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ABSTRACT 

The row-and-column orientation of the Relational Database Model is optimized for the storage 

of “data,” but is not optimized for the storage of “information.” This capstone project, researches 

the different human memory models, in-order to understand how memories are formed and how 

independent memories are linked together. The memory models explored include the Atkinson-

Shiffrin memory model, Baddeley's model of working memory, and the Memory-Prediction 

model. The results of this investigation of human memory serve as a foundation for the design 

and implementation of a new database model, called the Threaded Engram Database (TED) 

model.  

Keywords: Threaded Engram Database Model, Relation Database, Engram, Memory Models 
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TOPIC STATEMENT/HYPOTHESIS 

The Relational Database Model was first introduced in 1969 by E.F. Codd in an IBM Research 

Report titled, "Derivability, Redundancy, and Consistency of Relations Stored in Large Data 

Banks.” Over the past few decades, the model has become the de facto standard for data 

management and is generally used whenever an individual or organization needs to store a large 

amount of information in an efficient and organized manner. Today, there are numerous widely 

successful products in the marketplace, such as Oracle, IBM’s DB2, and Microsoft SQL Server, 

all of which are based upon the relational database model. However, the explosive increase in 

web services and document types over the past decade has begun to highlight the limitations of 

this model. 

The widespread use of the Internet has led to the advent of Web services like Hulu 

(http://www.hulu.com/), YouTube (http://www.youtube.com/), Flickr (http://www.flickr.com/), 

etc. which provide us with instant access to videos, music, and photos. Also, organizations are 

rapidly adopting the latest available computing technologies and are generating data in a variety 

of formats: Word documents, Web pages, emails, etc. All of this “unstructured data” is generally 

stored in relational databases despite the fact that the relational database model was not 

originally designed to store unstructured data. Although database vendors have definitely made 

great strides in trying to come-up with new data types like Large Objects (LOB), Character 

Large Objects (CLOB), and Binary Large Objects (BLOB), the storage and retrieval of 

unstructured objects from any relational database is far from efficient. Additionally, the 

definition of relationships in a relational database is limited to the foreign keys that have to be 

created and maintained by the database administrator. These foreign key relationships are 

generally insufficient to represent all the multifaceted relationships that exist amongst data in the 

http://www.hulu.com/
http://www.youtube.com/
http://www.flickr.com/
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real world. Furthermore, the simplistic, table-based structure utilized by relational databases 

makes it extremely difficult to represent relationships that span across multiple levels of a 

hierarchy (Bloor 5).  

This capstone thesis will draw inspiration from human memory models for the design and 

implementation of a new database model called the Threaded Engram Database (TED) Model 

(Zilora). 

Hypothesis Statement: Human memory models can serve as the basis for the design of a new 

database model. The implementation of this database model can be accomplished using a flexible 

logic programming language like Prolog, neural networks, or a combination of both. 

MEMORY: A HISTORICAL PERSPECTIVE 

The interest in, and study of, human memory is not of recent origin, rather there has been slow 

but gradual progress towards the understanding of human memory over the past few centuries. 

As such, it is important to review the basic concepts and ideas which are common across the 

memory models explored in this capstone. 

The earliest available reference to the study of human memory dates back to the twentieth 

century when Aristotle (384 BC – 322 BC), in trying to understand memory, compared the 

human mind to a tabula rasa (Latin for blank slate), in his treatise titled “de Anima” (English 

translation: On the Soul [sic]) Aristotle postulated that a newborn child does not possess any 

innate ideas, or intellect, and only has the capacity to receive new ideas on the basis of his 

senses. Although numerous philosophers and thinkers weighed in either for or against Aristotle’s 

treatise, little empirical progress was made in understanding the workings of human memory 

until the eighteenth century, when a German psychologist named Herman Ebbinghaus (1850 – 
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1909) designed and executed experiments to deduce the learning and forgetting curves associated 

with learning new information (Mastin; Rafed). 

Ebbinghaus 

Based upon prior experiments, Ebbinghaus knew that people can easily memorize long lists of 

words provided that the words are familiar to them and that they can form some sort of 

association between the words. For example given a list of words such as root, stem, branch, and 

leaf, a person can easily memorize the word list by associating these descriptive words with a 

“plant,” thus defeating the purpose of the memory experiment. Therefore, Ebbinghaus created a 

list of two thousand three hundred nonsense syllables, such as NOG, BOL, BAF, etc., containing 

a consonant-vowel-consonant combination which would normally not be associated with any 

commonly used words. He then performed memory experiments on himself, wherein he 

memorized a subset of the nonsense syllables and recorded the number of syllables he was able 

to recall at specific time intervals, such as after twenty minutes, an hour, a day, etc. Based upon 

the results of his experiments, Ebbinghaus was able to generate an exponential learning curve 

showing that when we engage in repetitious learning to memorize new information, we learn the 

most during our initial attempts, but the incremental amount of information retained in our 

memory decreases with an increase in the number of repetitions. See Appendix A for a sample 

learning curve. Secondly, his experiment allowed him to generate an exponential forgetting 

curve that depicted the speed with which we forget newly learned information. He found that 

forgetting occurs most rapidly during the first twenty minutes after our learning the new 

information and then gradually levels off over a period of time. See Appendix B for 

Ebbinghaus’s forgetting curve. Thirdly, he was able to empirically prove that an increase in the 
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amount of new information that needs to be learned will cause a proportional increase in the 

amount of time it will take to learn the new information (Ebbinghaus 51; Plucker; Adams). 

The research and experiments performed by Ebbinghaus greatly extended the scientific 

knowledge base. The empirical experimentation and methodological innovations used by 

Ebbinghaus in his experiments helped establish a de facto standard that was then followed by the 

rest of the scientific community. Additionally, the results of Ebbinghaus’s experiments helped 

establish that while meaningful stimuli are fairly easily to memorize, due to the fact that they can 

be easily associated with preexisting knowledge or experiences, memorizing meaningless stimuli 

is far more difficult since no associations can be made prior knowledge. Thus, Ebbinghaus 

provided empirical proof for the widely held belief that it is much harder to learn information 

that has no relevance to a person. However, despite proving the importance of preexisting 

knowledge and experiences in learning new information, Ebbinghaus never postulated the 

mechanism which is used to store new experiences or form new associations with pre-existing 

knowledge (Plucker). 

Semon 

While Ebbinghaus’s application of the scientific method in his studies was primarily responsible 

for ushering the study of human memory from the field of philosophy into the realm of science, 

it was the work of Richard Wolfgang Semon (1859 – 1918) that was responsible for providing 

the scientific community with a viable model for the storage and recall of memory in the nervous 

system. Semon first proposed the hypothetical concept of a “trace” or an “engram” in a book 

titled, “Die Mneme.” He used it to describe the physical and chemical changes that occur in the 

nervous system, whenever we experience new stimuli (Semon).  He postulated that the stored 

memory can be revived or recalled whenever a person is re-exposed to the same or similar 
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stimuli. He introduced the concept of “ecphoric stimulus,” to describe the cue that can be used to 

trigger the recall of a specific memory. According to Semon, this ecphoric stimulus could be a 

partial section of the very same trace or another trace that is very similar to the trace that needs to 

be recovered.  

Prior to the Semon’s introduction of the concepts of “trace” and “ecphoric stimulus,” researchers 

studying human memory were focused on trying to understand the processing that takes place 

when a memory is formed, by following the logical (stepwise) process that they thought led to 

the formation of memories. Semon adopted a markedly different approach when studying human 

memory by initially abandoning the study of the steps that lead to the physical encoding of 

memory; rather, he focused on the question of “How are memories actually stored?” Semon’s 

theory was well received by the scientific community, and he was responsible for starting 

extensive research to detect traces and discover the reasoning behind trace decay or forgetting 

("Richard Semon: Define, Explore, Discuss").  

There were a few key limitations in the work done by Semon. Firstly, Semon provided no 

empirical basis for his assertion that memories are stored as traces. While his proposed theory 

certainly doesn’t lack merit, the fact that is isn’t backed up by specific observations or 

experiments means that there is no way for scientists to either prove or disprove this theory. 

Secondly, building upon the previous limitation, since there is no way to prove the existence of a 

trace, there is essentially no viable way to test and see if the ecphoric stimuli do indeed work and 

cause us to recall or recover a trace (“Semon, Richard (1859-1918)”).  
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McGeoch  

Up until 1932, trace decay was believed to occur primarily due to the spontaneous decay of the 

memory trace, over the time period during which it is disused (not accessed or retrieved), thus 

leading to a person forgetting the requisite information. However, in 1932, John A. McGeoch 

(1897 - 1942) challenged this assumption by questioning the validity of blaming an independent 

variable like time for trace decay, and he proposed that interference is what causes loss of 

retention. His argument against trace decay deserves special mention and is reproduced verbatim 

below: 

 “Even were disuse and forgetting perfectly correlated, it would be fruitless to refer the 

forgetting to the disuse as such. Such reference is equivalent to the statement that the passage of 

time, in and of itself, produces loss, for disuse, literally interpreted, means only passivity of 

time. In scientific descriptions of nature time itself is not employed as a causative factor nor is 

passive decay with time ever found. In time iron, when unused, may rust, but oxidation, not 

time, is responsible.” (McGeoch 539) 

McGeoch’s theory of interference for forgetting states that retention loss occurs primarily 

because of competing stimuli or responses that a person might have acquired or experienced 

either before the memory test, i.e. proactive inhibition, or during the time period between 

memorizing the list and being tested for recall, i.e. retention interval. Numerous experiments 

have been performed over the years to ascertain the cause and effect of different types of 

interference on human memory (McGeoch).  

The classic format followed for the proactive interference experiments is that a test subject is 

provided with a sequence of letters, such as AC, AB, and asked to memorize the AC sequence 

before being asked to memorize the AB sequence. A memory test is performed after a specific 
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retention period, during which the subject is presented with the prefix of the letter sequence, in 

this case A, and is asked to state the first suffix that comes to mind. The subjects are supposed to 

respond with the suffix C, but it was found that since the AB sequence constitutes sequential 

alphabets in the English Language, the subject’s experience “proactive inhibition” and state AB, 

rather than AC as the answer. Similarly, in a retroactive inhibition interference experiment, a test 

subject is asked to memorize a sequence of letters, such as AB, but the subject is exposed to a 

conflicting sequence of letters, such as AC, during the retention period. Upon completion of the 

retention period, the test subject is tested by providing them with the prefix of the letter sequence 

and is asked to state the first suffix that comes to mind. If the subject responds with AC as the 

letter sequence, it proves that retroactive inhibition has taken place and caused a retention loss of 

the initial stimuli (Adams 69; McGeoch). 

McGeoch is one of the most successful and recognized figures in the memory research area of 

verbal learning. His assertion that the passage of time cannot be used as a viable means to 

explain the occurrence of trace decay and his postulation that it is the activities that occurred 

during this passage of time that is responsible for trace decay were responsible for nudging the 

scientific community towards the study of “interference” and the numerous ways in which it can 

negatively influence the retention of given trace in our memory. A key limitation in McGeoch’s 

work is that, although he did postulate that the passage of time cannot be used as the cause for 

the occurrence of trace decay, his discounting of time as a variable that had no effect on trace 

decay was erroneous. This is so because, time is generally used as an independent variable 

against which scientific processes are usually measured and all experiments generally revolve 

around it. As a result, the current belief is that time cannot entirely be discounted as a causative 

factor with regard to trace decay (Adams 69). 
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Peterson and Peterson 

McGeoch’s experiment inspired Lloyd R. Peterson and Margaret J. Peterson to design and 

execute a simple, but elegant, experiment that tested the retention interval of short-term memory 

(STM). In this experiment, the test subjects were asked to memorize a single three-unit 

consonant syllable, such as QFZ, followed by the backwards counting of numbers. This 

backwards counting of three digit number in threes (e.g. 333, 330, 327, etc.) defined the retention 

period and was used to ensure that the subjects did not get the chance to rehearse the assigned 

syllable during that time period. At the end of the retention period (the interval of which varied 

between three, six, nine, twelve, fifteen or eighteen seconds) the subject was asked to recall the 

consonant that they had memorized. The results of this test showed that the subjects experienced 

rapid forgetting as the retention interval increased from three to eighteen seconds. See Appendix 

C for a graph of these short-term retention interval results. This loss of retention over such a 

short period of time provided empirical proof of the existence of STM (Adams 107; L. Peterson 

and M. Peterson).  

Prior to Peterson and Peterson’s retention interval experiment, scientists were of the opinion that 

forgetting (or trace decay) generally takes place over a period of hours; however, by means of 

their landmark study, Peterson and Peterson were able to prove that that under the right 

conditions subjects could forget almost all of a learned stimulus in as little as eighteen seconds. 

Their experiments with the retention interval of short-term memory were responsible for reviving 

interest in the study of, and experimentation with, STM and exploration of the relationship 

between STM and Long-Term Memory (LTM) (Adams 109).  
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Jenkins and Dallenbach 

Similar experiments were performed by John G. Jenkins and Karl M. Dallenbach (1895 - 1969) 

in 1924, to gain empirical evidence of the presence of long-term memory. In these experiments, 

the subjects were asked to memorize a list of ten nonsense syllables, until they were able to 

correctly repeat the list verbatim. The test subjects were then separated into two groups. The first 

group stayed awake, whereas the other group had to sleep in the lab for the duration of a 

“retention interval.” The hypothesis in this experiment was that the test subjects that stayed 

awake would be exposed to much more interference than the group that spent the retention 

interval sleeping. The retention intervals that the scientists used were one, two, four and eight 

hours. At the end of each retention interval the subjects were asked to recite the nonsense lists 

from memory. See Appendix D for retention interval for long-term memory graph. The scientists 

found that the test subjects who spent the retention time sleeping in the lab retained almost twice 

the amount of nonsense syllables, as compared to the test subjects that spent the time awake, thus 

leading the authors to conclude that “forgetting is…the interference, inhibition, or obliteration of 

the old by the new” (Adams 183; Jenkins and Dallenback 612).   

