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Abstract

Cyber attacks infiltrating enterprise computer networks continue to grow in number,

severity, and complexity as our reliance on such networks grows. Despite this, proactive

cyber security remains an open challenge as cyber alert data is often not available for study.

Furthermore, the data that is available is stochastically distributed, imbalanced, lacks ho-

mogeneity, and relies on complex interactions with latent aspects of the network structure.

Currently, there is no commonly accepted way to model and generate synthetic alert data

for further study; there are also no metrics to quantify the fidelity of synthetically generated

alerts or identify critical attributes within the data.

This work proposes solutions to both the modeling of cyber alerts and how to score

the fidelity of such models. Generative Adversarial Networks are employed to generate

cyber alert data taken from two collegiate penetration testing competitions. A list of crite-

ria defining desirable attributes for cyber alert data metrics is provided. Several statistical

and information-theoretic metrics, such as histogram intersection and conditional entropy,

meet these criteria and are used for analysis. Using these metrics, critical relationships of

synthetically generated alerts may be identified and compared to data from the ground truth

distribution. Finally, through these metrics, we show that adding a mutual information con-

straint to the model’s generation increases the quality of outputs and successfully captures

alerts that occur with low probability.

iv



Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables 1

1 Introduction 2
1.1 Network Intrusion Detection Systems . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges of Cyber Alert Data . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Cyber Security and Machine Learning . . . . . . . . . . . . . . . . . . . . 7
2.2 Generative Adversarial Networks: Models and Improvements . . . . . . . . 9
2.3 Applications of Generative Adversarial Networks to Network Traffic: Ad-

versarial Sample Crafting . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 14
3.1 Alert Structure and Feature Selection . . . . . . . . . . . . . . . . . . . . . 14
3.2 GAN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Wasserstein GAN with Gradient Penalty . . . . . . . . . . . . . . . 16
3.2.2 Mutual Information Neural Estimator . . . . . . . . . . . . . . . . 18
3.2.3 WGAN-GP with Mutual Information Constraint . . . . . . . . . . 18

v



CONTENTS

4 Analysis Methods 21
4.1 Cyber Alert Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Methods of Analyzing Alert Data . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Other Useful Ways to Analyze Alerts . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Using Conditional Probability Tables to Evaluate Generated Alerts . 28
4.3.2 Measuring Output Mode Capture . . . . . . . . . . . . . . . . . . 28

5 Results and Analysis 30
5.1 Thorough Hyperparameter Search . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Hidden Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.5 Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.6 Full Parameter Sweep . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Alert Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.1 Histogram Intersection . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Jensen Shannon Divergence . . . . . . . . . . . . . . . . . . . . . 47

5.3 Alert Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 WGAN-GP Feature Dependency Performance . . . . . . . . . . . 49
5.3.2 WGAN-GPMI Feature Dependency Performance . . . . . . . . . . 51

5.4 Output Modes Captured . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Generality of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions and Future Work 65
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Multi-Alert Generation and Analysis . . . . . . . . . . . . . . . . . 66
6.2.2 Improving Generation through Reinforcement Learning . . . . . . 67

Appendices 79

A SVM Feature Dependency Experiment 80

B Alert Dependency Plots 82

C Alert Dependency Plots 86

vi



List of Figures

3.1 Sample NIDS Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 WGAN-GP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 WGAN-GPMI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Example Feature Graph Highlighting Conditional and Joint Entropy . . . . 25

5.1 Differences in Distribution of 4 Alert Feature Combination Between Vary-
ing Target IPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Lambda Parameter Search . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Batch Size Parameter Search . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Learning Rate Parameter Search . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Hidden Dimension Parameter Search . . . . . . . . . . . . . . . . . . . . . 39
5.6 Epochs Parameter Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.7 Subsection of WGAN-GPMI Hyperparameter Search Results . . . . . . . 43
5.8 Histogram Intersection for M-Tuple Feature Combinations . . . . . . . . . 46
5.9 Target 10.0.0.27 Alert Dependency Graph: WGAN-GP Results . . . . . . 50
5.10 Target 10.0.0.27 Alert Dependency Graph: WGAN-GPMI Results . . . . . 54
5.11 Comparison of Conditional Probability Tables . . . . . . . . . . . . . . . 58

A.1 SVM Accuracy Plotted Against Conditional Entropy . . . . . . . . . . . . 81

B.1 Target 10.0.0.22 Alert Dependency Graph: WGAN-GP Result . . . . . . . 82
B.2 Target 10.0.0.100 Alert Dependency Graph: WGAN-GP Result . . . . . . 83
B.3 Target 10.0.99.143 Alert Dependency Graph: WGAN-GP Result . . . . . . 83
B.4 Target 10.0.0.22 Alert Dependency Graph: WGAN-GPMI Result . . . . . 84
B.5 Target 10.0.0.100 Alert Dependency Graph: WGAN-GPMI Result . . . . . 84
B.6 Target 10.0.99.143 Alert Dependency Graph: WGAN-GPMI Result . . . . 85

vii



List of Tables

3.1 Generator Network Architecture: Note that a-d are variable depending on
the number of unique outputs . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Discriminator Network Architecture: Note that a-d are variable depending
on the number of unique outputs . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Mutual Information Estimator Network Architecture: Note that a-d are
variable depending on the number of unique outputs . . . . . . . . . . . . . 18

5.1 Mapping of Target IP Address to Machine Usage/Purpose . . . . . . . . . . 31
5.2 Key for Feature Combinations . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Candidate Parameters for WGAN-GP and WGAN-GPMI . . . . . . . . . . 41
5.4 Optimal Hyperparameter Settings . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Histogram Intersection for all Feature Combinations . . . . . . . . . . . . 45
5.6 Jensen Shannon Divergence (nats) for all Feature Combinations . . . . . . 48
5.7 Weighted Normalized Conditional Entropy Values for all Target IPs: WGAN-

GP Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8 Normalized Joint Entropy Values for all Victim IPs: WGAN-GP Result . . 53
5.9 Weighted Normalized Conditional Entropy Values for all Target IPs: WGAN-

GPMI Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 Normalized Joint Entropy Values for all Victim IPs: WGAN-GPMI Result . 56
5.11 Output Modes Dropped . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.12 Noisy Generator Output Counts . . . . . . . . . . . . . . . . . . . . . . . 62
5.13 Histogram Intersection for all Feature Combinations: CPTC’18 . . . . . . . 63

A.1 SVM Prediction Accuracy For 3-Combination Feature Values Assorted
Victim IPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1



Chapter 1
Introduction

Cyber Alert data is complex due to intricate feature dependencies, lack of homogeneity and

stationarity, and rarity of malignant samples. In order to further understand these character-

istics of alert data it is important to understand how it is collected, each specific challenge

presented by the data, and how potential methods of synthetic generation need to account

for these challenges.

Network Intrusion Detection Systems

A variety of packet capture tools exist to enable individuals and corporations alike to moni-

tor traffic on their networks. Several tools take this logging a step further and allow for real

time network intrusion detection. Network Intrusion Detection Systems (NIDS) are a rule

based system which allows for automated flagging of potentially malignant packet traffic

through the aggregation of temporally contiguous packets; these alerts typically consist of

the believed attack signature, a category that the attack falls under, target machine, times-

tamp, and more. These systems are employed to flag potentially malicious traffic, note long

term patterns in traffic, and provide system administration with a trail of alerts to analyze

after a cyber-attack has taken place.

Though these tools provide network operators with a wealth of data to analyze they

suffer from a fundamental issue. The data only exists after a cyber attack has already

taken place, and therefore only allows for reactionary defense techniques. This has lead
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CHAPTER 1. INTRODUCTION

researchers to see if they can use this data, as well as simulations and extrapolation, to

further understand network vulnerabilities in the pursuit of proactive cyber security.

Challenges of Cyber Alert Data

Cyber Alert data suffers from two primary challenges; There is a lack of malicious traffic

data and the data that does exist is imbalanced, non-homogeneous, and unlabeled.

Access to malicious NIDS alert data has been a long standing problem for researchers

in the domain of Cyber Security. As an alternative, probablistic models such as attack

graphs [35, 50, 33], have been proposed and expanded to try and create realistic attack data

for varying network architectures in an automated fashion. These models provide insight

into potential attack paths within a network, the probability a given path will be used, and

what vulnerabilities within the network allow for these paths to exist. Other works have

defined methods to model these attack graphs as Markov Chains [27], employed statistical

graph models [10], and used Variable Length Markov Models [13] in attempts to better

understand potential vulnerabilities. Despite the effectiveness of these models they lack

any means to consider historical attack data or consider real network alerts.

Of the datasets which do exist, common issues include small data set size, high imbal-

ance between malignant and benign alerts, redundant samples, and intricate interactions

leading to misleading labels. One example of this is the KDD Cup ’99 [8] dataset. This

dataset was prepared by Stolfo et al.[43] based off data captured in DARPA’98 IDS eval-

uation program [29]. It consists of samples from 7 weeks of network traffic collected via

TCPdump that was labeled with one of five potential labels {normal, denial of service,

user to root attack, remote to local attack, or probing attack}. Recently, it has been used

for multiple studies involving cyber attack classification and prediction through the use of

recurrent neural networks (RNNs) [25, 42]. However this dataset contains several patho-

logical issues such as synthetic background traffic, underlying issues with TCPdump under

intense load, and a lack of precise definitions for what constitutes an attack, as highlighted

3



CHAPTER 1. INTRODUCTION

by Tavallaee et al.[46] and McHugh [31].

Other publicly available datasets struggle with a low signal to noise ratio. Two exam-

ples of this are the Multi Source Cyber Event Dataset published by Los Alamos National

Laboratory [24] and the DeepSecurity Dataset released by Faber and Malloy [12]. The

Multi Source Cyber Event Dataset contains 4.8 KB of textual information pertaining to

malicious events. The magnitude of these events pales in comparison to the overall scale

of the dataset, which is encompassed in 12.2 GB of textual data. DeepSecurity faces a

similar issue with a low percentage of their 600,000 network events being representative

of malicious network traffic. The authors note that the availability of quality labeled data

and a low signal to noise ratio for malicious activity are both outstanding issues with their

studies [12].

Though the distribution of malicious events in these datasets may be representative of

real world cyber alert data it creates many challenges for network defense. These chal-

lenges include the potential obfuscation of attack behavior, difficulty isolating malicious

alerts interspersed throughout a stream of non-malicious alerts, and no ground truth labels.

With no commonly accepted means to artificially generate additional malicious alert data,

these challenges persist in the field of Cyber Security.

Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a class of neural network where two neural

networks are pitted against each other. One network, the generator, attempts to create sam-

ples which seem to belong to a ground truth dataset. The other network, the discriminator,

takes inputs from the ground truth dataset as well as the generator and flags samples as

either real or fake. This structure minimizes the generator loss each time the generator

successfully creates a sample that tricks the discriminator into marking the sample as real.

Conversely, the discriminator loss is minimized when all samples from the ground truth set

are marked as real and all samples created by the generator are marked as fake.

