCA-MCDA modeling of 

graphene for material substitution (Scott et al. 2016). Gilbertson et al. also combine LCA with 

impact-benefit screening to assess indirect and direct tradeoffs of a single material (CNT) used in 

various technologies (Gilbertson et al. 2014), proving the importance of evaluating full life 

cycles to realize risks avoided from incorporating ENMs. However, these methodologies 

consistently consider a single material or product and there is clear precedent that systems 

models can benefit from a more holistic approach. For example, several studies have shown the 

benefit of applying environmental life cycle assessment (LCA) to groups or portfolios of 

products. Ryen et al. performed LCA on a “community” of electronics (Ryen et al. 2015) owned 

in households and found apparent environmental improvements observed for a single product 

were offset when groups of products were considered holistically. Field et al. showed that when 

an entire fleet of vehicles are evaluated, the break-even time, or when upfront energy costs of 

manufacturing equal or exceed energy savings during the use phase, is longer than when a single 

vehicle is considered (Field et al. 2000). We expect that the portfolio approach could be useful 

for nanomaterials, since environmental impacts can vary depending on the ENM form and the 

product in which the ENM is contained (Gao et al. 2009; Anctil et al. 2011; Anctil et al. 2013; 

Gilbertson et al. 2015; Pourzahedi et al. 2017). For example, Anctil et al. demonstrated that 
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embodied energy could vary widely across types of fullerene derivatives, depending on how 

these materials were purified, functionalized, or used in renewable energy systems (Anctil et al. 

2011; Anctil et al. 2013).  

By understanding the optimal allocation of ENMs in clean energy applications, risk and impact 

reduction strategies can be prioritized, and performance can be optimized. To this end, we will 

demonstrate the adaptation of portfolio optimization, show its utility in the ENM case, and 

discuss how results can inform future research, development, and expansion of ENM use in clean 

energy technologies.   

Materials and Methods  

Portfolio Optimization Overview 

In its traditional financial application, portfolio optimization modeling transforms historical 

stock returns (inputs) into an optimal stock portfolio (output) using an optimization that 

maximizes return on investment while minimizing risk of variance of returns to improve security 

of investment (Korn and Korn 2001; Kolm et al. 2014). Stock returns are calculated as daily 

change in stock price over time (Equation 1) where R is portfolio return ($), P0 is initial stock 

price, P1 is final stock price, 𝛼  is portfolio share, and n is the stock in the portfolio (Korn and 

Korn 2001). The model constraint is the investor’s available budget to purchase stocks. The 

overall objective is to maximize stock return ($) while minimizing variance (deviation from the 

mean) of those returns (Equation 2). V is overall stock portfolio variance, 𝛼𝑖𝑗is covariance 

between shares, and 𝜎 is standard deviation of the stock return (Korn and Korn 2001).  

𝑅 = ∑ (
𝑃1−𝑃0

𝑃0
) ∗ 𝛼 ∀𝑛                   Equation 1.  

                 𝑉 =  ∑ 𝛼𝑖
2𝑛

𝑖=1 𝜎𝑖
2 + 2 ∑ 𝛼𝑖1≤𝑖<𝑗≤𝑛 𝛼𝑗𝛼𝑖𝑗∀𝑛                        Equation 2.  
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The model calculates portfolio weights, or in other words, the percentage of the budget to invest 

in each stock to compose the optimal portfolio. While a traditional optimization model may favor 

the portfolio with either the highest return or lowest risk, portfolio optimization considers both 

objectives and evaluates trade-offs to calculate the portfolio with the strongest mix of high return 

and low risk (Korn and Korn 2001; Roques et al. 2008). In section 2.2, we describe how the 

framework will be applied to ENM-enabled renewable energy applications. Section 2.3 describes 

specific adaptation of the model for the case studies chosen, including selection of parameters 

and data sources. Section 2.4 outlines scenario analysis for each case study and Section 2.5 

describes sensitivity analyses used for the modeling parameters.  

Novel Adaptation of Modeling Framework for ENM Portfolios  

The modeling framework has been applied here to inform future-oriented decisions related to the 

make-up of ENM portfolios in renewable energy applications, with analogies of stocks as ENM 

shares and return ($) as energy performance gain. To quantify overall portfolio return, the 

baseline objective function was adapted from Equation 1 to maximize marginal improvement in 

energy performance due to adding the ENM to an application (compared to incumbent or non-

nano material), simultaneously minimizing the variance of the energy gain (Equation 2 

adaptation). In Equation 3, Egain is the sum of energy generated from adding each ENM in the 

portfolio to a specific energy application where E1 and E0 represent the energy generated over a 

period of time that’s held constant across all observations, 𝛼 is the amount of ENM material used 

in the portfolio (portfolio share), and n represents all application portfolios.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑔𝑎𝑖𝑛 = ∑ (
𝐸1−𝐸0

𝐸0
) ∗ 𝛼   ∀𝑛                                                   Equation 3.  
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Case Study: Carbonaceous ENMs and Renewable Energy Technologies 

To demonstrate the utility of ENM portfolio optimization, we apply the method to a specific case 

of nano-enabled renewable energy technologies and carbonaceous nanomaterials (CNMs) 

typically contained in these technologies. Spherical fullerenes (C60, C70, and functionalized 

derivatives [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) and indene-C60 bisadduct 

(ICBA) (Anctil et al. 2011; Piccino et al. 2012), carbon nanotubes (Ratier et al. 2012; 

Upadhyayula et al. 2012) (single-walled (SWCNT) and multi-walled (MWCNT)), and graphene 

(Wu et al. 2011; Ratier et al. 2012) are examples of CNMs proposed for use in renewable energy 

technologies (Armand and Tarascon 2008). C60 fullerene and its functionalized derivatives are 

shown at the lab scale to improve power conversion efficiency as electron acceptors in organic 

photovoltaic (OPV) cells (Anctil et al. 2011; Parish 2011; Dai et al. 2012; Piccino et al. 2012; 

Laird et al. 2016) and enhance lifespan, storage capacity, and efficiency of lithium-ion batteries 

(LIBs) (Arie et al. 2009; Dai et al. 2012). SWCNT and MWCNT are proposed as anodes for 

LIBs due to a ten-fold increase in power performance (Arie et al. 2009; Parish et al. 2011). 

Graphene and doped graphene sheets show promise for increasing power, capacity, and charging 

speed of LIB anodes as shown at lab-scale (Wu et al. 2011; Ratier et al. 2012).   

The utility of the portfolio optimization framework enables evaluation of two fundamentally 

different emerging technologies. On one hand, OPVs are not currently sold at the commercial 

scale and therefore the model can inform future-oriented decisions concerning the acceptor 

material, a CNM-only case. Alternatively, LIBs are currently used in several products at 

commercial scale including electric vehicles. The model is also able to evaluate a non-nano 

anode material, graphite, which was compared with CNMs to show how emerging materials 

compete with incumbent options farther along the technology development spectrum. The 
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selected cases, and materials used therein, are non-exhaustive but useful to demonstrate the 

utility of the portfolio approach. The model can be easily adapted to analyze any other material 

and technology for which information is available to characterize its performance improvements 

due to use of novel materials.  

When evaluating CNM tradeoffs in OPVs and LIBs, baseline objective functions maximized 

total power (Anctil et al. 2013) (W/g) (Equation 4) or total cell capacity (Ah/g) (Equation 5). 

𝑃𝑡𝑜𝑡𝑎𝑙 is total power generated for OPVs using combinations of various CNMs. P is power rating 

per cell area (W/m2), A is cell area per mass of the acceptor material (m2/g), and M is mass of 

CNMs used in the portfolio (g). 𝐶𝑡𝑜𝑡𝑎𝑙 is total capacity generated for electric vehicle (EV) LIBs 

using combinations of CNMs and the non-nano anode, graphite. C is capacity of the anode 

(Ah/g), T is amount of CNMs (g) per anode (g), M is mass of CNMs used in the portfolio (g), 

and n represents all materials in the portfolio. These values were calculated for each CNM using 

values from the literature as described in Appendix D (Tables S1-S4). Portfolio Variance 

(Equation 6) incorporates material covariance, or the degree to which material returns move 

together subject to the same external influence. A and B represent different materials included in 

the portfolio. M% is the weight of the material in portfolio. R is an individual instance of 

material return. 𝑅̅ represents the mean of returns for the specified material and n represents 

number of observations. 

 

 

 

 

             𝑠. 𝑡.   𝑀𝑖𝑛  𝑉 =  ∑ 𝑀𝐴% ∗ 𝑀𝐵% ∗  
∑(𝑅𝐴 −𝑅𝐴̅̅ ̅̅ )∗(𝑅𝐵 −𝑅𝐵̅̅ ̅̅ ))

𝑛 −1
                Equation 6. 

 

 𝑀𝑎𝑥 𝑃𝑡𝑜𝑡𝑎𝑙(𝑊) = 𝑃 ∗ 𝐴 ∗ 𝑀 ∀𝑛                                                    Equation 4.  
 

𝑀𝑎𝑥 𝐶𝑡𝑜𝑡𝑎𝑙(𝐴ℎ) = 𝐶 ∗ 𝑇 ∗ 𝑀 ∀𝑛                                                          Equation 5.   

 



87 
 

To assess potential risks of ENM use, economic and environmental aspects were also considered. 

Whereas the approach described above maximizes energy performance gain per amount of CNM 

added, it is also possible to normalize CNM usage according to environmental or economic 

attributes. From an economic standpoint, relative performance gain was normalized to material 

costs associated with incorporating potential CNMs into either OPV cells or LIBs (Ratier et al. 

2012; Riesz and Elliston 2016) (Equation S3 and Tables S5-S6). To represent environmental risk, 

relative performance gain was normalized to cumulative energy demand (CED) (Louwen et al. 

2016), the net life cycle energy invested to produce CNMs required for the portfolio, which is an 

indicator that typically correlates with most key life cycle environmental impacts, like 

acidification or ecotoxicity (Huijbregts et al. 2010). CED values used were calculated from LCA 

literature and the amount of CNM contained in each application (Equation S2 and Table S7). An 

example of the process and parameters utilized in the model are demonstrated in Figure 1 with 

OPV input data used shown in Table 1. The raw performance, CED, and cost data collected can 

be visualized in Figure S1 for each case study with the adaptation of components of a financial 

portfolio optimization to their ENM analogs in Table S8. 

 

Figure 1.  Portfolio optimization conceptual diagram outlining the steps taken to calculate optimal material portfolios. Example 

model inputs are shown for the OPV case where the data described in step 2 can be found in Table 1.   
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Table 1. Performance, Cost, CED, and Worldwide Production values for each of the materials used in the model were simulated 

using the values in this table. Materials that include low/high values in the table below were estimated using a uniform 

distribution. Materials that include only one value were estimated using a normal distribution.   

Materials 

Performance 

(g/W) Cost ($/g) CED (GJ/kg) 

Worldwide Production 

(t/year) 

OPV Case 

Study Low High Low  High Low High Low  High 

C60 0.0016 0.54 16 134 35.5 0.15-0.60 5.5-80 

PC60BM 0.0038 0.038 173 475 85.7 0.15-0.60 5.5-80 

PC70BM 0.0028 0.021 2080 2960 123 0.15-0.60 5.5-80 

BisPCBM 0.018 1,120 87.7 0.15-0.60 5.5-80 

ICBA 0.0084 1,110 55.7 0.15-0.60 5.5-80 

Graphene 0.019 0.16 70 500 1,000 573 1320 

SWCNT 0.01 0.048 77 849 93 328 26 359 

MWCNT 0.0028 5.44 75 65 295 1,990 13,700 

 

Scenario Development 

To address emerging and uncertain demand for CNMs, scenarios were used to assess how CNM 

portfolios change under different market, technology, or supply conditions. For example, current 

CNM availability is largely goverened by demand from research and development activities, as 

these materials are not yet widely used in commercialized technologies. If, in the future, this 

demand were to vastly increase, for example, to deploy widespread solar technology to meet a 

climate goal, supply may respond in a perfectly elastic manner, as CNMs are typically produced 

from readily available precursors, like copper and nickel acetylacetonates for synthesizing CNTs 

from carbon monoxide (Nasibulin et al. 2003). Conversely, CNM supply could also be 

constrained by time delays in ramping up production infrastructure or by unexpected material 
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scarcity issues (potential natural graphite supply disruption from changes in government policy 

(Olivetti et al. 2017; Feytis 2010).  Another perspective would be if CNM use continues to be 

completely opportunistic, wherein these materials are selected when performance, availability, 

and cost align with current technical needs rather than a target demand. The portfolio model 

should provide robust decision assistance in any of these cases. Thus, performance and risk 

factors were evaluated through multiple scenarios that considered impacts of monetary and 

energy investments from incorporating CNMs into OPVs and LIBs as well as potential 

considerations of CNM use: constrained vs. unconstrained supply and variable vs. fixed demand. 