While the affect of interference on STM was extensively studied and was fairly well 

documented, it wasn’t until Jenkins and Dallenback performed this landmark experiment that the 

effect of interference on LTM became evident. Their study was able to empirically establish that 

interference was not merely a STM phenomenon; rather, it tends to afflict both STM and LTM 

equally. Their findings were supported by the experimental results of the scientific community 

and were responsible for augmenting the understanding of the working of LTM, as well as, the 

causative factors of memory loss in LTM. 
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Permanent Memories 

Although it is generally accepted that interference does indeed play a role in memory retention 

loss, it is important to note that the acceptance of the effects of interference on human memory 

does not discount the theory of memory trace. Rather, it can be argued that interference merely 

acts as an agent to inhibit the activation of a memory trace by means of a given stimulus. The 

proponents of this inhibition theory of human memory maintain that human memory is 

essentially permanent, and that forgetfulness only occurs because of inhibition of the underlying 

traces, which are essentially intact and can be accessed by removing the inhibitory barrier 

surrounding the trace (Adams 29). In his 1896 essay, “The Aetiology of Hysteria,” Sigmund 

Freud (1856 - 1939) proposed the concept of repressed memories or motivated forgetting, 

wherein an individual either consciously or unconsciously tries to forget, or inhibit, unwanted, 

hurtful or traumatic memories. There are numerous real life examples wherein victims of 

traumatic events either don’t remember anything, or only parts of the event, although they were 

conscious and alert throughout the occurrence of the event. However, when these victims are 

questioned under hypnosis, or by means of visualization; group therapy; or trance writing, they 

are able to retrieve their repressed memories (Carroll). 

Penfield 

While the theory of permanent memory provides some fairly interesting implications for memory 

research and its application potential, only the works of Wilder Penfield (1891 - 1976), a clinical 

surgeon, provide any empirical verification of the permanence of memory. In 1959, while 

conducting a craniotomy, Penfield stimulated a patient's temporal lobe and was able to recreate 

the patient’s childhood experience which generally accompanied their epileptic attacks. One of 

the most interesting aspects of the patient’s recall process, as reported by Penfield, was that: 



Mehta 21 

 

 “It [the memory recalled by the patient] may produce the picture, but the picture is usually not 

static. It changes, as it did when it was originally seen and then the individual perhaps altered the 

direction of his gaze. It follows individual observed events of succeeding seconds or 

minutes…The thread of continuity, in evoked recollections, seems to be time. The original pattern 

was laid down in temporal succession. And it is the thread of temporal succession that later seems 

to hold the elements of evoked recollection together” (Penfield 24). 

Penfield was able to perform the same experiment and replicate the results in more than 1000 

craniotomies. He used his observations to propose a mechanism for the storage of human 

memory that incorporated the physical structures of brain (Penfield).  

According to the Penfield’s observations, the stimulation of the temporal lobes was the primary 

cause of a complete and realistic recall of childhood memories, including acute recall of all 

colors, sounds and emotions the test subject felt at that point in time. Based on this evidence, he 

labeled the temporal lobes as the “interpretive cortex,” although he did realize that the memories 

evoked by the temporal cortex are not actually stored in the temporal cortex, since the complete 

removal of the temporal cortex  didn’t cause a person to lose his recall of the event in question 

(Penfield). 

While numerous authors proposed various mechanisms and methodologies for the coding, 

storage and retrieval of memories – be it STM or LTM – no viable evidence has ever been found 

to support any of these hypotheses. Penfield’s innovative and systematic study of the effects of 

electrical stimulation on the brain provides us with an empirically verified hypothesis that 

memories might actually be permanent. However, even though the hypothesis of permanent 

memories has always been a minor theme in psychological literature, it has never been pursued 

seriously as a viable alternative to the standard memory hypotheses that revolve around the 
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existence of STM and LTM. One of the primary reasons for this sidelining of the permanent 

memory hypothesis is the change in the legal and ethical environment. While it was once 

acceptable to electrically stimulate the temporal lobes of a patient to see what response, if any, 

occurs, this very same act is now illegal. Additionally, since a disproportionately large 

proportion of the scientific community has been focused on research into short-term and long-

term memory, the research into the permanent memory hypothesis has faded into obscurity 

(Adams 37). 

Distinctions between Long-Term Memory (LTM) and Short-Term Memory (STM) 

Throughout the history of psychology, exploration of human memory had been based on the 

assumption that our brain treats both immediate and past events equally, and that all memories 

are stored in the same way and in the same location. However, the interference experiments 

performed by Peterson and Peterson, as well as, Jenkins and Dallenbach proved that while we 

generally don’t experience a difference in the way that we access and retrieve information from 

our memory, there really are two distinct memory stores, namely short-term memory and long-

term memory. The following is the empirical and experimental evidence which helped confirm 

the dual-store memory hypothesis: 

I. Physiological Evidence- There is empirical evidence of the distinctions between long-term 

and short-term memory. Numerous experiments have been performed on people who have 

experienced damage to the hippocampus through lesions or accidents, or whose 

hippocampus was removed to resolve life threatening seizures. These test subjects were 

found to have impaired learning of new information, when compared to the control subjects 

who didn’t have any hippocampal damage. 
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In their paper titled, “Loss of recent memory after bilateral hippocampal lesions,” Brenda 

Milner (born 1918) and William B. Scoville (1906 – 1984) outline the case of a patient 

whose hippocampus was excised to treat his frequent severe seizures. A few months after 

the operation, the authors interviewed the patient and found that although he had retained 

his long-term memories, he wasn’t able to learn new information. So much so that, even 

though his parents had moved to a new home ten months prior to the authors interviewing 

the patient, he had still not learned the new address and could not be trusted to find his way 

home on his own. As such, there was a severe disconnect between his short-term and long-

term memory. Though he retained his long-term memory, he wasn’t able to create new 

memories (Scoville and Milner 14; Adams 42).  

II. Interference- Different types of interference tend to affect STM and LTM differently. 

Interference in the STM tends to occur primarily due to the acoustic similarity of items 

being learned, whereas interference in LTM tends to occur primarily due to the semantic 

similarity of two experiences or items in memory.  

A prime example of acoustic similarity affecting STM memory occurs when a subject is 

asked to memorize letters that sound similar, such as B, C, P, T, V, F, M, N, S, and X 

(Conrad). Researchers found that test subjects frequently forgot, or got confused, when 

trying to remember these letters. This is markedly different from semantic-similarity-based 

interference in LTM in which conceptually similar words or pictures can lead to 

interference. Examples of semantic interference occurs when a subject is exposed to a 

picture of a cat titled as a “house,” a castle titled as a “house,” a picture of an actual house, 

and the word “house,” and is then tested to see how many variants of house the subject 
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remembers (Van Maanen and Van Rijn 324). See Appendix E for pictorial example of 

semantic interference. 

III. Capacity- Numerous experiments performed between 1910 and 1960 have determined that 

the STM can only store a few items, somewhere in the range of seven to ten items, whereas 

LTM’s capacity is considered to be so large that it has yet to be quantified empirically. This 

large variation in memory capacities is commonly cited as the leading difference between 

LTM and STM (Adams). 

Role of Natural Language Mediators 

Although the experiments and observations outlined in previous sections empirically prove that 

interference plays a role in retention loss, it is important to remember that these experiments only 

test retention loss with regard to rote memorization, whereas most of what we learn on a daily 

basis occurs by means of Natural Language Mediators (NLM). Experiments performed by 

Underwood and Schulz, Clark, Lansford and Dallenbach, and Bugelski provide ample evidence 

of the use of NLMs when assimilating new information into memory. NLMs occur whenever a 

test subject is asked to memorize something, be it an alphabetic sequence, a word, or a sentence. 

The subject automatically tries to mediate, or form associations, between the stimulus and 

response, thus helping them remember any new information (Adams). We frequently use various 

forms of NLM in our daily lives, but rarely ever notice doing so because they are second nature 

to us. The use of mnemonics such as “My Very Easy Method Just Sped Up Naming Planets” to 

learn the names of the nine planets in our solar system, the use of a sing-along rhyme to learn the 

multiplication tables, or memorizing the list of groceries by associating the required items with 

the fridge, bedroom, or bathroom are all forms of NLMs that we utilize on a daily basis. 

Depending on the amount of time we spend developing these NLMs and the frequency of their 
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use; these NLMs might reside temporarily in our STM or may be stored permanently in our 

LTM, where they may be recalled when required.  

NLMs play a very important role in helping us expand the capacity of STM and store more 

information in it. Additionally, NLMs might play a very important role in helping us not only 

link new information to preexisting knowledge, but they (NLMs) might also serve to tear down 

the barriers that are created by interference and renew the information that is stored in our LTM. 

Underwood 

Numerous “free recall” experiments have been performed to observe the effects of NLM on 

STM and LTM. In these experiments, the test subjects are provided a scrambled list of words 

that belong to the same conceptual categories or contain associations among each other. The 

subjects are allowed to read the list to commit it to memory, and are then asked to recall the 

contents of the list in whatever order they want. The scientists observed that the test subjects 

would rearrange the contents of the list into clusters of words based upon the conceptual 

categories or associations (Adams 153). A key experiment illustrating this concept was 

performed by Benton J. Underwood (1915 – 1994) in 1964, when he presented his test subject 

with four lists of words. Two of these word lists contained words that were of the same 

conceptual category and had strong associations among each other, whereas the other two lists 

contained words that were completely unrelated to one another. The following is an excerpt of 

the list of words that were utilized by Underwood in his experiment: 

Word List 1 Word List 2 Word List 3 Word List 4 

Apple Bob France Daisy 

Football Bill England Wall 

Emerald Joe Russia Bee 

Trout John Germany Second 

Copper Rabbi Blue Jay Knife 
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Theft Priest Canary Bus 

Hat Bishop Sparrow Geology 

Table Minister Robin Maple 

Cruiser Cow Measles Arm 

Trumpet Horse Mumps Hammer 

Doctor Dog Polio Salt 

Head Cat Cancer Tent 

Wine Rumba Nitrogen Cobra 

Blue Fox-trot Oxygen Mountain 

Gasoline Tango Hydrogen Window 

Cotton Waltz Sulphur* Rain 
* This is the British spelling of Sulfur. 

Table 1: Lists of words used by Underwood in his free recall experiment in 1964 

Underwood found that thirty-eight percent of his test subjects were able to perfectly recall Word 

Lists 2 and 3, whereas only three percent of his test subjects were able to perfectly recall Word 

Lists 1 and 4. None of the test subjects were informed that Word Lists 2 and 3 had four 

categories of four words each, but all subjects were able to deduce the same and none of them 

provided more than four words per category during the recall test.  

Based on the results of the experiment, Underwood concluded that the test subjects utilized 

category clustering and used a category as the smallest unit or “chunk” in their memory to learn 

the word lists. Since Underwood did not explicitly tell the test subjects that there were four items 

for each concept and a total of sixteen items in the experiment, he postulated that the test subjects 

utilized an editing process, which he called a “selector mechanism,” to separate words from the 

list into multiple categories.  

Underwood’s proposal that a central editing process was responsible for the sorting and 

clustering of words from the wordlist was highly controversial and was immediately challenged 

by multiple scientists who argued that what was being called an “editing process” under the 

influence of a “selector mechanism” was nothing more than simple word association. An 
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example helps explain this. If we present the word “table” to a test subject and asking him to 

verbalize the first word that comes to mind, the test subject may reply with “table-top” or “table-

cloth” or “dining table.” This response is commonly known as the primary response of a stimulus 

and is the product of the test subject’s lifetime of learning which led to the creation of the given 

stimulus-response associations in LTM. According to Underwood’s opponents, the instantaneous 

word association formed by the test subjects in his experiment had little to do with the use of a 

selector mechanism or a complicated editing process, rather, they categorized their wordlists 

based upon simple word association. 

Hellyer 

Overt practice is another factor that plays an important role in helping us remember new 

information. While the use of NLMs is one way that we can remember a shopping list, the 

continuous verbal or visual repetition of the shopping list will also accomplish the same goal. In 

1962, Hellyer performed a comprehensive study of the effect of the number of overt repetitions 

on the memory of test subjects. In the study, Heller presented the subjects with a three-unit 

consonant syllable, and asked them to repeat the syllable one, two, four, or eight times, so as to 

ensure sufficient overt practice. During the retention period of three, nine, eighteen, or twenty 

nine seconds, the subjects indulged in digit naming to ensure that they weren’t able to spend 

additional time reciting or memorizing the new information. Hellyer found that an increase in the 

number of repetitions was directly proportional to the decrease in forgetfulness. 

Prior to Hellyer’s experiment, the scientific community was not in agreement on whether the 

amount that a subject practices a stimulus influences the associative strength of the item and 

increases its resistance to forgetting. The commonly held belief was that rehearsal only stalls the 

decay of a memory trace and that different amounts of practice would not affect the retention of 
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information, since once the last repetition is complete, the decay process will continue on as 

before. However, by means of his experiments, Hellyer was able to conclusively prove that 

practice definitely slows down the rate of forgetting and his experiments paved the way for 

further research into the affect of repetition on STM and LTM.  

Relationship between short-term and long-term memory 

While it is fairly easy to classify STM and LTM as two different memory structures that operate 

on different principals, it is critical to realize that these distinctions of the workings of memory 

are done solely to simplify the study and understanding of memory. In actuality, LTM and STM 

are irrevocably interlinked and neither can exist independently without the other. The recognition 

of a picture, a word, or even a fragment of a song, all require extensive interaction between STM 

and LTM. The recognition of the fact that the word lists presented in the Underwood study 

contained words that belonged to specific categories requires the interaction of STM with LTM 

to ascertain whether the words relate to any overall concepts or categories which can actually be 

used to memorize the word list.  

The preceding sections outline the research performed by various scientists that have provided a 

comprehensive understanding of the basics of human memory and played a critical role in 

designing the memory component of the TED model in this capstone. The following section 

outlines another paper that played a critical role in understanding the implementation potential 

and methodologies that can be utilized to implement the concepts learned from human memory 

into a computationally relevant TED model. 
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K. Joy and S. Dattatri 

The Association for Computing Machinery paper, “Implementing a fuzzy relational database 

using community defined membership values” by K. Joy and S. Dattatri, explores the limitations 

of using the relational database model. According to the authors, the data stored in a relational 

database is extremely precise, or “grounded in black-and-white,” whereas data in the real world 

is never really precise. In this paper, Joy et al. designed and executed a research project that 

implemented a fuzzy relational database which allowed the authors to represent imprecise data, 

such as the description of a picture or a person, using imprecise attributes based upon the 

feedback of the users. They did this by incorporating a “membership value” that would represent 

the truthfulness of the different image descriptions (Joy and Dattatri 268). This innovative use of 

fuzzy relations to describe imprecise or incomplete data in a database helped provide the initial 

stimulus for using a neural network, or a logic based language, to define the threads that connect 

the engrams in the TED Model. 