4



CHAPTER 1. INTRODUCTION

GANs have achieved state of the art results in generating data with respect to images

[23, 52, 26], text [44], and sound [9, 16]. Additionally, they have also been shown to

perform well at more complex tasks such as scene to scene translation in images [52, 7]

and stylized image generation [23]. These architectures allow GANs to serve as a powerful

tool to artificially expand datasets. Additionally, high fidelity data generation requires the

generator to learn key dependencies between features within each generated sample. A

means to reveal and analyze these dependencies would be a powerful tool for analyzing

critical features within the dataset.

Despite these successes, GANs do have several shortcomings. They are noted for

requiring large numbers of samples per class and are typically trained across very large

datasets for many epochs. The loss functions do not represent the quality of the data, as

both the generator and discriminator are continually learning; as one network becomes bet-

ter it’s loss may drop, only to rise back up in a few batches when the other network learns

something new as well. This lack of convergence makes training and hyperparameter tun-

ing even more important than in traditional Deep Learning models. Allowing one model

to overpower the other starves the system from having any useful gradient feedback. Fi-

nally, output mode dropping may occur, as the generator may not receive sufficient gradient

feedback to encourage full exploration of the dataset.

Problem Statement

In order to address the lack of malicious NIDS alert data for cyber attack studies we explore

artificial cyber alert synthesis. Due to the intricate feature relationships, data imbalance,

and stochastic nature of alerts we employ the use of GANs. The application of GANs is

challenged by potential for output mode collapse and failure of the network to learn realistic

output distributions for each feature. Generalized preprocessing techniques are defined to

prepare NIDS alert data for usage with GANs while also making model inputs and outputs

more intuitive for analysis.

5



CHAPTER 1. INTRODUCTION

Since there is no commonly accepted metric to score the fidelity of synthetically gener-

ated alerts, several desirable attributes for alert fidelity scoring are defined. Subsequently,

Histogram Intersection and Jensen Shannon divergence are proposed as metrics which meet

these criteria and are used to evaluate synthetically generated alerts from a GAN. Advan-

tages and disadvantages of each metric are reviewed.

Furthermore, conditional entropy and joint entropy are suggested as means to measure

the efficacy of the GAN on learning the intricate feature interactions within an alert. Condi-

tional probability tables are also employed to further understand the degree to which GANs

learn feature dependencies. These methods provide insight into the critical features of alert

data even when applied outside the context of analyzing synthetically generated alerts. Ad-

ditionally, they provide detailed contextual information by allowing researchers to directly

analyze feature-value relationships in alert data.

Finally, mutual information maximization is proposed as a means to regularize the gen-

erators output. This addition encourages further exploration of the ground truth dataset and

reduces output mode collapse.

6



Chapter 2
Related Work

With the recent resurgence of Machine Learning research and incredible effectiveness of

Deep Learning models, researchers across a variety of domains have begun to apply these

methods to outstanding challenges in their fields. Cyber-Security is included in these new-

found avenues of research, as Deep Neural Networks have been used for cyber event classi-

fication, forecasting, malicious traffic modification, and data generation. This section shall

be organized as follows: First, a survey of existing applications of Machine Learning to

Cyber Security problems will be reviewed to illustrate the need for rich alert datasets. Then

advances in generative models from other fields will be examined to better understand how

state of the art generative models achieve such impressive results. And finally, the current

use case of generative models for cyber security will be compared to the methods proposed

by this work.

Cyber Security and Machine Learning

The predominant application of Machine Learning to Cyber Security has been focused on

the challenge of anomaly detection, attack classification, and event prediction. For all of

these tasks intricate relationships must be considered between the various features of alerts,

as well as entire chains of temporally connected alerts.

In order to maintain these temporal relationships, Recurrent Neural Networks have been

employed. Specifically, Long Short Term Memory (LSTM) units allow for the network to
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CHAPTER 2. RELATED WORK

learn how to weight the importance of prior events and when to forgot previous feature

values entirely. These models have been applied to Cyber Physical Systems by Filonov

et al.to identify anomalous behavior. Their results show that LSTMs are able to outperform

traditional methods of anomaly detection such as PCA, FDA, DFDA, CVA and SVM [15,

14].

Other works make use of the aforementioned KDD Cup’99 dataset for cyber event

classification. Both the works of Staudemeyer et al.[42] and Kim et al.[25] show that

LSTM networks are able to achieve impressive results, with near 100% accuracy when

tasked with identifying if a stream of traffic is normal, or falls into one of the four malignant

labels.

Similarly, Tuor et al.[48] use system logs and a twin neural network model to identify

if alerts are malignant. The first model extracts information from the past 24 hours of

system logs by embedding a mixture of categorical and event count features into a hidden

representation. A series of these hidden representations are then fed into the second model,

an LSTM network, which classifies potential cases of malignant behavior. Through the

usage of a fixed sliding window the dataset may be continuously updated. This allows for a

continuous training approach to be used, keeping models up to date regarding new system

log behavior.

Another example of alert classification isAI2 [49] which integrates expert input into the

network traffic used for training an LSTM. The LSTM learns identify anomalous behavior

which is then classified by a human analyst. The analyst’s feedback is then given to the

network and used for future parameter updates so that future events may be flagged with a

higher degree of accuracy.

Other works have taken the challenge of prediction and classification a step further and

attempted to forecast attributes of future attacks. One example of this is the work of Perry

et al.[34] who applied LSTMs to a collegiate penetration testing competition to see if alerts

early in the competition could be used to identify which team was perpetrating an attack

8
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later on in the event. Further, they also showed that attributes of future attacks could be

forecast, such as the alert signature and destination port.

Similarly Shen et al.[39] applied LSTMs to a dataset of 3.4 billion security events

collected from Symantec’s Intrusion Prevention Product deployed on corporate networks

which have opted in to it’s data sharing program. Their results demonstrate that LSTM can

be used to predict target machine, attack severity, and even specific common vulnerability

exploits which may be used in the attack with over 80% accuracy.

All of these systems for attack classification and prediction make use of data collected

via NIDS. Despite the promising results of each, several of the authors note that they believe

an increased dataset would allow for them to further improve the accuracy of their models

[34, 12, 39].

Generative Adversarial Networks: Models and Improvements

First proposed by Goodfellow et al.[17], GANs are a game theoretic model for generating

increasingly realistic data in a semi supervised manner. Two neural networks, referred

to as the generator and the discriminator, are pitted against each other. The generator

learns a set of nonlinear transformations (T ) to apply to noise x̂ sampled from Px̂. These

transformations result in data which imitates that of the ground truth set x sampled from

Pr. The discriminator is fed both real, x sampled from Pr, and generated, x̃ sampled from

Pg, data and assigns a probability d ∈ [0, 1] representing the believed probability that a

sample came from the distribution Pr.

Immediately, GANs proved themselves to be a powerful tool for the generation of new

samples in continuous value spaces such as images. Rapid advances came through the

application of conditional generation [32], Deep Convolutional Networks [36], and Infor-

mation Theoretic extensions [6].

Simultaneously the training and structure of GANs were updated to improve con-

vergence rates, palliate output mode dropping, and provide meaningful learning curves

9



CHAPTER 2. RELATED WORK

[38, 2, 19]. Most notably, the Wasserstein GAN (WGAN) proposed by Arjovsky et al.[2]

introduced the usage of the Earthmover Distance as the loss function for both the gen-

erator and discriminator. Intuitively, this distance represents how much ”mass” must be

transported from x to y in order to transform Pg into Pr.

WGAN was subsequently improved by Gulrajani et al.[19] by adding a gradient penalty

term (WGAN-GP) to regularize the gradients of D. The gradient penalty creates a 1-

Lipschitz constraint on the discriminator during training by sampling noise x̂ from Px̂ and

constraining the gradient of the L2 norm of D(x̂) to 1. Additionally, the discriminator was

given real samples and generated samples in a 5:1 ratio per epoch of training; this is done

to increase the utility of gradients provided to the generator by discriminator. These mod-

ifications to training result in the loss formulation shown in (2.1), (2.2), and (2.3) for the

discriminator, the gradient penalty term, and the generator respectively:

Dloss = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)]+ (2.1)

λEx̂∼Px̂
[(||∇x̂D(x̂)||2 − 1)2] (2.2)

Gloss = −Ex̃∼Pg [D(x̃)] (2.3)

Note that in the above λ is a tunable hyperparameter determining the influence the

gradient penalty has on discriminator loss; ∇ is the symbol for the gradient of D(x̂); E is

the expectation of the values x sampled from the distribution P.

DKL(P ||Q) = sup
T :Ω→R

EP[T ]− log(EQ[eT ]) (2.4)

Separate from the advances of WGAN and WGAN-GP, Mutual Information Neural Es-

timation (MINE) [3] was introduced as a means to help palliate output mode dropping and

improve reconstruction of generative models. MINE uses a neural network optimized using

the Donsker-Varadhan representation of the KL-Divergence, given in (2.4), to estimate the
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mutual information I between two distributions.

Similar to the Earthmover Distance, the KL Divergence is a metric that quantifies the

distance between two arbitrary distributions, P and Q. However, the KL divergence makes

use of the logarithm to express this distance in units of nats or bits. In the DV representation

given in (2.4) T is the family of transformations that maps the input features Ω to R. Thus

EP[T ] and EQ[eT ] are the distributions whose divergence is being measured by a neural

network learning transformations T .

In order to palliate mode dropping by the generator, Belghazi et al.[3] propose to reg-

ularize the generator by the negative-entropy of it’s output distribution. Since this is often

intractable for real world samples the mutual information between the sampled noise and

output samples can be used as a proxy.

The Mutual Information estimate is then added to the generator’s loss defined in (2.3),

resulting in the formulation given by (2.5).

Gloss = −Ex̃∼Pg [D(x̃)] +DKL(x̂||Pg) (2.5)

Applications of Generative Adversarial Networks to Network Traffic:

Adversarial Sample Crafting

One common application of GANs has been the creation of Adversarial Samples. First

noted by Szegedy et al.[45], Adversarial Samples are generated by taking ground truth

samples, applying a small, human-imperceptible, perturbation, resulting in that sample

being misclassified by a neural network with a high degree of confidence. Subsequent

research found more powerful ways to generate Adversarial Samples through methods such

as fast gradient sign [18], optimization based methods [5, 30, 11], and GANs [51, 37, 28,

21, 1].

Advarsarial Sample Crafting has been applied to network traffic to modify and obfus-
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cate malicious traffic [37, 28, 21, 1]. These adversarial samples are created to avoid being

flagged by Network Intrusion Detection Systems (NIDS).

Rigaki et al.[37] proposed the use of GANs in generating network traffic which mimics

other types of network traffic. In particular, real malware traffic was modified by a GAN

using LSTM cells to appear as legitimate network traffic. This allowed the malware to

avoid detection from the Stratosphere Behavioral Intrusion Prevention System through the

modification of three network traffic parameters; total byte size, duration of network flow,

and time delta between current network flow and the last network flow. They showed that

through the modification of these parameters detection rate could be dropped down to 0%.

Similarly, Lin et al.[28] apply GANs to obfuscate traffic with the intention of directly

deceiving a NIDS. Their model makes use of 9 discrete features and 32 continuous features

to modify attack actions to avoid detection. Available attack actions include denial of ser-

vice and privilege escalation. Their model is shown to drastically increase the evasion rate

of malicious network traffic across several different classifiers when benchmarked using

the NSL-KDD benchmark provided in [20].

