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ABSTRACT

Ovarian cancer is a complex disease that involves gene regulatory dysfunction and that 

requires a systemic viewpoint to fully understand. Applying executable biology to ovarian cancer

research and leveraging documented regulatory protein interactions, one can efficiently inform 

the prediction of characteristic gene-product activation using a logical model checking approach.

Using this innovative approach to reducing terms and satisfying constraints, this thesis presents a

strategy for applying regulatory systems biology to cancer research. By viewing ovarian cancer 

pathways like an electrical circuit, and constructing a pathway model with natural language 

processing tools, gene product expression patterns that have not been explained by traditional 

wet-bench biology are able to be predicted in silico. This research yields seven gene products 

whose perturbation is predicted to be sufficient to induce the epithelial-mesenchymal transition 

of ovarian cancer.



INTRODUCTION

 I. Cancer Research Fundamentals

Simply described by Dr. Sol Efroni, cancer is a "family of gene-based diseases," and therefore 

must be studied at the genomic level in order to full understand its initiation, progression, and general 

pathology.1 There are many barriers to entry for this direction of research, which all reduce down to the 

seemingly overwhelming amount of data. Researchers like Dr. Efroni utilize bioinformatics and 

computational approaches in order to overcome this hurdle. Besides computationally analyzing genetic 

sequences, there are other ways to rationalize the analysis of cancer data. Efroni et al. use a discrete 

state approach, working under the assumption that the exact levels of gene expression are less 

important than the knowledge of how they interact logically as a network. To study a whole family of 

genes at exact levels can be overwhelming and difficult to represent, therefore values are reduced to 

qualitative descriptions such as up and down regulated. For example, a qualitative probability of an 

interaction with gene A is determined by the probability of active an interaction multiplied by the 

probability of an upregulation of A plus the probability of inactive an interaction multiplied by the 

downregulation of A.1 Researchers use this equation on each interaction in a network of genes in order 

to investigate whether a specific combination of active interactions leads to a cancerous state. This 

process is laid out like a pipeline, or guidebook, that should explain how to apply this approach to 

different cancers and different cancer stages. 

In the study of pancreatic cancer, Gong reports on specific mutations of cell cycle regulators 

that increase the likelihood of cancer progression.2 There are many ways to promote the progression of 

disease, but each person’s cancer will behave uniquely. The lack of a direct causal link is often 

attributed to the complexity of cancer as a collection of diseases. Unlike infectious disease studies, 

cancer research does not have such a standard by which to prove that a specific gene or mutation is the 

cause of a cancer. A microbe is relatively easy to prove as the cause for a given disease by following 



Koch's postulates: isolate the same microbe from different infected individuals, culture the 

microbe in vitro, and successfully reproduce the disease in a healthy model by inoculating with 

the cultured microbe. Cancer is not understood in a similar manner because there are too many 

interacting entities involved; many genes are associated with cancer, but cannot be individually 

proven as a root cause. Additionally, cancers' very nature is a result of mutations, thereby making

it somewhat difficult to reliably study long-term. Cancer is rarely caused by one instigator and a 

tumor can originate from multiple initiating cells or mutations. Finally, cancer is an aberration of 

self, and therefore is unique in every individual case. All of these qualities make cancer an 

extraordinary challenge for traditional reductionist and time invariant research methods.

 II. Ovarian Cancer

Ovarian cancer (OC) is a lethal disease categorized by heterogeneous gynecological 

growth.3,4 However, this definition does not adequately describe the far-reaching effects of this 

disease. For all of the emotion and widespread awareness, there is so much not fully understood 

about preventative measures, diagnostic avenues, and treatment protocols. Society does, on the 

other hand, understand how quickly it can spread to neighboring organs, and how it afflicts 

thousands of women in the United States every year. The Centers for Disease Control states that 

21,429 new cases were diagnosed, and 13,920 women died in 2015 in the United States alone.5

Around 90% of all deaths caused by cancer are do to metastatic disease,6 and OC is referred to as

the most lethal cancer. It is incredibly difficult to diagnose in an early stage because the ovary is 

so buried within the internal organs and there are so few symptoms.7 For these reasons, the 

overall mortality rate is 60%, making it the most lethal gynecological malignancy.8 Additionally, 

it is highly interconnected by vascularized tissue and the extracellular matrixes of other organs. 



Therefore, metastatic spread is likely to occur, often before detection of the tumor. The field of OC 

research is desperate for new studies and meaningful breakthroughs. Because of the aggressive 

metastasis and complex heterogeneity, research into OC stands to provide insites into many cancers 

benefitting millions of families, not just those individuals who are afflicted by OC.

 III. Ovarian Cancer Metastasis and Epithelial-Mesenchymal Transition

OC is most lethal once it metastasizes to other regions of the body, as surgical treatment of 

localized cancer usually results in patient remission.6 Preventing spread is therefore an important step 

towards lowering the mortality rate of the disease. Metastasis is an extremely complex event in the 

pathology of any cancer and is not fully understood. In brief, metastasis can be described as the 

translocation of a tumorigenic cell to a different part of the body. Tumorigenic meaning a cell capable 

of replicating into a tumor in a different environment from where it originates.9,10 However, that 

movement involves several activation steps, including: disengagement and escape from the original 

cancerous tissue, physical movement to a new tissue usually utilizing blood or lymphatic vessels, and 

attachment to a new tissue upon which the tumor is able to grow and divide.6 Each of these steps 

involves numerous protein interactions that may inhibit or promote the process.7 

This first step of metastasis is called the epithelial-mesenchymal transition (EMT) and it is the 

generalized focus of this project. Encompassed within that process is a cascade of events that convert a 

tumor cell from an epithelial (local, differentiated) state to a mesenchymal (loosely associated, 

undifferentiated) state. Unfortunately, a mesenchymal cell is more capable of surviving away from the 

tissue from which it is derived, thus making metastatic migration more likely. This is the reason for 

studying EMT, in the hopes that further understanding may revolutionize the way researchers and 

clinicians think about cancer diagnostics. If cancerous spread is detected earlier or even predicted by 

means of risk, our understanding of cancer could be dramatically altered. This project hopes to identify 



protein drug targets for anti-metastatic OC treatments in order to increase the effectiveness of 

surgical treatments. 

 IV. Clinical Improvements to Current Treatment Methods

The most common screening method is a pelvic exam, performed via external palpation. 

Using this methodology, a physician may not detect the tumor if it is not large enough, or if the 

tumor is large enough to detect, it may already be invasive. Late-stage diagnosis usually means 

the treatment must be aggressive, and will rely partially on luck to find and kill every metastatic 

cell. Once the tumor is successfully diagnosed, a label is associated with the tumor that denotes 

which stage of the EMT the tumor has progressed into.3 An epithelial tumor is localized and does

not show signs of invasion or angiogenesis, and can often be treated quickly with surgery or 

radiation therapy. An advanced stage OC will usually undergo chemotherapy and cytoreduction, 

a form of surgery that attempts to remove as much of the malignant tumor as possible, with the 

understanding that the physicians will likely not excise every cell.11 The term “cancer free” has a 

loophole. It is currently impossible to be sure that a tumor has not metastasized before surgical 

treatment, because it only takes one mesenchymal cell to spread a tumor.

