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ROCHESTER INSTITUTE OF TECHNOLOGY

Abstract

School of Mathematical Sciences
College of Science

Master of Science in Applied Statistics

Some Statistical Properties of Spectral Regression Estimators

by Nawal Hassan

In this thesis we explore different Spectral Regression Estimators in order to solve the prob-
lem in regression where we have multiple columns that are linearly dependent: We explore
two scenarios

• Scenario 1: p << n where there exists at least two columns; xj and xk that are nearly
linearly dependent which indicates co-linearity and X>X becomes near singular.

• Scenario 2: n<<p since there are more predictors than observations so some columns
must be a linear combination of another column which indicates linear dependence.

The scenarios give us an ill conditioned matrix of X>X (when solving the normal equa-
tion) due to collinearity issues and the matrix becomes singular and makes the least squares
estimate unstable and impossible to compute. In the paper, we explore different methods
(variable selection, regularization, compression and dimensionality reduction) that solves
the above issue. For variable selection techniques, we use Stepwise Selection Regression as
well as the method of Best Subset Selection regression. Two approaches for Stepwise Se-
lection regression are assessed in the paper: Forward Selection and Backward Elimination.
Performance assessment of our regression models will be made based on criterion based
procedures like AIC,BIC,R2,R2 adjusted and the Mallow’s CP statistic. In chapter three of
this paper we introduce the concepts of General Regularization, Ridge Regression as well
as subsequent shrinkage methods such as the Lasso, Bayesian Lasso and the Elastic net.
Chapter five will look at Compression and Dimensionality reduction procedures which are
outlined via SVD (Singular Value Decomposition) and Eigenvector Decomposition. Hard
thresholding is subsequently introduced via SPCA (Sparse Principle Component Analysis)
and a novel approach using RPCA (Robust Principle Component Analysis). Furthermore,
RPCA also shows how it can aid with data and image compression. The basis of this study
is concluded with an empirical exploration of all the methods outlined above using several
performance indicators on simulated data and real data sets. Assessment of the data sets is
done via cross-validation. We determine the optimal values of the settings and then evalu-
ate the predictive and explanatory performance.
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Chapter 1

Introduction and Problem
Specification

1.1 Summary of Properties of Multiple Regression and
Data Sets

We will first start off with defining the multiple linear regression model in which many sta-
tistical learning approaches are based on. This model is defined as follows:

Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip+ εi for i= 1,2, · · · ,n (1.1)

This multiple linear regression model studies the relationship between a response variable
Yi and its corresponding predictors xi = (xi1, · · · ,xip) for a given sample n.

The regression coefficients, β0,β1, · · · ,βp, of the predictors are unknown and are necessary
for the model. A work around this is to estimate them and this will be shown later using
the least square estimator. Lastly the errors are random and identically distributed (i.i.d.)
with mean 0 and variance σ2.

An alternative form for the regression model can be written in matrix form in the following
way:

Y =Xβ+ε (1.2)



Chapter 1. Introduction and Problem Specification 2

where

Y =



y1

y2
...

yn


X =



1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
... . . . ...

1 xn1 xn2 · · · xnp


β =



β0

β1
...

βn


ε=



ε1

ε2
...

εn


(1.3)

We have from the model assumptions:

E(ε) = 0 and Cov(ε) = σ2In (1.4)

Where In is the identity matrix of order n where:

In =



1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


n×n

We now define the objective function or the least squares estimate β̂ of β to be able to get
the estimated coefficients and in turn, the estimated response. In order to do this we must
first define the residual sum of squares (RSS) as follows:

RSS(β) =
n∑
i=1

(yi− (β0 +β1xi1 +β2xi2 + · · ·+βpxip))2 (1.5)

If we take the minimizer of (1.5) we yield the ordinary least squares (OLS) estimate:

We can now get the predicted or fitted values of the response variable which is given by:

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂pxip, for i= 1,2, · · · ,n. (1.6)

Another way to define the RSS is:

RSS =
∑

(yi− ŷi)2 (1.7)
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The RSS is a measure of the discrepancy between the data and an estimation model. A
small RSS indicates a tight fit of the model to the data. It is used as an optimality crite-
rion in parameter selection and model selection. The ESS is the sum of the squares of the
deviations of the predicted values from the mean value of a response variable, as seen in
(1.8). In general, the greater the ESS the better the estimated model performs. The ESS is
the sum of the squares of the differences of the predicted values and the mean value of the
response variable and is defined as:

ESS =
∑

(ŷi− ȳ)2 (1.8)

In statistical linear models the SST is the sum of the squares of the difference of the depen-
dent variable and its mean:

SST =RSS+ESS =
∑

(ŷi− ȳ)2 +
∑

(yi− ŷ)2 (1.9)

=
∑

(yi− ȳ)2 (1.10)

For wide classes of linear models, the total sum of squares equals the explained sum of
squares plus the residual sum of squares. The SST tells us how much variation there is in
our response. The variance of the residuals using the regression equation is given by:

MSE = SSE

n−p−1 =
∑

(yi− ŷi)2

n−p−1 (1.11)

Lastly the OLS has the following properties based on the matrices that we have defined in
(1.3):

• The LSE is unbiased E[β̂] = β

• The covariance of β̂ is given by = σ2(X>X)−1

• The residuals sum up to zero
∑n
i=1 ei = 0 where ei = yi− ŷi

• The residuals and predictors are orthogonal
∑n
i=1xiei = 0

• The predicted values and residuals are orthogonal
∑n
i=1 ŷiei = 0

We now introduce the five real data sets we will apply to our analysis throughout the pa-
per (which can be found in the archive(WhoisGuard 2017)) and the following articles (Sakaluk
2019),(Tilburg 2019),(Heller 2019):
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Age Gender Accuracy Country
4 4 2 2 3 5 4 4 2 2 2 2 48 2 90 US
5 5 1 1 1 5 4 5 5 5 5 4 63 1 80 US
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
4 4 1 1 5 5 5 2 1 1 1 3 21 2 90 US
2 2 4 4 4 4 4 4 4 4 4 4 21 2 80 US

Table 1.1: Sample Observations of the Data Set T CFCS

Q1 Q2 Q3 · · · Q40 Elapse Gender Age
2 2 2 · · · 2 211 1 50
2 2 2 · · · 1 149 1 40
...

...
... · · ·

...
...

...
...

2 2 1 · · · 1 167 1 24
1 2 1 · · · 1 291 1 36

Table 1.2: Sample Observations of the Data Set NPI

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Gender Age Source Country
3 3 1 4 3 4 3 2 3 3 1 40 1 US
4 4 1 3 1 3 3 2 3 2 1 36 1 US
...

...
...

...
...

...
...

...
...

...
...

...
...

...
3 3 2 3 3 3 3 2 3 2 1 31 1 AU
3 4 2 2 3 2 2 4 4 4 2 40 1 US

Table 1.3: Sample Observations of the Data Set T RSE

E1 E2 E3 · · · S59 S60 EQ SQ Accuracy Gender Age
3 1 3 · · · 4 3 37 49 80 1 39
4 3 3 · · · 4 2 54 14 98 2 21
...

...
... · · ·

...
...

...
...

...
...

...
1 3 2 · · · 3 1 44 14 85 2 56
2 1 3 · · · 3 4 22 26 87 1 17

Table 1.4: Sample Observations of the Data Set T EQSQ

Q1 Q2 Q3 · · · PQ91 PQ92 PQ93
1 1 1 · · · -1 -1 -1
1 1 1 · · · -1 -1 -1
...

...
... · · ·

...
...

...
1 1 1 · · · -1 -1 -1
1 1 1 · · · -1 -1 -1

Table 1.5: Sample Observations of the Data Set T MSSCQ
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Variables Description Units
Q1 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q2 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q3 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q4 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q5 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q6 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q7 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q8 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q9 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4
Q10 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-4

Gender Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3
Age Age of Participant. Years

Source 1,2,3 (Front page of personality test, google search and other means of search.) 1-3
Country Country of Participant’s Origin. A-Z,A-Z

Table 1.6: T RSE Data Set Description

Variables Description Units
Q1 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q2 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q3 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q4 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q5 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q6 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q7 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q8 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q9 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q10 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q11 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Q12 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-5
Age Age of Participant over 13 years of age. Years

Gender Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3
Accuracy Score degree of inclination towards statement in ascending order. 0-100
Country Country of Participant’s Origin. A-Z,A-Z

Table 1.7: T CFCS Data Set Description

Variables Description Units
Q1 Answer Related to Question being asked coded into 1 or 2. 1-2
Q2 Answer Related to Question being asked coded into 1 or 2. 1-2
...

...
...

Q40 Answer Related to Question being asked coded into 1 or 2. 1-2
Elapse The time elapsed when giving a response (time submitted-time loaded.) Seconds
Gender Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3
Age Age of Participant over 13 years of age. Years

Table 1.8: NPI Data Set Description
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Variables Description Units
E1 Score degree of inclination towards statement in ascending order (0 indicates no response). 0-3
E2 Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3
...

...
...

E60 Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3
S1 Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3
S2 Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3
...

...
...

S60 Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3
EQ Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3
SQ Score degree of inclination towards statement in ascending order(0 indicates no response). 0-3

Accuracy How accurate participants thought their answer were 0-100
Gender Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3
Age Age of Participant over 13 years of age. Years

Table 1.9: T EQSQ Data Set Description

Variables Description Units
Q1 Score degree of inclination towards statement in ascending order 1-4
Q2 Score degree of inclination towards statement in ascending order. 1-4
...

...
...

Q75 Score degree of inclination towards statement in ascending order. 1-4
LAPSE1 Age of Participant over 13 years of age. Years
LAPSE2 Age of Participant over 13 years of age. Years

...
...

...
LAPSE74 Age of Participant over 13 years of age. Years
LAPSE75 Age of Participant over 13 years of age. Years
introelapse Age of Participant over 13 years of age. Years
testelapse Age of Participant over 13 years of age. Years
IP_country Age of Participant over 13 years of age. Years

engnat Age of Participant over 13 years of age. Years
age Age of Participant over 13 years of age. Years

education Age of Participant over 13 years of age. Years
gender Age of Participant over 13 years of age. Years
urban Age of Participant over 13 years of age. Years

orientation Age of Participant over 13 years of age. Years
race Age of Participant over 13 years of age. Years

religion Age of Participant over 13 years of age. Years
hand Age of Participant over 13 years of age. Years
PQ1 Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3
PQ2 Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3
...

...
...

PQ93 Gender of Participant 0,1,2,3 (No response, Male, Female and Other.) 0-3

Table 1.10: T EBFMT Data Set Description

The number of predictors (p+q) varies from one data set to another. Some data sets are



Chapter 1. Introduction and Problem Specification 7

modified irrelevant variables are removed and the data set is made a bit smaller. After-
wards, one of the variables is used as the dependent variable and the rest is used as predic-
tors. The remaining variables in each data sets are the candidate predictors which is p+ q.
We do not know which candidate predictors have a linear relationship with the dependent
variable when we work with real data. We do not know which ones are true and which ones
are false. The desired sample size is N = 20. Each data sets response variable is shown be-
low:

• The response variables for Data Set NPI is: Score.

• The response variables for Data Set T CFCS is: Accuracy.

• The response variables for Data Set T EBFMT is: Score.

• The response variables for Data Set T EQSQ is: Age.

• The response variables for Data Set T RSE is: Age.

1.2 Problem Statement

In Linear Regression as well as Multiple Regression we are sometimes faced with the prob-
lem where we have multiple columns that are linearly dependent:

We have the following normal equation that we need to solve which is dependent on the
state of X>X:

X>Xβ =X>XY (1.12)

Two scenarios happen when we have linear dependence:

• Scenario 1: p << n where there exists at least two columns; xj and xk that are nearly
linearly dependent which indicates co-linearity and X>X becomes near singular.

• Scenario 2: n<<p since there are more predictors than observations so some columns
must be a linear combination of another column which indicates linear dependence.

So then the rank of matrix X is less than p+ 1 so the inverse of X>X matrix does not ex-
ist. But we know that the OLS equation needs (X>X)−1 which will in turn make the least
squares estimate β̂ impossible to compute. As a result, we explore different methods (Vari-
able Selection, Regularization, Compression and Dimensionality Reduction) that solves the
aforementioned issue.
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1.3 Chronological Order of Thesis

We introduce the first chapter of this thesis with a review of Multiple Regression and in-
troduce the data sets that we will use throughout this paper. We then present the prob-
lem that we are trying to solve or at least work around. In the second chapter, we will ex-
plore Variable Selection techniques. We start off with Stepwise Selection Regression which
is when we build our regression model from a set of candidate predictor variables by enter-
ing and removing predictors in a stepwise manner into our model until there is no justifi-
able reason to enter or remove any more. Two approaches are studied which are forward
selection and backward elimination.

We then move on to Best Subset Selection Regression. The general idea behind the best
subsets method is that we select the subset of predictors that do the best at meeting some
well-defined objective criterion such as having the largest R2 value or the smallest MSE.
The last section of the chapter shows an empirical exploration of the performance of the
RMSE (which we can make inferences on the mean square error) and the signal to noise
ratio for seven methods that involve both Stepwise Regression and best subset selection re-
gression. The models used in our regression study need to be assessed on goodness of fit.
Some of the procedures explored are the AIC (Akaike’s Information Criterion) and BIC
(Bayesian Information Criterion). Another good criterion used as a performance indica-
tor of the methods we will see in this study are the R2,R2 adjusted and the Mallow’s Cp
statistic and its ability to be utilized in a mixed integer programming context to perform
subset selection.

The third chapter focuses on the methods of regularization and how it can be used to solve
the problem of the ill conditioned matrix we have in our original statement. We start off
with general regularization. We define the empirical risk minimization for linear regression
form and then define the three general regularization techniques used in the paper which
are Tikhonov, Ivanov and Morozov. We present the Tikhonov and Ivanov regularization in
both the Ridge regression and Lasso forms. What follows is a study of three theorems that
eventually tie up the pieces to show the result that they are all equivalent. Another three
theorems are then presented which show that the regularization methods can be used to
solve and to design learning algorithms.

A special Tikhonov regularization method is then studied which is Ridge regression (also
known as L2- regularization). The estimator’s properties such as the geometric interpre-
tation, bias, variance, the mean square error and their derivations are then outlined. Do-
ing this gives us further properties of the trace of the MSE (Mean Square Error). Lastly
K-fold cross validation theory is shown by first defining the steps for LOOCV (Leave One
Out Cross Validation) which is later extended to K-fold cross validation the derivation of
its main properties follows. The second subsection of the chapter goes into the concept of
LASSO. We show some properties of the Lasso as well as the sparsity concept that gives
this technique an edge over other similar techniques. We try and answer when the solution
of the Lasso is unique. We revisit the concept of the Lasso but with an alteration we in-
terpret the Lasso estimate for linear regression parameters as a Bayesian posterior mode
estimate when the regression parameters have independent Laplace priors. The Gibbs sam-
pling from this posterior is utilized using an expanded hierarchy with conjugate normal
priors for the regression parameters and independent exponential priors on their variances.
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A connection with the inverse Gaussian distribution is made to provide full conditional
distributions. Moreover, we show the structure of the hierarchical model to provide both
Bayesian and likelihood methods for selecting the Lasso parameter. More Bayesian versions
of other Lasso related estimation methods including Bridge Regression are then grasped
through slight modifications. We then enter the last section of the chapter where we pro-
pose the elastic net a unique shrinkage and variable selection method. This is penalized
by both the L1-norm (Lasso penalty) and L2-norm (Ridge Regression penalty). The elas-
tic net often outperforms the Lasso, while enjoying a similar sparsity of representation. In
addition the elastic net encourages a grouping effect, where strongly correlated predictors
tend to be in the model together. We find that the elastic net is particularly useful when
the number of predictors (p) is much bigger than the number of observations (n). By con-
trast, the Lasso is not a very satisfactory variable selection method in the p >> n case.
Again, a brief empirical exploration of the Ridge, Lasso and LARS methods are shown and
analysis of the results is reviewed.

In the fourth chapter PCA (Principle Component Analysis) compression and Dimension-
ality Reduction Methods are explored within the realm of Eigenvector Decomposition as
well as Singular Value Decomposition. Once we have decomposed our matrix using either
method, we choose the optimal number of Eigenvectors using the total variance explained
and Scree plots. We then propose a novel approach to robust PCA (RPCA) to aid us for
data compression when solving the problem of outliers when they arise. In the remaining
part of the chapter, we develop the idea of hard thresholding and its role to produce bet-
ter results via SPCA in interpreting the derived principal components. The approach is a
strong competitor to the existing SPCA since the method shows it’s superiority over the
L1 penalized method. Hard thresholding is also explored within the realm of non convex
RPCA using a novel approach.

For the fifth chapter we present the theory that we will explore empirically. We define the
PCR estimator and show the five performance characteristics that we will show empirically
instead of theoretically. We then explicitly show the methodology and the outline of our
empirical study. We are interested in five characteristic performances and they are: Out
of Sample Prediction Error (which will be evaluated on a simulated test data set), Root
Mean Square Error of Coefficients Estimates (which is the average of the coefficients), Bias
of Coefficients Estimates, Variance of Coefficients Estimates and Percentage of Captured
True Variation: R2 in the regression of the true signal on the estimated signal. We consider
the following parameter combinations and each exploration will be a variation of one base
specification:

r = 1,2, · · · ,14,15,p = 5,ρX = 0.5,rho=0.5,q = 10,S/N = 1,ν = +inf. For each of the last
five configurations we simulate 1,000 independent models. For each simulated model we
simulate one training sample of size 100 and one test sample of size 10,000. We analyze the
simulated data set and we discuss the results we yield.

In chapter six, we perform an extended simulation and real study to analyze the perfor-
mance of the methods studied earlier on the basis of the optimal values obtained. We first
explain the methodology of the empirical exploration that we will be performing on all 14
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methods which are: Best Subset Selection, Forward Stepwise selection, Backward Step-
wise Selection, Forward Stepwise Selection governed by AIC, Backward Stepwise Selec-
tion governed by AIC, forward Stepwise selection governed by Bayesian Information Cri-
terion, Backward Stepwise selection governed by Cross-Validation, Forward Stepwise selec-
tion governed by Cross-Validation (CV), Backward Stepwise selection governed by Cross-
Validation, Lasso, Ridge Regression, Elastic Net (a hybrid between Lasso and Ridge Re-
gression), Least Angle Regression (LAR) and Principal Components Regression (PCR).

We use seven distinct characteristic performances that are: Out Of Sample Prediction Er-
ror (evaluated on an independently simulated test data set or via Cross- Validation if work-
ing with real data), Root Mean Square Error of Coefficients Estimates, Bias of coefficients
Estimates, Variance of Coefficients Estimates, Percentage of Selected True Predictors ’X’,
Percentage of Selected False Predictors ’Z’ and Percentage of Captured True Variation. To
analyze and compare the aforementioned methods. We then outline how we would carry
the empirical study using simulated data and cross validation technique for real data. We
first apply the characteristic performances on the fourteen methods for the simulated data
set in which we take two cases where N < p(N = 15) and N > p(N = 100) where 1000
models would be used. Lastly we apply the same method to five real data sets that were
introduced in the first chapter. We then compare, contrast and explain our findings. We
sum up the paper by forming a conclusion and discussing our analysis of the preceding five
chapters.
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Chapter 2

Variable Selection for Some
Spectral Regression Estimators

2.1 Step Wise Selection Regression Techniques Utiliz-
ing Forward Selection and Backward Elimination
Approaches

Variable Selection Method is when we have at least two variables that are redundant and
we are trying to select the one that is significant. We will use the following methods to im-
plement variable selection techniques:

• Step Wise Selection Regression.

• Best Subset Selection.

• Backward Elimination Forward Selection.

Prior to variable selection:

1. We identify outliers and influential points and we may exclude them at least tem-
porarily.

2. We can add any transformation of the variables that is appropriate.

Redundant predictors should be removed. According to Occam’s Razor among the plausi-
ble explanations for a phenomenon, the simplest is best. For Regression Analysis this im-
plies that the smallest model that fits the data is the best model. Unnecessary predictors
will add noise to the estimation of other and Co-linearity is caused by having too many
redundant variables. As for the cost; we can save time and or money by not measuring re-
dundant predictors.

First we start with no predictors in the “Step Wise Model.” We stop when no more pre-
dictors can be entered or removed from our step wise model which would lead us to a final
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model.
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The Starting Procedure would be:

We set a significance level (denoted by αE) to decide when to let a predictor into the step-
wise model. The default setting would be (αE = 0.15)

We also set a significance level to remove a predictor from the step-wise model. The default
setting would be αR = 0.15

Step 1:

1. Fit each predictor individually and regress it on y i.e. regress y on x1, then regress y
on x2 · · · and lastly regress y on xp−1.

2. Look for the predictors whose t-test p− value < αE = 0.15 the first predictor put in
the step-wise model is the predictor that has the smallest t-test p-value we suppose
that this predictor is x1.

3. If no predictor has a t−test P−value less than αE = 0.15, stop.

Step 2:

1. Fit each of the two predictor models that include x1 as a predictor so we regress y on
x1,x2, · · · and regress y on x1 and xp−1.

2. Check for the predictors whose t-test p− value < αE = 0.15 The smallest p-value
would be the second predictor put in this step-wise model.

3. If no predictor has a t-test p− value < αE = 0.15. The model with the one predictor
obtained from the first step is your final model. We will suppose x2 was the second
best predictor.

4. Now we step back and see if entering x2 affects x1 into the step-wise model somehow
affected the significance of the x1 predictor.

We test β1 = 0 has become significant that is p−value > αR = 0.15.

Step 3:

1. Suppose both x1 and x2 made it into the two-predictor step-wise model and remained
there.

2. Now fit each of the three predictor models that include x1 and x2 as predictors- that
is regress y on x1,x2 and x3 regress y on x1, x2, and x4, · · · , and regress y on x1, x2,
and xp−1.

3. Of those predictors whose t− test P− value is less than αE = 0.15, the third predictor
put in the step-wise model is the predictor that has the smallest t− test P−value.

4. If no predictor has a t− test P− value less than αE = 0.15, stop. The model contain-
ing the two predictors obtained from the second step is your final model.
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5. Suppose instead that x3 was deemed the “best”third predictor and it is therefore en-
tered into the step-wise model.

6. Now since x1 and x2 were the first predictors in the model, step back and see if en-
tering x3 into the step-wise model somehow affects the significance of the x1 and x2
predictors. Check the t− test P− values for testing β1 = 0 and β2 = 0. If the t− test
P− value for either β1 = 0 or β2 = 0 has become not significant that is the P− value
is greater than αR = 0.15 remove the predictor from the step-wise model.

Stopping Procedure:

We continue the steps above until adding any additional predictor does not yield a t-test
p−value < αE = 0.15.

Given a matrix X, its QR-decomposition is a matrix decomposition of the form

X =QR (2.1)

Where R is an upper triangular matrix and Q is an orthogonal matrix which satisfies the
following property:

Q>Q= I (2.2)

Where Q> is the transpose of Q and I is the identity matrix. This matrix decomposition
can be used to solve linear systems of equations.

Stepwise selection consists of two methods: Forward Step-wise selection and the Backward
Elimination Method. Forward step-wise selection is a greedy algorithm producing a nested
sequence of models. In this sense it might seem sub optimal compared to the best subset
selection. However there are several reasons why it might be preferred. Forward step-wise
produces a sequence of models indexed by k the subset size which must be determined.

Forward- step-wise selection starts with the intercept and then sequentially adds the pre-
dictor that most improves the fit. With many candidate predictors, this might seem like
a lot of computation; however clever updating algorithms can exploit the QR decomposi-
tion for the current fit to rapidly establish the next candidate. There are two disadvantages
that come with forward step-wise selection:

• Computational: for large p we cannot compute the best subset sequence but we can
always compute the forward step-wise sequence (even when p»n).

• Statistical: a price is paid in variance for selecting the best subset of each size. For-
ward step-wise is a more constrained search and will have lower variance but perhaps
more bias.
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Backward step-wise selection starts with the full model and sequentially deletes the predic-
tor that has the least impact on the fit. The candidate for dropping is the variable with the
smallest Z− score. Backward selection can only be used when n > p while Forward step-
wise can always be used.

Lastly it is worth noting that variables that come in groups (such as the dummy variables
that get coded as multi-level categorical predictors). Smart step-wise procedures (such as
step in R) will add or drop whole groups at a time, taking proper account of their degrees
of freedom.

