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Abstract

An Authentication mechanism for stateless communication

Ana Valentina Rodriguez Sosa

Supervising Professors: Dr. Rajendra K. Raj
Dr. Carol Romanowski

Professor
Thesis Committee Co-Chair

Most of the applications we use on a daily basis are distributed systems that are com-

posed of at least one client and server and are exposed to the Internet. This communication

is based on an HTTP protocol, which is a stateless protocol. Because of its communication

characteristics, developers are forced to implement a series of mechanisms to pursue user

privacy, security as well as business features. Modern social media applications such as

Facebook have been using secure tokens as an authentication mechanism. These applica-

tions are relying on only one part of the approach, such as token mechanism generation.

If the third party system does not consider another aspect of security, the authentication

mechanism will fail unless we consider all the aspects in the user authentication process,

as shown when Facebook shared private user tokens with unauthorized users. More than

50 million accounts were affected, and another 40 million could be affected as well. This

work introduces a secure mechanism to identify the user in an enterprise/web application

across all user interactions once the user has logged in. The system to be proposed creates

a relationship between the user and the session management for each system. This project
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aims to show a different perspective based on a user-centered approach, where the approach

is based on the user and its user access and not only on an ID/Token mechanism. The re-

search proposes that the session manager mechanism can be more secure as well as the

token-based mechanism. The approach integrates Blockchain technology for representing

the relationship between the user and a system.
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Chapter 1

Introduction

Nowadays, Web and Enterprise applications are growing every day and protecting data in

a non-trusted environment represents a challenge, especially in a non-secure and stateless

environment. User authentication has become one of the most critical aspects in security

and software development. The user’s state helps the system to identify him and then en-

ables characteristics such as access control, localization, and so on. Owners of applications

are responsible for protecting user information and any other data from unintended access

or malicious attempts. Users preferred to have an identified user state to take advantage

of enhanced user experiences, request unique user data, and access data which is related

to their company and role. To accomplish these requirements and being able to protect

user information, user login functionality has been developed as part of the system devel-

opment. At first glance, this may look simple, but as we know, web systems use HTTP

protocol for exchanging data between the user and the system. The HTTP protocol is state-

less, which means that data exchanged between the user and the system does not have

historical information to identify or track the user through his multiple requests. How the

systems can maintain the user state over the stateless communication without compromis-

ing user experience and security? Here is where sessions and tokens come into play. Both

allow systems to track user actions over the system. Session management provides capa-

bilities for maintaining user state based on the session ID. The Web Application Security

Project’s (OWASP) defines the top 10 software vulnerabilities. [13] Broken authentication

has been part of this list for several years and it has been in the second place in the last
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4 years. Broken authentication includes Session Management and Authentication mech-

anisms. The current situation is that while most modern social media applications such

as Facebook have been relying on token authentication mechanisms, these mechanisms

are third-party solutions and are vulnerable if are shared with non-authorized users. In

the famous Facebook incident, users’ private tokens were shared with unauthorized users,

exposing as many as 90 million accounts [17]. Thinking in new ways of protecting user

data and creating out-of-the-box solutions could help to change the actual status of affairs.

Hence, then to mitigate the risk of broken authorization, the aim of this work is to present

a more secure session management mechanism by integrating Blockchain technology.
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Chapter 2

Background

2.1 An Overview of Authentication mechanisms

Authentication is a security mechanism that allows systems to identify the user as a reg-

istered user by proving information to proof the user is who he/she claims to be. There

are different authentication mechanisms based on biometrics, usernames-password, certifi-

cates, tokens, etc. One of the most common mechanism is the combination of username

and password. However, having this approach isolated from other security issues has lead

to many attacks, forcing security experts and developers to find other robust and enhanced

mechanisms. Some alternatives are HTTP-based authentication (basic, digest) by using

HTTP headers. Other modern approaches have been implemented such as two-factor au-

thentication, or password-less mechanisms.

2.2 Authentication Mechanisms for Login

There are different mechanisms for authenticating a user to login into a application.