To illustrate this project’s goal with regards to current treatment methods, one can 

imagine OC like a forest fire. When fighting a wildfire, the first goal is containment, not merely 

spraying water on the flames; if the fire cannot spread, it is more easily extinguished while also 

limiting the damage it causes. Similarly, when treating a wildfire of ovarian metastasis, it is 

essential to first limit the spread of the disease. If positively limited to just the initial site of the 

tumor, surgery and targeted radiation therapies become more effective. This project focuses on 



the containment of illness and will attempt to further understand the EMT pathway, in the hopes of 

finding druggable target(s) directed at inhibiting metastasis in the future.

 V. Computational Improvements to Current Research Methods

In the interest of improving experimental in vitro models of OC, Bowtell et al. studied the 

genetic and transcriptomic composition of specifically high-grade serous ovarian cancer (HGSOC) cell 

lines.11 HGSOCs are generally identified as the most advanced stage, metastatic OCs. This research 

allowed them to assign cell types to clusters based on phenotypic behavior and genotypic irregularities 

and mutations. They studied and organized cell lines based on microRNA regulation, tumor 

microenvironments, and angiogenesis presence, among other analyses. Researchers like Bowtell et al. 

cite the lack of integration of these methods as a limiting factor in the continued progress of clinical 

research. All of these methods of study are so different, and do not have much overlap in reliability or 

focus. This is one limitation of current experimental methods.

Francavilla et al. utilized the breakthroughs of improved mass spectrometry (MS) accuracy and 

methods in order to model the proteomics of OC, including how proteins are activated or inactivated 

via phosphorylation.4 Using patients’ cells, they are able to compare how proteins are differentially 

present in epithelial cancer cells versus HGSOC. Whereas many other datasets compare healthy to 

cancerous data, this research attempts to look more specifically at cells to determine what entities are 

causing the development into more aggressive cancer types. Adding in systems biology modeling, 

researchers are able to analyze how entities differentially interact, in addition to their differential 

abundance. They found that CDK7 (cyclin dependent kinase 7) affects the proliferation of epithelial 

OC by negatively regulating the cell cycle. None of this analysis can be considered conventional, 

because it uses standards from so many sources and prior publications, but it combines them in a novel 

way. There is no standard or guideline agreed upon for the analysis of proteomic cancer data so there is 



no accepted way to determine how reliable their analysis is. In the absence of an accepted 

standard of practice, research papers like this must exhaustively demonstrate their point. 

Many established methodologies are based on protocols proposed by papers that became 

the accepted norme. One example of this widespread agreement is that of high-throughput RNA-

Seq. Many researchers follow the same protocols proposed by Zhong et al. and Wang et al. to 

acquire and pre-process data.12,13 The contrast, however, is what worked for the establishment of 

lab-bench methods that researchers accept around the world, is not working with computational 

methods. There are so many different ways to analyze high-throughput data, and yet there is no 

consensus of what works best.

The last few decades of cancer research have been transformative for key research 

technologies. As data becomes easier to collect through the implementation of omics tools, there 

is an ever-growing need for efficient processing of large datasets. The most efficient way to 

process data is with computational methods like next-generation sequencing analysis pipelines, 

algorithmic prediction modeling, and the systemic representation of disease. These have all been 

applied to ovarian cancer studies, with varying degrees of success. 

 VI. Application of Systems Biology

Clinical research often naturally takes on a narrow focus, such as identifying the gene 

that causes a genetic disorder, or isolating the bacterium that causes an infectious disease. That 

same viewpoint cannot be used when studying cancer as there does not appear to be a single 

cause that results in cancerous growth or malignancies. If that were the case, cancer would be 

much easier to study. Unfortunately, the cause and effect relationships are more complex. 



Therefore, cancer researchers must apply a more broad-scope view of the issue, hence the increasingly 

common application of bioinformatics and computational tools. 

Systems biology is an integrated research methodology that studies cancer from a bird’s eye 

view. A systems biology approach attempts to look at as much of the biology as possible all at once, 

and it uses dynamic analyses of cell regulation to illustrate exactly how a cell changes as cancer 

progresses. By mapping the interacting components of patients’ cells as nodes of a modified circuit 

diagram, one can visualize how the system changes from healthy to cancerous to metastatic. Viewing 

biology as a circuit of chemical interactions allows even small perturbations of the system’s 

components to be studied. This is arguably the best way to study cancer since several small 

perturbations are able to combine and lead to a progressively cancerous state. However, the systems 

biology approach may rely heavily on a pathway schema as it exists while the cell or patient is healthy.6

This is not enough to study disease, as disease can often dramatically change how the components of 

some pathways interact. Some newer studies have modeled what happens when entities are inactivated 

showing how that can lead to a disease state,14,15 which is part of the inspiration for this research into 

OC.

 VII. Steady States

When relating cancer to a circuit of molecules and interactions, it is important to understand 

that biology often follows Occam’s razor. In other words, cell biology can seem like a chaotic system 

while attempting to understand it, but there are points of equilibrium that are found naturally. This 

phenomenon of biology existing as a series of low-energy equilibrium states is defined by Wooten et al.

as “basins of attraction.”16 Wooten’s basins can be described by the metaphor of a ball rolling around on

an uneven surface with lots of hills and valleys interspersed. The ball (a patient’s cell) will stay in the 

most local valley (basin of attraction) until moved by a significant enough force to push it into a 

neighboring valley. These valleys are essentially states of being where the patient’s health is not 



significantly changing, or is at equilibrium. If each valley is a state of being, some valleys may 

be labelled healthy, and others in varying degrees of diseased. In order to get over a mountain 

and into a neighboring diseased valley, a significant change must occur to the cell or to the 

landscape. The cell could be altered by mutation, such as the activation of an oncogene or 

inactivation of a tumor suppressor. In theory, the landscape may be altered by the administration 

of a drug or a dramatic change in lifestyle, and that new landscape can alter the likelihood of 

moving to or staying in diseased valleys. This project will refer to these valleys (aka. basins of 

attraction, equilibrium states, etc) as “steady states.”

 VIII. Modeling Ovarian Cancer

Table 1: Ovarian Cancer Descriptors

Type Epithelial = outer 
lining of the ovaries 
affected

Germ = gametic pre-
cursors

Stromal = hormone 
controlling cells 
connected to the ovaries

Stage 1 = Confined to the 
ovaries

2 = Migration to the 
surrounding organs

3 = Tumors found in the 
abdomen smaller than 
2cm

4 = Cancerous cells 
are found in the 
lungs, liver, or spleen.