HUMAN MEMORY MODELS 

Numerous memory models have been proposed by scientists over the years. The following 

memory models were extensively studied for the purposes of this capstone: Atkinson-Shiffrin 

memory model (Atkinson and Shiffrin), Baddeley’s model of working memory (Baddeley and 

Hitch) and the Memory-prediction model (Hawkins and Blakeslee).  

Atkinson-Shiffrin memory model 

In 1968, Richard C. Atkinson and Richard M. Shiffrin proposed a model for human memory in a 

paper titled, “Human Memory: A proposed system and its control processes.”  A graphic 

representation of Atkinson and Shiffrin’s proposed structure of human memory and its inner 
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workings, reproduced from the “Human Memory” article, by Atkinson and Shiffrin (93), can be 

seen below in Figure 1. 

Sensory RegisterLost From Sensory Register

External Input

VISUAL

Auditory 
Verbal 

Linguistic 
(A.V.L.)

Short-Term Store
Lost From Short-Term 

Store

A.V.L

Long-Term Store
Decay, Interference and 
Loss Of Strength in LTS

VISUAL etc. ………. TEMPORAL……….

 

Figure 1: The Atkinson and Shiffrin Memory Model 

 Atkinson and Shiffrin postulated that memory can be divided into three different components: 

I. Sensory Register- We are exposed to thousands of new stimuli on a daily basis. At any 

given time, each of our five senses, namely sight, hearing, taste, touch and smell, are 
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assimilating a plethora of information around us, but we generally pay attention to only a 

small section or segment of these inputs and ignore the rest. Our senses generally store this 

assimilated information for a very short period of time in the sensory register, before any 

cognitive processing is undertaken by our brain, thus allowing us to be aware of our 

surroundings while focusing on a given task (Atkinson and Shiffrin 94). Each of our senses 

has its own sensory register, which are described briefly below: 

A. Echoic Memory or Store- Auditory sensory memory is generally referred to as echoic 

memory, and is believed to last for three or four seconds. A key example that illustrates 

the working of echoic memory occurs when we are in a crowded room and overhear 

someone talking about us. We can generally recall the whole sentence in which our 

name was used, despite the fact that we were not actually paying attention to that 

conversation a second or so ago (“Sensory Memory”). 

B. Iconic Memory or Store- Visual sensory memory is generally referred to as iconic 

memory, and is believed to last for approximately 250ms. We can easily experience 

the effects of iconic memory if we stare at any given picture or even our immediate 

surroundings for a few seconds, and then close our eyes. We’ll find that, even after 

closing our eyes, we can still see the picture for a fleeting second before it fades away 

into oblivion (“Psychology Glossary”). 

C. Haptic Memory or Store- The sensory memory of touch is generally referred to as 

the haptic store. The capacity of the haptic store can vary depending upon the stimuli 

and can vary from between two to ten seconds. A classic example that illustrates the 

working of the haptic store occurs whenever we sit on a couch for a while and then 

get up suddenly. Part of our body still feels the impressions of the couch for at least a 
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few seconds before gradually fading away. This post-activity tactile sensation is 

caused by the haptic store. 

II. Short-Term Memory – The small section of sensory input that we pay attention to, or 

focus on, arrives into the Short-Term Memory (STM). As discussed in the previous 

sections, the STM’s capacity to store information is fairly limited. In 1956, George A. 

Miller, a cognitive psychologist at the Princeton University, published a paper titled, “The 

Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing 

Information,” in which he postulated that our STM is capable of storing seven, plus or 

minus two, chunks of information in it. In his paper, Miller acknowledged that there isn’t a 

specific definition of “chunk.” A chunk could be a single alphabet, a word, a phrase or even 

a sentence. The following is an excerpt from the paper, wherein he explains the ever 

changing nature of a chunk in STM: 

“A man just beginning to learn radio-telegraphic code hears each dit and dah as a separate 

chunk. Soon he is able to organize these sounds into letters and then he can deal with the 

letters as chunks. Then the letters organize themselves as words, which are still larger 

chunks, and he begins to hear whole phrases…I am simply pointing to the obvious fact that 

the dits and dahs are organized by learning into patterns and that as these larger chunks 

emerge the amount of message that the operator can remember increases correspondingly. In 

the terms I am proposing to use, the operator learns to increase the bits per chunk” (Miller 

91). 

This chunking of information for ease of learning was also seen in the experiments 

performed by Underwood in 1964, wherein he observed that the test subjects rearranged 

the contents of the word lists provided to them into clusters of words based upon 

conceptual categories, or associations. Although mentioned previously, it is important to 

reiterate the fact that STM is not only limited in terms of capacity, but also in terms of the 
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duration of time that it can store new information. As shown by Peterson and Peterson in 

1959, we can only retain information in our STM for eighteen to twenty seconds, after 

which we experience rapid forgetting, unless we verbally or visually rehearse the 

information. This rehearsal generally takes place in the rehearsal buffer of our STM. An 

image, reproduced from the “Human Memory” paper (Atkinson and Shiffrin 113), 

outlining the role of the rehearsal buffer, as well as its position in the memory system can 

be seen below in Figure 2. 

 

Figure 2: Role and position of the rehearsal buffer 
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As seen in the Figure 2 above, input from the sensory register, as well as LTM, enters the 

STM where it is stored in the rehearsal buffer. The rehearsal buffer contains a set number 

of slots, wherein the incoming information can be stored. The number of slots available, 

as well as the size of the slots, depends primarily upon the type of information being 

stored. Based upon the experimental results of Wickelgren, Atkinson and Shiffrin believe 

that the lower limit on the capacity of the rehearsal buffer is usually in the range of five to 

eight slots. This is in keeping with Milner’s experimental results, wherein he found that 

STM’s capacity was generally limited to seven, plus or minus two, chunks of 

information. Once this capacity is reached, and the buffer is full, the rehearsal buffer 

utilizes the First-In-First-Out (FIFO) methodology to add new information. As such, the 

oldest chunk of information is discarded, before a new chunk of information is 

incorporated into the rehearsal buffer. The use of this process ensures that every new 

chunk of information spends as much time as possible in the rehearsal store, thus 

resulting in a long-term trace being built for that chunk of information in the LTM. A key 

example that can be used to illustrate this fact is that whenever we try to memorize a new 

phone number, we repeat the number several times. This repetition of the telephone 

number helps it remain in the rehearsal buffer of the STM for a longer period of time, and 

ensures that its trace is not only built, but also strengthened in LTM (Atkinson and 

Shiffrin 114). 

The visual or verbal rehearsal of information is not the only means by which information 

can be transferred from STM to LTM. Atkinson and Shiffrin put forth the proposal that 

information transfer from the STM to LTM is an “unvarying feature of the system.” They 

cited the studies of incidental learning as reported by Hebb and Melton, wherein test 
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subjects were required to repeat sequences of digits. They found that if a given sequence 

was presented to the test subjects every few trials, it was gradually learned (stored in 

LTM), despite the fact that the test subjects could easily perform the given task by 

rehearsing the sequences in their STM. As such, any and all information that is attended 

to when stored in the STM is also transferred to LTM (Atkinson and Shiffrin). 

While the previously described sections on STM explain what happens whenever we are 

exposed to new stimuli or information through any of our senses, exposure to familiar 

stimuli leads to a very different response. For example, when we are exposed to the 

picture of a cat, a definite sequence of events is set into motion. Firstly, the image of the 

cat is registered in the iconic store (the sensory register of our eyes), following which, the 

sensory register tries matching the image of the cat with the contents of the short-term 

memory. If the exact or even a similar pattern is found in our short-term memory, we 

recognize that this is the image of a cat. However, if the sensory register doesn’t find any 

pattern match in the STM, it conducts a similar search in the LTM. If a match for the 

“cat” pattern is found in the LTM, the pattern will be immediately copied over to the 

STM and we will simultaneously recognize that we are seeing the image of a cat. It is 

important to note that in the case that the pattern of the cat is found in LTM, the original 

pattern of the cat is not moved or removed from the LTM to STM; rather, the pattern is 

copied over from our LTM to our STM. Alternatively, if a pattern match is not found in 

the LTM, then the unknown pattern is copied over from our sensory register to the STM 

where it continues to reside temporarily until we learn what the unknown pattern is, or 

until it decays from the STM.  
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III. Long-Term Memory- Information that we rehearse, concentrate on, or are repeatedly 

exposed to is transferred from the STM into the Long Term Memory (LTM). Contrary to 

the sensory register and the STM, wherein the capacity and length of information storage is 

restricted, the LTM has a virtually limitless capacity (Adams). Whenever new information 

is introduced in the STM, we generally relate this new information to some preexisting 

concepts, words, phrases or items that already exist in our memory. This can be explained 

further by expanding upon the example of the exposure to a picture of a cat from the 

previous section. Assuming that a person has never heard of or seen a cat, but has actually 

seen a dog, he may react to form a tentative association between a cat and dog using the 

following logic: 

“I see a furry animal that is a pet, just like a dog. Both dogs and cats are furry, have four legs 

and a tail. Dogs bark, but cats meow. Cats eat mice, but dogs don’t. Dogs are generally larger 

than cats.” 

Although the above described description is highly subjective, and could vary 

from person to person, it would definitely help categorize the cat using a variety 

of key concepts. Thus, the next time the same person sees a cat, his sensory 

register would initiate a search in LTM and find that the furry animal in front of 

him meets the characteristics of a cat, and as such all the cat-related information 

would be transferred from his LTM to STM. This use of Natural Language 

Mediation (NLM) for learning of new information is well documented and has 

been verified empirically in experiments performed by Underwood and Schulz, 

Clark, Lansford and Dallenbach, and Bugelski. 
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The Atkinson and Shiffrin memory model was one of the first viable memory models that 

attempted to explain the workings of human memory and was responsible for directing or 

redirecting the attention of the scientific community towards the exploration of a holistic 

memory model that would account for most, if not all, of the experimental results and 

observations accumulated over a period of decades by numerous scientists and 

philosophers. Although the memory model proposed by Atkinson and Shiffrin was 

certainly a viable model, the critics were quick to point out that it was primarily a 

theoretical model and did not address the issue of which parts of the brain were 

responsible for the existence and functioning of each of the proposed memory 

components. Additionally, critics such as Alan D. Baddeley and Graham Hitch argued 

that the short-term memory component proposed by Atkinson and Shiffrin was primarily 

a storage area that did not perform any processing of the information that it holds, 

whereas a multitude of experiments have shown that we continuously process and 

manipulate information in both our STM and LTM. However, despite these and other 

limitations, the Atkinson and Shiffrin model deserves special recognition primarily 

because it attempted to explain the complete workings of the human memory at a time 

when most of the scientists were focused on the study of the individual components of 

human memory. 

Baddeley and Hitch- Working memory 

In 1974, Alan D. Baddeley and Graham Hitch, both professors of psychology at the University of 

Stirling, Scotland, proposed that the Short Term Memory (STM) component of the Atkinson-

Shiffrin memory model be replaced by a much more complex system titled “Working Memory.” 



Mehta 38 

 

The following observations and experiments led the authors to propose a modification of the 

existing memory model: 

I. Atkinson and Shiffrin’s memory model stipulated that learning generally occurs whenever 

an item is held in STM, and that the longer an item stays in STM the greater the chance that 

it will be transferred from STM to LTM. However, the experimental results provided 

evidence that was contrary to Atkinson and Shiffrin’s model. Scientists found that the key 

feature that decided whether an item transitioned from STM to LTM was the depth to 

which the item was processed. Therefore, if a person merely glanced at a sentence and 

noticed that the first alphabet of a word was in upper case, he wouldn’t spend a lot of time 

processing this information, and as such it was unlikely that the item would be transferred 

to LTM. But if the person reads the word, notices that the first alphabet is capitalized and 

that it rhymes with some other word in his vocabulary, then it becomes increasingly likely 

that this word association will be transferred to his LTM, and that he would be able to 

recall or recognize it in the future (Baddeley). 

II. According to Atkinson and Shiffrin’s memory model, STM is crucial for long term 

learning of new concepts, ideas and experiences. Baddeley and Hitch found that patients 

that suffered from STM issues were still able to form LTMs despite the fact that they 

weren’t able to calculate the change while shopping, and faced other cognitive problems on 

a daily basis. Baddeley and Hitch conducted further research in this realm to accurately 

ascertain the relationship between STM and LTM. For their experiments, they had their test 

subjects learn new material, and conducted reasoning or comprehension tests while 

simultaneously reciting gradually increasing digit sequences to block or occupy their STM. 

The results showed that although the blocking of the test subjects’ STM did bring about 
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some decrement in learning, especially as the length of the digit sequences increased, it was 

not as significant as it should have been if LTM was as dependent upon STM as the 

Atkinson-Shiffrin model suggested (Baddeley; Baddeley and Hitch). 

The working memory model, as proposed by Baddeley and Hitch, uses STM as an active 

information processor wherein information is not only stored, but is also manipulated to make 

the most use of it. This stands in stark contrast to the Atkinson-Shiffrin memory model, in which 

the STM is merely a passive store where information is stored, but is never manipulated or 

worked with (Neezes). An example that can illustrate this difference would be that of a person 

shopping for furniture in a store. In the Atkinson-Shiffrin model, if the person sees a couch, he 

will simply be temporarily storing the couch as a “chunk” in his STM; whereas in the working 

memory model, the person would use his visuospatial memory to move the furniture around in 

his apartment and figure out the best location to place the couch.  

The structure of working memory is markedly different than that of the Atkinson-Shiffrin 

model’s STM. Baddeley and Hitch’s working memory model contains a central controlling 

mechanism, called the “Central Executive,” which manages the attention of a person. The central 

executive has three subsidiary systems namely the phonological loop, the visuospatial sketchpad, 

and the episodic buffer. An image of the working memory model, reproduced from Alan 

Baddeley’s paper titled “The episodic buffer: a new component of working memory?” can be 

seen below in Figure 3: 
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Figure 3: Working Memory Model (Baddeley) 

Initially, in their paper titled “Working Memory,” Baddeley and Hitch had only included three 

components in their working model, namely the “central executive,” the “phonological loop,” 

and the “visuospatial sketchpad.” However, subsequent research and experiments by the authors 

revealed an important weakness in the model: it didn’t provide for a means to integrate the 

information gathered through the phonological loop and the visuospatial sketchpad. As such, a 

new component termed the “episodic buffer” was added to the working memory model 

(Baddeley). The following is a detailed description of each of the components of the working 

memory model and their respective functions: 
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I. The Central Executive- This component forms the most important part of the working 

memory model as it is responsible for controlling the attention of a person, as well as, the 

flow of information to and from the phonological loop and visuospatial sketchpad. It is 

speculated that the central executive is also responsible for all reasoning and decision 

making activities that are undertaken by us (Narayanan). 