To account for possible material supply constraints, global production quantities of each material 

were used (Table S1) to compare current production volumes to the optimized level of demand 

in the portfolio (Piccino et al. 2012). Constrained and unconstrained scenario applications are 

used to address varying stakeholder interests: Policy makers establishing alternative energy 

production strategies at a high-level may be interested in insights created through unconstrained 

scenarios; in contrast, an individual firm facing very specific supply-chain conditions (e.g. 

required, but scarce material input), and/or supply-chain risk may be interested in material 

implications of constrained scenarios. Because supply is currently based on limited demand, 

especially in the case of pre-commercial applications, and is not constrained for technical or 

scarcity reasons, it is conceivable that the materials could ultimately be produced at a much 

greater scale. Therefore, an unconstrained supply scenario was generated to represent a virtually 

unlimited supply of materials. The demand of the materials was also evaluted through an 

opportunistic use of CNMs vs. a goal-oriented demand (meeting renewable energy targets). To 

determine if CNM-use in OPVs could meet the U.S. Energy Information Administration’s (EIA) 

Clean Power Plan (CPP) 2040 goal for solar, 1.5% of the 2040 Watts prediction value was set as 
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the target goal for the OPV demand scenario (Table S9). For the LIB case, the demand scenario 

was constrained to meet 2040 EIA electric vehicle predictions from the CPP (Table S10). All 

sixteen iterations of the model can be found in Table S12 where the case study application, 

availability and optimization are described for all scenarios. Equation 7 represents the model 

supply constraint where M is amount of material and A is material worldwide production 

quantity available.  

∑ 𝑀 ∗ 𝛼  ≤ 𝐴                                                    Equation 7.  

Sensitivity Analysis  

To understand the sensitivity of model inputs, Monte Carlo simulation was used to show 

different output probabilities and risks for each scenario analysis performed. Performance output 

ranges were simulated using uniform and normal distributions, selected based on data available 

in the literature, by substituting a range of values for inputs that are uncertain. @Risk was used 

to calculate optimization model outputs by changing the amount of each CNM used in the 

portfolio to find the optimal return (Palisade Corporation 2017). 

In the stock market, portfolio optimization utilizes historical price data for stocks collected over 

time to inform investment decisions. Analysis of nano-enabled technologies do not have the 

advantage of a significant body of historic data, because technology is still emerging and 

evolving rapidly. To account for this uncertainty while also adding robustness to the model, data 

variability was simulated by assessing variability across literature reported performance data 

(often collected at lab scale). However, we anticipate that the methodology can easily be 

augmented as more data become available, while also informing material design and selection 

decisions with best currently-available information.   
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Results and Discussion  

The results presented here suggest what optimized portfolio of CNMs will provide the greatest 

performance improvements to the two analyzed renewable energy technologies with least costs 

and/or environmental impacts (CED). The portfolios are shown for OPVs and LIBs for the 

constrained and unconstrained supply and fixed and variable demand scenarios.  

OPV Results: Supply and Demand Scenarios 

In the baseline unconstrained supply scenario (Figure 2A), the model selected three CNMs to 

achieve a diverse portfolio that would hypothetically minimize variance in power (W) while 

maximizing the possible power rating of the portfolio. C60 ICBA was selected by the model as 

the largest share of the OPV portfolio because it has the highest performance power rating. In the 

constrained supply scenario (Figure 2B), material availability was limited to the current 

worldwide production of each material. MWCNT was thus selected as the largest portfolio share 

because of its high-power rating, smaller variance, as well as its large production compared to 

other CNMs. While MWCNTs were selected under both supply scenarios, C60 ICBA and C60 

PCBM are minimally or not at all selected. Results suggest that the portfolio could have selected 

more of other high performing materials (i.e. ICBA) but ran out of availability for the 

constrained supply scenario.  
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Figure 2. The OPV CNM optimal portfolios for the unconstrained supply scenario baseline case: maximizing performance while 

minimizing variance (2A) and the constrained supply scenario under the same optimization conditions (2B). C60 ICBA was 

selected as the largest portfolio share because it has the highest power rating as shown in Figure 1 for the unconstrained supply 

case yet MWCNT holds the largest share in 2B due to its large availability and smaller variance value. 

In the remaining supply and demand scenarios (Figure 3), C60 ICBA was not selected to meet 

economic and environmental objectives because while there is a high-power rating, there is a 

premium for the high price and CED associated with its production and integration into OPV 

cells. The model instead selected a single material to meet the scenario objectives where 

MWCNT was selected when minimizing cost because it has the lowest price and C60 was 

selected when minimizing environmental impacts because it has the lowest CED value. While in 

most cases a diverse portfolio of stocks or materials will maximize return while minimizing 

variance, there are instances in which portfolio optimization will choose a portfolio comprised of 

only one material or stock. Given the variance values used as inputs for the model as well as the 

variability that the model builds into the optimization itself, these scenarios minimize variance 

and maximize output with a portfolio made up of one material because the benefit of 

diversification is outweighed by the relatively small variance and high output relative to the other 
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materials.  In the goal-oriented EIA demand scenario with unconstrained supply, the model 

selected seven materials to meet 1.5% of the predicted EIA solar demand because they 

contributed to the target portfolio power goal while minimizing the variance in the overall 

power. In contrast, the EIA demand scenario with constrained supply was not able to meet 52% 

of the predicted demand given the current worldwide material availability.  These results can be 

used as a justification to accelerate research funding and production for promising materials, like 

C60 ICBA, which despite being energy and cost intensive, provides high energy efficiency, and 

scaling up has the potential for the greatest impact on OPV energy performance.  

 

Figure 3. The OPV CNM optimal portfolios for both the supply scenarios: the economic case (Max W/$, Min Var) and 

environmental case (Max W/CED, Min Var) given opportunistic demand. MWCNT was selected for both supply scenarios when 

the performance was normalized to the dollars invested because it is the cheapest material whereas C60 was selected when the 

performance was normalized to the energy invested due to the lower CED value. In the goal-oriented demand case, both 

unconstrained and constrained supply were evaluated. The model selected seven materials under unconstrained supply to meet 

the projected power and since the portfolio was diverse, the variance was minimized. In the constrained supply case, 52% of the 

demand was not able to be met given the current material supply and therefore more material will need to be produced to meet 

these goals or performance will need to be improved for the applications. 
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LIB Results: Supply and Demand Scenarios 

Similar to the OPV case, the return (capacity) of the LIB portfolio under different scenarios was 

optimized. For the baseline unconstrained supply scenario (Figure 4A), the model selected five 

CNMs with the largest share allocated to Si/SWCNT at 57%. This material has the highest 

performance capacity when normalized to the amount of material added to the anode. In the 

constrained supply scenario (Figure 4B), the material availability was limited to the current 

worldwide production of each material. The incumbent anode material, graphite, was selected as 

the highest portfolio share due to its large production capacity compared with the CNMs which 

currently do not have the same demand. The results suggest that the portfolio could have selected 

more of the higher performing, lower variance materials such as Si/SWNCT but did not have 

enough current availability to overcome the supply of graphite. These results can inform future 

investment in research, development, and infrastructure that may prioritize high-performing 

ENM options.   

 

Figure 4. The LIB CNM and incumbent material portfolios for the unconstrained supply scenario baseline case: maximizing 

performance while minimizing variance (4A) and the constrained supply scenario under the same optimization conditions (4B). 

Si/SWCNT was selected as the largest portfolio share because it has the highest performance capacity when normalized to the 

amount of material added to the anode as shown in Figure 1 for the unconstrained supply case yet graphite holds the largest share 
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in 4B due to its large availability. Graphite is currently used worldwide and has a greater demand than the CNMs included in the 

portfolio. Over time, the demand profiles of all the materials may change which could skew the results of the constrained supply 

scenario.  

The LIB CNM optimal portfolios for the remaining supply, demand, and risk scenarios are 

shown in Figure S2 in the SI file. Graphite is the optimal material selected in each of these 

scenarios when the capacity is normalized to cost and CED value in both the unconstrained and 

constrained supply scenarios. Graphite has a much lower cost currently because it is farther 

along the technology maturity spectrum and has had time to reach economies of scale. It also has 

the lowest CED value because it does not necessitate the same kind of processing steps that 

ENMs do. In the goal-oriented EIA demand scenario with unconstrained supply, the model 

selected graphite to meet the predicted EIA electric vehicle demand. Once again, even in the 

unconstrained supply cases, the maximized performance relative to the variance of one material 

outweighed a diverse portfolio with many materials.  In the EIA demand scenario with 

constrained supply, the portfolio could meet the predicted electric vehicle demand given the 

current material availability of graphite and the CNMs (Figure S2). Figure 4B and Figure S2 

suggest availability and criticality of these materials (e.g. long-term availability of graphite 

(Olivetti et al. 2017)) may play a significant role in cost-effectiveness and thereby adoption of 

clean energy technologies. Firms should consider this in production planning decisions and 

national policy makers should be aware when determining incentives. 

Sensitivity and Uncertainty Analysis 

If OPV and battery firms can adopt CNMs and scale-up without compromising material performance, 

then these innovations may catalyze more widespread adoption of solar as well as electric and hybrid 

vehicles. OPVs and LIBs with CNMs are currently not on the market and the model assumes that 

commercial-level OPV and battery production with CNMs are feasible. There is uncertainty inherent in 

the model due to the lab-scale performance values used from the literature, the unknown rate at which the 
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technologies and materials will reach economies of scale, and the lack of widespread market availability 

and demand at this time. To account for the possibility of disruptive material innovation, a scenario was 

created to evaluate the changes in the OPV portfolio from a large performance increase in a single 

material. In Figure S1, graphene has the lowest OPV performance relative to the other CNMs. Alcalde et 

al. describe graphene as an up-and-coming disruptive material due to its unique properties that enable its 

use in a variety of products and technologies (Alcalde et al. 2013). In the OPV literature, graphene has 

increased its power conversion efficiency from 0.4% (Chen et al. 2013) at its introduction to 3.57% in 

2015 (Kim et al. 2015)—an improvement factor of 9. Assuming the same improvement factor, the 

sensitivity of the OPV unconstrained supply portfolio was evaluated. While graphene was excluded from 

the portfolio under the unconstrained supply baseline scenario (Figure 2A), the material comprised 17% 

of the portfolio when graphene performance was increased (Figure 5). These results show that the model 

is sensitive to large increases in performance and can account for disruptions if they occur.  

 

Figure 5. The OPV CNM portfolio for the unconstrained supply scenario for the baseline case: maximizing performance while 

minimizing variance. MWCNT and C60 ICBA once again were selected as large portfolio shares along with graphene due to the 

disruptive innovation in graphene’s power rating performance.   

Concerns over the supply of battery-grade graphite have been raised for quite some time (Gaines 

et al. 2009; Wadia et al. 2011), however with recent goals from companies and countries to 
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completely phase out internal combustion engines, the demand from the electric vehicle sector is 

expected to increase exponentially.  Such an increase will almost certainly lead to supply 

constraints as competition among industries for these materials grows (Olivetti et al. 2017).  This 

work examines this potential challenge with a scenario where graphite supply is reduced by 30% 

(Figure S3); in reality, market signals like price will actually increase dramatically due to a 

supply constraint but it is unlikely that the renewable energy sector will be able to pass on such 

increased costs to consumers compared to other competing sectors (Sensfuß et al. 2008). An 

extreme case where graphite was eliminated from the portfolio as a result of insufficient supply 

relative to demand was also evaluated (Figures S4 and S5), resulting in portfolios with heavy 

reliance on graphene and silicon/single-walled carbon nanotubes. Although these CNM-enabled 

technologies are not widely available currently, the information from the model can be useful in 

helping firms decide if they should invest in the research and development of the new technology 

by understanding whether or not the technology can meet demand projections, reduce costs, and 

withstand disruptive scenarios.  

Broader Implications 

While research has begun to evaluate ENM trade-offs and net benefits (Eckelman et. Al 2012; 

Gilbertson et al. 2015; Zhai et al. 2016), the opportunity remains for new approaches that factor 

in performance, environmental risks, and economic considerations, which are an important part 

of the material system and decision-making. A portfolio approach is needed to evaluate the 

tradeoffs of emerging contaminants such as ENMs because of their potential for widespread use 

in multiple applications. For example, this portfolio approach could be combined with research 

that compares net life cycle energy benefits of the same ENMs in different applications building 

on the approach of Zhai et al. who compared human health benefits and risks of CNTs in 
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different application (Zhai et al. 2016). The portfolio methodology is flexible and could also be 

expanded to include other environmental indicators such as freshwater ecotoxicity, building on 

work by Eckelman et al. and Deng et al., which have pointed out the importance of considering 

upstream life cycle impacts in addition to direct toxicity risks (Eckelman et al. 2012; Deng et al. 