Password protection Passwords can be protected by using hashing and salting. Salting

and hashing can be used together for avoiding password visibility. Salting generates a ran-

dom value to be applied to the password. Hashing obscures the password by transforming it

something indecipherable; this value will be stored into the database, making it practically

impossible to use for future intruders.
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Biometrics Authentication by biometrics verification is widely used nowadays by dif-

ferent systems. Some of the options available are fingerprinting, face recognition, voice

waveform recognition, retina and iris patterns. Researchers created patents based on iden-

tifying user behavior patterns associated with biometrics. Some of these behaviors are

based on common patterns found in users that are related to movement and posture, such

as movement of the mouse, eye movement and so on.

WebAuthn: Password-Free FIDO (Fast Identity Online) is a mechanism that allows

users to log in into systems without the need of user and password credentials. FIDO was

developed by companies that are part of the World Wide Web Consortium (WC3). The

main idea is to improve the user experience and create a robust and secure mechanism

for authenticating users in a system. FIDO is using the pre-existent specifications: FIDO

(Fast Identity Online), Universal 2nd Factor Authentication (U2F) and Universal Authen-

tication Framework (UAF) for verifying user identities. To login into the system the user

provides password information and as a second authentication mechanism biometrics or

other mechanisms.

2.3 Authentication mechanisms for maintaining user state

There are different mechanisms developed through the years to maintain the user’s state

in a web/enterprise system after the user has logged into the application. Some of these

methods are based on session management, token mechanisms, or a mix of both.

2.3.1 Systems implementing Token-based Mechanisms

OAuth 2.0 is a token-based mechanism used by companies around the world, such as

Google, Facebook, Twitter, LinkedIn [7]. It provides capabilities for user authorization,

but it cannot be defined as an authentication protocol itself. As developers we cannot rely

on it since OAuth does not know who the user is, if there is a user or not. According to an

OAuth advocate, ”This has led many developers and API providers to incorrectly
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conclude that OAuth is itself an authentication protocol and to mistakenly use it as such.

Let’s say that again, to be clear” [14].

OpenID Connect is a standard for authenticating user access in different systems. This

mechanism is based on OAuth2.0 and it communicates if the user has access to the third

party without revealing user information such as date of birth, files, name and other data.

This is rephrased in the OpenID Connect website as (Identity, Authentication) + OAuth

2.0 = OpenID Connect[15].

OpenID connects a new type of token to OAuth 2.0, enabling the Relying Party (RP) to

verify user identity. The token will be used as a complementary access token as part of

OAuth 2.0. The token ID contains claims about the user authentication such as:

• The identity of the OpenID provider (OP)

• The user’s unique identifier at this OP

• The identification of the intended recipient

• Issued time

• Expired time

The data is parsed and converted into a JSON Web Token and then digitally signed by the

OP. The user credentials are part of the token. This information is used as a user

authorization in the resources protected by a third party. An API verifies both of these

tokens.

Security Assertion Markup Language Tokens (SAML) is an open standard for

authentication and provides secure data exchange. It supports Single Sign On (SSO) by

transferring the user information to another third-party through the exchange of a signed

XML file [1].

Simple Web Tokens (SWT) is based on key-value pair encoded in HTML. The result

values are verified by SHA 256 HMAC using a public key.
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JSON Web Tokens (JWT) could be used as an authentication mechanism as well as a

secured communication exchange. The information sent is digitally signed by using a

private/public key. Each token can be encrypted. Also, JWT tokens are less verbose than

SAML [3] [11]. JWT implements a standard, RFC 7519.

2.3.2 Session Based Mechanisms

A session is created once a user logs into the system successfully. The server creates a

session object for keeping track of each user during the requests and responses, and to

identify the user during the system session life.

The session object is stored on the client side and is maintained on the server side.

In the first response, after the user logs in, the server sends the session information in

the HTTP header. Then, the client sends this information in each request to the server

for authentication and tracking purposes. The server validates the session information to

identify the user. The session management creates a temporary authentication mechanism

for the user’s interactions.

In general, on the client side, the session information is stored in a cookie [16]. How-

ever, there are other storage mechanisms:

• URL parameters

• Hidden form fields

2.4 Related work

In my review of the literature, I did not find any approach for protecting the session ID.

Different approaches are available to protect tokens, some of which are implemented in

Blockchain, while others use Blockchain only for maintain user identity.

There are several systems based on identity management. Some of them are imple-

mented on Blockchain, some are mobile apps and others focused on attestation attributes.