According to Baddeley, the proposed workings of the central executive are identical to that 

of the Supervisory Attentional System (SAS) that was proposed by Norman and Shallice 

(6). Also per Norman and Shallice, most of our daily activities, such as driving a car, riding 

a bike, walking, etc., are governed by habitual processes which are guided by 

environmental clues. However, the occurrence of any unexpected or novel situations, 

which we haven’t experienced before and are not a part of our habitual processes, requires 

the use of SAS (Norman and Shallice 6). An example of the SAS in action during a novel 

occurrence would be the actions we take when our car skids in the snow. When we drive 

our car on a daily basis, we depend on our habitual processes which allow us to drive home 

without paying too much attention to the minute details of our surroundings. But if we are 

driving home and our car skids, our attention to our surroundings is heightened and we 

begin maneuvering our car with as much precision as possible to recover from the skid. 

These emergency actions are generally not a part and parcel of our habitual process and are 

governed by SAS. 

II. Phonological Loop- The phonological loop uses a rehearsal mechanism to maintain 

acoustic or spoken information, so as to prevent the trace from decaying (Pezzulo). A 

reproduction of the phonological loop, as depicted by Susan E. Gathercole in her paper 
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titled, “The structure and functioning of phonological short-term memory,” can be seen 

below in Figure 4. 

 

Figure 4: Structure and functioning of the phonological loop 

As seen in Figure 4 above, the phonological loop is comprised of the following two parts. 

A. The Phonological Store- The phonological store receives input from two main 

sources. Firstly, thorough auditory input, i.e. by means of our ears. Any and all 

spoken language that we hear is directly stored in the phonological store. Secondly, 

by means of our long term memory. Anytime we feel that a piece of music is stuck in 

our head, we are generally listening to it by means of the phonological store 

(Baddeley and Hitch). Any information that enters the phonological store generally 

decays after a period of about two seconds, unless it is rehearsed by means of the 

Articulatory Control System (Walsh). 

B. Subvocal rehearsal or Articulatory Control System- The articulatory control 

system serves two critical functions. Firstly, it helps prevent the decay of information 
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in the phonological store. This is done by means of subvocal rehearsal, or silently 

repeating the information in our minds, without actually verbally reciting the 

information. An example for the same would be that of a person repeating a list of 

grocery items to himself, to ensure he doesn’t forget it. Secondly, it enables us to 

convert visual information into phonetic information that can be transferred into the 

phonological store. A good example of the conversion of visual information to 

phonetic information would be a test subject reading the letter “A.” Although the 

alphabet is essentially just a simple shape, the test subject would convert this shape to 

the phonetic pronunciation of the letter ’A,’ which will then be store in his phonetic 

store (Walsh; Gupta and MacWhinney 510). 

III. Visuospatial Sketchpad- The visuospatial sketchpad is used for the storage, as well as the 

manipulation, of visual and spatial information. It receives input from both the eyes and 

long-term memory. According to Logie, the visuospatial sketchpad can be divided into the 

following two subcomponents. 

A. Visual cache- The visual cache is used for the storage of information such as visual 

form and color of images that a person is exposed to (Eysenck and Keane 199). 

B. Inner Scribe- The inner scribe is the visuospatial component that deals with spatial 

information that a person is exposed to. Its function is similar to that of the Articulatory 

Control System, in that it rehearses the information in the visual cache, and is 

responsible for the transfer of information from the cache to the central executive 

(Eysenck and Keane 199). Additionally, it has been theorized that the inner scribe is 

responsible for the planning and execution of our body and limb movements too 

(Logie). 
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IV. Episodic Buffer- The episodic buffer was the fourth component that was added to the 

working memory model (Baddeley). It is called the episodic buffer because it is primarily 

responsible for the integration of information over space and time. It is a temporary storage 

system that can be accessed and controlled by the central executive through the medium of 

conscious awareness. The central executive uses the episodic buffer to integrate 

information from the phonological loop and the visuospatial sketchpad with LTMs. As 

such, it is theorized to play a very important role in the feeding and retrieving of 

information from LTM. Additionally, the episodic buffer is also speculated to be 

responsible for the chunking of information in STM (Miller).  

Baddeley proposed that the episodic buffer uses a common multi-dimensional code, to 

enable it to interface with the visuospatial sketchpad and the phonological loop, both of 

which utilize different sets of codes to process the incoming information (Baddeley).  

Although the exact size of the buffer hasn’t been established, it has been theorized that the 

buffer size should be fairly limited, so as to reduce the amount of resources that would be 

utilized to process the different sets of codes retrieved from the different components of the 

working memory model.  

Although the Working Memory model represents a marked improvement over the Atkinson and 

Shiffrin model in representing human memory components and their associated processes, it (the 

Working Memory Model) shares some of the same limitations as that of the Atkinson and 

Shiffrin Memory model. Firstly, the Working Memory model postulates that the STM can be 

divided into various specialized components, however, no physical evidence is provided to 

validate these claims. Neither the original “Working Memory” article by Baddeley and Hitch, 

nor any of the subsequent research by the proponents of this memory model have postulated or 
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attempted to explain which sections of the brain are used for the specialized processing activities 

that are proposed by this model. Secondly, the Working Memory model only focuses on the 

functionality of the STM, while steadfastly ignoring the LTM. No attempt is made to explain the 

functioning of LTM nor is there any explanation as to how information is transferred from the 

various components of Working Memory into LTM and vice-versa. Thirdly, when proposing the 

Working Memory model in 1974, Baddeley believed that there were further subsystems that 

have yet to be identified and he believed that these subsystems would be discovered as further 

research was conducted, however these subsystems have yet to be identified despite the model 

being in existence for over 40 years. As such, although the Working Memory model serves as a 

marked improvement over the Atkinson and Shiffrin model and is generally accepted as a better 

model, it has some serious limitations which will have to be addressed before it can achieve 

broader recognition amongst the scientific community. 

Memory-prediction model 

Jeff Hawkins’s book, “On Intelligence: How a New Understanding of the Brain will Lead to the 

Creation of Truly Intelligent Machines,” explains why we need to understand the workings of the 

human brain, to build truly intelligent machines. Hawkins delves deeply into the physiology of 

the human brain and explains, by means of his “Memory-Prediction Framework,” how our brain 

combines our thoughts with sensory perceptions to form predictions about future events.  

According to Hawkins, there are three essential criteria that have to be met to ensure a proper 

understanding of the brain. 

I. Inclusion of time in brain function- Our brains are constantly processing rapidly 

changing streams of information that are sent to it by our senses and our LTM. Whenever 
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we experience an event or process any information, we generally remember at least part of 

the information and can always refer back to it in the future. This time based storage of 

information helps us associate new information with preexisting knowledge and learn new 

concepts. As such, it is imperative that a time component be included when trying to 

understand the workings of the brain (Hawkins 25). 

II. Feedback- Researchers have found that for every connection feeding information forward 

from our senses into the neocortex, there are roughly ten connections feeding backwards 

into our senses. While we generally expect that we are mostly feeding information from our 

senses into the brain, this really isn’t the case. We receive ten times the amount of feedback 

from our brain to our senses. Hawkins postulated that this feedback mechanism must be 

extremely important to the brain and should definitely be explored (25). 

III.  Physical Structure of the Brain- Most memory models, and research into the workings of 

the human brain, ignore the actual structure of the brain and try to compare its workings to 

a preexisting object or tool (for e.g. a computer). According to Hawkins, a proper 

understanding of the workings of memory and the brain is only possible by taking into 

account the physical architecture of the brain (25). 

Our neocortex is divided into multiple functional regions. Each functional area serves as a semi-

independent unit that specializes in certain aspects of perception or thought. These functional 

areas are arranged in a functional hierarchy. It is important to note that a functional hierarchy 

does not imply that one functional area is physically above or below another, rather it merely 

refers to the connections that exist between one functional area and another. Thus, although two 

functional areas might be on the same level physically, the hierarchically lower functional area 

will feed information to the functional area that is at a higher level (Hawkins 44). 
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Whenever we are exposed to any external stimuli, the sensory information enters the primary 

sensory area of the cortex. The primary sensory area forms the lowest functional area of the 

neocortical hierarchy, and it is here that raw sensory information is initially processed, before 

being passed up the hierarchy. Hawkins provided an example of our sense of vision to illustrate 

this fact. Every time we see anything, our eyes pass-on the visual information to our cortex 

through the primary visual area, V1. The V1 area is responsible for the processing of the visual 

information’s low level features, such as the presence of edges, binocular disparity (the 

difference in the image seen by the left and right eye which helps in ascertaining information 

about depth), basic color and contrast information. Once this basic processing of visual 

information is completed, V1 feeds the information into the next hierarchical area, such as V2, 

V3, V4, V5, etc. where additional processing of the visual information takes place. As we go 

higher up the visual cortex, we reach the functional areas that have visual memories of familiar 

objects such as faces, animals, furniture, etc (Hawkins 45).  

Each of our senses has its own cortical hierarchy, wherein the sense specific information is 

processed. All of our senses then pass on the processed information to the “association areas,” 

which are higher up in the cortical hierarchy. The association areas are primarily responsible for 

combining the input from the different senses and forming a single experience. For example, 

when we watch TV we are receiving multiple inputs through our senses. We see visual images 

on the TV screen, hear the audio associated with the visual images, and assuming that we are 

sitting on a couch, our somatosensory system senses the touch, temperature and pressure of our 

body on the couch. All three of these senses pass on this information to the association area, via 

millions of axons, which integrates the disparate streams of information into a single unit. As 
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such, we experience that the audio and video images are in-sync and that we are sitting 

comfortably on the couch (Hawkins 46). 

According to Hawkins, the associative area is easily able to integrate the wide variety of inputs 

provided to it from all of our senses primarily because the neocortex uses a single underlying 

algorithm for all its functions. This theory of a single underlying algorithm is based upon Vernon 

Mountcastle’s observation that despite the wide variety of functional areas and operations 

performed by the neocortex, the overall structure of the cortex is remarkably similar.  The 

auditory region of the cortex is similar to the motor region of the cortex, which is again similar to 

visual region of the cortex. Thus, the specialization of the cortex is dependent upon which of the 

five senses it is actually connected to.  This is the reason why the human neocortex is considered 

to be very flexible. A prime example of its flexibility occurs in individuals who are born deaf. 

Scientists have found that people who are born deaf generally have superior peripheral vision 

and motion detection as they utilize the auditory regions, in addition to the visual areas, of the 

brain to process visual information (Sanders). This flexibility proves that each functional area of 

the neocortex doesn’t use different algorithms to process information in different areas. Also, no 

matter which one of our senses are being used, be it auditory, vision, touch, etc., all of our 

sensory inputs are received by our neocortex in the form of neural signals through the axons. As 

such, all our brain sees is a pattern of neural signals, wherein certain axons are firing while 

others are at rest. Each pattern of neural signals uniquely identifies a given object, sound, smell, 

etc. Whenever we see a car driving by our house, a specific pattern of neural signals will fire up 

all the way from our optic nerve to the visual area of the cortex. If the driver honks, then a 

different pattern will travel down from our auditory nerve into the auditory area of our cortex. 

The cortex doesn’t process the patterns differently, no matter where they originated, be it through 
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vision, hearing or any of our other senses. Additionally, our cortex doesn’t necessarily need a 

complete or uncorrupted stimulus to recreate a previously seen pattern. Our cortex is auto-

associative by nature and can easily fill in an incomplete or distorted pattern (Hawkins 54). The 

following image serves as a classic example of our cortex using auto associative memories to fill 

in the gaps. 

 

Figure 5: An image of three angled lines 

Although we are consciously aware that the diagram in Figure 5 above is incomplete, with three 

missing sections, we can easily discern that this is an image of a triangle. We are able to reach 

such a conclusion primarily because of our auto-associative memory of a triangle. Another 

example of our auto associative memory in action occurs when we hear a part of a song be it just 

the music, part of the lyrics, or someone humming a tune of a song. In each case, although we 

are receiving different types of auditory signals, the upper echelons of our functional area are 

able to recognize the underlying pattern and help us recall the name or the complete lyrics of the 
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song. According to Hawkins, the reason we are able to recall the song, no matter what the input 

pattern, is because our neocortex doesn’t really store the song, or anything else, exactly as we 

see, hear, feel or experience, rather, it only stores the “invariant representation,” or the important 

characteristics, of our experiences. For example, in the previously mentioned case, where we can 

recall a song no matter the format of the input pattern, our cortex doesn’t store the notes of the 

song; rather, it probably stores the relative pitch of the notes. This is the reason why we can 

recognize the song in any format. Similarly, we can always recognize the face of a friend even in 

a crowd, no matter the distance, angle, or lighting. It is quite an impressive feat especially when 

we take into account the fact that when the friend is standing closer to us, they occupy a larger 

area of our retina, and when they are standing far from us, they occupy a much smaller area of 

our retina. When in a crowd, there are other faces too that are crowding our retina, but we 

recognize the friend nevertheless. Again, this occurs due to the fact that our cortex stores the 

“invariant representation” of our friend’s face, and not the exact image. As such, an invariant 

representation could be defined as the cortical storage of the critical or defining elements of a 

pattern such that even if the pattern is modified and presented in a different form, our cortex can 

instantly match the critical or defining elements and recognize the pattern. Thus, we are able to 

recognize the face of a friend in any surroundings because our cortex stores the critical or 

defining elements such as the relative dimensions and proportions of the friend’s face: the 

distance between their eyes, the size and shape of their nose, the color and shape of their eyes 

and hair, etc. It is by means of these relative proportions that we compensate for the lighting, 

distance, angle, or other environmental variations, and still recognize the friend.  

Our cortex is continuously making predictions about everything around us, but we are never 

consciously aware of it unless or until one of the predictions fails, or is not completely fulfilled 
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(Hawkins 77). In his book, Hawkins uses the example of a person climbing down a flight of 

stairs to illustrate the role of cortical prediction. Whenever we descend down a flight of stairs, we 

usually have an inherent expectation, each time we put our foot down, that the next step will be 

present after a given distance. If our foot passes beyond that anticipated point where the next step 

is supposed to be present, we get alarmed and immediately make an effort to stop ourselves from 

tripping or falling down. However, if we stop to analyze this situation, our foot didn’t really feel 

anything when it missed the step, but our cortex made a prediction that was not met and we 

realize that there is something wrong (Hawkins 91). Similarly, if one of our friends dyes her hair 

from black to electric blue and we happen to pass by them, we tend to stare, and generally 

complement their choice of hair color. But again, the reason our attention is instantaneously 

drawn to her hair is because our cortex made the prediction that her hair will be black, but that 

prediction was not met. 