Summary

The current research in applying Machine Learning to Cyber Security is well varied, but

missing the application of generative models to new sample creation and analysis. This

work applies state of the art GAN models to cyber alert data collected via the Suricata NIDS

to fill this gap. The alerts used for training were collected from 10 student teams during an

8 hour long collegiate penetration testing competition (CPTC) as they attacked identical,

isolated, instances of the same network topography. Two different years of competition data

were tested independently, each representing different network topographies and attacker

behaviors; additionally, illustrating the ability of a single network topography to learn and

capture many different data distributions. All data was processed to consider traffic a per

target IP basis allowing for different models to be used to represent each potential target in

12
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the network.

Unique preprocessing steps for handling cyber alert data, exhaustive model hyperpa-

rameter tuning, and methods of identifying generated sample fidelity are also provided.

Namely, the usage of Histogram Intersection and Jensen Shannon Divergenc, for m-tuple

feature combinations, are shown to be an effective and intuitive means of judging sample

generation quality. Additionally, these metrics may be coupled with joint and conditional

entropy calculations to show dependencies between features of an alert, allowing for further

introspection of attack behavior.

Finally, the application of Mutual Information Estimate Maximization to WGAN-GP is

shown to improve sample generation by increasing the number of output modes captured

by the generator. This model is referred to as WGAN-GPMI and is shown to improve gen-

erated results through a higher intersection of histograms and closer probability distribution

approximation by the generator.
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Chapter 3
Methodology

In order to generate and analyze cyber alert data it is important to understand the structure

of generic NIDS alerts. The categorical features contained by each alert provide contextual

information such as the what, where, and how an attack occurs. By understanding the

structure and meaning of each alert feature it is possible to begin selecting which features

are worth pursuing synthetic generation of. Furthermore, the selection of these features

drives the structure of the generative model used. This section will detail three neural

network architectures driven by the features selected from NIDS alerts.

Alert Structure and Feature Selection

NIDS alerts are formed through the compilation of packet traffic seen by each machine

on the network. These alerts use fixed rulesets and information collected from multiple

packets to summarize the believed intent of network traffic. Features such as HTTP Request

Information, Alert Category and Signature, Destination IP, Source IP, and more are all

captured by alerts. A subset of alert features are shown in Fig. 3.1.

It is important to note that not all features are populated in every alert and that most fea-

tures are comprised of discrete categorical values. Additionally, many features are grouped

into families of information. One example of this is the HTTP family, which includes

Hostname, Method, Redirect, URL, and more.

Given the wide variety of alert features available it is important to establish which alerts

14
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Figure 3.1: Sample NIDS Alert

provide useful contextual information for future network alert modeling. Additionally,

some of the features listed are generated through a fixed mapping from other features. For

example, Alert Category is determined by a many to one mapping of Alert Signatures.

Therefore, by generating Alert Signature it is possible to determine the Alert Category.

When selecting features of an alert to use for any model it is important to consider

the contextual data provided by that features. Features such as Alert Signature, Category,

Action, and Eventtype provide the what and how an attack is carried out over the network.

Destination IP and Port and Source IP and Port provide where the attack originated from

and where it’s targeting. And Timestamp provides not only when an attack occurs but also

it’s temporal location with respect to other alerts.

GAN Models

Two GAN implementations were created to generate artificial cyber alert data; a standard

Wasserstein GAN with Gradient Penalty and an extension of this model which used a neural

estimate of mutual information to regularize the generator output. The mutual information
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estimate model architecture is also reviewed in detail.

Wasserstein GAN with Gradient Penalty

The Wasserstein GAN with Gradient Penalty makes no architectural changes to model

structure compared to standard GANs. Rather, the loss function is modified to use the

Earthmover Distance. This modification has been shown to create empirically better results

and allows for flexibility in model selection adapted to the challenge at hand.

Since the goal of this work was to create individual NIDS alerts without temporal corre-

lation a feed-forward network architecture was selected for both the generator and discrim-

inator. Four alert features were selected for alert generation: Alert Signature, Destination

Port, Timestamp, and Source IP. Despite this, the models employed could easily be scaled

to consider n-many features.

The generator consisted of 2 layers. The first layer sampled from noise space Z to a hid-

den representation. The next layer was directly responsible for each feature’s output value.

Since each of the four selected features was categorical, one hot encoded representations

were used to represent each unique value. This layer consisted of four individual mappings

from the hidden representation to an output layer with cardinality equal to the number of

unique values per feature. Finally, a concatenation was used to take the prior 4 outputs and

create a full 1-hot encoded alert.

The discriminator also consisted of 2 layers. The first layer took 1-hot encoded alerts as

input and mapped them to a hidden representation. The next layer mapped this hidden rep-

resentation to a scalar value representing the probability that the alert was from the ground

truth dataset. A graphical model of this architecture is included in Fig. 3.2. Inputs to the

network are highlighted in yellow. Learnable weight layers are in blue. The concatena-

tion in orange is a non-backpropable layer used only to prepare generator output for input

to the discriminator. And the red boxes and lines represent the model loss functions and

back-propagation.
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Figure 3.2: WGAN-GP Model

Table 3.1 and Table 3.2, shows the dimensions of the weight matrices and activation

functions for each layer of the network.

Table 3.1: Generator Network Architecture: Note that a-d are variable depending on the number of
unique outputs

Generator
Layer Matrix Dimensions Activation Function

Input 64 x 128 x+

Output - Feature 0 128 x A NA
Output - Feature 1 128 x B NA
Output - Feature 2 128 x C NA
Output - Feature 3 128 x D NA
Concatenation A+B+C+D NA

Table 3.2: Discriminator Network Architecture: Note that a-d are variable depending on the number
of unique outputs

Discriminator
Layer Matrix Dimensions Activation Function
Input A+B+C+D x 128 x+

Output 128 x 1 1
1+e−x
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Mutual Information Neural Estimator

Mutual Information is a measure of dependence between two random variables. Tradi-

tionally, approximations have to be used to estimate the mutual information between high

dimensional and continuous variables as exact computation is intractable. The Mutual

Information Neural Estimator is a neural network which allows for state of the art approx-

imation of mutual information. This is done by optimizing the network to minimize the

Donsker-Varadhan representation of the KL divergence between two variables.

A feed forward neural network was implemented to learn the mutual information be-

tween the gaussian noise sampled from Z and the generators output. This network con-

sisted of 2 layers. The first layer took input from each of the aforementioned sources and

mapped them to separate hidden representation layers and added together. Then the second

layer mapped the hidden representation to a single output value representing the mutual

information estimate. Table 3.3 shows the matrix dimension for each of the layers in the

network.

Table 3.3: Mutual Information Estimator Network Architecture: Note that a-d are variable depend-
ing on the number of unique outputs

Estimator
Layer Matrix Dimensions Activation Function

Input - Generated A+B+C+D x 128 NA
Input - Noise 64 x 128 NA
Addition 128 NA
Output 128 x 1 NA

WGAN-GP with Mutual Information Constraint

In order to improve mode dropping in the GAN model described in Section 3.2.1 the Mutual

Information Neural Estimator in Section 3.2.2 is added to the WGAN-GP model. This is

done by using the mutual information between the generated samples and the input noise

as a proxy for the neg-entropy of the samples. This regularizes the generator’s weights and
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encourages full exploration of the feature space. We refer to this model as the Wasserstein

GAN with Gradient Penalty and Mutual Information (WGAN-GPMI). Fig. 3.3 shows what

the full model consists of. The addition of the Mutual Information Estimation Network

helps to enforce that the generator must learn all output modes of the distribution by fully

exploiting the noise sample.

Figure 3.3: WGAN-GPMI Model

Since mutual information is theoretically unbounded, gradient updates resulting from

it could overwhelm the adversarial gradients resulting from the Earthmover Distance. In

order to address this all of the gradient updates to the generator are adaptively clipped to

ensure that the Frobenius norm of the gradient resulting from the mutual information is at
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most equal to the adversarial gradient [3], as shown in (3.1).

gnorm = ga +min(||ga||, ||gm||)(
gm
||gm||

) (3.1)

Note that gnorm is the normalized gradient, ga is the adversarial gradient resulting from

(2.3), and gm is the gradient resulting from (2.4).
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Chapter 4
Analysis Methods

The usage of NIDS alert data with Machine Learning algorithms suffers from two issues;

significant preprocessing must be performed to make the data have contextual meaning and

methods to analyze the similarity of alerts are not well defined. For example, predicting a

specific port which will be attacked only provides a small piece of significant data. How-

ever, a more significant feature to generate would be what type of service will be attacked.

Additionally, when analyzing cyber alerts identifying the fidelity of data is not straight for-

ward. In tasks such as event prediction results may be quantified by cross entropy loss on a

per feature basis. But when generating new alerts there are complex interactions between

various features which must be accounted for by the model. Simply generating a realistic

signature and port category individually is much less important than generating a realistic

combination of port signature and category.

To address these challenges this section will cover the unique preprocessing applied

to NIDS data collected from Suricata. Specifically, the features of Alert Signature, Desti-

nation Port, Timestamp, and Source IP will be considered. Additionally, intuitive metrics

for analyzing alert fidelity are introduced as an inclusive system to address how realisitc

generated alerts are compared to their source alerts from the ground truth dataset. Finally,

metrics to analyze dependency are introduced and used to verify that high level relation-

ships between alert features are preserved by the model.
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Cyber Alert Data Preprocessing

The data used for these experiments comes from the National Collegiate Penetration Test-

ing Competition from 2017 and 2018 (https://nationalcptc.org/). CPTC’17

features data that was collected from student teams penetrating into a mock election sys-

tem. This network topology featured several server systems hosted across a variety of

subnets. Students were tasked with modifying votes or exfiltrating voter data from the

network. CPTC’18 data featured an entirely new network topology as students penetrated

into a network of autonomous cars featuring embedded systems, mobile phones, and host

systems for data processing. Each team had around 8 hours to scan, infiltrate the network,

and exfiltrate information from the target. Both datasets provide a unique opportunity for

Machine Learning experimentation as they are completely comprised of malicious actions

as teams attempt to penetrate the target network. Though this data is unique to the compe-

tition it is worth noting that the preprocessing described herein is applicable to any dataset

consisting of NIDS alerts.

The first preprocessing step applied to the data was to separate alerts on a per Destina-

tion IP basis. This allowed individual models to be trained for each system on the network,

typifying the type of traffic seen at that target. Additionally, data from all of the teams

could be compounded, allowing for the number of potential attacks taken on a single target

to be more fully expressed during training. Segmentation on a per-target basis has several

intuitive benefits: First, it allows for different vulnerabilities to be highlighted on each ma-

chine given commonly occurring alert features at that target. Secondly, it helps to remove

noisy alert influence from critical nodes in the network. For example, internet facing IPs

may contain a significant amount of scanning activity, drowning out exfiltration related

alert features at nodes further embedded in the network. Finally, the information extracted

from alerts on a per target basis is actionable, as network administrators can use commonly

targeted vulnerabilities to tune network settings for future defense.
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Next, the dimensionality of the destination port feature was reduced based off com-

mon service categories run across a collection of ports provided by the Internet Assigned

Numbers Authority [47]. This reduction drops the number of unique values from 1516

destination ports to 69 destination port categories for the CPTC’17 dataset. Additionally,

the dimensionality reduction step can easily be expanded or customized on a per network

basis given a corporation’s configuration of services. Contextually, this has the effect of in-

dicating what service is being targeted by attackers, rather than just knowing a specific port

number. Herein the processed Destination Ports are referred to as Destination Services.