Most of these methods are trying to create a unique system that resolves everything, not
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only authentication but identity management as well. But, this approach could be contro-

versial since creating a unique solution may limit systems and users to only one solution

instead of providing flexibility and the freedom for choosing and and using different plat-

forms [8].

2.4.1 The Problem

Session management and broken authentication problems have been eyed by OWASP since

the OWASP Top 10 Vulnerabilities have been published. Figure 2.1, shows the OWASP

Top 10 through the years. Broken Authentication and Session management (highlighted in

the table) started in third place in 2004, and have always been part of the OWASP Top 10.

Broken Authentication, 13 years later, is still in the top positions of the list, topping even

the exposure of sensitive data.

Figure 2.1: Analysis of Vulnerabilities changes over time-based on the OWASP Top Vul-
nerabilities since 2003[13]. Each vulnerability has a unique color to make visible its evo-
lution through the years.

Session Management issues

There are potential threats and attacks related to session management:

• Session Hijacking: is the process when a hacker steals or predicts the session Id.

Since session Ids are usually recorded in cookies as part of the client and server
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communication, the hacker can use the stolen information to access the system as

an authenticated user. Some of techniques used to commit this attack are Cross-site

Scripting (XSS), Man In The Middle attack (MITM), Man In The Browser attack

(MITB,MitB,MIB, MiB), and session fixation.

To avoid Session Hijacking, a new cookie should be generated each time the user be-

gins a new session and communications should be encrypted using Hypertext Trans-

fer Protocol Secure(HTTPS) [4].

HTTPS implements an exchange of certificates issued and verified by a trusted cer-

tificate authority (CA) hence making this a mutual authentication. This communica-

tion will validate that the messages sent are from the owner’s certificates [19].

• Session Prediction: Hackers can easily predict session ids and tokens if the systems

do not create robust and secure session Ids [16]. There are several recommendations

for making session Ids indecipherable, including creating an ID that contains an ex-

tremely large number of characters and also by using pseudo-randomness. Robust

ids can be created using all possible combinations of attributes:

– IP address

– User-Agent

– Request timestamp

– A random number

– A secret key and SHA-256

– Timestamp

– XOR obfuscation

Other ways to protect session Ids include labeling cookies as secure, avoiding URL

queries to transmit tokens, and using a post method with hidden field values. These
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will decrease the possibility that the session ID will be visible to the attacker. Im-

plementing logouts, session timeouts, and two-step verification will reduce the pos-

sibility of accessing as an authenticated user when the user is not longer active in the

application.

• Session Fixation: This type of attack is similar to the one described in Session Hi-

jacking, but takes place before the user login. The attacker tries to gain a valid session

ID by creating a session ID and tricking the user with un-trusted information to log

into the website. This attack is related to session prediction. A common technique

used in Session Fixation is to generate a cookie on the client side and then hide the

new session ID in a field using a form made by the attacker, or through a URL sent

to the user [9].

Tokens issues

Token mechanisms are undoubtedly robust and very popular in the software industry. Most

of these systems are focused on making the token indecipherable. However, there are as-

pects of security that are not addressed in current approaches. One of those aspects is token

exposure. In the last data breach at Facebook, September 2018, the tokens were exposed

in the GUI by a third-party library, making those tokens visible to other users. The tokens

were expropriated by other parties, making it possible to impersonate an authenticated user

and access the system. Once an intruder accessed the system with the stolen token, the

user’s content will be visible as well as credit card information and other private informa-

tion. Facebook was forced to generate more than 50 million new tokens [17].

This analysis shows that Broken Authentication is a critical flaw in the eyes of the

security community based on data breaches and impact in the software industry. There are

several potential threats and attacks related to session management, occurring at different

points in the session timeline and from different aspects of the process.
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2.5 Hypothesis and Methodology

Because of the importance of session management, this element has become a target for

hackers. If hackers access a user’s session id, they could impersonate an admin user and

gain access and control of the whole system without having been authenticated. A hacker

could access the system despite authentication robustness if session management is not part

of this authentication mechanism.

2.5.1 Hypothesis

Nowadays some web and enterprise applications are relying completely on tokens, or Ses-

sion ID which allows hackers to access the application without the need to login. We can

change this approach by creating a strong session management system that does not only

rely upon a third-party mechanism, and also in the user, to prove the user’s authenticity.