The previous sections outline the role of the neocortex in predicting future events, based upon 

the learning that occurred from prior events. The cortex stores each event or stimuli as an 

invariant representation or pattern, and anytime we undertake an activity or experience an event, 

it checks the newly generated pattern against the past patterns to see if there are any similarities. 

The fact that the patterns are stored in an invariant form ensures that the past patterns can 

actually be applied to new situations, which are similar, but not necessarily the same (Hawkins 

77). An example should illustrate this concept clearly. If we listen to someone playing a piano 

rendition of “Let It Snow,” and then a guitar rendition of the same song, we can easily recognize 

that both renditions are of the same song. This is despite the fact that the newly generated pattern 

of guitar notes is similar to, but not the same as, the piano notes. Our cortex recognizes this 

because of the fact that it stores an invariant representation of the song. To understand how these 
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patterns are stored in the cortex, we will have to delve into a little bit of anatomy. A diagram of 

the structure of a neuron can be seen below in Figure 6. 

 

Figure 6: Diagram of a neuron (Jrious) 

Anytime we experience external stimuli, an electrochemical signal travels down a neural 

pathway from the bottom of the cortical hierarchy all the way to the top of the hierarchy. All 

neurons along this path have the same structure and conduct the electrochemical current 

similarly. Once our senses receive an input, the cells in the lowest layer begin firing and the 

current travels down from the dendrite through the axon towards the axon terminal button. The 

axon terminal button contains a synapse that emits electrochemical signals through the synaptic 

cleft to the next neuron down the path. The structure of a synapse can be seen below in Figure 7. 
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Figure 7: Structure of a synapse (Purse) 

Each time an electrical signal travels down a specific neural path, it strengthens the connection 

between the synapses of the neurons that lie along the path. This synaptic plasticity, wherein the 

strength of the synapse varies according to the frequency of use of that particular synaptic 

pathway, is known as Hebbian Learning. If we experience the same stimuli multiple times, the 

synaptic strength, or the amount of neurotransmitters, between the two neurons increases 

sufficiently that the cells in the highest layers of the cortical hierarchy can fire automatically 

whenever the cells at the lowest layer of the hierarchy fire, without the firing of cells in the 

intermediate layers. As such, whenever the cells in the lowest layer of the cortical hierarchy are 
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exposed to a previously experienced pattern, the cells in the upper layers of the cortical hierarchy 

begin firing in anticipation, without actually being “told” or driven to begin firing by the cells 

lower in the cortical hierarchy (Hebb). Over time, these repeated exposures to the same, or 

similar, stimuli ensure that we indulge in repeated learning, which causes our cortex to reform 

the memory representations for the stimuli at the lower levels of the cortical hierarchy. Hawkins 

illustrates this concept by using the example of a child who is learning to read for the first time. 

Initially, the child learns to recognize the shapes of the letters and differentiate amongst them. 

Then they learn to combine letters to form small three letter words, like cat, bat, rat, etc. Then 

they learn multi-syllable words, followed by entire phrases or sentences. There is a general 

progression in the learning process. At the outset, the child requires the use of the complete 

visual cortex just to recognize the individual letters, but as learning takes place, the recognition 

of the letters moves down the cortical hierarchy and closer to the sensory input, thus, freeing up 

the upper echelons of the cortical hierarchy to work on learning more complex material, such as 

words and phrases (Hawkins 166). This is the reason why when reading a complete sentence, we 

don’t really read the individual letters of every word, rather, we tend to read the word as a whole, 

unless and until we come across a word that is spelled incorrectly and doesn’t meet the patterns 

stored in our cortex. Alternatively, we could make the argument that at each step in the learning 

process of the child represents the evolution of the size and definition of a “chunk.” Initially, 

each individual letter forms a chunk, and the child has to learn each alphabet or letter 

individually. As the learning process continues, the size of the chunk evolves and increases in 

size from individual letters to words, and eventually complete sentences. 

While the previous sections outline the role that the neocortex plays in the formation and 

utilization of memories, it is important to understand that the cortex is not the only brain 
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structure that helps to form new memories. According to Hawkins, whenever we are exposed to 

completely new or novel stimuli that we have never experienced before, each functional region 

of our neocortex tries to match the new pattern to a pre-existing one. If a pattern match is not 

found, it escalates the pattern onto the next step in the cortical hierarchy. This process continues 

until the pattern reaches the hippocampus, the top most level of the cortical hierarchy, where it is 

stored temporarily. If we experience the novel input repeatedly then the pattern is moved down 

into the lower levels of the cortex. However, if we don’t access that pattern in the near future 

then it is eventually lost (or forgotten). Although Hawkins has merely speculated about the role, 

as well as the process, that is utilized by the hippocampus to transfer novel patterns to the 

neocortex, the previous sections of this capstone have outlined experiments that have empirically 

proved that no new long-term memories can be formed if a patient has a damaged hippocampus. 

As such, it is not only feasible, but also highly probable that the memory prediction framework 

outlined by Hawkins does indeed help us form and utilize our memories. 

This memory prediction framework proposed is quite unlike any of the memory models explored 

previously in this capstone. First, all of the previous memory models were generally theoretical 

models that didn’t attempt to explore or explain the physical basis of the theoretical memory 

structures proposed in them. The Hawkins memory model stands in stark contrast to them, 

primarily because the entire theoretical framework is based on the study of the physical structure 

of the brain. Second, although the other memory models purport to explain how human memory 

works, none of them attempt to explain how memories are formed, encoded or retrieved, whereas 

Hawkins’s memory prediction framework explores these and other concepts, such as the 

predictive ability of the human brain and the reasoning behind the flexibility of the various 

functional areas of the brain, comprehensively and provides ample empirical evidence to back it 
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up. However, one of the key limitations, at least currently, of Hawkins memory prediction 

framework happens to be the numerous leaps of faith that he had to make in order to create a 

cohesive memory framework. These leaps of faith, wherein he postulates the existence of 

physical structures that have yet to be researched, discovered, and empirically proved, form a 

critical part of his theory, and as such, despite the fact that most of the memory prediction 

framework theory makes sense and is entirely believable, the model will not gain a strong 

foothold in the scientific community until it is empirically verified. 

Analysis of the Memory Models 

Work on this capstone had begun with the naïve assumption that a single memory model could 

easily serve as the basis for the design of the Threaded Engram Database (TED) Model, and that 

all that would be required was the selection of the “appropriate” model from the leading human 

memory models proposed by scientists. However, this assumption turned out to be erroneous 

because the results of the study of human memory over the past few decades are far from 

definitive. While there are various models and proposed methodologies of the workings of 

human memory, there is no agreement in the scientific circles on the following questions: 

I. How are memories formed? 

II. Where are memories actually stored? 

III.  Are memories transient or permanent? 

IV. How or why do we forget things once they are stored in our memory? 

V. What architecture in our brain helps us store memories? 

As such, an efficient TED model could only be designed by borrowing and incorporating the 

salient features of each of the memory models studied for the purposes of this capstone, namely 

the Atkinson-Shiffrin memory model (Atkinson and Shiffrin), Baddeley’s model of working 
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memory (Baddeley and Hitch) and the Memory-prediction model (Hawkins and Blakeslee). The 

following are the components that should be incorporated into the TED model: 

I. The Central Executive (Baddeley’s model of working memory) – The Central Executive 

(CE) component played a critical role in Baddeley and Hitch’s model of working memory. 

It was believed to be responsible for the management, or control, of our attention span and 

ensuring seamless flow of information between the various components of the working 

memory model. It could be argued that the role of the CE in managing human memory is 

remarkably similar to that of a database engine, as a database engine is generally 

responsible for the storage, retrieval and management of access to the data that is stored in 

a database.  

The addition of a CE like entity into the TED model will help simplify the storage and 

management of all of the TED model components. While the functionality of the CE and, 

to a certain extent most database engines, is limited to the management of data storage, the 

CE component of the TED model will perform additional processing tasks, such as the 

interfacing of the TED model with relational sources, abstraction of relational data into 

TED components, pattern recognition or generation, pattern matching, access monitoring, 

and pattern migration of patterns amongst the various storage units.  

II. The Short-Term Store (Atkinson-Shiffrin Memory Model)- The Atkinson-Shiffrin 

memory model postulated that anything that we focus on or pay attention to resides for a 

temporary period of time in our short-term memory. While the Atkinson-Shiffrin model 

depicted the STM as being a passive store where the storage capacity is limited, both in 

size and in content, without the conscious knowledge or control of humans, the short-term 

store component of the TED model as a temporary storage area for TED components with 
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user configurable capacity and decay periods. The inclusion of this component in the TED 

model will help provide a temporary staging area where patterns may be held until the CE 

component ascertains whether they should be deleted or moved to the long-term store. 

Thus, limiting the total size of the long-term store and ensuring that only the important or 

relevant patterns are migrated into the long-term store. 

III.  The Long-Term Store (Atkinson-Shiffrin Memory model) – The long-term memory 

component of the Atkinson-Shiffrin model is believed to have potentially unlimited 

capacity to store new information and is believed to be utilized whenever we are exposed to 

the same stimuli repeatedly or when we try to memorize a new piece of information by 

relating it to our preexisting knowledge. The inclusion of a LTM-like component in the 

TED model will enable it to store TED components or patterns for a much longer period of 

time than the short-term store. However, contrary to the LTM component of human 

memory which has potentially unlimited capacity and an uncertain decay period, the Long-

Term Store (LTS) should have a user configurable capacity and decay period. The addition 

of these user modifiable parameters will help organizations plan for the resource usage and 

growth of the LTS, which would not be possible if it (the LTS) is configured for unlimited 

growth.  

IV.  Invariant representation (Hawkins Memory model) – The Hawkins Memory model 

proposed that the brain tends to store invariant representations of all experiences we 

encounter in our daily life. Anytime we experience something new, our brain tries to relate 

the pattern generated from the new experience with the previously stored invariant 

representations and form new associations based upon those representations. The 

incorporation of the concept of invariant representations in the TED model would enable it 
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perform similar tasks. While the current RDBMs limit our understanding of data and its 

underlying relations to those that are specifically setup by the user by means of foreign 

keys or defined relationships, the use of invariant representations in the TED model would 

enable us to perform a multifaceted analysis of the data by not only viewing data that is 

directly related, but also data that is similar or potentially relevant to the data that is being 

analyzed. 

The incorporation of the above described components from the assorted memory models should 

enable the TED model to function similar to human memory and form new correlations between 

both preexisting and newly entered data. 

TED Model Terminology 

The implementation of the TED model is dependent upon two key concepts, a “thread” and an 

“engram.” However, although both key concepts are commonly used in the field of 

neuropsychology, they have not been defined in a computational context. Therefore, the 

following definitions are proposed for them: 

I. Engram- The term “chunk” has been used numerous times by multiple scientists to define 

the smallest unit of storage in human memory. The size and definition of a “chunk” was 

found to vary widely, depending upon a subject’s familiarity with a given subject, as well 

as level of categorization of information. As such, it was found that a chunk could vary in 

size from a single alphabet, to a single word, to multiple sentences.   

In the TED model, the term “engram” will be used as the computational equivalent of a 

“chunk,” and will represent any database object(s) that can be related to, or can form 

relationships with, another object(s). As such, an engram could be a single 

record/image/LOB/CLOB/BLOB or any other object in a database. Also, it could be a 
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grouping of multiple records/images/LOBs/CLOBs/BLOBs or any other similar objects in 

a database. Since these definitions might sound exceedingly vague, a few examples might 

help illustrate the concept of an engram much better. The “FAMILY VIDEOS” table, as 

seen in the table below, contains a unique identifier, the name of the video and the title of 

the family members of the Adams, James and Smith families who star in the video. 

Unique  

Identifier 
Name Title 

1 Jane Adams Video Mother 

2 John Adams Video Father 

3 Judy Adams Video Sister 

4 Jesse Adams Video Brother 

5 Jane James Video Mother 

6 John James Video Father 

7 Judy James Video Sister 

8 Jesse James Video Brother 

9 Jane Smith Video Mother 

10 John Smith Video Father 

11 Judy Smith Video Sister 

12 Jesse Smith Video Brother 

Table 2: FAMILY VIDEOS table 

Based upon the information contained in the FAMILY VIDEOS table, we could form the 

following engrams: 

A. Engrams of videos created by the family members of each family. 

Unique  

Identifier 
Name Title 

1 Jane Adams Video Mother 

2 John Adams Video Father 

3 Judy Adams Video Sister 

4 Jesse Adams Video Brother 

5 Jane James Video Mother 

6 John James Video Father 

7 Judy James Video Sister 

8 Jesse James Video Brother 

9 Jane Smith Video Mother 

10 John Smith Video Father 

11 Judy Smith Video Sister 

12 Jesse Smith Video Brother 

Engram 1 

Engram 2 

Engram 3 

Engram 4 

Engram 5 

Engram 6 

Engram 7 

Engram 8 

Engram 9 

Engram 10 

Engram 11 

Engram 12 
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B. Engrams of videos based on families with the same surnames. 

Unique  

Identifier 
Name Title 

1 Jane Adams Video Mother 

2 John Adams Video Father 

3 Judy Adams Video Sister 

4 Jesse Adams Video Brother 

5 Jane James Video Mother 

6 John James Video Father 

7 Judy James Video Sister 

8 Jesse James Video Brother 

9 Jane Smith Video Mother 

10 John Smith Video Father 

11 Judy Smith Video Sister 

12 Jesse Smith Video Brother 

 

C. Engrams of videos based on title of the family members. 

Unique  

Identifier 
Name Title 

1 Jane Adams Video Mother 

5 Jane James Video Mother 

9 Jane Smith Video Mother 

2 John Adams Video Father 

6 John James Video Father 

10 John Smith Video Father 

3 Judy Adams Video Sister 

7 Judy James Video Sister 

11 Judy Smith Video Sister 

8 Jesse James Video Brother 

4 Jesse Adams Video Brother 

12 Jesse Smith Video Brother 

 

  

Engram 1 

Engram 2 

Engram 3 

Engram 1 

Engram 2 

Engram 3 

Engram 4 
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D. A single engram of all videos contained in the FAMILY VIDEOS table, as seen in the 

table below: 

 

Unique  

Identifier 
Name Title 

1 Jane Adams Video Mother 

2 John Adams Video Father 

3 Judy Adams Video Sister 

4 Jesse Adams Video Brother 

5 Jane James Video Mother 

6 John James Video Father 

7 Judy James Video Sister 

8 Jesse James Video Brother 

9 Jane Smith Video Mother 

10 John Smith Video Father 

11 Judy Smith Video Sister 

12 Jesse Smith Video Brother 

 

Similarly, we could group multiple images, LOBs, CLOBs, BLOBs and other objects 

together into individual engrams based upon their categorical or conceptual similarities. 