2.2 Best Subset Selection Regression Method

A fundamental rule of the best subsets regression procedure is that the predictor variable
must include all of the variables that predict the response. Otherwise, we end up with a
regression model that is under specified and hence misleading.

The Procedure:

Step 1: We identify all combinations of all regression models (2p). This can be a huge
number of possible models.

For e.g.: If we have three predictors that would give us 23 = 8 possibilities of models.

• One model with no predictors (1) ().

• Three models each with one predictor (3) (x1)(x2)(x3).

• Three models each with two predictors (3) (x1,x2)(x1,x3)(x2,x3).

• One model with all three predictors (1) (x1,x2,x3).

Step 2:

Once the models from the first step are identified, We form a well defined criteria. then the
one-predictor model that would do best in meeting that criteria. We apply the same thing
for the two predictor models we look for the best in meeting the criteria and so on.

If we take our above example (the three predictors x1,x2,x3) when choosing from the three
models where each model has one predictor, we look for the one that does best. We do the
same thing with the three models that have two predictors and we choose one or two that
meet the best criteria. The word "best" is subjective and the following conditions help in
choosing the right model:

• The model with the largest adjusted R2, an even better measure would be the pre-
dicted R2.

• The model with the smallest MSE
(
or S =

√
MSE

)
.

Step 3:
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We refine the models identified in step two. To do this, we can perform several methods
such as residual analyses transformations of the predictor and or response, adding interac-
tion terms and so on. We do this until we find a model that answers our research question
and does a good job of summarizing the trend in data.

2.3 Criterion Based Procedures (The AIC and BIC
Criterion)

To compare regression models, some statistical software may also give values of statistics
referred to as information criterion statistics. For regression models, these statistics com-
bine information about the SSE number of parameters in the model and the sample size. A
low value compared to values for other possible models is good.

If we have p potential predictors then we will get 2p models. We fit all of these models and
pick the best one according to the following criteria: The Akaike Information Criterion (AIC):

n ln(SSE)−n ln(n) + 2p (2.3)

The Bayes Information Criterion (BIC):

n ln(SSE)−n ln(n) +p ln(n) (2.4)

The best model would be the one with the smallest AIC and or BIC criterion. The BIC
penalizes the larger models more than the AIC criterion and so will prefer the smaller mod-
els. The larger models will use more parameters but in contrast it will fit better and yields
a smaller RSS, thus the best choice of model will balance fit with model size.

Some statisticians believe that these information criteria give a more realistic comparison
of models than the Mallow Cp statistic because Cp tends to make models seem more differ-
ent than they actually are.

We notice that the only difference between AIC and BIC is the multiplier of p the number
of parameters. When comparing the two models, the model with the lower value is always
preferred. Moreover, the BIC places a higher penalty on the number of parameters in the
model so will tend to favor more parsimonious models. This culminates in the criticism of
AIC in that it tends to over-fit models.(“Information Criteria and PRESS” 2019)

2.4 Criterion Based Procedures (R2, R2 adjusted, Mal-
lows CP and Subset Selection Via Mixed Integer
Programming Approach)

The R2− value are defined as:
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R2 = SSR

SSTO
= 1− SSE

SSTO
(2.5)

This value can only increase as more variables are added. It makes no sense to define the
“best” model as the model with the largest R2− value. If we did follow this process, then
the model with the largest number of predictors would always win. We can however in-
stead use the R2 values to find the point where adding more predictors is not worthwhile;
this is because it will yield a very small increase in the R2 value. In other words, we look
at the size of the increase in R2 not just its magnitude alone. Since this is not a very reli-
able criterion, it is used more often in combination with other criteria.

The adjusted R2 value which is defined as:

R2
a = 1−

(
n−1
n−p

)(
SSE

SSTO

)
= 1−

(
n−1
SSTO

)
MSE =

SSTO
n−1 −

SSE
n−p

SSTO
n−1

(2.6)

Makes us pay a penalty for adding more predictors to the model. So now we can just use
the R2 adjusted value. According to the R2 adjusted value criterion, the best regression
model is the one with the largest adjusted R2 value. As we can see in the above equation
the R2 adjusted value is a function of the mean square error (MSE) and according to the
MSE criterion, the best regression model is the one with the smallest MSE. The two crite-
ria are equivalent in a sense that if we look at the formula again for the adjusted R2 value,
we can see that the adjusted R2 value increases only if MSE decreases. That is the R2 ad-
justed value and MSE criteria always yield the same best models.

When we have an underspecified model in which important predictors are missing, we yield
biased regression coefficients and biased predictions of the response. This is where the Mal-
low’s Cp-statistic is useful where it estimates the size of the bias that is introduced into the
predicted responses by having an underspecified model.

Any regression model will be faced with the following two issues:

• The bias in the predicted responses.

• The variation in the predicted responses.

If there is no bias in the predicted responses then the average of the observed responses
E(yi) and the average of the predicted responses E(ŷi) both equal the average of the re-
sponses in the population µY |x. Conversely, if there is bias in the predicted responses, then
E(yi) = µY |x and E(ŷi) do not equal each other. The difference between E(yi) = µY |x and
E(ŷi) is the bias Bi in the predicted response. Which is defined as follows:

Bias: E(ŷi)−E(yi) (2.7)

When bias exists in the predicted responses the variance in the predicted responses for a
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data point i is due to the random sampling variation (σ2
ŷi

). If our regression model is bi-
ased, it will not make sense to consider the bias at just one data point i. So we will need to
consider the bias that exists for all data points n. The same thing applies for the variation
in the predicted responses; we cannot just consider the variation in the predicted responses
at one data point i. We need to consider the total variation in the predicted responses. To
do this and to quantify the total variation in the predicted responses we consider the fol-
lowing standardized measure of the total variation in the predicted responses Γp(“Informa-
tion Criteria and PRESS” 2019):

Γp = 1
σ2

{
n∑
i=1

σ2
ŷi +

n∑
i=1

[E(ŷi)−E(yi)]2
}

(2.8)

Where
∑n
i=1σ

2
ŷi

quantifies the random sampling variation summed over all n data points.
And

∑n
i=1 [E(ŷi)−E(yi)]2 quantifies the amount of bias squared summed over all n data

points. Because the size of the bias depends on the measurement units used we need to get
a standardized unit-less measure which can be found by dividing by σ2.

It can be shown that if there is no bias in the predicted responses i.e. if the bias = 0 then
Γp achieves its smallest possible value of p parameters:

Γp = 1
σ2

{
n∑
i=1

σ2
ŷi + 0

}
= p (2.9)

Γp quantifies the amount of bias and variance in the predicted responses so it seems to be a
good measure of an under specified model:

Γp = 1
σ2

{
n∑
i=1

σ2
ŷi +

n∑
i=1

[E(ŷi)−E(yi)]2
}

(2.10)

The best model is simply the model with the smallest value of Γp. We even know that the
theoretical minimum of Γp is the number of parameters p.(“Best Subsets Regression, Ad-
justed R-Sq, Mallows Cp” 2007) Since we cannot know the value of Γp, we must estimate
and this is where we use the Mallow’s Cp statistics. If the population variance σ2 is known,
then we can estimate Γp using the following equation:

Cp = p+
(
MSEp−σ2)(n−p)

σ2 (2.11)

Where MSEp is the mean squared error from fitting the model which contains the subset
of p− 1 predictors (if we include the intercept we get p predictors). Since we don’t know
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σ2, we need to estimate using MSEall which is the mean squared error obtained from fit-
ting the model containing all of the candidate predictors. This yields the following equa-
tion:

Cp = p+ (MSEp−MSEall)(n−p)
MSEall

= SSEp
MSEall

− (n−2p) (2.12)

We must note two things when we estimate σ2 using MSEall :

• We assume that there are no biases in the full model with all of the predictors.

• Since MSEp−MSEall = 0 guarantees that Cp = p for the full model.

The following are a few facts about Mallow’s Cp− statistic that are essential in determining
the “best” model.

Subset models with small Cp values have a small total (standardized) variance of predic-
tion.

• When the Cp value is near p the bias is small near 0.

• When the Cp value is much greater than p the bias is substantial.

• When the Cp value is below p it is due to sampling error; interpret as no bias.

Furthermore, the largest model containing all of the candidate predictors Cp = p always
holds. Therefore we should not use Cp as a measure to evaluate the fullest model.

The following strategy is useful for using Cp to identify the “best” model:

If possible, we identify subsets of predictors for which the Cp value is near p. The full model
always yields Cp = p so we don’t select the full model based on Cp. Following that, if all the
models except for the full model yield a large Cp not near p, this suggests some important
predictor(s) are missing from the analysis. In this case, we are well advised to identify the
predictors that are missing.

We then check a number of models that have Cp near p to ensure that the combination
of the bias and the variance is at a minimum. We choose the model with the smallest Cp.
Lastly, when more than one model has a small value of Cp value near p, in general we choose
the simpler model or the model that meets our research goal.

The Mallow Cp Statistic can also be written in the following form:

CFull
P = (y−Xβ̂)>(y−Xβ̂)

σ̂2 + 2(p+ 1)−n (2.13)
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Where σ̂2 is an estimator of the residual variance, σ2. This estimator is usually set to the
unbiased estimator of the full regression model in (1.1). Where σ̂2 is defined as follows:

σ̂2 = (y−Xβ̂)>(y−Xβ̂)
n−p−1 (2.14)

2(p+ 1) represents the model complexity to be decreased. Occam’s Razor principle helps to
avoid over fitting and computational error which in turn improves the generalization capa-
bility of the predictive model. (2.13) can be converted to the following equation:

CFull
P = min

β

(y−Xβ)>(y−Xβ)
σ̂2 + 2(p+ 1)−n (2.15)

This is because the OLS (Ordinary Lease Squares) estimator β̂ minimizes S(β). We can
go further with the Cp expression when we do best subset regression; we can use (2.15) to
eliminate the explanatory variable xj and show it is equivalent to fixing its coefficient βj to
zero.

So Cp for the subset model is:

Cp(S) = min
β

{
(Y−Xβ)>(Y−Xβ)

σ̂2 βj = 0 (j /∈ S)
}

+ 2(|S|+ 1)−n (2.16)

Where |S| is the number of elements of the set S or the number of selected variables. Sub-
stituting (2.14) into CFullp , we see that CFullp = p+ 1. Hence, if Cp(S) is minimized with re-
spect to S ⊂{1,2, · · · ,p}, it will not be more than p+1. If we consider the case in which the
number k = |S| is given, k explanatory variables are to be selected from p candidate ones.
In this case by omitting constant terms, the minimization of Cp(S) reduces to the following
RSS minimization problem:

min
β,S

{
(y−Xβ)>(y−Xβ)|βj = 0 (j /∈ S), |S|= k,S ⊆ {1,2, · · · ,p}

}
(2.17)

This subset selection problem can be shown as a mixed integer quadratic programming
(MIQP) problem. (Arthanari and Dodge 1981), (Bertsimas and Shioda 2009) and (Konno
and Yamamoto 2009) If we introduce 0− 1 decision variables zj for j = 1,2, · · · ,p to deter-
mine whether the j−th candidate explanatory variable is selected or not selected. zj = 1 if
the j−th variable is selected zj = 0 otherwise. By using the big-M formulation the subset
selection problem with the fixed k can be expressed as an MIQP problem.
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minimize
β,z

n∑
i=1

yi−
β0 +

p∑
j=1

βjxij

2

(2.18)

subject to −Mzj ≤ βj ≤Mzj(j = 1,2, · · · ,p), (2.19)
p∑
j=1

zj = k (2.20)

zj ∈ {0,1}(j = 1,2, · · ·p) (2.21)

Where M is a sufficiently large positive constant. Constraint (2.19) is called a big-M con-
straint. If zj = 0, the j−th candidate explanatory variable is eliminated from the regression
model, because its coefficient aj has to be 0 from constraint (2.19). If the interval [−M,M ]
is sufficiently large, zj = 1 implies that aj can take an arbitrary value. (2.20) forces the
number of selected explanatory variables to be k. Consequently problems (2.18)− (2.21) is
equivalent to problem (2.17).

Problems (2.18)− (2.21) enables one to find k explanatory variables that minimize RSS.
However we might want to determine a certain number k = |S| simultaneously. To accom-
plish this, we shall use Mallow’s Cp as a GOF measure. If we consider the representation
(2.16) of Cp(S) the subset selection problem of minimizing Mallows’ Cp can be formulated
as an MIQP problem:

minimize
β,z

∑n
i=1

(
yi−

(
β0 +

∑p
j=1βjxij

))2

σ̂2 + 2

 p∑
j=1

zj + 1

−n (2.22)

subject to −Mxj ≤ βj ≤Mzj (j = 1,2, · · · ,p), (2.23)
zj ∈ {0,1} (j = 1,2, · · · ,p). (2.24)

We notice the number of selected explanatory variables
∑p
j=1 zj is not pre-specified whereas

it is a given constant k in problems(2.18)− (2.21). We can select the best subset of ex-
planatory variables according to Cp by solving problem (2.22)− (2.24). In problem (2.22)−
(2.24), the positive constant M needs to be sufficiently large. If M is not sufficiently large,
(2.22)− (2.24) cannot guarantee the optimality of the selected explanatory variables. On
the other hand, it is known that a large M can cause numerical instabilities in computa-
tions. Mixed logical programming is a remedy for this problem and it is supported by sev-
eral mathematical programming solvers. We can replace the big M constraint (2.23) with
its logical implication:
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minimize
β,z

∑n
i=1

(
yi−

(
β0 +

∑p
j=1βjxij

))2

σ̂2 + 2

 p∑
j=1

zj + 1

−n (2.25)

subject to zj = 0 ⇒ βj = 0 (j = 1,2, · · · ,p), (2.26)
zj ∈ {0,1} (j = 1,2, · · · ,p). (2.27)

The logical implications (2.26) mean that if zj = 0 the j−th candidate explanatory variable
is eliminated from the regression model. This sort of logical implication can be efficiently
handled in a branch and bound procedure for MIP problems.
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Chapter 3

Regularization for Some Spectral
Regression Estimators

3.1 Ridge Regression Regularization Properties and
Analysis Using K-Fold Cross Validation

Ridge Regression or also known as Tikhonov regularization helps solve the problem im-
posed in chapter one. Similar to the least squared estimator β̂, the ridge regression coeffi-
cients are estimated by minimizing:

S(β,λ) = S(β) +λ
p∑
j=1

β2
j (3.1)

over β for a given λ, where λ is called the tuning parameter and λ≥ 0. And S(β) is defined
in (1.5). The Ridge regression estimator is denoted as β̂R(λ). The goal is to shrink S(β)
as much as possible to be able to find estimates that fit the data reasonably well. When
this happens (β̂1, · · · , β̂p) are also shrunken in the process as they are dependent on the
minimization of the residual sum of squares and so in turn this affects the term λ

∑p
j=1β

2
j

which becomes smaller. When we constrain the coefficient estimates we reduce the ridge
estimator’s variance and introduce some bias.

Various regularization techniques can be applied to these cases such as ridge regression.
We can increase the stability of the solution if further information about the parameters is
known; for example a range of possible values of the β̂ then various techniques can be used
to increase the stability of the solution. Such a system usually has no solution, so the goal
is instead to find the coefficients β which fit the equations "best" in the sense of solving the
quadratic minimization problem.

We can show various properties of the ridge regression estimator. Starting with the geo-
metric representation of the ridge regression estimator which we show below in Figure 3.2:
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Figure 3.1: Geometric Interpretation of the Ridge Regression Estimator in
2-Dimensional Space.

The ellipses in Figure 3.2 correspond to the contours of residual sum of squares (RSS).
The inner ellipse has smaller RSS and RSS is minimized at ordinal least square (OLS) esti-
mates. For p= 2, the constraint in ridge regression corresponds to a circle.

∑p
j=1β

2
j < c.

We are trying to minimize the ellipse size and circle simultaneously in the ridge regression.
The ridge estimate is given by the point at which the ellipse and the circle touch. There
is a trade-off between the penalty term and RSS. Perhaps a large β would give you a bet-
ter residual sum of squares but then it will push the penalty term higher. This is why you
might actually prefer smaller β’s with worse residual sum of squares. From an optimization
perspective, the penalty term is equivalent to a constraint on the β’s. The function is still
the residual sum of squares but now we constrain the norm of the βj ’s to be smaller than
some constant c. There is a correspondence between λ and c. The larger the λ is, the more
we prefer the βj ’s close to zero. In the extreme case when λ = 0, then we would simply be
doing a normal linear regression. On the other hand as λ approaches infinity, we set all the
β’s to zero.

If we look at the objective function of the ridge regression estimator, the shrinkage penalty
λ
∑p
j=1β

2
j is only applied to the estimates β1,β2, · · · ,βp and not to β0 the intercept. The

intercept term is a measure of the mean value of the response if xi1 = xi2 = · · · = xip = 0.
To omit the intercept β0, we standardize the predictors which means that each column is
centered so that 1

n

∑n
i=1xij = 0 and 1

n

∑n
i=1x

2
ij = 1, for j = 1,2, · · · ,p. We also center the

outcome values such that 1
n

∑n
i=1 yi = 0. Once the ridge regression coefficient estimates are

obtained, we can recover the intercept term by:

β̂0 = ȳ−
p∑
j=1

x̄j β̂
R
j (λ) (3.2)
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where ȳ and x̄j for j = 1,2, · · · ,p are the original means. Another way we could write the
ridge regression problem in the Lagrangian form:

min
β∈Rp

(β,λ) = min
β∈Rp
‖Y −Xβ‖22 +λ‖β‖22 for some λ≥ 0 (3.3)

Hoerl and Kennard (Hoerl and Kennard 1970) proposed that potential instability in the LS
estimator (??) could be improved by adding a small constant value λ (The Tuning Param-
eter) to the diagonal entries of the matrix X>X before taking its inverse. This yields the
following ridge regression estimator:

β̂ridge = (XX>+λIp)−1X>Y (3.4)

The following constraint is placed on the parameters β̂ridge to minimize the penalized sum
of squares:

n∑
i=1

(yi−
p∑
j=1

xijβj)2 +λ
p∑
j=1

β2

β̂ridge = S(β,λ) =RSS(β) +λ
p∑
j=1

β2
j (3.5)

over β for a given λ, where λ is called a tuning parameter and λ≥ 0. We have the following
properties for the ridge regression estimator:(“Ridge Regression” 2018)

• β̂ is an unbiased estimator of β, β̂R(λ) is a biased estimator of β.

• For orthogonal covariates X>X = nIp, β̂
R(λ) = n

n+λ β̂. So in this case, we have the
ridge estimator always producing shrinkage towards 0. λ controls the amount of shrink-
age.

A concept that is important in shrinkage is the effective degrees of freedom associated
with a set of parameters. In a ridge regression setting:

• If we choose λ= 0 we have p parameters since there is no penalization.

• If λ is large, the parameters are heavily constrained and the degrees of freedom will
be lower tending to 0 as λ−→∞.

The effective degrees of freedom associated with β1,β2, · · · ,βp is defined as:

df(λ) = tr
(
X
(
XX>+λIp

)
X>

)
=

p∑
j=1

d2
j

d2
j +λ

(3.6)

where dj are the singular values of X. We notice that λ= 0 and when X>X is non-singular,
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the expression corresponds to no shrinkage which gives us df(λ) = p. There is also 1:1 map-
ping between λ and the degrees of freedom so we can simply pick the effective degrees of
freedom that we like associated with the fit, and solve for λ.

Furthermore, Cross validation can be used in choosing λ as an alternative to manually
choosing a λ. In the cross validation process λ is selected based on the smallest cross val-
idation error. Also since Y has been centered, the intercept β0 has been left out. If the
intercept is penalized, then that would make the procedure depend on the origin chosen for
Y . Calculating the variance covariance matrix is a simple process since the ridge regression
estimator is linear.

We now introduce the Bias, variance and Mean Squared Error properties of the estimator:

Bias: bias [β̂R(λ)] = E
[
β̂R(λ)−β

]
=−λW−1(λ)β (3.7)

Variance: V
[
β̂R(λ)

]
= σ2W−1(λ)X>XW−1(λ) (3.8)

Where W−1(λ) =
(
X>X+λIp

)−1

We notice that:

lim
λ→∞

V[β̂R(λ)] = lim
λ→∞

σ2W−1(λ)X>XW−1(λ) = 0p×p
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The proof of the bias of the ridge regression (3.7) estimator is now outlined: (Wieringen
2015) and (AlNasser 2017).

Proof.

E
[
β̂Ridge(λ)

]
= E

[
(X>X+λIpp)−1X>Y

]
= E

[(
X>X+λIpp

)−1(
X>X

)(
X>X

)−1
X>Y

]
= E

[(
X>X+λIpp

)−1(
X>X

)
β̂

]
= E

[(
X>X+λIpp

)−1
X>X

]
E
[
β̂
]

=
(
X>X+λIpp

)−1
X>Xβ

So now:

bias
(
β̂Ridge

)
= E

[
β̂Ridge(λ)−β

]
=
(
X>X+λIpp

)−1
X>Xβ−β

=
(
X>X+λIpp

)−1(
X>X+λIp−λIp

)
β−β

=
((
X>X+λIp

)−1(
X>X+λIp

)
−λ

(
X>X+λIp

)−1
)
β−β

=−λ
(
X>X+λIp

)−1
β �

The remaining properties and its proof derivations of the ridge regression estimator are
now shown (AlNasser 2017) starting with the variance (3.8):

Proof.

V

[
β̂(λ)

]
=V

[(
X>X+λIp

)−1
X>Y

]
=V

[
W−1(λ)X>Y

]
=W−1(λ)X>

V [Y ]
(
W−1(λ)X>

)>
=W−1(λ)X>V [ε]XW−1(λ)

= σ2W−1(λ)X>XW−1(λ) �

In which the following property was used:

V (cY ) = cV(Y )c>
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Where c is a constant and Y is the variable that we are interested in.

The Mean Squared Error is defined as follows:

MSE
[
β̂(λ)

]
=V

[
β̂(λ)

]
+ bias

[
β̂(λ)

]2
=V

[
β̂(λ)

]
+ bias

[
β̂(λ)

]
bias

[
β̂(λ)

]>
(By using the property of a vector A>A=A2)

=W−1(λ)X>XW−1(λ) +λ2W−1(λ)ββ−1W−1(λ) (3.9)

The proof of (3.9) is outlined as follows:

Proof.

MSE
(
β̂R(λ)

)
=V

[
β̂(λ)

]
+ bias

[
β̂(λ)

]
+ bias>

[
β̂(λ)

]
= σ2W−1(λ)X>XW−1(λ)

(
−λW−1(λ)

)(
−λW−1(λ)β

)>
= σ2W−1(λ)X>XW−1(λ) +λ2W−1(λ)ββ>W−1(λ)

�

The following properties of the trace of the Mean Square Error of the Ridge regression esti-
mator are:

dmv(λ)
d(λ) < 0 for all λ > 0 (3.10)

d2
mv(λ)
dλ2 > 0 for all λ > 0 (3.11)

dmb(λ)
d(λ) ≥ 0 for all λ > 0 (3.12)

The proofs of (3.10)− (3.12) respectively are now shown:

Proof. First Let u1 ≥ u2 ≥ ·· · ≥ up be the eigenvalues of X>X. Since X>X is positive
semi definite we have ui ≥ 0 for all i = 1,2, · · · ,p. From W (λ) =X>X +λIp, W

−j(λ) has
eigenvalues (u1 +λ)−j ,(u2 +λ)−j , · · · ,(up+λ)−j , for j = 1,2.

mv(λ) = σ2
[
tr
(
W−1(λ)

)
−λtr

(
W−2(λ)

)]
= σ2

[ p∑
i=1

1
ui+λ

−λ
p∑
i=1

1
(ui+λ)2

]

= σ2∑ ui
(ui+λ)2

We get: dmv(λ)
dλ

= σ2
p∑
i=1

−2ui
(ui+λ)3 < 0, for all λ > 0 �
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Proof.

d2mv(λ)
dλ2 = (−2ui(ui+λ)−3)′ for all λ > 0

= 6ui(ui+λ)−4

= 6ui
ui+λ4 > 0 for all λ > 0 �

To prove (3.12) we will use the following fact:

W (λ)W−1(λ) = I to obtain the expression dW−1(λ)
dλ .

