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ABSTRACT 

Control methods require the use of a system model for the design and tuning of the controllers in 

meeting and/or exceeding the control system performance objectives. However, system models 

contain errors and uncertainties that also may be complex to develop and to generalize for a large 

class of systems such as those for unmanned aircraft systems. In particular, the sliding control 

method is a superior robust nonlinear control approach due to the direct handling of nonlinearities 

and uncertainties that can be used in tracking problems for unmanned aircraft system. However, 

the derivation of the sliding mode control law is tedious since a unique and distinct control law 

needs to be derived for every individual system and cannot be applied to general systems that may 

encompass all classifications of unmanned aircraft systems. In this work, a model-free control 

algorithm based on the sliding mode control method is developed and generalized for all classes 

of unmanned aircraft systems used in robust tracking control applications. The model-free control 

algorithm is derived with knowledge of the system’s order, state measurements, and control input 

gain matrix shape and bounds and is not dependent on a mathematical system model. The derived 

control law is tested using a high-fidelity simulation of a quadrotor-type unmanned aircraft system 

and the results are compared to a traditional linear controller for tracking performance and power 

consumption. Realistic type hardware inputs from joysticks and inertial measurement units were 

simulated for the analysis. Finally, the model-free control algorithm was implemented on a 

quadrotor-type unmanned aircraft system testbed used in real flight experimental testing. The 

experimental tracking performance and power consumption was analyzed and compared to a 

traditional linear-type controller. Results showed that the model-free approach is superior in 

tracking performance and power consumption compared to traditional linear-type control 

strategies. 
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NOMENCLATURE 

UAS  Unmanned Aerial System 
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1. INTRODUCTION 

There has been a tremendous rise in the field of control systems used in system automation that is 

becoming more versatile for control highly complex systems. Control systems can be divided into 

linear and nonlinear control-type categories depending on the differential equations that govern 

the system behavior. Nonlinear systems are more complex and exhibit unpredictable behavior, 

requiring complex control algorithms [1]. A simple approach for nonlinear controls is to invert the 

nonlinear dynamics and replace it with the desired linear dynamics but requires the exact 

knowledge of the system model. If not known exactly, the inversion may lead to unstable residual 

dynamics [2]. In addition, effects of unmodeled dynamics (sensors and actuator dynamics) and 

external noise are also present and therefore, any nonlinear control schemes are required to be 

robust to such unknown perturbations. 

Proportional-Integral Derivative (PID) control is the most popular theory used widely in industry 

applications. It is also used in complex systems like autonomous cars and Unmanned Aerial 

Vehicles (UAVs). The PID theory controls the systems states by compensating for the errors. But 

unfortunately, PID control strategies require definitive knowledge of the system model for proper 

tuning and are limited to linear and linearizable systems restricting its performance. Additionally, 

the PID controller needs to be properly tuned specific to each system that it is applied to resulting 

in a cumbersome and time consuming process. 

Another approach is the Sliding Mode Control (SMC) scheme [1]. Due to its robustness, it can be 

applied to both linear and nonlinear systems with modelling uncertainties. SMC theory transforms 

the control system into a first-order problem which is easier to control and hence good tracking 

performance can be achieved. The method has two phases: a reaching phase and a sliding phase. 
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The reaching phase drives the system towards a “sliding surface” and the sliding phase “slides” 

the states towards an equilibrium point. Lyapunov’s method is used to ensure asymptotic stability 

during the reaching phase. A discontinuous term is added to the control law to compensate for the 

system uncertainties and disturbances. However, the method requires knowledge of the 

mathematical model of the system and hence it is unique to each system which restricts its use. 

Therefore, there is a clear need to develop a Model-Free control algorithm based on the Sliding 

Mode Control (MFSMC) which derives the control law from previous control inputs, system 

measurements, control input gains and system’s order. An initial MFSMC control strategy was 

first proposed for Single-Input-Single-Output (SISO) systems [3] and then extended to Multi-

Input-Multi-Output (MIMO) systems [4]. The goal of this research is to successfully integrate the 

proposed control algorithm on an Unmanned Aircraft System (UAS), e.g. quadrotor drone, for 

motion control and path tracking. In this work, a comparison in the performance of the proposed 

MFSMC algorithm to a traditional PID controller for tracking precision, power consumption and 

tuning time is presented. 

The integration of the MFSMC algorithm on a UAS would allow easy, accurate and robust control 

tracking for engineering design purposes compared to model-based robust nonlinear control 

methods that are complex to implement. MFSMC algorithms saves time and reduces overall 

development costs in developing autonomous controls systems used in UASs for search and rescue 

type operations, surveillance and transportation as an example. This work proposes a unique 

MFSMC approach applied to UASs used in real-world type applications. 
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2. LITERATURE REVIEW 

The literature review presents important conclusions of previous studies related to SMC, MFSMC 

and related control applications to UAS. 

2.1 Generic SMC Schemes 

Laghrouche et al. [5] introduced a higher-order sliding mode controller on optimal linear quadratic 

control applied to a minimum-phase nonlinear SISO systems. The problem was divided into three 

steps. First, a higher-order sliding mode problem was created to eliminate the chattering effect, 

followed by characterizing the nonlinear uncertainties as bounded non-structured parametric 

uncertainties considering the system as an uncertain linear system. Lastly, an optimal sliding mode 

controller was derived by minimizing a quadratic cost function over finite amount of time. The 

SMC was tested on a kinematic model of an automobile for steering controls from an initial 

position to a trajectory defined by the user. A sliding mode control of fourth-order was used with 

a time varying sliding surface. The system achieved perfect tracking with the error converging to 

zero with no chattering. 

Hai Yu and Ozguner [6] developed a new sliding mode control scheme called Adaptive Seeking 

Sliding Mode control (ASSM control) for a particular set of nonlinear systems. The work 

addressed the issue of high feedback control effort when the system faces system disturbances and 

uncertainties. The method had a floating control gain adjusted adaptively to handle unknown 

disturbances and uncertainties thus reducing the chattering effect. It was used on the cruise control 

system of an off-road vehicle for velocity reference tracking control with minor errors and 

negligible chattering. 
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Runcharoon and Srichatrapimuk [7] presented an altitude control strategy for a quadrotor using a 

SMC system. The Euler angles was used to define the altitude (φ = roll, θ = pitch, ψ = yaw) and 

describe the orientation of the quadrotor. A PD controller was used to control the altitude (z) and 

the position (x and y) while the equations characterizing the positon and altitude were linearized 

to quantify the PD control gains. Euler angle assumptions φ ≈ ψ ≈ 0 on the x-axis, θ ≈ ψ ≈ 0 on the 

y-axis and φ ≈ θ ≈ 0 were applied. A boundary layer was added to the dynamic equations to 

eliminate the control chattering about the sliding surface. The simulation was able to drive the 

quadrotor to the desired position and desired orientation and prove the stability of the system and 

the control inputs. The above authors [7] used a SMC and PD to achieve a stable closed-loop 

system. The strategy showed an improvement compared to a general PID control system, but it 

limited the full potential of a SMC which does not required linearization. The presence of under-

actuated systems led to the use of two different control methods as it requires manipulation if used 

with the SMC process severely hindering the application of the proposed control scheme. 

Sen et al. [8] introduced an adaptive method SMC for quadrotor helicopters. The work dealt with 

the estimation of the system uncertainties and perturbation bounds. As these bounds are unknown, 

they are overestimated thus leading to large gains and subsequently excessive control. The gain is 

directly proportional to the magnitude of chattering, and hence by estimating these bounds and 

updating the control law, the magnitude can be reduced. The method was implemented on a 

quadrotor helicopter. A stable closed-loop system with perfect position tracking with no chattering 

was achieved. The uncertainties bounds were unknown, which were later estimated. 

Xu and Ozguner [9] presented a method to stabilize under-actuated systems using SMC. It uses 

the method proposed by Olfati – Saber [10] to transform the system into a cascade normal form. 

Xu and Ozguner applied this method on two nonlinear under-actuated MIMI systems, a 
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Translational Oscillator with Rotational Actuator (TORA) and a quadrotor UAS. The quadrotor 

system was similar to the one used by Runcharoon and Srichatrapimuk [7] while the TORA was 

controlled using a rate bounded PID controller and a sliding mode controller [11]. A stable closed-

loop convergence to the desired position was shown to be achieved. 

Pai [12] demonstrated that the SMC showed robust tracking in discrete time systems by applying 

a discrete-time integral SMC on uncertain linear systems. An auxiliary control function was 

introduced to define the discrete-time sliding mode controller to stabilize the system. The 

switching surface was designed by extending the integral switching function from continuous to 

discrete time SMC ensuring quasi-sliding mode is reached [13, 14]. In practice, only the switching 

surface is approached by discrete-time SMC systems and hence quasi-sliding mode is assured. The 

method was applied to a discrete-time system and it showed excellent tracking performance with 

the presence of uncertainties along with stability of the closed-loop system. The integral switching 

surface in the design process eliminated the reaching phase and chattering was absent due to the 

absence of a switching gain. 

Lee [15] also introduced a discrete-time SMC using a fast output sampling. In the work, the 

system’s closed-loop eigenvalues are arbitrarily defined while designing the control system 

focusing on stability and transient response. A boundary layer was introduced in the control law 

to reduce the chattering effect. The proposed method was tested on a discrete-time controller for a 

continuous time plant model with a serial type lightly damped resonance. Outstanding step 

response tracking was achieved which eventually proved that the system’s closed-loop eigenvalues 

can be arbitrarily assigned. 
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Ferrara [16] presented the problem of applying SMC in systems with saturating actuators. A sub-

optimal sliding mode controller with modifications was used to avoid control input saturation. The 

problem was the uncertainty in convergence of the sliding variable to zero in a finite amount of 

time when saturation occurs during reaching phase. The proposed modification decreases the 

control input magnitude once it reaches the saturation value (reaching phase). The control input 

magnitude increases again if the switching value was not reached implying the control input 

remains at the saturation value until a new switching value is reached. It is also proved that the 

system states converge to the origin in finite time and was reaffirmed with an example while 

avoiding the saturation limits. 

2.2  Model–Free Sliding Mode Control Schemes 

The limitation with strategies referenced previously is a system model is required for control 

development that is typically time consuming to design and also hinders performance in presence 

of model uncertainties. As dynamical systems become exceeding complex, a simplification is 

possible by developing a model-free control algorithm based on the sliding mode control. 

Martinez-Guerra et al. [17] presented a Sliding Mode Observer (SMO) called master-slave 

synchronization to determine certain synchronization problem with chaotic behavior. The scheme 

required an accurate knowledge of the nonlinear system dynamics. Hence a model-free SMO with 

a promotional correction of the sign function of the synchronization error was introduced. The 

method was successful applied to the control of a Lorenz system (a nonlinear system exhibiting 

chaotic behavior when tuned to certain gains). 

Salgado-Jimenez et al. [18] applied a model-free high-order SMC on a one degree-of-freedom 

underwater vehicle for position control. The proposed new method used only the exponential 
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convergence of the desired trajectory, eliminating the need to know the system dynamics or 

parameters. Chattering was avoided to restrict damage to the actuators lifetime by using a higher-

order SMC. However, the controller is integrated to a PD control whose desired gain values and 

performances requiring tuning. Two trajectories were tested: 1. sine wave; 2. triangular wave. A 

smooth response was achieved in both cases while the vehicle followed the desired path. 

Raygosa-Barahona et al. [19] introduced a model-free back stepping technique with integral SMC 

to develop a model-free SMC system for under-actuated underwater Remotely Operated Vehicles 

(ROVs). A model-free controller was obtained by designing a regressor free second-order sliding 

mode controller as the auxiliary input control at each iteration. The sliding mode is integrated with 

a PID control and is applied to a ROV to track a helix trajectory. The vehicle states converged to 

the desired trajectory with no chattering. However, the PID controller requires tuning to achieve 

the desired performance.  

Munoz-Vasquez [20] introduced a method to control the position of a quadrotor using passive 

Velocity Field (VF) navigation with unknown system dynamics. The controller has three 

subsystems: 1. model-free control subsystem – responsible for maintaining the sliding mode 

condition all the time; 2. velocity field subsystem – responsible for designing the velocity field to 

define the desired path and; 3. sliding surface subsystem – responsible for assembling invariant 

manifolds of position and orientating sliding surfaces. The controller was tested in a 3D 

environment without and with obstacles to prove the effectives off the VF to navigate around the 

obstacles in cluttered environments. The system displayed perfect tracking with no chattering 

however, the velocity field needs to be designed in order to derive the controller scheme. 
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Crassidis and Mizov [21, 22] presented a model-free control algorithm based on pure sliding mode 

control scheme to achieve perfect tracking for linear and nonlinear systems along with asymptotic 

tracking stability. The controller is designed based on previous control inputs, state measurements 

and the knowledge of the system order. A boundary layer was introduced into the control law to 

remove the excessive control chattering effect. The boundary layer reduced the tracking precision 

and gave a smooth control effort which is required. The method was tested on a first and second-

order linear and nonlinear system. All the systems showed perfect tracking using identical 

controllers and outstanding asymptotic tracking stability was observed. 