Grade GB = low malignant
potential

G1 = many 
differentiated cells

G2 = moderately 
differentiated cells

G3 – G4 = mostly 
undifferentiated cells

There are many ways in which people describe the progression of cancer. OC is 

commonly labeled with stages, grades, or types, as summarized by Table 1. The type of OC 

predominantly describes the origin type of cell. The stage of cancer is a generalized proxy for 

how invasive it has become, where a stage 1 is the lowest and typically most easily treated and 

stage 4 is considered difficult because it requires a system-wide treatment such as chemotherapy. 

The grade of OC also describes how much the original cells look like their predecessors, utilizing



the concept that cancer cells generally progress towards a less differentiated state. Therefore, a higher 

grade indicates less differentiated cells, and more abnormal-looking tissue. 

This project moves away from these models that do not fully describe OC on the cellular level. 

Instead, each tissue sample is organized into a group based on cellular protein levels. Datasets that are 

able to be clustered in this way are the desired types to follow this workflow and can be applied 

directly to pathway modeling. Essentially, each clustered group of tissue samples is able to be treated as

steady states. This project simulates how a cell may convert from one clustered tissue type into another.

 IX. Proteomics

This project is focused on the analysis of protein data, as opposed to RNA quantification for a 

few reasons. Although RNA quantification methods like RNA-Seq provide useful insights into what 

machinery the cell is using and what genes are being expressed and to what degree, RNA strands may 

be used many times by the cell to create protein products. This means that the final counts for products 

cannot be fully extrapolated by RNA studies. Further, when studying cancer, researchers should assume

that any number of failed cell machineries can lead to a diseased steady state. For example, post 

translational modifications and aberrant translational machinery lead to changes in final protein counts, 

both of which could increase the likelihood of cancer progression. Oncogenes and tumor suppressor 

genes can conceivably be activated or suppressed during translation, a concept that cannot be studied 

with RNA quantification alone. For these reasons, proteomics databases are considered favorable.

Unlike RNA-Seq data, where RNA molecule abundance is recorded as a count, there is not a 

widely standardized a way of analyzing proteomic data. This is because mass spectrometry (MS) does 

not return molecular counts, but spectra. Each spectrum must be normalized in order to compare to any 

other MS spectra. Many programs use slightly different cutoffs while analyzing noise and peak widths, 

leading to the lack of consensus in proteomics research. This project uses intensity-based absolute 

quantification (iBAQ) scores, an absolute measurement of protein abundance normalized by peptide 



detection intensity levels, as a proxy for RNA-Seq expression counts.17 This method is referred to

as a label-free quantification method. 

 X. Discretization

IBAQ scores are a continuous scale on the order of hundreds of millions and make 

simulation trials computationally exhausting. Therefore, it is necessary to simplify the problem 

by reducing iBAQ scores into discrete terms, a process referred to as discretization. This is done 

using simple statistical significance tests. IBAQ scores that are not significantly different 

between the two cancer groups for any given protein are left unconstrained in the model. 

Meanwhile significantly different groups are given a representative binary code, where 0 

represents significantly lowered level of abundance, and 1 represents heightened abundance. 

 XI. Employing Constraint Satisfaction Techniques

This project uses this discretized proteomics data as constraints for determining what 

steady states exist within the pathway model. Simplifying the problem by introducing constraint 

satisfaction programming is currently the preferred way to minimize the computational time and 

resource dependancy when solving exhaustively.18 These constraints ensure alignment of model 

predicted behvaior with the proteomic data. This is not an easy task especiually in larger 

networks because the problem is exponentially complex; it is possible that every entity in a 

pathway model of size n  interacts as an activator or an inhibitor with every other entity, 

therefore the size of the operation space is represented as O (2n
) . If this project did not reduce 

resolution into a binary representation, but instead discretized the iBAQ scores to d  levels of 

expression, the problem would be O (dn
)  large. Using proteomics data to constrain the expected 

behavior of the regulatory circuit, a simulation algorithm based in backtracking logic can 



compute how each entity must influence the circuit. This is output as a solution set consisting of logical

decision weights and the expression threshhold values for activation tthese regulatory actions. For 

example, if a node is known to stay activated and is known to be able to activate two other nodes, the 

solution set is partially solved. Exponential time problems can be extremely difficult to work with but 

there is no current way to avoid this complexity without compromising the thoroughness of the search 

for these parameter estimates. 

 XII. Parameterization and Populating Models

This research uses the tool Bio-ModelChecker, developed by the Center for Clinical Systems 

Biology at Rochester Regional Health for the constraint satisfaction of logic models and their 

simulaiton of how healthy and disease states behave.19 Requiring a pathway map in the form of a JSON

with an adjacency matrix, transition parameters, and incomplete steady states defining initial 

constraints, Bio-ModelChecker can simulate how perturbations in the network determine the state of 

unconstrained nodes. This robust simulation uses a decision tree to describe the biological plausibility 

of possible outcomes while reducing terms to manage computational efficiency and optimize 

informative power. 

 XIII. Minimal Intervention Sets

Casting these results into a more clinical perspective, it is understood that differences between 

cell types does not immediately offer a novel treatment solution. In order to understand how one might 

prevent EMT in a patient, it is first necessary to understand how EMT occurs naturally. Minimal 

intervention set (MIS) simulations attempt to answer this question by introducing a certain amount of 

noise into the circuit and simulating how a cell might transition from the epithelial steady state to the 

mesenchymal state.20 The goal of a “minimal intervention set,” consists of finding a node in the 

pathway map or a small subset of nodes that influence the predicted dynamic behavior such that a new 

stable behavior or phenotype is acheived. For instance, if it is known that node A controls node B, and 



B is responsible for metastasis, then one MIS solution is the activation of node A, as that one 

change is able to induce metastasis. Ideally, this program finds a singular node that is able to 

switch the network single-handedly from epithelial to mesenchymal and back. Returning to the 

idea that pathways in biology can be modeled like an electrical circuit diagram, an MIS is like a 

switch that activates or inactivates the rest of the circuit. Therefore, the simpler the MIS, the 

greater potential for a good drug target.

RESULTS AND DISCUSSION

 I. Genes of Interest

This project focuses on the gene product interactions that cause EMT. To study this 

underlying genomic influence, pathway modeling tools were used to generate a map of 

Figure 1: Summarizing Workflow of Analysis Done



interacting proteins. The proteins in this map make up the list of gene products that will be focused on 

throughout this project, referred to as the genes of interest (GOI) (Figure 2). Protein types are 

represented by color and shape: blue circles are receptors, purple parallelograms are signaling 

molecules, and yellow hexagons are transcription factors. This list of proteins was generated stepwise, 

starting with the core set of genes proposed by Lu et al., including SNAIL, ZEB, SMAD3/4, 

P53, MDM2, and TGFβ.10 This list of six applies generally to all cancerous EMT, and serve as the 

“core genes” for this project.

