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Abstract

A Mechanized Theory of Communication Analysis in CML

Thomas Logan, M.S.

Rochester Institute of Technology, 2019

Supervisor: Dr. Matthew Fluet

For this master’s thesis, I have developed a formal semantics of a language with

concurrent processes (or threads), an initial formal analysis, along with related theorems

and formal proofs. The language under analysis is a very simpli�ed version of Concurrent

ML. The formal analysis recasts an analysis with informal proofs developed by Reppy and

Xiao. It categorizes communication described by programs into simple topologies. One

description of topologies is static; that is, it describes all static topologies of a program in

a �nite number of steps. Another description is dynamic; that is, it describes topologies in

terms of running a program for an arbitrary number of steps. The main formal theorem

states that the static analysis is sound with respect to the dynamic analysis. Two versions

of the static analysis have been developed so far; one with lower precision, and one with

higher precision. The higher precision analysis is closer to the work by Reppy and Xiao,

but contains many more details making it more challenging to prove formally than the

lower precision analysis. The proofs for the soundness theorems of the lower precision

analysis have been mechanically veri�ed using Isabelle/HOL, while the higher precision
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analysis is currently under development. Indeed, one of the motivations for implementing

the analysis in a mechanical setting is to enable gradual extension of analysis and language

without introducing uncaught bugs in the de�nitions or proofs. The de�nitions used in

this formal theory di�er signi�cantly from that of Reppy and Xiao, in order to aid formal

reasoning. Thus, recasting Reppy and Xiao’s work was far more nuanced than a straight-

forward syntactic transliteration. Although the de�nitions are structurally quite di�erent,

their philosophical equivalence is hopefully apparent. In this formal theory, the dynamic

semantics of Concurrent ML consists of a CEK machine. The static semantics consists of

a control �ow analysis (0CFA), de�ned in terms of constraints.

iv



Table of Contents

Abstract iii

Chapter 1. Introduction 1
1.1 Concurrent ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Static Analysis of Concurrent ML . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2. Synchronization 15
2.1 Many-to-many Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 One-to-many Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Many-to-one Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 One-to-one Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 One-shot Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 One-sync Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3. Mechanized Theory 34
3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Dynamic Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Static Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Formal Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 4. Higher Precision Static Analysis 87
4.1 Higher Precision Soundness Proof Strategy . . . . . . . . . . . . . . . . . . 107

v



Chapter 5. Conclusion 113
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 116



Chapter 1

Introduction

For this master’s thesis, I have developed a formal semantics of a language with

concurrent processes (or threads), an initial formal analysis, along with related theorems

and formal proofs. The language under analysis is a very simpli�ed version of Concur-

rent ML [18]. The formal analysis recasts an analysis with informal proofs developed by

Reppy and Xiao [17]. It categorizes communication described by programs into simple

topologies. One description of topologies is static; that is, it describes all static topologies

of a program in a �nite number of steps. Another description is dynamic; that is, it de-

scribes topologies in terms of running a program for an arbitrary number of steps. The

main formal theorem states that the static analysis is sound with respect to the dynamic

analysis. Two versions of the static analysis have been developed so far; one with lower

precision, and one with higher precision. The higher precision analysis is closer to the

work by Reppy and Xiao, but contains many more details making it more challenging to

prove formally than the lower precision analysis. The proofs for the soundness theorems

of the lower precision analysis have been mechanically veri�ed using Isabelle/HOL [16],

while the higher precision analysis is currently under development. Indeed, one of the

motivations for implementing the analysis in a mechanical setting is to enable gradual ex-

tension of analysis and language without introducing uncaught bugs in the de�nitions or

proofs. The de�nitions used in this formal theory di�er signi�cantly from that of Reppy
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and Xiao, in order to aid formal reasoning. Thus, recasting Reppy and Xiao’s work was far

more nuanced than a straightforward syntactic transliteration. Although the de�nitions

are structurally quite di�erent, their philosophical equivalence is hopefully apparent. In

this formal theory, the dynamic semantics of Concurrent ML consists of a CEK machine

[5]. The static semantics consists of a control �ow analysis (0CFA) [19], de�ned in terms

of constraints [14].