2017).  

The results from the model show that the decision to adopt CNMs into the OPV or LIB product 

portfolio is dependent on a number of trade-off factors including the price, the environmental 

impact, and the overall power/capacity output of the material. The results can inform investment 

and design decisions when faced with emerging material uncertainty, speculation, and possible 

disruptive innovation. From a sustainability perspective, an improved OPV for powering 

electronics or LIB for an electric vehicle could help extend product lifespans, reduce fossil 

energy consumption, and substitute ENMs for scarce incumbent materials.  Results obtained 

from best currently-available data suggest that MWCNT is a promising acceptor material for 

OPV technology and may be a good candidate for greater research and development. However, a 

change in the performance of one material can alter the entire portfolio, proving that a 

combination of nanomaterials is necessary to reduce variability in the amount of power OPVs 

can output for energy security.  

For the LIB scenario, the incumbent material, graphite, was selected over many of the CNMs 

considered, due to high current availability, low costs, and smaller environmental impacts. 

However, graphite has increasing scarcity concerns (Feytis 2010; Olivetti et al. 2017) that could 

impact its use in this sector, underscoring the utility of portfolio optimization for informing 

potential ENMs as substitutes in battery anodes. With this new approach to guiding material use 

and understanding possible portfolios in a suite of technologies, portfolio optimization can help 
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material stakeholders to invest in materials and inform design decisions, predict unintended 

consequences, and support emerging contaminant policy.  If the objective of the user is to scale-

up manufacturer's least cost pathway, users of the model can utilize the values that show the 

optimal portfolio when cost is minimized. Results can also inform which materials should be 

prioritized for research and development to increase pace and decrease cost of full-scale 

deployment in the event of risks or shortages for incumbent materials, like graphite. The 

integrated model presented herein also has the potential to advance the modeling of material 

selection and tradeoffs in other emerging technologies beyond the nano-enabled systems 

discussed here. The portfolio perspective combines multi-objective optimization and uncertainty 

analysis through a holistic lens that can be used in different contexts to inform how materials 

should be invested considering both the risks and benefits of the material portfolio. For 

example, this methodology could be used to compare various blends of materials required 

within a system, such as the combinations of metallic cathode chemistries in a lithium-ion 

battery (Appiah et al. 2016), material combinations for high entropy alloys (Fu et al. 2017), or 

biofuel blends for transportation applications (Lin et al. 2013). The model can also be utilized to 

select the ‘best’ materials under different objective scenarios e.g. considering the criticality or 

scarcity in a material system (Gaustad et al. 2017), choosing the optimal material when 

designing electronic product communities (Ryen et al. 2015), or utilizing the model to once 

again to inform nano-enabled products such as in agricultural (Jain et al. 2016) applications. 

Furthermore, future versions of the model can be adapted to account for multiple ENM 

materials that may coexist in a single application if the ratio of materials is known, such as case 

presented here where a mix of nano-scale silicon and SWCNT are combined in a Li-ion battery 

(Lee et al. 2016). The resulting portfolio that the model selects can help inform future research 
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and development, design considerations, reduce economic and environmental risks, and ensure 

environmental health and safety of the products throughout their life cycle through the use of 

this proactive modeling tool.   
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS  

 

In the age of sustainable development, we are faced with a growing number of global challenges; 

However, these challenges can also be viewed as windows of opportunity to create positive 

social, environmental, and economic change. The challenge of introducing novel materials and 

technologies without consideration of their sustainability impacts has historically led to 

unintended consequences. To avoid such negative outcomes, potential sources of pollution must 

be proactively identified and assessed to minimize risks (Persson et al. 2013). The same tools 

and methods that have been applied in the past to evaluate chemical pollution impacts may not 

always be suitable for emerging materials like ENMs. Thus, the goal of this research effort was 

to apply novel empirical and modeling approaches to resolve key uncertainties surrounding 

potential consequences of ENM use in clean energy. 

Policy Implications 

As demand for new and improved products and technologies increases, development of novel 

materials to help meet this demand also increases. Currently, TSCA’s Interagency Testing 

Committee recommends up to 50 substances/year for testing (EPA 2016). If a substance is not 

recommended for testing, the consequences of exposure to that chemical are relatively unknown.  

Additionally, the testing that is performed has been found to “…remain biased toward single-

species tests done in lab…” (Newman 2009) rather than multiple species tests. This approach is 

criticized, as results could easily be skewed: even if the one type of organism tested is not 

impacted by the exposure, another different organism may actually be more sensitive or 

susceptible to that same chemical. The TSCA structure, meant to advise the health and safety of 

chemical substances, does not currently accommodate the extensive testing that may be 

necessary for emerging contaminants with unique properties and capabilities. Exhaustive testing 
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may include long-term exposure effects, interaction with legacy pollutants, and changes in 

chemical behavior throughout different release media. Unfortunately, exhaustive testing is time-

consuming and expensive and there are concerns that its requirement may hinder innovation and 

technology development (Malloy et al. 2011).  

To begin to address emerging contaminant challenges proactively, there is a disconnect between 

decision makers and researchers that must be addressed. While countries in the European Union 

and North America are beginning to develop priority lists for chemical testing and regulation 

(Taheran et al. 2018), new substances and chemicals are still released into the marketplace via 

new products and production inputs at a rapid rate throughout the world, as underscored by the 

planetary boundary research on chemical pollution (Rockström et al. 2009). Researchers 

recognize that emerging contaminants all have different properties and capabilities and can also 

be released at low concentrations. This can make it difficult to quantify and characterize these 

contaminants, and to fully understand their fate and impacts over space and time (Taheran et al. 

2018). Risk assessment screening tools to aid in identification and ranking are being developed 

for emerging contaminants, such as the Ashby charts for nanomaterials (Falinski et al. 2018). 

However, utilization of decision-making tools remains a challenge, due to the lack of reliable and 

available data on a growing list of chemicals. Even where data are available, much of the data 

are not considered standard; the reliability and comparability of the data is a challenge due to 

varying testing protocols (Ostraat et al. 2013). While many materials have standard protocols for 

testing, emerging substances with novel properties may not conform to the same protocols; there 

is a need for updated testing protocols that are better able to capture and cover the increasing 

range of emerging substances. Thus, research priorities that can inform policy regulations for 

emerging contaminants include: 1) expanded and reliable risk assessment data for emerging 
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substances based on standard protocols, 2) decision-making tools that can aid in the priority 

identification and ranking of these materials, and 3) decision-making tools to facilitate improved 

communication between decision-makers and researchers.  

Summary and Key Takeaways 

• Engineered nanomaterials can catalyze the performance of clean energy technologies, 

helping them to compete in a fossil-fuel dominant world. 

• Whereas much of the nanomaterial research focuses on the potential ecotoxicity impacts, 

this dissertation emphasizes the benefit of offsetting fossil-fuel emissions and minimizing 

environmental impacts. 

• Through novel empirical and modeling studies, this research contributed to filling 

knowledge gaps and addressing all four pillars of sustainability. 

o First, the impacts on the environment were assessed through ecotoxicity empirical 

assays, predation studies, and spatially explicit risk assessment. 

▪ Ecological impact results demonstrate the utility of assessing multiple ENM 

forms and looking beyond acute ecotoxicity studies and incorporating more 

chronic, multi-species, and multi-trophic level assessments to inform the 

magnitude of environmental risk, which can inform future research on 

emerging nanomaterials and other novel materials. 

▪ Predicted ENM emissions are within the buffer zones of sensitive ecosystems, 

yet only reach potential ecotoxicity levels during an accumulation period of 5-

10 years under the high release scenario. 
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o Next, this effort evaluated ENMs that maximize performance of clean energy 

technologies while minimizing risks (economic and environmental), which can be 

used to inform policy and industry stakeholders. 

▪ Results suggest the decision to adopt specific ENMs into clean energy 

technologies is dependent on the price, environmental impact, and overall 

material performance, but that for most cases, a diverse material portfolio could 

minimize risks, similar to what is observed in the financial market. 

• Chemical pollution is an important global challenge. To address this challenge, we can be 

proactive and minimize potential consequences while supporting technological progress 

and innovation with design and decision-making tools.  

Future Work 

Fullerene Use Phase Releases 

Much of this research effort focused on the manufacturing stage of the carbon nanomaterial life 

cycle. However, future work should expand on these efforts to also include impacts during the 

use phase of clean energy technologies as well as the disposal phase. Though the ecotoxicity 

studies of the fullerenes alone inform potential impacts if the material were to be released at the 

manufacturing stage, these materials are more likely to be released during the use-phase or at a 

product’s end-of-life. One potential fullerene release pathway during the use-phase (OPV cells) 

was studied in Chapter 2 to understand the impact if released into freshwater ecosystems. These 

results were preliminary and demonstrated a significant difference between the OPV replicates 

relative to the control. However, it was not clear if the toxicity was attributed to the fullerenes, 

the OPV dyes, or the fabrication processing steps from our results. Future experiments could 

improve the experimental design to isolate the various materials to better inform possible OPV 
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material release risks. As demonstrated in Chapters 4 and 5, fullerenes are also integrated into 

lithium-ion battery anodes. Future work could incorporate this clean energy technology to inform 

use-phase risks. End-of-life management and the associated life cycle impacts of these 

technologies is uncertain (Raugei and Winfield 2019) yet risks could be simulated using TCLP 

landfill methods (Dutta et al. 2018) to begin to quantify possible end-of-life release impacts. The 

preliminary methods and results for use-phase ecotoxicity can also help inform life cycle impact 

assessment (LCIA) for fullerenes (C60, C70) and the fullerene derivative, PCBM to quantify 

differences over the total life cycle.  Results can be used to calculate ecotoxicity impact 

characterization factors that currently do not exist for these materials because of the uncertainty 

in the nanomaterial life cycle, especially in the use and disposal phase.  

Natural vs. Engineered Fullerene Impacts 

This work specifically focused on engineered nanomaterial forms, but these materials also occur 

naturally in the environment (e.g. soot from fires). It is also difficult to differentiate between 

natural fullerene soot and engineered fullerenes in the environment. The relative magnitude and 

impacts of potential ecotoxicity impacts of natural forms could be an interesting area to explore. 

However, there are methods that can aid with this identification such as fluorescence labeling of 

the materials (Zanker and Schierz 2012) and imaging to assess differences in shape and size as 

shown with nano-iron oxide particles (Von der Kammer et al. 2014). The toxicity of natural and 

engineered nanomaterials could vary due to the functionalization of many of the engineered 

forms such as C70 and PCBM (Sharma et al. 2015). Thus, empirical studies could be performed 

to assess the 1) direct ecotoxicity impacts of natural and engineered forms and 2) the potential 

fate and cascading effects of the natural and engineered nanomaterials in a freshwater ecosystem 
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as performed in Chapter 3. The distinction between natural and engineered forms in the 

environment is critical in assessing the risk of engineered fullerenes. 

Conclusions and Recommendations 

 

Emerging pollutants are human-driven challenges, but there is an opportunity for human-driven 

solutions (Rockström et al. 2009) to address these challenges. ENMs can catalyze the 

performance of clean energy technologies, helping them to compete in a fossil-fuel dominant 

world. Whereas much of the nanomaterial research focuses on the potential ecotoxicity impacts, 

this dissertation emphasizes the importance of also considering potential benefits of ENMs in 

clean energy that offsets fossil-fuel emissions and minimize environmental impacts.  

 

Figure 1. From improved performance of clean energy technologies, environmental impacts and emissions can be avoided by 

displacing fossil-fuel use (Babbitt and Moore 2018).  

The results from this research can be used to inform material selection, sustainable design of 

products and technologies, and emphasizes the benefit of adding chronic, multi-species, and 

trophic-level experiments to increase the understanding of impacts. As results have shown, there 



107 
 

are differences in impacts with varying fullerene forms. Thus, this work also informs future 

academic research in life cycle assessment modeling of nanomaterials as well as nanomaterial 

design and risk assessment. Ultimately, the differences in fullerene forms must be accounted for 

in chemical testing protocols as implemented in policies such as TSCA. Much of this research 

effort focused on the manufacturing stage of the ENM life cycle. But, knowledge gaps remain 

for the ENM use and disposal phases. Preliminary results of OPV leachates demonstrate that 

there were not significant differences among OPV treatments for Daphnia pulex. However, 

future work should expand on these efforts and investigate other likely ENM release pathways. 

Additionally, while a spatial and temporal perspective predicted potential ENM emissions during 

the manufacturing stage, future research could identify potential locations of release from 

commonly used products and/or disposal sites. The results of the portfolio optimization tradeoff 

analysis highlighted ENMs that could optimize performance for OPVs (e.g. ICBA and MWCNT) 

and LIBs (Si/SWNT). It is recommended that future clean energy technology research consider 

these materials and increase research and development efforts. Results also emphasized scarcity 

implications of graphite, the incumbent anode material for LIBs, which underscores the 

importance of considering other anode materials as electric vehicle adoption and LIB use rises. 