Figure 2: Core Genes Pathway Model



Various language processors, databases, and pathway modeling tools were used to expand

the core genes into a more comprehensive map of cellular interactions, while narrowing the 

scope to only OC. First, core genes were confirmed by verifying connections between entities 

using Pathway Studio.21 Pathway Studio was also used as a natural language processing tool to 

search the Elsevier database for any further connections between the core genes. Next, Mogrify 

was used to add a list of transcription factor encoding genes shown to have significantly altered 

transcript concentration between OC mesenchymal precursor cells and metastatic cells: HOXA5,

ICAM1, GATA6, RARB, IRF7, and RXRA.22 Reactome and String were also used to 

contribute interconnected entities from their respective databases. Only two entities were added 

to the dataset by hand based on new literature: CSF1 and TWIST1.6,23–25 Every entity was 

assembled into one pathway in Pathway Studio, and was supported by references in the Pathway 

Studio database. This yielded the project a complex dataset of 27 genes, all supported by at least 

2 sources (Figure 2). Even though the connections in this pathway were verified by at least two 

sources, they were still often found via natural language processing and thus were also checked 

by hand. 

 II. Reference Checking

It is important to remember that if natural language processing software or text-mining in 

general is used to build a pathway model, the references cited behind interactions must be human

verified. This pathway originally consisted of 8,788 references spread unevenly across 176 total 

connections. After hand-checking each connection for accurate supporting references, 21 

relations were reversed or deleted, resulting in a text-mining success rate of 95.5% (Appendix 

A). 



 III. Proteomic Data

Acquired from the MaxQuant DataBase (MaxQB) under ID P017, extensive proteomic data 

describing OC cell lines was applied to the regulatory network containing the 27 GOI. This data was 

analyzed by Coscia et al., carefully separating the cell lines into clusters of epithelial and mesenchymal 

samples in 2016.17 This project utilizes the clustered groups defined within the database: Group 1 being

epithelial, Group 2 and 3 being clumped together as they are both contain mesenchymal cell lines.

Included in this dataset are proteomic surveys of 67 distinct cell lines, including 26 OC cell 

lines, some HGSOCs, some immortal ovarian epithelium, and some fallopian tube epithelial cell lines. 

The products of approximately 21,000 genes are included in this collection, surveyed by single run MS.

Protein expression profiles of all of these cell lines were grouped by unsupervised clustering into 

epithelial and mesenchymal phenotypic classes. The groupings were verified by Coscia et al. against a 

separate principal component analysis of clinical samples from the Cancer Genome Atlas, before being 

added into the MaxQB online database tool.



Figure 3: Histograms of iBAQ Scores of Tissue Samples (35 bins)



Figure 4: iBAQ Score Boxplots and Wilcox Significance Tests

 IV.  Discretization



As shown in Figure 3, the distribution of each GOI varied, but often followed an apparent

bimodal curve. This is seen most clearly in proteins TGFβ1, ZEB1, and CDKN2A. This 

supports the hypothesis that protein abundance changes significantly for the GOI in epithelial 

versus mesenchymal OC. However, there is not yet proof that the cancerous cell type is 

correlated with the proteins showing bimodal distributions. In Figure 4 the GOI are segregated 

into database-defined cell types and plotted in side-by-side boxplots. The Wilcox significance 

tests are given above each panel. 

Based on these significance tests, 12 of the 27 GOI are quantitatively different across the 

two cancer cell types: TGFβR1, ICAM1, SMAD3, RXRA, BAX, SMAD4, ZEB2, 

TGFβR2, SMAD2, TGFβ1, ZEB1, and CREBBP. Biologically speaking, this subset of 12 is 

more likely to play a causal role in the progression of OC, with the caveat that approximately six 

proteins were not included in the proteomics database. From this point forward, this subset of 

genes is constrained to experimental data when estimating parameter values for this model to 

predict the unknown protein abundance levels. 

 V.  Parameterization

Because this data is clustered into two groups, and is not time delineated, it is not 

possible to score returned steady states. Without a way to order solutions by a time-oriented 

objective function, all steady states returned are therefore equally likely. The steady state 

determination was allowed to run for 45 min, and returned 339 solutions, all of which supported 

identical steady states. This fact grants validity to this model since the solution set could easily 

have been composed of 339 unique sets of steady states. It was assumed that 339 solutions was a 

large enough sample to be representative of all solutions, especially since all steady states 



coincided. These two steady states are representative of the epithelial and mesenchymal states 

represented in Figures 5 and 6 as the color of each entity. 

The second parameter set was used to determine which interactions were most crucial for 

supporting stable behavior for the two cell phenotypes of interest (i.e. epithelial and mesenchymal) as 

steady states. This was done by allowing the algorithm to solve the problem of reproducing these two 

measured steady states with the added complexity of promoting the simplest possible model. This was 

achieved by modifying the algorithm to prune regulatory interactions in these pathways as often as 

possible while still supporting stable dynamics at these phenotypic steady states. This exercise does not

result in the most informative survey of steady states, but it does highlight what pathway edges are 

generally the most informative for the stability of all steady states. This core model analysis is more 

computationally complex due to increased variability associated with the iterative editing of the model 

circuit architecture. The “ordering” parameter is then reset to indicate no ordering, thus dropping the 

connections which are uninformative for the current stage of simulated models. This minimization of 

pathway connectivity is done to determine the minimal necessary set of pathway interactions capable of

supporting the requisite behavior. This larger and more complex optimization problem requires much 

more time to run. The maximum allotted run time was therefore set for 12 hours in order to yield a 

sufficiently large sample of edges, from which 42 solution sets were returned. This second solution 

output was used to calculate the frequency at which each edge appears. The frequency by which an 

edge is included in the pathway circuit is a proxy for its relative importance. This metric of interaction 

confidence or criticality is represented in Figures 5 and 6 as the width and blue-grey color gradient of 

the edges, where thicker blue lines indicate the highest relative importance for the model’s stability. 

One caveat to this methodology is the assumption that these solutions are a representative 

sample from a population of all possible solutions. With unlimited resources and time, perhaps 

thousands of additional solutions may have been calculated and returned. It is assumed, however, that 



since all solutions agreed completely on the end steady states, the overwhelming majority of the 

population would have have supported this pathway circuit architecture with the differences in 

decisional logic supporting multiple transition dynamics that nonetheless all settle in the same 

terminal steady states.

 VI. Steady State Solutions

The epithelial steady state is shown in Figure 5 based on constraints derived from 

experimental data applied to 12 of the 27 entities in the model. The stable expression of the other

15 markers were predicted such that a stable phenotype was supported. Green entities are 

activated genes, and red entities are inactivated genes. The blue color vibrancy and thickness of 

the connections represent how informative those interactions are on the model, as described 

above in Section V. The model shows a much easier way to visualize the differences in protein 

abundance that were seen in Figure 4. This allows researchers to understand the circuit logically, 

at the expense of some resolution. For example, now it is easier to see that the SMAD and TGFβ 

circuits are activated during EMT. 