This new approach based on session management and the user creates a strong relation-

ship between user identification and session IDs across different systems in a decentralized

system. The hypothesis is that this new approach will reduce session management broken

authentication.

2.5.2 Technical Approach: Blockchain

Blockchain can be defined as a distributed database mechanism which provides scalability,

security, and privacy. Satoshi Nakamoto [10] started the Blockchain, as a revolutionary

idea when he wrote a paper about it in 2008. After this period, Blockchain has become a

source of new ideas; creating new paradigms, innovative approaches and creating a path

for resolving real-world problems differently. Blockchain has received more than 1B USD

of investment, and more than 12.4M wallets were created in 2014. Several Blockchain

systems have been developed since then, in different areas such as financial, health, e-

commerce, cloud and one of the most important, for rewriting the internet[2]. There are

companies providing huge funding for rewriting social media apps to be allocated in the

Blockchain Network [2]. Blockchain addresses and resolves many issues around security
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and privacy, creating the opportunity and vision for better security approaches. The phi-

losophy that runs behind it has been primarily embraced because Blockchain implements a

P2P network without an intermediary, promoting a decentralized authority.

Security

The CIA triad is a model designed for resolving and identifying issues related to informa-

tion security. CIA is defined by the three concepts: Confidentiality, Integrity and Availabil-

ity.

Confidentiality This property represents how the data is protected when a user intends

to access the information. Blockchain implements confidentiality by creating transactions

without revealing user information. However, the transaction could lead to the user who

created the transaction. There are different approaches to resolve this issue, one of which

uses synonymous addresses to avoid tracking the source.

Integrity

This property ensures that the data is trustworthy, accurate and consistent across the

system. Blockchain implements integrity by creating immutable transactions that avoid

data to be changed in a particular point of time. Also, it captures all data changes over the

time in its immutable ledger.

Availability This property represents the ability of a system to be accessible at any time

in a consistent way. Consistency is one of Blockchain’s main characteristics. However,

some recent research showed that Blockchain could not meet availability expectations due

to slow responsiveness associated with committed transactions [18].

2.6 Roadmap

This thesis is organized as follow:

Chapter 2 gives a background information about authentication mechanisms, hypothe-

sis and methodology.

Chapter 3 presents the technical approach and its implementation, the use cases for this
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research and how the data flow and interact between components, testing the smart contract

is included based on the use cases created.

Chapter 4 presents an analysis based on doing penetration testing and vulnerabilities

scan in a set of selected applications to validate the hypothesis.

Chapter 5 describes the research conclusions, current status, lessons learned and future

work.
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Chapter 3

Approach, Design and Implementation

This chapter describes the technical approach followed, its implementation and testing

based on the use cases.

3.1 Design

The model presented is shown in Fig. 3.1 and described below:

-The user: Any user who interacts with the system.

-Key/wallet: Each registered user will have an authentication wallet. The digital wallet

is representing the key identity for accessing different systems. All systems in which the

user has been registered in any way will have a unique key. The wallet will store the key

pairs public-private related to each system.

-Public/private key: the key generation will take place once the user is registered in the

system. Each user will have his own wallet and keys. The user will sign each message us-

ing his private key, in this way we could ensure that the user is who we think it is; besides,

by using Blockchain, the relationship between the user and session ID will be immutable.

-Authentication mechanism:

The login mechanisms are out of the scope in this research. However, in the implemen-

tation, we will need them to test and validate the model. The main idea is that the system
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could use its session ID (generated by the system) or use the session generated by an enter-

prise or web application.

-Session Management component:

This element is the gateway for creating a channel between the web application and the

Blockchain. It will create a layer of abstraction and communication for generating data

understandable for Blockchain and executing smart contract definitions. The system could

be configured to use a proprietary session ID or a strong custom Id.

-Data Storage Components:

(a) Storage definitions: This component is in charge of generating the data for being

stored in the Blockchain and manipulated through the smart contract.

(b) Data Storage Admin: This element represents the contract implementation to be

deployed in the Blockchain. The contract will be in charge of creating the transactions for

each user-application-session relationship, validating the transactions according to contract

as well as invalidating the user session information.