1.1 Concurrent ML

In programing languages, concurrency is a program structuring technique that al-

lows evaluation steps to hop back and forth between disjoint syntactic structures within a

program. It is useful when conceptually distinct tasks need to overlap in time, but are eas-

ier to understand if they are written as distinct structures within the program. Concurrent

languages may also allow the evaluation order between steps of terms to be nondetermin-

istic. If it’s not necessary for tasks to be ordered in a precise way, then it may be better to

allow a static or dynamic scheduler to pick the most e�cient execution order. A common

use case for concurrency is for programs that interact with humans, in which a program

has to process various requests while remaining responsive to subsequent user inputs, and

it must continually provide the user feedback with the latest information it has processed.

Concurrent ML is a particularly elegant programing language for concurrency. It

features threads, which are pieces of code allowed to have a wide range of evaluation or-

ders relative to code encapsulated in other threads. Its synchronization mechanism can

mandate the execution order between parts of separate threads. It is often the case that

synchronization is necessary when data is shared. Thus, in Concurrent ML, synchroniza-
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tion is inherent in communication. For asynchronous communication, additional threads

may be spawned.

Threads communicate by having shared access to a common channel. A channel

can be used to either send data or receive data. When a thread sends on a channel, another

thread must receive on the same channel before the sending thread can continue. Likewise,

when a thread receives on a channel, another thread must send on the same channel before

the receiving thread can continue.
type thread_id
val spawn : (unit -> unit) -> thread_id

type ’a chan
val channel : unit -> ’a chan
val recv : ’a chan -> ’a
val send : ’a chan * ’a -> unit

A given channel can have any arbitrary number of threads sending or receiving

data on it over the course of the program’s execution. A simple example, derived from

Reppy’s book Concurrent Programing in ML [18], illustrates these essential features.

The implementation of Serv de�nes a server that holds a number in its state. When

a client gives the server a number v, the server gives back the number in its state, and

updates its state with the number v. The next client request will get the number v, and so

on. Essentially, a request and reply is equivalent to reading and writing a mutable cell in

isolation. The function make makes a new server, by creating a new channel reqCh, and

a loop loop which listens for requests. The loop expects the request to be composed of a

number v and a channel replCh. It sends its current state’s number on replCh and updates

the loop’s state with the request’s number v, by calling the loop with a that number. The
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server is created with a new thread with the initial state 0 by calling spawn (fn () =>

loop 0). The request channel is returned as the handle to the server. The function call

makes a request to a server server with a number v and returns a number from the server.

Internally, it extracts the request channel reqCh from the server handle and creates a new

channel replCh. It makes a request to the server, sending the number v and the reply

channel replCh by calling send (reqCh, (v, replCh)). Then it receives the reply with

the new number by calling recv replCh.
signature SERV =
sig
type serv
val make : unit -> serv
val call : serv * int -> int

end

structure Serv : SERV =
struct
datatype serv = S of (int * int chan) chan

fun make () =
let
val reqCh = channel ()
fun loop state =
let
val (v, replCh) = recv reqCh
val () = send (replCh, state)

in
loop v

end
val () = spawn (fn () => loop 0)

in
S reqCh

end

fun call (server, v) =
let
val S reqCh = server
val replCh = channel ()
val () = send (reqCh, (v, replCh))

in
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recv replCh
end

end

Concurrent ML actually allows for events other than sending and receiving to oc-

cur during synchronization. in fact, the synchronization mechanism is decoupled from

events, much in the same way that application is decoupled from functions. Sending and

receiving events are represented by sendEvt and recvEvt and synchronization is repre-

sented by sync.
type ’a event
val sync : ’a event -> ’a

val recvEvt : ’a chan -> ’a event
val sendEvt : ’a channel * ’a -> unit event

fun send (ch, v) = sync (sendEvt (ch, v))
fun recv ch = sync (recvEvt ch)