The mesenchymal steady state is shown in Figure 6, following the same color scheme as

Figure 5. The differences between the two graphs are the activation of RXRA,TGFβ1, TGFβR1-2, 

SMA2-4, ZEB1, CREBBP, BCL2 and BAX. Additionally, TP53, ICAM1, and CDKN2A were 

inactivated in the mesenchymal state. Most of theses differences were observed phenomenon, but 

BCL2, TP53, and CDKN2A were predicted by the model.

Figure 5: Epithelial Steady State



Figure 6: Mesenchymal Steady State



 VII. Solution Sampling

While all of the 339 model solutions in the steady state determination agreed, each was a unique

solution because there are subtle variations in regulatory logic. Those variations support different 

phenotypes outside the narrow context of the constraints. This speaks to the defining influence of 

pathway connectivity in determining available steady states. Each of the allowable transition paths 

between steady states supported by these different models is expected to vary analysis of individual 

model dynamics would detract from the primary focus of this work, namely terminal cell phenotype. 

Therefore, a random sample of 10 models was taken to proceed with further analysis. The next steps 

consist of identifying which molecular pathway elements might constitute potential triggers of 

metastatic transformation. Simulations are run to answer this question, wherein each model is evaluated

for how it arrives at the same end state, which elucidates the key potential mediators of EMT. 

 VIII. Minimal Intervention Sets for Inducing EMT

The MIS routine available in BioModelChecker was used to search for the most influential 

trigger nodes in the network. The network was input and the MIS objectives were defined as a set of 

pathway or gene products that could drive the state of the pathway model towards EMT in less than 20 

steps, given that the number of simultaneous targets had to be less than or equal to 6. These choices 

were made under a few assumptions. First, any potential EMT trigger this research may identify must 

be specific so as to not occur simply by biological noise and not cause undesired regulation of 

downstream entities. If 6 or more entities are needed to trigger EMT, then metastasis is not likely and a 

drug target will not be needed. Second, 20 transition steps should be more than enough for a EMT 

trigger to be influential in changing the network. Any additional transition steps would suggest an 

important contribution of biological noise on the outcome or that the trigger does not occupy a central 

enough role to act as a programmable switch for the network. Upon analysis of this network, it was 

found that these assumptions were conservative and did not limit the results. Further, the MISs were so 



extensive, numbering 288,408 unique solutions. This was such a large number of solutions, that 

the set of EMT triggering proteins was filtered to a maximum size of 5. This resulted in 69,301 

possible unique solutions triggering EMT. Within the MIS solutions, seven proteins were able to 

individually trigger EMT. 

 IX. Ranking of MIS Candidates via Betweenness Centrality

Betweenness centrality (BC) is a concept in circuit diagrams that equates to the criticality

of a specific node to the interconnectedness of the network. However, BC is not just a count of 

the number of connections leading to or away from a node, but it also takes into account a node’s

ability to be a linker and shorten all other paths traversing the pathway. Applying this to systems 

biology, BC is a calculable value representing how much a single node is traversed when 

navigating the pathway model. A node with a high BC is one that increases the relative 

accessibility of the rest of the pathway network. This is biologically relevant if researchers are 

trying to target a specific pathway with a drug. A protein with a higher BC is more likely to be 

involved in the drug interaction, whether direct or indirect through other nodes. The BC was 

calculated for each protein in GOI set and represented graphically on a horizontal axis (Figure 7).

A vertical axis was added to stratify the frequency at which proteins were present in the MIS 

candidates. In other words, the horizontal axis is a proxy for how important the proteins are to 

the network stability and drug targeting, and the vertical axis is a proxy for how important the 

proteins are to causing EMT. 



Figure 7: MIS Abundance vs Betweenness Centrality

Figure 7 shows that upregulation of TGFβ1, TGFβR2, and BCL2 are part of the solution set in 

just over 25% of MIS candidates for the random sample of 10 models. TGFβR1, BAX, SMAD2, and 

TP53 are present in 20-25% of the MIS candidates. Most proteins are present in approximately 16% of

solutions, indicating a basal level wherein it is assumed that the noise of the network could be 

responsible for triggering a metastatic equilibrium state. These are all nodes that were previously seen 

to be activated when going from the epithelial state to the mesenchymal state. However, some of the 

nodes that were also switched are not found in many MIS solutions such as RXRA, SMAD3-4, ZEB1, 

CREBBP, ICAM1, and CDKN2A. RXRA, however, stands out as being present in far fewer solutions. 



This could mean that it requires many biological steps to be regulated and it was therefore rarely 

included by the algorithm’s step cutoff.

The interconnectedness of the proteins in the model are depicted in Figure 7. IRF7 

stands out as being extremely well traversed, yet seemingly less important to the process of EMT

at first glance. Applying biological context to this phenomenon, it is already understood that the 

inactivation of IRF7 is associated with the initiation of many types of cancer.26 As this pathway 

model represents the development and progression of cancer, as opposed to its initiation, the lack

of EMT influence is understandable. Based on Figures 3, 4, 5, and 6, IRF7 is inactivated during 

oncogenesis, but does not appear to be further up- or down-regulated during EMT. This is hugely

encouraging for future research into the systemic changes that occur during cancer initiation, but 

is not the current focus of this project. 

It is also notable that BCL2 has a moderately high BC relative to other proteins in the 

model, and is seemingly one of the most important, or at least frequently selected, nodes for 

inducing EMT. This indicates that BCL2 is highly involved in the conversion of cells into a more

invasive subtype, a notion that is supported by literature. BCL2 is currently defined as a proto-

oncogene with an anti-apoptotic function, an attribute that is already being targeted by the 

chemotherapy treatment Venetoclax for chronic lymphocytic leukemia.27 For these reasons, 

BCL2 is likely the single best candidate for anti-metastatic OC drug treatment as it seems to be 

so influential in ovarian EMT, and already has an approved targeting drug currently not being 

employed for OC treatment. 

 X. Analysis of MIS Candidates as Stepwise Time Series



This research points to seven single, molecular entities that are sufficient to induce EMT: 

TP53, SMAD2, BAX, TGFβR1, TGFβ1, TGFβR2, and BCL2. Each of these entities was 

returned as a cardinality of one (Co1) by the minimal intervention set program of Bio-ModelChecker, 

exhibiting defining control over the network to single-handedly switch a cell from epithelial to 

mesenchymal. This indicates that controlling EMT is even more difficult than previously believed. If 

any of the seven single cardinality entities are even persistently altered, EMT can occur in less than 20 

steps (usually closer to ~7 steps). However, those steps are unit-less and could take any amount of time 

to occur, as this dataset does not involve time-series data. To definitively prevent EMT all of these 

genes must be up or down regulated respectively to not trigger EMT, in addition to controlling most 

other genes in the pathway, and that is not currently clinically possible. The problem now becomes one 

of identifying a pathway entity which when modulated renders the entire network insensitive to 

changes by these 7 triggers.