These novel modeling efforts can support the development of future models and are tools that 

can help aid decision-making during the design process.  

In addition to the empirical and modeling research performed in this dissertation, another goal 

was to increase public understanding of engineered nanomaterial use, benefits, and potential 

impacts. A collaboration between researchers at Golisano Institute for Sustainability, researchers 

in the Environmental Science program at RIT, and Rochester’s World of Inquiry School No. 58 

for three years resulted in nanomaterial outreach lesson modules to help teach students at the 
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high school level. These outreach modules were featured in the National Science Teacher 

Association (NSTA) Free Resources newsletter, Dec. 2018.  The project, Nanomaterials: To Use 

or Not to Use, was designed for high school biology and AP Environmental Science 

students.  This module presented four lessons; Exploring nanomaterials, Introduction to material 

flows, Effects of emerging pollutants, and Communicating results.  The goal of this effort was to 

share nanomaterial outreach education materials with a large audience of teachers and students. 

These materials are freely available via the web: https://www.rit.edu/gis/nanomaterials-use-or-

not-use. Community outreach efforts can help to increase societal awareness and education of 

nanomaterials, an emerging challenge as novel engineered nanomaterials are increasingly 

developed and introduced in the global market.  

Despite the growing number of global challenges, novel tools and methods can be used to 

evaluate chemical pollution impacts, resolve uncertainties of emerging contaminants like ENMs, 

and inform critical knowledge gaps. Results from these tools can help to resolve the disconnect 

between decision-makers and researchers. Through intentional and proactive approaches, we can 

create, use, and manage chemical technology that provides benefits to the world while 

minimizing negative consequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.rit.edu/gis/nanomaterials-use-or-not-use
https://www.rit.edu/gis/nanomaterials-use-or-not-use
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APPENDIX A 

 

Table 1. Literature review of fullerene solubilization methods used to inform methods development for ecotoxicity experiments. 

Fullerene Solubilization Methods 

Title 

Amount 

of 

Fullerene 

Dissolved 

in  

Amount 

of 

Solvent/

Water 

Type of 

Preparation 

Stirring 

Rate Time Preparation for Analysis Concentration Analysis 

Naphthalene 

Adsorption and 

Desorption from 

Acqueous C60 

Fullerene 

Cheng et al.  

mg, 21+/-

0.1 and 

24+/-0.1  

Electrolyte 

solution 

mL, 0.1 

headspace 

Magnetic 

stirring: 

Sealed with 

teflon-septum 

caps, stirred 

on a magnetic 

stirrer 

rpm, 

1000 

days, 

2 

Adsorption induced by 

injecting naphthalene stock 

solution into two sample 

vials. 

C60 was sampled after 2 days 

of mixing and dissolved in 

toluene. It was analyzed by 

UV-vis spectrophotometer. 

Analysis of 

Fullerene C60 

and Kinetic 

Measurements 

for its 

Accumulation 

and Depuration 

in Daphnia 

Magna 

Tervonen et al.  

mg, 250 

of 

crystalline 

fullerene  AFW mL, 500 

Magnetic 

stirring 

rpm, 

1000 

days, 

28 

The fullerene suspension 

was filtered with glass 

fibers to remove the largest 

agglomerates. 

Concentration was analyzed by 

extracting fullerenes to toluene 

and recording spectra from 280 

to 600 nm using a 

spectrophotometer and 

recording a calibration curve at 

335 nm.  

Ecotoxicology 

of carbon-based 

engineered 

nanoparticles: 

Effects of 

fullerene (C60) 

on aquatic 

organisms 

Oberdorster et 

al.  

mg, 500 

fullerene  

Milli-Q 

Water mL, 1000 

Water-stirred 

(better than 

THF which 

contributes to 

toxicity) - 

days, 

56 

Stirring produces water-

soluble fullerene at up to 

35 ppm concentrations in 

milliQ water. In full-

strength artifical sea water, 

water-soluble fullerene 

came out of solution 

Concentration is measured by 

first oxidizing the fullerene 

solution with a strong oxidant 

(bleach or magnesium 

persulfate) and extracting 

toluene. The absorbance of 

toluene is measured at 332 nm 

compared to a standard curve.  
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Distribution of 

Fullerenes 

between 

Sediment and 

Water in 

Freshwaters 

Pakarinen et al.  

mg, 

100+/-0.1 

crystalline 

fullerene AFW mL, 500 

Magnetic 

stirring 

rpm, 

1000 

days, 

28 

Sediment (5 g ww) and 

AFW sample placed in 10 

cm long, 50 mL capped 

glass tube. Fullerene added 

to produce 8 

concentrations with the 

final volume at 30mL. 

Tubes then placed 

vertically in rotary mixer 

around horizontal axis at 6 

rpm for six days.  

Sampling with centrifuging so 

that overlying water could be 

replaced with clean water after 

six days. Water samples of 1.5 

mL were analyzed with the help 

of toluene extraction and 

absorbance measurements at 

335 nm to record amount of 

fullerenes. Clean AFW added 

to test tubes and 

mixing/sampling procedures 

were repeated on the 1st, 2nd, 

4th, and 8th day after the 

starting day. 

Extraction and 

high-

performance 

liquid 

chromatographic 

analysis of C60, 

C70, 

and [6,6]-phenyl 

C61-butyric acid 

methyl ester in 

synthetic and 

natural waters 

Bouchard et al.  

mg, 100 

of 

fullerene 

Appropriat

e aqueous 

medium mL, 400 

Extended 

stirring 

technique, 

magnetic 

stirring - 

days, 

13 

Stirring was terminated 

and the suspension sat for 

an hour before sampling. 

Several aliquots were 

collected, specifically a 1-

mL aliquot that was placed 

in a 4-mL extraction vessel 

containing 100 micro 

Liters of 1 M Mg(ClO4)2. 

A 1-mL volume of toluene 

was added and it was 

vortexed and placed 

horizontally on an orbital 

shaker at 200 rpms for 30 

minutes. 800-mL of the 

sample was removed after 

15 minutes from the 

toluene supernatant layer 

for analysis by HPLC-UV. 

The samples were then 

frozen and three sequential 

extractions were taken. The 

fullerene mass extracted 

each time was determined 

by the HPLC. 

Fullerene calibration standards 

were prepared by dissolution in 

toluene and sonication. A 

Dionex Ultimate 3000 HPLC 

system with UV/vis-DAD was 

used to perform quantitative 

analyses. PALS was used to 

estimate the electrical potential 

of the fullerene particles in 

suspension. 
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Table 2. Literature review of fullerene concentrations used in past fullerene experiments. 

Literature Review of Fullerene Concentrations Used in Experiments 

Literature 

Source 

Concentration 

Added  

Medium 

Used Method Results & Observations 

Pakarinen 

et al. 2011 10-50 mg/kg Sediment 

L. variegatus were exposed to 10 and 

50 mg fullerenes/kg sediment dry mass 

for 28 days. Stock solutions made by 

mixing 100 mg fullerene in 500 mL 

AFW. Concentration was found by 

extracting fullerenes to toluene and 

measuring absorbance. After the 

fullerene suspension was spiked to 

1000 g wet Lake sediment, it was 

mixed for 4 hours by vigorous stirring 

using a rotating metal blade.  

To quantify fullerene, sediments were dried overnight in an oven 

at 105 degrees C and pulverized in a mortar. Test sediments (60 g 

ww per container) were mixed, weighed, and added to 300 mL 

glass jars. 15 replicates were prepared at nominal dry mass 

concentrations and 15 control jars were also prepared. 100 mL of 

AFW gently added to sediments to minimize re-suspension. 

Sediments settled for 1 day and a few millimeter layer of quartz 

sand was deposited onto the sediment. Fullerenes did not affect 

the burrowing behavior of the worms and only minimal effects 

such as decreased depuration efficiency and pellet production, 

smaller masses, and damaged cuticle fibers were shown. 

Wang et al. 

2014 

0.05-11.33 

mg/kg Sediment 

Toxicity screening test and 28-day 

bioaccumulation test for L. variegatus 

were performed. 

No mortality observed and the BSAF was relatively low. An 

oxidative stress indicator (CAT) showed elevation on day 14, 

which was the highest observed body residues in the study 

(199+/80 micrograms C60/kg dry weight sediment). 

Li and 

Alvarez 

2011 

2,000 mg/kg 

and 10,000 

mg/kg; 5,000 

mg/kg, 10,000 

mg/kg, and 

50,000 mg/kg Sediment 

Soil mixtures were tumbled and mixed 

overnight to achieve homogenous 

mixing. Phenanthrene was added to 

separate treatments as a positive 

control. 

Earthworms did not significantly avoid soil amended with C60 

powder during 48 hours. Worms lost weight during 28 day 

incubation because they were not provided food. At higher 

concentrations, the earthworm cocoon production was decreased.  

Van der 

Ploeg et al. 

2013 

0, 15, 154 

mg/kg Sediment 

Containers with soil and earthworms 

maintained under constant conditions 

(24 h light, 15 degrees C, 61% 

humidity). C60 was dissolved in an 

aqueous soil extract by stirring control 

soil in Milli-Q water (0.4 g soil/mL) for 

one hour. It was then filtered and C60 

was added to a part of the extract to a 

final nominal concentration of 2 g/L.  

First experiment had healthy adult earthworms exposed to the 

different concentrations for four weeks. 8 replicates and 40 

earthworms per treatment. The second experiment had offspring 

from parent earthworms exposed to the same C60 treatment for 

350 days. For the adult earthworms exposed to C60 for only four 

weeks, only one of the genes showed a clear concentration-

dependent change of expression in tissue homogenates. The 

study shows that earthworms exposed to C60 in soil can suffer 

adverse sub-lethal effects, which include loss of protective 

cuticle and altered gene expression of the whole organism.  
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Pakarinen 

et al 2014 

1-70 mg/L 

sediment 

Sediment/AF

W Mixture 

C60 solution added to sediment/AFW 

mixture, and mixed on a horizontal 

rotary mixer for 6 days 

c60 resolubilized slowly from the sediment, eventually reaching 

a steady state 

Oberdorste

r et al. 

2006 

Daphnid: 35 

and 30 mg/L 

Copepod: 0 

mg/L, 3.75 

mg/L, 7.5 

mg/L, 15 mg/L, 

and 22.5 mg/L Water 

10 neonatal daphnids per exposure 

group individually exposed to 40 mL 

water-soluble fullerene in RHW in 50 

mL glass beakers. Initial results taken 

after 48 h and then life-cycle assays 

performed for 21 days. Uptake study 

also performed exposing daphnid to 30 

ppm fullerene for up to 5 days. 

Copepods were also looked at and were 

observed in a 96-well plate at different 

concentrations. 

Daphnia reduced offspring production at 2.5 and 5 ppm. At the 

end of 21 days, fewer and smaller broods produced but surviving 

daphnids adapted to the nC60 exposure. In copecods, the high 

salt content of the seawater caused precipitation of fullerene and 

the max concentration that was seen was 22.5 ppm. 

Spohn et 

al. 2009 

6 mg/L, 12 

mg/L, and 24 

mg/L Water 

10 Daphnia offspring were exposed to 

the different concentrations and 

survival numbers were recorded after 0, 

18, 24, and 48 hours to calculate the 

EC50 value and compared to untreated 

controls. SEM was used to analyze the 

morphological appearance.  

The lack of mortality did not exclude any other subtoxic effects 

like behavioral changes or light exposure effects. THF suspended 

nC60 didn't shown toxic effects to Daphnia or A549 lung cells 

when side products were eliminated by additional washing steps.  

Tao et al. 

2009 

0.8, 0.7, 0.6, 

0.5, 0.45, 0.4, 

0.35, 0.3,0.2, or 

0 mg/L Water 

D. magna were maintained in an open 

2000 mL flask with 12 hours light, 12 

hours dark cycles. Sub-lethal 

concentrations were determined using 

48 h acute toxicity test as described by 

EPA Standard Procedure 2024. The 

LOEC of the daughter daphnids was 

used as the sub-lethal toxic 

concentration for the mother. 

3 physiological phenomena related to reproduction (death of 

fetuses, ability of mother to reproduce after exposure, and time to 

first brood) were evaluated. n-C60 accumulation in fetuses was 

much higher than in the mother, max concentration of 7000 

mg/kg.  

Gao et al. 

2009 1,000 mg/L Water 

200 mg C60 added to 200 mL natural 

water. Suspensions were gently mixed 

on a horizontal shaker to mimic waves. 

They were then filtered and then two 

toxicity tests were performed--

Ceriodaphnia dubia assay and 

MetPLATE test. 