Proof.

dW (λ)
dλ

W−1(λ) + W (λ)dW−1(λ)
dλ

dI

dλ
= 0

IpW
−1(λ) + W (λ)dW−1(λ)

dλ
= 0

dW−1(λ)
dλ

=−W−1(λ)W−1(λ) =−W−2(λ)

mb(λ) = λ2β> =W−2(λ)β = dmb(λ)
dλ

= 2λβ>W−2(λ)β+λ2 d

dλ
(β>W−1(λ)W−1(λ)β)

= 2λβ>W−2(λ)β+λ2β>
dW−1(λ)

dλ
W−1(λ)β+λ2β>W−1(λ)dW

−1(λ)
dλ

β

= 2λβ>W−2(λ)β−2λ2β>W−3(λ)β

= 2λβ>
[
W−2(λ)−λW−3(λ)

]
β

= 2λβ>T (λ)β,

With T (λ) =W 2(λ)−λ and W−3(λ).

And (λ) has eigenvalues:
1

(ui+λ)2 −
λ

(ui+λ)3 = ui
(ui+λ)3 ≥ 0, i= 1,2, · · · ,p for λ > 0

∴
dmb(λ)
dλ

≥ 0 for all λ > 0 and β. �

Further properties of the Trace Of The Mean Square Error are now introduced:

mv(λ)−→ 0 as λ−→∞ (3.13)
mb(λ) = λ2β>W−2(λ)β −→ β>β as λ−→∞ (3.14)

mb(λ) is a concave function for λ ∈
(
u1
2 ,∞

)
(3.15)
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We now illustrate the proofs of (3.13)− (3.15) respectively:

Proof.

mv(λ) = σ2
p∑
i=1

ui
(ui+λ)2 −→ 0 as λ−→∞

�

Proof.

mb(λ) = λ2β>W−2(λ)β
Where λ2W−2(λ) has eigenvalues:

λ2

(ui+λ)2 −→ 1 as λ−→∞ for all i= 1,2, · · · ,p

∴ mb(λ)−→ β>β as λ−→∞ �

Proof.

d2mb(λ)
dλ2 = 2β>W−2(λ)β−4λβ>W−3(λ)β−4λβ>W−3(λ)β+ 6λ2β>W−4(λ)β

= 2β>
[
W−2(λ)−2λW−3(λ)−2λW−3(λ) + 3λ2W−4(λ)

]
β

2β>
[
S−2(λ)−4λW−3(λ) + 3λ2W−4(λ)

]
β

= 2β>P (λ)β
Where P (λ) =W−2(λ)−4λW−3(λ) + 3λ2W 4(λ)

The eigenvalues of P (λ) are:

eig Q(λ) = 1
(ui+λ)2 −

−4λ
(ui+λ)3 + 3λ2

(ui+λ)4

= 1
(ui+λ)4 [(ui+λ)2−4λ(ui+λ) + 3λ2]

= 1
(ui+λ)4u

2
i + 2λui+λ2−4λui−4λ2 + 3λ2

= 1
(ui+λ)4u

2
i −2λui

= ui(ui−2λ)
(ui+λ)4 < 0 if λ > ui

2 for all i= 1,2, · · · ,p

This shows P (λ) is negative definite for λ > u1
2 . Thus,

d2mb(λ)
dλ2 = 2β>P (λ)β ≤ 0 for all β

when λ > u1
2 which implies mb(λ) is a concave function of λ. �

To analyze the performance of Ridge Regression on simulated and observational data sets,
we use a technique called K-Fold Cross Validation. This function is used to select the tun-
ing parameter λ that minimizes the MSE. We will now outline how Leave One Out Cross
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Validation (LOOCV) is carried out and then show that it extends to K-fold Cross Valida-
tion. The following method is first applied LOOCV and can then be extended to K-Fold
Cross Validation with a different criterion and different estimators:

Step 1: Define a range of interest for the penalty parameter. Divide the data set into train-
ing and test set comprising samples {1, · · · ,n} and {i} respectively.

Step 2: Fit the linear regression model by means of ridge estimation for each λ in the grid
using the training set. This yields:

β̂−i (λ) =
(
X>−i,∗X−i,∗+λIpp

)−1
X>−i,∗Y−i (3.16)

and this corresponding estimate of the error variance σ̂2
−i(λ)

Step 3:

Evaluate the prediction performance of these models on the the test set by log
{
L
[
Yi,Xi,∗; β̂−i(λ), σ̂2

−i(λ)
]}

Or by the prediction error |Yi−Xi,∗β̂−i(λ)| possibly squared.

Step 4:

We repeat steps 1)-3) such that each sample plays the role of the test set once.

Step 5:

The average prediction performances of the test sets at each grid point of the penalty pa-
rameter:

1
n

n∑
i=1

log
{
L
[
Yi,Xi,∗; β̂−i(λ), σ̂2

−i(λ)
]}

(3.16)

The quantity above is called the cross-validated log likelihood. It is an estimate of the pre-
diction performance of the model corresponding to this value of the penalty parameter on
our data.

Step 6: The value of the penalty parameter that maximizes the cross validated log likeli-
hood is the value of choice.

In the LOOCV procedure above, resampling can be avoided when the prediction perfor-
mance is measured by Allen’s PRESS (Predicted Residual Error Sum of Squares) statistic
(Allen 1974). This is because LOOCV prediction performance can be expressed analyti-
cally in terms of the known quantities derived from the design matrix and response (Golub,
Heath, and Wahba 1979).

We define the optimal penalty parameter to minimize Allen’s PRESS statistic as follows:
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λopt = argmin
λ

1
n

n∑
i=1

[
Yi−Xi,∗β̂−i(λ)

]2
(3.17)

We define Aν,Uν,Vν to be (p× p), (p×n) and (n× p) dimensional matrices respectively.
The simplified form of the Woodbury identity then is:

(Aν +UνVν)−1 =A−1
ν Uν

(
Inn+VνA

−1
ν Uν

)−1
VνA

−1
ν . (3.18)

Proof.

To derive an analytic expression for the right-hand side first, rewrite
(
X>−i,∗X−i,∗+λIpp

)−1

by means of the Woodbury identity as:(
X>−i,∗X−i,∗+λIpp

)−1
=
(
X>X+λIpp−X>i,∗Xi,∗

)−1

=
(
X>X+λIpp

)−1
+ (X>X+λIpp)−1X>i,∗

[
1−X

(
X>Xi,∗+λIpp

)−1
X

]−1

Xi,∗
(
X>X+λIpp

)−1
=
(
X>X+λIpp

)−1
+
(
X>X+λIpp

)−1
X>i,∗ [1−Hii (λ)]−1Xi,∗

(
X>X+λIpp

)−1

With Hii(λ) =Xi,∗
(
X>X+λIpp

)−1
X>i,∗.

Furthermore, X>−iY−i =X>Y −X>i,∗Yi.
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If we substitute both in the leave one out ridge regression estimator and manipulate:

β̂−i(λ) = (X−i,∗X−i,∗+λIpp)−1X>−i,∗Y−i

=
{(
X>X+λIpp

)−1
+
(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1Xi,∗

(
X>X+λIpp

)−1
}

×
(
X>Y −X>i,∗Yi

)(
X>X+λIpp

)−1
X>Y −

(
X>X+λIpp

)−1
X>i,∗Yi

+
(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1Xi,∗

(
X>X+λIpp

)−1
X>Y

−
(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1Xi,∗

(
X>X+λIpp

)−1
X>i,∗Yi

= β̂(λ)−
(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1 [1−Hii(λ)]Yi

+
(
X>X+λIpp

)−1
X>i,∗[1−Hii(λ)]−1Xi,∗β̂(λ)

−
(
X>X+λIpp

)−1
X>i,∗[1−Hii(λ)]−1Hii(λ)Yi

= β̂(λ)−
(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1

{
[1−Hii]Yi−Xi,∗β̂(λ) +Hii(λ)Yi

}
= β̂(λ)−

(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1

[
Yi−Xi,∗β̂(λ)

]

The latter enables the reformulation of the prediction error as:

Yi−Xi,∗β̂−i(λ) = Yi−Xi,∗

{
β̂(λ)−

(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1

[
Yi−Xi,∗β̂(λ)

]}
= Yi−Xi,∗β̂(λ) +Xi,∗

(
X>X+λIpp

)−1
X>i,∗ [1−Hii(λ)]−1

[
Yi−Xi,∗β̂(λ)

]
= Yi−Xi,∗β̂(λ) +Hii(λ) [1−Hii(λ)]−1

[
Yi−Xi,∗β̂(λ)

]
= [1−Hii(λ)]−1

[
Yi−X>i,∗β̂(λ)

]

Which yields the re-expression of Allen’s PRESS statistic:

λopt = argmin
λ

1
n

n∑
i=1

[
Yi−Xi,∗β̂−i(λ)

]2
= argmin

λ

1
n
‖B(λ) [Inn−H(λ)]Y ‖2F , �

(3.21)

Where B(λ) is diagonal with [B(λ)]ii = [1−Hii(λ)]−1 . So the prediction performance for
a given λ can be assessed directly from the hat matrix and the response vector without
having to recalculate the n leave-one-out ridge estimators. This is a considerable gain from
a computational perspective.
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3.2 General Regularization Methods Encompassing
Tikhonov, Ivanov and Morozov Solvers

In general regularization, it is convenient to work with a nested sequence for spaces:

F1 ⊂F2 ⊂Fn · · · ⊂ F (3.19)
Where:

F = {all polynomial functions}
Fd = {all polynomials of degree≤ p}

With complexity measure Ω : F −→ [0,∞).

In all the above, the functional Ω(f) is called the regularization functional. Ω(f) is defined
in such a way that it controls the complexity of the function f.

Ω(f) = ‖f‖2 =
∫ b

a

(
f
′′(t)

)2
dt (3.20)

We consider all functions in F with complexity at most r in other words:

Fr =
{
f ∈ F|Ω(f)≤ r

}
(3.21)

Define for a collection {(x1,y1), · · · ,(xn,yn)} of i.i.d. observations as follows:

xi ∈ X ⊂ R2, i= 1, · · · ,n where X is the input space.

yi ∈ {−1 + 1} where Y = {−1,+1} is the output space.

If Ω is a norm on F , this would be a ball of radius r in F .

We shall now define the Ivanov and Tikhonov regularization methods:

The Constrained ERM (Ivanov regularization) for complexity measure Ω : F −→ [0,∞) and
fixed r ≥ 0 s.t. Ω(f)≤ r is:

min
f∈F

n∑
i=1

`(f(xi),yi) (3.22)

s.t. Ω(f)≤ r
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Where r is chosen using validation data or cross validation. Each r corresponds to a differ-
ent hypothesis spaces.

The Penalized ERM (Tikhonov regularization) for complexity measure Ω : F −→ R≥0 and
fixed λ≥ 0 is:

min
f∈F

n∑
i=1

`(f(xi),yi) +λΩ(f) (3.23)

We choose λ using validation data or cross validation.

Next we consider regression models corresponding to it’s ERM function. Such models in-
clude the linear least squares regression, Ridge regression for both the Tikhonov and Ivanov
regularization and finally the Lasso method for both the Tikhonov and Ivanov methods.

First, let us consider the following linear models:

F =
{
f :Rp −→R|f(x) = β>x for β ∈Rp

}
(3.24)

Where the Loss function is:

`(ŷ,y) = (y− ŷ)2 (3.25)

And the training data is :

Dn = ((x1,y1), · · · ,(xn,yn))

The linear least squares regression is ERM for ` over F :

β̂ = arg min
β∈Rp

1
n

n∑
i=1

{
β>xi−yi

}2
(3.26)

This equation can overfit when p is large compared to n or p >> n.

The Ridge Regression (Tikhonov Form) solution for regularization parameter λ≥ 0 is:
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β̂ = arg min
β∈Rd

1
n

n∑
i=1

{
β>xi−yi

}2
+λ‖β‖22 (3.27)

Where ‖β‖22 = β2
1 + · · ·+β2

d is the square of the `2- norm.

The Ridge Regression (Ivanov Form) solution for complexity parameter r ≥ 0 is:

β̂ = arg min
‖β‖2

2≤r2

1
n

n∑
i=1

{
β>xi−yi

}2
. (3.28)

The Lasso Regression (Tikhonov Form) solution for regularization parameter λ≥ 0 is:

β̂ = arg min
β∈Rd

1
n

n∑
i=1

{
β>xi−yi

}2
+λ‖β‖1 (3.29)

where ‖β‖1 = |β1|+ · · ·+ |βd|is the `1- norm

The Lasso Regression (Ivanov Form) solution for complexity parameter r ≥ 0 is:

β̂ = arg min
‖β‖1≤r

1
n

n∑
i=1

{
β>xi−yi

}2
(3.30)

We will now redefine the class of functions so that we can explore further properties of the
Tikhonov and Ivanov. We will also define a new regularization function called the Mozorov
regularization. So now, we parametrize the class of functions as follows:

h(x) = ω ·φ(x)+ b (3.31)

Where φ : Rd −→ RD is a mapping function ω ∈ RD and b ∈ R. The naïve approach to
learning specifically the Empirical Risk Minimization (ERM) consists in searching for the
function h that minimizes the empirical error:

h : arg min
ω,b

L̂(h) (3.32)

Unfortunately ERM is well known to lead to a severe over fitting and then to poor perfor-
mance in classifying new data originated by the same distribution τ but previously unseen.
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So in order to avoid the over fitting issue that afflicts the ERM procedure, the Tikhonov
regularization technique can be used which was suggested to solve ill-posed problems:

h : arg min
ω,b

L̂(h) + λ

2 ‖ω‖
2 or arg min

ω,b

1
2‖ω‖

2 +CL̂(h) (3.33)

It should be noted that the solution {ω∗, b∗} in (3.33) is not unique in general (Boyd and
Vandenberghe 2004). To eliminate such ambiguity we can opt for the function h(x) charac-
terized by the minimum ‖ω| namely the smoothest possible solution. In order to do this
without modifying the nature of the regularization procedure, we propose the following
equivalent formulation to (3.33):

h : arg min
ω,b

‖ω‖ s.t. h ∈ S (3.34)

S =
{
h : L̂(h) = arg min

ω,b
L̂(h) s.t. ‖ω‖2 ≤ ω2

MAX

}

To simplify the notation further (3.34) we simply add ‖ω‖ to the argument of the mini-
mum in (3.33)

h : arg min
ω,b,‖ω‖

L̂(h) s.t. ‖ω‖2 ≤ ω2
MAX (3.35)

Where ‖ω‖ is the Euclidean norm of ω and implements an under fitting tendency so that
the regularization parameter λ∈ [0,∞) or equivalently C = 1

λ ∈ [0,∞) balances the influence
of the under fitting and the over fitting terms. A consequence of this formulation is that λ
implicitly defines the class of functions H from which the models h(x) are selected by the
optimization procedure. However, the relation between the regularization parameter and
the size of the hypothesis space is not evident at all.

In contrast to Tikhonov scheme, the method of quasi solutions which was first proposed by
Ivanov (also known as Ivanov regularization) allows to explicitly control the size of H by
upper bounding the square norm of the admissible hypotheses:

h : arg min
ω,b

L̂(h) s.t. ‖ω‖2 ≤ ω2
MAX (3.36)

by the means of the regularization parameter ω2
MAX ∈ [0,∞). A third way to write the reg-

ularization problem is the less known approach suggested by Morozov:
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h : arg min
ω,b

1
2‖ω‖

2 s.t. L̂(h) ≤ L̂MAX (3.37)

Again we note that the solution {ω∗, b∗} for (3.37) is not unique (Boyd and Vandenberghe
2004). To eliminate potential ambiguity we opt for the function h(x) again, which is char-
acterized by the minimum L̂(h) specifically the solution with minimum error. In order to
highlight this without modifying the nature of the regularization procedure, we formulate
an equivalent expression to (3.37)

h : arg min
ω,b

L̂(h) s.t. h ∈ S (3.38)

S =
{
h : ‖ω‖2 = arg min

ω,b
‖ω‖2s.t. L̂(h)≤ L̂MAX

}

To simplify (3.38) we add L̂(h) to the argument of the minimum in (3.37)

h : arg min
ω,b,L̂(h)

1
2‖ω‖

2 s.t. L̂(h)≤ L̂MAX (3.39)

The philosophy underlying the Morozov regularization approach consists of choosing the
simplest function by minimizing ‖ω‖2 which performs better than a pre determined perfor-
mance threshold on the training set. If the threshold L̂MAX is too small, a solution cannot
exist. Therefore for the sake of simplicity, we will assume that L̂MAX is large enough so
that a solution can be found. This hypothesis does not modify the nature of Morozov regu-
larization while it helps simplify the subsequent analysis.

According to the ERM principle which was formulated by Vapnik in the Statistical Learn-
ing Theory (SLT) framework (Vapnik 2013), learning can easily be implemented by an
Ivanov regularization approach. A Tikhonov formulation has been usually preferred as it is
easier to solve. Throughout the years, numerous effective methods have been developed to
do this. We will show now in the following theorems that the Tikhonov, Ivanov and Moro-
zov regularization approaches are equivalent or are three similar faces of the same problem.

Specifically we show how the Ivanov and Morozov problems can be solved through the pro-
cedures originally designed for the Tikhonov based formulation (Oneto, Ridella, and An-
guita 2016). First we show that the value of the Tikhonov regularization parameter exists
s.t. all three problems are equivalent.

Theorem 1. Let us consider an Ivanov (or Morozov) regularization problem as formu-
lated in (3.35) and (3.39) then, there exists a value of C = 1

λ for the Tikhonov regularization
problem (3.33) such that the formulations are equivalent.

Theorem 2. Let us consider the Tikhonov and Ivanov formulations. Let
(
‖ω∗T ‖, L̂∗T

)
and
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(
‖ω∗I‖, L̂∗I

)
be the solutions of respectively the Tikhonov and the Ivanov problem. If ‖ω∗T ‖=

‖ω∗I‖ for a given C = 1
λ and for a given ωMAX then L̂∗T = L̂∗1 and vice versa.

Theorem 3. Let us consider the Tikhonov and Morozov formulations. Let
(
‖ω∗T ‖ , L̂∗T

)
and

(
‖ω∗M‖, L̂∗M

)
be the solutions of respectively the Tikhonov and the Morozov problems.

If ‖ω∗T ‖= ‖ω∗M‖ for a given C = 1
λ and for a given L̂MAX then L̂∗T = L̂∗M and vice versa.

In the next 3 theorems we show some properties that allow us to define general proce-
dures for solving either an Ivanov or Morozov problem through designed techniques from
Tikhonov formulations (Oneto, Ridella, and Anguita 2016). Theorem 4 can be exploited
to prove theorem 5 which in turn can further be exploited to design actual learning algo-
rithms. Theorem 6 proves that if ‖ω∗C‖ stops increasing as C increases, it will remain the
same regardless of the value assumed by the regularization parameter. We now present the
theorems:

Theorem 4. Let us consider the Tikhonov formulation. Let us solve (3.33) for two given
values of the regularization parameter C1 and C2 > C1. In particular let the solutions of
the problem be respectively

(
‖ω∗C1

‖, L̂∗C1

)
for C1 and

(
‖ω∗C2

‖, L̂∗C2

)
for C2 so that the corre-

sponding values of the objective functions are:

KC1 = 1
2
(∥∥ω∗C1

∥∥)2 +C1L̂
∗
C1 , KC2 = 1

2
(
‖ω∗C2‖

)2 + c2L̂
∗
C2 (3.40)

Then:
KC2 ≥KC1 (3.41)

Theorem 5. Let us consider the Tikhonov formulation. Given C1,C2 ∈ [0,+∞] such that
C2 > C1 let us solve (3.33) and let KC1 and KC2 be the corresponding values of the objec-
tive functions, then:

(
‖ω∗C2‖> ‖ω

∗
C1‖=⇒ L̂∗C2 < L̂∗C1

)
∨
(∥∥ω∗C2

∥∥= ‖ω∗C1‖=⇒ L̂∗C2 = L̂∗C1

)
(3.42)

Theorem 6. Let us consider the Tikhonov formulation. Let
∥∥∥ω∗C∞∥∥∥ be the solution to the

regularization problem for a given value of C∞. If ∃ C > C∞ such that ‖ω∗C‖= ‖ω∗C∞‖ then
‖ω∗C‖ will not vary ∀ C ≥ C∞

3.3 Lasso / L1 Regularization Methods Sparsity, Smooth-
ness and Uniqueness

The Lasso (Tibshirani 1996) is introduced as follows:

L(β,λ) =RSS(β) +λ
p∑
j=1
|βj | (3.43)
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The lasso estimator β̂L(λ) minimizes L(β,λ) over β for a given λ where λ increases as∥∥∥β̂L(λ)
∥∥∥ decreases. We yield the following expression of the intercept term after standard-

ization and obtain the Lasso coefficient estimates:

β̂0 = ȳ−
p∑
j=1

x̄j β̂
L
j (λ) (3.44)

From duality and KKT conditions we can rewrite (1) and (2) in the following form:

Ridge Regression: min
β∈Rp

‖y−Xβ‖22 +λ|β|22 (3.45)

LASSO: min
β∈Rp

‖y−Xβ‖22 +λ+λ‖β‖1 (3.46)

Throughout the paper we will use the penalized form of the Lasso problem and a combina-
tion of optimization tools and statistics tools to describe some of its favorable properties.
These will apply to the more general problem.

min
β∈Rp

f (Xβ) +λ‖β‖1 (3.47)

This form is called the penalized or Lagrange form of the problem where it is the analog of
the constrained form where for every α > 0 there is a corresponding λ > 0 with the same
solutions.
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1. There need not always be a unique solution in β̂ since the relation is not always strictly
convex in β This happens in scenario 2 where p > n.

2. However there is in a unique fitted value Xβ̂ this is because the least squares loss
function is strictly convex in Xβ

Figure 3.2: Geometric Interpretation of the Lasso in 2-Dimensional Space.

The Lasso performs L1 shrinkage so that there are “corners” in the constraint, which in
two dimensions corresponds to a diamond. If the sum of squares “hits” one of these cor-
ners, then the coefficient corresponding to the axis is shrunk to zero. The contours shown
are of the error and constraint functions. The solid diamond shape area is the constraint
regions |β1|+ |β2| ≤ t while the ellipses are the contours of the least squares error functions.
As p increases, the multidimensional diamond has an increasing number of corners and so
it is highly likely that some coefficients will be set equal to zero. Hence the Lasso performs
shrinkage and effectively subset selection.