Crassidis and Reis [3] derived a similar model-free control algorithm based on SMC and extended 

the applications into SISO systems with non-unitary input gains. The effect of noise and system 

inaccuracies was also investigated. Firstly, a nonlinear mass-spring damper system with non-

unitary control input gain without sensor noise was simulated followed by a state measurement 

noise using a Gaussian distribution of noise. The variance, mean and probability distribution was 

obtained from the sensor’s datasheet. Perfect tracking was obtained in both cases and chattering 

was eliminated by using a boundary layer. 

Crassidis and Fares [4] further extended the model-free control algorithm based on the SMC 

method for MIMO systems and examined the effects of an actuator-induced time delay. The 

derivation and implementation for square MIMO systems was similar to the one mentioned in [18]. 

For under-actuated MIMO systems a transformation matrix was introduced to square the control 

input gain matrix to derive the control law. Perfect tracking was achieved for squared MIMO 

systems while only certain outputs, as expected, achieved perfect tracking in the under-actuated 

cases. The transformation diffeomorphism allowed the control of the output for tracking. The 

method was further applied to single-input nonlinear two mass spring damper system and a 
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quadrotor. The first system achieved perfect tracking on all states with the control effort 

maximized. But the latter observed perfect tracking on certain outputs while the control efforts and 

certain outputs displayed high frequency activity. This is due to the aggressiveness of the controller 

to track the required trajectory entirely. The presence of an actuator time delay had an adverse 

effect when it exceeded 0.1 seconds. Hence the control law needs to be modified to account for 

the presence of this time delay. The modified control law handled the time delay inaccuracies but 

was inconsistent at 0.1 seconds of time delay in some cases. 

Levant [23] also presented a unique method of model-free sliding mode control based on Higher 

Order Slide Mode [HOSM] theory. The controller form is based usually on an insignificant relay 

controller 𝑢 =  −𝐾𝑠𝑔𝑛(𝑆) where 𝑆 = 𝑥 − 𝑥𝑑 satisfies the higher-order sliding modes. No 

information about the plant and only the relative order (r) is required for the controller since S and 

its derivatives are based only on the states. The control effort is calculated by integration 

eliminating the chattering effect without the need for a smoothing step. The method eliminates 

chattering in the ideal scenario, but chattering may still be present due to the excitation of parasitic 

dynamics [24]. The parasitic dynamics are unmodeled dynamics such as actuator or sensor delays. 

The control law was successfully used to steer a four-wheeled vehicle onto a desired trajectory. 

Precup [25] developed two distinct methods of model-free sliding mode control based on dynamic 

data-driven linear estimation of the system model. For a first-order system, the sliding surface is 

defined as: 

𝑆 =  𝑥̃(𝑡) + ∫ 𝑥̃(𝜏)𝑑𝜏
𝑡

0

 

The system model is assumed to be: 



20 

 

𝑦̇(𝑡) = 𝐹(𝑡) +  𝛼𝑢(𝑡) 

where α is a tunable parameter. It is selected to keep the magnitude of 𝑦̇ and 𝑢 same. F(t) is 

approximated to: 

𝐹̂(𝑡) = 𝑦̂(𝑡) − 𝑢(𝑡) 

where 𝑦̂(𝑡) is determined from y by a first-order derivative and a low-pass filter. Replacing the 

discontinuous sign function and adding a thickness boundary layer and a saturation function, the 

SMC control law was derived as: 

𝑢 =  𝛼−1 (−𝐹̂(𝑡) + 𝑥̇𝑑(𝑡) − 𝜆
−1𝑥̃(𝑡) − 𝑒𝑒𝑠𝑡 𝑚𝑎𝑥 − 𝜆−1𝑠𝑎𝑡(𝑆 𝜑⁄ )) 

where eest max satisfies the following inequality: 

𝜑−1|𝑆(𝑡)|𝜂 > 2𝜆𝑒𝑒𝑠𝑡 𝑚𝑎𝑥 

The method is similar to those used in [3, 4, and 21] as it is the adaption of conventional SMC 

with the system model estimated from only the states and inputs. However, in this method the 

algebraic loops are avoided using a differentiator rather than a direct state measurement. 

2.3 Sliding Mode Control for Under-actuated System 

Many practical applications require the SMC to control MIMO systems. Dehghani and Menhaj 

[26] developed a state-space model for a leader-follower system which omits the effects of flight 

dynamics. The control inputs are considered translational acceleration in three dimensions. This 

removed the problem of cross-coupling of control and the under-actuated nature of a conventional 

aircraft wing. Resolving problems arising from developing control law for under-actuated MIMO 

systems is an important aspect and numerous solutions are offered. 
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Qian, Yi and Zhao [27] developed a multi-surface SMC for a single-input multi-output under-

actuated system. The proposed method was based on nested sliding variables including all system 

states. The number of sliding surfaces depends on the number of states. It allows tracking of 

multiple outputs with a single input. Tunable coefficients were weighted to the outputs to lower 

leveled sliding surfaces when constructing higher leveled sliding surfaces. The method was 

validated through a simulation effort on a single and double inverted pendulum for stabilization. 

The effect for chattering was not mentioned nor handled. 

Schkoda [28] developed a squaring transformation diffeomorphism using optimal control theory 

to decide the weighting of different outputs in the transformation. The method is similar to the 

approach developed by Raygosa [19]. Virtual control inputs were mapped to the actual control 

inputs through a transformation diffeomorphism. The transformation matrix in [28] led to a square 

input matrix which is inverted to derive the SMC control law for MIMO systems. 

One major area of application of under-actuated systems is in Unmanned Aircraft Systems (UASs). 

There are two main configurations of UASs, fixed-wing and quadrotor. Fixed-wing UASs are 

similar in nature to conventional aircraft. The four traditional control inputs are the rudder, 

elevator, ailerons, and forward thrust (engine). A quadrotor is a type of helicopter with four equal-

sized rotors distributed equally in horizontal plane around the center-of-mass. Typical the rotors 

employ a fixed blade pitch and implies that torque is the only input. The next section reviews some 

methods used to develop SMC for UAS addressing the issue of under-actuation. 

2.4 Sliding Mode Control for Unmanned Aircraft Systems 

Norton et al. [29] developed a fixed-wing UAS system with 12 state outputs but only 4 inputs 

(rudder, elevator, aileron deflections and thrust). The under-actuation is eliminated by applying a 



22 

 

diffeomorphism to the differential equations of the systems. After coordinate transformations, the 

differential equations are given as four three dimensional equations zi, with four sliding variables 

Si defined as: 

𝑆𝑖 = 𝑧𝑖 − 𝑧𝑖𝑑, i =1, 2, 3, 4 

In the approach, 𝑧𝑖𝑑is the desired trajectory to be tracked in the transformed coordinate system. 

Similar to classic SMC, the sliding variables are differentiated and substituted in the system model. 

The control laws are developed for thrust and surface deflections along with three virtual 

controllers to compensate modal uncertainties. 

Abdulhamitbilal [30] also developed 6 DOF state-space model for a fixed-wing UAS with 12 

states. Unlike assigning a sliding surface to each state as proposed in [14], only four sliding 

surfaces were developed, one for each input (rudder, elevator, aileron deflections and thrust). The 

two 6-dimensional state variables (position and velocity) are transformed into a 4-dimensional 

space with the sliding surface. Transformation matrix using weights for individual states like the 

one used in [28] is used. 

Duan, Mora-Camino and Miquel [2] compared the performance of a decoupled longitudinal fixed-

wing UAS model using dynamic inversion and backstepping methods. A full 6 DOF aircraft model 

with actuator dynamics was simulated but only the longitudinal results were examined. The 

backstepping method gave smoother responses but the control law was extremely complex and 

cumbersome to implement. 

Brezoescu, Lozano, and Casillo [31] worked on the tracking control in the lateral direction of a 

fixed-wing aircraft where the single input was the derivative of the yaw rate. The outputs were 
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yaw (heading) angle and orthogonal distance from the required path. Even though the system was 

under-actuated, the proposed control law was able to regulate both outputs effectively. 

Villanueva et al. [32] developed a 6 DOF state-space model for a quadrotor with 12 states. Four 

different control modes (manual, altitude hold, position hold, and waypoint following) was derived 

using the super-twisting method of SMC. The under-actuation of the quadrotor was resolved by 

the addition of pseudo-control inputs to roll and pitch that are dependent on positions in the 

horizontal plane. The approach was the same method used by Munoz-Vazquez et al. [20] where 

pitch and roll were removed as the explicit outputs of the system and the remaining 4 states and 4 

inputs transform the problem to a fully actuated system. The proposed method is different to the 

method followed in [4] where all 6 DOF were retained and a transformation matrix was used for 

the under-actuated system using tracking weights. 

Derafa, Benallegue, and Fridman [33] also applied super-twisting on a quadrotor and tested the 

system in a real-world application. The controller was developed for attitude tracking and 

stabilization. The desired values are given as functions of desired positions. The system modelled 

in this method becomes a fully actuated system. 

Crassidis and Schulken [34] applied the MFSMC algorithm on a quadrotor and the control 

algorithm was the same developed by [3, 4, and 21]. The tracking performance was compared to 

a traditional PID controller. The altitude, roll, pitch and yaw were tracked by both the MFSMC 

and PID controller. Simulation results showed that the MFSMC and PID controller had similar 

tracking performance however, without the tedious tuning process required for the PID controller 

compared to MFSMC algorithm. Real-world flight testing proved that the MFSMC controller can 

control real-world hardware but the performance was unacceptable. Large tracking errors were 
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observed for both the PID and MFSMC controller. Improved state estimation and system 

characterization was suggested to improve the tracking performance and reduce tracking error. 

The previous works demonstrate there is a clear need for a truly model-free control approach 

relaying solely on system measurements that can be applied to both linear and nonlinear systems 

which is the goal of this effort. In addition, the approach should handle modelling uncertainties for 

both SISO and MIMO using a realistic control effort with minimal control effort chattering for 

implantation on real-world systems, e.g., quadcopter-type UASs. 
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3. MODEL FREE SMC ALGORITHM 

In this chapter, the derivation for the MFSMC algorithm as proposed in [3, 4] and its application 

on a second-order nonlinear system is presented. The first section describes the stability of 

nonlinear systems, autonomous and non-autonomous systems, and square and non-square systems. 

In the next section, the model-free control algorithm for squared second-order systems followed 

by the application of the control algorithm on nonlinear systems is developed. 

3.1 Lyapunov Stability Theory 

Russian mathematician Alexandr Lyapunov introduced the Lyapunov theory to analyze system 

stability for linear and nonlinear systems [35]. The theory introduces two methods: 1. the 

Linearization Method and; 2. the Direct Method. The first method linearizes a nonlinear system 

around an operating point condition and analyzes the stability of the system at that point. The 

Direct Method uses the concept of energy to quantify stability. The sliding mode control utilizes 

the Direct Method ensure tracking stability the derived closed-loop control system. 

3.1.1 Autonomous and Non-Autonomous Systems 

A nonlinear system is said to be autonomous if the system parameters do not depend explicitly on 

time (Slotine [1]), and is defined as: 

𝑥𝑝
𝑛 = 𝑓𝑝(𝑥; 𝑢𝑚) (1) 

Non-autonomous systems are defined as systems that are dependent on time. The state trajectory 

of an autonomous system is independent of the initial time. Realistically, most system parameters 

do not vary quickly over time and can therefore be assumed to be autonomous. 
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3.1.2 Equilibrium Points 

An equilibrium point is defined as the point where the system’s state trajectories converge to a 

steady-state condition. Linear systems have one equilibrium point at the origin while nonlinear 

systems can have several or infinite equilibrium points. The equilibrium point is defined as: 

𝑓𝑝(𝑥𝑝𝑒) = 0 (2) 

Consider the nonlinear equation of motion of a pendulum: 

𝑀𝑅2𝛳̈ + 𝑏𝛳̇ + 𝑀𝑔𝑅 𝑠𝑖𝑛 𝛳 = 0 (3) 

where, M is mass of the pendulum, R is the length of the pendulum, ϴ is the angle between the 

pendulum and the vertical, b is coefficient of friction, and g is the acceleration due to gravity. 

The state-space equation for the system is: 

𝑥̇1 = 𝑥2 (4) 

𝑥̇2 = −
𝑏

𝑀𝑅2
𝑥2 −

𝑔

𝑅
𝑠𝑖𝑛 𝑥1 (5) 

where, 𝑥1 = 𝑛𝜋 are the infinite number of equilibrium points for the pendulum. 

