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Abstract

Modern processing speeds in conventional Von Neumann architectures are severely limit-

ed by memory access speeds. Read and write speeds of main memory have not scaled

at the same rate as logic circuits. In addition, the large physical distance spanned by the

interconnect between the processor and the memory incurs a large RC delay and power

penalty, often a hundred times more than on chip interconnects. As a result, accessing data

from memory becomes a bottleneck in the overall performance of the processor. Operations

such as matrix multiplication, which are used extensively in many modern applications such

as solving systems of equations, Convolutional Neural Networks, and image recognition,

require large volumes of data to be processed. These operations are impacted the most by

this bottleneck and their performance is limited as a result.

Processing-in-Memory (PIM) is designed to overcome this bottleneck by performing

repeated data intensive operations on the same die as the memory. In doing so, the large

delay and power penalties caused by data transfers between the processor and the memory

can be avoided. PIM architectures are often designed as small, simple, and efficient process-

ing blocks such that they can be integrated into each block of the memory. This allows for

extreme parallelism to be achieved, which makes it ideal for big data processes. An issue

with this design paradigm, however, is the lack of flexibility in operations that can be

performed. Most PIM architectures are designed to perform application specific functions,

limiting their widespread use.

A novel PIM architecture is proposed which allows for arbitrary functions to be imple-

mented with a high degree of parallelism. The architecture is based on PIM cores which

are capable of performing any arbitrary function on two 4-bit inputs. Nine PIM cores are

connected together to allow more advanced functions such as an 8-bit Multiply-Accumulate

function to be implemented. Wireless interconnects are utilized in the design to aid in

communication between clusters. The architecture will be applied to perform matrix multi-

plication on dense and sparse matrices of 8-bit values, which are prevalent in image and
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video formats. An analytical model is proposed to evaluate the area, power, and timing

of the PIM architecture for both dense and sparse matrices. A real-world performance

evaluation will also be conducted by applying the models to image/video data in a standard

resolution to examine the timing and power consumption of the system. The results are

compared against CPU and GPU results to evaluate the architecture against traditional

implementations. The proposed architecture was found to have an execution time similar

to a GPU implementation while requiring significantly less power.
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Chapter 1
Introduction

1.1 Motivation

Modern computing systems are designed to perform tasks as quickly and efficiently as

possible. Performance improvement is normally seen through microprocessor advance-

ments such as architecture modifications, increased clock frequencies, and increased core

counts. This allows modern processors to perform exponentially better than previous

generations. The computing systems as a whole, however, are not seeing the same rapid

improvements due to a large bottleneck that exists between the processing units and the

main memory. Dynamic Random Access Memory (DRAM), which is used as main memory

in most computing systems, has seen limited generational improvement when compared to

processors. Processor performance has been scaling with Moore’s law at a rate of around

70 percent improvement per year [1]. In contrast, DRAM speeds have been increasing by

7 percent per year [1]. This performance gap is caused by divergent goals between the

microprocessor and memory fabrication industries. Microprocessor production focuses on

developing increasingly fast devices while memory production is focused on creating high

capacity memory modules by minimizing data cell size. This growing performance gap

between processing and memory is exemplified in Figure 1.1.

This phenomenon, known as ”The Memory Wall” [3], severely limits the effective

speed of modern computing systems and prevents the rapid performance improvements

that are seen in the processors. The slow effective speed of the memory is limited by
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CHAPTER 1. INTRODUCTION

Figure 1.1: Growing performance gap of processors and DRAM memory compared to technology
in 1980 [2].

two main factors: long access times to read data out of DRAM and a large delay penalty

caused by transferring the data over I/O channels. To help alleviate this large delay, many

modern designs make use of high speed Static Random Access Memory (SRAM) that are

physically close to the processor, known as cache. In modern DDR3 memory, the time

to read data out of DRAM can take upwards of 10ns [4], not including time to transfer

the data to the processor. In comparison, reading data out of SRAM takes only 0.3ns [4].

Since SRAM is constructed using CMOS technology, it also benefits from improved speeds

from technology node scaling. As a result, SRAM speeds typically scale with processor

performance.

In addition to the long delay penalty, accessing data from main memory also incurs

significantly more power than SRAM. A DRAM access can use 1-2nJ of energy while

embedded cache memory uses only 10pJ [5]. The energy required to transfer the data

to the processor can also be upwards of 20pJ, not including the static power required to

keep the I/O channel functional [5]. With repeated accesses to main memory, a significant

amount of power is wasted due to the interconnects.

The impact of the large main memory delay can be seen easily seen through the basic

3



CHAPTER 1. INTRODUCTION

equation for calculating the average latency of a memory access shown in Equation 1.1 [3].

tavg = p× tc + (1− p)× tm (1.1)

In Equation 1.1, tc is the access latency of cache memory, tm is the access latency of

main memory, and p is the probability of finding the data in cache. Since, p is effectively

the probability of a cache hit, (p − 1) is therefore the probability of a cache miss, or the

probability of needing to fetch the data from main memory. In an ideal cache system, only

cache misses should access main memory to retrieve new data that has not been previously

accessed. In this case, the probability of finding the data in cache, p approaches one. The

chance of retrieving data from main memory, (p− 1), is therefore very small but nonzero.

Based on Equation 1.1, as processor speeds increase and cache latency decreases, the

average memory latency will be increasingly dominated by the main memory’s (1− p)× tm

term.

In order to see increased performance benefits from modern computing systems, new

innovations are required to reduce the impact of the Memory Wall. One such innovation

is the idea of Processing-in-Memory (PIM). In a PIM based architecture, the number of

data transfers between processing and memory can be reduced by performing some of the

operations within the memory itself. In doing this, the computation to communication ratio

can be improved and less time will be wasted by data transfers.

4



Chapter 2
Background

2.1 Processing-in-Memory

Processing-in-Memory (PIM) is one proposed solution to the ”Memory Wall” problem

that modern computing systems are facing. Speed improvements are limited by the large

latency of accessing data from DRAM and transferring the data to the processor. Some of

this latency can be reduced by using high speed cache memory hierarchies to store data

closer to the processor, however these memory blocks have a much larger area compared

to DRAM, limiting the amount of storage that can be put onto a single die [4]. Even

with these cache hierarchies, large capacity DRAM is still required for managing larger

datasets, which will incur a large latency penalty when accessed. PIM solves this issue

by processing the data closer to or within the memory itself, reducing or eliminating the

latency of memory accesses. An architecture comparison between PIM and traditional

architectures is shown in Figure 2.1.

Processing-in-Memory has been considered since at least 1970 [7], however it has not

been a feasible option until more recent years. Previously, incorporating large scale DRAM

technology with standard CMOS logic on the same die results in fabrication complexities

that make it an unfeasible solution. Modern technology has allowed potential PIM archi-

tectures to flourish. Three-dimensional stacked RAM such as Micron’s Hybrid Memory

Cube (HMC) [8] and AMD’s High-Bandwidth Memory (HBM) [9] allow traditional CMOS

logic to be constructed on a logic layer with quick access to a stack of DRAM dies which

5



CHAPTER 2. BACKGROUND

Figure 2.1: Architecture overview of traditional PIM paradigms based on the location of the
working set of data. Figures (a), (b), and (c) show typical Von Neumann architectures with a
separation of processing circuits and memory. Data is passed from DRAM or cache memory
to be operated on by the processing core. The Near-Memory Computing paradigm is shown in
(d), where processing cores are placed very close to the DRAM and Non-Volatile Memory. In
doing so, the delay of transmitting data to a processing unit can be reduced due to the shorter
travel distance. The Processing-in-Memory architecture, also called Computation in Memory, is
shown in (e). Processing units are embedded directly within the DRAM memory, reducing delay by
eliminating the need for costly data transfers. [6].

incurs minimal latency. Further development of HMC, however, will not be supported by

Micron. Other approaches include using specialized circuits within the RAM blocks [10]

or using novel Non-Volatile Memory devices such as Resistive RAM (ReRAM), which is

constructed using memristors, to perform logic within the memory cells [11]. Using these

advancements, small and efficient PIM architectures can be designed for a wide range

of applications. Typically, these architectures are designed to be application specific and

offer minimal flexibility. Some examples of application specific PIM architectures are a

Multiply-Accumulate engine [12], neural network engines [13, 14], and image recognition

[15].

6



CHAPTER 2. BACKGROUND

2.2 Matrix Multiplication

The Multiply-Accumulate (MAC) Operation is a powerful function that is used in a wide

range of applications. It is the primary operation when performing matrix multiplication,

which is used frequently by convolutional neural networks (CNNs). CNNs are very popular

in modern technology trends due to their ability to break down and classify data, commonly

for image recognition and other machine learning applications. The equation for a MAC

operation is given in Equation 2.1.

A← A+B × C (2.1)

In Equation 2.1, B and C are the primary operands to multiply together. The result

of the operation is then added to the accumulator, A. After repeated MAC operations,

the accumulator will contain the final summation of each multiplication product. In a

hardware implementation with a fixed bit length where B and C have n bits, the size of

the accumulator must be at least 2n bits long to successfully store the result of one MAC

operation. To prevent overflow in repeated MAC operations, one extra bit is needed for

every two successive operations to store the carry out of the addition.

A large issue with the MAC operation, however, is its high memory access frequency.

During each MAC operation, the B and C values must be retrieved from memory. These

values are not guaranteed to be stored close to each other in memory, making efficient

caching difficult. This can cause a large memory access penalty by frequently retrieving

values from main memory, leading to a low computation to communication ratio and

degrading the overall performance. One potential solution to this problem is to use two

separate memories to hold B and C in order to maximize spatial locality of successive

operands.

Multiplication of two matrices can be performed using repeated MAC operations on

matrix elements. Multiplication of matrices Amxp and Bpxn to produce a new matrix, Cmxn

7



CHAPTER 2. BACKGROUND

is shown below where each element of the matrix Cmxn is given by Equation 2.2.



a11 a12 . . . a1p

a21 a22 . . . a2p
...

... . . . ...

am1 am2 . . . amp


×



b11 b12 . . . b1n

b21 b22 . . . b2n
...

... . . . ...

bp1 bp2 . . . bpn


=



c11 c12 . . . c1n

c21 c22 . . . c2n
...

... . . . ...

cm1 cm2 . . . cmn



cij =

p∑
k=0

aikbkj (2.2)

During each iteration of the summation in Equation 2.2, elements of the Amxp and Bpxn

matrix are multiplied together and the product is accumulated for all iterations. Using

this, the element of the resulting matrix cij can be calculated through a series of MAC

operations. In addition, each element of the Cmxn matrix is independent from the other

elements and can therefore each element can be computed in parallel.