The key defining factor of these engrams would be that they should help provide context 

for the data stored in the database. This context could be provided by means of the 

answers to the information gathering questions of “who, what, when and where” (Zilora, 

Ackoff).  

The information gathering questions were first introduced in 1988 by Russell Ackoff in a 

paper titled, “From Data to Wisdom,” where he defined the hierarchical relationships 

between: Data, Information, Knowledge and Wisdom (DIKW).  The following are the 

definitions of the different levels of the DIKW hierarchy: 

Engram 
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i) Data- Data forms the first and the lowest level of the DIKW hierarchy and 

represents raw and unprocessed signs, symbols and signals that have no inherent 

meaning (WEBO).  

ii) Information- Information forms the second level of the hierarchy and is 

composed of data that has been processed and can provide useful answers to the 

information gathering questions of “who, what, when and where.” The conversion 

of data from its raw and unusable form into information occurs because the 

application of context enables us to perform complex analysis and draw logical 

conclusions (Nitasha).  

iii) Knowledge- Knowledge forms the third level of the hierarchy and can be defined 

as the application of data and information to answer the question of “how.” The 

answers provided to the question of “how” are believed to be subjective, as each 

person views, perceives and analyzes information differently (Bellinger ). 

iv) Wisdom- Wisdom forms the fourth and the highest level of the hierarchy and is 

believed to occur when people begin to question “why” a particular task or event 

occurs (Bellinger). While the answers to the lower levels of the hierarchy may be 

fairly simple and definitive, there may be no answer to the question of “why.”  

The previous sections outlined the key differences between data, information, 

knowledge and wisdom. It is important to note that while the attainment of wisdom is 

generally considered to be the essential goal in human development, the goal of the 

TED model is limited to that of applying context to the data and converting it into 

information. To this effect, the threads that will be used to link engrams together will 

be formed on the basis of the answers to the information gathering questions of “who, 
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what, when and where.” Also, since the answers to the “how” and “why” questions 

are generally subjective and open to interpretation, excluding them from the 

information gathering questions will help ensure that the context TED threads provide 

to the data is objective and accurate.  

II. Threads- Threads are the standard bidirectional connections that are used to link, or relate, 

one engram to another. Each thread connecting one engram to another is formed on the 

basis of the answers to the information gathering questions, and can easily change or be 

modified anytime the answer to a question changes. Additionally, engrams could be 

connected using a single, all or just some of the information gathering questions. As such, 

it isn’t necessary that every engram will have the complete combination of the “who, what, 

when and where” threads that link it to other engrams (Zilora, Ackoff). A continuation of 

the “FAMILY VIDEOS” table example, as seen in the image below, illustrates and clarifies 

the concept of a thread, as well as the constantly evolving nature of the threads. Assuming 

that each individual video created by members of the Adams family forms an engram, we 

could establish the following threads: 
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Jane Adams VideoJohn Adams Video

Question- Who is Jane Adams?
Answer- Wife of John Adams

Jesse Adams Video

Judy Adams Video

Question- Who is Judy Adams?
Answer- Daughter of Jane Adams

Question- Who is John Adams?
Answer- Husband of Jane Adams

Question- Who is Jane Adams?
Answer- Mother of Judy Adams

Question- Who is Jesse Adams?
Answer- Son of Jane Adams

Question- Who is Jane Adams?
Answer- Mother of Jesse Adams

Figure 8: TED illustration of the Adams family videos with Jane Adams as the focal point 

As seen in Figure 8 above, there are six threads that link the “Jane Adams Video” engram 

to the rest of the family. Since the TED threads are bidirectional, we could traverse from 

the “Jane Adams Video” engram to the “John Adams Video” engram by asking “Who is 

Jane Adams?” Similarly we may traverse from the “John Adams Video” engram to the 

“Jane Adams Video” engram by asking the question “Who is John Adams?” The 

directionality of the TED thread combined with the information gathering question being 

determines the relationship between any given engrams in the TED model. For the sake 

of simplicity, the only information gathering question that was used to establish the 

threads in the example above was “who.” Also, “Jane Adams Video” was used as the 

focus or the central engram around which the remaining engrams and threads were 

aggregated. If all of the Adams family relationships were shown, there wouldn’t be a 

single central engram, rather, we could choose any individual engram as the central 

engram, and could traverse on to the other engrams using the linking threads. Now, in 

case a new member, say someone named Michael, joins the Adams family and adds a 
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new video to the FAMILY VIDEOS table, the TED model would automatically create a 

new engram called “Michael Adams Video” and connect it to the “Jane Adams Video” 

engram by means of new threads that answer the information gathering question of 

“who.” Figure 9 is a graphical illustration of this change. 

Michael Adams Video

Jane Adams VideoJohn Adams Video

Question- Who is Jane Adams?
Answer- Wife of John Adams

Jesse Adams Video

Judy Adams Video

Question- Who is Judy Adams?
Answer- Daughter of Jane Adams

Question- Who is John Adams?
Answer- Husband of Jane Adams

Question- Who is Jane Adams?
Answer- Mother of Judy Adams

Question- Who is Jesse Adams?
Answer- Son of Jane Adams

Question- Who is Jane Adams?
Answer- Mother of Jesse Adams

Question- Who is Michael Adams?
Answer- Son of Jane Adams

Question- Who is Jane Adams?
Answer- Mother of Michael Adams

 Figure 9: TED illustration of the addition of a new video to the FAMILY VIDEOS table 

As shown in Figure 9, the threads, as well as the engrams that are connected by means of 

the threads, are dynamic in nature and constantly in a state of evolution. The highlighted 

section of the TED model shows the “Michael Adam Video” engram that is now 

connected to the “Jane Adams Video” engram by means of the information gathering 
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question “who.” Another example, that illustrates the linking of various individual 

engrams using all of the information gathering questions, can be seen in the following 

figure. 

IRT Meeting

Sourabh Mehta

Puneet Kathpal

Kara Meeting

Wednesdays @ 
12:00pm

Building- 70
Room- 3435

Faculty Meeting

IT Faculty Meeting

Wednesdays @ 
11:00pm

Question- Attended
by whom?

Question- What happened?

Question- When was it held?

Question- Where did it happen?

Question- Attended 
by whom?

Question- Attended 
by whom?

Question- Attended 
by whom?

Question- Where did it happen?

Question- What happened?

Question- When 
was it held?

 

Figure 10: A TED representation of two clustered engrams linked by the “where” thread (Zilora- IRT). 
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As seen in Figure 10 above, two clustered engrams can easily be linked by traversing the 

“where” thread of one cluster to the other. This traversal of threads from one cluster of 

engrams to another would be the computational equivalent of the human brain relating 

new information to preexisting concepts, words, phrases, or items that already exist in 

memory. As such, it would theoretically be possible to link each and every new engram 

of information to a preexisting engram, or cluster of engrams, using at least one of the 

information gathering questions. This comprehensive network of threads connecting all 

the engrams of information together would enable analysis of preexisting relationships, 

the creation of new relations, and – ideally – the derivation of new insights. 

Proposed Implementation Methodology 

The Threaded Engram Database (TED) model represents a marked deviation from the relational 

models and methodologies. Most of the current database and data storage models tend to focus 

on the storage of “data” in an optimal fashion, while essentially ignoring or sidelining the fact 

that the sole reason for data storage is to allow for the derivation of information from the data. 

The TED model is designed to support the extraction of multiple relationships from unstructured 

data stored relationally and store the information using the TED components of threads and 

engrams. 

The TED model proposed in this capstone is intentionally designed to be implemented as an 

application layer on-top-of a relational database, rather than as an independent standalone 

installation with its own underlying database. There are two main reasons for this, first, because 

most organizations, both in the US and worldwide, rely on relational databases to store and 

access data on a daily basis. By implementing the TED model on a relational database, we can 

facilitate the implementation process for businesses. They wouldn’t have to drastically alter their 
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database and data storage methodologies, rather, they could simply have to implement a TED 

layer on-top-of their relational database which would allow them to use both the TED model, as 

well as SQL queries to view their data. Secondly, implementing the TED model as an application 

layer, as opposed to an independent system, ensures that it will not be relegated to a niche 

market, wherein only a few institutions or organizations would use the model to meet a set of 

highly specialized requirements. This has been the case with Object Databases which were 

introduced in the early 1980s and were predicted to “supplant relational database management 

systems” (Leavitt). However, these predictions did not come true primarily because adoption of 

an alternative to the relational model would require a transfer out of the relational database 

which could lead to a loss of relations in the data. Additionally, the adoption of any alternative to 

the relational model generally translates to loss of the ability to use SQL as the language with 

which to query to data stores. SQL is generally the only data querying language in which 

organizations have in-house expertise. As such, the TED implementation as an application layer, 

on-top-of any relational database, provides organizations the freedom to continue using SQL to 

query the relational database, while simultaneously building a gradual expertise in TED. This 

would allow organizations to gradually adopt the TED model rather than making an unwelcome 

and abrupt shift from one data storage model to another. 

Proposed Architecture of the TED Model 

Based upon the study of human memory and numerous memory models, the author proposes that 

the architecture of the TED model be implemented as shown below in Figure 11. 
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Access Monitoring Layer

Pattern Migration Layer

Short Term 
Store

Long Term 
Store

Relational Database

Pattern Recognition/Generation Layer

Pattern Matching Layer

Abstraction Layer

Interface Layer

Central Executive

Migratory Store

Figure 11: The TED model Architecture 

The following will be the functions that will be performed by the different components of the 

TED model: 

I. Migratory Store- The migratory store is the area wherein any newly created or derived 

engrams and their associated threads are stored once they have been processed by the 

pattern generation layer. The following are the key features and functionality of migratory 

store. 

A. Capacity- The capacity of the migratory store would depend greatly upon the 

implementation strategy employed for the TED model. If the TED model is 

implemented on a preexisting relational database, the TED model will have to convert 
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all the components and relations stored in the relational database into TED 

components. This would mean that all of the newly derived engram clusters would be 

stored in the migratory store immediately, and would as such require a migratory 

store capacity that is greater than or equal to that of the relational database. The 

storage capacity requirements of the migratory store would not remain as high over 

time because once the pattern generation layer completes its conversion process, the 

pattern recognition layer will be activated and will begin monitoring the user queries 

and object access trends. This weighing of the contextual patterns will help ensure 

that the patterns that are accessed are moved from the migratory store to the short-

term store, whereas patterns that are never accessed over a user defined period will 

eventually be decayed or deleted from the migratory store. Alternatively, if the TED 

model is implemented on a newly created relational database with little to no 

preexisting data, the migratory store will not be used and the size of the migratory 

store can be kept to a minimum, as there won’t be many TED model components that 

will need to be stored. 

B. Decay Period- The decay period is a user-defined time period after which any given 

engram cluster would be deleted or erased due to lack of access or usage. In the case 

of the migratory store, this decay period could be counteracted if the user accesses the 

engram cluster, as this would cause the weighing matrix layer to add weight units to 

the engram cluster, and move it from the migratory store to the short-term store. The 

decay period of the migratory store will generally be much longer than that of the 

short-term store, but smaller than that of the long-term store.  
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II. Short-Term Store- The short-term store is the TED model storage area that is based upon 

the short-term memory component of human memory, and as the name suggests, it serves 

as a short duration store for TED components, before they are actually transferred into the 

long-term store. The following are the key characteristics of the short-term store. 

A. Capacity- The capacity of the short-term store is designed to be relatively smaller 

than the long-term store, but is user-configurable, and as such can vary depending 

upon user requirements. If the TED model is implemented in a large organization 

where hundreds of transactions occur on a daily basis, the size of the short-term store 

would be much larger since each new SQL query or transaction would be converted 

into TED components and stored in the short-term store, at-least for the duration of 

the decay period. However, if the TED model is implemented in a smaller 

organization, the size of the short-term store would be much smaller since fewer 

engram clusters will be stored in the short-term store. The short-term store will also 

serve as a storage area for frequently accessed TED patterns. These contextual 

patterns or engram clusters will be pinned to the short-term store so as to speed-up the 

retrieval process for the engrams. The access monitoring layer will be responsible for 

adding weights to contextual patterns and ensuring that the engrams that are pinned to 

the short-term store meet the user defined weight constraint that enables them to 

remain pinned in the short-term store. 

B. Decay Period- The decay period in the short term store will be a user-configurable 

value, but will be relatively smaller than the long-term term store. Contextual patterns 

or engrams that do not meet the minimum user defined weight unit parameters, called 

“basal weight units,” in the short-term store will be erased after the end of the decay 
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period. The length of the decay period, as well as the basal weight unit requirement of 

the short-term store will depend upon the activity level of a business. For example, 

the short-term store of a large scale business might have a weight unit limitation of 

say ten units and a decay period of a day, whereas a smaller business would require 

the basal weight unit to be five units and may setup a decay period of a month. The 

configuration of these parameters will be based upon getting an accurate feel of the 

business activity and requirements. As such, TED administrators might find it to their 

advantage to begin with a smaller basal weight unit requirement and a larger decay 

period. 

III. Long-Term Store- Any engram or engram clusters that are accessed multiple times in the 

short-term store gradually build up sufficient weight to be moved into the long-term store. 

The long-term store serves as the TED model equivalent of long-term memory, and as 

such, stores engram clusters for a much longer period of time than the short-term store. The 

following are the key features and functionality of the long-term store. 

A. Capacity- If the TED model is implemented on a newly created relational database, 

with no preexisting data, the storage requirements of the long-term store would be 

very reasonable, as it would have the opportunity to grow at a rate that is proportional 

to that of the relational database’s storage. This is so because, the abstraction layer 

would transfer any newly created engram or engram cluster directly into short-term 

store, where they would reside until they are accessed again and, depending upon the 

user-defined weight parameters, are moved to long-term store or they decay based 

again upon a user-defined decay period. However, if the TED model is implemented 

on a preexisting database, the capacity of the long-term store would be much harder 



Mehta 74 

 

to predict as its growth would depend primarily on the user’s access of specific 

datasets. As such, in this case the initial capacity of the long-term store might have to 

be setup to be of about the same size as the underlying relational database. 