3.1.3 Concepts of Stability 

An equilibrium point is stable if given a spherical region with radius R > 0, there exists 𝑟 > 0, 

such that if ‖𝑥(0)‖  < 𝑟, then ‖𝑥(𝑡)‖  < 𝑅 for all 𝑡 ≥ 0. Otherwise, the equilibrium point is 

unstable. The is referred to as Lyapunov stability and outlined in Slotine [1]. 

An equilibrium point (𝑥𝑒) is said to be asymptotically stable if it is stable as defined above and 

there exists some 𝑟 > 0 such that ‖𝑥(0)‖ < 𝑟 and 𝑥(𝑡) → 𝑥𝑒 as 𝑡 →  ∞. If there exist a point 

‖𝑥2‖  < 𝑅 and 𝑥(𝑡) → 𝑥2 as 𝑡 →  ∞, then the point is marginally stable. If doesn’t meet either of 

these conditions, then the point is unstable [1]. 
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Figure 1: Concepts of Stability [1] 

Apart from convergence to the equilibrium point, estimates of how fast the trajectories converge 

to the equilibrium point are also important. An equilibrium point is said to be exponentially stable 

if there exist two positive numbers α and δ such that for 𝑡 > 0, ‖𝑥(𝑡)‖ ≤  𝛼‖𝑥(0)‖𝑒−𝛿𝑡, inside of 

SR. The concept proves that the state vector is converging faster than the exponential function to 

the equilibrium point. 

The equilibrium point is said to be globally asymptotically or exponentially stable if asymptotic 

or exponential stability hold for any and all initial states in the large. 

3.1.4 Lyapunov’s Direct Method 

Lyapunov’s Direct Method concept is introduced in this section. The method analyzes the energy 

of the system. If the total energy of the system is continuously dissipated, be it mechanical or 

electrical, then the system must settle to an equilibrium point eventually, be it a linear or nonlinear 

system. The energy variation of the system can be used to study the stability feasibility of the 

system, hence a function that describes the energy of the system must be defined. The function is 

referred to as the candidate Lyapunov function,  𝑉(𝑥). 
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The energy function has certain rules to be considered. The function 𝑉(𝑥) must be strictly positive 

for all 𝑥   and 𝑥̇ excluding the origin. The function 𝑉(𝑥) is said to be positive definite if 𝑉(𝑥) > 0 

for any 𝑥 ≠ 0. 𝑉̇(𝑥) is said to be negative semi-definite if 𝑉̇(𝑥)  ≤ 0. If these conditions are met 

then the equilibrium point is said to be stable. 

The equilibrium point is said to be asymptotically stable if 𝑉(𝑥) is strictly positive definite and 

𝑉̇(𝑥) is strictly negative definite. The equilibrium point is globally asymptotically stable, if 𝑉(0) =

0, 𝑉(𝑥) > 0 for any 𝑥, 𝑉̇(𝑥) < 0 for any 𝑥, and 𝑉(𝑥) is radially unbounded. 

3.2 Model Free Sliding Mode Control Scheme  

Reis and Crassidis [3] derived a model-free SMC law for SISO linear and nonlinear first and 

second-order systems with unitary and non-unitary gains. The developed control law testing using 

simulations for various systems and perfect state tracking was shown to be achieved. El Tin and 

Crassidis [4] extended the previous work to MIMO linear and nonlinear first and second-order 

squared and non-squared systems with non-unitary gains. Perfect state tracking and asymptotic 

tracking stability was achieved in the simulations. In this section, the definitions of squared and 

non-squared MIMO systems are defined and the MFSMC algorithm for second-order squared 

MIMO system is derived. 

3.2.1 Square and Non-square MIMO Systems 

To derive the control law for MIMO systems, the various types of MIMO systems should be 

considered. Also, the control input gain matrix [B] needs to be invertible for the control law to be 

derived. 

An nth- order autonomous system is defined: 
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𝑥𝑝
𝑛  =  𝑓𝑝(𝑥) + [𝐵]𝑝×𝑚𝑢𝑚 (6) 

where p and m are the number of outputs and inputs respectively, 𝑥 is the system states and output, 

fp(x) is the autonomous nonlinear character in 𝑥, B is the p x m control input matrix gains, and u is 

the control input. 

A system whose number of inputs is equal to the number of outputs (i.e., m = p) is called a square 

or fully actuated system. Each output system has its own controller and perfect control can be 

achieved assuming the system is controllable. 

When the number of inputs is greater than output (m > p) the system is referred to as a non-square 

system, and is considered over-actuated. In this case, we have an abundance of control inputs and 

one controller can be replaced by another one. 

The non-square system where the number of inputs is less than outputs (m < p) is referred to as an 

under-actuated system. In the non-square systems, the control input matrix [B] is not invertible 

hence further manipulation is required to derive the model-free control algorithm based on the 

SMC. 

3.2.2 System Description for Squared MIMO Systems 

Consider the nth order autonomous system: 

𝑥𝑝
𝑛  =  𝑓𝑝(𝑥) + [𝐵]𝑝×𝑚𝑢𝑚 (7) 

The system description can be rewritten as: 

𝑥𝑝
𝑛 = 𝑥𝑝

𝑛 + [𝐵]𝑢𝑚 − [𝐵]𝑢𝑚𝑘−1
− [𝐵]𝑢𝑚 + [𝐵]𝑢𝑚𝑘−1

 (8) 

where p and m are the number of inputs and outputs respectively, 𝑥 is the system states and 

output, [B] is a square m x m matrix of control input gains, and 𝑢𝑚𝑘−1
 is the previous control 
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input. The error between the control input and the previous control input is defined as: 

𝜀𝑚 = 𝑢𝑚𝑘−1
− 𝑢𝑚 (9) 

To avoid an algebraic loop within the controller algorithm and to compute the control law, a control 

input error estimation function is required and is defined as  

𝜀 𝑚 = 𝑢𝑚𝑘−1
− 𝑢𝑚𝑘−2

 (10) 

where, 𝑢𝑚𝑘−2
 is the previous control input of the previous control input. The control input error is 

not exactly known but it is assumed to be within the following bounds: 

                                                  (1 − 𝜎𝑙)𝜀 𝑚 ≤ 𝜀 𝑚 ≤ (1 + 𝜎𝑙)𝜀 𝑚 (11) 

where 𝜎𝑢 is the upper bound and 𝜎𝑙 is the lower bound of the control input estimation error. 

The control input gain [B] is unknown but is assumed to be bounded, i.e.,: 

𝑏𝑙𝑜𝑤𝑒𝑟 ≤ 𝑏𝑚𝑚 ≤ 𝑏𝑢𝑝𝑝𝑒𝑟 (12) 

where blower is the lower most bound, bupper is the upper bound and bmm is an element of the control 

input gain matrix [B]. 

3.2.3 Second Order MIMO System Control Law 

A possible time varying sliding surface can be defined as [1]: 

𝑠𝑚 = (
𝑑

𝑑𝑡
+ 𝜆𝑚)

𝑛−1𝑥̃𝑝 (13) 

where λm is a positive constants, n is the order of the system, and 𝑥̃𝑝 = 𝑥𝑝 − 𝑥𝑑𝑝 defines the 

tracking error. 

The sliding surface for a second-order MIMO system is then defined as: 

𝑠 = 𝑥̇̃⃗ + 𝜆𝑥̃⃗ (14) 
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By setting the derivative of the sliding surface is to zero ensures the state trajectories remain on 

the sliding surface on the trajectories have reached the surface, i.e.,: 

                                                                  𝑠̇ =  𝑥̈̃⃗ + 𝜆𝑥̇̃⃗ =  0⃗⃗ (15) 

Substituting Eq. (8) into Eq. (13) results in: 

                                       𝑠̇ = 𝑥̈⃗ + [𝐵]𝑢⃗⃗ − [𝐵]𝑢⃗⃗𝑘−1 + [𝐵]𝜀 − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗ =  0⃗⃗ (16) 

Rearranging the equation for the control input and adding the discontinuous term to eliminate the 

system uncertainties results in: 

                                      𝑢⃗⃗ = −[𝐵]−1 [𝑥̈⃗ − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗ + 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢⃗⃗𝑘−1 − 𝜀 (17) 

where 𝜂 is assumed to be a small positive constant. 

3.2.4 Asymptotic Stability of the Control Law 

Lyapunov’s Direct Method is used to achieve asymptotic stability of the control law during the 

reaching phase. A candidate Lyapunov function that is strictly positive definite (satisfying one of 

the Direct Method stability criterion) can be defined as: 

                                                                      𝑉⃗⃗(𝑥⃗) =  
1

2
𝑠2 (18) 

Differentiating Eq. (16) results in: 

                                                                      𝑉̇⃗⃗(𝑥⃗) =  𝑠̇𝑠 (19) 

Substituting Eq. (14) into Eq. (1) and setting Eq. (17) to be strictly negative to ensure global 

asymptotic stability results in: 

                                    𝑉̇⃗⃗(𝑥⃗) =  𝑠 (𝑥̈⃗ + [𝐵]𝑢⃗⃗ − [𝐵]𝑢⃗⃗𝑘−1 + [𝐵]𝜀 − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗) ≤ 0 (20) 

Substituting the control law Eq. (15) into Eq. (18) yields: 
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                    𝑉̇⃗⃗(𝑥⃗) =  𝑠 (𝑥̈⃗ + [𝐵] (−[𝐵]−1 [𝑥̈⃗ − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗ + 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢⃗⃗𝑘−1 − 𝜀) − [𝐵]𝑢⃗⃗𝑘−1 +

                                    [𝐵]𝜀 − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗ )  ≤ 0 (21) 

Simplifying Eq. (19) results in: 

                                                           𝑉̇⃗⃗(𝑥⃗) =  𝑠(−𝜂𝑠𝑔𝑛(𝑠)) ≤ 0 (22) 

The signum function gives negative unity when the sliding surface is negative and positive unity 

when the sliding surface is positive. The term “ 𝑠(𝑠𝑔𝑛(𝑠))” can be replaced with “|𝑠|” yielding: 

                                                                 𝑉̇⃗⃗(𝑥⃗) =  −𝜂|𝑠|  ≤ 0 (23) 

which is always satisfied as η is strictly positive. This ensures the derivative of the Lyapunov 

function as negative definite and therefore the asymptotic stability of the system is achieved. 

3.2.5 The Switching Gain 

The control law Eq. (15) is formally now updated with the switching gain, i.e.,: 

                                     𝑢⃗⃗ = −[𝐵̂]−1 [𝑥̈⃗ − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗ + 𝐾⃗⃗⃗𝑠𝑔𝑛(𝑠)] + 𝑢⃗⃗𝑘−1 − 𝜀 (24) 

where the switching gain 𝐾⃗⃗⃗ ensures that the state trajectories are asymptotically stable during the 

reaching phase and [𝐵̂] is the estimate of the control input gain matrix. 

Using the sliding condition defined in Eq. (21), the asymptotic stability of the closed-loop system 

is ensured so that:  

𝑠̇𝑠 ≤ −𝜂|𝑠| (25) 

The upper bounds of the error estimates are assumed to be conservative and an auxiliary variable 

is introduced. To ensure the controller handles the most extreme case of inequality and thus solving 

for 𝐾⃗⃗⃗ yields: 



33 

 

                           𝐾⃗⃗⃗ = |𝑥̈⃗ − 𝑥̈⃗𝑑||[𝛽] − 1| + 𝜆|𝑥̃⃗|̇ |[𝛽] − 1| + |[𝐵̂]𝜎𝑢(𝑢⃗⃗𝑘−2 − 𝑢⃗⃗𝑘−1)| + [𝛽]𝜂  (26) 

The control law in Eq. (22) is updated as: 

                                  𝑢⃗⃗ = −[𝐵̂]−1 [𝑥̈⃗ − 𝑥̈⃗𝑑 +  𝜆𝑥̇̃⃗ + 𝐾⃗⃗⃗𝑠𝑔𝑛(𝑠)] +  2𝑢⃗⃗𝑘−1 − 𝑢⃗⃗𝑘−2 (27) 

The estimated control input gain is given by the geometric mean of the upper and lower bounds: 

[𝐵̂⃗⃗] = √𝑏𝑢𝑝𝑝𝑒𝑟𝑏𝑙𝑜𝑤𝑒𝑟 (28) 

The auxiliary variable β is defined as: 

𝛽 =  𝑏̂𝑏̂−1 = √
𝑏𝑢𝑝𝑝𝑒𝑟

𝑏𝑙𝑜𝑤𝑒𝑟
 (29) 

3.2.6 The Boundary Layer 

The discontinuous term in the control law shown in Eq. (25) causes high frequency chattering of 

the control effort [3, 4] causing damage to the actuators and motors in the real-world. Hence, a 

smoothing boundary layer is added into to the control law and the algorithm is formulated as: 

                            𝑢⃗⃗ = [𝐵]−1 [−𝑥̈⃗ + 𝑥̈⃗𝑑 −  𝜆𝑥̇̃⃗ − (𝐾⃗⃗⃗ − 𝛷̇⃗⃗⃗)𝑠𝑎𝑡 (
𝑠

𝛷⃗⃗⃗⃗
)] +  2𝑢⃗⃗𝑘−1 − 𝑢⃗⃗𝑘−2 (30) 

where the boundary layer dynamics are defined as follows (Slotine [1]): 

                                                                 𝛷̇⃗⃗⃗ +  𝜆𝛷⃗⃗⃗ = 𝐾⃗⃗⃗(𝑥⃗𝑑) (31) 

with 𝛷⃗⃗⃗(0) = η/λ. The control effort smoothing approach is similar to applying a “perfect” first-

order filter with zero phase loss to the control effort. 