These 7 MIS candidate triggers are plotted as facets in Figures 8 and 9. For each of the 10 

models sampled from the 339 solution set of steady states, almost all of the corresponding MIS 

candidates induced a similar series of state transitions during EMT. Models 1, 2, 4, 5, and 6 supported a

common response dynamic (Figure 8), while models 3, 7, 8, 9, and 10 commonly supported a slightly 

different response were identical (Figure 9). Transitions predicted  for all models in response to each 

MIS for all models can be found in Appendix C. The only protein response path that differed between 

theses models was that of SMAD4. 

It is easiest to process these figures as time-series graphs, where each line is a gene changing 

regulation state over time. The gene products progress from their state in an epithelial state (left) over a 

series of steps, eventually resulting in a mesenchymal end state (right). In this way, the horizontal axis 

represents a proxy for time, with units of the number of steps until mesenchymal resolution. 

Remembering the parameters for this program, the horizontal axis could have had 0-20 steps, but was 



minimized since the mesenchymal state was always found within 8 steps. The vertical axis is a 

descriptive scale where 0 is a down-regulated state, and 1 is an up-regulated state. Each line 

represents the discrete expression level of the gene product labelled at the top of the panel, as it 

is controlled by one of the Co1 trigger genes. The Co1 trigger genes are represented by the 

colored lines, defined in the legend. Looking at Figure 8, all colored lines (Co1s) control 

SMAD4’s expression so that it is changed from a down-regulated state (0) to an up-regulated state

(1) by the end of the graph. SMAD4 is the only gene MIS that is different in its stepwise 

transition between all 10 models sampled, however in Figure 9, the two groups of models merely

show a slightly different path resulting in the same outcome for SMAD4. Taking into account 

biological noise levels, it is likely that all 10 models are extremely similar. 

It is noteworthy that some colored lines end one or two steps earlier indicating that they 

lead GOIs to the resolution state in fewer steps. This is the case for most of the graphs, where 

some Co1s result in stable mesenchymal resolution quicker. Something worth studying further is 

the transient activation and inactivation of RARB that is seen in all test models and influenced by 

all Co1s. This means that RARB is deactivated in both steady states, but must be active to 

transition between the two. If this is as a persistent occurrence as it seems, it follows that RARB 

is transiently responsible for EMT. This is also shown to be the case for IRF7 or TWIST1 to a 

lesser degree as not all Co1s flip twice. 



CONCLUSIONS

Figure 9: Stepwise Transitions of MIS for Models 3,7,8,9, & 10

Figure 8: Stepwise Transitions of MIS for Models 1,2,4,5, & 6 



Cancer must be considered an epigenetic state of being rather than an affliction layered 

on top of a healthy or normal state. The progression of cancer is caused by numerous 

perturbations of proteins, which result in a systemic disease. It is the accumulation of 

perturbations that lead to cancer development, which are triggered by carcinogens, normal 

biological errors, genetic aberrations, along with many other factors being discovered regularly. 

It is increasingly apparent that the key to cancer progression is not any one change or even a 

series of changes, but a large-scale shift in how entities interact. This is why chemotherapy is 

often equated to guesswork; just because it worked on one patient does not mean it will work in 

the same way for another patient that has cancer of the same original location. Drug treatments 

need to start addressing the differences in patients, in separate tumors, and even in individual 

cells. 

Even more, cancer is commonly heterogeneous and individual cells within the same 

tumor will not react to treatment in the same way. There exist selection pressures for cells in 

different orientations within any stage tumor that must be understood in order to administer a 

treatment that is positively known to be effective. If molecular interactions are not understood, 

then drug interactions are not understood and treatments are made up of guesswork. Herein lies 

the purpose of studying cancer from a systemic point of view. 

The first half of this thesis presents a pipeline for the formation of system models looking

at protein-protein interactions for any specific severity and type of cancer. Any type of 

expression data, RNA-Seq or MS, with no limit to size can inform the formation of cancer 

clusters. This project focusses on OC data, segregated into two clusters based on histology, but 



this workflow can be used for future research of other cancers or other subtypes of OC. The 

adaptability of this pipeline is what grants it amazing power for future use.

It is not enough to simply build a generic pathway model, however. An in-depth model is likely 

too large and too complicated to read effectively with the naked eye, and it does not necessarily inform 

treatment decisions or inspire clinical relevance. It is therefore extremely important to further visualize 

how the pathway model can be changed or manipulated. This can occur by means of mutations, 

changes to the environment, and drug administration. All of these changes can lead to disease change 

and progression and are taken into account by the large scale clustering of biological data. Employing 

bioinformatics to study cancer big data allows for the detection of small perturbations in a network. 

The more data used to inform the model, the more sensitive it is to changes in protein abundance or 

interactions. Computational advancements have raised the ceiling on what is possible for the study of 

large datasets. In this case, these computational advancements enable systems biology to track how 

dozens of proteins interact, and predict how those interactions may change over time. 

Applying this novel computational systems biology approach to modern cancer research, we 

can model how cancer changes over time in order to understand why those changes occur. OC is a 

model system to demonstrate the power of this network because it is characterized by cellular 

modifications that consistently lead to increasingly invasive subtypes. These OC subtypes are well 

characterized by tissue morphology, and therefore create somewhat obvious clustering rules to inform 

the model. Essentially, by understanding how the pathway is exploited into a cancerous state, we can 

start addressing ways to prevent such exploitation and preserve the normal function and interaction of 

proteins. 

In the context of this project, ovarian oncogenesis has already occurred, and therefore it is 

difficult to decipher what is a perturbation of generalized OC and what is causal for EMT. Future work 

should include recreating an OC model with data informing our understanding of initiation and early 



progression, however this data is much more difficult to acquire due to the often late diagnosis of

OC. A heightened understanding of ovarian oncogenesis can help prune assumptions made about 

this network. For example, IRF7 is a deeply interconnected protein in this EMT pathway based 

on BC and interaction confidence, although it is predominantly inactivated in both data clusters, 

epithelial and mesenchymal. It is observed that IRF7 is transiently activated by all Co1 proteins 

except TP53 and TGFβ1 in order to result in EMT. This indicates that IRF7 plays some hidden 

role in EMT, but is likely a large player in the initiation of disease. It is also worth noting that 

while the counts of IRF7 are effectively inactive, the gene does not appear to be knocked out in 

progressive stages of cancer because it is transiently activated during EMT. Making comparative 

steady states for healthy vs early cancerous ovarian protein interactions may elucidate a better 

understanding of where IRF7 affects disease progression. 