-Blockchain- Ethereum:

The Blockchain will be in charge of attaining the relationship between the user-application-

session. The Blockchain implementation will be Ethereum. To implement and test the

system, use cases for relevant operations must be defined.
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Figure 3.1: A model for Authentication Mechanism for stateless Communication
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3.2 Use cases

Login Here the user is attempting to login into the web/enterprise application. The appli-

cation validates the user, but will ask the Blockchain to validate the session data and create

the session for the user (Figure 3.2).

Figure 3.2: Flow for login use case

Requests In this use case, the user is sending a request to the web/enterprise applica-

tion. The application validates the data; however, the Blockchain needs to validate that the

session data is not null, is the same as the previous valid session data, and that the expira-

tion date is still valid. Blockchain will validate the session dates, creation, and expiration

versus the current date-time. If the session is no longer valid, the Blockchain will expire

the user session ( Figure 3.3).
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Figure 3.3: Flow for any requests after login

Logout In this case, the user logs out from the web/enterprise application or the ap-

plication decides to finish the user session due to time expiration, an idle session, or other

session ending scenarios. The application is responsible to notify the Blockchain. How-

ever, the Blockchain will also be checking if the session is still valid in every request, and

will expire the session if the session data is not valid ( Figure 3.4).
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Figure 3.4: Flow for logout use case

3.3 Implementation

To test the hypothesis, two different applications were used:

(a) Session management applications, one based on Java as an Enterprise Edition and

one based on Drupal as a Web application based on Php. (b) An approach based on

Blockchain using smart contracts and Solidity language.

• Environment for Blockchain - Ethereum

– Ethereum Remix

– Deploy scripts

– timestamp converter

– bycrypt converter (for testing Java Enterprise)

• Environment for development - PHP Web
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– XAMPP - is a development suite tool containing Apache, MariaDB, PHP.

– A website implemented in Drupal 8.3.7 was used as part of my experiment.

• Environment for development Java Enterprise

– Spring Tool Suite

– JDK 1.8

– Spring Framework

3.4 Testing the smart contract

The smart contract was tested using Remix Ethereum website, Fig. 3.5. This tool provides

a straightforward way for debugging and provides access to the Stack, Memory, Solidity

State and local values.

Figure 3.5: Remix Ethereum Testing Session Management Smart Contract



20

3.4.1 Use cases tested

I analyzed the possible scenarios, and I created use cases for each main functionality. The

use cases described above:

Create a user session with valid data

The user is attempting to login into the web/enterprise application. Result: The Blockchain

validates the data, creates the user session and returns Ok. Fig. 3.6.

Figure 3.6: Transaction generated for invoking create user session
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Validate a user session - valid session

The user is sending a request, after login, to the web/enterprise application. The data is

valid as well as the creation and expiration dates versus the current date-time. Result: The

Blockchain validates the session, and it is returning ok. Fig. 3.7.

Figure 3.7: Transaction generated for invoking validate user session (valid session)

Invalidate a user session

The user logged out from the web/enterprise application or the application decided to finish

the user session due to expiration, or an idle session. Result: The session was set as expired.

Fig. 3.8.
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Figure 3.8: Transaction generated for invoking invalidate user session

Validate a user session after invalidating the session - session expired

The session was expired, and the user tries to access the application without login. Result:

The user will not be able to access without previous login.

Validate a user session after invalidating the session - end date expired

The session was valid, but the end date was expired; the Blockchain will expire the session

and returning false to the system. Result: The user will not be able to access without a

previous login. Fig. 3.9.
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Figure 3.9: Transaction generated for invoking validate user session (invalid session)
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Chapter 4

Analysis

This analysis involves different scenarios for showing web and enterprise applications can

be vulnerable to broken authentication. The output of this analysis could be different if

custom approaches are implemented or software versions differ from these implementa-

tions. Also, this analysis is based on Drupal, Content Management system, which session

management approach could differ from a custom Php Web application.

Why Drupal? Drupal is a Content Management system with more than a million users

as part of this community [5].

Why Java? According to Oracle, in 2015, there were ”more than 12 million developers

running Java and more than 15 billion installed devices” [12].

This research proposed a universal solution for different platforms; hence two main

platforms were chosen to prove the hypothesis.