3.3 Second Order System Illustration 

The above SMC law was applied to a fully-actuated nonlinear mass-spring-damper system. A 

schematic of the nonlinear mass-spring-damper system is given below: 
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The equation of motion of system was defined by: 

𝑚1𝑥̈1 = 𝑢1 + 𝑐2(𝑥̇2 − 𝑥̇1)|𝑥̇2 − 𝑥̇1| + 𝑘2(𝑥2 − 𝑥1) − 𝛽2(𝑥2 − 𝑥1)
3 − 𝑐1𝑥̇1|𝑥̇1| −  𝑘1𝑥1

+ 𝛽1𝑥1
3 

𝑚2𝑥̈2 = 𝑢2 − 𝑐2(𝑥̇2 − 𝑥̇1)|𝑥̇2 − 𝑥̇1| − 𝑘2(𝑥2 − 𝑥1) − 𝛽2(𝑥2 − 𝑥1)
3 

where mi is the mass, 𝑥𝑖 is the state output, ui is the input, ci (𝑐 = [5,8]´) is the damping coefficient, 

ki (𝑘⃗⃗ = [3,7]´) is the spring constant, βi (𝛽 = [−1.5, −3]´) is the spring stiffening coefficient and 

i is the number of masses, springs and dampers. 

The control input gain is [B] = [1/m1, 1/m2] ´ with known bounds: 

5 ≤ 𝑚1 ≤ 15 

15 ≤  𝑚2 ≤ 25 

The signals to be tracked are: 

𝑥1𝑑(𝑡) =  sin (
𝜋

2
𝑡) 
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𝑥2𝑑(𝑡) =  sin (
𝜋

2
𝑡) 

The same controller parameters used in [4] was used and are given below: 

Table 1: Controller Parameters for Second-Order Nonlinear MIMO System 

Parameter Value 

𝜎𝑢 0.5 

𝜆 20 

𝜂 0.1 

 

The closed-loop simulation results with the derived control law are given below: 

 
Figure 2: Position Tracking of (a) X1, (b) X2 
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Figure 3: Position Tracking Error of (1) X1, (b) X2 

 
Figure 4: Velocity Tracking of (a) X1, (b) X2 

 
Figure 5: Velocity Tracking Error of (a) X1, (b) X2 
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Figure 6: Acceleration Tracking of (a) X1, (b) X2 

 
Figure 7: Acceleration Tracking Error of (a) X1, (b) X2 
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Figure 8: Controller Effort (a) U1, (b) U2 

 
Figure 9: Sliding Condition Constraint 

From the above results, perfect state trajectory tracking (as shown in Figures 2, 4, and 6) is 

achieved with negligible error of the order of 10-3 for the higher-order system. Perfect tracking for 

both the mass tracking states is achieved as expected since the system is square. The inclusion of 

the boundary layer ensures no control chattering in the system  as shown in Figure 8. An initial 

spike in the error is present for the higher-order states due to the inability to initialize the higher-

order states. Asymptotic tracking stability of the system is also achieved by satisfying the sliding 

condition as shown in Figure 9. 
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4. METHODOLOGY 

The objective of this work is to implement the exclusive and unique model-free control algorithm 

on real-world hardware and to compare the performance to a traditional PID controller with respect 

to tracking precision and power consumption. The Root-Mean-Square (RMS) of the tracking error 

(desired trajectory – actual trajectory) is used to compare the tracking performance. As shown in 

Section 2, to date there has been no work that has used the MFSMC on a real hardware 

successfully. Schulken [34] implemented the developed MFSMC on an actual hardware but the 

performance was unacceptable. A quadcopter was selected for hardware implementation in this 

study. More details about the hardware are mentioned later in Chapter 6. 

In Chapter 5, the simulation study of the quadcopter with both PID and MFSMC law is presented. 

Simulations are used to study system behavior and performance prior to implementing the newly 

developed control strategy on actual hardware. This identifies critical system (model errors, 

actuator dynamics, Inertial Measurement Unit (IMU) errors and sensor noise) behavior that could 

cause damage or lead to hardware damage during flight testing and saves valuable time and effort 

during hardware development. The simulation study was conducted on a basic quadcopter dynamic 

model followed with including hardware components such as actuator dynamics, sensor delays, 

state estimation, IMU sensor noise and controller sampling frequency. 

After simulation results are analyzed and studied, destructive system behaviors are identified and 

the control law is revised for implementation. The hardware study and results are described in 

Chapter 6. Hardware tests were performed on a gimbal platform with autonomous control for both 

pitch and roll. Controller parameters were amended to optimize the tracking precision. The system 

performance was compared with a PID controller for tracking precision and power consumed. 

Finally, the conclusions and future work for this study are summarized. 
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5. SIMULATION STUDY 

This chapter describes the simulation studies conducted on the dynamic model of a quadcopter 

with the proposed MFSMC algorithm and the PID controller. The chapter is divided into six 

sections. The first section describes the dynamic model of the quadcopter and delves into the plant 

model states, the reference frames, the various quadcopter orientation configurations, the plant 

model equations, the thrust equations, and the motor dynamics of a basic quadcopter. The second 

section characterizes the actuator dynamics required in the proposed MFSMC algorithm followed 

by the basic simulation testing (shown in the third section) of the MFSMC algorithm and the 

predesigned PID controller on the quadcopter model developed in first section of the chapter. The 

design of the control law in the MFSMC algorithm to actuator efforts is important as mentioned 

by El Tin [4]. The fourth section describes state estimation that is required for hardware 

implementation followed by state conversion into body-reference frame components outlined in 

the fifth section of this chapter. Noise characterization of signals sensed by the IMU is illustrated 

in final section with MFSMC algorithm parameter selection as mentioned by Reis [3]. Finally, a 

simulation study of real-world hardware is carried out under the MFSMC law and the performance 

is compared to a traditional PID controller for a quadcopter. 

5.1 Quadcopter Plant Model 

5.1.1 Plant Model States 

The quadcopter is a 6 DOF system that travels in the X, Y and Z directions and rotates about the X 

(Roll), Y (Pitch), and Z (Yaw) axes. The state variables define the physical dynamics of the 

quadcopter which are the angles of rotation and absolute positions. The local frame is assumed to 

be the reference coordinate frame (Figure 10) for the quadcopter simulation. 
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Figure 10: Quadcopter State Coordinate Visualization [36] 

Quadcopters have various sensors that measure the different states of the quadcopter. The sensors 

include accelerometers, gyroscopes, vision, GPS etc. A state that can be directly measured using 

a sensor is referred to as a fully observable state. The quadcopter used in this study uses an IMU 

which comprises of a full 3-axis accelerometer and gyroscope. The states of the quadcopter are 

described in Table 2. 

Table 2: Quadcopter States [36] 

Symbol Description Unit Observability 

𝜃 Pitch Euler Angle 𝑟𝑎𝑑 Stereo Vision 

𝜃̇ Pitch Euler Angular Velocity 𝑟𝑎𝑑/𝑠 Gyroscope 

𝜃̈ Pitch Euler Angular 

Acceleration 
𝑟𝑎𝑑 /𝑠2 - 

𝜙 Roll Euler Angle 𝑟𝑎𝑑 Stereo Vision 

𝜙̇ Roll Euler Angular Velocity 𝑟𝑎𝑑/𝑠 Gyroscope 

𝜙̈ Roll Euler Angular Acceleration 𝑟𝑎𝑑 /𝑠2 - 

𝜓 Yaw Euler Angle 𝑟𝑎𝑑 Stereo Vision 

𝜓̇ Yaw Euler Angular Velocity 𝑟𝑎𝑑/𝑠 Gyroscope 

𝜓̈ Yaw Euler Angular 

Acceleration 
𝑟𝑎𝑑 /𝑠2 - 

𝑋 Position along X 𝑚 Stereo Vision 
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𝑋̇ Velocity along X 𝑚/𝑠 - 

𝑋̈ Acceleration along X 𝑚 /𝑠2 Accelerometer 

𝑌 Position along Y 𝑚 Stereo Vision 

𝑌̇ Velocity along Y 𝑚/𝑠 - 

𝑌̈ Acceleration along Y 𝑚 /𝑠2 Accelerometer 

𝑍 Position along Z 𝑚 Stereo Vision 

𝑍̇ Velocity along Z 𝑚/𝑠 - 

𝑍̈ Acceleration along Z 𝑚 /𝑠2 Accelerometer 

Ω1 Motor 1 Angular Velocity 𝑟𝑎𝑑/𝑠 Voltage/Current/Optical 

Ω2 Motor 2 Angular Velocity 𝑟𝑎𝑑/𝑠 Voltage/Current/Optical 

Ω3 Motor 3 Angular Velocity 𝑟𝑎𝑑/𝑠 Voltage/Current/Optical 

Ω4 Motor 4 Angular Velocity 𝑟𝑎𝑑/𝑠 Voltage/Current/Optical 

 

5.1.2 Reference Frames and Orientations 

The two reference frames are assumed to be: 1. local NED (North – East – Down) reference frame 

and; 2. body-reference frame. The NED reference is an inertial frame while the body-reference 

frame is a non-inertial frame and is assumed fixed on the UAS and moves along with the UAS as 

the UAS maneuvers in a 3D space. 

In the NED reference frame, the X axis is pointed towards north, Y axis is pointed to the east and 

the Z axis is pointed downwards normal to the X and Y plane, a right handed frame. Positive roll 

angle translates the quadcopter towards the east and positive pitch angle translates the quadcopter 

south. Positive yaw rotates the quadcopter clockwise. Figure 11 describes the local NED frame. 
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Figure 11: Local NED Right Handed Frame [36] 

The body-reference frame is dependent on the orientation of the quadcopter. Generally the 

quadcopter has two orientations: 1. ‘+’ orientation and; 2. ‘X’ Orientation. The direction of positive 

Z is common in both orientations and acts downwards. The difference in the orientations depends 

on the direction of the X and Y axes and the motors used to change direction. In this study, the ‘X’ 

orientation is used. The body-reference frame for both orientations are: 

  

    Figure 12: Quadcopter '+' orientation [36]           Figure 13: Quadcopter 'X' orientation[36] 
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5.1.3 Plant Model Equations 

In this section, a mathematical model of the 6 DOF quadcopter is presented as shown in [4, 9, 34, 

and 36] to develop a full quadcopter system model. The assumptions for the model are [36]: 

• The quadcopter is a rigid structure; 

• The air frame and components are symmetric; 

• The center-of-gravity and air frame origin coincide; 

• Thrust and drag are proportional to the square of propeller speed; 

• There are no external disturbances, i.e., wind, temperature etc. acting on the quadcopter. 

First, the angular accelerations of the quadcopter are modeled. These include all the moments 

acting on the quadcopter, i.e., the rolling moments, pitching moments and yawing moments. Each 

of the moments consists of the following effects: 

• Body gyroscopic effects – changes in quadcopter orientation; 

• Propeller gyroscopic effects – propeller rotation with quadcopter frame orientation; 

• Actuation effects – forces produced by rotor. 

The sum of these effects in the respective axes output the angular accelerations for roll (Ф), pitch 

(ϴ) and yaw (ψ). Figure 14 illustrates the effects in the acceleration equations. 

 
Figure 14: Angular Acceleration Observations [36] 
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Similarly, the pitch and yaw angular accelerations can be generated. The three angular 

accelerations used for in the quadcopter model are given below: 

      Ф̈ =  
𝛳̇𝜓(𝐼𝑦𝑦−𝐼𝑧𝑧)+ 𝐽𝑟𝛳̇𝛺𝑟+𝑙𝑈2

𝐼𝑥𝑥
 (32) 

    𝛳̈ =  
Ф̇𝜓̇(𝐼𝑧𝑧−𝐼𝑥𝑥)+ 𝐽𝑟Ф̇𝛺𝑟+𝑙𝑈3

𝐼𝑦𝑦
 (33) 

𝜓̈ =  
𝛳̇Ф̇(𝐼𝑥𝑥−𝐼𝑦𝑦)+𝑈4

𝐼𝑧𝑧
 (34) 

where U2, U3 and U4 are roll, thrust and yaw thrust respectively. Ωr is total velocity of all the 

propellers and will be discussed further in the next section. 𝐼𝑥𝑥, 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are the moment-of-

inertias (Kg-m2) terms, Jr is the rotor inertia of the motors (Kg-m2) and, l is the distance between 

the rotor axis and quadcopter center-of-mass. 