2.3 Networks-on-Chip

Advances in fabrication technology have allowed integrated circuit designs to be exponent-

ially larger and support extremely complex designs. Managing the flow of data across

these large, complicated designs has steered circuit designers towards the use of Systems-

on-Chips (SoCs) in order to ease the design. Systems-on-Chip design consists of many

independent modules being connected together, typically through a shared bus. This eases

the design process by allowing components to be reused between designs. Instead of

designing commonly used components from scratch, Intellectual Property (IP) can be purch-

ased or reused from previous designs. The design process then shifts to the integration and

connection of these parts rather than low level module design.

A large issue with this paradigm, however, is the limited scalability for large designs

8
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with many components. Interconnect strategies such as shared buses cannot effectively

support a large number of components on the bus due to contention over the shared medium.

SoCs also face issues such as global synchronization due to the difficulties of creating a

high speed, robust clock across the chip [16]. In response to this, recent design trends have

shifted towards the Network-on-Chip (NoC) paradigm.

In a Network-on-Chip, the components are linked together through the use of switches

and routers, similar to traditional computer networks. This allows multiple independent

links to be used to pass data between components rather than a single shared medium.

Efficient design of the network topology connecting the components can allow them to

communicate with one another quickly and with a minimal number of hops between routers.

Topologies such as Small World Networks allow for a high scalability by minimizing the

typical distance between any two nodes in the network through the use of both short and

long distance links [17]. Designing for scalability allows new nodes to be added to or

removed from the network with minimal impact on the number of hops required to reach

any other node, which is ideal for networks with a large number of nodes.

2.4 Wireless Networks-on-Chip

Improvements in the fabrication process and technology node shrinks in continuation with

Moore’s Law have allowed for the production of increasingly complex circuits. Connecting

the components in these circuits becomes an issue, however, as metal interconnects are not

scaling in performance at the same rate as the transistors. The NoC paradigm helped to

alleviate this issue by offering a more efficient communication framework for components

on the chip, however its effectiveness is limited by the physical distance separating the

components. The performance of long metal wires is limited by the RC delay incurred

by the wires, which becomes more apparent as the technology node continues to shrink.

Unique solutions have been proposed to address this issue such as 3-dimensional integrated

circuits [18], photonic interconnects [19], and wireless interconnects [17].

9
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Wireless interconnects are designed to overcome the large RC delay of long metal

wires by using electromagnetic waves to send and receive data between modules. Metal

wires are still used for short routing, however the integrated wireless transceivers working

at 16Gb/s [17] allow data to be sent across long distances in significantly less time and

requires less power. Control of the shared wireless medium requires accessing a Multiple

Access Control (MAC) protocol to be implemented, such as Code Division Multiple Access

(CDMA), Time Division Multiple Access (TDMA), or Carrier-Sense Multiple Access-

(CSMA) [17].

Some drawbacks of using wireless interconnects include the overhead of the MAC

protocol, increased area due to the wireless transceiver circuits, and increased fabrication

difficulty. They make up for these drawbacks, however, by offering high speed data transfer

across large on-chip distances. In addition, multi-casting and broadcasting of data to

multiple wireless transceivers is inherently supported by the architecture as multiple rec-

eivers can read the same transmission simultaneously.

2.5 Supporting Work

Due to the manufacturing complexity of integrating dense logic and DRAM on the same

die, processing in memory was a relatively unexplored field for many years. A new rush of

PIM designs was recently enabled by Micron’s Hybrid Memory Cube (HMC) architecture

[8], which uses 3D stacked memory to enable logic and memory to be closely integrated.

HMC is constructed by stacking 4-8 dies of DRAM memory onto a base logic layer. All

of the layers in the stack are connected using Through-Silicon Vias (TSVs), which act as

high speed buses to transmit data between the layers. Many PIM architectures use HMC as

a basis for their designs due to the ability to integrate computational logic within the logic

layer of the package, which enables computations to be performed very close to memory.

Micron has since stopped their support of HMC. An alternative to HMC comes in the

form of High-Bandwidth Memory (HBM) created by AMD [9]. Similar to HMC, HBM

10
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uses a 3D stack of DRAM dies connected by TSVs. Unlike HMC, however, HBM is

designed to connect directly to a CPU/GPU through a silicon interposer which offers high

speed communication between the components. Future PIM designs will likely be designed

around the use of HBM memory.

Typically, PIM architectures are designed to perform a single task such as Multiply-

Accumulate (MAC) operations [12], Convolutional Neural Network (CNN) operations

[14], or image processing [15]. Other PIM architectures have been designed for database

searches, data analysis, and graph processing [6]. These architectures are able to offer

a significant speedup over conventional computing for their designed tasks but lack the

flexibility to be used in other situations. In doing so, these designs limit their viability

outside of application specific hardware. In contrast to this, the proposed architecture will

be reconfigurable to allow for arbitrary functions to be implemented.

Currently, a matrix multiplication algorithm is envisioned using the proposed archi-

tecture. This will allow rapid computations for use in CNNs, which are used frequently

in artificial intelligence and image recognition applications. As a result, the proposed

architecture can be compared to both [12] and [14]. The architecture proposed in [12]

makes use of HMC to incorporate MAC processors near the data lines that access the

3D stacked memory. In each HMC-MAC instruction, a series of MAC operations are

performed using data supplied by the host processor and the memory. An HMC controller

is added to the host processor and is used to assemble the host supplied values for the MAC

operation as well as manage communications with the HMC module using one of 6 created

instructions. Similar to the proposed architecture, [12] is capable of performing multiple

repeated MAC instructions in parallel across the available memory. By constructing the

MAC unit close to the high bandwidth data line of the stacked DRAM, a high volume of

data can be processed quickly with minimal communication time.

Another comparable architecture is shown in [13], which is designed to perform CNN

functions using HMC. In their design, CNN Logic Units (CLUs) are placed near the high

11
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bandwidth data lines of the HMC module. The CLUs are designed to perform convolution

operations which form the basis of CNNs. The design makes use of a floating point

multiplier, floating point adder, and embedded SRAM to quickly apply filter values to a

dataset. The floating point operations are done using IEEE-754 double precision format

to maintain accuracy. An issue with this, however, is the large silicon area required to

implement it due to the complex circuitry required. This is an issue in PIM applications

where a small, low impact circuits are a priority.

Both [12] and [13] show significant improvement over conventional processing archi-

tectures due to their highly efficient specialized designs. The minimal data communication

time between the processing element and the memory allowed both architectures to obtain

effective processing rates that were far greater than a traditional processing and memory

structure. Where both architectures falter, however, is for general use cases. In applications

which do not directly conform to their intended domain, both architectures would offer

no performance improvements while still taking up valuable silicon area on the die. The

proposed architecture aims to improve upon this by allowing for full reconfigurability

of the operation to perform. Since any arbitrary function can be implemented using the

proposed architecture, any theoretical workload which requires frequent memory accesses

can instead be performed in the memory with significantly reduced communication latency.

Many modern PIM designs also focus on the use of Resistive Random Access Memory

(ReRAM) to perform arithmetic operations within the memory storage units themselves.

ReRAM is a type of non-volatile memory built using memristors, which store data using

programmable resistive states. Both a high and low resistive states can be stored into a

memristor by controlling the voltage difference across it. Binary values of ”0” and ”1” can

then be read as a function of the current through the memristor, where a high resistive states

equate to logic ”0” and low resistive states are logic ”1”. State-of-the-art PIM designs such

as [20], [21], and [22] use this ability to implement functions directly within the memory

cells.

12



CHAPTER 2. BACKGROUND

In [20], a ReRAM crossbar array is used to perform neural network operations using

the resistive states of the memory cells. Inputs are sent to the array as analog voltages

and the weights are represented as the resistive states. The current flowing through the

outputs is based on the resistances of the cells and determines the output value. This design

is capable of very fast and compact operations by using the memory cells as logic units,

however it requires a wide range of dedicated peripheral hardware to function. To perform

the neural network functions, the design requires digital-to-analog converters, analog-to-

digital converters, sigmoid units, and subtraction circuits [20]. This array of peripheral

circuitry tailored to perform neural network operations limits the overall flexibility of the

design as supporting other logic functions would require additional peripherals.

The designs proposed in [21] and [22] are similar to [20] in that they perform neural

network operations within the memory cell array. They differ, however, by implementing a

pipelined based approach where layers of the neural network can be processed in a parallel

manner. Both designs use pipeline stages to execute small portions of the layers at a time

and use the results in future pipeline stages. The design in [22] improves upon [21] by

avoiding pipeline bubbles and maintaining a constant series of operations through the

pipeline such that the efficiency is optimized. Similar to the issues described for [20],

these designs are highly specialized to perform neural network operations, reducing their

flexibility to be used for a wide range of tasks. Implementation of other functions would

require a redesign of the architecture, or additional peripherals to be constructed.
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Chapter 3
Processing-in-Memory Architecture

The center of the proposed architecture is the PIM Core which functions as the primary

logic unit. The PIM Core is capable of performing reconfigurable functions on two 4-bit

inputs to produce an 8-bit output. Nine PIM cores were then grouped together to form a

PIM Cluster to perform larger operations such as Multiply-Accumulate (MAC) using 8-bit

operands. An array of PIM Clusters can then be used to perform large scale operations

such as matrix multiplication in parallel.

3.1 PIM Core

The primary logic of the proposed architecture is the small, simple PIM Core which is

capable of performing arbitrary 4-bit operations. A primary objective of this architecture is

flexibility to support a wide range of potential applications. To achieve this, the PIM Core

functions similarly to a large LookUp Table (LUT) with the function to implement being

stored in memory. This allows the PIM Core to implement any arbitrary function based on

the data that is stored in memory. A block diagram of the PIM core is shown in Figure 3.1.

The LUT functionality is achieved using an 8-bit, 256-to-1 multiplexer. The 8-bit

multiplexer is required to support the multiplication of two 4-bit operands, which results in

an 8-bit result. The multiplexer has eight select lines which are used to determine the 8-bit

output given 256 8-bit options. The select lines are controlled by two 4-bit inputs which

serve as the operands.
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Figure 3.1: High level block diagram of the proposed PIM Core. The PIM Core logic is shown
within the red boundary.

The inputs to the multiplexer representing the function to implement are read directly

from the Random Access Memory (RAM) block and are referred to as function-words,

shown in Figure 3.1 as the red arrow. New functions can therefore be implemented on the

PIM Core by reading a new set of function-words from the RAM block using the read port.

Many sets of function-words can be stored in the memory to allow for rapid reconfiguration

of the PIM Core function to implement. This allows the PIM Core to implement addition,

subtraction, multiplication, or other Boolean functions dynamically by reading new values

from RAM, allowing the PIM Core to remain flexible to perform different tasks while still

being constructed using simple logic.

The two 4-bit inputs which are connected to the select lines of the multiplexer and

serve as the operators to the function are referred to as data-words. These values can either

be obtained from RAM, or they can be given through a sub Network-on-Chip (subNoC)

switch which is attached to the PIM Core. Values obtained from the RAM block, shown

in Figure 3.1 using a blue arrow, can be used to process data stored in memory by a host

device. In contrast, values obtained from the subNoC switch, shown as a green arrow, can

be received from other PIM Cores. The subNoC is an interconnection fabric which is used
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to transmit data between locally adjacent cores contained within the same PIM Cluster.