High levels of C60 were stabilized in organic-rich Sr-1 and Sr-2 

samples reaching average concentrations of 1.62 mg/L and 3.09 

mg/L. Results show that the dispersion and toxicity of 

nanoparticles vary significantly with solution chemistry. 

Measured toxicity was not linearly correlated with the 

concentrations of suspended MNs as revealed by the two tests.  
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Hancock et 

al. 2012 

2, 1, 0.5, 0.1, 

and 0.01 mg/L, 

control also 

included Water 

Individual S. typhimurium TA 100 

colonies were used to inoculate DM 

media. The growth of bacteria was 

followed by measuring OD600 for 24 

hours. Mutagenicity was determined by 

the Muta-Chromoplate Analytical test 

Kit.  

Results showed that particles were heavily aggregated. Growth 

was impacted by C60 at concentrations greater than 0.5 mg/L 

over the course of 24 hours. C60 concentrations greater than 0.1 

mg/L were found to be mutagenic.  

Zhu et al. 

2006 - Water 

The current study investigates 

differences in acute toxicity to Daphnia 

magna between THF-solubilized and 

water-stirred-nC60 as arrange-find for 

further assays in adult male fathead 

minnow (FHM, Pimephales promelas). 

The daphnia 48-h LC50 for THF-nC60 

was at least one order of magnitude less 

(0.8 ppm) than that for waterstirred-

nC60 (>35 ppm). FHM were dosed 

with either 0.5 ppm of THF- or water-

stirred-nC60 for 48 h. There was 100% 

mortality in the THF-nC60-exposed 

fish between 6 and 18 h, while the 

water-stirred-nC60-exposed fish 

showed no obvious physical effects 

after 48 h. Water-stirred-nC60 elevated 

LPO in brain, significantly increased 

LPO in gill, and significantly increased 

expression of CYP2 family isozymes in 

liver as compared to control fish. 

The 48 h LC50 for THF-nC60 was considerably lower (more 

toxic) than the 48 h LC50 for water-stirred-nC60 (0.8 ppm 

compared to >35 ppm), respectively. 

Zhu et al. 

2008 

100, 50, 25, 10, 

5, 1, 0.5 mg/L 

Water, Milli-

Q 

Each of the powders was added to 100 

mL of reconstituted water prepared 

with Milli-Q water, 64.75 mg/L 

NaHCO3, 5.75 mg/L KCl, 123.25 

mg/L MgSO, 7 H2O, and 294 mg/L 

CaCl2, 2 H2O, in accordance with 

OECD. The suspensions were shaken 

vigorously at room temperature to 

obtain a final concentration of 1,000 

mg/L. 

The EC50 of immobilization and LC50 of mortality for C60 NPs 

were calculated as 9.344 mg/L and 10.515 mg/L, respectively. 
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Baun et al. 

2008 5-8 mg/L 

Water, 

prolonged 

stirring in 

Milli-Q - 

Addition of C60 increased the toxicity of phenanthrene more 

than 10 times when results were expressed as water phase 

concentrations. Uptake of phenanthrene was faster with C60. 1.7 

times higher steady state concentrations were found, but due to 

very fast clearance after transfer to clean water, accumulation of 

phenanthrene. 
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Table 3. Literature review of fullerene/toluene extraction methods used to inform methods development for ecotoxicity experiments. 

Toluene Extraction Methods from Literature 

Title 

Suspe-

nsion 

color  

nC60 

adde

d 

Emulsion 

agent 

added 

Toluene 

Added Mixing Time Settling 

Toluene 

Extraction/An

alysis 

Wave- 

length C60 Concentration 

Quantification of 

fullerene aggregate 

nC60 in wastewater 

by high-performance 

liquid 

chromatography with 

UV-vis spectroscopic 

and mass 

spectrometric 

detection 

Wang et al.  

Yellow

/brown mL, 5 

mL, 5 

(2% 

NaCl) mL, 5 

Vigorou

sly 

agitated 

minutes, 

30 

Settled until 

complete 

separation of 

acqueous 

and toluene 

phases 

1-cm UV-vis 

absorbance of 

C60 measured 

with UV-vis 

spectrophotom

eter 

nm, 

332 

Calculated using 

calibration curve from 

a series of known 

concentrations of C60 

in toluene. 

Quantification of 

fullerene aggregate 

nC60 in wastewater 

by high-performance 

liquid 

chromatography with 

UV-vis spectroscopic 

and mass 

spectrometric 

detection 

Wang et al.  

Yellow

/brown 

mL, 

40 

*amount 

not 

mentione

d, 

presence 

of salt 

avoided 

emulsion 

problem mL, 4 Shaker hours, 4 

Settled until 

complete 

separation of 

acqueous 

and toluene 

phases 

1-cm UV-vis 

absorbance of 

C60 measured 

with UV-vis 

spectrophotom

eter 

nm, 

332 

Calculated using 

calibration curve from 

a series of known 

concentrations of C60 

in toluene. 

Quantification of 

fullerene aggregate 

nC60 in wastewater 

by high-performance 

liquid 

chromatography with 

UV-vis spectroscopic 

and mass 

spectrometric 

detection 

Yellow

/brown L, 1 N/A mL, 10 

SPE 

cartridg

es 5-6 

mL/min 

and 

dried 

under 

vacuum N/A 

Concentrate

d with 

nitrogen to 

0.5 mL and 

diluted with 

toluene to 1 

mL. 

1-cm UV-vis 

absorbance of 

C60 measured 

with UV-vis 

spectrophotom

eter 

nm, 

332 

Calculated using 

calibration curve from 

a series of known 

concentrations of C60 

in toluene. 
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Wang et al.  

Detection of 

fullerenes (C60 and 

C70) in commercial 

cosmetics 

Benn et al.  N/A 

g, 

0.5-

1.5 

(cosm

etic) 

mL, 11.3 

of acetic 

acid 

(GAA) 

used to 

control 

emulsion 

mL, 5 in 

addition 

to mL, 5 

nanopur

e water 

and mL, 

2 of 100 

mM 

Mg(ClO

4)2 

Shaker, 

orbital 

table at 

35 RPM hours, 1  

Settled until 

complete 

separation of 

acqueous 

and toluene 

phases for 

about 

minutes, 20 

The toluene 

phase was 

sampled and 

evaporated 

under nitrogen 

and 1 mL was 

sonicated for 

3-5 minutes.  N/A 

LC-MS and APCI 

were used for analysis 

and quantification of 

fullerenes. 

Trace Analysis of 

fullerenes in 

biological samples by 

simplified liquid-

liquid extraction and 

high-performance 

liquid 

chromatography 

Xia et al.  N/A mL, 2 

mL, 4.5 

of GAA 

used for 

emulsion 

problem 

instead of 

NaCl mL, 4.5 

Shaker, 

rotary at 

500 rpm 

and 

centrifu

ged at 

1500g 

minutes, 

10 

After 

centrifugatio

n, mL 4 of 

toluene was 

measured 

into conical 

evaporation 

tube for 

evaporation. N/A N/A N/A 
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Aggregation and 

Deposition Kinetics 

of Fullerene (C60) 

Nanoparticles 

Chen et al.  

Clear, 

dark 

purple 

mixtur

e 

mg, 

36 

mL, 1.5 

of HPLC-

grade 

ethanol 

mL, 30 

HPLC-

grade 

toluene 

Sonicati

ng 

probe 

used to 

sonicate 

hours, 3 

and 

every 

minutes, 

20 DI 

water 

topped 

off for 

evapora

tion 

Filtered 

under 

vacuum and 

clear yellow 

filtrate 

stored in the 

dark at 

degrees C, 4 

TEM images 

of 

nanoparticles 

were captured 

for further size 

analysis and 

DLS after 

toluene 

extraction 

nm, 

532 

Nanoparticles 

measured over a range 

of NaCl and CaCl2 

concentrations at pH 

5.2 and degrees C, 25 

C60 in Water: 

Nanocrystal 

Formation and 

Microbial Response 

Fortner et al.  Yellow 

volu

me, 1 

of 

water 

with 

nC60 

volume, 

2/5 0.1 M 

Mg(ClO4

)2 

Volume, 

1  

Vigorou

sly 

mixed 

minutes, 

30 

Water 

portion of 

system was 

frozen in a 

dry ice bath 

to allow for 

removal of 

toluene  

HPLC analysis 

performed 

4.6 x 

250 

mm 

A gravimetric 

procedure was used to 

evaporate 2 mL of a 

100 mg/L 

concentration 

suspension to 

determine the weight 

of the nC60 in water. 
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Appendix B 

Supplemental Data 

Contents  

Figure S1. Thermogravimetric analysis of C60 in SFW 

Figure S2. Thermogravimetric analysis of C70 in SFW 

Figure S3. Thermogravimetric analysis of PCBM in SFW 

Figure S4. FTIR analysis of C60 in SFW. 

Figure S5. FTIR analysis of C70 in SFW. 

Figure S6. FTIR analysis of PCBM in SFW. 

Table S1. Sublethal heart rate comparison 

Calculation and statement of assumptions of chronic concentration 7 mg/L 

 

 
 

Figure S1. Thermogravimetric analysis of C60 in SFW. C60 has a stepwise degradation, but the 

weight loss in the initial steps is negligible.  
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Figure S2. Thermogravimetric analysis of C70 in SFW. C70 degrades in a single step.  

 

 
Figure S3. Thermogravimetric analysis of PCBM in SFW. PCBM has a stepwise degradation 

and the initial weight loss can be attributed to the polymeric nature of the butryic acid methyl 

ester present in PCBM. 
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Figure S4. FTIR analysis of C60 in SFW. The light absorbance by the C60 particles as a 

function of wavelength demonstrate the characteristic peaks of C60.High intensity peaks indicate 

larger particles in the tested sample.  

 

 

1506 C=C  

1730 C=O 

1506 C=C  

1182 C-O 

1182 C-O 
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Figure S5. FTIR analysis of C70 in SFW. The light absorbance by the C60 particles as a 

function of wavelength demonstrate the characteristic peaks of C70. High intensity peaks 

indicate larger particles in the tested sample.  

 

 
Figure S6. FTIR analysis of PCBM in SFW. The light absorbance by the PCBM particles as a 

function of wavelength demonstrate the characteristic peaks of PCBM. High intensity peaks 

indicate larger particles in the tested sample.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1730 C=O 

1506 
C=C  

1157 C-O 
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Table S1. Comparison of mean heart rates for fullerene treatments relative to the control at all 

time points.  

  Treatment x̅1  x̅2 

    
D. pulex 

(juvenile) 

Control 

 

235.1 235.1 

Heart rate (0-

h) 
 C60 

233.8 

 

233.8 

 
  C70 236.7 236.7 
  PCBM 231.1 231.1 
   x̅1  x̅2 

  Control 241.3 241.3 

 
D. pulex 

(juvenile) 
C60 

280.8 280.8 

  C70 282.5 282.5 

Heart rate (24-

h) 
 PCBM 

292.0 292.0 

   x̅1  x̅2 

  Control 220.7 220.7 

 
D. pulex 

(juvenile) 
C60 

285.3 308.4 

  C70 266.1 303.2 

Heart rate (48-

h) 
 PCBM 

224.8 294.7 
1 Mean heart rates of all individuals 

2 Mean heart rates excluding heart rates of the individuals that died within 12-h of the 48-h time point 

 

Calculation and Assumptions for Chronic Concentration: 

To determine an environmentally relevant concentration for our chronic studies, values were 

used from the literature to calculate a worst-case scenario value. The highest estimate for 

fullerene production in the United States is 80 t/year (Piccinno et al. 2012). We assumed a high 

estimate for ENM release during manufacturing as 2% as described by Keller et al. (Keller et al. 

2012). The concentration was calculated as shown below assuming all the fullerenes in the U.S. 

were manufactured near Irondequoit Bay in Rochester, NY and 2% were released to the bay 

during manufacturing.  

 

80
𝑡

𝑦𝑒𝑎𝑟
∗ 907.185

𝑘𝑔

𝑡
∗ 0.02 = 1,451.5

𝑘𝑔

𝑦𝑒𝑎𝑟
  

 

Using the Irondequoit Bay surface area of 6,718,460 m2 and the assumption that the C60 would 

be released into the top 3 cm of the Bay, the concentration was calculated for our experiments.  
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1,451.5
𝑘𝑔

𝑦𝑒𝑎𝑟

6,718,460 𝑚2
∗

1

0.03 𝑚 
=

0.007
𝑘𝑔
𝑚3

𝑦𝑒𝑎𝑟
=

𝟕
𝒎𝒈

𝑳
𝒚𝒆𝒂𝒓

 

 

References: 

1. Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered 

nanomaterials. Journal of Nanoparticle Research 2013;15(6):1692. 

2. Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of 

ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research 

2012;14(9):1109. 
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Appendix C 

Supplemental Information 

Contents  

Table S1. Scenario data inputs 

Figure S1. Model builder inputs for prediction of likely locations 

Table S2. Geospatial layer data added for spatial risk analysis 

Table S3. Lithium-ion battery proportion data 

Table S4. Nanomaterial production data and assumptions 

Table S5. Low and high graphene emissions into various compartments 

Table S6. Low and high silicon (bulk) emissions into various compartments 

Table S7. Low and high SWNT emissions into various compartments 

Table S8. Low and high C60 emissions into various compartments 

Table S9. Low and high SiO2 emissions into various compartments 

Table S10. ENM LD50 (mg/L) ranges for the water column model organism, D. magna 

Table S11. ENM LD50 (mg/L) ranges for the sediment dwelling organism 

Figure S2. Unemployment data by county for Upstate NY. 

Figure S3. Verification that industrial property sites that are for sale are near predicted sites (BAU) 

Figure S4. Verification that industrial property sites that are for sale are near predicted sites (economic 

investment) 

Figure S5. Verification that existing manufacturing sites are within predicted site boundaries 

Figure S6. Verification that existing chemical manufacturing sites are in low unemployment areas 

Figure S7. Likely manufacturing locations are located near interstate highways 

Figure S8. Buffer zones for the economic investment scenario 

Table S12. Onondaga Lake parameters used to calculate potential emissions over time 

Table S13. Low and high effluent concentrations for the case study nanomaterials (Onondaga Lake) 

Table S14. Low and high sediment concentrations for the case study nanomaterials (Onondaga Lake) 

Figure S9.  The low and high potential sediment emissions (Onondaga Lake)  

Table S15. Seneca Lake parameters used to calculate potential emissions over time 

Table S16. Low and high effluent concentrations for the case study nanomaterials (Seneca Lake) 

Table S17. Low and high sediment concentrations for the case study nanomaterials (Seneca Lake) 

Figure S10.  The low and high potential effluent emissions (Seneca Lake) 

Figure S11.  The low and high potential sediment emissions (Seneca Lake) 

Table S18. Lake Ontario parameters used to calculate potential emissions over time 

Table S19. Low and high effluent concentrations for the case study nanomaterials (Lake Ontario) 

Table S20. Low and high sediment concentrations for the case study nanomaterials (Lake Ontario) 

Figure S12.  The low and high potential effluent emissions (Lake Ontario) 

Figure S13.  The low and high potential sediment emissions (Lake Ontario) 

Table S21. Low and high effluent concentrations for the case study nanomaterials (Onondaga Lake 

sensitivity) 

Figure S14.  The low and high potential effluent emissions (Onondaga Lake sensitivity) 
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Table S1. Scenario (BAU and economic investment) data inputs used in the predictive geospatial model. 

These metrics describe areas where sites would likely be built in the future or where existing locations 

would be revitalized.  

Siting Metrics Data Source 

Chemical manufacturing 

facilities  

EPA 2016 Toxics Release Inventory 

(TRI) 

Unemployment Areas 

U.S. Census Bureau, 2017 

American Community Survey 5-

Year Estimates: Selected Economic 

Characteristics 

 

 
Figure S1. Model builder diagram of the Spatial Analyst tool features used to predict likely 

manufacturing locations.  
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Table S2. Spatial data added as layers for the ArcGIS Pro spatial analysis of potential ENM 

manufacturing release locations and their proximity to vulnerable ecosystems. 

Spatial Risk Data Description Data Source 

National Hydrography 

Dataset (NHD) 

Upstate NY Lakes, ponds, streams, 

rivers, springs, and wells 

United States Geological 

Survey (USGS) 

Critical Environmental 

Areas in New York State 

Areas designated as critical under 6 

NYCRR Part 617: “ecological, 

geological, or hydrological 

sensitivity that may be adversely 

affected by any change” (NY 

DEC) 

New York State Department 

of Environmental 

Conservation  

National Land Cover 

Dataset (NLCD) 

National Land Cover Database 

classification schemes based 

primarily on Landsat data (2011) 

United States Geological 

Survey (USGS) 

Elevation Data  

Digital Elevation Models (10-

meter) for New York, elevation 

values were derived from USGS 

contour lines mapped at a scale of 

1:24,000.  

United States Geological 

Survey (USGS) 

Interstate Highway  

 

Rural and urban highways for New 

York 

Federal Highway 

Administration’s National 

Transportation Atlas Database 
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Table S3.  Data from the BatPaC model for lithium-ion battery performance and cost for 

electric-drive vehicles from Argonne National Lab was used to find the mass of the anode of 

a commonly used electric vehicle battery, NMC333-G. Assuming a 10.6 cell capacity, a 

negative active material capacity of 360 mAh/g, and an excess negative area of 4.19%, the 

baseline anode mass that was used for the model was 36.82 g.  

Material % wt Proportion of Anode (g) Ref. 

Graphene 3 1.1 Luo et al. 

2012 

SWCNT 10 3.7 Ng et al. 

2005 

Si/SWCNT 85 to 15 5.5 Lee et al. 

2016 

C60 50 18.4 Enggar et 

al. 2018 

SiO2 34.49 12.7 Jiang et 

al. 2018 

BatPac NMC333-G 100 36.8 Nelson et 

al. 2017 

 

 

Table S4. Calculated mass of ENMs per year using the values from Table S3. We assumed the 

production of nanomaterial was proportional to the theoretical proportion reported in anodes in 

the literature. 

  

Amount in 

anode   wt% anode g/yr 

metric 

tons/yr  

Graphite 36.8 g 100% 

   

35,200,000,00

0.00  

                

35,200.00  

Graphene 1.104 g 3.00 

      

1,056,000,000.

00  

                  

1,056.00  

Si/SWCNT:         

                               

-    

Si (bulk) 31.28 g 85 

   

29,920,000,00

0.00  

                

29,920.00  

SWCNT 5.5 g 15 

      

5,280,000,000.

00  

                  

5,280.00  

C60 18.4 g 50 

   

17,600,000,00

0.00  

                

17,600.00  

SiO2 (nano) 12.3 g 34.49 

   

12,140,480,00

0.00  

                

12,140.48  
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Table S5. Low and high graphene emissions into various compartments. 

Graphene Low (mg/yr) High (mg/yr) 

Total 

               

1,056,000,000.00  

                       

21,120,000,000.00  

% air 

                  

105,600,000.00  

                          

8,448,000,000.00  

% WW (preWWTP) 

                  

105,600,000.00  

                          

8,448,000,000.00  

%landfill 

                  

844,800,000.00  

                          

4,224,000,000.00  

% WWTP to effluent 

                       

3,168,000.00  

                          

2,112,000,000.00  

%  effluent to sediment 

                       

3,168,000.00  

                          

2,112,000,000.00  

 

 

Table S6. Low and high silicon (bulk) emissions into various compartments. 

  
Silicon Bulk Low (mg/yr) High (mg/yr) 

Total 

            

29,920,000,000.00  

                     

598,400,000,000.00  

% air 

               

2,992,000,000.00  

                     

239,360,000,000.00  

% WW (preWWTP) 

               

2,992,000,000.00  

                     

239,360,000,000.00  

%landfill 

            

23,936,000,000.00  

                     

119,680,000,000.00  

% WWTP to effluent 

                     

89,760,000.00  

                       

59,840,000,000.00  

%  effluent to sediment 

                     

89,760,000.00  

                       

59,840,000,000.00  
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Table S7. Low and high SWNT emissions into various compartments. 

  
SWNT Low (mg/yr) Low (mg/yr) 

Total 

               

5,280,000,000.00  

                     

105,600,000,000.00  

% air 

                  

528,000,000.00  

                       

42,240,000,000.00  

% WW (preWWTP) 

                  

528,000,000.00  

                       

42,240,000,000.00  

%landfill 

               

4,224,000,000.00  

                       

21,120,000,000.00  

% WWTP to effluent 

                     

15,840,000.00  

                       

10,560,000,000.00  

%  effluent to sediment 

                     

15,840,000.00  

                       

10,560,000,000.00  

Table S8. Low and high C60 emissions into various compartments. 

C60 Low (mg/yr) High (mg/yr) 

Total 

            

17,600,000,000.00  

                     

352,000,000,000.00  

% air 

               

1,760,000,000.00  

                     

140,800,000,000.00  

% WW (preWWTP) 

               

1,760,000,000.00  

                     

140,800,000,000.00  

%landfill 

            

14,080,000,000.00  

                       

70,400,000,000.00  

% WWTP to effluent 

                     

52,800,000.00  

                       

35,200,000,000.00  

%  effluent to sediment 

                     

52,800,000.00  

                       

35,200,000,000.00  

 

Table S9. Low and high SiO2 emissions into various compartments.  
SiO2 Low (mg/yr) High (mg/yr) 

Total 

            

12,140,480,000.00  

                     

242,809,600,000.00  

% air 

               

1,214,048,000.00  

                       

97,123,840,000.00  

% WW (preWWTP) 

               

1,214,048,000.00  

                       

97,123,840,000.00  

%landfill 

               

9,712,384,000.00  

                       

48,561,920,000.00  

% WWTP to effluent 

                     

36,421,440.00  

                       

24,280,960,000.00  

%  effluent to sediment 

                     

36,421,440.00  

                       

24,280,960,000.00  
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Table S10. ENM LD50 (mg/L) ranges for the water column model organism, D. magna. 

Assumptions were noted if ecotoxicity data were not available. 

ENM  D. magna LD50 

(mg/L) 

Reference 

Graphene Low 

High 

0.09 

84.3* 

Cano et al. 2017 

Zhang et al. 2019 

SWNT Low 

High 

2.43 

>320 

EPA ECOTOX, 2018 

Revel et al. 2015 

Silicon Low 

High 

No Data 

No Data 

EPA ECOTOX, 2018 

EPA ECOTOX, 2018 

PC60** Low 

High 

>35 

>463 

Lovern et al. 2007 

Blaise et al. 2008 

SiO2 Low 

High 

1.73 

120 

Pourdeljoo et al. 2014 

Vidya and Chitra, 

2016 

Methylmercury  0.02 EPA ECOTOX, 2018 

*Value for graphene oxide  

**Values for C60: Tetrahydrofuran (THF) prepared C60 studies were not 

considered in our study since THF has been found to influence the 

toxicity of C60. 
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Table S11. ENM LD50 (mg/L) ranges for the sediment dwelling organism, Hyallela azteca and 

no observed effect concentration (NOEC) (mg/kg) value for Lumbriculus variegatus. Because 

SWNT absorbs to sediment and can pass through the gut of sediment dwelling organisms, many 

studies have not observed direct toxicity for carbon nanotubes (Rhiem 2014). 

ENM Hyalella azteca LD50 

(mg/L) 

Lumbriculus 

variegatus NOEC 

(mg/kg) 

SWNT >40* 

 

0.03** 

*Revel et al. 2015 

**Petersen et al. 2008 

 

 
Figure S2. Unemployment data by county for Upstate NY. 
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Figure S3. Verification that industrial property sites that are for sale are within the boundaries of 

the likely manufacturing locations under the business as usual scenario. 

 

 
Figure S4. Verification that industrial property sites that are for sale are within the boundaries of 

the likely manufacturing locations under the economic investment scenario. 
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Figure S5. Verification that existing manufacturing sites are within the boundaries of the likely 

manufacturing locations.  
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Figure S6. Verification that existing chemical manufacturing sites are near high unemployment 

areas. 

 

 
Figure S7. Likely manufacturing locations are located near interstate highways in many cases. 
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Figure S8. Buffer zones for the economic investment scenario, verifying that the results are 

comparable to the business as usual scenario. 

 

Table S12. Onondaga Lake parameters used to calculate potential emissions over time. 

Onondaga Lake Parameters Reference 

Volume (L) 1.32489E+11 Effler and Hennigan 1996 

Surface Area (m2) 1.20E+07 Effler and Hennigan 1996 

Sediment dry density (kg sed/m3) 2.60E+03 Parsons and ETS 2014 

 

Table S13. Low and high effluent concentrations for the case study nanomaterials. 

Onondaga Lake (1800 ft from mfg site) 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Graphen

e 
0.00 0.02 0.00 0.20 0.00 0.76 0.01 3.34 

Si (bulk) 0.00 0.45 0.01 5.68 0.03 21.56 0.14 94.55 

SWNT 0.00 0.08 0.00 1.00 0.01 3.80 0.03 16.69 

PC60 0.00 0.27 0.01 3.34 0.02 12.68 0.08 55.62 

SiO2 0.00 0.18 0.00 2.31 0.01 8.75 0.06 38.37 
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Table S14. Low and high sediment concentrations for the case study nanomaterials. 