Similarly, the accelerations along the translational axes can be defined. Figure 15 depicts the 

different aspects of the acceleration equations. 

 
Figure 15: Acceleration Equation along the “X” Direction [36] 

By following a similar approach the accelerations in Y and Z can be defined. The three translational 

accelerations are given as: 

𝑋̈ =
(𝑠𝑖𝑛𝜓 𝑠𝑖𝑛Ф− 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝛳 𝑐𝑜𝑠Ф)𝑈1−𝐴𝑥𝑋̇

𝑚
 (35) 
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𝑌̈ =
(𝑐𝑜𝑠𝜓 𝑠𝑖𝑛Ф− 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛 𝛳 𝑐𝑜𝑠Ф)𝑈1−𝐴𝑦𝑌̇

𝑚
 (36) 

𝑍̈ =
𝑚𝑔−(𝑐𝑜𝑠𝛳 𝑐𝑜𝑠Ф)𝑈1−𝐴𝑧𝑍̇

𝑚
 (37) 

where Ax, Ay, and Az are the air resistances in the respective axes (kg/s), U1 is the general thrust 

and m is the mass of the quadcopter (kg). Eqs. (30 – 35) finalize the mathematical model of the 6 

DOF quadcopter model. The system equations are referenced to the local NED reference frame 

and are used for simulation study to evaluate the MFSMC performance. 

5.1.4 Thrust Equations 

There are four main thrust equations that should be considered for inclusion in the model. The 

thrust variables were included in the plant model equations in the previous section. The four thrust 

parameters are the general thrust (U1), roll thrust (U2), pitch thrust (U3), and yaw thrust (U4). The 

thrust equations are required to model the individual rotor characteristics that drive and control the 

quadcopter and are orientation dependent. The thrust equations with respect to the ‘X’ orientation 

are given as follows: 

                                            𝑈1 = 𝑏(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2) (38) 

                                       𝑈2 = 𝑏 𝑠𝑖𝑛(
𝜋

4
) (𝛺1

2 − 𝛺2
2 − 𝛺3

2 + 𝛺4
2) (39) 

                                      𝑈3 = 𝑏 𝑠𝑖𝑛(
𝜋

4
) (𝛺1

2 + 𝛺2
2 − 𝛺3

2 − 𝛺4
2) (40) 

                                          𝑈4 = 𝑑(𝛺1
2 − 𝛺2

2 + 𝛺3
2 − 𝛺4

2) (41) 

where b is the thrust coefficient (N/s2), d is the drag coefficient (Nm/s2), and Ωn are the speed of 

the nth motor (RPM). Figure 16 displays a visual interpretation of the thrust equations. 
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Figure 16: Thrust Equations in Along the 'X' Orientation [36] 

For example, as shown in Figure 16, U1 applies a general thrust which is uniform and equal to 

each of the motors that drive the individual rotors. U2 changes the thrust between the motors to 

roll the quadcopter while U3 changes the thrust between motors to pitch the quadcopter. Similarly, 

U4 is used to yaw the quadcopter. 

The overall angular velocity of the quadcopter is given as: 

𝛺𝑟 =  𝛺1 − 𝛺2 + 𝛺3 − 𝛺4 (42) 

There is a sign difference as motors 2 and 4 are spun in the opposite direction as motors 1 and 3. 
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5.1.5 Motor Dynamics 

Motor dynamics play an important role in the system dynamics as they cause actuator delays in 

the closed-loop system. To understand the motor behavior and characteristics, the dynamics must 

be modeled into the quadcopter model. A brushless DC motor with a controller is modeled to 

ensure the motor is operating at the proper desired angular velocity. The inputs to the motor are 

voltage and desired angular velocity (calculated in the previous section). The motor states are 

current and angular acceleration and the output of the motor is angular velocity. The motor 

modeling equations are given as: 

𝐿
𝑑𝑖

𝑑𝑡
= 𝑉 − 𝑅𝐼 − 𝐾𝑒𝑚𝑓𝛺 (43) 

𝐽
𝑑𝜔

𝑑𝑡
= 𝐾𝑡𝐼 − 𝑏𝜔 (44) 

where L in the electrical inductance (H), I is the current (ohm), V is the voltage (V), R is the 

electrical resistance (ohm), Kemf is the back electromotive force coefficient (V-s/rad), J is the rotor 

moment-of-inertia (kg-m2), Kt is the torque coefficient (Nm/A), and b is the damping coefficient 

(N-m-s). The Simulink block model of the motor is shown in Figure 17.The saturation blocks 

limits the voltage and current as supplied by the battery. 

 
Figure 17: Simulink Motor Block Model 
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5.2 Control Approach for Quadcopter 

Depending on the number of degree-of-freedoms to be controlled, the control system can be treated 

as either a fully actuated or under-actuated system. Xu [9], El Tin [4] and Schulken [34] controlled 

X, Y, Z and ψ (yaw) in their simulation studies and considered the under-actuated system approach. 

Xu and El Tin used U1 to control the altitude Z and U4 to control yaw angle (ψ). U2 and U3 were 

used to control X and Y, respectively. El Tin used a transformation diffeomorphism approach to 

convert the under-actuated system into a fully actuated system [4]. 

Schulken [34] used the super-twisting approach to control X and Y while the altitude and yaw were 

directly controlled by the control inputs and was the same approach used in [32 and 33]. In this 

work, the pseudo-control Ux and Uy signals are generated from the desired X and Y commands. The 

pseudo-inputs can be considered as the portion of U1 on the horizontal and vertical direction. The 

pseudo-inputs are defined by the following: 

                                                      𝑈𝑥 = 𝑠𝑖𝑛Ф𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠Ф𝑠𝑖𝑛 𝛳 𝑐𝑜𝑠 𝜓 (45) 

                                                    𝑈𝑦 = −𝑠𝑖𝑛Ф𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠Ф 𝑠𝑖𝑛𝛳 𝑐𝑜𝑠 𝜓 (46) 

These inputs are used to define the required roll and pitch angles using the following: 

Ф𝑑 = 𝑠𝑖𝑛−1(𝑈𝑥 𝑠𝑖𝑛(𝜓) − 𝑈𝑦 𝑐𝑜𝑠(𝜓)) (47) 

       𝛳𝑑 = 𝑠𝑖𝑛−1(
𝑈𝑥 𝑐𝑜𝑠(𝜓)+𝑈𝑦 𝑠𝑖𝑛(𝜓)

𝑐𝑜𝑠(Ф𝑑)
) (48) 

The MFSMC law calculates the required control input, i.e.,  𝑢⃗⃗⃗ ⃗: 

                             𝑢⃗⃗ = [𝐵]−1 [−𝑥̈⃗ + 𝑥̈⃗𝑑 −  𝜆𝑥̇̃⃗ − (𝐾⃗⃗⃗ − 𝛷̇⃗⃗⃗)𝑠𝑎𝑡 (
𝑠

𝛷⃗⃗⃗⃗
)] +  2𝑢⃗⃗𝑘−1 − 𝑢⃗⃗𝑘−2 (49) 

In this study, the four states to be controlled are altitude (Z), roll (Ф), pitch (ϴ) and yaw (ψ). Roll 

and pitch are used to translate the quadcopter along the Y and X direction, respectively. Each of 

the commands have its individual control input hence the need for super-twisting and 
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transformation is eliminated. It is, therefore, considered as a fully actuated control system even 

though it is primarily an under-actuated system. 

Eq. (28) is used to calculate the four control inputs (i.e., U1, U2, U3, and U4). The control inputs 

are used to calculate the individual motor speeds (Ω1, Ω2, Ω3, Ω4) using Eqs. (36 – 39). Figure 18 

displays the Simulink block diagram for the motor speed calculations. 

 
Figure 18: Motor Speed Calculation from the Control Inputs 

The calculated motor speeds are the output of the controller block and act as the input to the plant 

block. They are fed into the motor model in the plant subsystem. 

Another important consideration to be noted while using the MFSMC algorithm is that the 

measurements signals are required to be smooth and twice differentiable. Sliding Mode 

differentiators are used to find the derivatives of the signals, as the approach does not introduce 

phase lag compared to convention differentiation methods [37]. Details on Sliding Mode 

differentiators are discussed in the later sections. 
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5.2.1 Actuator Dynamics 

El Tin [4] successfully updated a MFSMC algorithm to handle unknown actuator dynamics (i.e., 

motor dynamics) by measuring the previous control input values from the actuator rather than from 

the output of the controller. Based on this approach the control law is updated as: 

                       𝑢⃗⃗ = [𝐵]−1 [−𝑥̈⃗ + 𝑥̈⃗𝑑 −  𝜆𝑥̇̃⃗ − (𝐾⃗⃗⃗ − 𝛷̇⃗⃗⃗)𝑠𝑎𝑡 (
𝑠

𝛷⃗⃗⃗⃗
)] +  2𝑢⃗⃗𝑝𝑎𝑘−1 − 𝑢⃗⃗𝑝𝑎𝑘−2 (50) 

where upa is the control input post the actuator. The included actuator dynamics model in the 

closed-loop control law is shown in Figure 19 extracted from the overall Simulink diagram: 

 
Figure 19: Updated Control Law Model with Actuator 

A first-order transfer function is used as the actuator model. The transfer function is converted into 

a discrete transfer function in Matlab using the “c2d” function. The first-order continuous transfer 

function is given by the following: 

𝐻(𝑠) =  
1

𝜏𝑠+1
 (51) 

where τ is the actuator time constant, i.e., is the mechanical time constant of the motor. 
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5.3 Basic Quadcopter Simulation 

A basic simulation of the quadcopter using Eqs. (30 – 39) is performed to compare the performance 

of the PID controller tuned using the system model [36] and the MFSMC approach. In the 

simulation, hardware factors such as IMU, noise and no sensor delays were considered. The 

simulation was run using the Simulink ode5 solver at a fixed time step of 0.0001s. The quadcopter 

model parameters m, Ixx, Iyy and Izz were set to be within 10% of the nominal values. The parameters 

λ, σu and η were set to 1 rad/s, 0.5 and 0.15, respectively. 

Figures 20 – 23 displays the time history tracking responses for altitude, roll angle, pitch angle, 

and yaw angle for a given desired tracking response. The simulations results, as observed in Figure 

20 – 23, show outstanding tracking performance for both the PID and MFSMC law with similar 

performance. Figure 24 displays the switching gains for the MFSMC law for each tracking signal 

and are positive as expected. Figure 25 displays the sliding condition for the each individual 

MFSMC law and proves asymptotic tracking stability is maintained since the sliding condition is 

satisfied. The sliding condition for altitude at the start of the time history is not satisfied due to 

initialization which is acceptable since during actual hardware implementation the initialization 

issue is resolved. Figure 26 displays the control efforts (U1 – U4) and indicates both the PID and 

MFSMC utilize similar power. Table 4 confirms the power consumed. It is calculated by 

integrating the sum of the square of the control efforts. 
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Figure 20: Tracking and Tracking Error for Altitude (Z) 

 
Figure 21: Tracking and Tracking Error for Roll (Phi) 

 
Figure 22: Tracking and Tracking Error for Pitch (Theta) 
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Figure 23: Tracking and Tracking Error for Yaw (Psi) 

 
Figure 24: Switching Gains for Altitude, Roll, Pitch, and Yaw Tracking 
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Figure 25: Sliding Condition for Altitude, Roll, Pitch, and Yaw Tracking 

 
Figure 26: Thrust Commands (U1 – U4) 

Table 3: RMS Value for Basic Simulation 

Controller  RMS 

  
Altitude 

(Z)(m) 

Roll 

(Phi)(deg) 

Pitch 

(Theta)(deg) 

Yaw 

(Psi)(deg) 

PID 0.0427 0.0998 0.0722 0.4091 

MFSMC 0.0674 0.0081 0.0059 0.008 
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Table 4: Power Consumption for Basic Simulation 

Controller Power (W) 

PID 3.3247 

MFSMC 3.3235 

 

Table 3 displays the RMS error values for each tracking responses for the PID and MFSMC control 

strategies. The results indicate the MFSMC has a better tracking performance compared to the PID 

for the roll, pitch and yaw tracking. The altitude tracking precision error is slightly higher than the 

PID controller due to the initial condition matching. This is resolved during hardware 

implementation. The overall results illustrate the effectiveness of the MFSMC controller for 

navigation and control applications with smooth signals and twice differentiable signals. Table 4 

displays the total power consumed for the system under PID control and MFSMC. The MFSMC 

consumes slightly less power than the PID controller as expected due to the robust nature of the 

algorithm. 