In contrast with subset selection, Lasso performs a soft thresholding. As the smoothing pa-
rameter is varied, the sample path for the estimates moves continuously to zero. We would
be worried if we encountered the same problems with interpretation as we did with OLS
regression. However, this won’t be a problem as can be seen shortly. The Lasso is useful
when dealing with an ill-conditioned model matrix X for p>n. When p>n, the Lasso pro-
vides a better variable selection method than ridge regression. The Lasso provides a sparse
solution by penalizing the sum of the absolute values of the estimates. As λ increases, the
number of significant coefficients decreases. Hence this makes the Lasso for variable selec-
tion and interpretation of the results a more plausible method than ridge regression.
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We now give a partial answer to when the Lasso solution is unique. We provide sufficient
conditions for a unique minimizer of the Lasso criterion. We start by using the following
lemmas (R. J. Tibshirani et al. 2013):

Lemma 1. For any y,X, and λ ≥ 0, the Lasso problem a (3.43) has the following proper-
ties:

• There is either a unique Lasso solution or an (uncountably) infinite number of solu-
tions

• Every Lasso solution β̂ gives the same fitted values Xβ̂

• If λ > 0 then every Lasso solution β̂ has the same `1 norm
∥∥∥β̂∥∥∥

1

To go beyond the basics we turn to the Karush-Kuhn-Tucket (KKT) optimality conditions
for the Lasso problem (3.43). These conditions can be written as:

X>(Y −Xβ̂) = λγ (3.48)

γi ∈


{
sign(β̂i)

}
if β̂i 6= 0

[−1,1] if β̂i = 0
for i= 1, · · · ,p. (3.49)

Here γ ∈ Rp is called a subgradient of the function f(x) = ‖x‖1 evaluated at x = β̂. There-
fore, β̂ is a solution in (3.44) iff β̂ satisfies (3.48) and (3.49) for some γ. We now use the
KKT conditions to write the Lasso fit and solutions in a more explicit form. In what fol-
lows, we assume that λ > 0 to simplify things. We start by defining the equicorrelation set
E by:

E =
{
i ∈ {1, · · · ,p} :

∣∣∣X>i (y−Xβ̂)
∣∣∣= λ

}
(3.50)

The equicorrelation set E is named this way since when y,X have been standardized, E
contains the variables that have equal and maximal absolute correlations with the residual.
We define the equicorrelation signs s as follows:

s= sign
(
X>E

(
y−Xβ̂

))
. (3.51)

If we recall (3.48) we note that the optimal subgradient γ is unique by the uniqueness of
the fit Xβ̂. Similarly, we can also define E ,s in terms of γ, as in E = {i ∈ {1, · · · ,p |γi|= 1}}
and s = γE . The uniqueness of Xβ̂ implies the uniqueness of E ,s. We know that β̂−E = 0
for any Lasso solution β̂ by definition of the subgradient γ in (3.49). Thus the E block of
(3.48) can be written as:

X>E

(
y−XE β̂E

)
= λs. (3.52)

This shows us that λs ∈ row (XE), so λs = X>E

(
X>E

)+
λs. We use this fact and rearrange

(3.52) to yield:

X>E XE β̂E =X>E

(
y−

(
X>E

)+
λs

)
. (3.53)
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Therefore the (unique) Lasso fit Xβ̂ =XE β̂E is:

Xβ̂ =XE(XE)+
(
y− (XE)+λs

)
, (3.54)

And any Lasso solution β̂ is of the form:

β̂−E = 0 and β̂E = (XE)+
(
y− (X>E )+λs

)
+ b (3.55)

Where b ∈ null (XE) . Specifically any b ∈ null (XE) produces a Lasso solution β̂ in (3.55)
provided that β̂ has the correct signs over its nonzero coefficients that is sign (β̂i) = si for
all β̂i 6= 0. We can write these conditions together as:

b ∈ null(XE) and si ·
([

(XE)+
(
y− (X>E )+λs

)]
i
+ bi

)
≥ 0 for i ∈ E , (3.56)

And thus, any b satisfying (3.56) gives a Lasso solution β̂ in (3.55). In the following part
we use a sequence of straightforward arguments to prove that the Lasso solution is unique
under somewhat general conditions. From the work developed in the previous part, we can
see that if null (XE) = {0} then the Lasso solution is unique and is given by (3.55) with
b = 0. (We note that b = 0 necessarily satisfies the sign condition in (3.56) because a Lasso
solution is guaranteed to exist by Lemma 1. If we then rearrange (3.55) to emphasize the
rank of XE , we yield the following result.

Lemma 2. For any y,X, and λ > 0 if null(XE) = {0} or equivalently if rank (XE) = |E|
then the Lasso solution is unique and is given by:

β̂E = 0 and β̂E =
(
X>E XE

)−1(
X>E y−λs

)
(3.57)

where E and s are the equicorrelation set and signs as defined in (3.50) and (3.51). Note
that this solution has at most min {n,p} nonzero components.

We will show later that the same condition is actually also necessary for almost every y ∈
Rn. Note that E depends on the Lasso solution at y,X,λ and hence the condition null
(XE) = {0} is somewhat circular. There are more natural conditions depending on X alone
that imply null(XE) = {0}. To see this suppose that null(XE) 6= {0} then for some i ∈ E we
can write:

Xi =
∑

j∈E\{i}
cjXj , (3.58)

Where cj ∈ R, j ∈ E\{i}. Hence:

siXi =
∑

j∈E\{i}
(sisjcj) · (sjXj) . (3.59)

By definition of the equicorrelation set X>j r = sjλ for any j ∈ E where r = y−Xβ̂ is the
Lasso residual. Taking the inner product of both sides above with r, we get:

λ=
∑

j∈E\{i}
(sisjcj)λ (3.60)
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or: ∑
j∈E\{i}

(sisjcj) = 1, (3.61)

Assuming that λ > 0. Therefore we have shown that if null (XE) 6= {0} then for some i ∈ E

siXi =
∑

j∈E\{i}
aj ·sjXj (3.62)

With
∑
j∈E\{i}aj = 1 which means that siXi lies in the affine span of sjXj , j ∈ E\{i}. Note

that we can assume, without a loss of generality that E\{i} has at most n elements since
otherwise we can simply repeat the above arguments replacing E by any one of its sub-
sets with n+ 1 elements; hench the affine span of sjXj , j ∈ E\{i} is at most n− 1 dimen-
sional. We say that the matrix X ∈ Rn×p has columns in general position if no k− dimen-
sional subspace L ⊂ Rn, for k <min {n,p}, contains more than k+ 1 elements of the set
{±X1, · · · ,±Xp} excluding antipodal pairs. Another way of saying this L the affine span of
any k+1 point σ1Xi1 , · · · ,σk+1Xik+1 , for arbitrary signs σ1, · · · ,σk+1 ∈ {−1,1} does not con-
tain any element of {±Xi : i 6= i1, · · · , ik+1} . From what we have just shown, the predictor
matrix X having columns in general position is enough to ensure uniqueness.

Lemma 3. If the columns of X are in general position then for any y and λ > 0 the Lasso
solution is unique and is given by (3.57)

Although the definition of general position may seem somewhat technical, this condition is
naturally satisfied when the entries of the predictor matrix X are drawn from a continu-
ous probability distribution. More precisely, if the entries of X follow a joint distribution
that is absolutely continuous with respect to Lebesgue measure on Rnp, then the columns
of X are in general position with probability one. To see this first, consider the proba-
bility P (Xk+2 ∈ aff{X1, · · · ,Xk+1}) where aff{X1, · · · ,Xk+1} denotes the affine span of
X1, · · · ,Xk+1. Note that by continuity:

P(Xk+2 ∈ aff{X1, · · · ,Xk+1}|X1, · · · ,Xk+1) = 0 (3.63)

because (for fixed X1, · · · ,Xk+1) the set aff {X1, · · · ,Xk+1} ⊆ Rn has Lebesgue measure
zero. Therefore, integrating over X1, · · · ,Xk+1 we get that P(Xk+2 ∈ aff{X1, · · · ,Xk+1}) = 0.
Taking a union over all subsets of k+ 2 columns, all combinations of k+ 2 signs and all k <
min{n,p}, we conclude that with probability zero, the columns are not in general position.
This leads us to our final sufficient condition for uniqueness of the Lasso solution.

Lemma 4. If the entries of X ∈ Rn×p are drawn from a continuous probability distribution
on Rnp then for any y and λ > 0 the Lasso solution is unique and is given by (3.57) with
probability one.

According to this result we essentially never have to worry about uniqueness when the pre-
dictor variables come from a continuous distribution regardless of the sizes of n and p. Ac-
tually, there is nothing really special about `1 penalized linear regression. Next we show
that the same uniqueness result hold for `1 penalized minimization with any differentiable
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strictly convex loss function. We consider the more general minimization problem:

β̂ ∈ argmin
β∈Rp

f(Xβ) +λ‖β‖1 (3.64)

Where the loss function f : Rn → R is differentiable and strictly convex. To be clear, we
mean that f is strictly convex in its argument. For instance, the function f(u) = ‖y−u‖22
is strictly convex even though f(Xβ) = ‖y−Xβ‖22 may bot be strictly convex in β. (i)
There is either a unique solution or uncountably many solutions; (ii) every solution β̂ gives
the same fit Xβ̂; (iii) if λ > 0 then every solution β̂ has the same `1 norm. The KKT con-
ditions for (3.64) can be expressed as:

X> (−∇f)
(
Xβ̂

)
= λγ (3.65)

γi ∈

{sign
(
β̂i
)
} if β̂i 6= 0

[−1,1] if β̂i = 0
, for i= 1, · · · ,p (3.66)

Where ∇f : Rn → Rn is the gradient of f and we can define the equicorrelation set and
signs in the same way as before:

E =
{
i ∈ {1, · · · ,p} :

∣∣∣X>i (−∇f)
(
Xβ̂

)∣∣∣= λ
}

(3.67)

and

s= sign
(
X>E (−∇f)

(
Xβ̂

))
(3.68)

The subgradient condition (3.66) implies that β̂−E = 0 for any solution β̂ in (3.64). For
squared error loss recall that we then explicitly solved for β̂E as a function of E and s. This
is not possible for a general loss function f ; but given E and s, we can rewrite the mini-
mization problem (3.64) over the coordinates in E as:

β̂E ∈ argmin
βE∈R|E|

f (XEβE) +λ‖βE‖1 (3.69)

Now if null(XE) = {0} (equivalently rank(XE)), then the criterion in (3.69) is strictly con-
vex as f itself is strictly convex. This implies that there is a unique solution β̂E in (3.69)
and therefore a unique solution β̂ in (3.64). Hence we arrive at the same conclusions as
those made in adsadsa that there is a unique solution in (3.64) if the columns of X are in
general position and ultimately the following result.

Lemma 5. If X ∈ Rn×p has entries drawn from a continuous probability distribution on
Rnp then for any differentiable strictly convex function g and for any λ > 0 the minimiza-
tion problem (3.64) has a unique solution with probability one. This solution has at most
min{n,p} nonzero components.

This general result applies to any differentiable strictly convex loss function f which is
quite a broad class. For example it applies to logistic regression loss:

f(u) =
n∑
i=1

[
−yiui+ log(1 + exp(ui))

]
(3.70)
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Where typically (but not necessarily) each yi ∈ {0,1} and Poisson regression loss:

f(u) =
n∑
i=1

[
−yiui+ exp(ui)

]
(3.71)

Where typically (but again not necessarily) each yi ∈ N = {0,1,2, · · ·}. We shift our focus
in the next section and without assuming any conditions for uniqueness we show how to
compute a solution path for the Lasso problem (over the regularization parameter λ).

3.4 The Bayesian Lasso and Bridge

We have seen from Tibshirani’s Lasso (Tibshirani 1996) that it estimates linear regression
coefficients through L1 constrained least squares. They achieve:

min
β

(ỹ−Xβ)> (ỹ−Xβ) +λ
p∑
j=1
|βj | (3.72)

For some λ≥ 0 where ỹ = y− ȳ1n.

The whole path of Lasso estimates for all tuning paramaeters that λ can be computed by
modifying the LARS algorithm of (Efron et al. 2004). Noting the form of the Lasso penalty
in (3.72) suggested that Lasso estimates can be interpreted as posterior mode estimates
when the regression parameters have independent and identical Laplace (double exponen-
tial) priors. Through this connection, several other authors (Figueiredo and Gomes 2003),
(Bae and Mallick 2004), (Yuan and Lin 2005) subsequently suggested using Laplace like
priors. For instance, we can consider a fully Bayesian analysis using a conditional Laplace
prior specification of the form:

π(β|σ2) =
p∏
j=1

λ

2
√
σ2
e−λ|βj |/

√
σ2 (3.73)

And the noninformative scale invariant marginal prior π
(
σ2) = 1/σ2 on σ2. The condition-

ing on σ2 is a must because it gaurantees a unimodal full posterior. This is needed since
lack of unimodality slows convergence of the Gibbs sampler and makes point estimates less
meaningful. The Gibbs sampler for the Bayesian Lasso exploits the following representa-
tion of the Laplace distribution as a scale mixture of normals (with an exponential mixing
density):

a

2e
−a|z| =

∫ ∞
0

1√
2πs

e−z
2/(2s)a

2

2 e
−a2s/2ds, a > 0 (3.74)

This suggests the following hierarchical representation of the full model:
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y|µ,X,β,σ2 ∼Nn(µ1n+Xβ,σ2In),
β|σ2,τ2

1, · · · ,τ2
p ∼Np(0p,σ2Dτ),
Dτ = diag(τ2

1, · · · ,τ2
p), (3.75)

σ2,τ2
1, · · · ,τ2

p ∼ π(σ2)dσ2
p∏
j=1

λ2

2 e
−λ2τ2

j/2dτ2
j ,

σ2,τ2
1, · · · ,τ2

p > 0.

Similar hierarchies based on (3.74) have been used by other authors. Since the columns
of X are centered it is easy to analytically integrate µ from the joint posterior under its
independent flat prior. Since µ is rarely of interest, we marginalize it out in the interest of
simplicity and speed. If desired it can be reintroduced with a full conditional distribution
that is normal with mean ȳ and variance σ2/n.

Marginalizing over µ does not affect conjugacy. The full conditional distributions of β,σ2,
and τ2

1, · · · ,τ2
p are still easy to sample, and they depend on the centered response vector ỹ.

The full conditional for β is multivariate normal with mean A−1X>ȳ and variance σ2A−1,
where A=X>X+D−1

τ . The full conditional for σ2 is inverse-gamma with shape parame-
ter (n-1)/2+p/2 and scale parameter (ỹ−Xβ)>(ỹ−Xβ)/2 +β>D−1

τ
−1β/2 and τ2

1, · · · ,τ2
p

are conditionally independent with 1/τ2
j conditionally inverse-Gaussian with parameters:

µ
′ =

√
λ2σ2

β2
j

and λ
′ = λ2 (3.76)

In the parameterization of the inverse-Gaussian density given by:

f(x) =

√
λ′

2πx
−3/2 exp

{
−λ

′(x−µ′)2

2(µ′)2x

}
, x > 0 (3.77)

(Chhikara and Folks 1989). These full conditionals form the basis for an efficient Gibbs
sampler with block updating of β and (τ2

1, · · · ,τ2
p) the convergence is really fast. The pa-

rameter of the ordinary Lasso can be chosen by cross validation generalized cross-validation
and ideas based on The Bayesian Lasso also offers some uniquely Bayesian alternatives:
empirical Bayes through marginal maximum likelihood and use of an appropriate hyper
prior.

(Casella 2001) proposed a Monte Carol EM algorithm that complements a Gibbs sam-
ple and provides marginal maximum likelihood estimates of hyper parameters. For the
Bayesian Lasso, each iteration of the algorithm involves running the Gibbs sampler using
a λ value estimated from the sample of the previous iteration. Specifically iteration k uses
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the Gibbs sampler in (Park and Casella 2008) with hyper parameter λ(k−1) (i.e., the esti-
mate from iteration k−1) to approximate the ideal updated estimate:

λ(k) =
√

2p∑p
j=1Eλ(k−1)[τ2

j |ỹ]
(3.78)

by replacing the conditional expectations with averages from the Gibbs sample. We suggest
the initial value:

λ(0) = p
√
σ̂2
LS

/ p∑
j=1
|β̂LSj | (3.79)

Where σ̂2
LS and β̂LSj are estimates from the usual least squares procedure. This empirical

estimate tends to be smaller than the maximizing λ, but our experience suggests that only
extreme initial overestimates of λ lead to slow convergence. Because the expectations are
estimated from the Gibbs sampler the successive λ estimates will not quite converge, but
will eventually drift randomly about the true maximum likelihood estimate, with less drift
if more Gibbs samples are taken in each iteration.

An alternative to choosing λ explicitly is to give it a diffuse hyper prior. We consider the
class of gamma priors on λ2 (not λ) of the form:

π(λ2) = δr

Γ(r)(λ2)r−1e−δλ
2
, λ2 > 0 (r > 0, δ > 0), (3.80)

because the resulting conjugacy allows easy extension of the Gibbs sampler. The improper
scale invariant prior 1/λ2 for λ2 (r = 0, δ = 0) is tempting but it leads to an improper pos-
terior. Moreover, scale invariance is not a very compelling criterion because λ is unit-less.
When prior (3.80) is used in the hierarchy of (3.75) the full conditional distribution of λ2

is gamma with shape parameter p+ r and rate parameter
∑p
j=1 τ

2
j/2 + δ. With this spec-

ification λ2 can simply join the other parameters in the Gibbs sampler, because the full
conditional distributions of the other parameters do not change. The prior density for λ2

should approach 0 sufficiently fast as λ2 −→∞ but should be relatively flat and place high
probability near the maximum likelihood estimate.

One direct generalization of the Lasso and ridge regression is penalized regression by solv-
ing:

min
β

(ỹ−Xβ)>(ỹ−Xβ) +λ
p∑
j=1
|βj |q (3.81)
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For some q ≥ 0 with the q = 0 corresponding to best subset regression, q = 1 corresponds
is the ordinary Lasso and q = 2 is the ridge regression. For q ≥ 1 the expression is called
“Bridge Regression”. Ofcourse q = 1 is the ordinary Lasso and q = 2 is Ridge Regression.
The Bayesian analog of this penalization involves using a prior on β of the form:

π(β)∝
p∏
j=1

e−λ|βj |
q (3.82)

We can also keep up with (3.73) by using:

π(β|σ2)∝
p∏
j=1

e−λ(|βj |/
√
σ2)q (3.83)

Thus the elements of β have independent priors from the exponential power distribution.
Although this term is usually reserved for the case where q ≥ 1. Whenever 0 < q ≤ 2 this
distribution is represented by a scale mixture of normals for 0< q < 2:

e−|z|
q ∝

∫ ∞
0

1√
2πs

e−z
2/(2s) 1

s3/2gq/2
( 1

2s

)
ds (3.84)

Where gq/2 is the density of a positive stable random variable with index q/2 ((West 1987),
(Gneiting 1997)) which generally does not has a closed form expression. A hierarchy of the
type discussed earlier is applicable by placing appropriate independent distributions on
τ2

1, · · · ,τ2
p. Their full conditional distributions are closely related to certain exponential dis-

persion models (Jørgensen 1987). It is not clear if an efficient Gibbs sampler can be based
on this hierarchy.

3.5 Elastic Net Regularization and Variable Selection
Techniques

The Lasso faces the following issues:

• In the p > n case because of the nature of the convex optimization problem the Lasso
selects at most n variables before it saturates. This is a limiting feature for a variable
selection method. The Lasso is not well defined unless the bound on the L2-norm of
the coefficients is smaller than a certain value.

• If the pairwise correlations among a group of variables is quite high, then the Lasso
tends to select only one variable and it will not care as to which variable is selected.
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• For the other scenario where n > p, if there are high correlations between predictors,
it has been observed empirically that the Lasso’s prediction performance is domi-
nated by the ridge regression.

To solve the above issue we introduce a new regularization technique which is called the
elastic net. This is similar to the Lasso in a sense that the elastic net procedure does au-
tomatic variable selection and continuous shrinkage and it can select groups of correlated
variables. To illustrate further the uses of this regularization technique, we start with the
definition of the naïve elastic net. First we must define our predictors and response for the
model.

We suppose that y = (y1, · · · ,yn)> be the response and X = [x1| · · · |xp] be the model ma-
trix, where xj = (x1j , · · · ,xnj)>, j = 1, · · · ,p are the predictors. After a scale transformation,
we can assume, that the response is centred and the predictors are standardized.

n∑
i=1

yi = 0
n∑
i=1

xij = 0
n∑
i=1

x2
ij = 1 for j = 1,2, · · · ,p (3.85)

So now for any fixed non-negative λ1 and λ2 we define the naïve elastic net criterion:

L(λ1,λ2, ,β) = |y−Xβ|2 +λ2|β|2 +λ1|β|1 (3.86)

Where:

|β|2 = β2
j

The ridge regression penalty part is:

λ2|β|2 (3.87)

The Lasso penalty part is:

λ1|β|1 (3.88)

The naiïve elastic net estimator β̂E is the minimizer of equation (3.86) :

β̂E = argmin
β
{L(λ1,λ2,β)} (3.89)
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This procedure can be viewed as a penalized least squares method. Let α = λ2
(λ1+λ2) then

solving β̂ in equation (3) is equivalent to the optimization problem:

β̂E = argmin
β

|y−Xβ|2,subject to (1−α)|β|1 +α|β|2 ≤ t for some t. (3.90)

The elastic net penalty, which is a convex combination of the Lasso and Ridge penalty.
When α = 1, the naive elastic net becomes simple ridge regression. In this paper, we only
consider α< 1. ∀ α∈ [0,1), the elastic net penalty function is singular (without first deriva-
tive) at 0 and it is strictly convex ∀ α > 0, thus possessing the characteristics of both the
Lasso and ridge. Note that the Lasso penalty (α = 0) is convex but not strictly convex.
These arguments can be seen clearly from:

Figure 3.3: Geometric Interpretation of the Elastic Net Penalty in 2-
Dimensional Space.

(3.3) shows 2-dimensional contour plots of the geometry of the elastic net penalty. The out
most contour shows the shape of the ridge penalty, the diamond shaped contour is of the
Lasso penalty. The red solid contour is for the elastic net penalty with α = 0.5.. We see
singularities at the vertexes and the edges are strictly convex. The strength of convexity
varies with α.

We can develop a method to solve the naive elastic net problem in an adequate way. We
find that the solution is equivalent to a Lasso type optimization problem. This also means
that the naive elastic net also shares the computational advantage that the Lasso method
has.(R. J. Tibshirani et al. 2013)

Lemma 6. Given data set (y,X) and (λ1,λ2) define an artificial data set (y∗,X∗) by

X∗(n+p)×p = (1 +λ2)−
1
2

 X

√
λ2I,

 y∗(n+p) =

y
0

 . (3.91)
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Let γ = λ1√
1+λ2

and β∗ =
√

1 +λ2β. Then the naive elastic net criterion can be written as:

L(γ,β) = L(γ,β∗) = |y∗−X∗β∗|2 +γ |β∗|1 (3.92)

Let

β̂E∗ = arg min
β∗

L(γ,β∗), (3.93)

then

β̂E = 1√
1 +λ2

β̂E∗. (3.94)

Lemma 6 states that we can transform the naive elastic net problem to a Lasso problem on
augmented data. We note that the sample size is n+p and that X∗ has rank p in the aug-
mented data set. This means that the naive elastic net can select all p predictors in all sit-
uations. This overcomes the limitation for the Lasso we have in scenario a). Lemma 1 also
shows that the naive elastic net can perform an automatic variable selection in a similar
way to the Lasso. Next we will show how the naive elastic net has the ability of selecting
grouped variables, a property that the Lasso does not have.

In the p >> n problem (West et al.) (MikeWest et al. 2001) the grouped variables scenario
is a particularly important concern. Another careful study by Segal and Conklin (Segal,
Dahlquist, and Conklin 2003) gives a strong motivation for the use of regularized regres-
sion procedure to find the grouped genes. We consider the following generic penalization
method:

β̂E = argmin
β

|y−Xβ|2 +λJ(β) (3.95)

Where J(.) is positive valued for β 6= 0. A regression method exhibits the grouping effect
if the coefficients of a group of highly correlated variables tend to be equal up to a sign of
change if negatively correlated. In extreme situations, where some variables might be ex-
actly identical, the regression method used should assign identical coefficients to these iden-
tical variables.

Lemma 7. Assume xi = xj , i, j ∈ {1, · · · ,p}

1. If J(·) is strictly convex, then β̂Ei = β̂Ej ∀ λ > 0

2. If J(β) = |β|1, then β̂Ei β̂Ej ≥ 0 and β̂E∗ is another minimizer of (3.95)



Chapter 3. Regularization for Some Spectral Regression Estimators 53

for any s ∈ [0,1].

β̂E∗k =


β̂Ek if k 6= i and k 6= j(
β̂Ei + β̂Ej

)
· (s) if k = i(

β̂Ei + β̂Ej

)
· (1−s) if k = j

We can see that in Lemma 2 that there is a clear distinction between the strictly convex
penalty function in 1. and the Lasso penalty shown in 2. The strict convexity property
in 1. guarantees the grouping effect in the extreme case where the predictors are identi-
cal. We can see in 2. that the Lasso does not even have a unique solution.The elastic net
penalty with λ2 > 0 is strictly convex, thus enjoying the property in assertion (1).

Theorem 7. Given data (y,X) and parameters (λ1,λ2) the response y is centered and the
predictors X are standardized. Let β̂E(λ1,λ2) be the naive elastic net estimate. Suppose
β̂Ei (λ1,λ2)β̂Ej (λ1,λ2)> 0. Define:

Dλ1,λ2(i, j) = 1
|y|1

∣∣∣β̂Ei (λ1,λ2)− β̂Ej (λ1,λ2)
∣∣∣ , (3.96)

then

Dλ1,λ2(i, j)≤ 1
λ2

√
2(1−ρ), where ρ= x>i xj , the sample correlation. (3.97)

The unit-less quantity Dλ1,λ2(i, j) shows the difference between the coefficients of predic-
tors i and j. If xi and xj are highly correlated then ρ = 1 if we have ρ = −1 then we con-
sider −xj so theorem 1 states that the difference between the coefficient paths of predictor
i and predictor j is almost 0. Where the upper bound of the inequality gives a qualitative
description for the grouping effect of the naive elastic net.