B. Decay Period- Although the long-term store is based upon the long-term memory 

component of human memory, it doesn’t share all the features of long-term memory. 

A key difference between the long-term store and long-term memory is that unlike 

long-term memory, the long-term store doesn’t store engram clusters indefinitely. 

Rather, engram clusters are stored in the long-term memory only as long as they meet 

the weight unit limits during the user specified decay period. This decay period could 

be offset if the user accesses the engram cluster, as this would cause the access 

monitoring layer to add weight units to the engram cluster, and preventing it from 

falling below the deletion threshold. The decay period of the long-term store will 

generally be much longer than that of the short-term store, but can vary widely 

depending upon the specific requirements of the business. For example, assuming that 

the TED model is implemented on a very active On-Line Transaction Processing 

(OLTP) system where hundreds of transactions occur on a daily basis, the TED 

administrators might decide to specify a decay time of a week to limit the total size of 

the long-term store. However, if the TED model is implemented in a much smaller 

business, where the total number of transaction are to the order of a hundred 

transactions per month, the TED administrator might decide to specify a decay period 

of three to six months. 

Since the decay period is a variable parameter in the TED model, there would be a 

learning curve associated with setting the optimal length of time for every 
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organization. As such, it would behoove every organization to begin with a larger 

decay period and then scale-back the time period as and when required. This would 

help ensure that the organization doesn’t lose any previously created engram clusters 

that might be of potential use in the future. 

IV. The Central Executive- The central executive is one of the most critical, as well as the 

most complicated, elements of the TED model. It is responsible for the integration of the 

TED model with the relational database. The central executive can be broken down into the 

following six functional components: 

A. Interface Layer- The interface layer is responsible for establishing and maintaining a 

connection with the underlying relational database.  While the initial design and 

implementations of the TED model might only be setup to connect to a single 

platform’s relational database, the interface layer would ideally be designed to be 

platform agnostic or independent. This is to ensure that the central executive, and by 

extension the TED model, is able to connect to and work with any relational database 

platform, independent of the type, size or design. 

B. Abstraction Layer- The abstraction layer is responsible for ensuring the efficient 

conversion of the relational database objects into TED components, while factoring 

out the details of the conversion, so as to reduce the observed complexity for the 

users. As such, the abstraction layer may receive database tables as input, and might 

output multiple engrams that are linked to each other by means of threads that answer 

the information-gathering questions. The conversion of the tables into engrams would 

be done by means of background processes. This will ensure that the users are able to 
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access the preexisting TED components without having to wait for the new TED 

components or patterns to be processed by the abstraction layer. 

C. Pattern Recognition or Generation Layer- The pattern recognition or generation 

layer, as the name suggests, is responsible for recognizing patterns in both 

preexisting, as well as newly entered information. In case the TED model is 

implemented on-top of a preexisting relational database, the pattern generation layer 

will be responsible for analyzing the existing table structure, data and other objects 

and generating a TED model based structure. Once the pattern generation layer has 

completed analyzing the existing data, it will begin monitoring all queries, as well as 

newly created database structures, such as tables, view, etc., to glean new information 

and generate new information and generate new patterns. These patterns will be 

linked to the preexisting engram clusters by means of invariant representation and 

auto-association. As discussed previously, our brain generally stores only the 

important parts or aspects of our daily experiences, and uses auto-association to fill in 

the missing blanks when we try to remember a particular experience or event. 

Similarly, the TED model also stores invariant patterns, composed of a set sequence 

of threads and engrams, of the information contained in the relational database and 

uses auto-association to match incomplete or partial patterns. An example illustrates 

this point. The following are partial reproductions of the previously shown TED 

diagram of the IRT meeting. 



Mehta 77 

 

IRT Meeting

Sourabh Mehta

Building- 70
Room- 3435

Faculty Meeting

Wednesdays @ 
11:00pm

Question- When?

Question- Where?

Question- Attended 
by whom?

Question- Where?

 

Figure 12: A TED model representation of the 

IRT meeting with a highlighted pattern. 

IRT Meeting

Building- 70
Room- 3435

Question- Where?

 

Figure 13: A partial pattern excised from the TED 

model representation in Figure 12. 
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Figure 12 contains a TED contextual pattern pertaining to the “Building-70 Room-

3435” engram. Traversing up from the central “Building-70 Room-3435” engram 

using the information gathering question of “where,” we see that it is linked to the 

“IRT Meeting” engram. Furthermore, traversing up from the “IRT Meeting” engram 

using the information gathering question of “whom,” we see that the “IRT Meeting” 

engram is linked to the “Sourabh Mehta” engram. Similarly, travelling down from the 

“Building-70 Room-3435” engram using the information gathering question “when,” 

we see that the “Building-70 Room-3435” engram is linked to the “Faculty Meeting” 

engram. Traveling down further, we see the “Wednesdays @ 11:00pm” engram linked 

to the “Faculty Meeting” engram using the information gathering question of “when.” 

Let’s assume that the pattern generation layer generated the pattern shown in Figure 

12, based on the data stored in a given relational database, and that the pattern 

recognition layer is presented with the partial pattern shown in Figure 13. Since the 

TED model stores invariant representation of engrams, it would automatically 

recognize that although the “IRT meeting” engram, in Figure 13, is currently linked to 

the “Building-70, Room-3435” engram by means of the “where” thread, this is not a 

restrictive relationship where the “Building-70, Room-3435” cannot be linked to any 

other engram. The “IRT meeting” engram could also form relationships with other 

engrams stored in either the long-term or the short-term store. These relationships 

would have the “IRT meeting” engram common amongst them and would be based 

upon the context of the information question being asked. Such context based 

relationships between engrams are called “contextual relationships” in the TED model. 

The auto-associative functionality of the TED model would then be utilized to perform 
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a pattern match search against the preexisting engram clusters. The sensitivity and 

number of engrams returned by the pattern match search will be user-configurable 

parameters. This will help ensure that the search domain remains limited and relevant 

to the task at hand. The user will also be able to broaden the search parameters so as to 

traverse the various engram clusters and derive new information from the preexisting 

data. 

D. Pattern Matching Layer- The TED model replicates two key characteristics of 

human memory, that all components of human memory function in concert with each 

other and that each component has its own independent storage area. Anytime we 

recall the verses of a song that we heard a long time ago, we are essentially copying 

the memory trace of the song from our long-term memory to our short-term memory, 

and say we begin humming the tune of the song, we would copy the same memory 

trace from our short-term memory to our phonological loop. Here, it is important to 

point out again that the act of copying the memory trace from one memory source to 

another doesn’t erase the trace from the originating memory source. Thus, at any 

given time, there might be multiple copies of any given experience or event 

throughout our memory system depending on how we recall it. Similarly, even 

though the long-term store is responsible for the storage of all engram clusters over a 

comparatively longer period of time than the short-term store, it isn’t the only 

location that an engram cluster might reside at any given time. Depending on the 

frequency of user access to the engram cluster, the following three scenarios might 

play out. 



Mehta 80 

 

(i) The whole engram cluster is found in the short-term store- Whenever a 

pattern is passed on to the pattern matching layer, by the pattern recognition layer, 

it first attempts to match the contextual pattern with the engram clusters found in 

short-term memory. If a complete match is found, the engram cluster is returned 

back to the user through the central executive component of the TED model.  

(ii) No match is found in the short-term store- If the user has never accessed, or 

rarely ever accesses, the engram cluster then the pattern matching layer wouldn’t 

find a pattern match and would have to resort to a search of the long-term store. If 

a pattern match is found in the long-term store, then the matching pattern would 

be transferred into the short-term store by means of the pattern migration layer, 

and returned back to the user through the central executive component of the TED 

model. 

(iii)A partial match is found in the short-term store- Since the engram clusters of 

the TED model are composed of multiple engrams that are linked by numerous 

threads, it is quite possible that a search of the short-term store would return a 

contextual pattern that is a partial match to the pattern presented by the pattern 

matching layer. In this case, the pattern recognition layer would again revert back 

to searching the long-term memory for either a complete match to the partial 

contextual pattern using auto associative search, or it could use the contextual 

pattern presented by the pattern matching layer to search for a complete pattern 

match in the long-term store. 

E. Access Monitoring Layer- Each time the pattern matching layer finds a partial or 

complete match to a given pattern in the short-term or long-term store the access 
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monitoring layer adds a weight unit to the contextual pattern. This addition of weight 

units performs two functions as discussed below. 

(i) Prevention of decay- Any engram cluster or contextual pattern that is not 

accessed for a user-defined period of time is generally subject to deletion from the 

short-term or long-term stores. The use of weight units enables the TED model to 

monitor the access level of every contextual pattern or engram cluster. If an 

engram cluster does not receive even a single weight unit within a given decay 

period, then the TED model would be able to safely delete the engram clusters. 

(ii) Ease of retrieval of frequently retrieved items- The assigning of weight units to 

engram clusters enables the access monitoring layer to recognize which engrams 

are accessed more frequently than others. These frequently accessed engrams can 

then be pinned to the short-term store, so as to ensure that anytime the pattern 

matching layer searches for a pattern match, it finds the pinned pattern instantly in 

the short-term store, without having to check the long-term store and transfer the 

pattern from the long-term store to the short-term store. 

F. Pattern Migration Layer- The pattern migration layer will be responsible for the 

movement of TED components between the abstraction layer, the short-term store, 

the migratory store and the long-term store. The following is a breakdown of its 

specific functions. 

(i) Migration of data between abstraction layer and the short-term store, 

migratory-store, or long-term store- The pattern migration layer will be 

responsible for the migration of data from the abstraction layer to the migratory 

store, the short-term store or long term store. This activity will take place once the 
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abstraction layer has completed converting the relational database objections into 

TED components. Since the communication between the TED layer and the 

relational database is a two-way street, the pattern migration layer will also be 

responsible for migrating data from the short or long term store to the interface 

layer which can then communicate with the relational database directly. 

(ii) Migration of data between the short-term store and the long-term store- 

Although the short-term and long-term store of the TED model are shown as 

separate components without clear links between them, they actually function 

together as a cohesive unit, much like the short-term and long-term components 

of human memory. This cohesive functioning is possible primarily due to the 

pattern migration layer which will be responsible for the seamless migration of 

data between the short-term and long-term stores. 

(iii)Migration of data between the migratory store and the short-term store- If 

the TED model is implemented on a preexisting database, the pattern generation 

layer, in collaboration with the abstraction layer, will convert all the relational 

data and relationships into TED components and place them into the migratory 

store. This will be done by means of the abstraction layer. Furthermore, if the 

users attempt to access the data in the migratory store, this data will be moved 

from the migratory store to the short-term store. This will be accomplished by 

means of the pattern migration layer.  

(iv) Migration of data amongst the central executive components- The central 

executive is composed of multiple layers, each of which performs a predefined set 

of tasks that helps transform relational components into TED components and 
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integrates the TED model with the underlying relational database. The pattern 

migration layer is responsible for the migration of the TED components amongst 

these layers, so as to ensure that they function as an integrated unit and can 

communicate efficiently. 

Implementation Techniques 

The four components of the TED model, namely, the central executive, short-term store, 

migratory store and long-term store, can be implemented using a variety of programming 

languages, techniques and methodologies. The following is a brief overview, and in some cases a 

critique, of some of the most promising implementation techniques for each of the components 

of the TED model. 

I. Central Executive- As stated previously, the central executive forms one of the most 

complex parts of the TED model, and can be divided into multiple layers or components, 

each of which performs a specific task that allows for the conversion and integration of 

data from the relational database to the TED model. As such, the CE can be considered to 

be the TED equivalent of a database engine. 

Since the TED model is designed to be both database and operating system platform 

agnostic, the CE would have to be designed in a platform independent programming 

languages like C, C++, Ruby, Python or Java. Each of these language conforms to the 

“write once, run anywhere” principle of programming and will essentially run on every 

platform, albeit with minor tweaks to account for operating system specific nuances. 

Additionally it is critical to reiterate that no matter what language or combination of 

languages is used in implementing the CE component, the key factor that needs to be taken 

into account is that each of the individual layers will have to be implemented in a way that 
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ensures that all layers of the CE are able to seamlessly communicate bi-directionally with 

all the other layers of the CE. 

II.  Long-term, short-term and migratory store- Although the long, short and migratory 

stores of the TED model perform different functions and store data for varied lengths of 

time, they will share the same infrastructure. The following are the most promising 

methodologies that can be used to implement these stores. 

A. Artificial Neural Networks- Neural networks are the closest computational construct 

to the neurons in the human brain and reflect the proposed TED model components of 

threads and engrams perfectly (NeuroDimensions). An Artificial Neural Network 

(ANN) is composed of programmatic constructs that are designed to emulate the 

neurons, and the dendrites, that connect these neurons. Generally, the ANN can be 

used for pattern recognition by first training the network on a subset of the actual 

data. In this process, the users provide an input, say an addition problem, to the neural 

network and observe the output produced by the network. If the output is incorrect, 

they increase the weight associated with the path the neural network followed. This 

increase in the weight of a path is considered to be the equivalent to an increase in the 

cost for the neural network to follow the path. Since neural networks are designed to 

follow paths with the least associated costs, the addition of weights to a wrong path 

ensures that the neural network will avoid following that path if the same input is 

provided again. Thus, by means of this “training process,” the neural network is able 

to learn different pathways, or patterns, and arrive at an optimal solution 

(“NeuroSolutions: What Is a Neural Network?”). 
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In an ANN-based implementation of the TED model, the short-term, migratory and 

long-term stores would each have its own neural network. In the event that the TED 

model is presented with a partial contextual pattern, the pattern matching layer would 

be responsible for presenting the partial pattern, first to the short-term store and then 

to the long-term store. Additionally, the pattern recognition layer will be responsible 

for recognizing whether the partial pattern that was presented to each of the stores 

actually matches a preexisting engram cluster in either the short-term or the long-term 

store. If a match is found, then the pattern migration layer will return the matching 

contextual pattern to the user. 

Although an ANN based implementation of the TED model seems as the most 

promising development path, it is important to point out some inherent limitations of 

this methodology. 

(i) Hidden Nodes- Neural networks generally contain multiple layers of hidden 

nodes that obscure the path that was taken to travel from the input to the output. 