To prove the hypothesis different techniques has been executed, such as penetration

testing and vulnerability scan.

4.1 Running vulnerabilities scan

The tool used was Burp Suite Professional which runs different scans to show if the applica-

tion is vulnerable to any possible attacks. Each vulnerability includes the specific Common

Weakness Enumeration (CWE) [6].
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4.1.1 Php Web application- Drupal

Some of the Common Weakness Enumeration (CWE) found related to the authentication

mechanism were:

Email Addresses disclosed

-Issue detail: The following email address was disclosed in the response: xxx@gmail.com

The user’s email was included in the response without the need of being included.

-Vulnerability classification: CWE-200: Information Exposure

Password field with autocomplete enabled

-Issue detail: The page contains a form with the following action URL: http://localhost./drupal-

8.3.7/user/login The form contains the following password field with autocomplete en-

abled: pass

Even though this functionality allows users to have a better user experience, this in-

formation is stored in the local computer and then could be accessed if the attacker gains

access.

-Vulnerability classification: CWE-200: Information Exposure

Input returned in response (reflected)

-Issue detail: ”The name of an arbitrarily supplied URL parameter is copied into the appli-

cation’s response.”

Inputs returned in a response could help attackers to perform other attacks such as SQL

injection.

-Vulnerability classifications: CWE-20: Improper Input Validation CWE-116: Im-

proper Encoding or Escaping of Output
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Session Token in URL

-Issue detail: ”The response contains the following links that appear to contain session to-

kens: http://localhost./drupal-8.3.7/devel/cache/clear?destination=/drupal-8.3.7/user/1token=kSsf-

P8F−FN7mwDfOlhol9Bby13a6QH4KUacfS18http : //localhost./drupal−8.3.7/devel/run−

cron?destination = /drupal − 8.3.7/user/1token = TOKENID”.

Even though the URL is only use by administrators this could lead to a session fixation,

user impersonation and also exposing the information in the URL makes the attacker’s job

more easy.

-Vulnerability classifications: CWE-200: Information Exposure CWE-384: Session

Fixation CWE-598: Information Exposure Through Query Strings in GET Request

4.1.2 Enterprise applications- Java Spring Framework

Password field with autocomplete enabled

-Issue detail: The page contains a form with the following action URL: http://localhost.:8080/login

The form contains the following password field with autocomplete enabled: password

Even though this functionality allows users to have a better user experience, this in-

formation is stored in the local computer and then could be accessed if the attacker gains

access. Also, it could be accessible to be exploited by XSS (Cross Site Scripting).

Vulnerability classification: CWE-200: Information Exposure

4.2 Penetration testing

4.2.1 Php Web applications

Login

Intercepting the request to login the user. I was able to login as a user using the user cookie

information. Fig. 4.1.
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Figure 4.1: Penetration testing with Burp - Drupal login

Request

I was able to intercept the request made by a logged user and generate other requests by

including the JSESSIONID, I removed other tokens, user agent information and the Referer

and the application returned all the information anyway. Fig. 4.2.

Figure 4.2: Penetration testing with Burp - Drupal request
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Logout

I was not able to logout the user with only sending the JSESSIONID, Fig. 4.3. However,

including the additional token is allowing me to logout, Fig. 4.4.

Figure 4.3: Penetration testing with Burp - Drupal logout

Figure 4.4: Penetration testing with Burp - Drupal - a successful logout

4.2.2 Enterprise applications- Java Spring Framework

Login

Intercepting the request to login the user. I was able to login as a user using the user cookie

information. Fig. 4.5.
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Figure 4.5: Penetration testing with Burp - Java login

Request

I was able to intercept the request made by a logged user and generate other requests by

passing the user cookie session information. Fig. 4.6. Also, I removed other values, such

as Cookie id, and it is allowing access by presenting only the JSESSIONID. If the attacker
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gain access to the JSESSIONID, he will be able to impersonate the user.

Figure 4.6: Penetration testing with Burp - Java request

Logout

I was able to logout as an authenticated user with using only the JSESSIONID. I removed

the Referer and User-Agent and it worked well without the need of other fields Fig. 4.7.

Figure 4.7: Penetration testing with Burp - Java logout

After Logout

I was not able to access other pages; the application redirected me to the login page, Fig.