An advantageous consequence of decoupling synchronization from events, is that

events can be combined with other events via event combinators, and synchronized on

exactly once. One such event combinator is choose, which constructs a new event con-

sisting of two constituent events, such that when synchronized on, exactly one of the two

events may take e�ect. There are many other useful combinators, such as the wrap and

guard combinators designed by Reppy [17]. Additionally, Donnelly and Fluet extended

Concurrent ML with the thenEvt combinator described in their work on transactional

events [4]. Transactional events enable more robust structuring of programs by allowing

non-isolated code to be turned into isolated code via the thenEvt combinator, instead of

duplicating code with the addition of stronger isolation. When the event constructed by
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the thenEvt combinator is synchronized on, either all of its constituent events and func-

tions evaluate in isolation, or none evaluates.
val choose : ’a event * ’a event -> ’a event
val thenEvt : ’a event * (’a -> ’b event) -> ’b event

1.2 Isabelle/HOL

An interactive theorem proving assistant, or proof assistant, is a machine (typi-

cally software) that helps its user specify propositions and prove theorems. Like typical

programming systems, it checks that propositions are lexically correct, syntactically cor-

rect, and even compositionally correct according to its type system. To determine if a

proposition is valid, a proof assistant often requires the user to supply a proof. Once the

proof assistant has veri�ed that the user’s proof is correct, then the proposition may be

considered a theorem. In addition to checking the correctness of proofs and propositions,

the proof assistant also assists the user in constructing proofs.

Isabelle/HOL is a popular proof assistant that assists in specifying and proving

properties formulated in a higher order logic (HOL). Predicates and functions may be

higher order. That is, they may take other predicates or functions as arguments, and func-

tions may return predicates or functions. In HOL, a predicate is actually just a function

that returns a value of type boolean, and a proposition is simply a term of type boolean.

Terms are deemed compositionally correct according to a system of simple types, sim-

ilar to that of Standard ML. Isabelle/HOL excels at assisting with proving propositions

containing numerous details.

A proof is a sequence of manipulations from axioms to a claim. Typically, unas-
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sisted informal proofs, are written in a declarative form. One �rst states the claim, and

then starts o� the proof by stating an axiom or theorem. Subsequently derived theorems

follow, with or without the details of the manipulation explained. For instance, say you

want to prove P1 ∨ P2 → Q. You could begin by stating the axiom P1 ∨ P2 ` P1 ∨ P2,

commonly written as assume P1 ∨ P2. You can also state P1 ` P1 and P2 ` P2. Since

these are inteded to form complementary cases of P1 ∨ P2, they are written as case P1:

... case P2. Perhaps you know theorem A: ` P1 → Q. Using modus ponens, you derive

P1 ` Q. Let’s say you also know theorem B: ` P2 → Q. Using modus ponens with theo-

rem B, you derive P2 ` Q. These two theorems may be combined into P1 ∨ P2 ` Q, which

reduces to ` P1 ∨ P2 → Q.

` P1 ∨ P2 → Q
proof
assume P1 ∨ P2:
case P1:
have ` P1 → Q by A
have ` Q by modus ponens

case P2:
have ` P2 → Q by B
have ` Q by modus ponens

have P1 ` Q, P2 ` Q
have ` Q by disjunction elimination

have P1 ∨ P2 ` Q
have ` P1 ∨ P2 → Q by implication introduction

qed

For proving simple propositions, it may be easy to conjure up the theorems and

axioms needed to combine and manipulate into the goal. However, for proving complex

or unfamiliar propositions, it may be less clear. In addition to the declarative forward

proof style, Isabelle/HOL also supports an imperative backwards proof style, in which

you start with the goal and break it into simpler and simpler subgoals until all subgoals
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are manipulated into axioms. The backwards style of reasoning allows the you to focus

on the manipulation rule, rather than remembering and gathering up all the propositions