We have talked about Bridge regression in an earlier section. We also have J(β) = |β|q in
(3.95), which is a generalization of both the Lasso (q = 1) and ridge (q = 2). The bridge
estimator can be viewed as the Bayes posterior mode under the prior:

Pλq(β) = C(λ,q)exp(−λ|β|q) (3.98)

Ridge regression (q = 2) corresponds to a Gaussian prior and the Lasso (q = 1) a Laplacian
(or double exponential) prior. The elastic net penalty corresponds to a new prior given by:

Pλ,α(β) = C(λ,α)exp(−λ(|β|2 + (1−α)|β|1)) (3.99)
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A compromise between the Gaussian and Laplacian priors. Although bridge with 1 < q < 2
will have many similarities with the elastic net, there is a fundamental difference between
them. The elastic nets produces sparse solutions, while the bridge does not. Fan & Li (Fan
and Li 2001) prove that in the Lq (q ≥ 1) penalty family, only the Lasso penalty (q = 1) can
produce a sparse solution. Bridge (1 < q < 2) always keeps all predictors in the model, as
does ridge. Since automatic variable selection via penalization is a primary objective of this
article, Lq(1< q < 2) penalization is not a candidate.
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Chapter 4

SVD and PCA

4.1 Eigenvector Decomposition (Spectral) and Princi-
pal Component Analysis

We will first explore the following five theorems to be able to explain the subsequent method-
ology.

Theorem 8. The inverse of an orthogonal matrix is its transpose.

Proof. Let A be an m×n orthogonal matrix where ai is the ith column vector. The ijth
element of A>A is:

(A>A)ij = a>i aj =
{

1 if i= j

0 otherwise
(4.1)

Therefore, since A>A= I it follows that A−1 =A>. �

Theorem 9. If A is any matrix then matrices A>A and AA> are both symmetric.

Proof.

(AA>)> =A>>A> =AA> (4.2)
(A>A)> =A>A>> =A>A (4.3)

�

Theorem 10. A matrix is symmetric iff it is orthogonally diagonalizable.

Proof. This statement is two directional, so it requires a two-part iff proof. We start with
the forward case; if A is orthogonally diagonalizable then A is a symmetric matrix. Or-
thogonally diagonalizable means that there exists some E s.t. A = EDE>, where D is a
diagonal matrix and E is some special matrix which diagonalizes A. Let use compute A>.

A> = (EDE>)> =E>>D>E> =EDE> =A (4.4)
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If A is orthogonally diagonalizable, it must also be symmetric. The reverse case is more
involved and less clean so is omitted from this paper. The forward case is suggestive and
somewhat convincing. �

Theorem 11. A symmetric matrix is diagonalized by a matrix of its orthonormal eigen-
vectors.

Proof. Let A be a square n×n symmetric matrix with associated eigenvectors {e1,e2, · · · ,en}.
We let E = [e1 e2 · · · en] where the ith column of E is the eigenvector ei. This theorem
asserts that there exists a diagonal matrix D such that A = EDE>. The proof is com-
posed into two parts. In the first part, we find that any matrix can be orthogonally diago-
nalized iff that matrix eigenvectors are all linearly independent. In the second part of the
proof, we see that a symmetric matrix has the unique property that all of its eigenvectors
are not just linearly independent but also orthogonal which completes our proof.

We now start the first part of the proof. Let matrix A be any matrix not necessarily sym-
metric and let it have independent eigenvectors. Moreover, let E = [e1 e2 · · · en] be the
matrix of eigenvectors placed in the columns. We let D be a diagonal matrix where the ith
eigenvalue is placed in the iith position. We now show that AE = ED. We examine the
columns of the right hand and left hand sides of the equation which are:

Left hand side: AE =
[
Ae1 Ae2 · · · Aen

]
(4.5)

Right hand side: ED =
[
λe1 λe2 · · · λen

]
(4.6)

We find that if AE = ED then Aei = λiei for all i. This equation is the definition of the
eigenvalue equation. So it must be that AE = ED. If we rearrange the equation a little,
we find that A = EDE−1 which completes the first part the proof. We now show the sec-
ond part of the proof. Essentially we show that a symmetric matrix always has orthogonal
eigenvectors e1 and e2.

λ1e1 ·e2 = (λ1e1)>e2

= (Ae1)>e2

= e>1A>e2

= e>1 (λ2e2)
λ1e1 ·e2 = λ2e1 ·e2 (4.7)

We can use the last relation to show the equality (λ1−λ2)e1 · e2 = 0. Since we hypothe-
sized that the eigenvalues are in fact unique, it must be the case that e1 ·e2 = 0. Therefore
the eigenvectors of a symmetric matrix are orthogonal. If we back up to our original pos-
tulate that A is a symmetric matrix. By the second part of the proof we know that the
eigenvectors of A are all orthonormal. We choose the eigenvectors to be normalized. This
means that E is an orthogonal matrix; hence by theorem 8 E> = E−1 and we can rewrite
the final result.

A=EDE> (4.8)

Thus a symmetric matrix is diagonalized by a matrix of eigenvectors. �
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Theorem 12. For any arbitrary m×n matrix X the symmetric matrix X>X has a set of
orthonormal eigenvectors of {v̂1, v̂2, · · · , v̂n} and a set of associated eigenvalues {λ1,λ2, · · · ,λn}.
The set of vectors {X v̂1,X v̂2, · · · ,Xv̂n} then form an orthogonal basis where each vector
Xv̂i is of length

√
λi.

Proof. The aforementioned properties arise from the dot product of any two vectors from
this set.

(Xv̂i) · (Xv̂j) = (Xv̂i)>(Xv̂j)
= v̂>i X>Xv̂j
= v̂>i (λj v̂j)
= λj v̂i · v̂j

(Xv̂i) · (Xv̂j) = λjδij (4.9)

The last relation holds since the set of eigenvectors of X is orthogonal resulting in the kro-
necker delta. In simpler terms the last relation states:

(Xv̂i) · (Xv̂j) =
{
λj i = j

0 i 6= j
(4.10)

(4.10) states that any two vectors in the set are orthogonal. The second property arises
from (4.10) by realizing that the length squared of each vector is defined as:

‖Xv̂i‖2 = (Xv̂i) · (Xv̂i) = λi (4.11)
�

Now let X be a m×n matrix. We also define another matrix Y that is of dimension (m×
n) that is formed by a data transformation P .

PX = Y (4.12)

We also define the following quantities:

• pi are the rows of P

• xi are the columns of X.

• s̃ are the columns of S̃.

(4.12) is a representation of a change of basis and can have one or more of the following
interpretations:

• P is a matrix that transforms X into S̃

• Geometrically P is a stretch and rotation which transforms X into S̃

• The rows of P , {p1, · · · ,pm} are a set of new basis vectors for expressing the columns
of X.
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PX =
(
Px1 Px2 · · · Pxn

)
=



p1 ·x1 p1 ·x2 · · · p1 ·xn

p2 ·x1 p2 ·x2 · · · p2 ·xn
...

... . . . ...

pm ·x1 pm ·x2 · · · pm ·xn


= S̃ (4.13)

s̃=


p1 ·xi

...

pm · · ·xi

 (4.14)

We note that pi,xj ∈ Rm. We also notice each coefficient of s̃ is a dot product of xi with
the corresponding row in P . Moreover, the jth coefficient of s̃ is a projection on to the ba-
sis of {p1, · · · ,pm}. Therefore, the rows of P are a new set of basis vectors for represent-
ing of columns of X. To be able to extract information about the signal regardless of what
analysis technique is used, the measurement noise in the data set must be low. All noise is
quantified relative to the signal strength as there exists no absolute scale for noise. A com-
mon measure is the signal to noise ratio (SNR) or a ratio of variances σ2.

SNR=
σ2
signal

σ2
noise

(4.15)

A high SNR (>> 1) indicates high precision data while a low SNR indicates noise contam-
inated data. In a regression model, it is simple to identify redundant cases if we only have
two variables. We would simply find the slope of the line of best fit and we subsequently
judge the quality of the fit. We can generalize these notions to higher dimensions by us-
ing the covariance matrix. First consider the following two sets of measurements with zero
means:

A= {a1,a2, · · · ,an}, B = {b1, b2, · · · , bn} (4.16)

where the subscript denotes the sample number. The variance of A and B are defined indi-
vidually as:

σ2
A = 1

n

∑∑∑
i

a2
i , σ2

B = 1
n

∑∑∑
i

b2i (4.17)

The covariance between A and B is a straight forward generalization.

Covariance of A and B ≡ σ2
AB = 1

n

∑∑∑
i

aibi (4.18)

The covariance measures the degree of the linear relationship between two variables. A
large positive value indicates positively correlated data. Similarly, a large negative value
denotes negatively correlated data. The absolute magnitude of the covariance measures the
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degree of redundancy. Furthermore, additional facts that we may wish to consider are:

• σ2
AB ≥ 0 (non negative). σAB is zero iff A and B are entirely uncorrelated.

• σ2
AB = σ2

A if A=B.

a=
[
a1 a2 · · · an

]
(4.19)

b=
[
b1 b2 · · · bn

]
(4.20)

so that we can express the covariance as a dot product matrix:

σ2
ab ≡

1
n
ab> (4.21)

where 1
n is a constant for normalization. We can now generalize from two vectors to an ar-

bitrary number. We rename the row vectors a and b as x1 and x2 respectively and con-
sider additional indexed row vectors x3 · · ·xm. Define a new m×n matrix X.

X =



x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

... . . . ...

xm,1 xm,2 · · · xm,n


=



x1

x2
...

xm


∈ Rm×n, x>i ∈ Rn (4.22)

We can interpret X as follows. Each row of X corresponds to all measurements of a par-
ticular type. Each column of X corresponds to a set of measurements from one particular
trial. We now define the covariance matrix CX :

CX ≡
1
n
XX> (4.23)

If we consider the matrix CX ≡ 1
nXX

>. The ijth element of CX is the dot product be-
tween the vector of the ith measurement type with the vector of the jth measurement type.

i.e.

CX = 1
n
XX> = 1

n



x1x
>
1 x1x

>
2 · · · x1x

>
m

x1x
>
1 x1x

>
2 · · · x1x

>
m

...
... . . . ...

xmx
>
1 xmx

>
2 · · · xmx

>
m


∈ Rm×m (4.24)

We can summarize several properties of CX :
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• CX is a square symmetric m×m matrix.

• The diagonal terms of CX are the variance of particular measurement types.

• The off-diagonal terms of CX are the covariance between measurement types.

CX captures the correlations between all possible pairs of measurements. The corre-
lation values reflect the noise and redundancy in our measurements.

• In the diagonal terms by assumption large values correspond to interesting dynamics
(or noise)

• In the off-diagonal terms large values correspond to high redundancy.

So our goals are to first minimize redundancy, measured by covariance and then maximize
the signal measured by variance. It should be noted that the CS̃ matrix must be diagonal
and all off-diagonal terms in CS̃ would be zero or in other words S̃ would be decorrelated.
Furthermore, each successive dimension in S̃would be rank ordered according to variance.
There are many methods for diagonalizing CS̃, PCA arguably selects the easiest method.
PCA assumes that all basis vectors {p1, · · · ,pm} are orthonormal (i.e. pi · pj = δij). In
the language of linear algebra, PCA assumes the directions with the largest variances. In
other words they are the most principal. The following simple algorithm shows us how
PCA works for multiple dimensions.

1. Select a normalized direction in m dimensional space along which the variance in X
is maximized. Save this vector as p1.

2. We then find another direction along which variance is maximized. The orthonormal-
ity condition we first restrict the search to all directions perpindicular to all previous
selected directions. Save this vector as pi.

3. Repeat this procedure until m vectors are selected.

The resulting ordered set of p′s are the principal components.

The following show when PCA might perform poorly:

• Linearity.

The linearity assumption shapes the problem as a change of basis. Extensive research
have focused on extending these notions to nonlinear regimes.

• Large variances have important structure.

This assumption also encompasses the belief that the data has a high SNR. Moreover,
principal components with larger associated variances represent interesting structure
while those with lower variances represent noise.

• The principal components are orthogonal.

This assumption provides an intuitive simplification that makes PCA feasible with
linear algebra decomposition techniques. This is highlighted in what follows in our
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study.

The above show all aspects of deriving PCA. What remains is the linear algebra solutions.
The first solution is somewhat straightforward while the second solution involves under-
standing an important algebraic decomposition. We now derive our first algebraic solution
to PCA using linear algebra. This solution is based on an important property of eigenvec-
tor decomposition. Once again, the data set is X an m× n matrix where m is the num-
ber of measurement types and n is the number of samples. The first solution is somewhat
straight forward while the second solution involves understanding an important algebraic
decomposition. We derive our first algebraic solution to PCA using linear algebra. The so-
lution is based on an essential property of eigenvector decompostion. We use the data set
X again where it is an m×n matrix where m is the number of measurement types and n
is the number of samples. The process is summarized as follows:

We start by finding some orthonormal matrix P where Y = PX s.t. CS̃≡ 1
n
S̃> is diagonal-

ized. The rows of P are the principal components of X. We now begin by rewriting CS̃ in
terms of our variable of choice P .

CS̃ = 1
n
S̃S
>

= 1
n

(PX)(PX)>

= 1
n
PXX>P>

= P ( 1
n
XX>)P>

CS̃ = PCXP> (4.25)

For a symmetric matrix A theorem 11:

A=EDE> (4.26)

Where D is a diagonal matrix and E is a matrix of eigenvectors of A arranged as columns.
The matrix A has r ≤m orthonormal eigenvectors where r is the rank of the matrix. The
rank of A is less than m when A is degenerate or all data occupy a subspace of dimension
r ≤ m. Maintaining the constraint of orthogonality, we can remedy this situation by se-
lecting (m− r) additional orthonormal vectors to fill out the matrix E. These additional
vectors do not effect the final solution because the variances associated with these direc-
tions are zero. We select the matrix P to be a matrix where each row pi is an eigenvector
of 1

nXX
>. With this relation and Theorem 8 (P−1 = P>) we can finalize the evaluation of

CS̃.

CS̃ = PCXP>

= P
(
E>DE

)
P>

= P
(
P>DP

)
P>

= (PP>)D(PP>)
= (PP−1)D(PP−1)

CS̃ =D (4.27)
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It is evident that the choice of P diagonalizes CS̃. This was the goal for PCA. We can
summarize the results of PCA in the matrices P and CY .

• The principal components of X are the eigenvectors of CX = 1
nXX

>.

• The ith diagonal value of CY is the variance of X along pi.

When computing PCA of a data set X we need to do two things, first we need to subtract
off the mean of each measurement type and then we need to compute the eigenvectors of
CX . Let X be an arbitrary n×m matrix and X>X be a rank r, square symmetric m×
m matrix. In a seemingly unmotivated fashion, we now shall define all the quantities of
interest.

4.2 Singular Value Decomposition and Principal Com-
ponent Analysis

We now derive another algebraic solution for PCA and in the process find out that PCA
is closely related to singular value decomposition (SVD). The two are so intimately related
that the names are often used interchangeably. An essential concept that we shall see is
that SVD is a more general method of understanding change of basis.

• {v̂1, v̂2, · · · , v̂r} is the set of orthonormal m× 1 eigenvectors with associated eigenval-
ues {λ1,λ2, · · · ,λr} for the symmetric matrix X>X.(

X>X
)
v̂i = λiv̂i. (4.28)

• σi ≡
√
λi are positive real and termed the singular values.

• {û1, û2, · · · , ûr} is the set of orthonormal n×1 vectors defined by ûi ≡ 1
σ1
Xv̂i.

We obtain the final definition by referring to theorem 12 which includes two new and unex-
pected properties.

•

ûi · ûj =
{

1 if i= j

0 otherwise
(4.29)

•

‖Xv̂i‖= σi (4.30)

These properties are both proven in Theorem 12. We now have all of the pieces to con-
struct the decomposition. The scalar version of singular value decomposition is just a re-
statement of the third definition.
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Xv̂i = σiûi (4.31)

This result gives us a lot of information. X multiplied by an eigenvector of X>X is the
same as a scalar times another vector. The set of eigenvectors {v̂1, v̂2, · · · , v̂r} and the set
of vectors {û1, û2, · · · , ûr} are both orthonormal sets or bases in r dimensional space. We
also construct accompanying orthogonal matrices V and U .

V =
[
v̂1̃ v̂2̃ · · · v̂m̃

]
(4.32)

U =
[
û1̃ û2̃ · · · ûm̃

]
(4.33)

Where we added an additional (m− r) and (n− r) orthonormal vectors to “fill up” the ma-
trices for V and U respectively.

XV =UΣ (4.34)

Where each column of V and U perform the value version of the decomposition. Because
V is orthogonal we can multiply both sides by V −1 = V > to arrive at the final form of the
decomposition.

X =UΣV > (4.35)

This decomposition is very powerful. (4.35) states that any arbitrary matrix X can be con-
verted to an orthogonal matrix, a diagonal matrix and another orthogonal matrix. We now
study (4.35) in more depth. The final form of SVD is a concise and thick statement. If we
interpret (4.31) as:

Xa= kb (4.36)

Where a and b are column vectors and k is a scalar constant. The set {v̂1, v̂2, · · · , v̂m} is
analogous to a and the set {û1, û2, · · · , ûn} is analogous to b. The unique thing is {v̂1, v̂2, · · · , v̂m}
and {û1, û2, · · · , ûn} are orthonormal sets of vectors which span an m or n dimensional
space respectively. Loosely speaking, these sets appear to span all possible inputs (a) and
outputs (b). We can manipulate equation (4.35) to make this hypothesis more precise:

X =UΣV >

U>X = ΣV >

U>X =Z (4.37)

Where we have defined Z ≡ ΣV >. Note that the previous columns {û1, û2, · · · , ûn} are
rows in U>. Comparing this to (4.12) {û1, û2, · · · , ûn} perform the same role as {p̂1, p̂2, · · · , p̂m}.
Thus U> is a change of basis from X to Z. This is the same process as before where we
were transforming column vectors. Since the orthonormal basis U> transforms column
vectors means that U> is a basis that spans the columns of X. The basis that span the
columns are termed the column space of X. The column space formalizes the notion of
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what are the possible outputs of any matrix.

XV = ΣU
(XV )> = (ΣU)>

V >X> =U>Σ
V >X> =Z (4.38)

Where we have defined Z ≡U>Σ. Again the rows/columns of V > are an orthonormal ba-
sis for transforming X> into Z. Because of the transpose on X, it follows that V is an
orthonormal basis spanning the row space of X. The row space forms the notion of what
are the possible inputs into an arbitrary matrix. It is clear that PCA and SVD are very re-
lated. If we return to the original m×n data matrix X. Then we can define a new matrix
S̃ as an n×m matrix.

S̃ ≡ 1√
n
X> (4.39)

Where each column of S̃ has zero mean. The definition of S̃ becomes clear by analyzing
S̃>S̃

S̃>S̃ = ( 1√
n
X>)>( 1√

n
X>)

= 1
n
XX>

S̃>S̃ =CX (4.40)

By construction S̃>S̃ is equal to the covariance matrix of X. We know from earlier re-
sults that the principal components of X are the eigenvectors of CX . If we calculate the
SVD of S̃ the columns of matrix V contain the eigenvectors of S̃>S̃ = CX . Therefore the
columns of V are the principal components of X. This means that V spans the row space
of S̃ ≡ 1√

n
X>. Therefore, V must also span the column space of 1√

n
X. We conclude that

finding the principal components leads to finding an orthonormal basis that spans the col-
umn space of X.

The importance of an eigenvector is measured by the percentage of total variance explained
by the corresponding eigenvalue. All eigenvectors are arranged according to their eigenval-
ues in descending order. Now we have to decide how many eigenvectors to retain. We will
be discussing two methods: Total variance explained and Scree Plot. We start with
the Total Variance Explained. If we suppose we have a vector of n eigenvalues (e0, · · · ,en)
sorted in descending order. We take the cumulative sum of eigenvalues at every index until
the sum is greater than 95% of the total variance. We then reject all eigenvalues and eigen-
vectors after that index. Similarly for the Scree Plot, we have to arrange the eigenvalues in
descending order. We plot the eigenvalues against its index. An ideal scree plot is a steep
curve which is followed by a sharp bend and a straight line. We reject all the eigenvalues
after the sharp bend and their corresponding eigenvectors.
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4.3 Image and Data Compression (Sparse Face Recog-
nition) Utilizing Robust Principal Component Anal-
ysis

In the previous subsection, we developed a method for principal component analysis which
used the SVD of an m×m matrix Z>Z where Z = 1√

n
X> and X was an m×n data ma-

trix. Since Z>Z ∈ Rm×m the matrix V obtained in the singular value decomposition of
Z>Z must also be of dimensions m×m. We recall also that the columns of V are the prin-
cipal component directions and that the SVD automatically sorts these components in de-
creasing order of importance or principality so that the principality component is the first
column of V . Let’s suppose that before we project the data using Y = V >X, we truncate
the matrix V so that we kept only the first r < m columns. We would end up with a ma-
trix Ṽ ∈ Rm×r. The projection Ỹ = Ṽ >X is still dimensionally consistent and the result of
the product is a matrix X and obtain X̃ ∈ Rm×n.

The matrices, X and X̃ have the same dimensions but they are different matrices. This
is because we truncated the matrix of principal components V in order to obtain X̃. It
is therefore reasonable to conclude that the matrix X̃ has in some sense less information
in it than the matrix X. Of course, in terms of memory allocation on a computer, this is
certainly not the case since both matrices have the same dimensions and would therefore
allotted the same amount of memory. This, together with the fact that the ’important’
information in the matrix is captured by the first principal components suggests a possi-
ble method for image compression. The matrix X̃ can be computed as the product of two
smaller matrices (Ṽ and Ỹ . This together with the fact that the important information in
the matrix is captured by the first principal components suggests a possible method for im-
age compression. We first briefly review regression type optimization framework of PCA.
We suppose the data matrix is X ∈ Rn×p, where n is the number of observations or sam-
ples p is the number of features or variables. The singular value decomposition of X is
X = UΣV > the first k PCs of X are defined as P = XVk, where Vk ∈ Rp×k is called a
loading matrix or projecting matrix. P = [p1, · · · ,pk] ∈ Rn×k usually k << p. thus dimen-
sionality reduction is achieved. Furthermore, the uncorrelated PCs capture the maximum
variability of X which guarantees minimal information loss. In regression type optimiza-
tion frameworks, PCA can be formulated as a ridge regression problem:

For any λ1 > 0, j = 1,2, · · · ,k, let:

(Â,B̂) = argmin
A,B

n∑∑∑
i=1

∥∥∥xi−AB>xi∥∥∥2

2
+λ1

∥∥∥B∥∥∥2

2

= argmin
AB

{∥∥∥(X−XBA>)
∥∥∥2

2
+λ1

∥∥∥B∥∥∥2

2

}
(4.41)

s.t. A>A= I.

Then β̂j ∝ vj . Where xi is the ith column of X>,A= [α1, · · · ,αk] ∈ Rp×k,B = [β1, · · · ,βk] ∈
Rp×k,Vk = [v1, · · · ,vk] is the loading matrix of X. We now discuss PCA with outliers. We
define εi = xi−AB>xi and assume that its elements ei,j(j = 1, · · · ,p) are independently
identically distributed (i.i.d) with probability density function (p.d.f) f(ei,j) then the like-
lihood function is L(ei,1, · · · ,ei,p) =

∏p
j=1 f(ei,j). We minimize the objective function by



Chapter 4. SVD and PCA 66

using maximum likelihood estimation (MLE).