The subNoC connections are discussed further in Section 3.3. These connections between

cores allows larger functions to be implemented using multiple PIM Cores, as results from

other operations can be used as inputs to the PIM Core.

The included No-Op logic block will be used reduce total communication time for

sparse data applications. When the result of a PIM Core operation is equal to zero, the

No-Op detection block will prevent the data from being sent out of the core. A zero value

will then be inferred by the lack of data from the core and no additional time or energy will

be used to transmit the data.

3.2 Multiply-Accumulate Using PIM Cores

To complete matrix multiplication operations, an 8-bit Multiply-Accumulate (MAC) funct-

ion was implemented using a PIM Cores, resulting in a 16-bit value. To achieve this,

the 8-bit MAC instruction was decomposed into a series of 4-bit operations which can be

performed by the PIM Cores. The Multiply-Accumulate (MAC) instruction contains two

primary operations, an 8-bit multiplication and a 16-bit addition. The multiplication can be

broken down into a series of 4-bit multiplications resulting in 8-bit partial products, which

can then be added together to form the final result. The partial products Vx are defined

as follows, where the subscripts H and L represent the upper and lower four bits of the

operand respectively:

1. V0 = aL × bL

2. V1 = aL × bH

3. V2 = aH × bL

4. V3 = aH × bH

After obtaining the partial products Vx through multiplication, the final product Y

can be obtained through cascaded addition. This process is shown in Figure 3.2. The
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multiplication result of two 8-bit numbers will always be contained within 16-bits, therefore

there is no need for overflow protection.

Figure 3.2: Decomposition of 8-bit multiplication into a series of 4-bit multiplications and
additions.

The 16-bit addition operation can be decomposed into a series of 4-bit additions in

a similar manner. Ripple-carry addition is used to compute the final 16-bit result. This

process is shown in Figure 3.3 in the context of the MAC operation, where the 16-bit

multiplication result Y is added to the 16-bit accumulator A and the result is stored into A.

Figure 3.3: Decomposition of 16-bit addition into a series of 4-bit additions.

The size of the accumulator can be increased in order to account for additional overflow

which is generated through repeated additions. In this work, the accumulator size was

limited to 16 bits, however it can be increased to 20 bits by adding the carry out from the

computation of A3.
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The multiplication and addition algorithms can then be translated to be performed using

PIM Cores. A sequential model for performing the MAC operation was created where

the output of each PIM core is sent directly to the input of another core. A diagram of

the sequential model PIM MAC operation is shown in Figure 3.4, where each PIM Core

is given a unique identifying label. Each core within the diagram represents a single 4-

bit operation of the decomposed multiplication and addition operations. The left side of

the diagram represents the operations required to perform the addition of partial products,

while the right side of the diagram shows the 16-bit addition operation.
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Figure 3.4: Sequential model of 8-bit MAC operation. In the figure, blue boxes represent 4-bit
multiplication and red boxes represent 4-bit addition. The arrows coming out of each box represent
the upper and lower 4-bit results of the core’s operation. The upper four bits are denoted by the left
arrow, while the right arrow represents the lower four bits. The red arrows designate inputs to the
system in the form of the inputs a and b as well as the accumulator A. The final accumulator results
are denoted with a green arrow.

The sequential model is designed such that each PIM Core will be utilized once during

the MAC instruction. This configuration simplifies the flow of data, however it uses signif-

icantly more resources than is necessary to complete the instruction. In the sequential

model, 23 PIM Cores are required to complete the operation. By reusing cores to compute

multiple steps of the operation, the total number of cores needed can be reduced to 9,

four for multiplication and five for addition. Instead of using fixed paths, this new model,
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designated as the compact model, uses data destinations that change based on which portion

of the MAC operation is being computed.

The complete set of steps required to execute the compact model are shown in Figure

3.5. During each step in the figure, the cores are labeled to match the corresponding

operation from the sequential model in Figure 3.4. Similar to the sequential model, black

arrows show communications between the cores, the red arrows designate inputs to the

system, and the green arrows denote completed accumulator outputs. In Figure 3.5, the blue

arrows represent the core internally holding a result from its operation for use in the next

calculation, reducing the amount of data that needs to be transmitted. This MAC operation

can be repeated multiple times using a shared accumulator value in order to execute dot

product operations, which will be used to perform matrix multiplication.

3.3 PIM Cluster

In order to facilitate larger operations such as the proposed 8-bit MAC scheme, groups of

nine PIM Cores connected together to form a PIM Cluster. The nine PIM Cores within

a cluster are connected using the sub Network-on-Chip (subNoC), an all-to-all network

such that any core can directly send data to and receive data from any other core within

the cluster. This interconnection fabric is shown in Figure 3.6. Communication between

the PIM Cores is implemented through the transmission of single 32-bit packets, or Flow

Control Units (flits).

This interconnection fabric was chosen due to the low data output size, close physical

proximity, and high speed requirements of the PIM Cores. By directly linking cores

together, the high overhead of traditional Network-on-Chip (NoC) architectures such as

ring and mesh networks can be eliminated. The overhead required in these networks

includes area and power used by the switches and routers in addition to increased latency

due to multi-hop routing. Using the All-to-All network, delay penalties are limited to the

RC delay of the wires connecting the cores.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Nine Steps of the MAC operation using a 3x3 array of PIM cores.
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Figure 3.6: All-to-All Network connecting the nine PIM Cores within a PIM Cluster. Each colored
wire represents a bidirectional communication path between two PIM Cores.

The All-to-All network is not scalable for larger sized networks due to the large number

of connections needed. In this architecture, however, where the size of the network is

limited to nine nodes, it is sufficient. If the number of PIM Cores contained in a cluster were

to be increased, the network topology connecting them would likely need to be reevaluated

and modified to support the larger number of nodes. For larger cluster sizes, a mesh

network topology would be more beneficial due to the reduced number of connections

needed, however this would require additional area, power, and logic to support routing

data between the cores.

A key benefit of the All-to-All network is its flexibility to enable arbitrary communication

between any two PIM Cores rather than relying on fixed paths. In this section, an 8-bit

MAC operation was implemented using PIM Core logic, however other functions can be

implemented by changing the function-words of each core and defining different routing

behavior. By doing this, other large functions such as 32-bit addition or multiplication can

be achieved using the PIM Cluster.

Communication between the PIM Cluster and outside sources will be handled through
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the use of routing logic located in the center of the cluster. This router will be integrated

into a 2-D mesh NoC architecture to facilitate communication with other PIM Clusters

and Memory Controllers (MCs), forming a two-tiered hierarchical mesh. This router can

be implemented using traditional wired interconnects or using high performance wireless

interconnects. Due to the 16-bit results generated by PIM Cluster operations, the commun-

ication can occur through single 32-bit flit transmissions using the same flit structure as the

subNoC. This enables larger scale functions to be implemented using the PIM architecture,

such as Matrix Multiplication.

3.4 Matrix Multiplication Using PIM Clusters

A scheme for performing matrix multiplication operations using the outlined PIM architect-

ure is proposed. This PIM architecture is suited for computing matrix multiplication as PIM

Clusters can compute an element in the result matrix through repeated MAC operations. By

using a 2D array of PIM Clusters, each element of the result matrix can be calculated in

parallel.

In order to perform the matrix multiplication operations, the relevant row and column

data from the input matrices must be loaded into each cluster. Data inputs to the PIM

clusters is handled through the use of multicasting, which allows data to be sent to multiple

destinations within the 2D array of PIM Clusters. As a result, rows/columns of data from

the input matrices can be sent to all clusters which require the data at the same time.

Multicasting data for matrix multiplication of two matrices A and B to produce a 3x3

matrix C is exemplified in Figure 3.7.

After a PIM Cluster receives the input data, it can begin performing MAC operations.

As shown in Equation 2.2, the number of MAC operations to perform in each cluster is

equal to the size of the shared dimension of the two input matrices, P . Using the input data

distribution method shown in Figure 3.7, the time when a PIM Cluster finishes all P MAC

operations is dependent on its location within the 2D array of clusters because clusters
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(a) (b)

(c) (d)

Figure 3.7: Multicasting scheme to transmit data for matrix multiplication. (a) First row of column
A is sent to the first row of clusters. (b) First column of B is sent to the first column of clusters. (c)
Second row of A is sent to the second row of clusters. (d) Second column of B is sent to the second
column of clusters. The process is continued until all rows and columns from the input matrices are
sent to the clusters.

which receive both sets of input data can begin computation while the rest of the inputs are

being transmitted. After each cluster finishes its computations and produces a final result,

it can transmit the result to a MC to be stored into memory.
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Analytical Modeling of PIM Cluster

4.1 PIM Cluster Area

Each PIM Cluster contains nine PIM Cores which are arranged as a 3x3 array. In this

analysis, the cores are assumed to be located directly next to each other in a uniform

grid such that no gaps exist between the cores. In addition, each cluster is assumed to be

surrounded by a block of RAM which can be used to hold local data-words and function-

words. A memory access port is assumed to be located on the outer boundary of the PIM

cores. A diagram of the PIM Cluster is shown in Figure 4.1.

Figure 4.1: Block diagram of PIM Cluster. The worst case core-to-core communication path is
shown in red. The worst case core-to-memory path is shown in blue.

Communication between the cores is handled through the subNoC, where each of the
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interconnects used to transmit data between the cores is assumed to originate at the center

of the core. To ensure the validity of the design, it must be possible to retrieve data from

any other core or the memory and perform a computation within a single clock cycle. The

worst case core-to-core communication path occurs when data is sent across the diagonal

of the 3x3 array, as shown by the red line in Figure 4.1. This Manhattan distance can be

obtained in terms of the side length of a PIM Core, LPIM . The data must travel through the

lengths of three PIM Cores as well as two times the distance from the center of the core to

a perpendicular edge. The total length is therefore equal to 4LPIM .

The total delay incurred by this distance can then be obtained using the Elmore Delay

model shown in Equation 4.1 in conjunction with a known interconnect RC delay measure-

ment for a given process node. The known interconnect RC delay is given in ps/mm, which

can be expressed as a reference delay Tref divided by a reference distance Lref . By keeping

the values of r and c constant and using the reference RC delay, the Elmore Delay model

can then be rearranged to calculate the interconnect delay for a given interconnect length,

Tint as shown in Equation 4.2.