that are necessary to combine to reach the goal. The interface of the interactive theorem

prover displays the subgoals resulting from applying each manipulation rule.
` P1 ∨ P2 → Q
apply (rule impI)
P1 ∨ P2 ` Q

apply (erule disjE)
P1 ` Q

* P2 ` Q
apply (insert A)
P1, P1 → Q ` Q

* P2 ` Q
apply (erule mp)
P1 ` P1

* P2 ` Q
apply assumption
P2 ` Q

apply (insert B)
P2, P2 → Q ` Q

apply (erule mp)
P2 ` P2

apply assumption
done

Note that the syntax shown here di�ers slightly from that of Isabelle/HOL. In

order to make these examples more accessible to those unfamiliar with Isabelle/HOL, I

have chosen to use a syntax that is more typical of mathematical logic and language theory

literature.

In addition to creating theorems by proving propositions, Isabelle/HOL also al-

lows creating theorems by de�ning predicates and functions. This feature is critical for

constructing inductive propositions that may hold over in�nite domains. In�nite domains

may be de�ned as inductive data types, similar to Standard ML. For instance, you can de-
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�ne the in�nite set of natural numbers (with zero) as an inductive data type, and the binary

relation that a natural number is less than or equal to another as an inductive predicate.
datatype nat = Z | S nat

predicate lte: nat -> nat -> bool where
eq: n .
` lte n n

* lt: n1 n2 .
lte n1 n2

` lte n1 (S n2)

Additionally, you can de�ne the in�nite set of lists inductively, and the higher

order predicate that checks sortedness using a supplied binary relation.
datatype ’a list = Nil | Cons ’a (’a list)

predicate sorted: (’a -> ’a -> bool) -> ’a list -> bool where
nil: r .
` sorted r Nil

* uni: r x .
` sorted r (Cons x Nil)

* cons: r x y ys .
r x y,
sorted r (Cons y ys)

` sorted r (Cons x (Cons y ys))

Each case of the predicate de�nition is considered a theorem, and you have the op-

tion to give it a name. Additionally, these are the only cases that can hold for the predicate.

Therefore, the predicate applied to some free variables is equivalent to the disjunction of

all the cases, with the variables equal to their respective patterns in each case. This kind

of theorem, and other similar theorems for inversion and induction are created with each

predicate de�nition.
theorem sorted.simps: r xs .
` sorted r xs ≡
(xs = Nil)

∨ ∃ x . (xs = (Cons x Nil))
∨ ∃ x y ys . (xs = (Cons x (Cons y ys)) ∧ r x y ∧ sorted r (Cons y ys))
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By composing these de�nitions, you can state and prove a list of natural numbers

is sorted in non-decreasing order.
` sorted lte (Cons (Z) (Cons (S Z) (Cons (S Z) (Cons (S (S (S Z))) Nil))))
apply (rule cons)
` lte Z (S Z)

* ` sorted lte (Cons (S Z) (Cons (S Z) (Cons (S (S (S Z))) Nil)))
apply (rule lt)
` lte Z Z

* ` sorted lte (Cons (S Z) (Cons (S Z) (Cons (S (S (S Z))) Nil)))
apply (rule eq)
` sorted lte (Cons (S Z) (Cons (S Z) (Cons (S (S (S Z))) Nil)))

apply (rule cons)
` lte (S Z) (S Z)

* ` sorted lte (Cons (S Z) (Cons (S (S (S Z))) Nil))
apply (rule eq)
` sorted lte (Cons (S Z) (Cons (S (S (S Z))) Nil))

apply (rule cons)
` lte (S Z) (S (S (S Z)))

* ` sorted lte (Cons (S (S (S Z))) Nil)
apply (rule lt)
` lte (S Z) (S (S Z))

* ` sorted lte (Cons (S (S (S Z))) Nil)
apply (rule lt)
` lte (S Z) (S Z)