The previous simulation study was lacking since real-world effects were not considered in the 

simulation process. Therefore, a simulation study should be considered to replicate real-world 

effects such as hardware implementation, sensor error, etc. Before the updated simulation study is 

performed, the reference frame should be converted from the local NED to quadcopter body-

reference frame since sensors (such as IMUs) are typically rigidly mounted on the quadcopter 

sensing acceleration and angular velocity with respect to the quadcopter. Details of the real-world 

effects to be modeled for the follow-on simulation study are described next. 

5.4 Model Sampling Rate 

The simulation study performed earlier was run at a fixed frequency, 10 KHz numerical integration 

and time update rate for both the model and the controller. The high time rate is not possible for 

implementation of the control laws on actual hardware. To more accurately represent hardware 
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implementation in the simulation effort, the plant model was solved using a numerical variable 

step size scheme while the controller was run at a fixed sampling frequency of 1 KHz which is the 

update frequency of the proposed hardware controller (Zynq 7020 SOC [36]) used in hardware. 

5.5 State Estimation 

The main difference between the state estimation required for the PID control law and the MFSMC 

control law is the MFSMC algorithm requires full state feedback including absolute position, all 

Euler angles, and both the linear and angular velocities and accelerations. An IMU was used for 

state estimation of the required signals. The IMU consists of an accelerometer sensor which 

measures the three-axial accelerations and a gyroscope sensor measures the three rotational 

velocities providing direct measurements for the 𝑋̈, 𝑌̈, 𝑍̈, Ф̇, 𝛳̇, and  𝜓̇ states. The sensors are placed 

closed to the center-of-mass of the quadcopter to provide the most accurate data for linear 

acceleration at the center-of-gravity location. However, the sensors contain errors such a 

measurement bias. The bias can initially be removed by initializing the sensors at a static straight-

and-level condition. Ideally, the accelerometer should output zero acceleration along the X and Y 

directions and 1 g along the Z direction and the gyroscope should read zero rotational velocities in 

all three axes for the straight-and-level static condition. During initialization, sensor measurements 

are recorded to calculate the sensor biases which are subsequently subtracted from each of the 

corresponding sensor signals. 

For the control approach presented in Section 5.2, the states 𝑍̇ and Z are estimated by direct discrete 

integration of the accelerometer signal. The Euler roll (Ф) and pitch (ϴ) angles are estimated using 

a complimentary filter approach that will be discussed in the next subsection. The heading yaw 

(ψ) angle is estimated directly from the gyroscopic signal. The three angular accelerations are 

measured by differentiating the gyroscope signals using the sliding mode differentiator [37] which 
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results in zero phase lag with minimal noise. Figure 27 displays the Simulink block diagram of the 

Sliding Mode differentiator. 

 
Figure 27: Simulink Diagram of the Sliding Mode Differentiator 

It is important in the MFSMC algorithm that the “desired” signals to be tracked are smooth and 

twice differentiable. Hence the desired signals are passed through a second-order smoothing filter 

ensuring all signals of any kind will always remain smooth and twice differentiable. Figure 28 

displays the second-order “smoothing” filter Simulink diagram shown in discrete form. 

 
Figure 28: Simulink Block for the Discrete Second-Order “Smoothing” Filter 



59 

 

5.5.1 Complimentary Filter 

A complimentary filter scheme can be used for state estimation of the roll and pitch angles as 

outlined in [36, 38, and 39]. The accelerometer can be used to obtain estimates of the pitch and 

roll angles (as does the gyroscope using a basic geometry) as shown below: 

                                                               Ф𝐴 = 𝑡𝑎𝑛−1 (
𝑌̈

𝑍̈
) (52) 

                                                           𝛳𝐴 = 𝑡𝑎𝑛−1 (
𝑋̈

√𝑌̈2+ 𝑍̈2
) (53) 

The accelerations used in the above equations are referenced to the body-reference frame and the 

required coordinate transformation will be discussed in Section 5.7. The roll and pitch angles are 

calculated by direct integration of the gyroscope data using an Euler model. Since integration is 

performed over a period of time, the estimates drift over time due to sensor bias and becomes 

unreliable over a longer period of time. The pitch and roll estimates using accelerometer sensors 

does not involve integration, Eqs. (52) and (53), and hence the problem of estimate drift is 

eliminated and is reliable over long periods of time. But since the accelerometer senses all imposed 

forces, high frequency noise is present and in addition; the equations, Eqs. (52) and (53), used for 

estimating pitch and roll are not exact and are valid in only quasi-static conditions. Therefore, a 

combination of the accelerometer and the gyroscope sensor data is used for the estimation of roll 

and pitch Euler angles. The accelerometer data is passed through a low-pass filter to reduce the 

high frequency noise and the gyroscope data is passed through a high-pass filter to eliminate drift 

effects resulting in the complimentary filter scheme. A schematic of the complimentary filter is 

shown in Figure 29: 
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Figure 29: Schematic  of the Complimentary Filter Scheme [36] 

 The complementary filter transfer functions for the low and high-pass filters are: 

        𝐿𝑜𝑤 𝑃𝑎𝑠𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 =  
1

1+𝜏𝑠
 (54) 

           𝐻𝑖𝑔ℎ 𝑃𝑎𝑠𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 =  
𝜏𝑠

1+𝜏𝑠
 (55) 

where, τ is the complementary filter cutoff frequency. 

The final estimate for roll and pitch from the complimentary filter is given by the following: 

                                                  Ф = 𝛾Ф𝑔𝑦𝑟𝑜 + (1 − 𝛾)Ф𝑎𝑐𝑐𝑒𝑙 (56) 

𝛳 = 𝛾𝛳𝑔𝑦𝑟𝑜 + (1 − 𝛾)𝛳𝑎𝑐𝑐𝑒𝑙 (57) 

where 0.5 ≤ 𝛾 ≤ 1. 

The quality of the complimentary filter depends on the parameter γ. The filter has better quality as 

the value of γ is closer to the upper bound. Yaw angle cannot be inferred directly from the 

accelerometer and therefore will be directly integrated from the gyroscope data and the drift is 

deemed acceptable for this study. Using a magnetometer sensor for sensing heading can improve 

the quality of the yaw angle estimate for further follow-on studies. 
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5.6 Sensor Modeling 

The sensors used in the IMU are a tri-axial accelerometer and a tri-axial gyroscope. Both the 

sensors are set to sample at the operating frequency of 1 KHz. The inputs to the sensor model are 

the three axial accelerations and three angular velocities from the plant. First, a transformation of 

the accelerations in the NED reference frame to the body-reference frame is performed. Gaussian 

noise is added to the sensor model for these signals after a noise estimation study is conducted. 

The raw data from the sensors were collected and noise parameters such as mean, variance and the 

peak-to peak-value of the noise was calculated. Initialization of sensors was performed to remove 

the bias introduced inherent to the accelerometer and gyroscope sensors. Figure 30 displays the 

time history responses at a static condition for each sensor signal and are used to quantify the 

sensor noise and bias characteristics. 

 
Figure 30: Data Used for Noise Characteristic Estimation of the Accelerometer and Gyroscope 
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Data used to calculate the mean values and Vpp of the noise characteristics are shown in Figure 30. 

The standard deviation is calculated using the following: 

6 𝜎 = 𝑉𝑝𝑝 (58) 

where σ is the noise variance. Table 5 summarizes the sensor noise characteristics. 

Table 5: Accelerometer and Gyroscope Noise Estimation Characteristics 

Parameters 
X_Accel 

(m/s2) 

Y_Acce

l(m/s2) 

Z_Accel 

(m/s2) 

X_Gyro

(rad) 

Y_Gyro

(rad) 

Z_Gyro 

(rad) 

Mean 0.02 ~0 -9.81 -0.004 ~0 0.0017 

Vpp 0.35 0.3 0.4 0.0157 0.0139 0.017 

σ 0.0583 0.05 0.06 0.0026 0.0023 0.0029 

 

Reis [3] amended the MFSMC algorithm to account for noise present in the sensors. He showed 

that arbitrary selected of the MFSMC parameters (λ and η) led to unacceptable tracking of the 

higher-order states along with excessive chattering of the control effort. In addition, the boundary 

layer sliding condition is not satisfied. Therefore, the MFSMC parameters are selected to account 

the noise of the sensors. The parameter selection is performed using the following. 

  𝜆 ≤  (
𝜂

𝑉𝑝𝑝
)

1

𝑛
 (59) 

                                                                 𝜂𝑛 =  𝜂 + (
𝜎𝑛

𝜂
) (

𝜆

2
) (60) 

where n is the order of the system, Vpp is the peak-to-peak of the noise value, σn is the noise standard 

deviation, and ηn is the updated η value. The maximum value of Vpp is taken from Table 4 for the 

worst case scenario. The updated parameters are used in the MFSMC law shown in Eq. (59) and 

Eq.(60) for quadcopter control. From the noise study the λ was calculated to be λ ≤ 5. 
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5.7 NED to Body Reference Frame 

Since the motor thrust equations are referenced to body-reference frame and since the IMU is 

mounted on the quadcopter, a coordinate conversion from the local NED frame to the body-

reference frame is required for replication of the quadcopter in the updated simulation study.  

The gyroscope readings and the angular accelerations do not require a coordinate transformation 

as the rotation due to the earth is considered negligible and the hence there is no fixed rotational 

acceleration component acting on the quadcopter. However, the accelerometer has a constant 

component 1 g acting downwards and hence the conversion is required for the linear acceleration 

terms. 

The accelerometers measure acceleration with respect to a free-falling reference frame. The 

acceleration has two parts: motional acceleration and gravitational acceleration. The force due to 

motional acceleration is: 

𝐹 = 𝑚𝑎 (61) 

and force due to gravity is  

                                                                      𝐹 = 𝑚𝑔 (62) 

When an object is at rest at a static straight-and-level condition the accelerometer will read -1 g 

since a force is applied upwards on the object equal to mg. Therefore, even though the object is 

not moving, the accelerometer will sense an acceleration component. This component read by the 

accelerometer is referred to as gravitational acceleration. 

In a complete free-fall condition (assuming no air resistance) the accelerometer should output a 

zero acceleration as the device is free falling with positive 1 g. The acceleration due to gravity can 

be thought of as a constant bias on the accelerometer acting in the upward direction. Assuming it 
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is always present and negative (upward direction), it cancels the positive 1 g component when the 

object is in free-fall condition. 

To model the dynamics of a quadcopter, the quadcopter motion is determined by the force due to 

gravity counteracted by the generated thrust. The thrust acts in body-reference frame and hence 

the force due to gravity needs to be transformed into the body-reference frame. The Newtonian 

laws are applied to the 6 DOF rigid-body to resolve the rotational and linear accelerations. The 

rotational velocities are the outputs of the gyroscope. The linear accelerations need to be 

transformed into the local NED frame to obtain the correct X, Y and Z vector. The linear 

accelerations need to be biased by 1 g and converted into the body-reference frame that is assumed 

to be the output of the accelerometer. The following transformation matrix is used for the 

conversion of the respected reference frames: 

   𝑅 =  [
𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠Ф + 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝛳 𝑠𝑖𝑛Ф 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛Ф − 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝛳 𝑐𝑜𝑠 Ф
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝛳 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠Ф − 𝑠𝑖𝑛𝛳 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛Ф 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛Ф + 𝑠𝑖𝑛 𝛳 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 Ф

𝑠𝑖𝑛𝛳 −𝑐𝑜𝑠 𝛳 𝑠𝑖𝑛Ф 𝑐𝑜𝑠 𝛳 𝑐𝑜𝑠Ф

]

 (63) 

The local NED reference frame and body-reference frame are related by the following equation: 

                [

𝑋̈𝑁𝐸𝐷
𝑌̈𝑁𝐸𝐷
𝑍̈𝑁𝐸𝐷

] = 𝑅 [

𝑋̈𝑏𝑜𝑑𝑦

𝑌̈𝑏𝑜𝑑𝑦

𝑍̈𝑏𝑜𝑑𝑦

] (64) 

             𝑅−1 [

𝑋̈𝑁𝐸𝐷
𝑌̈𝑁𝐸𝐷
𝑍̈𝑁𝐸𝐷

] = [

𝑋̈𝑏𝑜𝑑𝑦

𝑌̈𝑏𝑜𝑑𝑦

𝑍̈𝑏𝑜𝑑𝑦

] (65) 

 

 

A block diagram of the conversion is shown in Figure 31. 
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Figure 31: Block Diagram for Coordinate Frame Conversion 

5.8 Hardware Simulations 

After considering all hardware and sensor restrictions mentioned in the above sections, two 

simulation studies were conducted. The first simulation study performed assumed the quadcopter 

was mounted on a gimballed platform followed by a full-motion model simulation study. To 

prevent any damage to hardware and the surroundings, the quadcopter was mounted on a gimbal 

platform and was restricted to rotate only about the X and Y axes. The “gimbal” simulation study 

was conducted as the first hardware implementation and was used to control only roll and pitch. 