D = 0.4rcL2 (4.1)

Tint = Tref ×
(
Lint

Lref

)2

(4.2)

The same procedure is repeated to obtain the delay of the longest core-to-memory path,

which is shown by the blue line in Figure 4.1. In this longest path, the data must travel

through the length of four PIM Cores in addition to two times the distance from the center

of the core to the perpendicular edge. The total distance is therefore equal to 5LPIM . The

RC delay of this path can then be calculated using Equation 4.2.
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4.2 PIM Cluster MAC Energy

The total energy required to perform a MAC operation using a PIM Cluster is equal to the

total energy used by the PIM Cores and wired interconnects during each of the nine steps

of the MAC operation. The total power of a single PIM Core, Pcore can be obtained through

static power analysis using circuit analysis tools. The energy used by the core, Ecore, can

then be obtained by multiplying the core power by the delay of the PIM Core. The delay

of the PIM Core can also be obtained using circuit analysis tools. During operation, each

of the nine PIM Cores is assumed to be fully powered on, therefore the total energy used

by the cores is equal to 9Ecore.

The total power of the interconnects was calculated by measuring the distance traveled

by data during each step of the MAC operation. The distance of each data communication

was obtained by using the Manhattan distance between the centers of the source and

destination PIM Cores. This distance, Lintij , was determined for every data transmission

during each of the nine steps of the MAC operation, where i is the numbered step of the

operation and j is the number of the transmission during step i. Using the capacitance

per unit length for a given technology node, cint, the transmission energy of sending the

32-bit packet can be obtained using Equation 4.3, where α is the activity factor and V is

the supply voltage.

Eintij = 32× α× (cint × Lintij)× V 2 (4.3)

The total energy used by the interconnects during a MAC operation can then obtained

through a summation of the energy used by each of the interconnects, as shown in Equation

4.4, where n is the number of data transmissions present during step i of the MAC operation.

Eint Total =
9∑

i=1

n∑
j=1

Eintij (4.4)
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The total energy used during an entire MAC operation using the PIM Cluster can then

be expressed as the sum of the energy used by nine PIM Cores for nine steps and the

interconnect energy, as shown in Equation 4.5.

EMAC = 9× 9Ecore + Eint Total (4.5)

The static power of the PIM Cores and interconnects are not considered in any of the

energy models. Instead, the models are entirely based on the dynamic energy required to

perform the operations. This allows the models to more closely reflect the energy used by

the algorithms themselves rather than intrinsic device characteristics. In addition, the static

and dynamic energy required by the memory is not included because it is dependent on

the type of memory used and the size of the memory, which have not been defined in this

architecture.

4.3 PIM Cluster MAC Timing

The time required to complete a MAC operation within a cluster, TMAC , can be expressed

as the sum of the core processing time, TPIM , and the delays caused by the interconnects,

as shown in Equation 4.6. The PIM Core processing time can be obtained using static

timing analysis with circuit analysis software.

TMAC =
9∑

i=1

TPIM + Tinti (4.6)

The delay caused by the wired interconnects during a given step i, Tinti , represents

the longest delay caused by transmission lines during each of the nine steps of the MAC

operation. The delay changes during each of the steps of the MAC operation due to the

different data communication patterns present during each step. The interconnect delay of

each step can be obtained by finding the longest data communication distance. The longest

distance will have the largest RC delay and will therefore dictate the longest delay during
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each step. The RC delay of each step can be obtained using Equation 4.2.
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Timing Analysis Models

5.1 Matrix Multiplication Using Wired Interconnects

Matrix multiplication is achieved by performing repeated MAC operations in each of the

PIM Clusters. Each PIM Cluster computes a final element of the resulting matrix in

parallel. This operation can be broken into three primary steps: sending input matrix data

to the PIM Clusters, performing MAC operations using the data, and transmitting the final

result to a Memory Controller (MC) to store it into memory. The time to send the input data

and receive the final results are dependent on the interconnect architecture used to connect

the PIM Clusters and the MC while the time to perform the MAC operations is invariant.

In this section, the timing and power of completing a matrix multiplication operation using

an array of PIM Clusters connected with wired interconnects is proposed.

The PIM Clusters are assumed to be arranged as a 2D grid and connected using a 2-D

mesh network. The clusters are assumed to be laid out such that distance incurred by hops

between has an RC delay of 1ns. In addition, the routers used to control the flow of data

communications is assumed to cause a delay of 1ns. The combination of these two delays

is denoted as Thop. The MCs are assumed to be located along one edge of the array of PIM

Clusters and are connected to the mesh network through an adjacent PIM Cluster. This link

between the MCs and the PIM Clusters also has an RC delay of Thop. This configuration

is exemplified in Figure 5.1. The proposed model assumes a variable number of MCs can

be present and are evenly distributed among the columns of the 2-D mesh network. Each
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Figure 5.1: Example configuration of PIM Cluster array and 2-D mesh network. Two Memory
Controllers are evenly distributed over the six columns of the array. The dashed lines represent the
interconnects of the mesh network.

MC will be responsible for distributing data to the columns closest to it, which allows for

increased parallelism. The number of columns controlled by each MC is assumed to be

an equal portion of the maximum number of clusters. Cases with 1, 4, and 8 MCs are

examined.

To perform timing analysis using the circuit setup outlined in Figure 5.1, a set of

variables describing the setup of the PIM Cluster array was used. The array of clusters

is assumed to have M rows and N columns. The size of the shared dimension between

the two input matrices, which determines the number of MAC operations to perform, is P .

The following variables are then used for analysis, where nmc is the number of memory

controllers in the system:

1. ctotal =
⌈ N
nmc

⌉
2. cmc =

⌈ N

2× nmc

⌉
3. cleft = cmc − 1

4. cright = ctotal − cmc
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The variable ctotal is the largest number of columns which is assigned to any MC in the

system. For configurations in which the memory controllers cannot be evenly distributed,

some MCs will be tasked with providing data to more clusters than others. The next

variable, cmc, represents the column index of the MC within its assigned columns. The

value of cmc is 1-indexed such that a value of ’1’ depicts that the memory controller is

located in the leftmost column. Finally, the cleft and cright variables denote the number of

columns to the left and right of the MC, respectively. In unequally distributed systems, the

number of columns on the left and right will be different. Using these variables, the timing

and power of the system can be quantified.

5.1.1 Sending Input Data

Data from the input matrices can be sent to the clusters in a row-wise or column-wise

fashion, which will be referred to as row-casting and column-casting, respectively. These

transmission schemes allow an entire row/column of PIM Clusters to obtain the same input

data while minimizing the total data communication time. The scheme used to perform

row-casting is shown in Figure 5.2.

Figure 5.2: Example of sending data to PIM Clusters located in row 3 of the 2-D array. The two
MCs work in conjunction to cast data across the row.

Using the scheme outlined in Figure 5.2, a formula for the number of hops required to
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row-cast to a given row, i, was derived. To reach the given row, i hops are needed to travel

down the column containing the MC. Then, the data branches and transmits to the left and

right columns simultaneously. The number of hops required to fully branch to the left and

right columns is determined by the maximum of cleft and cright. When performing matrix

multiplication, an entire row/column of data with P elements is needed, therefore a total

of P elements are required to be transmitted to all clusters in the row. These values can

be transmitted in a lock-step fashion such that the next value will be one hop behind the

current transmission. The total time to row-cast to a given row i is the sum of these times,

as shown in Equation 5.1. Since the row-casting done under each MC is done in parallel,

the total execution time is equal to the worst case of any given grouping of columns under

an MC.

Trow(i) = (i+max(cleft, cright) + (P − 1))× Thop (5.1)

During the course of a matrix multiplication, data is cast to every row in the PIM Cluster

array. The total time to send all rows of data can be expressed as the sum to row-cast the

data to every row of clusters, as shown in Equation 5.2.

Trow total =
M∑
i=1

Trow(i) (5.2)

Column-casting can be used to send the data to all clusters in the same column of the

PIM array. The scheme used to perform column-casting is shown in Figure 5.3. Data is first

directed to the required column, then the data is propagated down the column such that it

reaches every cluster in the column. The number of hops required to reach a given column

j is equal to the number of columns between j and the closest MC. Similar to row-casting,

P elements are required to be transmitted in lock-step fashion after the first data element.

If the value of j is assumed to be a local index between 1 and ctotal, then the time required

to column-cast to a given column j can be expressed as shown in Equation 5.3.
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Figure 5.3: Example of sending data to PIM Clusters located in columns 1 and 4 of the 2-D array.
The two MCs work in conjunction to cast two columns of data simultaneously.

Tcol(j) = (|cmc − j|+M + (P − 1))× Thop (5.3)

During a matrix multiplication operation, values will be column-cast to every column

of the PIM cluster array. Each MC can perform column-cast operations on its assigned

columns in parallel, therefore the total time to column-cast all the data is limited by the

grouping with the most columns. The total time to column-cast the data can be separated

into two primary stages; time to hop to the correct column and time to transmit the data

down the correct column. The total number of hops required to reach every column across

all required column-casts, nhops is expressed in Equation 5.4.

nhops =

cleft∑
k=1

k +

cright∑
k=1

k (5.4)

The number of hops required to transmit data down a column is equal to the number

of rows in the column. Since each column within the MC grouping requires a column-cast

to obtain data, this number of hops must be repeated ctotal times. This, combined with the

number of lateral hops calculated using 5.4, results in a total column casting time as shown
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in Equation 5.5.

Tcol total = ctotal × (M + (P − 1))× Thop + nhops × Thop (5.5)

5.1.2 PIM Computation

The number of MAC operations to perform on the input data is given by the size of the

shared dimension between the two input matrices, P . Each cluster in the PIM Cluster array

is required to perform P MAC operations to produce a final element in the result matrix.

Each cluster’s computations can be performed in parallel due to data independence. As a

result, the total time required to perform all computations, Tcompute, is equal to the time to

perform P MAC operations, as expressed in Equation 5.6.

Tcompute = P × TMAC (5.6)

5.1.3 Data Retrieval

After each cluster completes its computations, it produces a single value in the result matrix

which it must transmit to the memory controller to be stored into memory. This can be

performed in a lock-step fashion where results are funneled to the memory controller as

adjacent clusters send their results. The result of this is a result reaching the MC after every

hop. Within each MC’s grouping exist at most M rows and ctotal columns of PIM Clusters.

Therefore the maximum number of results to transmit is the equal to the product of M and

ctotal. Using this, the maximum total time to retrieve the data, TRmax is given in Equation

5.7.

TRmax =M × ctotal × Thop (5.7)

Due to the included No-Op logic where results with a value of zero are not transmitted,

however, the time to acquire the results is a function of the sparsity of the result matrix,

35



CHAPTER 5. TIMING ANALYSIS MODELS

β. The value of β expresses the number of non-zero elements in the final result matrix and

their proximity to the MC. No formal function for β is proposed, as it is outside the scope

of this investigation. In a worst case fully dense matrix with all elements of non-zero value,

β will have a maximum value of ’1’. A best case fully sparse matrix with all zero results

will have a β value of zero. Sparsity conditions between the best and worst cases will have

a value such that 0 < β < 1. The total time to retrieve the data from the clusters with

sparsity is expressed in Equation 5.8.