* ` sorted lte (Cons (S (S (S Z))) Nil)
apply (rule eq)
` sorted lte (Cons (S (S (S Z))) Nil)

apply (rule uni)
done

The learning curve for using proof assistants in general and Isabelle/HOL in par-

ticular is very steep. Nevertheless, once one has gained some �uency, there are great

bene�ts for certain kinds of projects. In a theory of Concurrent ML, with various propo-

sitions about semantics and communication, there are many tedious details that must be

speci�ed. The automatic checking of propositions and proofs is excellent at �nding er-

rors buried in numerous tedious details. Furthermore, since greater complexity follows

from greater number of language features, or greater precision of propositions, it is very
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useful to start with simple features and propositions to create a minimal viable theory,

and then incrementally increase complexity and modify proofs, accordingly. The proof

assistant eases the process incremental extension by pinpointing where the proofs and

propositions break as features and complexity are added.

The Isabelle/HOL formalization of this work consists of 12 theory �les contain-

ing de�nitions, theorems, and proofs, for the syntax, dynamic semantics, static semantics,

soundness of semantics, dynamic communication, static communication, soundness of

communication, helper de�nitions, and lemmas. There are roughly 1421 lines of de�ni-

tions, and 3052 lines of completed proofs.

1.3 Static Analysis of Concurrent ML

A static analysis that describes communication topologies of channels has practi-

cal bene�ts in at least two ways. It can highlight which channels are candidates for opti-

mized implementations of communication; or in a language extension allowing the spec-

i�cation of specialized channels, it can conservatively verify their correct usage. Without

a static analysis to check the usage of the special channels, one could inadvertently use

a channel intended for just one sender when really the program has multiple senders,

thereby violating the intended semantics.

The utility of the static analysis depends on it being precise, sound, and com-

putable. The analysis is precise if it describes information that isn’t invariantly true for

all programs. The analysis is sound if the information it describes about a program is

the same or less precise than the information described by the dynamic semantics of the

program. The analysis is computable if there is an algorithm that,from an input program,
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determines values su�cient for the analysis to hold.

Analyses can be described in a variety of ways. An algorithm that take programs

as input and produces information about the behavior as output is ideal for automation.

A set of inference rules may be more suitable for clarity of meaning and correctness with

respect to the dynamic semantics. However, inference rules can be translated into an

algorithm. One rather mechanical method essentially involves specifying a reasoner asso-

ciated with the rules. First, the reasoner generates a comprehensive set of data structures

representing constraints from the rules’ premises; then the reasoner solves the constraints.

For a subset of Concurrent ML without event combinators, Reppy and Xiao de-

veloped an e�cient algorithm that determines for each channel, all possible threads that

send and receive on it. The algorithm depends on each operation in the program being

labeled with a program step. A sequence of program steps ordered in a valid execution

sequence forms a control path. Distinction between threads in a program can be inferred

from whether or not their control paths diverge.

Reppy and Xiao’s algorithm proceeds in multiple steps that produce intermediate

data structures used for e�cient lookup in the subsequent steps. It starts with a control

�ow analysis that results in multiple mappings. One mapping is from names to abstract

values. Another mapping is from channel-bound names to abstract values that are sent on

the respective channels. Another is from function-bound names to abstract values that are

the result of the respective function applications. It constructs a control �ow graph with

possible paths for conditional tests and thread spawning determined directly from the syn-

tax used in the program. Relying on information from the mappings to abstract values, it

constructs the possible paths of execution via function application and channel communi-
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cation. It uses the graph for live variable analysis of channels, which limits the scope for

the remaining analysis and increases precisions. Using the spawn and application edges

of the control �ow graph, the algorithm then performs a data �ow analysis to determine a

mapping from program steps to all possible control paths leading into the respective pro-

gram steps. Using the CFA’s mappings to abstract values, the algorithm determines the

program steps for sending and receiving synchronizations per channel name. Then it uses

the mapping to control paths to determine all control paths that send or receive on each

channel, from which it classi�es channels as one-to-many, many-to-one, many-to-many,

or one-shot.