Finally, a set of simple statistical criterion were used to segment timestamps into bins.

Traditional modeling of cyber attacks use killchain stages to segment actions into a series

of contiguous stages with dependencies on previous stages. The beginning of an attack

may consist of reconnaissance based actions, yielding information about which IP to target

in later attack stages. Similarly, the CPTC dataset may be segmented to try and capture

unique behaviors into different Time Bins.

Following the methodology shown by [34] bins are generated by smoothing the his-

togram timestamps and taking the first derivative to identify local minima and maxima.

Then stages are cut if they contain at least 10% of the total data and consecutive events at

the candidate cut-point contain less than 0.5% of the total data. The goal of this ruleset is to

capture significantly different types of traffic that does not split bursts of data into multiple

stages.

Finally, if applied to real world NIDS data, another potential preprocessing step would

be to segment source IPs based off of subnet. However, given that CPTC occurs in a virtu-

alized network for a collegiate competition this preprocessing step is ignored. Additionally,

it is worth noting that in real world data, the Source IP could easily be obfuscated through

the use of a proxy.
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Methods of Analyzing Alert Data

Analyzing the degree of realism for artificially generated alert data is non-trivial. While

other fields such as Computer Vision have created well defined metrics such as Inception

Score [38] or allow for direct human analysis of image quality, no analogue exists for NIDS

alerts. Several works have proposed the use of graph based metrics such as comparing

nodes and their connectivity for both generated and real network traffic [40, 22], or looking

at low level parameters such as distributions of packets [41, 4]. However, despite these

works, there is no widely accepted methodology.

It is important to consider the desirable attributes of a good metric. A good metric must

provide an intuitive, scalable way to summarize what would otherwise be an intractable

amount of data to comprehend. Other desirable properties include ways to directly visualize

the results of the metric so that trends may be identified visually, able to capture high level

dependencies, and tolerance to samples with the value 0.

To this end, we propose the usage of several metrics for analyzing NIDS alert data.

First, Histogram Intersection is considered; this metric compares the similarity of two his-

tograms within the same domain by computing the amount of overlap between them. His-

togram Intersection meets several of the above criterion, as it is naturally bounded between

0 and 1, easily visualized by directly plotting the histograms being compared, and can be

extended to accommodate m-many tuples of features. The m-many tuples can be thought of

as a joint histogram, where m is the number of unique features considered in the joint dis-

tribution. This can be done automatically by iterating over all M choose m combinations,

where M is the total number of unique features in the dataset. Mathematically, the His-

togram Intersection is defined in (4.1), where P represents the ground truth data histogram

and Q represents the generated data histogram, each of which has N samples.

G(P,Q) =

∑N
i=0min(Pi, Qi)

max(
∑N

i=0 Pi,
∑N

i=0Qi)
(4.1)

24



CHAPTER 4. ANALYSIS METHODS

Another powerful trait of the Histogram Intersection is that it can be used to reveal de-

pendencies between features within a single alert. This is accomplished by looking at the

difference in Histogram Intersection scores between m± 1 tuples and observing the inter-

section drop. An intuitive example of this can be thought of as follows; If the intersection

for feature A is 0.9 and the intersection for a 2-tuple histogram consisting of features A and

B is 0.875 then it is expected that a dependency exists between A and B. It is important

to note that this dependency is not inherently bidirectional, as A and B may have vary-

ing intersections to begin with. Fig. 4.1 illustrates a graph based schema to identify these

dependencies visually.

Figure 4.1: Example Feature Graph Highlighting Conditional and Joint Entropy

In order to confirm these dependencies we introduce our second metric; conditional

entropy. The conditional entropy of each unique permutation may be calculated for each m-

tuple of features. Continuing with the previous example this means the conditional entropy

of both A|B and B|A are computed. In order to compute a single value that represents the

average conditional entropy for all input condition values, the entropy term is computed

using (4.2). This calculation weights the entropy of each possible input combination based

off the probability that input i occurs as |wi|
|w| . pi|j represents the probability of the output

feature value at index i occurring given the input feature values at index j and must be
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computed for all unique input value combinations Z.

ĤY |X0,X1,...,Xm =
N∑
i=0

(
|wi|
|w|
∗

Z∑
j=0

(
pi|j ∗ log(

1

pi|j
)
))

(4.2)

In order to further strengthen the argument that there are dependencies between fea-

tures it is important to consider the overall randomness of the m-tuple joint distribution.

To do this (4.3) may be used to compute the joint entropy of the distribution. Using the

aforementioned example with features A and B, the joint of these variables is denoted

A,B.

HXm = −
∑
xm

p(x0, x1, ..., xm) ∗ log
(
p(x0, x1, ..., xm)

)
(4.3)

Given that natural logarithms are used for the calculation in (4.2) and (4.3), the resulting

value is given in the natural unit of information (nats), a log base e equivalent to bits.

Given that the distribution of m-tuple feature histograms is a discrete distribution with

finite support the upper bound of entropy is given by the uniform distribution U. Note that

the cardinality of U varies to match the number of unique values in the conditional or joint

probability being normalized. Using this quantity, (4.2) and (4.3) can be normalized as

shown in (4.4) and (4.5). This has the benefit of naturally bounding the entropies between

0 and 1, similar to the intersection score defined in (4.1).

HY |X0,X1,...,Xm =
ĤY |X0,X1,...,Xm

H(U)
(4.4)

HXm =
HXm

H(U)
(4.5)

If the drop in intersections is indeed correlated to feature dependency, then the con-

ditional entropy should be directly proportional to this drop. Additionally, the benefit of

capturing feature dependencies is apparent by comparing to the joint entropy without any
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conditioning information. Note that in Fig. 4.1 the edges corresponding to conditional and

joint entropies are labeled using the notation given in the examples above.

One drawback of using the intersection of histograms is that the metric does not perform

well when the ground truth distribution has one value which occurs with high probability.

The data generating model can learn to output that value in a purely deterministic manner

and receive an intersection score equivalent to the probability of that given value occurring

in the ground truth set. This issue is known as output mode collapse and has been histor-

ically problematic for GAN based models. In order to identify this issue a metric which

penalizes failure to accurately represent the probability distribution of the ground truth set

is required.

Kullback Leibler Divergence, given in (4.6), was considered as a candidate however it

does not have the property of zero tolerance and is asymmetric. This would require spe-

cial handling of null outputs and would require a defined convention of which probability

distribution is considered P and which is given by Q.

DKL(P ||Q) = −
∑
x∈X

P (x) log
Q(x)

P (x)
(4.6)

The Jensen Shannon Divergence, given in (4.8), was then considered. It is both zero

tolerant and symmetric while maintaining the penalty for failing to accurately represent

the ground truth probability distribution. This metric has the downside of having no upper

bound and by extension is not as intuitive as the Histogram Intersection. However it can be

used as a drop in replacement for Histogram Intersection and can still be used in conjunc-

tion with the weighted conditional and joint entropies to identify feature dependency.

M(P,Q) =
1

2
(P +Q) (4.7)

DJS(P ||Q) =
1

2
(DKL(P ||M) +DKL(Q||M)) (4.8)
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Other Useful Ways to Analyze Alerts

The purpose of this section is to review other methods of analyzing artificially generated

alerts. The methods presented in this section are comprised of subsidiary steps for the

computation of the previously presented metrics and or provide useful information in un-

derstanding what is driving model behavior.

Using Conditional Probability Tables to Evaluate Generated Alerts

In the aforementioned (4.2) weighted conditional entropy is computed to provide a singular

score representing conditional randomness in m-tuple histograms. An intermediary step in

this computation involves the creation of conditional probability tables which show all pos-

sible input conditioning values and their impact on output value probability. It was found

through experimentation that directly outputting these tables and applying highlighting to

reveal sparsity and determinism is an effective means to evaluate specific feature value re-

lationships. This method has the drawback of becoming intractable as the number of tables

generated is equal to the number of unique feature permutations. A sample table is given

in Section 5 to illustrate specific feature-value relationships.

Measuring Output Mode Capture

One important attribute of artificially generated data is the number of output modes that the

model manages to capture. Traditionally, GANs have suffered from output mode collapse,

where outputs that have a low probability of occurring in the ground truth do not ever

occur in the model’s output. This can be thought of as a false negative for the model.

Additionally, if the GAN has not been trained sufficiently then there is the potential for it

to generate noisy samples which never occurred in the ground truth dataset. This can be

thought of as a false positive for the model.

Generating a table of the false negatives allows for direct testing of the WGAN-GPMI
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model, which decreases output mode collapse through a mutual information constraint on

the generator. Additionally, a table of false negatives allows for direct testing of the amount

of noise generated by the model, potentially indicating that more training steps or data is

required to obtain realistic results. Ideally, both of these values should be driven towards

zero if the model is performing well. Note that this does not indicate a perfect model

however, as the probability distribution for output modes may not reflect those of the ground

truth distribution.
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Results and Analysis

Each of the GAN models described in Section 3.2 were used to create artificial NIDS alert

data. Using the methods described in Section 4.2 the fidelity of the learned model was

analyzed. This analysis can be broken down into the following sections:

1. Thorough Hyperparameter Search - Individual hyperparameters were tuned for each

model to see their impact on Histogram Intersection. Top candidate values were

selected for a full hyperparameter search where all combinations of hyperparameter

values were tested. The results are presented for both WGAN-GP and the improved

WGAN-GPMI.

2. Alert Fidelity - A subset of target IPs from the CPTC’17 dataset were used for train-

ing WGAN-GP and WGAN-GPMI models. The results of these models were ana-

lyzed and visualized using histogram intersection and Jensen-Shannon Divergence.

3. Alert Dependency - For the same subset of target IPs alert dependencies were iden-

tified by using drop in Histogram Intersection, entropy computation, and conditional

probability tables.

4. Output Modes Captured - The number of output modes captured by the model is

comprised of two components. How many of the true output modes are output by the

model? And how many output modes by the model do not occur in the ground truth?
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5. Generality of Models - To show the ability of these models to perform on a variety of

datasets we introduce the CPTC’18 dataset. Histogram Intersection and Jensen Shan-

non Divergence are used to measure the performance of each model when trained on

a new dataset.

The CPTC’17 dataset was segmented on per-target IP basis and used across all experi-

ments. For the hyperparameter search the IP which contained the most alerts, 10.0.0.100,

was used. For the following experiments on alert fidelity, modeling dependency, and out-

put modes captured the following four IP’s were used: 10.0.0.100, 10.0.0.22, 10.0.0.27,

10.0.99.143. These four IP addresses provided a mixture of Windows and Linux Machines,

with varying purpose, and contained the 4 greatest counts of alerts. Table. 5.1 summarizes

the differences between each of these machines.