TRsparse(β) = β × TRmax (5.8)

5.1.4 Final Timing Model

Due to the parallel nature of the cluster operations, asymmetric data distribution scheme,

and fast computation time, the computation time of the MAC operations can be masked by

the data transmission times. The first PIM Cluster can begin computations after the first

row and column are multicast. During this computation time, input data will continue to be

transmitted to the clusters. This trend continues until all input data has been transmitted.

Once all input data has been transmitted, the results from the finished PIM Clusters can

begin being sent to the MCs. After all results are retrieved from the PIM Clusters, the

matrix multiplication operation is completed. A timing diagram outlining the steps of the

matrix multiplication operation is shown in Figure 5.4.

An equation for the total execution time is given in Equation 5.9, which accounts for

the masked execution time.

Twired mult = Trow total + Tcol total +max(Tcompute, TRsparse(β)) (5.9)
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Figure 5.4: Timing diagram of a matrix multiplication operation using wired mesh network.

5.2 Matrix Multiplication Using Wireless Interconnects

The proposed PIM architecture can also be implemented using a wireless interconnection

fabric. In this setup, the wired switch and router present in each cluster are replaced with

a wireless transceiver operating at 60GHz, based on the architecture proposed in [23]

and [24]. The throughput of the wireless network is given to be 16Gb/s. The wireless

transceiver is also used to facilitate communication with the memory controller. The use of

wireless interconnects allows a minimal transmission delay and simultaneous multicasting

and broadcasting to any clusters in the network. As a result, row-casting and column-

casting can be achieved without the need to transmit data using multiple hops. Similar to

the wired interconnect model, the total execution time of a matrix multiplication operation

can be broken into three primary stages: transmission of input data, computations using

PIM Clusters, and receiving final results. The computation time of the PIM clusters is

identical to the wired interconnect model described in Equation 5.6.

37



CHAPTER 5. TIMING ANALYSIS MODELS

5.2.1 Sending Input Data

Similar to the wired interconnect model, rows and columns of input data can be multicast

to multiple clusters in the PIM array. Unlike the wired, model, however, one MC is

responsible for wirelessly sending the data, which eliminates the parallelism gained by

using multiple MCs. The loss of parallelism is made up for by the rapid multicasting

which is possible using wireless interconnects. Input data can be sent into the array of PIM

Clusters using the same scheme as outlined in Figure 3.7. When a row-cast or column-cast

is made, all clusters within the destination row/column receive the data at the same time.

The time to perform a row-cast or column-cast is therefore equivalent to the time required

to transmit a series of 32-bit flits containing the P elements of the input row/column using

the wireless interconnects. The equation for calculating the time required to multicast P

elements using wireless interconnects, TM/C , is shown in Equation 5.10.

TM/C = P × 32bits

16Gb/s
(5.10)

To perform a matrix multiplication operation, each of the M rows and N columns of

input data must be sent to the clusters. Each of these transmissions requires a multicast

to send data to a given row/cluster, which requires TM/C time to perform. Using this, the

equation for the total time required to send input data, Tin, is shown in Equation 5.11.

Tin = (M +N)× TM/C (5.11)

5.2.2 Data Retrieval

Once a PIM Cluster has completed all of its MAC operations, it can transmit its final result

to the MC using the wireless transceiver. The cluster must wait for the wireless medium

to be available first, however, meaning that sending results cannot occur at the same time

that input data is being transmitted. Once the medium is free, the results can be transmitted
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one at a time to the MC using 32-bit flits. In a fully dense matrix with all non-zero results,

each of the M ×N elements must be sent to the MC, one at a time. In a sparse matrix with

S non-zero elements, only S results must be sent to the MC where 0 <= S <= M × N .

Therefore the time to send all result data to the MC can be expressed as shown in Equation

5.12.

Tresults(S) = S × 32bits

16Gb/s
(5.12)

5.2.3 Final Timing Model

The total time to complete a matrix multiplication operation using wireless interconnects is

equal to the sum of the time to send data inputs, perform computations, and gather the final

results. As in the wired interconnect model presented in Section 5.1.4, the computation

time of the PIM Clusters can be masked by the data transmissions. This is exemplified in

the timing diagram shown in Equation 5.5, which shows the timing of a fully dense matrix.

Figure 5.5: Timing diagram of a matrix multiplication operation using wireless interconnects.

For sparse matrices, the computation time will be masked only if the time to send the

non-zero elements is greater than the computation time of a single cluster. This is because

the final PIM Cluster computation must finish before the matrix multiplication operation
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can complete. The final timing equation for the wireless interconnect model is given in

Equation 5.13.

Twireless mult = Tin +max(Tcompute, Tresults) (5.13)
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Energy Analysis Models

Like the timing model, the energy used to perform a matrix multiplication operation can

be divided into three primary sections: sending input data to the clusters, performing the

MAC operations within each cluster, and sending the results to a memory controller.

6.1 Matrix Multiplication Using Wired Interconnects

In the wired interconnect model, each of the PIM Clusters and MCs are connected in a 2-D

mesh network using switches and routers in each node. The distance between each node

is assumed to take 1ns to traverse. Using this delay and a modified version of Equation

4.2, the physical distance can be estimated as shown in Equation 6.1. Using the estimated

distance and known parasitic capacitance per unit length for a given technology node, cint,

the energy to traverse the distance, Ehop int, can be obtained using Equation 4.3. Each

router was assumed to use some amount of energy, Erouter, during its use. The total energy

per hop, Ehop, is therefore the sum of Ehop int and Erouter.

Lhop = Lref ×

√
1ns

Tref
(6.1)
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6.1.1 Sending Input Data

Row-casting and column-casting are used to distribute data from the MCs to the desired

row or column in the array of PIM Clusters. The total energy used during each of these

operations is equal to the number of hops required for all the data to reach its final destinat-

ions multiplied by the energy per hop. To send P elements of data to row i of the array

using the scheme outlined in Figure 5.2, the data must travel i hops to reach the correct row.

Then, ctotal − 1 hops are required to propagate the data throughout the row. This process is

repeated for each of the P data packets sent. The power used to row-cast to a given row i

is expressed in Equation 6.2.

Erow(i) = (ctotal + i− 1)× P × Ehop (6.2)

During a column-cast, data must travel laterally from the column containing the MC to

the correct column, then travel down the M rows of the column. This data flow is repeated

for each of the P packets to send. The energy to perform a column cast to a given column

j can therefore be expressed as shown in Equation 6.3.

Ecol(j) = (|cmc − j|+M)× P × Ehop (6.3)

The total amount of energy used to transmit all input data is equal to the energy required

to perform all row-cast and column-cast operations. In this process, M row-casts and ctotal

column-casts are required for each MC. The total energy to send all input data is expressed

in Equation 6.4.

Einput = (
M∑
i=1

Erow(i) +

ctotal∑
j=1

Ecol(j))× nmc (6.4)
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6.1.2 PIM Computation

Each PIM Cluster in the MxN array must perform P MAC operations during its comput-

ations. Each of these MAC operations requires EMAC energy to perform as derived in

Equation 4.5, which includes the energy of the PIM Cores and the subNoC interconnects.

The total energy used during the PIM Clusters during computations is expressed in Equation

6.5.

Ecompute =M ×N × P × EMAC (6.5)

6.1.3 Data Retrieval

Data retrieval from the PIM Clusters in the wired mesh network functions such that the

results are funneled one at a time to the MC. The flow of data from the PIM Clusters to the

MC follows a tree-like structure as shown in Figure 6.1.

Figure 6.1: Example of retrieving results from a 3x4 array of PIM Clusters using wired
interconnects. Data is passed to the MC in a lock-step fashion. The numbers next to each
interconnect represent the number of packets sent through the link during the data retrieval process.

The energy used during the data retrieval process can be calculated by counting the total

number of hops performed by each link to move all data to the MC. The number of times

each vertical link in the column containing the MC is used is equal to the number of PIM
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Clusters in the rows below it. As shown in Figure 6.1, the vertical link connecting row 3

to row 2 is used 4 times because the 4 elements contained in row 4 must send their data

through the link. Similarly, the vertical link connecting row 2 and row 1 is used 8 times

because all the data contained in rows 2 and 3 must pass through the link. The total number

of times the horizontal links are used in each row is equal to nhops. In a dense matrix, the

total energy used can be obtained by multiplying the total number of hops by the energy

required per hop. For sparse matrices, however, where the number of non-zero results is

less than the number of PIM Clusters, the total energy usage depends on the number of

results and their location in the array. This sparsity characteristic is described through the

parameter β. The total energy usage required to retrieve data from the array of PIM Clusters

is shown in Equation 6.6.

Eresults(β) = β × (
M∑
i=1

(ctotal × i+ nhops))× Ehop (6.6)

6.1.4 Total energy

The total energy required to complete a matrix operation using the array of PIM Clusters

with wired interconnects is equal to the sum of the energy used to send the input data,

perform the MAC computations, and send the final results to the MCs. Of these values,

only the energy used to send final results is affected by the sparsity of the matrix. The total

energy is therefore expressed as shown in Equation 6.7.

Ewired mult = Einput + Ecompute + Eresults(β) (6.7)
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6.2 Matrix Multiplication Using Wireless Interconnects

6.2.1 Sending Input Data

Input data is sent to the array of PIM Clusters through the use of wireless multicasting.

Each multicast can be used to send P values to an entire row/column of the PIM array at

the same time using 32-bit packets. The energy required to perform this operation is equal

to the energy per bit required to send and receive data using the wireless interconnects,

Ewireless, multiplied by the number of bits sent. Each of the M rows and N columns of

input data must be multicast to the clusters, therefore the total energy used to transmit the

input data is given by Equation 6.8.

Einput = (M +N)× (32× P × Ewireless) (6.8)

6.2.2 PIM Computation

The amount of energy required to perform the MAC computations is invariant of the

interconnection architecture used to link the PIM Clusters. As a result, the energy is

equivalent to the model given in Equation 6.5.

6.2.3 Data Retrieval

After each PIM Cluster is finished with its computations and the wireless medium is open,

it is able to send a 32-bit packet of data containing its final result to the MC. In a dense

matrix, every cluster in the MxN array must send its results to the MC, one at a time. In

a sparse matrix with S non-zero elements, only S results must be sent to the MC where

0 <= S <= M × N . Therefore the energy to send all result data to the MC can be

expressed as shown in Equation 6.9.

Eresult(S) = S × 32× Ewireless (6.9)
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6.2.4 Total Energy

Similar to the wired interconnect model, the total energy used during a matrix multiplication

operation is equal to the sum of the energies used to transmit the input values, perform MAC

operations, and send the final results to the MC, as expressed in Equation 6.10.