At the heart of this thesis, seven potential drug targets are presented for future analysis 

and research (BCL2, TP53, TGFβ1, TGFβR1, TGFβR2, SMAD2, and BAX), and future 

work is finding clinical ways to prevent EMT by controlling theses gene products. For example, 

TP53 and SMAD2 are known to be so inherently intertwined in pathways in every cell that it 

would be virtually impossible to control off-target effects. There are potentially many drug 

treatments already approved by the FDA for the treatment of various diseases that one can 

repurpose for the treatment of OC, perhaps by targeting proteins that might desensitize the 

network to these triggers. Such resilience inducing interventions could be applied 

prophylactically in women with high risk of developing OC. For example, the chemotherapeutic 

drug Venetoclax should be investigated further as it is used to inhibit BCL2 in severe types of 

leukemia.27 This research indicates that BCL2 interactions are highly informative of EMT 



progression in OC, and therefore inhibitors of BCL2 are worth investigating clinically as repurposed 

treatments. Therefore, it is time for a shift in the way researchers and clinicians view chemotherapy, to 

move away from shotgun approaches attempting to kill the cancer faster than the patient. It is now 

possible to computationally simulate how a drug with a known method of action will affect a cancerous

cell of a specific type within a patient, an idea linked into the philosophy of precision medicine. The 

repurposing of established cancer drugs is highly advantageous towards expedited improvements for 

the treatment of OC, and can now be done efficiently on a patient to patient basis.

Chemotherapy is often seen as a last-resort method to treating cancer, after a tumor is invasive 

enough to begin metastasizing. This research proposes the idea that chemotherapeutic drugs, like 

Venetoclax, could work as a temporary preventative measure against metastasis. Thibault et al. would 

likely argue that this could lead to chemo-resistance,28 but this proposal is only a measure to decrease 

the likelihood of metastasis while awaiting other treatment options. This would only be a temporary 

addition to existing surgical treatments but could delay progression of disease while planning other 

treatments. There may be many other drugs like Venetoclax that may be repurposed successfully. 

Therefore, a detailed database of available and approved chemotherapeutic agents, their methods of 

action, and their current clinical targets would prove useful in the future towards the advancement of 

this workflow. Several databases of chemotherapy drugs exist but they rarely include any methods of 

action that are readily searchable, partially due to the fact that the actions of some approved 

chemotherapy drugs are still not fully understood. Unfortunately, this extends into a cultural dilemma 

wherein researchers have little motivation to research how an approved drug actually works as they 

would receive little compensation or reward. Long term motivation and ability to do this research is 

difficult to find, but could yield hundreds of new applications for existing drugs and revolutionize 

current treatment understanding. 

METHODS



 I. Pathway Modeling for Genes of Interest

The pathway databases used to build regulatory networks linking GOI are Pathway 

Studio (PS), Mogrify, Reactome, and String.21,22,29,30 PS uses a text-mining engine, called 

MedScan, and natural language processing to read through a growing collection of over four 

million journal articles and to extract biological entities and their interactions into a searchable 

database.31 Once the pathway model is built with corroborating evidence for each protein 

addition, references must be checked to verify that the machine learning algorithm correctly 

associates entities in the network. From an original machine generated network, relations are 

manually condensed or pruned due to duplicate or sparse reference lists. Two relations are 

condensed into one if the nodes and directionality of the edges were the same. A relation is 

manually deleted if its associated references do not support the polarity of the relation. Relations 

are dropped if there were duplicate types of interactions, such as “positive regulation” and 

“positive expression”. 

 II. Data to Apply to the Network

It is recommended that proteomics data, as opposed to RNA-Seq data, be used for future 

use of this workflow as it is more informative of what gene products are actually present. From 

the proteomic data, IBAQ scores should be calculated or extracted, as means of label-free 

quantification from the estimated range of 0 to ~200,000,000. Future iterations of this pipeline 

may also view the distribution of iBAQ scores before proceeding. This step serves as a way to 

offer preliminary confirmation that GOI are differentially present across cancer subtypes. 

 III. Discretization of Proteomic Data



This step qualifies gene quantities into levels of expression by comparing distributions on a 

macro scale. Distributions of protein abundance for each cell type are considered different based on the 

significance t-tests of their medians, specifically using Wilcox tests with a 95% confidence interval. 

The median is used instead of the mean expression level to control for possible skewness or 

multimodality. If the p-values resulting from the t-tests are less than 0.05, then it is concluded with 95%

confidence that those medians of clustered expression values are different and the group with the higher

median is labeled with a 1, while the lower median group is labeled a 0. These do not equate to a binary

on/off switch, but rather a higher/lower abundance qualification. Any distributions that did not yield 

statistically different medians (p-value greater than 0.05) were left unconstrained in the model and 

given a value of -1. In this way, every entity has three relative possible states: on, off, or unknown. This

data is submitted to BioModelChecker as a JSON file, an example of which is included in Appendix B. 

 IV. Simulation-Based Determination of Steady States 

The dynamics of the GOI network are first supported by decisional logic similar to that used by 

computers, and are used to predict, via simulation, the location and dynamics of steady states on either 

side of EMT.32 Several elements of regulatory logic are combined within BioModelChecker to predict 

the propagation of protein expression states. These include the directionality of connections in the 

pathway, the discrete levels of protein quantity (e.g. low/no or high) for different groups delineated by 

k-means clustering of experimental data, known information about mutations and knockouts via 

literature, and backtracking simulations that will attempt to fill in the map with possible states that 

validate all parameters. 

BioModelChecker’s parameter selection for this type of research includes several choice-based 

parameters in addition to the JSON. A JSON requires an adjacency list labelled “interactions” including

sources, targets, trajectories, polarities, and confidence levels); a key for the GOI at each index called 

“titles”; a list of levels for each node where all are level 1 if the pathway is simple; a starting steady 



state; and an ending steady state. An example is provided in Appendix C. This project utilizes the

solver OR-Tools, with strong edge constraints, and no post combination constants for all 

program runs. Edge constraints refers to interactions between K values, where a strong positive 

edge must influence it’s target(s) at least half the time. An ordering parameter is filled once with 

the selection lexicographical ordering, yielding a rapidly growing list of all possible steady states

the model could arrive at. A simulation is run a second time with the ordering parameter set to 

unordered. The first run was used to determine the possible steady states, and it preserves all 

edges and constraints. The second run’s parameters dictate which edges should be dropped if 

they do not inform a decision in the pathway. This adds another level of complexity to the 

backtracking algorithm and creates a relatively unbound problem, which is able to inform the 

frequency at which edges are maintained or pruned in the model. These two runs together result 

in a map of steady states that are informed about what edges are most prevalent. 

Each solution set from Bio-ModelChecker yields a deterministic set of logic gates that 

inform the behavior of the network, and result in steady states. The logical rules are defined in a 

K matrix explaining how the algorithm filled in the unconstrained entities, and the starting and 

ending steady states are represented as lists of binary coded regulations for each node. The K 

matrix contains further details including the set of logical weights representing the relative 

strength of activators and inactivators as well as activation thresholds representing differences in 

biological receptor affinity. Each set of these parameter values supported different response 

dynamics in migrating any small deviation to the same steady state, which was registered as a 

different solution. The output of theses runs are in files consisting of rows of lists. The SS1 and 

SS2 lists are the steady states for each model output. The EM list indicates the presence of a 



connection between entities in a given model. These two solution lists yield a pathway model that is 

easy to understand and use for future study. All unique steady states determined by Bio-ModelChecker 

should be extracted if there are more than one start and end.