Table 5.1: Mapping of Target IP Address to Machine Usage/Purpose

IP Address Operating System Machine Usage Number of Alerts
10.0.0.100 Windows Active Directory Server 3388
10.0.0.27 Ubuntu HTTP Server 3166
10.0.0.22 Ubuntu MySQL Server 2974

10.0.99.143 Ubuntu HTTP Server 2182

These targets were also selected because of the characteristics of their alert distribu-

tions. For each target the distribution of alerts cannot be modeled using simple traditional

distributions and vary with respect to other target IP addresses. For example, when exam-

ining the distribution of 4-Tuple Feature combinations for Target IP 10.0.0.27 the combi-

nation of features which occurs at ID number 19 dominates the probability distribution.

When compared to Target IP 10.0.0.100 the probability of the same combination occurring

is much lower. Conversely, one of the dominating combinations for Target 10.0.0.100, ID

number 57, doesn’t ever occur in the distribution of 10.0.0.27. These are shown visually in

Fig. 5.1.

Though there is no direct weighting applied to the results of each feature combination

the importance of each feature generated does play a role in how realistic the alert seemed.
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(a) Target IP 10.0.0.100

(b) Target IP 10.0.0.27

Figure 5.1: Differences in Distribution of 4 Alert Feature Combination Between Varying Target IPs
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For example, generating realistic alert signatures provides directly actionable information

regarding what types of attacks or vulnerabilities are targeted on the given source. How-

ever, this information becomes much more useful when paired with a realistic destination

service. Later on, the results will show that the models presented by this work are capable

of learning these useful feature value combinations.

Thorough Hyperparameter Search

A two part hyperparameter search was employed to find optimal values for generating alerts

from the CTPC datasets. First, individual parameters were tested in order to find several

values which showed promising results when applying the Histogram Intersection metric.

For each parameter value tested, the Histogram Intersection was computed for all possible

feature-value combinations. These values were then plotted against all other parameter

setting results for WGAN-GP and WGAN-GPMI. To save space in the plots each feature

combination was assigned a numeric key. Table 5.2 provides the key mapping to each

potential feature combination.

Table 5.2: Key for Feature Combinations

Feature Combination ID M-Tuple
Alert Signature A

1
Time Bin T
Destination Service D
Source IP S
Alert Signature, Destination Service A,D

2

Source IP, Time Bin S,T
Alert Signature, Source IP A,S
Alert Signature, Time Bin A,T
Destination Service, Time Bin D,T
Source IP, Destination Service S,D
Alert Signature, Source IP, Time Bin A,S,T

3
Source IP, Destination Service, Time Bin S,D,T
Alert Signature, Source IP, Destination Service A,S,D
Alert Signature, Destination Service, Time Bin A,D,T
Alert Signature, Source IP, Destination Service, Time Bin A,S,D,T 4
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Then, these values were taken and used for a full parameter sweep, which tested every

possible combination of the parameter values available. Several candidate values were

selected for each of the hyperparameters due to the unknown nature of hyperparameter

interaction.

This two stage search was carried out twice, once for each of the GAN models presented

in Section 3.2. Both models only used data from the target IP with the most number of

alerts, 10.0.0.100, to try and avoid information constraints related to small dataset size.

The parameters tested included lambda, batch size, learning rate, hidden dimension, and

number of epochs.

Lambda

The lambda parameter was used as a coefficient to the gradient penalty term applied to the

discriminator. The values tested for lambda were {0.05, 0.1, 0.2, 0.3, 0.4}. The intersection

vs. parameter setting plots for WGAN-GP and WGAN-GPMI may be seen in Fig. 5.2a

and Fig. 5.2b respectively.

The performance of all the values tested was very close. For the WGAN-GP model

smaller values such as {0.05, 0.1, 0.2} performed best. In the WGAN-GPMI model the

larger values tested, {0.2, 0.3, 0.4} performed best. This suggests that the WGAN-GPMI

model requires stronger enforcement of the gradient penalty than the WGAN-GP model

does. Given that the gradient of the generator is changed from an outside source (the

mutual information estimate) in addition to the discriminator feedback, the discriminator

may be trying to make larger gradient changes to identify generated samples.

Batch Size

The batch size determines how many alert samples were fed into the model in parallel.

Higher batch sizes are more computationally intensive, but provide a better representation

of the ground truth data distribution. Additionally, larger batch sizes reduce the number of
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(a) All other hyperparame-
ters were held constant at the
following values: epochs =
180, batch size = 100,
learning rate = 5e − 5,
hidden dimension = 128

(b) All other hyperparame-
ters were held constant at the
following values: epochs =
250, batch size = 100,
learning rate = 5e − 4,
hidden dimension = 128

Figure 5.2: Lambda Parameter Search
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steps required to complete a full epoch of training.

The values tested for batch size were {10, 25, 50, 100, 150, 250, 500, 1000}. The inter-

section vs. parameter setting plots for WGAN-GP and WGAN-GPMI may be seen in Fig.

5.3a and Fig. 5.3b respectively.

(a) All other hyperparame-
ters were held constant at the
following values: epochs =
180, learning rate = 5e−5,
hidden dimension = 128,
λ = 0.1

(b) All other hyperparame-
ters were held constant at the
following values: epochs =
250, learning rate = 5e−4,
hidden dimension = 128,
λ = 0.3

Figure 5.3: Batch Size Parameter Search

The overall range and trends of intersection scores are very similar for both WGAN-

GP and WGAN-GPMI. It is interesting to observe that for the WGAN-GPMI model that

the performance drop after using batch sizes greater than 250 is much greater than that

of the WGAN-GP model. This is likely due to additional network generating the mutual

information estimate. This network is trained in parallel with the WGAN model, thus

earlier steps in training may have poor mutual information estimates. Since larger batch

size drives less gradient updates over the same number of epochs there is a larger number
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of inaccurate mutual information estimates provided to the WGAN portion of the model.

The top selections for the full parameter search are {10, 25, 50, 100, 150} for the WGAN

model and {50, 100} for the WGAN-GPMI model.

Learning Rate

The learning rate of the optimizer defines the base step size, weighted by the gradient of

the loss, that is taken when adjusting parameter weights during training. A large learning

rate converges quickly, but may overshoot the global optimum and never reach peak per-

formance. A small learning rate won’t overshoot the global optimum, however will take

significantly longer to converge. Due to the categorical output of alert data and existing

difficulty in optimizing GANs, small learning rates were tested. This allowed the network

to be able to make fine tuned changes to network weights, as slight changes in output prob-

ability create entirely different output values. Additionally, the ADAM optimizer was used,

allowing for weight decay over time to modify the learning rate parameter.

The values tested for learning rate were {1e − 5, 5e − 5, 1e − 4, 5e − 4, 1e − 3}. The

intersection vs. parameter setting plots for WGAN-GP and WGAN-GPMI may be seen in

Fig. 5.4a and Fig. 5.4b respectively.

For both of the models tested, the smallest learning rate 1e− 5 performs poorly. Inter-

estingly, in the WGAN-GP model the subsequent three learning rates {5e−5, 1e−4, 5e−4}

oscillate between performing well and poorly. due to this oscillation, 1e − 4 is dropped,

leaving {5e−5, 5e−4, 1e−3} for the full parameter search. For the WGAN-GPMI model

{1e− 4, 5e− 4, 1e− 3} are all used in the full parameter test.

Hidden Dimension

The hidden dimension size determines the number of hidden units available in each hid-

den layer. Higher hidden dimensions provide more learnable connections to the network

allowing the network to learn complex approximations. On the other hand, larger hidden
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(a) All other hyperparame-
ters were held constant at the
following values: epochs =
180, batch size = 100,
hidden dimension = 128,
λ = 0.1

(b) All other hyperparame-
ters were held constant at the
following values: epochs =
250, batch size = 100,
hidden dimension = 128,
λ = 0.3

Figure 5.4: Learning Rate Parameter Search
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dimension sizes leads to potential overfitting and raises the computational complexity of

training the network.

The values tested for hidden dimension were {64, 128, 256, 384, 512}. The intersection

vs. parameter setting plots for WGAN-GP and WGAN-GPMI may be seen in Fig. 5.5a

and Fig. 5.5b respectively.

(a) All other hyperparame-
ters were held constant at the
following values: epochs =
180, batch size = 100,
learning rate = 5e−5, λ =
0.1

(b) All other hyperparame-
ters were held constant at the
following values: epochs =
250, batch size = 100,
learning rate = 5e−4, λ =
0.3

Figure 5.5: Hidden Dimension Parameter Search

The range of Histogram Intersection scores for the hidden parameter search is far

smaller than the other hyperparameters. For the WGAN-GP model {128, 256, 384} had

the highest intersection scores, while {64, 128, 256} performed well for the WGAN-GPMI

model.
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Epochs

The number of epochs determined how many times the network was exposed to the full

dataset during training. Using a large number of epochs allows for the network to get more

exposure to the ground truth distribution. However using a very large number of epochs

can lead to overfitting.

Due to the small size of the CPTC dataset, large values for epochs were tested. These

values included {50, 100, 150, 200, 250}. The intersection vs. parameter setting plots for

WGAN-GP and WGAN-GPMI may be seen in Fig. 5.6a and Fig. 5.6b respectively.

(a) All other hyperparameters
were held constant at the fol-
lowing values: batch size =
100, learning rate = 5e−5,
hidden dimension = 128,
λ = 0.1

(b) All other hyperparameters
were held constant at the fol-
lowing values: batch size =
100, learning rate = 5e−4,
hidden dimension = 128,
λ = 0.3

Figure 5.6: Epochs Parameter Search

Increasing the number of epochs is critical for the WGAN-GPMI model to perform

well. This makes intuitive sense, as this model requires the optimization of three neu-

ral networks. The 30 epochs test case highlights this, as nearly all 3-tuple and 4-tuple
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feature combinations have 0 intersection with the ground truth distribution. Compara-

tively, the WGAN-GP model is able to achieve results within the range of 20− 30 percent;

still the worst result of the values tested, but significantly better than WGAN-GPMI. For

the WGAN-GP model, {100, 150, 200} epochs were selected for the full hyperparameter

sweep. For the WGAN-GPMI model, {150, 200, 250} were selected.

Full Parameter Sweep

Collecting the candidate values from Sections 5.1.1 through 5.1.5, a full parameter search

was carried out to test all combinations of these values. The values under test for each

model may be seen in Table 5.3, along with the unique number of combinations tested.

Table 5.3: Candidate Parameters for WGAN-GP and WGAN-GPMI

WGAN-GP Parameters WGAN-GPMI Parameters
Lambda 0.05 0.1 0.2 0.2 0.3 0.4
Batch Size 10 25 50 100 150 50 100
Learning Rate 5e-5 5e-4 1e-3 5e-5 1e-4 5e-4 1e-3
Hidden Dimension 128 256 384 64 128 256
Epochs 100 150 200 150 200 250
Number of Unique Combinations 405 216

For each parameter combination tested the intersection of histograms for all feature

combinations was computed and tabulated. Given number of unique combinations tested a

simple 3 step heuristic was defined to help identify the combinations which performed well

in the table. For each combination of features:

1. The highest intersection score achieved was highlighted in yellow.

2. Intersection scores that fell within the 90th percentile were highlighted in green

3. Intersection scores that fell within the 80th percentile were highlighted in red.

This system reduced the search of possible combinations, and allowed for quick visual

identification of values which performed well. Identifying the highest intersection score
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per feature combination is not sufficient criteria to identify the best hyperparameter com-

bination as scores are very close and can be noisy. Adding in the 90th constraint helps to

identify other candidates with high performing intersection scores. Finally, the 80th per-

centile constraint is meant to act as a lower bound as values which fall within in it are

still good, and values which are not highlighted at all should raise questions about model

performance. For example, if the individual feature intersections are within the 90th per-

centile but 3-tuple and 4-tuple combinations are completely not highlighted, the model may

have failed to capture high order dependencies in the distribution of the data. Thus, that

parameter setting should not be considered for use in future experiments.