4.8.
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Figure 4.8: Penetration testing with Burp - Java after logout
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Chapter 5

Discussion and Conclusion

5.1 Conclusions based on penetration testing

In both applications, I was able to access as an authenticated user impersonating the user

logged in, by only using its JSESSIONID. I removed cookie’s information as well as user

agent and I was able to access different scenarios inside the application.

Java Enterprise implementation did not show any high vulnerability in the scan, as soon

as an attacker gains access to the JSESSIONID, he will be accessing as an authenticated

user. However, for Drupal several vulnerabilities were found and one of those was exposing

the SESSIONID.

How easy is to predict the JSESSIONID? According to Burp Sequencer, the ID gen-

erated is not random, which makes the Session ID more difficult to predict. JSESSIONID

could be gain by the attacker using XSS,MITM, MITB.

Java Enterprise implementation validates that the token is still valid (ie. the user did not

logout). So, after logout I was not able to access again with the same token.

Therefore, I have shown that session Ids are vulnerable and are a cornerstone in the

authentication mechanism for stateless communication. The session ID can be predicted

by another system or can be stolen or shared with other users. Hence, the session ID

needs additional constraints besides the session ID complexity. The approach presented

in this research proposed robust authentication mechanisms that does not rely only on the

application but instead creates a relationship between a user and its session data. Therefore,

this work showed that it is possible to exploit the characteristics of Blockchain to prevent
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session management attacks from being successful.

5.2 Conclusions based on the smart contract implementa-
tion

Session management security is stronger since there is no possibility to login in an appli-

cation without sending all valid information (session ID, user ID, expiration date, creation

date). Also, restrictions about time and expiration have been applied. Once the session

has expired, the session will not be longer available. A user cannot have more than one

session available for the same application. These reduce the session ID lifetime, making

more difficult to access and impersonate the user. Another aspect is the relationship created

between the user and the session. Even when a hacker is able to see the data in the network,

he will not be able to impersonate the user since the message will be associated with the

user and his digital wallet. However, if the attacker gains access to the user’s computer, the

digital wallet could be comprised.

5.3 Current Status

The current implementation supports Ethereum Blockchain and was tested in a testing en-

vironment. Since, applications are not deployed in production, traffic and other constraints

are not measured.

5.4 Future Work

Some improvements that could be addressed in future development are:

• Enable the application proposed in other Blockchain networks. Developing a multi-

platform application will be beneficial for those who are currently supporting other

Blockchain networks, such as Hyper-ledger.
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• Consider storing additional data. Blockchain could be more flexible in the future.

Currently, additional attributes cannot be added without changing the smart contract.

However, this improvement could be create other issues, for example, we do not want

to store private data in the Blockchain.

• Consider time constraints in this research, I did not measure time or consider it for

this implementation. However, there is a need for collecting user time-response data.

One proposal could include an internal private Blockchain implementation, thus re-

ducing the time for transactions to be approved. However, this approach will ex-

change the decentralization mechanism for a centralized mechanism.

• Consider the need for ”money” or ”gas”. Ethereum needs ”gas” to deploy the smart

contract and execute it. This monetary requirement could be an issue for small com-

panies, and an optimal balance between resources. Some companies are resolving

this problem by offering advertisements to providers.

5.5 Lessons Learned

5.5.1 Development environment for the smart contract

I spent too much time setting up the right environment for development. I faced many

issues with scripts after realizing there are other tools for testing the smart contract. Once

I started using Remix, it was much smoother and precise. The main problem was to make

the code compile after using an IDE without Solidity support. The errors returned by the

compiler were not apparent and not all the issues have a unique solution or a standard

solution. There is not much documentation online for resolving compilation issues. The

second problem was the testing, and some scripts did not work correctly, Remix worked

very well. The debugging tool for Remix is very good, and I did not have any trouble.
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5.5.2 Integration environment issues

Understanding different tools and environments was a challenge. First, I needed to under-

stand which was the right tool for what I needed to do. Then, I had to try different tools

and learn how to use them. I faced issues with some tools, and I could not find a solution

on their websites. After I gave it some thought I realized that some of the solutions were

not right for my system. This lack of documentation and solutions to tool problems hin-

dered the integration effort in this implementation. This generated a time constraint in my

research for integrating the whole solution.
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