These connections and steady state solutions are used to create pathway models of the cancer 

subtypes that the data originates from. The steady state solution list is the regulation level of the 

proteins in each cancer subtype, and frequencies calculated from the connections list is used to 

represent the likelihood that the interaction takes place. There are as many steady state maps as there is 

variability in the network. Each steady state map should be drawn in such a way that it is obvious 

which entities are active and which ones are relatively inactivated, such as color coding. This is fairly 

easy to do using the program yED. The connections should indicate the likelihood an interaction 

between entities takes place, and therefore should be visibly more prominent when it appears more 

often in models. The greater the number of solutions form the unordered run, the lesser the variability 

and higher the specificity of edge frequency. 

 V. Betweenness Centrality

Betweenness centrality is a method of measuring how interconnected each node is in the matrix.

Matlab, R, and most other statistical analysis platforms will have a method for calculating BC that may 

require reformatting of the adjacency matrix used from Bio-ModelChecker’s original JSON.

 VI. Minimal Intervention Sets

At this stage of the workflow, we are attempting to induce EMT in silico in order to understand 

its possible causes. Every steady state determination is unique, therefore even though the steady state 

solutions may be identical, there will be variability in how that steady state is found. This variation is 

found in the K matrix of the solution files which is built as the simulation progresses. It represents 

every decision the solver makes towards determining in the unknown entities orientation. This variation

across models, however, is presumably insignificant if the steady states are identical. So, it is 



considered redundant to look at every single solution’s K matrix, and a random sample is taken if

there are an exhaustive number of solutions. This representative sample is then passed back into 

Bio-ModelChecker, which begins at each node following every connection possible to navigate 

through the entire network using the K matrix as the guidebook determining what is activated or 

inhibited. The end goal is to arrive at a specific attractor (in this case the mesenchymal steady 

state). The function will accept parameters wherein a researcher can define how many nodes are 

allowed to be arbitrarily perturbed by Bio-ModelChecker at one time (maximum cardinality), 

and how many steps the program is allowed to take throughout the pathway (path length). A 

cardinality is defined as the number of stabilized nodes that, when perturbed, are able to induce 

metastasis alone. Cardinality is limited because simpler perturbations are more likely. If EMT is 

induced by altering 1 gene or 6 genes, it is more likely that the 1 gene will end up causing it most

of the time. Additionally, a drug should ideally effect as few entities as possible in order to 

decrease the chance of off-target effects. It is favorable for these reasons to limit the cardinality 

to a small a number as the network allows. The path length is limited because the longer a 

signaling chain is, the more effect biological noise will have on the system and the less specific 

the drug interaction. This depends on the complexity of the system, but this project limited the 

path length to 20, which was more than enough. Each MIS is able to be viewed essentially as a 

solution set of what minimalist value(s) are informative enough to convert a cell to the 

mesenchymal steady state over a series of steps. Those steps serve as a time proxy and can be 

key to understanding hidden effects nodes may have on a circuit.
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APPENDIX A: PATHWAY REFERENCE DETAILS

 I. Reference Statistics

Of 176 reference sentences used to generate the map of all core gene relations, 21 were 

hand pruned due to duplicate information, inaccurate language processing, or false conclusions. 

95.5% of the relations were successfully verified, including duplicates. These are represented in .

Figure 10: Reference Verification Statistics

 II. Reference Distribution

8,788 original references existed across 176 total relations in the original pathway map of

27 entities. Each of the 176 relations had a list of sentences from which Pathway Studio 

concluded the relations’ existence. Each relation’s reference list had to be human-verified. 

Supplemental Figure 2 is the log-scale distribution of the number of references supporting each 

relation. 

Figure 11: Log-10 Based Reference Distribution



APPENDIX B – JSON FILE FORMAT

Below is the JSON used for this research, the format is described and explained in the methods 

section Simulation-Based Determination of Steady States. The first line variable name 

“_FILENAME_” should be the name of the file excluding file extension for continuity use of 

BioModelChecker. 

{

  "_FILENAME_": {

    "interaction": [

        [2, 4, 25, 1, 10, 12, 24, 1, 5, 10, 26, 4, 12, 13, 15, 18, 24, 4, 7, 11, 

14, 1, 2, 3, 4, 4, 24, 24, 2, 3, 4, 6, 13, 16, 20, 24, 2, 4, 18, 19, 24, 1, 2, 4, 

8, 9, 10, 17, 21, 2, 3, 4, 5, 10, 21, 24, 24, 8, 10, 11, 14, 3, 19, 20, 27, 2, 3, 

4, 5, 6, 12, 19, 20, 26, 27, 1, 3, 4, 7, 10, 20, 21, 25, 1, 2, 3, 22, 24, 26, 27, 

1, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 20, 22, 22, 23, 25, 26, 27, 4, 8, 10, 

17, 20, 21, 25, 26, 27, 5, 1, 2, 4, 5, 7, 10, 11, 12, 13, 16, 19, 20, 23, 25, 26, 

27, 1, 2, 3, 4, 5, 6, 15, 20, 23, 24, 26, 27, 1, 4, 18, 24, 2, 24, 26],

        [1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,

8, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 

13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17,

17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19,

19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,

23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25,

25, 26, 26, 26],

        [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

        [0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,

1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,

0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,

1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,



1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 

0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1],

        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1]

      ],

    "titles": ["SMAD4", "TP53", "RUNX3", "SMAD3", "SMAD2", "BCL2L11", "CSF1", 

"CDKN1A", "ICAM1", "RARB", "GATA6", "HOXA5",

"CDKN2A", "BAX", "TGFBR1", "TGFB1", "TGFBR2", "MDM2", "MDM4", "BCL2", "ZEB2", 

"SNAI1", "RXRA", "IRF7", "CREBBP", "ZEB1",

"TWIST1"],

    "L": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1],

    "SS": [

      [[0, 1, -1, 0, 0, -1, -1, -1, 1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1,

-1, -1, 0, -1, 0, 0, -1]],

      [[1, 0, -1, 1, 1, -1, -1, -1, 0, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1,

-1, -1, 1, -1, 1, 1, -1]]

    ]

  }

}



APPENDIX C: ALL MODELS STEPWISE TRANSITION GRAPHS

Figure 12: Model 1 Stepwise MIS Transitions

Figure 13: Model 2 Stepwise MIS Transitions



Figure 14: Model 3 Stepwise MIS Transitions

Figure 15: Model 4 Stepwise MIS Transitions



Figure 16: Model 5 Stepwise MIS Transitions

Figure 17: Model 6 Stepwise MIS Transitions



Figure 18: Model 7 Stepwise MIS Transitions

Figure 19: Model 8 Stepwise MIS Transitions



Figure 20: Model 9 Stepwise MIS Transitions

Figure 21:Model 10 Stepwise MIS Transitions
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