− lnL=
p∑∑∑
j=1
−lnf(eij) =

p∑∑∑
j=1

ρ(ei,j) = F (εi), (4.42)

Where ρ(ei,j) =− lnf(ei,j)

We approximate F (εi) by its first order Taylor series expansion in the neighborhood of ε0
we have:

F̃ (εi) = F (ε0) + (εi− ε0)>F ‘(ε0) +R1(εi) (4.43)

Where R1(εi) is the higher order residual term, it can be approximated as:

R1(εi) = 1
2 (εi− ε0)>Ωi(εi− ε0) (4.44)

Where Ωi is a diagonal matrix for the elements in εi that are independent and there is no
cross term between ei,j and ei,k, (j 6= k). Since F (εi) reaches its minimal value at εi = 0,
We also require that F̃ (εi) has its minimal value at εi = 0. We let F̃ (0) = 0, we see that we
have the diagonal elements of Ωi as:

ωi(e0, j) = ρ
′(e0,j/e0,j). (4.45)

Then F̃ (εi) can be written as:

F̃ (εi) = 1
2

∥∥∥Ω1/2
i εi

∥∥∥2
+ b (4.46)

Where b is a scalar value determined by ε0.

Then (4.41) can be approximated by:

(Â,B̂) = argmin
A,B

n∑
i=1

∥∥∥Ω1/2
i (xi−AB>xi)

∥∥∥2

2
+λ1

∥∥∥B∥∥∥2

2

= argmin
A,B

{∥∥∥W 1/2 ◦ (X−XBA>)>
∥∥∥2

2
+λ1

∥∥∥B∥∥∥2

2

}
s.t. A>A= I (4.47)

Where:

W = unrvec
[
diag(Ω1), · · · ,diag(Ωn)

]
∈ Rn×p (4.48)

Where unrvec(·) denotes the matrix of a row vector and “◦” denote Hadamard product.
Furthermore diag(Ωi) = [ωi(ei,1), · · · ,ωi(ei,p)]. The (4.41) be formulated as a weighted ridge
regression problem. Now we define the Geman-McClure function:

	(e) = e2

σ2 +e2 (4.49)

We now suggest an iterative approach to solve the weighted ridge regression problem. Since
the Geman-McClure function has properties similar to the hinge loss function in SVM, we
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choose it as the cost function:

ρ(e) = e2

(σ+e2)2 (4.50)

For the relation in (4.45) we have:

ωi(e) = 2σ
(σ+e2)2 (4.51)

Where σ is a positive scalar, which controls the location of demarcation point. Beyond
some threshold τ the outlier would be adaptively assigned with low weights to reduce their
affects on the regression estimation thus resulting in more robust dimension reduction. The
point where the influence of outliers first begins to decrease as the magnitude of the residu-
als increases from zero occurs when the second partial derivative of the ρ− function is zero.
For the Geman-McClure function the second partial derivative is:

∂2ρ

∂e2 = 2σ(σ−3e2)
(σ+e2)3 (4.52)

Equals zero when τ =±
√
σ/3. In other words a residual e is an outlier if |e| ≥

√
σ/3.

Theorem 13. For any λ1 > 0, j = 1,2, · · · ,k, let

(Ã,B̃) = argmin
A,B

(∥∥∥W 1/2 ◦
(
X−XBA>

)∥∥∥2

2
+λ1

∥∥∥B∥∥∥) (4.53)

Then β̂j ∝ vj

Suppose the A⊥ be the orthonormal matrix of A we have:∥∥∥X−XBA>∥∥∥2

2
=
∥∥∥XA⊥∥∥∥2

2
+
∥∥∥XA−XB∥∥∥2

2

=
∥∥∥XA⊥∥∥∥2

2
+

k∑
j=1

∥∥∥Xαj−Xβj
∥∥∥2

2
(4.54)

If A is given then the optimal B minimizing (4.53) can be written as:

B̂opt = arg min
B

k∑
j=1

{∥∥∥W 1/2 ◦ (Xαj−Xβj)
∥∥∥2

2
+λ1

∥∥∥βj∥∥∥2

2

}
(4.55)

On the other hand if B is fixed we have following theorem.

Theorem 14. Let Mn×p = W 1/2 ◦X, Nn×k = W 1/2 ◦XB. Consider the constrained
minimization problem

Â= argmin
A

∥∥∥M −NA>∥∥∥2

2
s.t. A>A= I. (4.56)

Suppose the SVD of M>N =U1Σ1V
>

1 , then Â=U1V
>

1 .
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If we suppose the SVD of M>N = U1Σ1V
>

1 , then we have Â = U1V
>

1 In order to initial-
ize the weight we should firstly estimate the residual εi of xi. For εi = xi−AB>xi we let
A = B = Vk where X = UΣV ,Vk is the first k columns of V . The scale parameter σ of
ρ, which control the shape of ρ− function and hence determines what residual errors are
treated as outliers. We estimated the σ by using median absolute deviation (MED) method
which can be viewed as a robust statistical estimation of the standard deviation we com-
pute it as:

σ = 1.468 med (|e−med(e)|) (4.57)

Where med indicates the median of a vector e = vect(X −XBA>). The convergence is
achieved when the difference of B between adjacent iteration is small enough. In this pa-
per we will use the angle between B(n) and B(n+1) as criterion we stop the iteration if the
following holds:

angle
(
B(n),B(n+1)

)
< ε (4.58)

Where ε > 0 is a scalar.

In face recognition, the traditional sparse coding can be formulated as:

min
γ

∥∥∥y−X>γ∥∥∥2

2
+λ2

∥∥∥γ∥∥∥
1

(4.59)

Where y= [y1,y2, · · · ,yp]∈Rp×1 is a new test sample belong to i−th class, X>= [x1,x2, · · · ,xm]∈
Rp×n is the matrix of training samples xi is the i−th object class γ= [0, · · · ,0,z1,z2, · · · ,zm,0, · · · ,0]∈
Rn is a coefficient vector whose entries are zero expect those associated with the i−th class
λ2 ≥ 0 Lagrange multipliers. The (4.59) is a convex optimization problem, which can be
solved by Lasso algorithm or Elastic Net algorithm. Suppose the test sample y is approx-
imated as ŷi = X>γ̂i, we can classify y to the object class with the largest entry in γ̂, or
classify y based on these ŷi by assigning it to the object class that minimizes the residual:

min
i
ri(y) .=

∥∥∥y− ŷi∥∥∥
2

(4.60)

For raw image data y, the dimension p usually is very large which will cause large data di-
mension and computation cost. The many feature extraction methods be used. Most of the
feature transformations were linear or approximately operations V > ∈ Rk×n, which project
the image space to the feature space usually the k << p. Applying V > to (4.59) yields:

γ̂ = min
γ

∥∥∥V >y−V >X>γ∥∥∥2

2
+λ2

∥∥∥γ∥∥∥
1

(4.61)

In this paper we use the above robust PCA to extract the main feature. Then the classifi-
cation be expressed in feature space as following (Wang and Cheng 2013):

min
i
ri(y) .=

∥∥∥V >y−V >ŷi∥∥∥2
(4.62)
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4.4 Non-Convex Robust and Sparse PCA Via Hard
Thresholding

The derived PCs the linear combinations of the original p variables are hard to be inter-
preted.(Jolliffe, Trendafilov, and Uddin 2003) and (Zou, Hastie, and Tibshirani 2006). One
of the reasons is that PCs over-fit to noise and so almost all the elements of V are non
zero. The other reason is that the loadings are orthogonal. Some methods modify PCA
by introducing regularizations such that the derived loading is sparse (Ulfarsson and Solo
2011). A pioneer approach would be to directly apply the Lasso or L1 penalty on the load-
ings(Jolliffe, Trendafilov, and Uddin 2003). The L1 penalty shrinks the entries of loadings
to zero until a sparse solution is derived as in the lasso regression(Tibshirani 1996). A more
sophisticated and novel approach has been introduced where PCA can be used as a regres-
sion type optimization (elastic net optimization) which gives us sparse loadings by solving
a L1 and L2 penalized regression(Zou, Hastie, and Tibshirani 2006). The resulting sparse
principal component analysis is a promising method and is considered the benchmark. The
SPCA requires additional algorithm to handle the elastic net optimization L1 and L2 pe-
nalized regression in each iteration(Zou and Hastie 2005). Furthermore, there are k tuning
parameters each one controls the sparsity of a single PC.

There are 2 draw backs to sparse PCA:

• The choice of tuning parameters usually requires subjective domain knowledge or fur-
ther searching steps.

• L1- penalty introduces distortions by shrinking the entries of the loading matrix to
zero.

Based on the above 2 drawbacks, we introduce a novel method substitute (SPCA-HT).
The L1- penalty introduces additional distortions by shrinking the elements of V to zero.
Therefore the suggested SPCA-HT uses hard thresholding to regularize PCA. This ap-
proach only requires one tuning parameter which is the hard threshold and can be deter-
mined by following statistical decision theory. Moreover, there are two benefits arising from
the relief of L1-penalty.

• SPCA-HT only requires linear operations and thus computational efficient even in
p >> n.

• Simulations show that the SPCA-HT better estimates principal directions and thus
explains more variance of the data since it does not shrink the coefficient of V to zero
as the Lasso based methods do.

The first k columns of V in (4.35) can be obtained by solving the L2 penalized optimiza-
tion described in the below theorem.

Theorem 15. (PCA and Regularized Optimization) Let A and B both be p×k ma-
trix such that A = [a1 · · ·ak] and B = [b1 · · ·bk] . For any λ > 0 let (A∗,B∗) be the solution
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of the optimization:

minimize
A,B

k∑
j=1

{
‖Xaj−Xbj‖2 +λ‖bj‖2

}
(4.63)

subject to A>A= I.

Then b∗j/‖b∗j‖= vj , ∀j = 1,2, · · · ,k. (4.64)

The SPCA introduces the L1-penalty into (4.63).

We now define what SPCA is and what the SPCs are we follow up the definition with an
algorithm of how to perform SPCA.

Definition 1. (Sparse PCA) Let A and B both be p×k matrix such that A= [a1, · · ·ak]
and B = [b1 · · ·bk]. Given λ > 0 nonnegative constants λj , j = 1,2, · · ·k, and let (Â,B̂) be the
solution of the optimization:

minimize
A,B

k∑
j=1

{
‖Xaj−Xbj‖2 +λ‖bj‖2 +λj‖bj‖1

}
(4.65)

subject to A>A= I

Then, the sparse loadings are v̂j = b̂j/‖b̂j‖,∀j (4.66)

The following is an iterative algorithm to show how SPCA is done.(Wu and Chen 2016)

Algorithm 1: SPCA
1. Initialize with A= [v1 v2 · · ·vk] where X =U ∧V >.
2. Update B given A: For j = 1,2, · · · ,k update bj by solving the elastic net

optimization

minimize
b

‖Xaj−Xb‖2 +λ2‖b‖2 +λ1,j‖b‖1. (4.67)

3. Update A given B: Derive the SVD, X>XB = ŨΛ̃Ṽ >, then A←− Ũ Ṽ >.
4. Repeat step 2 and 3 until convergence.
5. vj ←− bj/‖bj‖,∀j = 1,2, · · · ,k

The L1 penalty plays an important role in the SPCA. In the Lq, q ∈ N penalty family (Fan
and Li 2001) shows that only the Lasso (L1− penalty) can produce a sparse solution and
thus is capable of de-noising. In other words, the L1− penalty prevents PCA from overex-
plaining the variance of noise. Moreover there are benefits after substituting hard thresh-
olding for the L1 penalty. Two of these benefits that arise are:

• The elastic net (4.67) is reduced to a ridge regression (Hoerl and Kennard 1970) and
can be solved by linear operations.
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• Hard thresholding would not introduce additional distortions of V by shrinking the
elements to zero as the Lasso does. Thus we use hard thresholding for the proposed
method.

Now we use a regularization matrix to control the sparsity of V .

Definition 2. (Regularization Matrix G.) Any matrix G ∈ {0,1}p×k can be a valid
regularization matrix and [V ]ij = 0 if [G]ij = 0

With a well- designed regularization matrix G, we can replace the L1 penalty in (4.65) by
the zero constraints introduced by G and still be able to derive sparse loadings.

Definition 3. (Sparse PCA via Hard Thresholding) Given a sparse regularization
matrix G. For any λ > 0 Let (Ã,B̃) be the solution of the optimization

minimize
A,B

k∑
j=1

{
‖Xaj−Xbj‖2 +λ‖bj‖2

}
(4.68)

subject to A>A= I, [B]ij = 0 if [G]ij = 0

Then, the sparse loadings are : ṽj = b̃j/‖b̃j‖, ∀j. (4.69)

Furthermore we show that the SPCA HT can be obtained by an algorithm using linear op-
erations which is essential for computational efficiency.

Theorem 16. (Equivalent Form of the SPCA-HT:) Let Dj be the diagonal matrix
with [Dj ]ii = [G]ij that is Dj = diag(gj). Then (Ã,B̃) in Definition 3 can be obtained by
solving:

minimize
A,B

k∑
j=1

{
‖Xaj−XDjbj‖2 +λ‖bj‖2

}
(4.70)

subject to A>A= I

Therefore the elastic net (4.67) of Algorithm 1 is reduced to a ridge regression with solu-
tion:

bj = (DjX
>XDj +λI)−1DjX

>Xaj (4.71)

Moreover , when p >>n, (4.71) is further simplified to :

bj =DjX
>Xaj (4.72)
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We can show how SPCA-HT is done using the following algorithm (Wu and Chen 2016):

Algorithm 2: Proposed SPCA-HT
1. Given G= [g1 g2 · · ·gk] and initialize with A= [v1 v2 · · ·vk] where X =U ∧V >.
2. Update B given A : ∀ j = 1,2, · · · ,k,Dj ← diag(gj).

bj ←
{
DjX

>Xaj , if p >> n.

(DjX
>XDj +λI)−1DjX

>Xaj , otherwise.

3. Update A given B : Derive the SVD, X>XB = Ũ∧̃Ṽ > then A← Ũ Ṽ >.
4. Repeat step 2 and 3 until convergence.
5. vj ← bj/‖bj‖,∀j = 1,2, · · · ,k.

We summarize with the following three points how SPCA-HT outdoes the LASSO with the
following 3 benefits:

• It is easy to implement since only linear operations are required in the algorithm.

• The threshold tuning parameter ρ can be objectively chosen based on statistical deci-
sion theory.

• The hard thresholding does not introduce additional distortions of the principal direc-
tions by shrinking them to zero as the Lasso does.

We now introduce a few essential notations needed in order to comprehend the coming no-
tions. Lowercase letters denote scalars and uppercase letters denote matrices unless oth-
erwise stated. Ai· and A · j represent the ith row and the jth column of A. Projection
onto support set Ω is given by

∏
Ω . |A| is the element wise absolute value of matrix A.

For norms of matrix A, ‖A‖F is the Frobenius norm; ‖A‖∗ is the nuclear norm; ‖A‖2 is
the largest singular value, ‖A‖p is the lp− norm of vectorized A and ‖A‖2,∞ is the max-
imum of matrix row l2− norms. Moreover 〈A,B〉 represents tr(A>B) for real matrices
A,B. Additionally σi is the ith largest singular value of a matrix. The Euclidean metric
is not applicable here because of the non-uniqueness of the bi- factorisation L∗ = A∗B∗>

which corresponds to a manifold rather than a point. So we define the following distance
between (A,B) and any of the optimal pair (A∗,B∗) such that L∗ =A∗B∗> :

d(A,B,A∗,B∗) = min
R

√
‖A−A∗R‖2F +‖B−B∗R‖2f (4.73)

Where R is an r× r orthogonal matrix.

We now show a novel non-convex optimization approach to decompose a given observa-
tion matrix into a low-rank core and the corresponding sparse residual. We suppose that
there is a known data matrix M ∈ n1×n2 which can be decomposed into a low-rank com-
ponent L∗ and a sparse error matrix S∗ of compatible dimensions. Our aim is to identify
these underlying matrices and hence robustly recover the low-rank component with the
help of available side information in the form of feature matrices X and Y . Concretely
let L∗ = U∗Σ∗V ∗> be the singular value decomposition and P ∗ = X>U∗Σ

1
2 and Q∗ =

Y >V ∗Σ∗
1
2 . S∗ follows the random sparsity model. That is the support of S∗ is chosen
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uniformly at random from the collection of all support sets of the same size. Now assume
that there are also available features X ∈ Rn1×d1 and Y ∈ Rn2×d2 s.t. they are feasible
i.e. col(X) ⊇ col (U∗) and col(Y ) ⊇ col (V ∗) where col (A) is the column space of A and
X>X = Y >Y = I. We now discuss robust low rank recovery using the above mentioned
features and three different incoherence conditions: (i)‖U∗‖2,∞ ≤

√
µ1r
n1

and ‖V ∗‖2,∞ ≤√
µ1r
n2

; (ii)
∥∥∥X2,∞ ≤

√
µ2d1
n1

∥∥∥ and ‖Y ‖2,∞ ≤
√

µ2d2
n2

; (iii) both (i) and (ii) where r is the
given rank of L∗ and µ1,µ2 are constants.

Tθ(A)ij =
{

0 if |Aij | ≤Aθi · or |Aij | ≤Aθ · j,
Aij otherwise,

Where Aθi·,Aθ ·j are the (n2θ)th and (n1θ)th largest element in absolute value in row i and
column j respectively.

S is first initialized as S0 = Tα(M). We then obtain U0Σ0V
>

0 as the r− truncated SVD
of L0 which is calculated via L0 = M −S0. We then construct P0 = X>U0Σ

1
2
0 and Q0 =

Y >V0Σ
1
2
0 . Such an initialization scheme gives P,Q the desirable properties for use in the

subsequent phase.

P =
{
A ∈ Rd1×r ‖XA‖2,∞ ≤

√
2µ1r

n1
‖P0‖2

}
(4.74)

Q=
{
A ∈ Rd2×r ‖Y A‖2,∞ ≤

√
2µ1r

n1
‖Q0‖2

}
(4.75)

We can simply take P as Rd1×r and Q as Rd2×r. To proceed we first regularise P0 and Q0 :

P = ΠP(P0),Q= ΠQ (Q0) (4.76)

At each iteration we start by updating S with the sparse estimator using a threshold of
α+min(10α+ 0.1) :

S = Tα+min(10α,0.1)
(
M −XPQ>Y >

)
(4.77)

For P ,Q we define the following objective function:

L(P ,Q) = 1
2

∥∥∥XPQ>Y >+S−M
∥∥∥2

F
+ 1

64

∥∥∥P>P −Q>Q∥∥∥2

F
(4.78)

P and Q are updated by minimizing the above function subject to the constraints imposed
by the sets P and Q:

P = ΠP (P −η∇PL) (4.79)
Q= ΠQ (Q−η∇QL) (4.80)



Chapter 4. SVD and PCA 74

Where the step size η is determined analytically below and P and Q are properly initial-
ized. Such an optimization design converges to P ∗ and Q∗. The procedure is summarized
in algorithm 3. The former initialization phase provides us with the following guarantees
on P and Q.(Xue et al. 2017)

Theorem 17. In cases (i) and (iii) if α≤ 1
16κrµ1

we have:

d(P0,Q0,P
∗,Q∗)≤ 18αrµ1

√
rκσ∗1 (4.81)

In case (ii), ifα≤ 1
16κµ2

√
d1d2

we have:

d(P0,Q0,P
∗,Q∗)≤ 18αµ2

√
rd1d2κσ∗1 (4.82)

where κ is the condition number of L∗ and d is a distance metric.

Theorem 18. For η≤ 1
192‖L0‖2

there exist constants c1 > 0, c2 > 0, c3 > 0, c4 > 0, c5 > 0, c6 > 0
such that in case (i) when α≤ c1

µ1(κr)
3
2
we have the following relationship:

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c2ησ

∗
r )td(P0,Q0,P

∗,Q∗)2 (4.83)

in case (ii) when α≤ c3

µ2dr
1
2 κ

3
2
, we have:

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c4ησ

∗
r )td(P0,Q0,P

∗,Q∗)2 (4.84)

and in case (iii), when α≤ c5 min
(

1
µ2dκ

, 1
µ1(κr)

3
2

)
we have:

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c6ησ

∗
r )td(P0,Q0,P

∗,Q∗)2 (4.85)

Algorithm 3: Non-convex solver for robust principal component analysis with fea-
tures

Input: Observation M , features X, Y, rank r, corruption approximation α and step size
η.

Initialization:
1. S = Tα(M)
2. UΣV > = r−SVD(M −S)
3. P =X>UΣ

1
2

4. Q= Y >V Σ
1
2

Gradient Descent:
5. P = ΠP(P )
6. Q= ΠQ(Q)
7. while not converged do
8. S = Tα+min(10α,0.1)(M −XPQ>Y >)
9. P = ΠP(P −η∇PL)

10. Q= ΠQ(Q−η∇QL)
11. end while
Return: L=XPQ>Y >,S
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Chapter 5

Compression for Some Spectral
Regression Estimators

5.1 The PCR Estimator and Properties That it En-
tails

In this chapter of the thesis I will empirically explore the bias, variance and MSE as well as
other properties of the PCR estimator. We first start with defining our data set and map-
ping of the space respectively:

D =
{

(Xi,Yi)
iid∼ PXY (x,y), i= 1, · · · ,n

}
(5.1)

Where: X ∈ Rp, Y ∈ Rr

φ :
{
Rp −→ Rr r <<< p

xi −→ zi ∈ Rr, φ(xi) = zi (This matrix is orthogonal)

Where the individual principal components are defined as follows:(
zi1 zi2 · · · ziq

)>
= zi (5.2)

Another way to define each principal component is to take i ∈ {1, · · · ,k} and let xi denote
the k× i matrix with orthonormal columns consisting of the first i columns of X then:
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Let:

zi
LPCA= V xi =

[
V x1 · · · V xk

]
(5.3)

Where zi denotes the n× i matrix having the first i principal components as its columns.

We define The PCR estimator as follows:

f̂PCR(x) = x>v>(z>z)−1z>Y

= z>(z>z)−1z>Y (5.4)

The regression model for our simulated data is defined as:

Yi = f?(xi) + εi (5.5)

It would be nice to derive the following properties theoretically but in the context of this
work we will show the results empirically. We will study the following the properties:

Bias(f̂PCR(x)) = E[f̂PCR(x)]−f?(x) (5.6)

V(f̂PCR(x)) = E
{

(f̂PCR(x)−E[f̂PCR(x)])2
}

(5.7)

MSE (f̂PCR(x)) = Bias(f̂PCR(x))2 +Variance(f̂PCR(x))

=
(
E[f̂PCR(x)]−f?(x)

)2
+E

{
(f̂PCR(x)−E[f̂PCR(x)])2

}
(5.8)

PE (f̂PCR(x)) = E[||f̂PCR−f ||2H] (5.9)

And the percentage of true variation captured (2.5) for the PCR estimator.

The variance of the principal component estimator can also be written as:

V(f̂PCR) =
∫
X
V(f̂PCR(x))PX(x)dx (5.10)
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5.2 Methodology and Outline of Empirical Exploration
of Distinct Performance Characteristics for PCR
Method on Simulated Data for Case N > P (N =
100)

This study focuses on properties of principal components regression (PCR) in different set-
tings. We are mostly concerned with what happens when the number of principal compo-
nents (r) increases from 1 to a large number. Our simulation experiment largely follows the
methodology and specifications of the experiment in the main study (comparing 14 differ-
ent estimation methods). In particular, the considered parameter combinations are varia-
tions of one base specification:

1. r = 1,2, · · · ,14,15.

2. p= 5.

3. ρX = 0.5.

4. q = 10.

5. ρZ = 0.5.

6. S/N = 0.1 and 1.

7. ν = +Inf.

Furthermore:

(A) For each configuration (p,ρX , q,ρZ ,S/N,ν), we simulate 1000 independent models
(β1, · · · ,βp);

(B) For each simulated model (β1, · · · ,βp), we simulate one training sample of size 100 and
one test sample of size 10000.

Since PCR gives a non-zero weight to each candidate predictor, it formally “selects” each
candidate predictor. So the following performance measures are no longer interesting to us:

• Percentage of (correctly) selected true predictors X.

• Percentage of (mistakenly) selected false predictors Z,

We look only at the following measures:

1. Out-Of-Sample Prediction Error (evaluated on an independently simulated test data
set).

2. Root-Mean-Square Error of coefficients estimates (averaged over the coefficients, which
is fine since all of them are of the same order of magnitude)

3. Bias of coefficients estimates.
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4. Variance of coefficients estimates.