Ewireless mult = Einput + Ecompute + Eresult(S) (6.10)
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Execution of Large Datasets

The previously discussed timing and energy models assume that there exists a dedicated

PIM Cluster to compute the results for every element in the MxN result matrix. For larger

matrix sizes, this approach is not feasible due to the limited area available on the silicon

die for logic. As a result, a new set of models is required to perform matrix multiplication

operations using large matrix sizes with a limited number of PIM Clusters. In this analysis,

a 2D array of PIM Clusters with X rows and Y columns is proposed. The exact size of the

cluster array will be determined by the size of the final PIM Cluster architecture and the

available die area.

Large size matrices can be multiplied using the proposed PIM architecture by dividing

the matrix into blocks of sizeXxY and performing the matrix multiplication on each of the

blocks independently. This segmentation of the result matrix is shown in Figure 7.1, where

we assume a 5x5 result matrix and a 2x2 array of PIM clusters.

The result matrix is first divided into blocks equal to the size of the PIM Cluster array.

The number of rows and columns of blocks is calculated using Equation 7.1 and Equation

7.2, respectively. In cases where a complete block that fills the entire PIM array cannot be

allocated, an incomplete block is constructed and executed as shown in Figure 7.1 (c), (f),

(g), (h), and (i).

nrow blocks =
⌈N
Y

⌉
(7.1)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.1: Diagram outlining execution order of folded matrix multiplication model. Result matrix
is of size 5x5 and PIM Cluster array is 2x2. During each step (a)-(g), green squares represent the
block to perform matrix multiplication on using the cluster array while blue squares show finished
elements.
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ncol blocks =
⌈M
X

⌉
(7.2)

Matrix multiplication operations can then begin on each block, going in a row-wise

order. The first block of each row will behave as described in Section 8.2. The row data

used by each block in the row will be the same, therefore only new column data must

be sent to the clusters to execute a new block of matrix multiplications. Any incomplete

blocks which may exist at the end of the rows will be treated in the same manner as the

complete blocks. This process is repeated for each row of blocks until all elements of the

result matrix have been calculated.

7.1 Timing Analysis

The first block in each row will require both row and column input data to be sent to the

array, therefore the total execution time of the block is equal to the normal execution time

of a matrix multiplication as described in Section 8.2. Each subsequent block in this row

will reuse the same row data inputs, therefore only new column data must be sent to the

clusters. Using the wired architecture, this can be modeled using Equation 7.3, where we

assume M = X and N = Y when performing the timing equations.

Twired =

ncol blocks∑
i=1

[
Twired mult +

nrow blocks−1∑
j=1

(Twired mult − Trow total)
]

(7.3)

The wireless model operates in the same manner as the wired. Blocks are processed in

a row-wise order and after the first block in a row, row data can be reused for the following

block calculations. Therefore the execution time of the wired model can be expressed as
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shown in Equation 7.4.

Twireless =

ncol blocks∑
i=1

[
Twireless mult +

nrow blocks−1∑
j=1

(Twireless mult −M × TM/C)
]

(7.4)

7.2 Energy Analysis

The total energy required to perform the segmented matrix multiplication model is equal to

the sum of the energy required to compute each of the block multiplications. This can be

obtained using the same scheme as the timing model. The power required to transmit row

data from to each block after the first in a row can be eliminated. This is reflected in the

wired energy model in Equation 7.5 and the wireless model in Equation 7.6.

Ewired =

ncol blocks∑
i=1

[
Ewired mult +

nrow blocks−1∑
j=1

(Ewired mult −
M∑
k=1

Erow(k))
]

(7.5)

Ewireless =

ncol blocks∑
i=1

[
Ewireless mult+

nrow blocks−1∑
j=1

(Ewireless mult−M× (32×P ×Ewireless))
]

(7.6)
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Results

8.1 Cluster Characteristics

The Proposed PIM Core was synthesized and analyzed using Synopsys Design Compiler.

The design was synthesized using TSMC’s 65nm low power standard cell library. Synopsys

Design Compiler, PrimeTime, and PrimeRail were used to calculate the PIM Core’s silicon

area, critical path delay, and power usage. The results are shown in Table 8.1. The

synthesized core design includes the multiplexers used for logic and 256 8-bit registers

to hold function-words.

Speed (ns) Dynamic Power (μW) Static Power (μW) Area (μm2)
PIM Core 0.66 751.9282 4.9686 14351.58
SRAM [25] 0.3 0.45/cell 0.3/cell 0.5915/cell
Embedded
DRAM
[25]

0.7 0.10/cell 1.00E-5/cell 0.0554/cell

Table 8.1: Characteristics of PIM components in 65nm node

The characteristics of both SRAM and embedded DRAM in the 68nm process node are

included in Table 8.1 due to their required inclusion in the overall PIM architecture. The

decision to use SRAM vs DRAM in the final design has not been made, as each device has

their own advantages and disadvantages. SRAM is significantly faster, however the area

required per cell is substantially higher and it requires additional power. This would limit

the total amount of memory which can be stored on the die. Using DRAM in the design
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would greatly increase the potential memory capacity, however the peripheral circuitry

required to access and manage the memory is substantially larger than SRAM. This would

limit the number of memory controllers (MCs) which could be integrated into the design.

8.1.1 Area Analysis

Using the Synopsys tools, an area of 14351.58μm2 was obtained. To simplify analysis, the

layout of the PIM Core is assumed to be a uniform square. The side length of the PIM

Core, LPIM , is there therefore equal to the square root of the total area, or 119.798μm. In

the 65nm node, the interconnect RC delay of intermediate wires is equal to 741ps/mm as

reported by [4], which accounts for width-dependent scattering in the wire. The RC delay

of the worst case core-to-core communication path was then calculated to be 0.1702ns

using Equation 4.2 where Tint was equal to 4LPIM . The worst case core-to-memory delay

can be obtained using the same method, where Tint was equal to 5LPIM . The worst case

core-to-memory delay was calculated to be 0.2659ns.

The PIM Cluster is proposed to operate at a 1GHz frequency. As a result, it must be

possible to complete a data transmission and perform a computation within a single clock

period of 1ns. From the Synopsys tools, a computation time of 0.66ns was obtained, as

shown in Table 8.1, leaving 0.34ns for communication time. Both the worst case core-to-

core and core-to-memory delays are less than the allotted communication time, therefore

operation at 1GHz is feasible.

The number of PIM Clusters available to perform computations is limited by the potent-

ial size of a silicon die. Given the calculated PIM Core length of 119.798μm and each PIM

Cluster containing three cores per side, the minimum length of a PIM Cluster would be

359.39μm. On a silicon die with a size 20mm by 20mm, a 55x55 grid of PIM Clusters

could be placed. To account for additional area required for routing and additional logic,

we assume a maximum PIM array size of 40x40.
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8.1.2 MAC Timing

Given a computation time of 0.66ns and the known core-to-core distances, the total time to

complete a MAC instruction in a PIM Cluster can be obtained. Each of the nine steps of

the MAC operation shown in Figure 3.5 were analyzed to determine the worst case path,

which in term creates the longest delay. Each of these distances were then used in Equation

4.2 to get the interconnect delay of each stage, Tinti . This was then used with Equation 4.6

to obtain a final MAC operation time of 10.7ns.

8.1.3 MAC Energy

The power used by a PIM Core was obtained using the Synopsys tools and was found to

be 751.9282μW. The energy of the PIM Core can then be obtained by multiplying this

power by the total computation time of 0.66ns, resulting in 0.49627pJ of energy used per

computation. The distance of every data communication was then used to calculate the

total interconnect energy required using Equation 4.4, where the interconnect capacitance,

cint was 0.18fF/μm [4]. The total interconnect energy used during a MAC operation was

found to be 42.402pJ. This can then be used in conjunction with Equation 4.5 to calculate

the total energy required to perform a MAC operation, which was found to be 82.6pJ.

8.2 Matrix Multiplication Timing

Using the calculated MAC execution time, the time to complete a matrix multiplication

operation can be obtained for both the wired and wireless interconnect architectures using

Equations 5.9 and 5.13, respectively. Each architecture’s total timing results were calculated

for result matrices of size 1x1 up to 40x40. For the wired architecture, the multiplication

time was calculated using 1, 4, and 8 memory controllers. The results are shown in Table

8.2, which includes a comparison to the matrix multiplication performed using a CPU and

GPU. The results are also displayed graphically in Figure 8.1. These results assume a dense
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matrix result with no non-zero elements.

Table 8.2: Matrix multiplication time

Matrix
Size

CPU
Time
(ms)

GPU
Time
(ms)

Wired
Time
(1 MC)
(ms)

Wired
Time
(4 MC)
(ms)

Wired
Time
(8 MC)
(ms)

Wireless
Time
(ms)

1x1 0.0001 0.0756 0.000006 0.000006 0.000006 0.000006
2x2 0.0001 0.0769 0.000022 0.000036 0.000020 0.000020
3x3 0.0002 0.0752 0.00005 0.000082 0.000040 0.000040
4x4 0.0003 0.0834 0.000089 0.000156 0.000066 0.000066
5x5 0.0005 0.0881 0.000140 0.000242 0.000138 0.000098
10x10 0.0032 0.0869 0.000559 0.00102 0.000488 0.000428
15x15 0.0104 0.0890 0.001257 0.002302 0.00108 0.000868
20x20 0.024 0.1022 0.002235 0.00414 0.001862 0001578
25x25 0.0467 0.1206 0.003492 0.006462 0.00306 0.00255
30x30 0.0798 0.1264 0.005029 0.00936 0.004366 0.00351
35x35 0.1356 0.1341 0.006845 0.012722 0.005832 0.004832
40x40 0.2005 0.1439 0.008941 0.01668 0.00759 0.006122

Figure 8.1: Execution time of Matrices sized between 1x1 and 40x40 for CPU, GPU, and PIM
architectures.

The CPU time was obtained using a Core i5-2500 at 3.10GHz and includes all the

time to access memory and manage the operating system in addition to the time required

54



CHAPTER 8. RESULTS

to perform the computation time. The GPU time was obtained in a similar manner using

a GTX 1080 and does not include the time to initially transfer data from the host to the

GPU. Both the CPU and GPU results were performed with 8GB of DRAM and VRAM,

respectively.

Due to the single threaded implementation of the matrix multiplication algorithm, the

execution time of the CPU increases exponentially with the size of the matrix. The GPU

time, however, is highly parallelized and completed using hundreds of threads, resulting

a more linear increase in execution time. Both implementations have substantially higher

execution times than the wired and wireless PIM architectures. This was expected because

the memory data transfer time was substantially reduced with the PIM architectures. The

performance difference between the wired and wireless PIM architectures is highlighted in

Figure 8.2.

Figure 8.2: Execution time of Matrices sized between 1x1 and 40x40 for wired and wireless PIM
architectures.