5.8.1 Gimbal Simulation 

A simulation study was performed to evaluate the control effectiveness and performance in 

controlling the pitch and roll states. The MFSMC law and the PID controller were used and their 

performance was compared for tracking precision. A constant thrust value of 0.4 was used. The 

MFSMC parameters λ, η and σu were set to 1 rad/sec, 0.1587 and 0.5, respectively, from to the 

noise study conducted in section 5.6. To be conservative the higher values were used. 
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Figure 32: Pitch Tracking and Tracking Error for the System Under PID Control and MFSMC 

  
Figure 33: Roll Tracking and Tracking Error for the System Under PID Control and MFSMC 
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Figure 34: General Thrust (U1) for PID and MFSMC Controllers 

 
Figure 35: Roll and Pitch Thrust (U2  – U3) for PID and MFSMC Controllers 

 
Figure 36: Motor Commands (RPM) for PID and MFSMC Controllers 
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Figure 37: Switching Gains for the Roll and Pitch Tracking 

 
Figure 38: Sliding Condition for the Roll and Pitch Tracking 

Figures 32 – 33 display the time history tracking responses for the roll and pitch angles for a given 

desired tracking response. The simulations results, as observed in Figures 32 – 33, show 

outstanding tracking performance for the system under PID control and MFSMC. Figures 34 – 35 
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display the control effort responses (U1 – U3) and Figure 36 displays the motor speeds in 

Revolutions-Per-Minute (RPM). As observed in Figures 34 – 36, both the PID and MFSMC 

control algorithm are given a 0.4 thrust with the observed control efforts U2 and U3 are much 

lower for the MFSMC law as compared to the PID controller. But the magnitude of U2 and U3 

are very small as compared to U1. Hence the motors speeds remain the same for both the 

controllers and so does the power utilization as confirmed in Table 7. Figure 37 displays the 

switching gains for the MFSMC law and are both positive as expected for the MFSMC law. Figure 

38 displays the sliding condition for the roll and pitch tracking under MFSMC and proves 

asymptotic tracking stability is maintained since the sliding condition is satisfied at all times.  

Table 6: RMS Value for Gimbal Simulation 

Controller 

RMS 

Roll 

(deg) 

Theta 

(deg) 

PID 0.2395 0.2395 

MFSMC 0.1031 0.1025 

 

Table 7: Power Consumption for Gimbal Simulation 

Controller 
Power 

(W) 

PID 28.8 

MFSMC 28.8 

Table 6 displays the RMS error values for each tracking responses for the PID and MFSMC control 

strategies. The results indicate the MFSMC has a higher tracking precision compared to the PID 

for the roll, and pitch tracking. Observation of Figures 32 – 33 support this result. Table 7 displays 

the power required for each control law. The MFSMC requires similar power as the PID controller 

however, tracking precision performance is increased with the system under MFSMC compared 

to PID control as shown in Table 6. 
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5.8.3 Full Model Simulation 

After the “gimbal” model simulation was completed, a simulation effort was conducted to test the 

effectiveness of the controllers in controlling the altitude and yaw axis states as well. The MFSMC 

algorithm parameters were kept the same as the “gimbal” model simulation. For this simulation 

study the desired yaw tracking was set to zero. 

Figure 39 – 42 displays the tracking time history responses for the system under PID control and 

MFSMC. Outstanding agreement is observed for tracking control of altitude, roll, pitch, and yaw. 

Figure 43 – 44 and Table 9 shows similar power consumption between both PID and MFSMC 

algorithm as seen in “gimbal” simulations earlier. 

 
Figure 39: Z (Altitude) Tracking and Tracking Error for PID and MFSMC 
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Figure 40: Roll Tracking and Tracking Error for PID and MFSMC 

 

 
Figure 41: Pitch Tracking and Tracking Error for PID and MFSMC 
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Figure 42: Yaw Tracking for PID and MFSMC 

 
Figure 43: Control Efforts (U1 – U4) for PID and MFSMC Controllers 
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Figure 44: Motor Commands (RPM) for PID and MFSMC Controllers 

 
Figure 45: Switching Gain for Altitude, Roll, Pitch, and Yaw Tracking 
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Figure 46: Sliding Condition for Altitude, Roll, Pitch and Yaw Tracking 

Table 8: RMS Value for Full Model Simulation 

Controller  

RMS 

Altitude 

(Z)(m) 

Roll 

(Phi)(deg) 

Pitch 

(Theta)(deg) 

Yaw 

(Psi)(deg) 

PID 0.0097 0.2268 0.2268 ~0 

MFSMC 0.0114 0.0279 0.0275 ~0 

Table 9: Power Consumption for Full Model Simulation 

Controller 
Power 

(W) 

PID 89.41 

MFSMC 89.36 

Figure 45 displays the switching gains and are all positive as expected. Figure 46 displays the 

sliding condition for the MFSMC law and proves asymptotic tracking stability is maintained since 

the sliding condition is satisfied at all times. The MFSMC algorithm has a superior tracking 

performance for roll and pitch as shown in Table 8 (RMS of tracking error) and is verified by 

observation of Figures 40 – 42. Table 9 displays the total power required for the maneuver for each 

control law and shows that the system under MFSMC is more efficient compared to the PID 

controller. Also, the altitude tracking precision is also outstanding but slightly lower than the 
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system under PID control. This result could be attributed to the under-actuation nature of the 

quadcopter. The updated simulation study confirms that the MFSMC algorithm can be 

implemented real world quadcopter for testing purposes as described next. 
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6. HARDWARE TESTING 

In this chapter, the results of the quadcopter hardware testing effort under both PID and MFSMC 

control are presented. The first section presents a summary of the required hardware used and the 

individual components. In the second section, the performance of the PID and MFSMC controllers 

on the quadcopter for motion tracking is presented and discussed. 

6.1 Hardware Description 

The Fusion 1 quadcopter (Figure 47) from Craft Drones (http://www.craftdrones.com/) was used 

for the experimental testing. The Fusion 1 uses the Snickerdoodle SOM and the Zynq 7020 

System-on-Chip (SoC) board. It comprises of a Dual-core ARM Cortex – AP MPCoreTM with 

CoresightTM with a clock speed of 667 MHz. It also houses an Artix-7 FPGA with 85k 

programmable logic cells. The quadcopter has four EMAX 15 AMP ESCs with a burst current of 

25A. Four EMAX 4500 KV 1106 brushless motors with a max speed of 36000 RPM are used for 

drive control of the quadcopter rotor. The Spektrum receiver and transmitter (Figure 48) are used 

to manually control the quadcopter. The MPU9250 IMU sensor is used for sensing of the system 

states and state estimation. The IMU is comprised of a 3-axis gyroscope, a 3-axis accelerometer 

and an onboard Digital Motion ProcessorTM capable of processing complex algorithms. An 

ADS1015 analog-to-digital converter is also housed in the quadcopter which provides a 12-bit 

precision bus voltage at 1000 samples/second. The Turnigy 1000 MAh 2S battery is used to power 

the quadcopter. Finally the Fusion 1 drone incorporates a JTAG debugging header. Figure 49 

displays the quadcopter mounted on the gimballed platform. The platform restricts vertical motion 

of the quadcopter and therefore, is ideal for initial hardware testing of the system preventing 

damage that may be encountered during full flight testing. 

http://www.craftdrones.com/
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Figure 47: Fusion 1 Quadcopter (from Craft Drones) 

 

 
Figure 48: Spektrum Transmitter 
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Figure 49: Gimballed Fusion 1 Quadcopter 

6.2 Gimbal Hardware Testing & Results 

The PID and MFSMC algorithm was used on the quadcopter described above for motion control 

of the roll (Ф) and pitch angles (ϴ) on a gimbal platform. The MFSMC parameters were set to and 

value of λ = 4 rad/sec and η = 0.1848, used in the hardware testing. 

 
Figure 50: Quadcopter Experimental Roll Tracking and Tracking Error Responses 
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Figure 51: Quadcopter Experimental Pitch Tracking and Tracking Error Responses 

Table 10: RMS Value for Hardware Tracking Test 

Controller 

RMS 

Roll 

(deg) 

Theta 

(deg) 

PID 0.56 1.12 

MFSMC 0.25 0.26 

 

Table 11: Power Consumption for Hardware Tracking Test 

Controller 
Power 

(W) 

PID 13.61 

MFSMC 12.10 

 

Figures 50 – 51 display the tracking time history responses for the system under PID control and 

MFSMC. As shown in Table 10 and by the tracking error plots in Figure 50 – 51 the MFSMC 

algorithm exhibits superior tracking performance compared to the PID controller and is more 

efficient in terms of power required as shown in Table 11. 
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Figures 52 – 54 display the control efforts (thrust commands) and the motor speeds (RPM) for 

both the PID and MFSMC algorithm. Figure 55 displays the motor speed (RPM) difference from 

the mean speed of the respective motor. The motor actuation commands are calculated by dividing 

the motor speeds by 2000. The power is then calculated by integrating the motor actuation 

commands. The MFSMC algorithm requires ~half the general thrust as compared to the PID 

controller for optimal tracking performance. Therefore, the MFSMC operates at a lower motor 

speed (RPM) as compared to the PID controller consuming less power. Table 11 confirms 

significantly lower power consumption by the MFSMC controller. Further studies need to be 

conducted to prove this with certainty. 

 
Figure 52: Thrust Commands from Experimental Test 
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Figure 53: Motor Speeds from Experimental Test 

 
Figure 54: Motor Speed Difference (mean subtracted) from Experimental Test 
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Figure 55: Sliding Condition for MFSMC from Experimental Test 

 
Figure 56: MFSMC Switching Gains for the Experimental Test 
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Figure 55 displays the sliding conditions for the MFSMC law and proves asymptotic tracking 

stability is maintained since the sliding conditions are satisfied. Figure 56 displays the MFSMC 

switching gains and, as with the simulation tests, are positive as expected. 

6.2.1 Gimbal Hardware Testing with Different λ 

The lambda (λ) parameter was varied to study the tracking precision for roll and pitch on the 

quadcopter. According to Eq. (28), λ is inversely proportional to the size of the boundary layer. 

Hence increasing λ, reduces the size of the boundary layer making the controller more aggressive. 

From Eq. (11) the sliding surface is directly proportional to the difference between the actual states 

and the desired states. Since noise cannot be eliminated, it is not reasonable to excessively reduce 

the size of the boundary by increasing λ. If the boundary layer is smaller than the peak-to-peak 

value of the noise, the sliding condition will not be satisfied [3]. 

The λ parameter was varied from 1 to 4 while η is updated according to Eq. (55).  

 
Figure 57: Roll Tracking with Varying Lambda 
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Figure 58: Pitch Tracking for Varying Lambda 

 

Table 12: RMS Error for Roll and Pitch Tracking with Varying Lambda 

λ (rad/sec) 

RMS 

Roll 

(deg) 

Pitch 

(deg) 

1 1.29 1.11 

2 0.52 0.57 

3 0.37 0.52 

4 0.25 0.26 

 

Figure 57 – 58 display the roll and pitch tracking for the MFSMC law with varying λ. Table 12 

proves the tracking precision increases with increase in λ as expected since the boundary layer 

thickness is reduces with an increase in λ. 
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Figure 59: Sliding Condition for Roll and Pitch for Lambda = 1 (rad/sec) 

 
Figure 60: Sliding Condition for Roll and Pitch for Lambda = 2 (rad/sec) 
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Figure 61: Sliding Condition for Roll and Pitch for Lambda = 3 (rad/sec) 

 
Figure 62: Sliding Condition for Roll and Pitch for Lambda = 4 (rad/sec) 
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Figures 59 – 62 display the sliding condition for the MFSMC law for roll and pitch tracking with 

varying λ. It is noted that the sliding condition is not satisfied for higher λ values since the noise 

present in the system is amplified. However, the closed-loop system is observed to be 

asymptotically stable and the hardware runs successfully with higher tracking precision at higher 

λ values. 
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7. CONCLUSIONS 

The performance of the model-free control algorithm based on the sliding mode control with 

applications to unmanned aircraft systems is studied in this work. The tracking performance and 

power consumed by the MFSMC algorithm is compared to a PID controller. Simulation testing 

was performed to analyze the feasibility of controlling a quadcopter under both PID control and 

MFSMC control. The Fusion 1 quadcopter from Craft Drones was used for a hardware 

performance study. The following conclusions are observed from the work effort: 

•  The MFSMC algorithm was used to successfully track desired altitude, roll angle, pitch angle, 

and yaw angle responses using a basic 6 DOF quadcopter model programmed in Matlab. The 

tracking performance for quadcopter under MFSMC was better for roll and pitch tracking when 

compared to the PID controller. The altitude tracking precision was slightly lower than the PID 

controller and was attributed to the under-actuation present in the dynamic model of the 

quadcopter. 