This could potentially be one of the biggest limitations of a neural network-based 

implementation, since the TED model inherently depends upon detection of the 

complete path, starting from the input all the way to the output, to actually 

recognize contextual patterns. As such, the use of a neural network could severely 

limit the TED model’s ability to discover and traverse new and alternative paths 

(“NeuroSolutions: What Is a Neural Network?”). The following is an image that 

illustrates the architecture of a simple feed forward neural network with a single 

hidden layer. It is important to note that although the image shows just a single 

hidden layer, the number of hidden layers in a neural network is not limited to 
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one, rather, the complexity, and as a result the number of hidden layers, is 

dependent primarily upon the potential usage of a neural network.  

 

Figure 14: A simple feed forward neural network (NeuroDimensions) 

(ii) Travel Paths- In the TED model each engram is connected to other engrams by 

means of the answers to the information gathering questions of “who, what, when 

and where” (Ackoff). These information gathering questions serve as the primary 

means by which a user can traverse not only from one engram to another, but also 

from one engram cluster to another. However, in the case of neural networks, 

although each node is connected to another node by means of edges, there is no 

way to establish multiple directed edges or label the edges with the information 

gathering questions, so as to ensure that the users travel down a contextual path 

based upon the question being asked, rather than aimlessly traversing from one 
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node to another. This limitation of not being able to label and as a result travel 

down specific travel paths is another limitation of ANN. 

B. Prolog- The logic-based language Prolog can serve as a viable alternative to neural 

networks when implementing the short-term, migratory and long-term stores of the 

TED model. This is because Prolog supports the storage of data in the form of a 

Prolog construct called a “fact,” and links (or relates) these facts using “rules.” 

Additionally, since Prolog is a declarative language, it does not require that the user 

specifically design a program that tells it how to solve a problem. Rather, it uses the 

rules and facts entered into the Prolog database to deduce an answer to any user given 

query (Endriss). An example illustrates this concept.  

Unique  

Identifier 
Name Title 

1 Jane Adams Mother 

2 John Adams Father 

3 Judy Adams Sister 

4 Jesse Adams Brother 

5 Jane James Mother 

6 John James Father 

7 Judy James Sister 

8 Jesse James Brother 

9 Jane Smith Mother 

10 John Smith Father 

11 Judy Smith Sister 

12 Jesse Smith Brother 

Table 3: FAMILY table 

Table 3 contains a unique identifier, the name and relationship (based upon a specific 

question) of every person that resides in the Adams, James and Smith families. This 

very same information can be easily stored and correlated in a Prolog database. In 

fact, the Prolog Family tree is a classic training example that is often used to teach 
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students the basic workings of the Prolog language. The Adams family data stored in 

the FAMILY table can be stored in a Prolog database using the following syntax. 

Prolog Clauses Explanation 

male(JohnAdams). 

Male(JesseAdams). 

Female(JaneAdams). 

Female(JudyAdams). 

The code on the left represents Prolog “facts.” Facts are 

pieces of data in Prolog that can be connected or related 

using rules. The facts on the left specify the gender of 

Adams family members. 

Mother_child(JaneAdams, JudyAdams). 

Mother_child(JaneAdams, JesseAdams). 

The facts on the left can be read as follows: 

(i) Jane Adams is the mother of Judy Adams. 

(ii) Jane Adams is the mother of Jesse Adams. 

Father_child(JohnAdams, JudyAdams). 

Father_child(JohnAdams, JesseAdams). 

The facts on the left can be read as follows: 

(i) John Adams is the father of Judy Adams. 

(ii) John Adams is the father of Jesse Adams. 

Siblings(A,B) :- parent_child(P,C), 

parent_child(P,D). 

The code on the left represents a rule. The text before the 

“:-” represents the head, or the name of the relation, 

whereas the text after the “:-” sign represents the body, or 

the definition of the relation. The variables A and B are 

used to represent potential siblings, and the variables P and 

C are used to represent Parent and Child. This rule can be 

read as: A and B are siblings if both C and D share the 

same parent P. 

parent_child(P,C) :- mother_child(M,C). 

This rule can be read as: P and C are parent and child if M 

is the mother of C. 

parent_child(P,C) :- father_child(F,C). 

This rule can be read as: P and C are parent and child if F 

is the father of C.  

?- siblings(JudyAdams, JesseAdams). 

Yes 

The “?-” sign in the text on the left represents the Prolog 

prompt. In the text immediately following the prompt, we 
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query Prolog to see if JudyAdams and JesseAdams are 

siblings. Prolog uses logical reasoning to infer the response 

to the query using the facts and rules specified previously. 

In this case, it responds with “Yes” and positively 

identifies Judy Adams and Jesse Adams as siblings. 

?- father_child(JohnAdams, 

JaneAdams). 

No 

The query on the left evaluates to “No,” as it is in violation 

of the father_child facts stated previously. 

?- mother_child(JaneAdams, X). 

X= JudyAdams 

X= JesseAdams 

The query on the left uses the mother fact with the variable 

X to search for the child of JaneAdams. The Prolog 

compiler checks the facts and rules stored in the database 

and returns the two children of JaneAdams. 

Table 4: Prolog Example 

As seen in the examples in Table 4, Prolog is entirely capable of taking facts and rules as 

inputs and inferring conclusions from them. Contrary to the working methodology of 

neural networks wherein the ANN has to be specially trained on a dataset that is 

representative of the actual data, Prolog doesn’t require any training on a dataset and can 

begin responding to queries as soon as all the relevant facts and rules are entered into the 

Prolog database (Endriss). 

Based upon the discussion above, a Prolog based implementation of the short-term, long-

term and migratory stores would be ideal because, unlike neural networks which have 

hidden nodes and travel paths, Prolog’s logic based traversal of the facts can easily be 

structured by providing the appropriate rules which in the case of the TED model would 

be the information gathering questions of “who, what, when, and where” (Ackoff). 
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Conclusion 

The Threaded Engram Database (TED) model introduced in this capstone is based upon 

extensive study of architecture and workings of numerous memory models, such as the 

Atkinson-Shiffrin memory model (Atkinson and Shiffrin), Baddeley's model of working memory 

(Baddeley and Hitch), Memory-prediction model (Hawkins and Blakeslee).  It is designed to 

search, extract and store structured and unstructured data from relational databases, such that the 

context of the data is maintained by means of the answers to the information gathering questions 

of “who, what, when and where.” Additionally, by means of features, such as invariant 

representation and auto-association, the TED model can easily and efficiently create and 

maintain relationships between new and preexisting information. 

The efficient design and implementation of the TED model, as proposed in this capstone, should 

enable it overcome the key limitation of the relational database model, namely, the storage of 

data in a relational database leads to a loss of the context of the data. Furthermore, the addition of 

context by the TED model would enable administrators and users to perform new and improved 

analysis of their data by traversing diverse engram clusters that would be linked by the 

information gathering questions. 

Future Work 

In this capstone thesis, the author has attempted to explore, define and introduce the concept of 

the TED model and lay the groundwork for future research in this area. A lot of work remains to 

be done before the TED model can actually be successfully implemented as an independent layer 

on-top-of a relational database. The author recommends that a piecemeal approach be used when 

developing the numerous components of the TED model. As such, the first step would be the 

development of individual layers of the Central Executive component of the TED model. 
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Specifically, the development of an interface layer that is capable of interacting with multiple 

relational databases will help ensure that the TED model’s proposed design of being database 

platform agnostic is indeed realistic or not. Given the current advancements in the JDBC and 

ODBC drivers in all programming languages, the author believes that this task should be 

relatively straightforward and wouldn’t be a stumbling block in the development process. The 

next critical step would be the development of the abstraction layer, which would be much more 

complicated, as it would require the conversion of the data and relations, read-in from the 

relational database, into TED model components. Once the abstraction layer is successfully 

developed, the development of the other components of the CE could be done in parallel, as all 

the other layers perform specific tasks that are not completely dependent upon each other. 

Depending upon the degree of success and acceptance of the TED model by the academic and 

business community, the author believes that the TED model could be further improved or 

expanded upon by implementing the following features: 

I. Rank order of returned list of clusters- The architectural implementation proposed in 

this capstone outlines the minimal requirements that have to be met to ensure successful 

development of the TED model, however, once the model has been successfully 

implemented, one of the first developmental steps that should be undertaken would be to 

incorporate a rank ordering system for clusters that are returned by the pattern matching 

layer. As it stands currently, anytime the pattern matching layer finds a matching pattern, it 

will return the complete contextual path without really trying to sort the result to see if 

there is any segment of the path that actually meets the user’s specific requirements. By 

implementing a rank ordering system, the TED model would be well positioned to evaluate 

the user requirements and return smaller segments of the contextual path in a rank order, 
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such that the most likely result would be ranked first and would be followed by a list of the 

other possible results. This feature would be extremely beneficial to the user as they could 

easily scan through the result-set and choose the contextual path that best meets their needs 

or requirements. 

II. Fuzzy logic- As mentioned previously, data stored in the real world is never really precise 

and can rarely ever be described in the absolute terms that are required when storing data in 

any format. The TED model tries to alleviate this issue by presenting, storing and retrieving 

data in a way that provides context to the data. However, even this context that is provided 

to the data is limited due to the level of precision that is required when linking engrams by 

means of the information gathering questions of “who, what, when and where.” For 

example, whenever we ask the question “when,” we expect a time based response, such as 

“At 10:00 am.” However, the question “when” can also be answered as “repeatedly,” “last 

summer,” “a short while back,” etc. Each of these responses is an imprecise answer to a 

very precise question. The current proposed design of the TED model does not take into 

account the imprecision of data or the information gathering questions. As such, this would 

form one of the most important aspects of the TED model that would need to be addressed 

in the near future. 

III. Development towards an independent model- In this capstone, the author has proposed 

that the TED model be implemented as an application layer on-top-of a relational database 

model, rather than an independent database model with no links to a relational database. 

This was done to ensure that the general public has a chance to use and explore the 

additional benefits that the TED model has to offer over the use of just a relational 

database. However, this sort of relational database dependent implementation does not and 
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never will resolve all of the limitations (outlined in the introduction) of the relational 

database model. As such, the author believes that the TED model should eventually evolve 

into an independent database model, which would support the import or transfer of data 

from a relational database, but would be free standing and wouldn’t be inherently 

dependent upon the relational database model. 

IV. Alternative Implementations- The database based implementation of the TED model 

proposed in this capstone forms just one of many potential paths that a maturing TED 

model might take. If the TED model receives a favorable reception, then this model could 

be expanded upon to improvise the storage of data in general. A prime example of such an 

application would be the organization and linking of documents stored on an operating 

system such as Microsoft Windows. 

Whenever we store documents of any kind, be it word documents, text documents, 

photographs, etc. we generally store them in a centralized location, such as the “My 

Documents” folder or in separate folders organized by the type of content, such as My 

Music, My Pictures, etc. This storage format of materials is far from efficient as it requires 

us to either consciously arrange or classify the stored data in separate folders, or search for 

the data on-the-fly whenever we happen to need the data. Additionally, this storage 

methodology makes it extremely difficult to link related files even if they are stored in 

different locations. For example, if we store the image of a drill in the My Pictures folder, a 

document describing the parts and specifications of the drill in the My Documents folder, 

and say a video of the drill in action in the My Videos folder, there is currently no way to 

link the files without actually putting them all together in a single folder. However, by 



Mehta 94 

 

means of an extended TED model, we could easily manage the disparately stored data and 

link them using the threads of the TED model. 

V. Storage of biological sequences- With the recent advent of new and improved gene 

mapping tools and algorithms, biology and bioinformatics scientists have been able to 

make rapid progress in deciphering and mapping the genomes of hundreds of species. As it 

stands currently, there is no efficient way of storing unstructured data, such as partial or 

complete genetic sequences of individual species, and comparing that to other species. The 

author believes that by adapting the TED model for the storage of gene information, 

scientists can easily slice and dice the genes to perform comparative analysis. For example, 

given a gene sequence of say 100 base pairs, the scientists can easily tag individual sections 

(chunks) of the sequence as relating to specific diseases like cancer, necrosis, etc. while 

keeping the overall sequence intact by means of the TED thread component. This will 

enable the scientists to compare individual sections of one biological sequence to another 

and detect matching patterns both within similar species and between seemingly disparate 

species.  
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APPENDIX A- A Sample Learning Curve 
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APPENDIX B- A Sample Forgetting Curve 
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APPENDIX C- Retention Interval for Short-Term Memory 
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APPENDIX D- Retention Interval for Long-Term Memory 
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APPENDIX E- Pictorial Example of Semantic Interference 
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Glossary of Terms 

1. Auto-association- Auto-association is a feature of both the human cortex and the TED 

model. It is used in the TED model to fill in the missing blocks of an incomplete or 

distorted pattern. 

2. Basal weight units- The short-term, migratory and long-term stores of the TED model 

are designed to store contextual patterns or engrams only until they meet the minimum 

user defined weight unit parameter called “basal weight units.” Each time the pattern 

matching layer finds a partial or complete match to a given pattern in the short-term or 

long-term store the access monitoring layer adds a weight unit to the contextual pattern. 

The contextual patterns that do not meet the basal weight units within a user defined 

period of time are generally erased from the short-term, migratory and long-term stores.  

3. Contextual pattern- Each engram in the TED model is linked to multiple engrams using 

numerous threads. As such, a user may traverse from one engram to another using one or 

more specific information gathering questions which help them arrive at a result. This 

traversal of key engrams and threads to answer a predetermined question is called a 

contextual pattern.  

4. Contextual relationships- Any two engrams can be related by means of the answer to 

one or more of the information gathering questions. Since the answer to the information 

gathering question depends upon the context of the question, the relationship between the 

engrams is called a contextual relationship. 

5. Decay period- The decay period is a user-defined time period after which any given 

engram cluster would be deleted or erased due to lack of access or usage. 

6. Engram- Any database object(s) that can be related to, or can form relationships with, 

another object(s). 
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7. Information gathering questions- The information gathering questions are composed of 

“who, what, when and where.” The answers to these information gathering questions are 

used to link engrams together using threads. 

8. Threads- Threads are the standard connections that are used to link, or relate, one 

engram to another. Each thread connecting one engram to another is formed on the basis 

of the answers to the information gathering questions of “who, what, when and where.” 

9. Engram cluster- A collection of threads and engrams is called an engram cluster. 

10. Invariant representation- Invariant representation is a feature of both the human cortex 

and the TED model. It can be defined as the storage of the critical or defining elements of 

a pattern such that even if the pattern is modified and presented in a different form, the 

TED model or our cortex can instantly match these elements and recognize the pattern. 
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