The information at each program step is derived from control structures in the

program, which dictate how information �ows between program steps. Some uses of con-

trol structures are literally represented in the syntax, such as the sequencing of namings

and assignments in the previous examples. Other uses of control structures may be indi-

rectly represented through names. Function application is a control structure that allows

a calling piece of code to �ow into a function’s body. functions can be named, which al-

lows multiple pieces of code to all �ow into into the same section of code. The name adds

an additional step to uncover control structures, and determine data �ow. Additionally,

in languages with higher order functions and recursion, such as those in the Lisp and

ML families, it may be impossible to exactly determine all the values that terms resolve to.

However, a control �ow analysis can reveal a good approximation of the control structures

and values that have been obfuscated by higher order functions. Uncovering the control

structures depends on resolving terms to values, and resolving terms to values depends

on on uncovering the control structures. The mutual dependency means that control �ow
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analysis is a form of static evaluation. In this work, control �ow analysis is used for track-

ing certain kinds of values, like channels and events, in addition to constructing precise

data �ow analysis.
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Chapter 2

Synchronization

Synchronization of sending threads and receiving threads requires determining

which threads should wait, and which threads should be dispatched. The greater the in-

formation needed to determine this scheduling, the higher the performance penalty. A

uniprocessor implementation of synchronization can have very little penalty. Since only

one thread can make progress at a time, only one thread requests synchronization at a

time, meaning the scheduler won’t waste steps checking for threads competing for the

same synchronization opportunity, before dispatching. A multiprocessor implementation,

on the other hand, must consider that competing threads may exist, so it must perform ad-

ditional checks. Additionally, there may be overhead in sharing data between processors

due to memory hierarchy designs [10].

One way to lower synchronization and communication costs is to use specialized

implementations for channels that never have more than one thread ever sending or re-

ceiving on them. These specialized implementations would avoid unnecessary checks for

competing threads. Concurrent ML does not feature multiple kinds of channels distin-

guished by their communication topologies, i.e. the number of threads that may end up

sending or receiving on the channels. However, channels can be classi�ed into various

topologies simply by counting the number of threads per channel during the execution of

a program. A many-to-many channel has any number of sending threads and receiving
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threads; a one-to-many channel has at most one sending thread and any number of re-

ceiving threads; a many-to-one channel has any number of sending threads and at most

one receiving thread; a one-to-one channel has one or none of each; a one-shot channel

has exactly one sending attempt; a one-sync channel has at most one synchronization.

The following reimplementation of Serv is annotated to indicate the communi-

cation topologies derived from its usage. Since there are four threads that make calls to

the server, the server’s particular reqCh has four senders. Servers are created with only

one thread listening for requests, so the reqCh of this server has just one receiver. So the

server’s reqCh is classi�ed as many-to-one. Each application of call creates a distinct new

channel replCh for receiving data. The function call receives on the channel once and the

server sends on the channel once, so each instance of replCh is one-shot. It could be even

more precisely classi�ed as one-sync, since the client function receives on the channel at

most once.
structure Serv : SERV =
struct

datatype serv = S of (int * int chan) chan

fun make () =
let
val reqCh = ManyToOne.channel ()
fun loop state =
let
val (v, replCh) = ManyToOne.recv reqCh
val () = OneShot.send (replCh, state)

in
loop v

end
val () = spawn (fn () => loop 0)

in
S reqCh

end
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fun call (server, v) =
let
val S reqCh = server
val replCh = OneShot.channel ()
val () = ManyToOne.send (reqCh, (v, replCh))

in
OneShot.recv replCh

end

end

val server = Serv.make ()

val () =
spawn (fn () => Serv.call (server, 35));
(spawn fn () =>
Serv.call (server, 12);
Serv.call (server, 13)

);
spawn (fn () => Serv.call (server, 81));
spawn (fn () => Serv.call (server, 44))

Some hypothetical implementations of specialized and generic Concurrent ML

illustrate opportunities for cheaper synchronization. These implementaitons use feasible

low-level thread-centric features such as wait and poll. The thread-centric approach allows

us to focus on optimizations common to many implementations by decoupling the imple-

mentation of communication features from thread scheduling and management. However,

a lower level view or scheduler-centric view of synchronization might o�er more oppor-

tunites for optimization.