5. Percentage of captured true variation: R2 in the regression of the true signal on the
estimated signal.

5.3 Results of Empirical Exploration of Distinct Per-
formance Characteristics for PCR method.

In this document we only state the main findings and illustrate our thoughts with the most
important graphs. The complete set of results can be found in the appendix section. PCR
with only 1 principal component does not perform well, which will be explained later. How-
ever, the first thing we notice is that the estimation and prediction performance of PCR
improves with r increasing if the signal-to-noise ratio is substantial, e.g. 1 (Figures 5.1 -
5.3). The estimation and prediction performance of PCR reaches its peak at r = 2 and then
deteriorates with r increasing if the signal-to-noise ratio is low, e.g. 0.1 (Figures 5.2 and
5.4).
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Figure 5.1: Performance of the Root-Mean-Square Error of Coef-
ficients Estimates for PCR Method with Different PCs for the Case

(p= 5,ρX = 0.5, q = 10,ρZ = 0.5,ν = +inf)

Figure 5.2: Performance of the Out-Of-Sample-Prediction- Error of
Coefficients Estimates for PCR Method with Different PCs for the Case

(p= 5,ρX = 0.5, q = 10,ρZ = 0.5,ν = +inf)
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Figure 5.3: Performance of the Out-Of-Sample-Prediction- Error of
Coefficients Estimates for PCR Method with Different PCs for the Case

(p= 5,ρX = 0.5, q = 10,ρz = 0.5,S/N = 1,ν = +inf)
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Figure 5.4: Performance of the Out-Of-Sample-Prediction- Error of
Coefficients Estimates for PCR Method with Different PCs for the Case

(p= 5,ρX = 0.5, q = 10,ρz = 0.5,S/N = 0.1,ν = +inf)

By construction, there are two independent themes going on: the correlated behavior of
X’s and the correlated behavior of Z’s. PCR cannot capture the two themes with just 1
principal component. It needs at least two. For that reason, PCR with only one principal
component performs much worse than its competitors, overall. Figures 5.5 - 5.7 highlight
the issue. Note that, as ρZ increases, the correlated behavior of Z’s become more and more
important. At some point, the only allowed principal component becomes dedicated to Z’s
almost fully; almost completely ignoring the information contained in the true predictors
(X’s). As a result, the estimated model does not have much of explanatory or predictive
power.



Chapter 5. Compression for Some Spectral Regression Estimators 82

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
3

0.
4

0.
5

0.
6

Rho_Z

R
M

S
 e

rr
or

 o
n 

a 
co

ef
fic

ie
nt

● ● ●

●
●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

● ●

● ● ●

●
●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

● ●

●
● ● ●

●

●

●

●

●
● ●

●
● ● ●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

PCR with 1 PC
PCR with 2 PC
PCR with 3 PC
PCR with 4 PC
PCR with 5 PC
PCR with 6 PC
PCR with 7 PC
PCR with 8 PC
PCR with 9 PC
PCR with 10 PC
PCR with 11 PC
PCR with 12 PC
PCR with 13 PC
PCR with 14 PC
PCR with 15 PC
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ficients Estimates for PCR Method with Different PCs for the Case
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Figure 5.7: Performance of the Out-Of-Sample-Prediction- Error of
Coefficients Estimates for PCR Method with Different PCs for the Case

(p= 5,ρX = 0.5, q = 10,S/N = 1,ν = +inf)

The higher is the correlation among X’s and/or Z’s, the fewer components we need to do a
relatively good job (Figures 5.5, 5.7 and 5.10).
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Figure 5.8: Performance of the Out-Of-Sample-Prediction- Error of
Coefficients Estimates for PCR Method with Different PCs for the Case

(p= 5, q = 10,ρZ = 0.5,S/N = 1,ν = +inf)

The bigger the true model is, the harder it is to estimate and forecast (Figure 5.11). All
the specifications of PCR have trouble.
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Figure 5.10: Performance of the Bias of Coefficients Estimates for PCR
Method with Different PCs for the Case (p = 5,ρX = 0.5,ρZ = 0.5,S/N =

1,ν = +inf)
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Figure 5.11: Performance of the Variance of Coefficients Estimates for
PCR Method with Different PCs for the Case (p = 5,ρX = 0.5,ρZ =

0.5,S/N = 1,ν = +inf)

SN Ratio PCR with 1 PC PCR with 2 PC PCR with 3 PC PCR with 4 PC PCR with 5 PC PCR with 6 PC PCR with 7 PC PCR with 8 PC
0.05 9.5 (0.13) 9.4 (0.12) 9.4 (0.13) 9.5 (0.13) 9.5 (0.13) 0.5 (0.13) 9.6 (0.13)) 9.6 (0.13)
0.1 7.0 (0.09) 6.8 (0.09) 6.9 (0.09) 6.9 (0.09) 6.9 (0.09) 6.9 (0.09) 6.9 (0.09) 6.9 (0.09)
0.2 5.1 (0.07) 4.9 (0.06) 4.9 (0.06) 4.9 (0.06) 4.9 (0.06) 4.9 (0.06) 4.9 (0.06) 4.9 (0.06)
0.3 4.3 (0.06) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05)
0.5 3.7 (0.05) 3.4 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04)
0.75 3.1 (0.04) 2.8 (0.03) 2.8 (0.03) 2.8 (0.03) 2.7 (0.03) 2.7 (0.03) 2.7 (0.03) 2.7 (0.03)
1 3.0 (0.04) 2.5 (0.03) 2.5 (0.03) 2.5 (0.03) 2.5 (0.03) 2.5 (0.03) 2.4 (0.03) 2.4 (0.03)
2 2.5 (0.03) 2.0 (0.02) 2.0 (0.02) 2.0 (0.02) 2.0 (0.02) 1.9 (0.02) 1.9 (0.02) 1.8 (0.02)

SN Ratio PCR with 9 PC PCR with 10 PC PCR with 11 PC PCR with 12 PC PCR with 13 PC PCR with 14 PC PCR with 15 PC
0.05 9.6 (0.13) 9.7 (0.13) 9.7 (0.13) 9.8 (0.13) 9.8 (0.13) 9.9 (0.13) 10.0 (0.13)
0.1 7.0 (0.09) 7.0 (0.09) 7.0 (0.09) 7.1 (0.09) 7.1 (0.09) 7.1 (0.10) 7.2 (0.10)
0.2 4.9 (0.06) 4.9 (0.06) 4.9 (0.06) 4.9 (0.06) 5.0 (0.07) 5.0 (0.07) 5.0 (0.07)
0.3 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.0 (0.05) 4.1 (0.05) 4.1 (0.05)
0.5 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04) 3.3 (0.04)
0.75 2.6 (0.03) 2.6 (0.03) 2.6 (0.03) 2.6 (0.03) 2.59 (0.03) 2.58 (0.03) 2.58 (0.03)
1 2.4 (0.03) 2.4 (0.03) 2.4 (0.03) 2.3 (0.03) 2.3 (0.03) 2.3 (0.03) 2.3 (0.03)
2 1.8 (0.02) 1.7 (0.02) 1.7 (0.02) 1.7 (0.02) 1.6 (0.02) 1.6 (0.02) 1.6 (0.02)

Table 5.1: SNR of Coefficients Estimates for PCR Method for the Case
(p= 5,ρX = 0.5, q = 10,ρz = 0.5,ν = +inf); Standard Error is in the Brackets.
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Chapter 6

Comparison of Data Sets for
Variable Selection, Regularization
and Compression of Some Spectral
Regression Estimators

6.1 Methodology and Outline of Empirical Exploration
Comparison of Distinct Performance Character-
istics for Variable Selection, Regularization and
Compression methods on Simulated Data and Ob-
servational Data Sets

In this study, we compare fourteen different methods of estimating linear models. The
methods are:

1. Best Subset Selection

2. Forward Stepwise Selection governed by p-values and the significance level of 5%

3. Backward Stepwise Selection governed by p-values and the significance level of 5%

4. Forward Stepwise Selection governed by Akaike Information Criterion (AIC)

5. Backward Stepwise Selection governed by Akaike Information Criterion

6. Forward Stepwise Selection governed by Bayesian Information Criterion (BIC)

7. Backward Stepwise Selection governed by Bayesian Information Criterion

8. Forward Stepwise Selection governed by Cross-Validation (CV)
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9. Backward Stepwise selection governed by Cross-Validation (CV)

10. The method of the Lasso

11. The method of Ridge Regression

12. The method of Elastic Net (a hybrid between the Lasso and Ridge Regression meth-
ods)

13. The method of Least Angle Regression (LAR)

14. Principal Components Regression (PCR)

The comparison is done on thousands of simulated data sets and five real data sets. We
consider a number of different specifications. In particular, we run simulations for the cases
when the number of candidate predictors is smaller than the sample size and when it is
larger than the sample size. The simulation part is the most interesting and insightful part
of the study. Calculations on real data sets purpose is illustrations mostly, as almost any-
thing is possible on any given data set out of sampling variability (randomness).

The simulation study is structured as follows. For each set of parameters, we simulate 1,000
independent models. Each model has the form:

Y = β0 +β1X1 + · · ·+βpXp+ ε, (6.1)

Where X1, · · · ,Xp are standard normal variables and each two of them have correlation ρX .
Note that it is possible for the correlation between each two variables in the set to be nega-
tive. Residual ε has either t-distribution with ν degrees of freedom or standard normal dis-
tribution (the same as t-distribution with ∞ degrees of freedom). The true signal is defined
as the systematic part of (6.1), so we have:

True Signal = β0 +β1X1 + · · ·+βpXp. (6.2)

The signal-to-noise ratio is defined as:

S/N = V [β0 +β1X1 + · · ·+βpXp]
/
V[ε]. (6.3)

We call variables X1, · · · ,Xp the “true” predictors. Unfortunately, when building a linear
model for Y , the researcher does not know the exact list of determinants of Y . At best,
variables X1, · · · ,Xp are only part of the universe of “candidate” predictors. In addition to
X’s, the universe has variables Z1, · · · ,Zq, which are completely useless. They are uncorre-
lated with Y (so useless in the linear framework, to be exact). Z’s represent research noise,
giving way to potential errors in model selection. We call Z1, · · · ,Zq “false” predictors. In
our little simulation study, we assume that each of Z’s has standard normal distribution
and each two of them have correlation ρZ .
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Altogether, parameters of p,ρX , q,ρZ ,S/N and ν constitute the specification of any given
random model. For each such model, we simulate true regression coefficients (β1, · · · ,βp)
as independent standard normal variables. The estimation methods are run on centered
versions of Y,X1, · · · ,Xp,Z1, · · · ,Zq. Therefore, the value of β0 is set to 0 without loss of
generality. For each model we simulate realizations of (Y ,X1, · · · ,Xp,Z1, · · · ,Zq) to create a
sample of size N . The simulation is done independently over the models.

One may wonder why we estimate many models (many values of vector (β1, · · · ,βp)) for
each configuration of parameters (p,ρX , q,ρZ ,S/N,ν) instead of simulating many random
samples per model. The answer to that would be estimation methods may get “lucky” or
“unlucky”. If β1, · · · ,βp are simulated with comparable absolute values, ridge regression
is favored over Lasso. If only a few of β1, · · · ,βp have big absolute values and the rest are
close to 0, Lasso is favored over ridge regression. Also, overall, estimation methods have
more difficulties in estimating the signal when the signal is composed of many influential
predictors instead of just a few.

The fourteen estimation methods are contrasted and compared with the help of seven dis-
tinct performance characteristics:

1. Out-Of-Sample Prediction Error (evaluated on an independently simulated test data
set or via cross-validation if working with real data)

2. Root-Mean-Square Error of coefficients estimates (averaged over the coefficients, which
is fine since all of them are of the same order of magnitude)

3. Bias of coefficients estimates

4. Variance of coefficients estimates

5. Percentage of (correctly) selected true predictors X

6. Percentage of (mistakenly) selected false predictors Z

7. Percentage of captured true variation: R2 in the regression of the true signal on the
estimated signal.

Characteristics 2-7 can be evaluated only if the true values of coefficients are known. There-
fore, they are used during the simulation study only. This is no concern to us, the simula-
tion study is more informative anyway. Out of the seven characteristics, we view 1. and
2. as most important. For diagnostic purposes, characteristics 5. and 6. are interesting as
well.

We now outline how we will conduct our study on our observational data sets. Observa-
tional or real data we do not know the truth. That is in fact, the primary reason why we
do statistics: to get to the truth as closely as possible. We would ask ourselves "how do we
know if we are right or wrong?" or "How do we know whether the quality of our expertise is
high or low?". There are several ways to look at ourselves from a distance. A good one as
mentioned before is to use cross-validation.

We split the data into K blocks and approach model assessment in K steps. At each step,
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we estimate the model on K-1 out of K blocks and see how well the estimated model pre-
dicts the dependent variable on the remaining K-th block. It goes without saying that this
one testing block is different over the K steps. This way, the statistical power of model
assessment is commensurate with the sample size of the whole data set. This way, each
block gets to participate in both: training the model and testing the model. At the end,
the root-mean-square prediction error is aggregated over the K steps. This is the metric
which serves as an equivalent of the out of sample prediction error calculated during the
simulation stage. This is the metric which is used to compare the performance of 14 esti-
mation methods in real setting.

In our analysis we exploit the five real data sets that were introduced in chapter 1. To en-
sure relative homogeneity of experimental settings, we sample the same number of observa-
tions from each data set. In addition to that, we look at only a subset of available vari-
ables. This is done to mitigate computational issues: memory, speed, stability etc. The
philosophy and implementation of most estimation methods is reasonable. However, the
philosophy of the best subset selection is quite inefficient. Most analyses containing best
subset selection cannot handle huge numbers of potential predictors. Best subset selection
is too greedy of a method.

6.2 Results of Empirical Comparison of Distinct Per-
formance Characteristics for Variable Selection,
Regularization and Compression Methods on Sim-
ulated Data When Sample Size > Number of Pre-
dictors (N>p (N=100))

We start with the simulation results. Two types of specifications have been tried:

(A) Sample size bigger than the number of predictors: training sample size = 100; p =
1,2, · · · ,10; q = 1,3, · · · ,13,15;

(B) Sample size smaller than the number of predictors: training sample size = 15; p =
1,2, · · · ,10; q = 10,12, · · · ,18,20; p+ q > 15.

In each case:

• For each configuration (p,ρX , q,ρZ ,S/N,ν), we simulate 1,000 independent models
(β1, · · · ,βp);

• For each simulated model (β1, · · · ,βp), we simulate one training sample and one test
sample of size 10,000.

Below we display only the most important and illustrative results. For the complete set of
graphs and tables please refer to appendices A and B.
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Figure 6.1: Comparison of Performance of the RMSE for Methods on
Simulated Data of 1000 Models and when N = 100.
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Figure 6.2: Comparison of Performance on the Out-Of-Sample-Predictive-
Error for Methods on Simulated Data of 1000 Models and when N = 100.
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Number Of Xs Best Subset Forward P-value Backward P-value Forward AIC Backward AIC Forward BIC Backward BIC
1 0.10 (0.003) 0.04 (0.002) 0.05 (0.002) 0.05 (0.002) 0.07 (0.002) 0.03 (0.001) 0.03 (0.002)
2 0.15 (0.003) 0.08 (0.002) 0.10 (0.003) 0.09 (0.003) 0.11 (0.003) 0.07 (0.002) 0.08 (0.002)
3 0.19 (0.004) 0.12 (0.03) 0.14 (0.003) 0.13 (0.003) 0.15 (0.003) 0.12 (0.03) 0.13 (0.003)
4 0.24 (0.004) 0.17 (0.003) 0.19 (0.004) 0.18 (0.004) 0.20 (0.004) 0.18 (0.004) 0.18 (0.004)
5 0.27 (0.005) 0.20 (0.004) 0.22 (0.004) 0.21 (0.004) 0.23 (0.004) 0.21 (0.004) 0.22 (0.004)
6 0.30(0.004) 0.25 (0.004) 0.26 (0.004) 0.25 (0.004) 0.27 (0.004) 0.26 (0.004) 0.26 (0.005)
7 0.34 (0.005) 0.29 (0.005) 0.30 (0.005) 0.29 (0.005) 0.31 (0.005) 0.31 (0.005) 0.31 (0.005)
8 0.37 (0.005) 0.32 (0.005) 0.33 (0.005) 0.32 (0.005) 0.34 (0.005) 0.34 (0.005) 0.34 (0.005)
9 0.40 (0.005) 0.36 (0.005) 0.37 (0.005) 0.35 (0.005) 0.37 (0.005) 0.38 (0.005) 0.38 (0.005)
10 0.43 (0.006) 0.39 (0.005) 0.40 (0.005) 0.38 (0.005) 0.41 (0.006) 0.42 (0.006) 0.41 (0.006)

Table 6.1: Root-Mean-Square Error of Coefficient Estimates for Best Sub-
set - Backward BIC methods; Standard Error is in the Brackets.

Number Of Xs Forward CV Backward CV Lasso Ridge Elastic Net LAR PCR
1 0.07 (0.002) 0.08 (0.002) 0.05 (0.002) 0.09 (0.002) 0.06 (0.002) 0.05 (0.002) 0.10 (0.003)
2 0.11 (0.003) 0.13 (0.003) 0.10 (0.002) 0.14 (0.003) 0.11 (0.002) 0.10 (0.002) 0.16 (0.003)
3 0.16 (0.003) 0.17 (0.03) 0.14 (0.002) 0.19 (0.003) 0.15 (0.003) 0.14 (0.03) 0.22 (0.004)
4 0.20 (0.004) 0.22 (0.004) 0.18 (0.003) 0.22 (0.003) 0.18 (0.003) 0.18 (0.003) 0.27 (0.004)
5 0.23 (0.004) 0.25 (0.004) 0.21 (0.003) 0.25 (0.003) 0.21 (0.003) 0.21 (0.003) 0.30 (0.004)
6 0.27(0.004) 0.29 (0.005) 0.24 (0.003) 0.28 (0.003) 0.25 (0.003) 0.24 (0.003) 0.34 (0.004)
7 0.31 (0.005) 0.33 (0.005) 0.28 (0.004) 0.31 (0.004) 0.28 (0.004) 0.28 (0.004) 0.37 (0.005)
8 0.34 (0.005) 0.36 (0.005) 0.30 (0.004) 0.32 (0.004) 0.30 (0.004) 0.29 (0.004) 0.40 (0.005)
9 0.37 (0.005) 0.39 (0.005) 0.33 (0.004) 0.35 (0.004) 0.32 (0.004) 0.33 (0.004) 0.43 (0.005)
10 0.41 (0.005) 0.42 (0.006) 0.35 (0.004) 0.37 (0.004) 0.35 (0.004) 0.35 (0.004) 0.46 (0.005)

Table 6.2: Root-Mean-Square Error of Coefficient Estimates for Forward
CV - PCR; Standard Error is in the Brackets.
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Figure 6.3: Comparison of Various Performance Techniques for Methods on
Simulated Data of 1000 Models and when N = 100 .
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6.3 Results of Empirical Comparison of Distinct Per-
formance Characteristics for Variable Selection,
Regularization and Compression Methods on Sim-
ulated Data when Sample Size < Number of Pre-
dictors (N<p (N=15))
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Figure 6.4: Comparison of Performance of the RMSE for Methods on
Simulated Data of 1000 Models and when N = 15.
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Figure 6.5: Comparison of Performance on the Out-Of-Sample-Predictive-
Error. For Methods on Simulated Data of 1000 Models and when N = 15.



Chapter 6. Comparison of Data Sets for Variable Selection, Regularization
and Compression of Some Spectral Regression Estimators 94

 

 

 

0 2 4 6 8 10 12

−
2

−
1

0
1

2

Number of X

B
ia

s 
of

 c
oe

ffi
ci

en
t e

st
im

at
es

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●

●

● ● ● ● ●● ● ● ●

●

● ● ● ● ●
● ● ● ●

●

● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR  

 

 

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0
50

0

Number of X

V
ar

ia
nc

e 
of

 c
oe

ffi
ci

en
t e

st
im

at
es

● ● ● ● ● ● ● ● ● ●● ● ● ●
●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

10 12 14 16 18 20 22

10
20

30
40

Number of Z

P
er

ce
nt

ag
e 

of
 c

ap
tu

re
d 

tr
ue

 v
ar

ia
tio

n

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

● ●
●

● ●
●

●

● ●

● ●
●

●

● ●
● ●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

● ●

●
●

● ●

● ●

●
●

● ●

● ●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

● ● ●
●

●

●

● ● ●
●

●

●

● ● ●
●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

20
40

60
80

10
0

Rho_X

P
er

ce
nt

ag
e 

of
 s

el
ec

te
d 

tr
ue

 p
re

di
ct

or
s

● ● ● ● ●

●
●

●

● ●
●

● ● ● ● ●

●
●

●

● ●
●

● ● ● ● ●

●
●

●

● ●
●

● ● ● ● ● ●
● ● ●

●
●

● ● ● ● ● ●
● ● ●

●
●

● ● ● ● ● ●
● ● ●

●
●

● ●
● ● ●

●
●

●

●
●

●

● ●
● ● ●

●
●

●

●
●

●

● ●
● ● ●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●

●
●

●

●

●
●

● ● ●
●

●

●
●

●

●
●

●

● ● ●
●

●

●
●

●

●

●
●

●
●

●
●

● ●
●

●
● ●

●

●
●

●
●

● ●
●

●
● ●

●

●
●

●
●

● ●
●

●
● ●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

40
60

80
10

0

Rho_Z

P
er

ce
nt

ag
e 

of
 s

el
ec

te
d 

fa
ls

e 
pr

ed
ic

to
rs

● ● ● ● ● ●

● ●

●

●

●

● ● ● ● ● ●

● ●

●

●

●

● ● ● ● ● ●
● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ●
● ●

● ●

●

● ●
●

● ● ●
● ●

● ●

●

● ●
●

● ● ●
● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

●

●
●

● ● ● ● ● ● ●
●

●

●
●

● ● ● ● ● ● ●
●

●

●
●

● ● ● ● ● ●
● ● ●

●
●

● ● ● ● ● ●
● ● ●

●
●

● ●
● ● ● ●

● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

Figure 6.6: Comparison of Various Performance Techniques for Methods on
Simulated Data Of 1000 Models and when N = 15.
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It is wrong to analyze each block of results, corresponding to a specific setting separately.
For each estimation method one can cook up an idealistic situation, where that method
beats all the other methods. That is not the point, what matters is how the estimation
methods perform overall: how accurate they are, how robust they are and how stable they
are. So they should be compared in aggregate terms; using all the body of evidence at
hand. Looking back at the generated results, we notice:

That the out of sample prediction errors of most methods are comparable. There are no
clear winners, however there are some clear losers for e.g. the best subset selection method.
The Lasso, Elastic Net and Least Angle Regression are good at identifying most true pre-
dictors, whenever that is possible at all. Also the Lasso, Elastic net and Least Angle Re-
gression (LAR) are good at identifying most true predictors, whenever that is possible at
all. We also notice that the Lasso, Elastic Net and LAR estimate regression coefficients rel-
atively accurately. The principal components regression (PCR) method tends to be some-
where in the middle. Across various specifications, it exhibits inferior performance to Lasso,
Elastic Net and LAR. The Best subset selection experiences complete fiasco on data sets
where the sample size is small and the number of candidate predictors is bigger than the
sample size.

Moving on to the “forward” and “backward” methods we see that unsurprisingly, “forward”
methods perform much better than “backward” methods on data sets where the sample
size is small and the number of candidate predictors is bigger than the sample size. Under
extremely noisy circumstances, “forward” methods perform better than “backward” meth-
ods. However under normal circumstances,“forward” and “backward” methods are com-
parable. On small data sets BIC performs better than AIC. Looking at the Least Angle
Regression it performs at an optimal level relative to the other methods. Lastly PCR and
ridge regression should not be judged severely on the account of putting 100% of false pre-
dictors into the estimated model. By definition, they give a non-zero weight to every can-
didate predictor. So, formally speaking, each candidate predictor is “chosen” to be in the
model. What is important is that PCR and ridge regression apply clever, soft regulariza-
tion. This type of regularization shrinks the coefficients of the least informative predictors
the most. And so, the resulting coefficients error and out of sample prediction error are not
as bad as one would think.