A subsection of the highlighted table for the WGAN-GPMI model is given in Fig. 5.7.

Note that the row with the red arrow pointing to it performs well, as 6 of it’s 15 values

are the highest performing intersection scores with an additional 6 in the 90th percentile.

The only feature which fails to achieve an intersection score within the 80th percentile is

Destination Service. Table 5.4 shows the optimal hyperparameter values selected for each

model. Despite only testing on a single target IP address, these parameters were applied to

all other target IP addresses and performed well.

Table 5.4: Optimal Hyperparameter Settings

(a)

WGAN-GP
Epochs 150
Batch Size 100
Learning Rate 5e-4
Lambda 0.1
Hidden Dimension 128

(b)

WGAN-GPMI
Epochs 250
Batch Size 100
Learning Rate 5e-4
Lambda 0.4
Hidden Dimension 128

Alert Fidelity

Two metrics were employed in order to identify the fidelity of alert generation. Each metric

was scaled such that it could be used to analyze individual feature performance as well as
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Figure 5.7: Subsection of WGAN-GPMI Hyperparameter Search Results
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m-tuple combinations of features. This allowed for both low and high level performance

of the model to be assessed. These metrics were the Histogram Intersection and Jensen

Shannon Divergence.

Histogram Intersection

The Histogram Intersection was computed for all feature combinations across all 4 IP ad-

dresses tested. For each IP, all possible combinations of features were analyzed. This

resulted in 4 intersections representing the individual features, 6 representing pairs of fea-

tures, 4 representing 3-tuples, and a single histogram representing 4-tuple combinations.

Fig. 5.8 steps through these levels of combinations for target 10.0.0.100. The top left

plot shows the intersection of Time Bins. The top right plot shows the histogram combi-

nation of Time Bins and Destination Service. The bottom right adds the Alert Signature

feature to the histogram. And finally, the bottom right shows all 4 features under test as

a single joint histogram. It is important to note that as the number of features considered

in the combination increases so does the complexity of recreating the data with high fi-

delity; individual occurrences of features drops, while the number of unique feature values

to output rises.

The Histogram Intersection was used to analyze the fidelity of results from both of the

models tested. In general, the WGAN-GPMI is able to outperform the standard WGAN-

GP model. This suggests that the mutual information constraint results in a model which

manages to emulate the ground truth distribution with a higher degree of accuracy than

standard models are. Table 5.5 summarizes the results of both models across all 4 target IP

addresses. The maximum intersection score for each combination of features is bolded if

the given score is at least 0.05 greater than the intersection score of the other model. Ad-

ditionally, the standard deviation was computed using 1000 unique distributions sampled

from the generative model and is shown for each feature combination on each target.

It is interesting to note that the effect of the mutual information constraint varies from
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Table 5.5: Histogram Intersection for all Feature Combinations
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Figure 5.8: Histogram Intersection for M-Tuple Feature Combinations

Target IP address to Target IP address. For example, Target 10.0.0.22 only has small im-

provements to Histogram Intersection when using the WGAN-GPMI model. In several

cases, such as Source IP and Destination Service, the intersection score actually drops. On

the other hand Target IP addresses such as 10.0.0.27 see a large benefit from using the mu-

tual information constraint. On average, the Histogram Intersection is 14.63% higher for

the WGAN-GPMI model than it’s WGAN-GP counterpart. This is result is particularly in-

teresting, as the intent of the mutual information constraint is to improve mode dropping in

the generator, not to directly improve Histogram Intersection. It is believed that palliating

mode dropping is directly related to increasing Histogram Intersection in many cases be-

cause it redistributes output sample entropy across more output values than standard models

do when collapsing to a small subset of output values.

Another interesting result of Table 5.5 is that the intersection of histograms is re-

silient to earlier score bias. Consider the intersection score of Timestamp (T) on victim

IP 10.0.0.100. This feature has the highest score of any single feature, potentially lead-

ing to the fallacious expectation that any combination with T will also score high. When

moving to testing 2-tuple combinations such as Timestamp (T) and Alert Signature (A)
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however the intersection drops significantly. This leads to another interesting observation;

the Histogram Intersection is monotonically decreasing with respect to it’s constituent fea-

tures. Intuitively this makes sense as adding new features to the combination cannot add

any more information than what is provided by the constituent features.

Jensen Shannon Divergence

Due to the shortcomings of Histogram Intersection discussed in Section 5.2 the Jensen

Shannon Divergence is also computed for each model. Table 5.6 shows the results of this

computation. The minimum divergence for each feature combination is highlighted if the

value is at least 0.01 less than the corresponding value for the other model. Additionally, the

standard deviation of divergences was computed for each feature combination and target,

for both models, using 1000 distributions sampled from the generative model.

Note that the Jensen Shannon Divergence does not have an upper bound like the His-

togram Intersection does, however it’s result can be interpreted as the amount of informa-

tion required, in nats, to get from one distribution to another. For disparate distributions,

the divergence is high, as a large amount of information is required to get from one distribu-

tion to the other. Histograms that have a similar probability distribution have a low amount

of divergence, as less information is required to get from one distribution to another; the

Jensesn Shannon Divergence follows a reverse trend from the Histogram Intersection.

One of the largest benefits of the Jensen Shannon Divergence is that it imposes a nonlin-

ear penalty based off the difference in histogram probability distributions. Directly applied

to each of the models presented here, a large penalty is incurred if the model fails to output

a value that occurs with non-zero probability in the ground truth. This benefit is especially

apparent for Target IP 10.0.0.100 where the Jensen Shannon Divergence shows a greater

improvement for 4-tuple results when using the WGAN-GPMI model than the Histogram

Intersection does. This will be further highlighted in Section 5.4 where the number of out-

put modes is shown to increase as much as two fold when using the WGAN-GPMI model.

47



CHAPTER 5. RESULTS AND ANALYSIS

Table 5.6: Jensen Shannon Divergence (nats) for all Feature Combinations

V
ic

tim
M

ac
hi

ne
IP

A
dd

re
ss

W
G

A
N

-G
P

W
G

A
N

-G
PM

I
Fe

at
ur

es
10

.0
.0

.1
00

10
.0

.0
.2

7
10

.0
.0

.2
2

10
.0

.9
9.

14
3

10
.0

.0
.1

00
10

.0
.0

.2
7

10
.0

.0
.2

2
10

.0
.9

9.
14

3
A

0.
11

1
±

0.
00

2
0.

08
8
±

0.
00

3
0.

03
3
±

0.
00

2
0.

02
4
±

0.
00

2
0.

01
7
±

0.
00

1
0.

03
1
±

0.
00

2
0.

03
1
±

0.
00

2
0.

03
3
±

0.
00

2
D

0.
05

2
±

0.
00

2
0.

08
6
±

0.
00

3
0.

03
2
±

0.
00

2
0.

01
2
±

0.
00

2
0.

00
6
±

0.
00

1
0.

02
6
±

0.
00

2
0.

04
1
±

0.
00

2
0.

02
1
±

0.
00

2
S

0.
08

5
±

0.
00

2
0.

02
2
±

0.
00

2
0.

02
9
±

0.
00

1
0.

01
7
±

0.
00

2
0.

01
0
±

0.
00

1
0.

01
4
±

0.
00

1
0.

03
7
±

0.
00

2
0.

01
1
±

0.
00

2
T

0.
04

9
±

0.
00

2
0.

04
7
±

0.
00

3
0.

02
8
±

0.
00

2
0.

06
0
±

0.
00

3
0.

00
9
±

0.
00

1
0.

03
0
±

0.
00

2
0.

01
9
±

0.
00

2
0.

02
3
±

0.
00

2
A

,T
0.

15
0
±

0.
00

2
0.

12
8
±

0.
00

3
0.

06
3
±

0.
00

3
0.

13
1
±

0.
00

4
0.

07
7
±

0.
00

3
0.

06
7
±

0.
00

3
0.

08
0
±

0.
00

3
0.

07
1
±

0.
00

3
A

,S
0.

14
5
±

0.
00

2
0.

15
0
±

0.
00

3
0.

07
0
±

0.
00

2
0.

07
1
±

0.
00

3
0.

05
9
±

0.
00

3
0.

07
6
±

0.
00

3
0.

06
7
±

0.
00

3
0.

06
3
±

0.
00

3
S,

D
0.

10
7
±

0.
00

2
0.

14
1
±

0.
00

3
0.

07
1
±

0.
00

2
0.

05
4
±

0.
00

3
0.

03
6
±

0.
00

2
0.

06
3
±

0.
00

3
0.

07
8
±

0.
00

3
0.

04
1
±

0.
00

3
D

,T
0.

12
1
±

0.
00

2
0.

12
6
±

0.
00

3
0.

06
3
±

0.
00

3
0.

12
6
±

0.
00

4
0.

06
9
±

0.
00

3
0.

06
3
±

0.
00

3
0.

09
1
±

0.
00

3
0.

06
3
±

0.
00

3
S,

T
0.

10
2
±

0.
00

2
0.

08
2
±

0.
00

3
0.

07
3
±

0.
00

3
0.

07
7
±

0.
00

3
0.

04
9
±

0.
00

2
0.

05
3
±

0.
00

3
0.

09
6
±

0.
00

4
0.

03
9
±

0.
00

3
A

,D
0.

14
2
±

0.
00

2
0.

11
0
±

0.
00

3
0.

04
4
±

0.
00

2
0.

05
4
±

0.
00

3
0.

06
0
±

0.
00

3
0.

05
0
±

0.
00

2
0.

04
7
±

0.
00

2
0.

05
5
±

0.
00

3
A

,S
,T

0.
18

9
±

0.
00

2
0.

18
1
±

0.
00

4
0.

11
9
±

0.
00

3
0.

19
3
±

0.
00

5
0.

14
6
±

0.
00

4
0.

11
0
±

0.
00

3
0.

15
8
±

0.
00

4
0.

13
6
±

0.
00

4
A

,S
,D

0.
17

3
±

0.
00

2
0.

16
9
±

0.
00

4
0.

08
0
±

0.
00

3
0.

10
0
±

0.
00

4
0.

10
2
±

0.
00

3
0.

09
2
±

0.
00

3
0.

08
1
±

0.
00

3
0.

08
2
±

0.
00

4
A

,D
,T

0.
17

3
±

0.
00

3
0.

14
1
±

0.
00

4
0.

07
2
±

0.
00

3
0.

15
7
±

0.
00

4
0.

11
3
±

0.
00

4
0.

08
1
±

0.
00

3
0.