Onondaga Lake (1800 ft from mfg site) 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/kg

) 

High 

(mg/kg

) 

Low 

(mg/kg

) 

High 

(mg/kg

) 

Low 

(mg/kg

) 

High 

(mg/kg) 

Low 

(mg/kg

) 

High 

(mg/kg) 

Graphen

e 
0.00 2.26 0.04 28.38 0.16 107.69 0.71 472.37 

Si (bulk) 0.10 63.93 1.21 804.13 4.58 3051.27 20.08 13383.96 

SWNT 0.02 11.28 0.21 141.90 0.81 538.46 3.54 2361.87 

PC60 0.06 37.61 0.71 473.01 2.69 1794.87 11.81 7872.92 

SiO2 0.04 25.94 0.49 326.29 1.86 1238.10 8.15 5430.74 

 

 
Figure S9.  The low and high potential environmental accumulation (mg/kg) in Onondaga Lake 

for two sediment dwelling organisms, H. azteca and L. variegatus for SWNT.  

 

Table S15. Seneca Lake parameters used to calculate potential emissions over time. 

Seneca Lake Parameters Reference 

Volume (L) 1.59E+13 Halfman 2014 

Surface Area (m2) 1.73E+08 Halfman 2014 

Sediment dry density (kg sed/m3) 2.65E+03 Halfman 2000 
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Table S16. Low and high effluent concentrations for the case study nanomaterials. 

Seneca Lake 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High (mg/L) Low 

(mg/L) 

High 

(mg/L) 

Graphen

e 
0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 

Si (bulk) 0.00 0.00 0.00 0.05 0.00 0.18 0.00 0.79 

SWNT 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.14 

PC60 0.00 0.00 0.00 0.03 0.00 0.11 0.00 0.46 

SiO2 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.32 

 

Table S17. Low and high sediment concentrations for the case study nanomaterials. 

Seneca Lake 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/kg) 

High 

(mg/kg) 

Low 

(mg/kg) 

High 

(mg/kg) 

Low 

(mg/kg) 

High 

(mg/kg) 

Low 

(mg/kg) 

High 

(mg/kg) 

Graphen

e 
0.00 0.15 0.00 1.93 0.01 7.32 0.05 32.11 

Si (bulk) 0.01 4.35 0.08 54.66 0.31 207.42 1.36 909.84 

SWNT 0.00 0.77 0.01 9.65 0.05 36.60 0.24 160.56 

PC60 0.00 2.56 0.05 32.16 0.18 122.01 0.80 535.20 

SiO2 0.00 1.76 0.03 22.18 0.13 84.17 0.55 369.18 

 

 
Figure S10. The low and high potential environmental accumulation (mg/L) in Seneca Lake. 
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Figure S11.  The low and high potential environmental accumulation (mg/kg) in Seneca Lake 

for two sediment dwelling organisms, H. azteca and L. variegatus for SWNT.  

 

Table S18. Lake Ontario parameters used to calculate potential emissions over time. 

Lake Ontario Parameters Reference  

Volume (L) 1.64018E+15 

NOAA - Great Lakes Environmental 

Research Laboratory 

Surface Area (m2) 1.90E+10 

NOAA - Great Lakes Environmental 

Research Laboratory 

Sediment dry density (kg 

sed/m3) 9.00E+02 

Tyler et al. 2019 (unpublished data) 

 

Table S19. Low and high effluent concentrations for the case study nanomaterials. 

Lake Ontario 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Graphen

e 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Si (bulk) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

SWNT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PC60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table S20. Low and high sediment concentrations for the case study nanomaterials. 

Lake Ontario 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/kg) 

High 

(mg/kg) 

Low 

(mg/kg) 

High 

(mg/kg) 

Low 

(mg/kg) 

High 

(mg/kg) 

Low 

(mg/kg) 

High 

(mg/kg) 

Graphen

e 
0.00 0.00 0.00 0.05 0.00 0.20 0.00 0.86 

Si (bulk) 0.00 0.12 0.00 1.47 0.01 5.58 0.04 24.48 

SWNT 0.00 0.02 0.00 0.26 0.00 0.99 0.01 4.32 

PC60 0.00 0.07 0.00 0.87 0.00 3.28 0.02 14.40 

SiO2 0.00 0.05 0.00 0.60 0.00 2.26 0.01 9.93 

 

 

 

 
Figure S12. The low and high potential environmental accumulation (mg/L) in Lake Ontario. 

The LD50 values are not shown because the emissions are not close to the LD50 values, even in 

the high scenarios after 50 years.  
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Figure S11.  The low and high potential environmental accumulation (mg/kg) in Lake Ontario 

for two sediment dwelling organisms, H. azteca and L. variegatus for SWNT.  

 
Onondaga Lake (1800 ft from mfg site) 

  1 1 10 10 25 25 50 50 

Material 
Low 

(mg/L) 
High 

(mg/L) 
Low 

(mg/L) 
High 

(mg/L) 
Low 

(mg/L) 
High 

(mg/L) 
Low 

(mg/L) 
High 

(mg/L) 

Graphene 
                                
0.00  

                                
0.16  

                                
0.00  

                                
2.01  

                                
0.01  

                                
7.61  

                                
0.05  

                             
33.37  

Si (bulk) 
                                
0.01  

                                
4.52  

                                
0.09  

                             
56.81  

                                
0.32  

                           
215.56  

                                
1.42  

                           
945.54  

SWNT 
                                
0.00  

                                
0.80  

                                
0.02  

                             
10.03  

                                
0.06  

                             
38.04  

                                
0.25  

                           
166.86  

PC60 
                                
0.00  

                                
2.66  

                                
0.05  

                             
33.42  

                                
0.19  

                           
126.80  

                                
0.83  

                           
556.20  

SiO2 
                                
0.00  

                                
1.83  

                                
0.03  

                             
23.05  

                                
0.13  

                             
87.47  

                                
0.58  

                           
383.67  
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 Table S21. Low and high effluent concentrations under a disruptive innovation scenario for the 

case study nanomaterials. 

Onondaga Lake Sensitivity Analysis: Effluent 

  1 1 10 10 25 25 50 50 

Material Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Low 

(mg/L) 

High 

(mg/L) 

Graphen

e 
                                

0.00  

                                

0.16  

                                

0.00  

                                

2.01  

                                

0.01  

                                

7.61  

                                

0.05  

                             

33.37  

Si (bulk)                                 

0.01  

                                

4.52  

                                

0.09  

                             

56.81  
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Figure S14. The low and high potential environmental accumulation (mg/L) in Onondaga Lake 

under the disruptive innovation scenario. 
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CNM Type Production (t/year) 
 

Year and 

Ref. 

Fullerene Worldwide 

0.15-0.6 

5.5-80 

U.S. 

2 

80 

 

Low 

High 

 

Low 

High 

 

20111 

20111 

 

2011 2 

2011 2 

CNTs 

MWCNT 

SWCNT 

Worldwide 

11-55 (2011, 2012) 

550 - >4,065 (2011, 2012) 

U.S. 

55 

1,101 

Worldwide 

1,988 

13,738 

U.S. 

60 

1,000 

Worldwide 

26 

359 

U.S. 

0.25 

250 

 

Low 

High 

          

         Low 

High 

 

Low 

High 

 

Low 

High 

 

Low 

High 

 

Low 

High 

 

20111 

20111 

 

   2011 2 

2011 2 

 

20153 

20153 

 

20153 

20153 

 

20153 

20153 

 

20153 

20153 

Graphene Worldwide 

573 

1,321 

 

Low 

High 

 

20174 

20225 

Graphite Worldwide 

1,143,000  

 
20096 

Silicon Worldwide 

7,200,000 

 201635 

Cement Worldwide 

4,200,000,000,000,000  

 
20168 

Table S1.  Data for the production of CNMs in tons per year. If there were a range of values reported for the production 

amount, a low and high value were reported. U.S. and worldwide data were denoted in the table where data were available. 

The total CNM production was found to be 12,300 tons per year worldwide. These values will be utilized to establish the 

material availability constraint and assumptions will be made as to the quantity of CNMs distributed to the energy sector.  
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Based on the characteristics of each material found in the literature, data were simulated using 

uniform and normal distributions to mirror the variance of power and capacity output that occurs 

in the applications of these technologies. To determine the overall portfolio return and variance, 

the amount of each CNM used in the portfolio was defined for optimization. The Palisade @Risk 

software was utilized to perform the portfolio optimization and numerical simulation. This tool 

uses Monte Carlo simulation to show different output probabilities and risks for each scenario 

analysis performed. @Risk was used to calculate the optimization model outputs by changing the 

amount of each CNM used in the portfolio to find the optimal return.  

Material Type Material  m2/Wp g/m2 Distribution Ref. 

Fullerenes 

C60 

Low 

High 

0.0234 

0.179 

0.068 

3 Uniform 9 

PC60BM 

Low 

High 

0.0192 

0.0262 

0.2 

1.44 Uniform 10,11,12 

PC70BM 

Low 

High 

0.0136 

0.0236 

0.203 

0.907 Uniform 10,12,13 

BisPCBM 

Low 

High 

Mean - 0.027 

Stdev - .01 

Mean - 0.66 

Stdev - .1 Normal 12,13 

ICBA 

Low 

High 

Mean -  0.0192 

Stdev - .01 

Mean - 0.44 

Stdev - .1 Normal 13,14,15 

Graphene Graphene 

Low 

High 

0.073099 

0.595238 10%wt Uniform 10,11 

Carbon Nanotubes (CNTs) 

SWCNT 

Low 

High 

0.040323 

0.173611 0.5%wt Uniform 10 

MWCNT  

Mean - 0.09058 

Stdev - .01 2%wt Normal 15 

Table S2.  Data for the power output of the CNMs that were incorporated into the model as the return portion of the portfolio 

optimization. If there was a range of data values for the material, a low and high value were reported. Based on the data available, 

a normal distribution was assumed where a mean data value existed (with an assumed standard deviation of 0.01) and a uniform 

distribution was assumed when a minimum and maximum value existed. 
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Material % wt Proportion of Anode (g) Ref. 

Graphene 3 1.1 16 

Doped Graphene (N- 

and B-Doped) 70 25.8 17 

SWCNT 10 3.7 18 

MWCNT 5 1.8 19 

Graphite 67 24.7 20 

Si/SWCNT 85 to 15 5.5 21 

BatPac NMC333-G 100 36.8 22 
Table S3.  Data from the BatPaC model for lithium-ion battery performance and cost for electric-drive vehicles from 

Argonne National Lab was used to find the mass of the anode of a commonly used electric vehicle battery, NMC333-G. 

Assuming a 10.6 cell capacity, a negative active material capacity of 360 mAh/g, and an excess negative area of 4.19%, the 

baseline anode mass that was used for the model was 36.82 g.  

 

Material 

Type Material  

Energy 

Capacity 

(mAh/g) 

Proportion 

(g) 

Distribution  

Ref. 

Carbon 

Nanotubes 

(CNTs) 

SWCNT 

Low 

High 

600 

1,000 3.7 

Uniform 

17 

Si/SWCNT 

Low 

High 

1,000 

2,200 5.5 

Uniform 

21 

MWCNT  

Mean-220 

Stdev-73.3 1.8 

Normal 17 

Graphene 

Graphene 

Low 

High 

744 

1,488 1.1 

Uniform 17 

N-doped 

Graphene  

Mean-

1,043 

Stdev-

346.7 25.8 

Normal 17 

B-doped 

Graphene  

Mean-

1,549 

Stdev-

516.3 25.8 

Normal 17 

Alternate 

Non-Nano 

Material Graphite  

Mean- 350 

Stdev-

116.7 24.7 

Normal 

15 
Table S4.  Data from several literature sources were used to generate the proportion of CNMs in an anode. The values 

reported in the literature were on a percent weight basis and therefore the baseline value from BatPaC was used to find the 



162 
 

CNM proportions. Data for the energy capacity of the CNMs as well as the alternate non-nano materials were incorporated 

into the model as the return portion of the portfolio optimization. Based on the data available, a normal distribution was 

assumed where a mean data value existed, with an assumed standard deviation that as 1/3 of the mean, and a uniform 

distribution was assumed when a minimum and maximum value existed. 
 
Model input data were collected for both case studies from the literature and material suppliers 

(Figure S7). In order to find the producer cost for the economic scenario, a ratio of producer to 

consumer cost was determined to convert the consumer cost value available. This value was 

calculated using the Benchmark Input-Output Data tables from the Bureau of Economic 

Analysis23,24,25,26 (Table S5). Using the producer cost, the total cost of incorporating CNMs was 

found using Equation S3 where T is the producer cost ($/g CNM) and M is the amount of CNM 

(g) added. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  𝑇 ∗ 𝑀  ∀𝑛                                                   Equation 

S1. 