• Hardware components including sensor delays, sampling rates, actuator dynamics, state 

estimations, complimentary filters and noise were added into the simulation model. A full 

flight simulation and a gimballed platform simulation (tracking roll and pitch with an explicitly 

defined constant general thrust) was performed. The MFSMC law exhibited good tracking 

precision in the presence of noise and other various hardware restrictions and disturbances. 

The tracking precision of the MFSMC law was higher in the gimbal experiment. For the full 

model simulation the MFSMC law showed a higher tracking precision for roll and pitch control 

by an order-of-magnitude when compared to the PID controller. Similar tracking precision was 

observed for the altitude as the basic simulation model for both the controllers. 
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•  The Fusion 1 drone from Craft Drones was used to test the performance of both the controllers. 

The quadcopter was mounted on a gimballed platform for analyzing roll and pitch control. 

Both the controllers tracked the desired commands successfully for both roll and pitch. 

However, the quadcopter under MFSMC exhibited a higher tracking precision for both roll 

and pitch verified by analyzing the RMS error over the time history control of the quadcopter  

• The power consumption by the quadcopter under both the PID control and MFSMC was also 

studied. The minimum general thrust command required for optimal tracking and the motor 

rotation speed were directly observed from the hardware to conclude the power performance. 

The PID required a higher general thrust compared to the MFSMC algorithm. The motors 

operated at much lower speeds when the MFSMC algorithm was used as compared to the PID 

controller. The result proves that the MFSMC algorithm consumes less power as compared to 

the PID controller. 

• The λ parameter in the MFSMC was varied to study the performance of the new type of control 

law. The tracking precision improved with increasing λ with the sliding condition spiking at 

certain points. These points were observed to increase as λ increased. However, the closed-

loop system was completely stable and successfully tracked the desired signals. 

• Finally, the MFSMC algorithm was successfully implemented on a real-world quadcopter with 

minimal tuning. The tracking performance was superior to a traditional PID control law who’s 

tuning was tedious and time consuming. The quadcopter under MFSMC law exhibited less 

power consumption (more studies are required and are warranted to confirm this result). 
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8. FUTURE WORK 

• The MFSMC law should be extended for full flight hardware testing not just using a gimbaled 

platform that restricted motion as was performed in this work. Simulation results indicate good 

tracking of altitude is possible. Therefore, the next logical step is to run flight tests. An 

ultrasonic transducer can be used to improve accuracy of state estimation of the altitude as 

compared to integrating twice from the accelerometer. 

• As mentioned by Sen et al. [8], the system uncertainties can be overestimated or 

underestimated leading to excessive or insufficient control effort. This was observed during 

the hardware implementation of MFSMC law. Hence, online parameter estimation and real-

time estimation techniques can be used to automatically estimate the control input gain bounds. 

A time varying λ parameter optimally updated to satisfy the sliding condition irrespective of 

the system characteristics can also be explored. 

• Another important aspect to improve the MFSMC law is the initialization of the states. Since 

the MFSMC algorithm purely depends on the states and state derivatives, initialization plays 

an important role when implemented on hardware. Real-time initialization techniques should 

be researched to ensure correct initialization of all the system states. 

• Improved state estimation techniques such as Kalman filters can be used. The Kalman filter, 

in general, is more robust and accurate as compared to the complementary filter used in this 

study. Another state estimation technique is possible using vision system to estimate 

quadcopter states. Vision sensing is more accurate and less noisy compared to an IMU and 

therefore, is preferred for differentiating rather than integrating the state estimation. An 

alternate state estimation technique is using a combination of vision and IMU sensors for 

estimating the required states. 



91 

 

9. REFERENCES 

[1] Slotine, J.-J. E., and Li, W., 1991, “Sliding Control,” Applied Nonlinear Control, Prentice-

Hall. 

[2] Duan, L., Lu, W., Mora-Camino, F., and Miquel, T., 2006, “Flight-Path Tracking Control of 

a Transportation Aircraft: Comparison of Two Nonlinear Design Approaches,” 2006 

Ieee/Aiaa 25TH Digital Avionics Systems Conference, pp. 1–9. 

[3] Crassidis, A., and Reis, R. M., 2016, “A Model-Free Sliding Mode Control Method,” 

Proceedings of the 3rd International Conference of Control, Dynamic Systems, and Robotics, 

Ottawa. 

[4] Crassidis, A., and Tin, F. E., 2017, “A Model-Free Control System Based on the Sliding 

Mode Control Method with Apllications to Multi-Input-Multi-Output Systems,” Proceedings 

of the 4th International Conference of Control, Dynamic Systems, and Robotics, Ottawa. 

[5] Laghrouche, S., Plestan, F., and Glumineau, A., 2003, “Higher Order Sliding Mode Control 

Based on Optimal Linear Quadratic Control,” 2003 European Control Conference (ECC), 

pp. 910–915. 

[6] Ozguner,  and U., 2006, “Adaptive Seeking Sliding Mode Control,” 2006 American Control 

Conference, pp. 6 pp.-. 

[7] Runcharoon, K., and Srichatrapimuk, V., 2013, “Sliding Mode Control of Quadrotor,” 2013 

The International Conference on Technological Advances in Electrical, Electronics and 

Computer Engineering (TAEECE), pp. 552–557. 

[8] Li, S., Li, B., and Geng, Q., 2014, “Adaptive Sliding Mode Control for Quadrotor 

Helicopters,” Proceedings of the 33rd Chinese Control Conference, pp. 71–76. 

[9] Xu, R., and Özgüner, Ü., 2008, “Sliding Mode Control of a Class of Underactuated Systems,” 

Automatica, 44(1), pp. 233–241. 

[10] Olfati-Saber, R., 2002, “Normal Forms for Underactuated Mechanical Systems with 

Symmetry,” IEEE Transactions on Automatic Control, 47(2), pp. 305–308. 

[11] Khalil, H. K., 2002, Nonlinear Control, Prentice-Hall. 

[12] Pai, M.-C., 2009, “Robust Tracking and Model Following of Uncertain Dynamic Systems 

via Discrete-Time Integral Sliding Mode Control,” Int. J. Control Autom. Syst., 7(3), pp. 

381–387. 

[13] MILOSAVLJEVIC, D., 1985, “General Conditions for Existence of a Quasi-Sliding Mode 

on the Switching Hyperplane in Discrete Variable Structure Systems,” Autom. Remote 

Control, 46, pp. 307–314. 



92 

 

[14] Sarpturk, S., Istefanopulos, Y., and Kaynak, O., 1987, “On the Stability of Discrete-Time 

Sliding Mode Control Systems,” IEEE Transactions on Automatic Control, 32(10), pp. 930–

932. 

[15] Lee, S.-H., 2003, “Sliding Mode Control Design Using Fast Output Sampling,” 42nd IEEE 

International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp. 3543–

3548 vol.4. 

[16] Ferrara, A., and Rubagotti, M., 2009, “A Sub-Optimal Second Order Sliding Mode Controller 

for Systems With Saturating Actuators,” IEEE Transactions on Automatic Control, 54(5), pp. 

1082–1087. 

[17] Martínez-Guerra, R., Yu, W., and Cisneros-Saldaña, E., 2008, “A New Model-Free Sliding 

Observer to Synchronization Problem,” Chaos, Solitons & Fractals, 36(5), pp. 1141–1156. 

[18] Salgado-Jimenez, T., Garcia-Valdovinos, L. G., and Delgado-Ramirez, G., 2010, “Depth 

Control of a 1 DOF Underwater System Using a Model-Free High Order Sliding Mode 

Control,” 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, pp. 481–

487. 

[19] Raygosa-Barahona, R., Parra-Vega, V., Olguin-Diaz, E., and Muñoz-Ubando, L., 2011, “A 

Model-Free Backstepping with Integral Sliding Mode Control for Underactuated ROVs,” 

2011 8th International Conference on Electrical Engineering, Computing Science and 

Automatic Control, pp. 1–7. 

[20] Munoz-Vazquez, A.-J., Parra-Vega, V., and Sanchez, A., 2014, “A Passive Velocity Field 

Control for Navigation of Quadrotors with Model-Free Integral Sliding Modes,” J Intell 

Robot Syst, 73(1), pp. 373–385. 

[21] Crassidis, A., and Mizov, A., 2015, “A Model-Free Control Algorithm Derived Using the 

Sliding Mode Control Method,” Proceedings of the 2nd International Conference of Control, 

Dynamic Systems, and Robotics, Ottawa. 

[22] Mizov, A., 2015, “A Model-Free Control Algorithm Derived Using the Sliding Model 

Control Method,” Theses. 

[23] Levant, A., 2001, “Universal Single-Input-Single-Output (SISO) Sliding-Mode Controllers 

with Finite-Time Convergence,” IEEE Transactions on Automatic Control, 46(9), pp. 1447–

1451. 

[24] Utkin, V., 2016, “Discussion Aspects of High-Order Sliding Mode Control,” IEEE 

Transactions on Automatic Control, 61(3), pp. 829–833. 

[25] Precup, R.-E., Radac, M.-B., Roman, R.-C., and Petriu, E. M., 2017, “Model-Free Sliding 

Mode Control of Nonlinear Systems: Algorithms and Experiments,” Information Sciences, 

381, pp. 176–192. 

[26] Dehghani, M. A., and Menhaj, M. B., 2016, “Integral Sliding Mode Formation Control of 

Fixed-Wing Unmanned Aircraft Using Seeker as a Relative Measurement System,” 

Aerospace Science and Technology, 58, pp. 318–327 



93 

 

[27] Qian, D., Yi, J., and Zhao, D., 2006, “Multiple Layers Sliding Mode Control for a Class of 

Under-Actuated Systems,” The Proceedings of the Multiconference on “Computational 

Engineering in Systems Applications,” pp. 530–535. 

[28] Schkoda, R., 2007, “Dynamic Inversion of Underactuated Systems via Squaring 

Transformation Matrix,” Theses. 

[29] Norton, M., Khoo, S., Kouzani, A., and Stojcevski, A., 2015, “Adaptive Fuzzy Multi-Surface 

Sliding Control of Multiple-Input and Multiple-Output Autonomous Flight Systems,” IET 

Control Theory &amp; Applications, 9(4), pp. 587–597. 

[30] Abdulhamitbilal, E., 2014, “Robust Flight Sliding Modes Control System Design for 

Nonlinear Aircraft with Parameter Uncertainties,” 2014 13th International Workshop on 

Variable Structure Systems (VSS), pp. 1–6. 

[31] “Lyapunov‐based Trajectory Tracking Controller for a Fixed‐wing Unmanned Aerial Vehicle 

in the Presence of Wind - Brezoescu - 2015 - International Journal of Adaptive Control and 

Signal Processing - Wiley Online Library” [Online].  

[32] Villanueva, A., Castillo-Toledo, B., Bayro-Corrochano, E., Luque-Vega, L. F., and 

González-Jiménez, L. E., 2015, “Multi-Mode Flight Sliding Mode Control System for a 

Quadrotor,” 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 

861–870. 

[33] Derafa, L., Benallegue, A., and Fridman, L., 2012, “Super Twisting Control Algorithm for 

the Attitude Tracking of a Four Rotors UAV,” Journal of the Franklin Institute, 349(2), pp. 

685–699. 

[34] Crassidis, A., and Schulken, E., 2018, “Model-Free Sliding Mode Control Algorithms 

Inlcuding Application to a Real World Quadrotor.,” Proceedings of the 5th International 

Conference of Control, Dynamic Systems, and Robotics, Ottawa. 

[35] LYAPUNOV, A. M., 1992, “The General Problem of the Stability of Motion,” International 

Journal of Control, 55(3), pp. 531–534. 

[36] Ferry, N., 2017, “Quadcopter Plant Model and Control System Development with 

MATLAB/Simulink Implementation,” RIT. 

[37] Levant, A., 1998, “Robust Exact Differentiation via Sliding Mode Technique**This Paper 

Was Recommended for Publication in Final Form by Associate Editor Hassan Khalil under 

the Direction of Editor Tamer Basar.,” Automatica, 34(3), pp. 379–384. 

[38] Islam, T., Islam, M. S., Shajid-Ul-Mahmud, M., and Hossam-E-Haider, M., 2017, 

“Comparison of Complementary and Kalman Filter Based Data Fusion for Attitude Heading 

Reference System,” AIP Conference Proceedings, 1919(1), p. 020002. 

[39] Ngo, H.--, Nguyen, T.-, Huynh, V.--, Le, T.-, and Nguyen, C.-, 2017, “Experimental 

Comparison of Complementary Filter and Kalman Filter Design for Low-Cost Sensor in 

Quadcopter,” 2017 International Conference on System Science and Engineering (ICSSE), 

pp. 488–493. 



94 

 

 


	A Model-Free Control Algorithm Based on the Sliding Mode Control Method with Applications to Unmanned Aircraft Systems
	Recommended Citation

	tmp.1557415019.pdf.U1om4