We may wonder why PCR disappoints in this study. It is likely the consequence of our ex-
periment offering an unsuitable climate to PCR. PCR assumes that there is one, two, three
or more factors driving a big set of explanatory variables. In other words, there are several
influential variables and almost every true predictor is highly correlated with at least one of
them. On the other hand, the environment we simulate allows for quite individualistic pref-
erence. Yes, every two predictors Xi and Xj are correlated but that happens through their
own, separate, individualistic mechanism. The relationship between Xi and Xj has little
to do with the relationship between Xi and Xk. It does not exist because all of them are
highly correlated with one major factor. In our world, Xi may “like” Xj for other reasons
than why it may like Xk. Individualistic, high entropy.
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6.4 Results of Empirical Exploration Comparison of
Out of Sample Prediction Error for Variable Se-
lection, Regularization and Compression Methods
on Five Observational Data Sets.

Now, let us discuss illustrations based on the five real data sets. While processing real
data, we sample 20 data points from each data set. This is a relatively small number, for
three out of five data sets, the number of candidate predictors is larger than the sample
size. For two out of five data sets, the situation is the opposite (however, the sample size is
still quite small). 10-fold cross-validation is applied to estimate prediction error. Not sur-
prisingly, the estimation performance on real data sets is largely consistent with the simu-
lation results B (sample size < number of predictors). The estimation performance is sum-
marized in Figure 6.7 and Tables 6.3 and 6.4.
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Figure 6.7: Comparison of Performance of the Out-Of-Sample-Predictive-
Error for Methods on the 5 Data Sets for N=20.
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Data Set Best Subset Forward P-value Backward P-value Forward AIC Backward AIC Forward BIC Backward BIC
NPI 24.2 (15.4) 6.1 (1.3) 19.8 (13.1) 5.9 (1.1) 23.3 (15.3) 6.8 (1.4) 23.1 (15.3)
CFCS 27.5 (4.0) 16.6 (2.1) 23.2 (3.3) 15.6 (1.9) 27.4 (2.7) 16.3 (2.2) 26.0 (3.4)

EBFMT 15.3 (5.5) 4.2 (0.7) 7.1 (1.1) 5.2 (1.1) 11.2 (3.3) 4.2 (0.7) 9.1 (2.4)
EQSQ 42.8 (8.4) 14.2 (2.3) 27.3 (5.8) 20.0 (4.9) 39.6 (8.0) 12.5 (1.5) 39.0 (8.2)
RSE 15.4 (2.1) 10.2 (1.8) 11.9 (1.9) 10.2 (1.8) 13.9 (1.6) 10.2 (1.8) 12.3 (2.0)

Table 6.3: Cross-Validated Prediction Error on Real Data Sets for Best
Subset - Backward BIC Methods; Standard Error is in the Brackets.

Data Set Forward CV Backward CV Lasso Ridge Elastic Net LAR PCR
NPI 6.5 (0.9) 22.4 (16.3) 5.2 (0.7) 5.9 (0.6) 5.4 (1.0) 7.4 (0.5) 2.6 (0.4)
CFCS 17.8 (2.1) 23.9 (2.7) 13.4 (2.2) 15.0 (2.3) 15.5 (2.1) 14.8 (2.2) 13.9 (2.1)

EBFMT 7.3 (1.1) 9.4 (0.9) 4.3 (1.0) 4.5 (1.1) 4.4 (1.0) 4.6 (1.1) 4.6 (1.0)
EQSQ 15.4 (1.7) 35.2 (7.5) 12.1 (1.1) 11.6 (1.4) 11.5 (1.5) 11.2 (1.3) 12.2 (1.3)
RSE 10.8 (1.8) 14.4 (1.6) 10.0 (1.7) 10.2 (1.7) 11.1 (2.1) 10.4 (1.8) 10.3 (1.7)

Table 6.4: Cross-Validated Prediction Error on Real Data Sets for Forward
CV - PCR; Standard Error is in the Brackets.

Overall, forward stepwise selection + p-value, forward stepwise selection + BIC, Lasso,
ridge regression, elastic net, LAR and PCR are the best performers. For the most part,
the difference in predictive performance of each two methods is not statistically significant.
On the other end of spectrum, best subset selection fails completely.
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Chapter 7

Conclusion and Discussion

We started off the paper by recapping the notion of multiple regression and formulated the
linear regression model. From there, we introduced our problem statement and the out-
line of the thesis. In Variable Selection we show how we choose variables. We started off
with the concept of Stepwise Selection regression which consisted of Forward Selection and
Backward Elimination. The methodology behind the Stepwise regression procedure is that
we build our regression model from a set of candidate predictor variables by entering and
removing predictors with a critical value of entry of:αE = 0.15 and a critical value of exit
of αR = 0.15. Forward Stepwise Selection is great to use since the method usually has less
computation and in turn less models to analyze which is known explicitly as: (

∑p−1
k=0) =

1 + p(p+ 1)/2 models). It has no problem for the first n-steps if p > n. However once an
input is in, it does not get out. A second way to carry out the Stepwise selection regres-
sion is Backward Elimination. We see that again it does not require intensive computation
which results in less models needed to be analyzed specifically (

∑p−1
k=0(p−k) = 1+p(p+1)/2

models).( If p = 20, only 211 models, are needed compared with more than 1 million mod-
els for the best subset selection). Obviously this is a very big advantage. Two drawbacks to
the method is that once an input is out, it does not get it and the method is not applicable
to the case with p > n.

Best Subset Selection is another good variable selection technique to pick the best model as
it is straightforward to carry out and a conceptually clear method, However, it’s often com-
putationally infeasible since we have too many models to run. Moreover, the search space
is too large ;we have (2p models) which may lead to overfit. For instance, if p = 20 there
are 220 > 1000,000 models. To compare regression models, some statistical software may
also give values of statistics referred to as information criterion statistics. For regression
models, these statistics combine information about the SSE, number of parameters in the
model, and the sample size. A low value, compared to values for other possible models, is
good. Some data analysts feel that these statistics give a more realistic comparison of mod-
els than the Cp statistic because Cp tends to make models seem more different than they
actually are.

In our study we used the AIC, BIC and coefficient of determination and R2 adjusted as
well as the Mallow’s Cp statistic via mixed integer programming approach. Which showed
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us that it can be utilized to do best subset selection via a mixed integer programming ap-
proach. For the mallows Cp statistic we saw that the subset models with small Cp values
have a small total (standardized) variance of prediction.

A reasonable strategy for using Cp to identify the best models is to identify subsets of pre-
dictors for which the Cp value is near p. We notice that the full model always yields Cp = p
so we don’t select the full model based on Cp. If all models except the full model yield a
large Cp not near p it suggests some important predictor(s) are missing from the analysis.
In this case we are advised to identify the predictors that are missing. We then saw how
the Mallow Cp statistic is useful for subset selection using a mixed integer quadratic pro-
gramming approach. When p < 30, the method provides the best subset of variables. More-
over, when handling datasets consisting of a large number of samples it finds better quality
solutions faster than stepwise regression methods do.

In the Regularization and Shrinkage chapter we started with the General Regularization
techniques section which included the Tikhonov, Ivanov and Morozov methods. We started
by first defining our empirical risk minimization function corresponding to our regression
model. From there, we defined some regularization methods in relation to Ridge regres-
sion and the Lasso for both Tikhonov and Ivanov methods. We subsequently parameterized
the functions to then show that they are equivalent. We can then formulate theory to be
able to design more learning algorithms. Ridge Regression techniques then followed which
explore the properties and the derivations of these properties of the estimator, The Bias,
Variance, MSE etc. We see that the ridge regression estimator is biased and we also dis-
cover that the ridge estimator coefficients vanishes as the penalty parameter increases and
tends to infinity. This holds for both cases in the problem statement for p < N and p > N .
Similarly, the variance of the ridge regression estimator vanishes as the tuning parameter
goes to infinity. The trace of the MSE is realized to be a convex function. A theoretical ex-
ploration of the K fold cross validation follows which was then applied to 5 observational
data sets to the 14 methods explored later in chapter 6.

We then explored 3 different shrinkage methods which were: The method of the Lasso,
Bayesian Lasso and Elastic net. The method of the Lasso is suggested when dealing with
an ill conditioned model matrix X for case p > n. When p > n the Lasso provides a bet-
ter variable selection method than Ridge regression. The Lasso provides a sparse solution
by penalizing the sum of the absolute values of the estimates. As λ increases the number
of significant coefficients decreases. Hence this makes the Lasso for variables selection and
interpretation of the results a more plausible method than Ridge regression. We then par-
tially answer the question "When is the lasso solution well-defined (unique)?" When review-
ing results from the literature, we see that if the predictor variables are drawn from a con-
tinuous probability distribution then there is a unique Lasso solution with probability one
regardless of the sizes of n and p We also show that this result extends easily to `1 penal-
ized minimization problems over a wide range of loss functions. Another Shrinkage method
explored is the Bayesian Lasso where a connection with the inverse Gaussian distribution
is made which provides tractable full conditional distributions. The Bayesian Lasso pro-
vides interval estimates that can guide variable selection. Moreover the structure of the
hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso
parameter. We then delved into the theory of bridge regression. In the elastic net section
of the chapter we perceive the notion of the grouping effect and how it is useful when there
are strongly correlated predictors in the model. The elastic net is theoretically presumed to
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perform better than the Lasso for the p >> n whilst still keeping a similar representation of
sparsity.

In the compression chapter we investigate the theory of eigenvector decomposition as well
as singular value decomposition and it’s relation to PCA and dimensionality reduction.
Starting with the SVD, one of the most common applications we find is obtaining a low
rank approximation to a matrix. This is used for compression, speed up and also actual
data analysis. Similarly, for Eigenvector (Spectral) Decomposition we see that it is useful
because it gives us the ability to efficiently raise a matrix to a large power. For this and
many other reasons it’s used heavily in engineering to efficiently analyze and predict the
behaviour of a linear dynamical system at a future point in time. The two are equal when
A � 0∧A> = A is symmetric positive semidefinite. This can be denoted as A which is the
set of matrices A ∈ Rn×n that satisfy A = b>B. For SPCA hard thresholding we find that
the proposed method can be implemented by linear operators and thus is computationally
efficient even in the case where p >> n or large p scenarios. The method shows the supe-
riority compared to the L1 penalized method which makes the method a strong rival of
the existing sparse PCA. Lastly, RPCA’s use can be extended to data compression, more
specifically the suggested weighted RPCA approach to estimate the data principal compo-
nents under outlier sampling. By modeling the MLE of residues, the LS problem was for-
mulated as a weighted ridge regression expression. With an iteratively regression process-
ing, a better estimated performance was obtained compared with `2− PCA and `1−PCA
methods. For the estimation of the loading matrix B, we find that it is computationally
expensive.

The Principal Component Regression method was explored empirically and we found in
our simulated study that:

The PCR with only one principal component does not perform well. However, the first
thing we notice is that the estimation and prediction performance of PCR improves with r
increasing if the signal to noise ratio is substantial. By construction there are two indepen-
dent themes going on: the correlated behavior of X ′s and the correlated behavior of Z’s.
PCR cannot capture the two themes with just one principal component. It needs at least
two. For that reason PCR with only one principal component performs much worse than
its competitors overall. We noted that ρZ increases the correlated behavior of Z ′s become
more and more important. At some point, the only allowed principal component becomes
dedicated to Z ′s almost fully almost completely ignoring the information contained in the
true predictors (X’s). As a result, the estimated model does not have much of explanatory
or predictive power. The higher is the correlation among X ′s and or Z ′s the fewer compo-
nents we need to do a relatively good job. The bigger the true model is, the harder it is to
estimate and forecast.

We then carried out an extensive simulation study for n > p, n < p and for 5 real data sets
comparing the performance of 7 characteristics performance methods on 14 methods. For
the simulation study we carried out for 1000 models for the n < p and n > p. We use sim-
ulated data for our simulation study and k fold cross validation for our real data sets. We
concluded that the out of sample prediction error of most methods was comparable and
that there were no clear winners but certainly there were clear losers. The best subset se-
lection was the worst method out of the 14 methods. Best Subset Selection performed very
poorly for case two where N<p where the sample size is small and the number of candidate
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predictors is bigger than the sample size.

The best method in the study was the LARs in several categories, moreover Lasso, Elastic
net and least angle regression (LAR) are good at identifying most true predictors whenever
that is possible at all. The Lasso, Elastic net and LAR estimate regression coefficients rel-
atively accurately. The Principal Components Regression (PCR) tends to be somewhere in
the middle. Across various specifications it exhibits inferior performance to Lasso, elastic
net and LAR. The PCR in our simulated experiment did not do well, this is because there
are several influential variables and almost every true predictor is highly correlated with
at least one of them. Every two predictors Xi and Xj are correlated in their own individ-
ualistic mechanism. For our 5 real data sets while processing real data, we sample 20 data
points from each data set which is a relatively small number. 10-fold cross-validation is ap-
plied to estimate prediction error. As was expected, the estimation performance on real
data sets is largely consistent with the simulation results for the case of N < p.
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Appendix A

Complete Set of Graphs from the
Simulation Study with N = 100
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Figure A.1: Variability of the Seven Performance Characteristics Over the
Number of True Predictors.
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Figure A.2: Variability of the Seven Performance Characteristics Over the
Correlation of True Predictors.
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Figure A.3: Variability of the Seven Performance Characteristics Over the
Number of False Predictors.
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Figure A.4: Variability of the Seven Performance Characteristics Over the
Correlation of False Predictors.
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Figure A.5: Variability of the Seven Performance Characteristics Over the
Signal-To-Noise Ratio.
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Figure A.6: Variability of the Seven Performance Characteristics Over the
Degrees of Freedom of Residuals (Tail Fatness of Residuals).



Appendix A. Complete Set of Graphs from the Simulation Study with
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Figure A.7: Performance of the RMSE and SNR for the Backward Step-
wise Regression Governed by the AIC Method on Simulated Data of 1000

Models and when N = 100

Figure A.8: Performance of the RMSE and SNR for the Backward Step-
wise Regression Governed by the BIC Method on Simulated Data of 1000

Models and when N = 100
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Figure A.9: Performance of the RMSE and SNR for the Backward Step-
wise Regression Governed by the CV Method on Simulated Data of 1000

Models and when N = 100

Figure A.10: Performance of the RMSE and SNR for the Backward Step-
wise Regression Governed by p-values and the Significance Level of 5% on

Simulated Data of 1000 Models and when N = 100
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Figure A.11: Performance of the RMSE and SNR for the Best Subset Re-
gression Governed by the Best Subset Selection Method on Simulated Data

of 1000 Models and when N = 100

Figure A.12: Performance of the RMSE and SNR for the Forward Stepwise
Regression Governed by the AIC Method on Simulated Data of 1000 Models

and when N = 100
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Figure A.13: Performance of the RMSE and SNR for the Forward Stepwise
Regression Governed by the BIC Method on Simulated Data of 1000 Models

and hen N = 100

Figure A.14: Performance of the RMSE and SNR for the Forward Stepwise
Regression Governed by the CV Method on Simulated Data of 1000 Models

and when N = 100



Appendix A. Complete Set of Graphs from the Simulation Study with
N = 100 112

Figure A.15: Performance of the RMSE and SNR for the Forward Step-
wise Regression Governed by p-values and the Significance Level of 5% on

Simulated Data of 1000 Models and when N = 100
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Figure A.16: Performance of the RMSE and SNR for the Ridge Regression
Method on Simulated Data of 1000 Models and when N = 100.

Figure A.17: Performance of the RMSE and SNR for the Lasso Method on
Simulated Data of 1000 Models and when N = 100.
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Figure A.18: Performance of the RMSE and SNR for the LAR Method on
Simulated Data of 1000 Models and when N = 100.

Figure A.19: Performance of the RMSE and SNR for the Elastic Net
Method on Simulated Data of 1000 Models and when N = 100.
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Appendix B

Complete Set of Graphs from the
Simulation Study with N = 15
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Figure B.1: Variability of the Seven Performance Characteristics Over the
Number of True Predictors.



Appendix B. Complete Set of Graphs from the Simulation Study with N = 15116
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Figure B.2: Variability of the Seven Performance Characteristics Over the
Correlation of True Predictors.



Appendix B. Complete Set of Graphs from the Simulation Study with N = 15117
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Figure B.3: Variability of the Seven Performance Characteristics Over the
Number of False Predictors.



Appendix B. Complete Set of Graphs from the Simulation Study with N = 15118
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Figure B.4: Variability of the Seven Performance Characteristics Over the
Correlation of False Predictors.



Appendix B. Complete Set of Graphs from the Simulation Study with N = 15119

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

−
20

0
0

20
0

40
0

60
0

80
0

SN Ratio

O
ut

−
of

 s
am

pl
e 

pr
ed

ic
tiv

e 
er

ro
r

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

−
50

0
50

10
0

15
0

20
0

25
0

SN Ratio

R
M

S
 e

rr
or

 o
n 

a 
co

ef
fic

ie
nt

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

−
10

−
5

0
5

10
15

20

SN Ratio

B
ia

s 
of

 c
oe

ffi
ci

en
t e

st
im

at
es

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

0
20

00
40

00
60

00
80

00
10

00
0

SN Ratio

V
ar

ia
nc

e 
of

 c
oe

ffi
ci

en
t e

st
im

at
es

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

20
40

60
80

10
0

SN Ratio

P
er

ce
nt

ag
e 

of
 s

el
ec

te
d 

tr
ue

 p
re

di
ct

or
s

● ●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

● ●
● ● ● ●

●
●

● ●
● ● ● ●

●
●

● ●
● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●

●
●

●
●

●

●

● ●

●
●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

20
40

60
80

10
0

SN Ratio

P
er

ce
nt

ag
e 

of
 s

el
ec

te
d 

fa
ls

e 
pr

ed
ic

to
rs

● ● ● ● ● ●
● ●● ● ● ● ● ●
● ●

● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ●● ● ● ● ● ● ● ●

●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●
● ● ●

● ●
●

● ●
● ● ●

● ●
●

● ●
● ● ●

● ●
●

● ●
● ●

●
● ●

●

● ●
● ●

●
● ●

●

● ●
● ●

●
● ●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5

10
20

30
40

50

SN Ratio

P
er

ce
nt

ag
e 

of
 c

ap
tu

re
d 

tr
ue

 v
ar

ia
tio

n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

Best Subset
Forward P−value
Backward P−value
Forward AIC
Backward AIC
Forward BIC
Backward BIC
Forward CV
Backward CV
Lasso
Ridge
Elastic Net
LAR
PCR

Figure B.5: Variability of the Seven Performance Characteristics Over the
Signal-To-Noise Ratio.



Appendix B. Complete Set of Graphs from the Simulation Study with N = 15120
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Figure B.6: Variability of the Seven Performance Characteristics Over the
Degrees of Freedom of Residuals (Tail Fatness of Residuals).
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Appendix C

Complete Set of Graphs from the
PCR Simulation Study with
N = 100
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Figure C.1: Variability of the Five Performance Characteristics Over the
SNR for Different Values of PCs.
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Figure C.2: Variability of the Five Performance Characteristics Over the
log(DOF) for Different Values of PCs.
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Figure C.3: Variability of the Seven Performance Characteristics Over the
Number of True Predictors.
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Figure C.4: Variability of the Five Performance Characteristics Over the
Number of False Predictors for Different Values of PCs.
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Figure C.5: Variability of the Five Performance Characteristics Over the
Correlation of True Predictors for Different Values of PCs.



Appendix C. Complete Set of Graphs from the PCR Simulation Study with
N = 100 126

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

2.
2

2.
4

2.
6

2.
8

3.
0

Rho_Z

O
ut

−
of

 s
am

pl
e 

pr
ed

ic
tiv

e 
er

ro
r

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

PCR with 1 PC
PCR with 2 PC
PCR with 3 PC
PCR with 4 PC
PCR with 5 PC
PCR with 6 PC
PCR with 7 PC
PCR with 8 PC
PCR with 9 PC
PCR with 10 PC
PCR with 11 PC
PCR with 12 PC
PCR with 13 PC
PCR with 14 PC
PCR with 15 PC

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
2

0.
3

0.
4

0.
5

0.
6

Rho_Z

R
M

S
 e

rr
or

 o
n 

a 
co

ef
fic

ie
nt

● ● ●

●
●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

● ●

● ● ●

●
●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

● ●

●
● ● ●

●

●

●

●

●
● ●

●
● ● ●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

PCR with 1 PC
PCR with 2 PC
PCR with 3 PC
PCR with 4 PC
PCR with 5 PC
PCR with 6 PC
PCR with 7 PC
PCR with 8 PC
PCR with 9 PC
PCR with 10 PC
PCR with 11 PC
PCR with 12 PC
PCR with 13 PC
PCR with 14 PC
PCR with 15 PC

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Rho_Z

B
ia

s 
of

 c
oe

ffi
ci

en
t e

st
im

at
es

●

●

●

●
●

● ● ● ●
●

●

●
●

●

●
●

● ●
● ●

●
●

●

●

●

●
●

● ● ● ●
●

●

● ●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●
●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●
●

●

●

●

●

● ●

●
● ● ●

● ●

●

●

●

● ●
● ● ●

●
● ●

●
●

●

● ● ● ● ●
●

● ●

●

●
●

● ●
● ● ● ●

● ●

●

●

●

●
●

●
● ●

●

● ●

● ●

●

●

●
●

● ●
●

● ●

●

●
●

●
●

●
● ●

●

● ●

●

● ●

●

●

●
● ●

●
● ●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●
●

●
● ● ●

● ●

●

● ●

● ●

● ● ●
●

● ●

●

●
●

● ●
● ● ●

●
● ●

●

●

●

● ●

●
● ●

●
● ●

●

●
●

● ●
● ●

● ●
● ●

●

●

●
● ●

● ●
●

●
● ●

●

● ●

● ●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

PCR with 1 PC
PCR with 2 PC
PCR with 3 PC
PCR with 4 PC
PCR with 5 PC
PCR with 6 PC
PCR with 7 PC
PCR with 8 PC
PCR with 9 PC
PCR with 10 PC
PCR with 11 PC
PCR with 12 PC
PCR with 13 PC
PCR with 14 PC
PCR with 15 PC

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Rho_Z

V
ar

ia
nc

e 
of

 c
oe

ffi
ci

en
t e

st
im

at
es

● ●
●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
● ●

●
● ● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

PCR with 1 PC
PCR with 2 PC
PCR with 3 PC
PCR with 4 PC
PCR with 5 PC
PCR with 6 PC
PCR with 7 PC
PCR with 8 PC
PCR with 9 PC
PCR with 10 PC
PCR with 11 PC
PCR with 12 PC
PCR with 13 PC
PCR with 14 PC
PCR with 15 PC

 

 

 

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

40
60

80

Rho_Z

P
er

ce
nt

ag
e 

of
 c

ap
tu

re
d 

tr
ue

 v
ar

ia
tio

n

●
● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

● ● ●
●

●
● ●

●
●

●
●

● ● ●●

●
● ●

●
●

●
●

● ● ●●

●
● ●

●
●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

PCR with 1 PC
PCR with 2 PC
PCR with 3 PC
PCR with 4 PC
PCR with 5 PC
PCR with 6 PC
PCR with 7 PC
PCR with 8 PC
PCR with 9 PC
PCR with 10 PC
PCR with 11 PC
PCR with 12 PC
PCR with 13 PC
PCR with 14 PC
PCR with 15 PC

Figure C.6: Variability of the Five Performance Characteristics Over the
Correlation of False Predictors for Different Values of PCs.
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Figure C.7: Variability of the Five Performance Characteristics when the
SNR= 0.1 for Different Values of PCs.
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Figure C.8: Variability of the Five Performance Characteristics when the
SNR= 1.0 for Different Values of PCs.



Appendix C. Complete Set of Graphs from the PCR Simulation Study with
N = 100 129

Figure C.9: Variability of the Degrees of Freedom of Residuals Performance
Over the Out-Of-Sample-Predictive-Error for Different Values of PCs

Figure C.10: Variability of the Number of True Predictors Performance
Over the Out-Of-Sample-Predictive-Error for Different Values of PCs
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Figure C.11: Variability of the Number of False Predictors Performance
Over the Out-Of-Sample-Predictive-Error for Different Values of PCs

Figure C.12: Variability of the Correlation of True Predictors Performance
Over the Out-Of-Sample-Predictive-Error for Different Values of PCs
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Figure C.13: Variability of the Correlation of False Predictors Performance
Over the Out-Of-Sample-Predictive-Error for Different Values of PCs

Figure C.14: Variability of the SNR Performance Over the Out-Of-Sample-
Predictive-Error for Different Values of PCs
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Appendix D

Complete Set of Graphs from the
Real Data Sets Study with N = 20
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