09
5
±

0.
00

4
0.

09
0
±

0.
00

4
S,

D
,T

0.
17

4
±

0.
00

3
0.

17
8
±

0.
00

4
0.

11
4
±

0.
00

3
0.

19
7
±

0.
00

5
0.

14
1
±

0.
00

3
0.

10
6
±

0.
00

3
0.

16
0
±

0.
00

3
0.

13
2
±

0.
00

4
A

,S
,D

,T
0.

20
9
±

0.
00

3
0.

19
4
±

0.
00

4
0.

12
1
±

0.
00

3
0.

21
3
±

0.
00

5
0.

17
8
±

0.
00

4
0.

12
2
±

0.
00

3
0.

16
4
±

0.
00

4
0.

15
0
±

0.
00

5

48



CHAPTER 5. RESULTS AND ANALYSIS

Alert Dependencies

Interactions between NIDS alert features provide important contextual information about

cyber attacks. For example, knowing what machine an attack will occur on can reduce

the number of possible attack vectors on that machine. Capturing these feature dependen-

cies is a key aspect of understanding the quality of the generative model. To verify these

dependencies the drop in Histogram Intersection is noted, weighted conditional entropy

is computed according to the equations provided by (4.2) and (4.4), and joint entropy is

computed using (4.3) and (4.5) to provide a baseline. Conditional probability tables are

also generated to provide detailed inspection of specific feature value relationships. Ap-

pendix A contains an alternative method to verifying feature dependency through the usage

of a Support Vector Machine. These metrics were all computed for both WGAN-GP and

WGAN-GPMI models.

WGAN-GP Feature Dependency Performance

By viewing the difference in Histogram Intersection between m ± 1 tuples of features,

feature dependencies can be inferred. Large drops indicate a low amount of dependence

between the lower levels of feature combinations and the higher level. Small drops when

adding a new feature to the joint distribution indicate that there is dependence between

the lower level combination and the newly added feature. By applying the graph structure

given in Fig. 4.1 to NIDS alert features, Histogram Intersection scores can be noted in

nodes of the graph while edges represent conditional and joint entropy. Fig. 5.9 shows the

dependency graph for Target IP 10.0.0.27 from the CPTC’17 dataset. These graphs were

constructed for the other three target IPs tested from CPTC ’17 and are included in the

Appendix B

Stepping through the graph, nodes along the outer edges represent a single feature his-

togram. The values given are the Histogram Intersection between the ground truth and
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CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.9: Target 10.0.0.27 Alert Dependency Graph: WGAN-GP Results

generated data distribution. As edges are traversed and meet, they are combined and arrive

at the next node as a combination of the features considered. This process continues in-

wards, adding one more unique feature to each joint distribution, until all four features are

considered at once.

It is important to note that for the 2-tuple combinations there are actually 6 possible

distributions, however only 4 may be visualized while maintaining planarity of the graph;

the analysis of these values is still included in the conditional and joint probability tables.

In order to highlight drops in intersection score, the following schema was applied to

the graph: Lines are color coded such that blue lines indicate feature unions which result in

less than 5% difference between histogram scores. Conversely, lines which are red indicate

a difference that is greater than 5%. Lines which are purple indicate a unidirectional de-

pendence relationship between the feature tuples. This occurs when one feature is a good

predictor of another (< 5% intersection difference) but the opposite is not true (> 5% in-
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CHAPTER 5. RESULTS AND ANALYSIS

tersection difference). Lines which are blue or red exhibit bidirectional dependence; both

lines exhibit the same intersection difference. All dashed lines are bounding boxes added

to clearly segment the varying m-tuple histograms.

To verify that the graph correctly highlights feature dependencies Table 5.7 was com-

puted. This table considers all unique permutations of features for all m-tuples across

all 4 target IPs. The conditional entropy is then compared between the ground truth and

generated data distributions. Additionally, the joint entropy was computed in Table 5.8

to provide a baseline representation of the amount of randomness in the feature distribu-

tions. This table contains calculations only from 2-tuple, 3-tuple, and 4-tuple combinations

as there is no direct comparison to draw between conditional and joint entropy for single

feature histograms.

Several instances of feature dependency show good agreement between Fig. 5.9 and

Table 5.7. For example, the drop in interesection score between A,S and A,S,T is low and

the conditional entropy of the ground truth distribution T|A,S is low.

To further study specific feature-value relationships between the ground truth and gen-

erated data distributions conditional probability tables may be output for each feature per-

mutation. In order to make these tables human-readable the following color schema is

applied: cells which have probability 0 are highlighted in red; cells with probability 1 are

highlighted in blue. This two step process highlights both the sparsity of output probabil-

ities as well as cases where the input results in a deterministic output. Specific examples

of these tables for the ground truth distribution, WGAN-GP generated distribution, and

WGAN-GPMI generated distribution will be covered in 5.3.2

WGAN-GPMI Feature Dependency Performance

All of the aforementioned plots and tables were created in duplicate in order to test the

effect of Mutual Information maximization on the model’s ability to capture feature depen-

dencies.
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Table 5.7: Weighted Normalized Conditional Entropy Values for all Target IPs: WGAN-GP Result
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Table 5.8: Normalized Joint Entropy Values for all Victim IPs: WGAN-GP Result
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CHAPTER 5. RESULTS AND ANALYSIS

First, the graph structure and highlighting in Fig. 5.9 was applied to the histogram inter-

section scores of the WGAN-GPMI model in Fig. 5.10. Similar to the WGAN-GP model

results, Appendix B contains the results for the other three target IP addresses tested. Note

that from this figure alone it is impossible to make a claim that feature dependencies are

more fully captured by the WGAN-GPMI model. However by computing the conditional

entropy in Table 5.9 it is apparent that the WGAN-GPMI model more closely imitates the

entropy of the ground truth. In fact, several of the small valued m-tuples such as A|T, T|D,

and D|S,T all have identical conditional entropy values to the ground truth distribution.

Additionally, values that are within 10% of the higher entropy value are highlighted.

Figure 5.10: Target 10.0.0.27 Alert Dependency Graph: WGAN-GPMI Results

Despite identical conditional entropy values existing between the ground truth and gen-

erated distribution it is important to note that this does not guarantee that the distributions

are identical. Fundamentally, two different distributions can have the same entropy. Addi-

tionally, the conditional entropy calculation used is weighted by the probability that a given
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Table 5.9: Weighted Normalized Conditional Entropy Values for all Target IPs: WGAN-GPMI
Result
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Table 5.10: Normalized Joint Entropy Values for all Victim IPs: WGAN-GPMI Result
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CHAPTER 5. RESULTS AND ANALYSIS

input conditioning value occurs. This allows inputs that occur frequently to have more in-

fluence over the conditional entropy value than inputs that occur rarely. Given a very small

chance of an input occurring it’s contribution to the conditional entropy calculation could

become negligible. In order to better understand each model, the conditional probability

tables showing inputs and their respective output probability were generated. Figure 5.11

shows subsections of the conditional probability table’s from the ground truth, WGAN-GP

generated, and WGAN-GPMI generated distributions.

The figure shows the conditional probability table for A|D,T. All of the tables are for-

matted such that the input feature combination is given in the first column, the probability

of that input occurring is given by the second column, the third column indicates the num-

ber of times that input occurred, and the remaining columns indicate the output values and

their probability of occurring. This allows for identification of the influence each input

combination would have on the conditional probability calculation. Cells that are high-

lighted red have no probability of being output given the input conditioning values. Cells

that are highlighted blue indicate cells that are deterministically output given specific input

conditioning values.

Note that the ground truth distribution exhibits deterministic behavior for many of the

input feature combinations. Capturing these cases of deterministic behavior is especially

important for inputs which occur frequently. For example, successfully learning the de-

pendency between ms-wbt-server and time bin 1 predicting the value of the correct alert

signature is important to model accuracy. The WGAN-GP generated distribution exploits

this and generates many more samples than the ground truth contains, while the WGAN-

GPMI distribution performs far closer to the real probability of occurrence. Additionally,

several input combinations which the models fail to generate are highlighted in the table.

Note that the input combination of kerberos+6 only occurs once in the ground truth, making

it nearly impossible for either model to learn to recreate this value. But other cases such as

mysql+3 occur 277 times in the ground truth distribution but only twice in the WGAN-GP
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Figure 5.11: Comparison of Conditional Probability Tables
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Model. WGAN-GPMI does a far better job of recreating this input, as it occurs 194 times

in the generated distribution.

Another interesting observation from these probability tables is that sometimes only

a subset of the input conditioning values affects the output value. For example, if the

given Destination Service value is ms-wbt-server then the output Alert Signature is ET

DOS Microsoft RDP Syn. for all Time Bin values except 5.

Output Modes Captured

Finally, to assess output modes captured by each model, two values were collected; the

number of values that existed in the ground truth that were not generated by the model and

the number of values generated by the model that never occurred in the ground truth. Like

all previous metrics, these values were collected for each unique m-tuple combination of

features.

Table 5.11 shows the number of output modes missed by the generative model. The

bottom two rows identify the number of unique output modes consisting of all 4 features

for each target IP and the percentage of modes dropped. Note that this table shows the

direct benefit of mutual information maximization, as the number of output modes missed

by the model decreases across the board for the WGAN-GPMI model. Some of the target

IP addresses recover more modes than others when moving to the WGAN-GPMI model;

10.0.0.100, as well as 10.0.0.22, halve the number of output modes dropped. On the other

hand, 10.0.0.27 and 10.0.99.143 only see a minor improvement when adding in the mutual

information constraint.

One potential explanation for this would be that the missing output modes occur with

such low probability that even with the mutual information constraint on the generator

the model does not receive sufficient gradient feedback to learn to output these values.

Methods to recreate rare samples remains an ongoing challenge that is incredibly important

to the field of Cyber Security. It is possible that critical actions, such as data exfiltration
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may only generate a small number of alerts rarely over the course of an attack. Being

able to model such behaviors would be extremely beneficial to proactive Cyber Defense,

where critical vulnerabilities are identified and patched. Additionally a means to identify

the type of behavior associated with the additional output modes captured would provide

contextual information to what type of network behaviors are most recoverable from data

driven models such as GANs.

Table 5.12 shows the number of noisy outputs by the generative model that did not occur

in the ground truth. The bottom two rows of this table shows the number of unique modes

and the ratio of noisy 4-tuple samples over the number of true combinations. For target IP

10.0.99.143, the target IP tested with the lowest number of alerts, the WGAN-GPMI model

appears to create less noisy outputs. Additionally 10.0.0.27 also sees a significant drop in

the number of noisy outputs generated when using the WGAN-GPMI model. Interestingly,

these are also the two IP addresses which did not experience a large decrease in the number

of output modes dropped.

Interestingly, these output modes aren’t inherently wrong since the individual feature

value do exist in the ground truth dataset. However, there should be no gradient feedback

to encourage the generation of these combinations of feature values since they don’t occur

in the ground truth data.