The graph in Figure 8.2 shows the performance of the PIM architecture when implem-

ented using wireless interconnects and wired interconnects with 1, 4, and 8 memory cont-
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rollers. The wired architecture with a single MC performed significantly worse than the

other models, which was expected due to the additional latency of the wired interconnect

and no parallelism gained by having multiple MCs. The wireless interconnects performed

better, however the total execution time was longer than both the 4 MC and 8 MC wired

models. This was due to the system being limited to a single transmission using the wireless

medium at any given time, reducing potential parallelism. The 4 MC and 8 MC models had

the lowest execution time due to each MC being able to act in parallel.

Based on the sparsity of the final result matrix, the total execution time will differ from

the dense case results shown in Table 8.2. The sparsity was varied for each of the matrix

sizes and used to calculate a new execution time. The calculated execution times were used

to construct a 3-D surface plot for both the wired and wireless architectures as shown in

Figure 8.3.

(a) Wireless interconnects (b) Wired interconnects with 1 MC

(c) Wired interconnects with 4 MCs (d) Wired interconnects with 8 MCs

Figure 8.3: Matrix multiplication execution time using wired and wireless interconnects with
varying sparsity.

As shown in 8.3, the sparsity of the result matrix has a large impact on the total

execution time. As a matrix has a larger number of non-zero elements, the time required

to transmit the results increases. In the wireless plot, a linear region exists in the surface
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plot in which the computation time is longer than the time to retrieve the results. This

region does not exist for the wired results, however, as the communication time is always

longer than the computation time. In the wired plots for the 4 MC and 8 MC models, sharp

increases in execution time can be observed in some portions of the surface. These sharp

increases occur when the size of the square matrix is a multiple of the number of MCs in

the system. This occurs because when the matrix size is a multiple of the number of MCs,

the matrix can be evenly distributed among the MCs. When the matrix size is one larger,

however, the unevenly distributed results causes additional time to process compared to the

evenly distributed results. This manifests as a sharp increase in execution time between the

two points.

8.3 Matrix Multiplication Energy

The total energy required to perform the complete the matrix multiplication operation

for different sized matrices was calculated for both the wired and wireless interconnect

architectures. For the wired architecture, the hop distance required to have a transmission

delay of 1ns was calculated to be 1.16mm using Equation 6.1 with a known interconnect

delay of 741ps/mm [4]. For the wired interconnect model, the energy required to transmit

a 32-bit packet was then obtained using the interconnect distance using Equation 4.3 and

found to be 6.69pJ where we assume a worst case α of 1 and a capacitance per unit length

of 1.8pF/cm. In addition, each transmission using the router is assumed to use 2.5pJ of

energy per packet based on post-synthesis RTL models of the NoC switch. For the wireless

model, the wireless interconnects are assumed to use 1.45pJ of energy per bit transmitted,

based on the work in [23] and [24].

The energy required to perform multiplication of matrices with sizes between 1x1 and

40x40 were calculated using Equation 6.7 for the wired interconnects and 6.10 for the

wireless interconnects. In the calculations, the results were assumed to be dense matrices.

The wired architecture power was obtained for configurations using 1 MC, 4 MCs, and 8
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MCs. The results are listed in Table 8.3 and shown graphically in Figure 8.4.

Table 8.3: Matrix multiplication energy

Matrix Size Wireless
Energy (nJ)

Wired
Energy
(1 MC) (nJ)

Wired
Energy
(4 MC) (nJ)

Wired
Energy
(8 MC) (nJ)

1x1 0.222 0.110 0.110 0.110
2x2 1.218 0.918 0.900 0.900
3x3 3.483 3.085 3.140 3.140
4x4 7.514 7.345 7.713 7.713
5x5 13.805 14.323 17.309 15.609
10x10 96.520 114.765 128.734 154.650
15x15 310.095 387.263 424.896 480.587
20x20 716.480 918.120 994.948 1168.823
25x25 1377.625 1793.088 1993.660 2319.905
30x30 2355.480 3098.655 3411.299 3873.372
35x35 3711.995 4920.389 5377.453 6235.615
40x40 5509.120 7344.960 7984.584 9093.266

Figure 8.4: Total energy required for Matrices sized between 1x1 and 40x40 using wired and
wireless PIM architectures.

For matrices larger than 4x4, the wireless interconnects used less energy than the wired

interconnect model. This was due to the simultaneous multicasting which can be achieved
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using the wireless interconnects such that multiple PIM Clusters can receive data from the

same transmission, reducing the number of wireless transmissions required. The increased

parallelism gained by using more than one MC has an energy trade off, as using more

memory controllers requires additional energy to perform the computations.

As discussed in Section 6, the total energy used during a matrix multiplication varies

depending on the sparsity of the result matrix for both the wired and wireless interconnect

architectures. For each matrix size, the sparsity was varied to represent result matrices

containing many non-zero elements versus few non-zero elements. The results were used

to generate surface plots as shown in Figure 8.5, which shows how the total energy required

to complete the operation changes based on the number of non-zero elements in the result

matrix.

(a) Wireless interconnects (b) Wired interconnects with 1 MC

(c) Wired interconnects with 4 MCs (d) Wired interconnects with 8 MCs

Figure 8.5: Matrix multiplication total energy using wired and wireless interconnects with varying
sparsity.

For both the wired and wireless architectures, the total energy is minimally impacted

by the sparsity of the result matrix. This is because the majority of the energy is used in the

initial sending of input data as well as the calculations within the PIM cores, rather than

retrieving data from the clusters.
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8.4 Large Dataset Timing

Larger data sets which exceed the 40x40 array of PIM Clusters must be handled through

repeated batches of smaller matrix multiplications. The total execution time is therefore

equal to the sum of the time required to complete each batch of matrix multiplication

operations as shown in Equations 7.3 and 7.4 for the wired and wireless models, respectively.

Using these models, the execution time for common video resolutions were used for the

input matrix sizes. In these results, matrices of size 480x272, 720x480, 1280x720, 1440x1080,

and 1920x1080 were examined to emulate a potential real world application. Each input

matrix size was assumed to be multiplied by another matrix with size equal to its transverse,

resulting in a square matrix. The results are listed in Table 8.4.

Table 8.4: Large dataset Timing

Matrix
Size

CPU
Time
(ms)

GPU
Time
(ms)

Wired
Time
(1 MC)
(ms)

Wired
Time
(4 MC)
(ms)

Wired
Time
(8 MC)
(ms)

Wireless
Time
(ms)

480x272 183.7 6 7.744 4.431 3.885 6.263
720x480 767.1 21.5 28.201 16.703 14.802 24.129
1280x720 4089.6 94.4 128.431 77.345 68.879 112.862
1440x1080 7819.2 172 237.159 144.509 129.129 212.330
1920x1080 17094 321.2 421.614 256.904 229.561 377.473

Both the wired and wireless PIM architectures are significantly faster than the CPU

implementation, which was expected due to the parallelism and reduced memory access

time. The parallelism gained by using multiple MCs allows the wired architecture to

outperform the wireless architecture. The wireless and 1 MC models have a longer exec-

ution time than the GPU test. This was likely caused by the extreme levels of parallelism

which is available when using a GPU. The 4 MC and 8 MC wired models have a lower

execution time than GPU.
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8.5 Large Dataset Power

Similar to the large dataset timing models, the matrix multiplication can be broken into and

executed in batches. The total energy of the matrix multiplication is therefore the sum of

the energy used in each of the batch executions, as described in Equations 7.5 and 7.6 for

the wired and wireless architectures, respectively. The total power was calculated for large

input matrices of sizes 480x272, 720x480, 1280x720, 1440x1080, and 1920x1080. Each

input matrix was assumed to be multiplied by a matrix with size equal to its transpose,

resulting in a square matrix. The results are displayed in Table 8.5.

Table 8.5: Large dataset energy

Matrix Size Wireless
Energy (μJ)

Wired
Energy
(1 MC) (μJ)

Wired
Energy
(4 MC) (μJ)

Wired
Energy
(8 MC) (μJ)

480x272 5304.951 6032.322 7146.697 8314.274
720x480 21042.063 23746.262 28245.950 32894.596
1280x720 99703.194 111953.302 133539.245 155619.994
1440x1080 189228.442 212139.438 253244.058 295184.301
1920x1080 336392.847 376758.827 450024.271 524616.464

Similar to the results from Table 8.3, the wireless PIM architecture used the least energy

to perform the matrix multiplication operation. Increasing the number of MCs in the system

increases the total energy required to perform the operation. Using the total time from Table

8.4 and energy required from Table 8.5, the average power of the design can be estimated

by dividing the energy by the execution time. The estimated power is given in Table 8.6.

Table 8.6: Large dataset estimated power

Matrix Size Wireless
Power (W)

Wired Power
(1 MC) (W)

Wired Power
(4 MC) (W)

Wired Power
(8 MC) (W)

480x272 0.847 0.779 1.615 2.140
720x480 0.872 0.842 1.691 2.222
1280x720 0.883 0.872 1.727 2.259
1440x1080 0.891 0.895 1.752 2.286
1920x1080 0.891 0.894 1.7517 2.285
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As shown by Table 8.6, the average power to perform the matrix multiplication is very

low compared to the CPU and GPU used for testing which have rated Thermal Design

Power (TDP) of 95W and 180W respectively. The TDP is a maximum rating for the chips

which represent the thermal power that must be dissipated during a maximum intensive

workload. As such, the actual power consumption may be higher than this listed amount.

In addition, the TDP spec is a representation of the total power of the system and therefore

includes both dynamic power and static power. The static power of the CPU and GPU

are not publicly available metrics, however it is likely small due to the high concentration

of logic in the processors. This power does not take the interconnect power required to

access main memory or the power required by the main memory itself, however, which are

considerable for data intensive workloads. The proposed PIM architecture had a maximum

calculated dynamic power of 2.286 W when using the 8 MC configuration, which is signif-

icantly less than both the CPU and GPU implementations. This measure does not include

the static or dynamic power of the memory as those are depend on size and configuration

of the memory. Compared to the CPU and GPU, however, the memory would have a

considerable amount of leakage power. For both SRAM and DRAM, the static power

required per cell is fairly high compared to the dynamic power required. Over time, this

can become dominant part of the total power consumption.

An estimation of the static and dynamic power required by the memory can obtained

using the power per cell listed in Table 8.1. To obtain a minimum bound, the size of

the memory is assumed to be large enough to fit a single frame of the standard video

resolution matrices used in previous calculations. Each element in the matrix is assumed to

be composed of three 8-bit values to represent the three color values of an RGB pixel. The

memory must be large enough to hold two frames of input data, plus the resulting matrix.

The static and dynamic power is then calculated by multiplying the power per cell by the

number of cells as shown in Table 8.7.