 

The power rating and capacity were maximized while the cost was minimized for each CNM 

used in the portfolio by dividing the return value by the total cost.  
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Table S5.  Data for the cost of the CNMs as well as the non-nano materials that were incorporated into the model to 

evaluate the economic risk of utilizing CNMs. The producer costs are calculated using the conversion factor of 0.65 

calculated in Figure S2.  The assumptions for each material studied are also listed informing the purity of the material and 

size. These values can be updated with other types of purifications and sizes for further analysis.  
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Table S6.  The producer cost conversion factor was calculated using a conversion value of 0.65, which was found to be the 

average value in the inorganic chemical manufacturing category.  This value was calculated from the Bureau of Economic 

Analysis benchmark input-output table values9,18, 20, 22. 

 

To determine the overall portfolio return while considering the environmental cost of the 

materials in OPVs and LIBs, the power and capacity per cumulative energy demand (CED) 

(MJ/kg) was calculated for each CNM used in the portfolio. First, the CED value for the CNM 

was calculated in Equation S4 from literature CED data (Table S7) represented by E (GJ/g 

CNM) and M, the amount of CNM (g) added. The power rating and capacity were maximized 

while the CED was minimized for each CNM used in the portfolio by dividing the return value 

by the CED. 

𝐶𝐸𝐷 =  𝐸 ∗ 𝑀  ∀𝑛                                          Equation S2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year IO 

sector

Description Producer 

price

Purchaser 

Price 

Conversion 

Factor

1992

270100 Industrial inorganic and organic chemicals 20.00$   33.00$     

0.61

1997

325180 Other basic inorganic chemical manufacturing 20.50$   31.70$     

0.65

2002

325188 All other basic inorganic chemical manufacturing  $   12.90  $     18.50 

0.70

2007

325188 All other basic inorganic chemical manufacturing 21.00$   33.00$     

0.64

Average 0.65
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Material Type Material 

Cumulative Energy 

Demand (GJ/kg) 

Fullerenes 

C60 35.4827 

PC61BM 85.7427 

PC71BM 122.9727 

BisPCBM 87.6827 

ICBA 55.7327 

Graphene 

Graphene 500-1,00028 

N-doped and B-doped 

Graphene 500-1,00028 

Carbon Nanotubes (CNTs) 

SWCNT 93-32829 

MWCNT 65-29529 

Si-SWCNT 15.15-50.4029,30 

Non-CNM Material 

  Graphite 0.042630  
Table S7.  The cumulative energy demand (CED) data were found in several literature sources for the CNMs where it was 

assumed that the N-doped and B-doped graphene had the same value as graphene due to lack of existing values. For the non-

CNMs, the CED values were calculated using SimaPro LCA software. Based on the data available, a normal distribution 

was assumed where a mean data value existed and a uniform distribution was assumed when a minimum and maximum 

value existed. 
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Figure S2. Average sustainability trade-off data collected shown in a 3D plot created in Plotly for CNMs used in OPVs (left) and 

LIBs (right). These trade-off data include economic ($/g), energy (GJ/g), and performance parameters used in the optimization 

model.  Note the differences in axes and scale for each of the application parameters as well as the stark differences between the 

same material in different applications (e.g. SWCNT cost in OPVs vs. LIBs). 
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Financial 

Portfolio  

OPV LIB 

Stocks Share of CNMs, including: 

Fullerenes(C60, PC60BM, PC70BM,BisPCBM,ICBA) 

Graphene, Carbon Nanotubes (SWCNT, MWCNT) 

Share of CNMs, including Fullerene (C60), 

Graphene (N-doped and B-doped),  

Carbon Nanotubes (SWCNT, MWCNT), 

Graphite 

Return ($) Gain in power rating normalized to mass of CNM 

added (W/gCNM) 

Gain in capacity normalized to mass of 

CNM added (Ah/ gCNM) 

Return 

Variance 

(σ2) 

Variance in Power rating associated with 

uncertainty in CNM performance (W/ gCNM) 

Variance in Capacity associated with 

uncertainty in CNM performance (Ah/g CNM) 

Risk ($) Gain in power rating normalized to dollars and 

energy invested 

 Economic (W/$) 

Energy (W/GJ) 

Gain in capacity normalized to dollars and 

energy invested 

Economic (Ah/$) 

Energy (Ah/GJ) 

Constraint: 

Available 

funds ($) 

Constraint: CNM available worldwide 

production(g)  

Constraint: CNM, graphite available 

worldwide production (g) 

Table S8. Portfolio optimization model parameters in stock market terms that are translated to CNM parameters for both OPVs 

and LIBs. It is unlikely that just one material will be utilized as an acceptor (OPV) or anode (LIB) and therefore the cumulative 

risks and benefits are evaluated to determine the optimal materials under various scenarios. 
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In addition to the supply scenarios mentioned above, a demand scenario was featured for OPVs 

and LIBs using EIA predictions for future solar power (assuming 1.5% for OPVs31) and electric 

vehicle use, as shown in Tables S8-S10. All sixteen supply and demand scenarios are detailed in 

Table S12.  

Year Reference Case 

(GW) 

Reference case 

without CPP 

(GW) 

2010 2.67 
 

2015 24.95 24.95 

2020 56.65 57.01 

2030 125.25 104.58 

2040 246.34 202.64 

 

 

Table S9.  The power output for solar predicted until 2040 under the Clean Power Plan (CPP) and without the CPP32.  

 
 

Year Type Reference Case 

(millions) 

Reference case without CPP 

(millions) 

2010 Light-duty vehicle stock: 

Alternative-fuel cars: 100 mile EV 

0.01 
 

2015 Light-duty vehicle stock: 

Alternative-fuel cars: 100 mile EV 

0.188 0.188 

2020 Light-duty vehicle stock: 

Alternative-fuel cars: 100 mile EV 

0.326 0.326 

2030 Light-duty vehicle stock: 

Alternative-fuel cars: 100 mile EV 

1.535 1.542 

2040 Light-duty vehicle stock: 

Alternative-fuel cars: 100 mile EV 

2.895 2.909 

Table S10.  The number of light-duty 100-mile electric vehicles predicted until 2040 under the Clean Power Plan (CPP) and 

without the CPP33.  
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Number of Battery 

Cells/Electric 

Vehicle  

Capacity 

(Ah) 

/Battery 

Cell  

5000 2.05 

5,900 1.72 

6,500 1.86 

4,600 2.34 

Average: 5500 1.99 

10,958.75 Ah/Vehicle 

 

 

 

Table S11.  The calculation for the capacity per vehicle to understand the 2040 target with and without the CPP.  To convert the 

number of 100-mile vehicles driven to a capacity value (Ah), an average of vehicle battery cell and capacity literature values34 

was taken to calculate the capacity per vehicle.  The EIA forecasted value for light duty 100-mile electric vehicles in 2040 is 

2.895 million vehicles. Multiplying the target vehicles by the average capacity/vehicle, the target 2040 EIA goal is 3.17E10 

vehicles.  

Scenario # Application Availability Optimization 

1 

2 

3 

4 

OPV Supply: Unconstrained1 

Supply: Unconstrained1 

Supply: Unconstrained1 

Demand: Unconstrained1 

Max W, Min Variance 

Max W, Min $ and Variance 

Max W, Min CED and Variance 

Meet EIA 1.5% solar projection3 

5 

6 

7 

8 

OPV Supply: Constrained2 

Supply: Constrained2 

Supply: Constrained2 

Demand: Constrained2 

Max W, Min Variance 

Max W, Min $ and Variance 

Max W, Min CED and Variance 

Meet EIA 1.5% solar projection3 

9 

10 

11 

12 

LIB Supply: Unconstrained1 

Supply: Unconstrained1 

Supply: Unconstrained1 

Demand: Unconstrained1 

Max Ah, Min Variance 

Max Ah, Min $ and Variance 

Max Ah, Min CED and Variance 

Meet EIA electric vehicle projection4 

13 

14 

15 

16 

LIB Supply: Constrained2 

Supply: Constrained2 

Supply: Constrained2 

Demand: Constrained2 

Max Ah, Min Variance 

Max Ah, Min $ and Variance 

Max Ah, Min CED and Variance 

Meet EIA electric vehicle projection4 

1. Worldwide production for cement (USGS)8 

2. Worldwide production and competing sector limitations1,2,3, 4,5,6,7,8 

3.EIA Energy Outlook 2016: Renewable Energy: All Sectors: Generating Capacity: Solar32 

4. EIA Energy Outlook 2016: Light-duty vehicle stock: Alternative-fuel cars: 100-mile EV33 

Table S12. Description of all sixteen scenarios including the baseline scenario (maximizing performance, minimizing variance), 

the economic and environmental objective scenarios, the supply scenarios (unconstrained vs. constrained), and the demand 

scenario (meeting EIA predictions).  
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Figure S3. The LIB optimal material portfolios for both the supply scenarios: the economic case (Max Ah/$, Min Var) and 

environmental case (Ah/CED) given opportunistic demand. Graphite was selected for both supply scenarios when the 

performance was normalized to the dollars and energy invested because it is the cheapest and least energy intensive material. In 

the goal-oriented demand case, both unconstrained and constrained supply were evaluated. The model selected graphite for the 

unconstrained supply as well as the constrained supply to meet the target electric vehicle goal for 2040 while minimizing the 

variance.  

 

 
Figure S4. The LIB CNM and incumbent material portfolio for the constrained, 30% reduction supply scenario for the goal-

oriented EIA case. Graphite was still chosen as the optimal material even with a drop in its supply because it is still further along 

the technology spectrum than the other CNMs in the portfolio. However, as supply becomes more constrained, the price of 

graphite will increase, which could also increase the overall cost of the portfolio.  
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Figure S5. The LIB CNM and incumbent material portfolio for the unconstrained supply scenario for the baseline case: 

maximizing performance while minimizing variance when graphite is not an option to invest in. Si/SWCNT was selected as the 

largest portfolio share because it has the highest performance capacity when normalized to the amount of material added to the 

anode as shown in Figure 1 for the unconstrained supply case with SWCNT as the next largest share due to its relatively high 

capacity and low variance.  

 

 
Figure S6. The LIB optimal material portfolios for the unconstrained supply scenario: the economic case (Max Ah/$, Min Var) 

and environmental case (Max Ah/CED) given opportunistic demand. Graphite was not available to select and therefore Graphene 

B-doped was selected when the performance was normalized to the dollars and graphene was selected for the energy invested 

scenario because they are the cheapest and least energy intensive material respectively. In the goal-oriented demand case, the 

model selected Si/SWCNT for the unconstrained supply to meet the target electric vehicle goal for 2040 while minimizing the 

variance due to its high capacity value.  

 

Si/SWCNT
73%

SWCNT
27%
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  C60 

C60 

PCBM 

C70 

PCBM 

C60 

bisPCBM 

C60 

ICBA Graphene SWCNT MWCNT 

W 3 4 5 6 2 8 7 1 

W/GJ 1 4 6 5 2 8 7 3 

W/$ 2 4 8 7 5 3 6 1 
Table S13. Heat map of CNM acceptors in OPVs depicting economic, environmental, and energy trade-offs.  

 

  Si/SWCNT Graphite Graphene 
Graphene 
B-doped 

Graphene N-
doped SWCNT MWCNT 

Ah 1 6 5 2 3 4 7 
Ah/GJ 2 1 7 5 6 3 4 

Ah/$ 6 1 4 2 5 7 3 
Table S14.  Heat map of CNM anodes in LIBs depicting economic, environmental, and energy trade-offs. 

 

Scenario Return  Variance 

Unconstrained Supply: Max W, Min Var 1E18 4E5 

Constrained Supply: Max W, Min Var 1.8E9 1.2E5 

Unconstrained Supply: Max W/$, Min Var 11.8 1.3E5 

Constrained Supply: Max W/$, Min Var 10.7 1.6E5 

 

Unconstrained Supply: Max W/CED, Min Var 

 

4.6E3 1.8E4 

Constrained Supply: Max W/CED, Min Var 4.6E3 1.7E4 

Unconstrained Supply: EIA 1.5% Solar 3.7E9 1.6E4 

Constrained Supply: Meet EIA 100% Solar 1.8E9 

 

1.2E5 

Unconstrained Supply: Max Ah, Min Var 4.6E16 2.1E7 

Constrained Supply: Max Ah, Min Var 1.2E9 2.9E4 

Unconstrained Supply: Max Ah/$, Min Var 0.4 2.7E4 

Constrained Supply: Max Ah/$, Min Var 0.4 2.7E4 

 

Unconstrained Supply: Max Ah/CED, Min Var 

 

1E4 2.7E4 

Constrained Supply: Max Ah/CED, Min Var 4E4 2.7E4 

Unconstrained Supply: Meet EIA 100% Electric Vehicle 

Prediction 

8.5E14 3.4E4 

Constrained Supply: Meet EIA 100% Electric Vehicle 

Prediction 

3.2E10 3.4E4 

Table S15. Summary table detailing the portfolio return and variance values for each portfolio case.  
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