Generality of Models

One of the most powerful characteristics of Machine Learning models is their ability to

adapt well to new datasets from the same domain. To ensure that the models presented

here maintain generality we retrain each on the CPTC’18 dataset. This dataset continues

to make use of Suricata alerts, however includes different feature values and is based off

an attack on a completely new network architecture. Additionally, the number of alerts for

CPTC’18 is far greater, with tested target’s containing between 7475 and 9850 alerts. The

same features and preprocessing steps identified in Section 4.1 were applied to alerts from
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Table 5.11: Output Modes Dropped
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Table 5.12: Noisy Generator Output Counts
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the four IP addresses that contained the most number of alerts. These IP addresses included

10.0.1.46, 10.0.1.5, 10.0.0.24, and 10.0.0.22.

Table 5.13: Histogram Intersection for all Feature Combinations: CPTC’18
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After training each model the Histogram Intersection was computed for each gener-

ated distribution, as shown in Table 5.13. Given the results, both models perform well at
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generating alerts which emulate the CPTC’18 data. Note that the prior observations re-

garding mutual information maximization increasing Histogram Intersection also hold true

when applied to a new dataset. Additionally, the methods presented for identifying feature

dependencies and output mode dropping are fully applicable to this new dataset.
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Chapter 6
Conclusions and Future Work

Conclusion

This work shows the potential for using Generative Adversarial Networks as a means to

generate artificial network intrusion detection alerts. Given the stochastic nature of alerts,

rarity of known malicious samples, and rapidly growing need for alert data to train Machine

Learning algorithms, GANs provide a means to create alerts that traditional statistic models

cannot compare to.

Additionally, two intuitive metrics are defined for analyzing alert generation fidelity;

Histogram Intersection and Jensen Shannon Divergence. Direct visualization of the His-

togram Intersection illustrates the model’s output distribution across m-tuple combinations

of features, showing the intricacy of learning to output realistic alert data. Jensen Shannon

Divergence is employed to confirm relationships identified by Histogram Intersection and

highlight crucial differences in the probability distribution of the generative model.

Using these metrics and information theoretic calculations, feature dependencies are

revealed and examined to provide a deeper understanding of both the power and shortcom-

ings of GANs applied to NIDS alert generation. Joint entropy is computed for the ground

truth distribution and used as a baseline score identifying the challenge of modeling the data

distribution. Then conditional entropy is employed on both the ground truth and generated

data distributions to identify feature dependencies and how well the generative network

models these dependencies. In order to view low level feature-value dependencies, condi-
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tional probability tables are generated and highlighted to show sparsity and determinism.

Finally, it is shown that using mutual information is an effective means of regularizing

the generator network, improving exploration of the ground truth feature space. Not only

do the metrics measuring alert fidelity improve, but output mode collapse is shown to de-

crease. This is a direct result of the generator more closely modeling the ground truth data

distribution.

Future Work

Though this work shows the promise of GANs in NIDS alert generation the results are

far from perfect. Modeling the distribution of alerts is still a monumental challenge for

several reasons: The lack of known malicious alert data makes it challenging to train GANs.

Current Machine Learning methods in the field of Cyber Security use sequences of alerts

in order to model temporal relationships in an attack sequences. And the quality of results

requires improvement before being ready for application to other Cyber Security Machine

Learning systems, especially with regards to guiding alert generation to target specific types

of attacker behavior.

Multi-Alert Generation and Analysis

Altering the models presented by this work to generating multiple temporally related alerts

at once would greatly increase the utility of generator outputs. Current works applying

Machine Learning methods to Cyber Security problems almost exclusively use Recurrent

Neural Network structures for attack classification and prediction. It is well established that

cyber attacks have intricate behavioral patterns consisting of multiple actions; several alerts

may be all related to a single goal or exploit used by the attacker. Modifying the models

presented to output chains of alerts would allow for inspection of attacker behaviors and

long term strategies.

Two means of modifying these models are presented. First, each of the neural networks
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presented could be modified to use a Recurrent Neural Network structure. Particularly,

Long Short Term Memory cells have been effective at learning complex temporal relation-

ships and can adaptively select when to forget prior information. In order to train a model

consisting of LSTM Neural Networks, the ground truth data would have to be segmented

into contiguous chains of alerts. Additionally, alert chain generation would have be cut

manually, as there is no natural concept of what type of alert marks the end of a chain

(whereas in other tasks like sentence generation a period represents the end).

The second modification to network structure would be to implement Convolutional

Neural Networks for each model. In order to make this network structure work, packets

would have to be structured into 2D arrays consisting of contiguous alerts. One example

of this would be for each packet to have the prior 2 packets preprended to the alert and the

subsequent 2 packets appended. This would create an 2N + 1 x M array where 2N + 1

is the number of alerts considered in each input to the network and M is the number of

features given by each alert. This network would also have the drawback of being a fixed

size input and output.

Regardless of the means used to generate chains of alerts, new analysis options are im-

mediately available when considering alert sequences. Sequences of alerts could be mod-

eled as Markov Chains allowing for longest common subsequence to be identified and di-

rect comparison of state transition probabilities. This allows for a rich understanding of the

temporal performance of the GAN and how it’s results differ from ground truth sequences.

Additionally alert sequences could be viewed as a graph allowing for visualization of alerts

with low connectivity/deterministic attack behavior, and feature value changes over time.

Improving Generation through Reinforcement Learning

Methods of establishing generator loss in a generative adversarial networks fail to capture

discrete features which have interdependencies. This avenue of future work proposes a way

to model generator loss as a game and apply a reinforcement learning inspired solution to
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it.

Consider the generator to be an agent, whose action space is comprised of all the po-

tential output features it may generate. Then, consider the following hierarchical reward

scheme: For each feature that is output correctly reward the generator with 21 ’points’. For

each pair of features reward the generator with 22 ’points’. And so on and so forth where

the maximal reward is 2n ’points’. The n-many tuple that is correct can be considered the

order of the output (e.g.) The above examples would be first order, second order, and finally

n-th order. This can be established as a sum of the correct combinations as follows: Given

A is the action space consisting of all unique features in the dataset and s is a sample action

generated by the neural network drawn from A.

L =
n∑

k=1

∑
s(n

k
)∈A(n

k
)

2k (6.1)

This formulation has the following benefits:

1. Encourages a generator which captures inter-feature dependencies during training

2. Can be trained without the discriminator network, lowering the potential intractabil-

ity of complex networks

• Note that this comes at the expense of a loss function with O(n!) runtime,

arguably intractible for actions with a high rank

3. Can be modified to target only a specific combination of features

4. Increases reward size non-linearly to as to account for the significant difficulty in-

crease in getting n-many tuples correct.

Another benefit of formulating loss in this manner is that it allows for easy expandabil-

ity. Two examples are as follows:

1. The loss may be modified to provide a reward proportional to the probability of the

selected character being generated.
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2. The loss may be modeled as a n-th order Markov Source to capture temporal structure

within the data.

In order to account for the distribution of alert feature combinations in the loss func-

tion, each feature predicted that is in the Alert Space would have a weighted reward value

by the probability of that feature value occurring as shown below: Let F be a subset of

features from the Alert Space A and Fv represents a specific value for the feature (f). Then

weight the loss of the generated sample by the probability pvn of that specific feature value

combination occurring.

pvn =
|Fvn|
|Fn|

(6.2)

L =
n∑

k=1

∑
s(n

k
)∈A(n

k
)

(2k)p(v1) (6.3)

This can be further expanded to account for the impact of other features on the target

prediction feature. Conceptually, if trying to compute the loss of feature A given feature B

as a prior, the conditional probability of A may be computed. This would further encourage

inter-feature dependency as the loss function would account for decreases in the entropy of

one feature value given another.

An example of this would be computing the probability of a specific value for Alert

Signature given a specific Destination Service value. The number of possible alert signa-

tures is greatly reduced based on the vulnerabilities in the targeted Destination Service. On

the other hand, it is still important to value results which occur in the global action space

even if they don’t occur with the specific IP value given; the intuition behind this is that the

generated should also be encouraged to explore the action space, not just exploit it. To do

this the joint probability should be considered equally with the naive probability proposed

above.
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L =
n−1∑
k=1

∑
s(n

k
)∈A(n

k
)

(2k)p(v1) +
n−1∑
k=1

∑
s(n

k
)∈A(n

k
)

(2k)p(v1|v2) (6.4)

Such a conditional probability model can also be used to model temporal relations

within the data. This is accomplished by using the previous alerts feature value as a prior

for the current generated feature. This in turn can be extended to an n-th order markov

model where n previous alerts act as priors for the current alert being generated. This may

be represented as shown below:

L =
n−1∑
k=1

∑
s(n

k
)∈A(n

k
)

(2k)p(v1|v2, v3, ..., vn)) (6.5)
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Appendix A
SVM Feature Dependency Experiment

One additional way to confirm the dependencies highlighted through drop in histogram

intersection and conditional entropy is to test with a simple model for separation. To do so,

a SVM with the RBF Kernel function was trained using all unique permutations of features.

The model was given 1 to n− 1 features as conditioners and an expected output feature for

all possible input-output pairs.

To further prove that the dependencies identified by the GAN exist, a SVM was fit to the

1|2-combination distributions for each of the target machines from the CPTC’17 dataset.

The accuracy of this fit was tabulated for all four victim IP addresses tested in Table A.1.

Table A.1: SVM Prediction Accuracy For 3-Combination Feature Values Assorted Victim IPs

Machine IP Address
Prediction|Features 10.0.0.100 10.0.0.27 10.0.0.22 10.0.99.143
D|A,T 0.958 0.591 0.949 0.908
D|A,S 0.962 0.616 0.970 0.977
D|S,T 0.790 0.541 0.879 0.794
A|D,T 0.911 0.490 0.929 0.472
A|S,D 0.852 0.516 0.889 0.486
A|S,T 0.749 0.440 0.811 0.344
S|A,T 0.719 0.742 0.539 0.702
S|D,T 0.736 0.814 0.525 0.729
S|A,D 0.962 0.616 0.970 0.977
T|A,S 0.411 0.387 0.215 0.459
T|S,D 0.408 0.424 0.161 0.514
T|A,D 0.178 0.208 0.189 0.436

Note that the order of the combinations is the same as that given in Table 5.7 and held
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constant for all victim IPs. Though some general trends exist, such as alert signature and

destination port category being poor predictors of timestamp, there is variation between the

different victims. Fig. A.1 shows that regardless of what feature dependencies exist for a

given victim there is a strong negative correlation between accuracy of an SVM predictor

and the conditional entropy.

Figure A.1: SVM Accuracy Plotted Against Conditional Entropy
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Appendix B
Alert Dependency Plots

Figure B.1: Target 10.0.0.22 Alert Dependency Graph: WGAN-GP Result
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Figure B.2: Target 10.0.0.100 Alert Dependency Graph: WGAN-GP Result

Figure B.3: Target 10.0.99.143 Alert Dependency Graph: WGAN-GP Result
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Figure B.4: Target 10.0.0.22 Alert Dependency Graph: WGAN-GPMI Result

Figure B.5: Target 10.0.0.100 Alert Dependency Graph: WGAN-GPMI Result
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Figure B.6: Target 10.0.99.143 Alert Dependency Graph: WGAN-GPMI Result
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Appendix C
Alert Dependency Plots

The Common Port Services listing provided by IANA is available at the following url:

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Note that these mappings are periodically updated and are only common mappings/suggestions.

Individual corporations may opt to configure their own service mapping.
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