In order to store the required number of elements for each matrix size, the required
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Table 8.7: Memory Power Estimates

Matrix Size Total Number
of Elements to
Store

Standard
Memory Size
Required

SRAM DRAM
Dynamic

Power
(W)

Static
Power

(W)

Dynamic
Power

(W)

Static
Power

(W)
480x272 1474560 2 MB 0.944 0.629 0.210 2.10E-05
720x480 3628800 4 MB 1.887 1.258 0.419 4.19E-05
1280x720 10444800 16 MB 7.550 5.033 1.678 1.68E-04

1440x1080 15552000 16 MB 7.550 5.033 1.678 1.68E-04
1920x1080 23500800 32 MB 15.099 10.066 3.355 3.36E-04

size was rounded up to the closest standard memory size which are based on powers of

two. This standard memory size was used in the calculations to find the static and dynamic

power of both SRAM and DRAM implementations. Based on the results from Table 8.7,

the power requirements of the memory are very high compared to the power of the PIM

Clusters themselves. For the largest matrix size of 1920x1080, the SRAM dynamic power

of 15.099W is substantially larger than the power to complete the matrix multiplication

using both the wired and wireless interconnects. In addition, the static power is also very

high for SRAM, being equal to 66% of the required dynamic power. The power of a DRAM

block of the same size is substantially less, however the dynamic power is still more than

the power of the wired and wireless PIM architectures. Additionally, the power metrics of

DRAM does not account for refreshes to keep the data in memory.
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Conclusion

In order to overcome the growing processing and memory gap, unique and novel archit-

ecture solutions are required. Processing-in-Memory (PIM) architectures are designed to

alleviate the issue by reducing the total number of data communications required between

the processor and the memory. In this work, a novel Processing-in-Memory architecture

is proposed which uses simple, reconfigurable logic to perform arbitrary functions. These

small logic units, called PIM Cores, are capable of implementing any potential function

using two 4-bit inputs and producing an 8-bit output by reading the function values from

memory. By combining nine PIM Cores together using an all-to-all network, a PIM Cluster

capable of performing larger functions such as 8-bit Multiply-Accumulate can be imple-

mented. Many PIM Clusters can then be used in parallel to perform large scale operations

such as matrix multiplication. The design makes use of novel wireless interconnects to aid

in data communication. The flexible wireless interconnects provide a seamless mechanism

to transition between dense and sparse matrix multiplication applications, where time and

energy can be saved by transmitting only non-zero results.

Analytical models were proposed to evaluate the proposed architecture in terms of area,

execution time, and energy using both wired and wireless interconnects. The execution

time was compared against CPU and GPU matrix multiplication implementations to eval-

uate the architecture when compared to conventional architectures. The calculated power

was also compared to obtain an estimate of the power efficiency when compared to the
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CPU and GPU implementations. When applied to real-world matrix sizes, the proposed

architecture using wired interconnects was found to offer a best case execution time speedup

of 74.5x and 1.4x when compared to the CPU and GPU. Using the wireless interconnects,

speed ups of 45.3x and 0.85x were obtained. The wireless interconnects excel in terms

of power, however, as the wireless interconnect architecture offered a 260.5x reduction in

power consumption compared to the wired model.

9.1 Future Work

The presented work serves as an initial proposal to the outlined PIM architecture off of

which future work can expand upon and improve the design. The design can be more

fully elaborated to include the construction of an Instruction Set Architecture (ISA) for

programming the proposed architecture. An ISA is needed to establish a standard set

of communication behavior between the PIM architecture and the host processor. This

ISA would need to include functions for programming the PIM cores, assigning memory

addresses to the PIM Clusters from which they will pull data, and establishing the required

communication patterns between the cores of a PIM Cluster. These functions will allow a

more integrated design to take shape such that the host processor can manage and control

the PIM architecture.

In addition, the exact communications required within the PIM architecture can be

further elaborated to establish the packet structures required to execute the proposed algo-

rithms. In this work, 32-bit flits were assumed for all communications within the subNoC

and within the array of PIM Clusters. With an in depth analysis, a defined packet length

and packet structure can be created for each of the required communication types used. In

doing so, the packet sizes can potentially be reduced, requiring less transmission energy to

send the flits.

The proposed large dataset timing and power models can be further elaborated to

account for varying workloads which exist when evaluating incomplete batches with fewer
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elements. Currently, the models treat these incomplete batches as if they were full, which

leads to an overestimation of the required time and energy to complete the multiplication.

By more accurately reflecting the number of PIM Clusters that must perform operations

and send results, the performance of the models will likely improve. This would more

accurately show the potential of the architecture and provide a better comparison against

the CPU and GPU implementations.

The final step required in the elaboration of this design is full construction and verification.

An initial design of the PIM Core was constructed for this work, however the full architecture

was not designed and simulated. To gather more accurate timing, power, and area data, the

full integrated system must be constructed and analyzed. A full system test can then be

designed to execute the proposed architecture and verify functionality. If possible, the

architecture can also be fabricated as an ASIC circuit, or implemented on a small scale

using an FPGA.

66



Bibliography

[1] D. Efnusheva, A. Cholakoska, and A. Tentov, “A survey of different approaches for
overcoming the processor - memory bottleneck,” International Journal of Computer
Science and Information Technology, vol. 9, no. 2, pp. 151–163, apr 2017.

[2] J. Hruska, “MIT Develops 3D Chip That Integrates CPU, Memory,”
July 2017. [Online]. Available: https://www.extremetech.com/computing/
252007-mit-announces-breakthrough-3d-chips-integrate-memory-cpu

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,”
ACM SIGARCH Computer Architecture News, vol. 23, no. 1, pp. 20–24, mar 1995.

[4] S. I. Association, “Emerging research devices,” 2007 International Technology
Roadmap for Semiconductors, 2007.

[5] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). IEEE, feb 2014.

[6] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and
A.-J. Boonstra, “A review of near-memory computing architectures: Opportunities
and challenges,” in 2018 21st Euromicro Conference on Digital System Design (DSD).
IEEE, aug 2018.

[7] H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on Computers, vol.
C-19, no. 1, pp. 73–78, Jan 1970.

[8] J. T. Pawlowski, “Hybrid memory cube (HMC),” in 2011 IEEE Hot Chips 23
Symposium (HCS). IEEE, aug 2011.

[9] AMD, “High-Bandwidth Memory,” 2015. [Online]. Available: https://www.amd.
com/en/technologies/hbm

[10] N. Jao, A. K. Ramanathan, S. Srinivasa, S. George, J. Sampson, and V. Narayanan,
“Harnessing emerging technology for compute-in-memory support,” in 2018 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), July 2018, pp. 447–452.

[11] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “Magic—memristor-aided logic,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, Nov 2014.

[12] D.-I. Jeon, K.-B. Park, and K.-S. Chung, “HMC-MAC: Processing-in memory
architecture for multiply-accumulate operations with hybrid memory cube,” IEEE
Computer Architecture Letters, vol. 17, no. 1, pp. 5–8, jan 2018.

67

https://www.extremetech.com/computing/252007-mit-announces-breakthrough-3d-chips-integrate-memory-cpu
https://www.extremetech.com/computing/252007-mit-announces-breakthrough-3d-chips-integrate-memory-cpu
https://www.amd.com/en/technologies/hbm
https://www.amd.com/en/technologies/hbm


BIBLIOGRAPHY

[13] P. Das, S. Lakhotia, P. Shetty, and H. K. Kapoor, “Towards near data processing
of convolutional neural networks,” in 2018 31st International Conference on VLSI
Design and 2018 17th International Conference on Embedded Systems (VLSID).
IEEE, jan 2018.

[14] Y. Wang, W. Chen, J. Yang, and T. Li, “Towards memory-efficient allocation of
CNNs on processing-in-memory architecture,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 6, pp. 1428–1441, jun 2018.

[15] D. Pala, G. Causapruno, M. Vacca, F. Riente, G. Turvani, M. Graziano, and
M. Zamboni, “Logic-in-memory architecture made real,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, may 2015.

[16] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,” Computer,
vol. 35, no. 1, pp. 70–78, Jan 2002.

[17] M. S. Shamim, N. Mansoor, R. S. Narde, V. Kothandapani, A. Ganguly, and
J. Venkataraman, “A wireless interconnection framework for seamless inter and intra-
chip communication in multichip systems,” IEEE Transactions on Computers, vol. 66,
no. 3, pp. 389–402, March 2017.

[18] A. W. Topol, D. C. L. Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. Steen, A. Kumar,
G. U. Singco, A. M. Young, K. W. Guarini, and M. Ieong, “Three-dimensional
integrated circuits,” IBM Journal of Research and Development, vol. 50, no. 4.5, pp.
491–506, July 2006.

[19] X. Wu, Y. Ye, W. Zhang, W. Liu, M. Nikdast, X. Wang, and J. Xu, “Union: A
unified inter/intra-chip optical network for chip multiprocessors,” in 2010 IEEE/ACM
International Symposium on Nanoscale Architectures, June 2010, pp. 35–40.

[20] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A
novel processing-in-memory architecture for neural network computation in ReRAM-
based main memory,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, jun 2016.

[21] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE, jun 2016.

[22] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-based
accelerator for deep learning,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, feb 2017.

[23] X. Yu, S. P. Sah, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “A 1.2-pJ/bit 16-
gb/s 60-GHz OOK transmitter in 65-nm CMOS for wireless network-on-chip,” IEEE
Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2357–2369,
oct 2014.

68



BIBLIOGRAPHY

[24] X. Yu, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “An 18.7-gb/s 60-
GHz OOK demodulator in 65-nm CMOS for wireless network-on-chip,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 3, pp. 799–806,
mar 2015.

[25] S. I. Association, “System drivers,” 2007 International Technology Roadmap for
Semiconductors, 2007.

69


	A Novel Processing-In-Memory Architecture for Dense and Sparse Matrix Multiplications
	Recommended Citation

	Signature Sheet
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation

	Background
	Processing-in-Memory
	Matrix Multiplication
	Networks-on-Chip
	Wireless Networks-on-Chip
	Supporting Work

	Processing-in-Memory Architecture
	PIM Core
	Multiply-Accumulate Using PIM Cores
	PIM Cluster
	Matrix Multiplication Using PIM Clusters

	Analytical Modeling of PIM Cluster
	PIM Cluster Area
	PIM Cluster MAC Energy
	PIM Cluster MAC Timing

	Timing Analysis Models
	Matrix Multiplication Using Wired Interconnects
	Sending Input Data
	PIM Computation
	Data Retrieval
	Final Timing Model

	Matrix Multiplication Using Wireless Interconnects
	Sending Input Data
	Data Retrieval
	Final Timing Model


	Energy Analysis Models
	Matrix Multiplication Using Wired Interconnects
	Sending Input Data
	PIM Computation
	Data Retrieval
	Total energy

	Matrix Multiplication Using Wireless Interconnects
	Sending Input Data
	PIM Computation
	Data Retrieval
	Total Energy


	Execution of Large Datasets
	Timing Analysis
	Energy Analysis

	Results
	Cluster Characteristics
	Area Analysis
	MAC Timing
	MAC Energy

	Matrix Multiplication Timing
	Matrix Multiplication Energy
	Large Dataset Timing
	Large Dataset Power

	Conclusion
	Future Work

	Bibliography