In a language with low-level support for concurrency, Concurrent ML could be

implemented as a library, which is the case for SML/NJ [3] and MLton [21]. The im-

plementations shown here can be viewed either as a library or as part of a runtime or

interpreter.
signature CHANNEL =
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sig
type ’a chan
val channel : unit -> ’a chan
val send : ’a chan * ’a -> unit
val recv : ’a chan -> ’a

end

The bene�ts of specialization would be much more signi�cant in multiprocessor

implementations than in uniprocessor implementations. A uniprocessor implementation

could avoid overhead caused by contention to acquire locks, by coupling the implemen-

tation of channels with scheduling and only scheduling the sending and receiving opera-

tions when no other pending operations have yet to start or have already �nished. Reppy’s

implementation of Concurrent ML uses SML/NJ’s �rst class continuations to implement

scheduling and communication as one with very low overhead. In contrast, a multipro-

cessor implementation would allow threads to run on di�erent processors for increased

parallelism, therefore it would not be able to mandate when threads attempt synchroniza-

tion relative to others without losing the parallel advantage. The cost of trying to achieve

parallelism is increased overhead due to contention over acquiring synchronization rights.

2.1 Many-to-many Synchronization

For many-to-many synchronization, a channel can be in one of three states. Either

some threads are trying to send on it, some threads are trying to receive on it, or no

threads are trying to send or receive on it. Additionally a channel is composed of a mutex

lock, so that sending and receiving operations can yield to each other when updating the

channel state. When multiple threads are trying to send on a channel, the channel is

associated with a queue consisting of messages to be sent, along with conditions waited
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on by sending threads. When multiple threads are trying to receive on a channel, the

channel is associated with a queue consisting of initially empty cells that are accessible by

receiving threads and conditions waited on by the receiving threads. The channel content

holds one of the three potential states and their associated queues and conditions.

The sending operation acquires the channel’s lock to ensure that it updates the

channel based on its current state. If the channel is in the receiving state, i.e. there are

threads trying to receive from the channel, then the sending operation dequeues an item

from the state’s associated queue. The item consists of a condition waited on by a receiv-

ing thread and an empty cell that can be accessed by the receiving thread. The sending

operation deposits the message in the cell and signals on the receiving state’s condition.

Then, if there are no further receiving threads waiting, it updates the channel’s state to

inactive; otherwise, it leaves the state in the receiving state. Next, it releases the lock, sig-

nals on the receiving state’s condition and returns the unit value. If there are no threads

receiving on the channel, the sending operation updates the channel state to the send-

ing state, and enqueues a new condition sendCond and the message. It releases the lock

and waits on its condition sendCond. Once a receiving thread signals on its condition, the

sending operation returns with the unit value.

The receiving operation acquires the channel’s lock to ensure that it updates the

channel based on its current state. If there are threads sending on the channel, the re-

ceiving operation dequeues an item from the sending state’s associated queue. The item

consists of a condition waited on by a sending thread along with a message. The receiving

operation signals on the sending state’s condition. If there are no further sending threads

waiting, it updates the channel’s state to inactive; otherwise, it leaves the state in the
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sending state. Next, it releases the lock and returns the message from the sending state. If

there are no sending threads on the channel, the receiving operation updates the channel

state to the receiving state, and enqueues a new condition recvCond and an empty cell. It

releases the lock and waits on the its condition recvCond. Once a sending thread signals

on its condition, the receiving operation returns with the value deposited in its cell.

structure ManyToManyChan : CHANNEL =
struct

datatype ’a state =
Send of (condition * ’a) queue

| Recv of (condition * ’a option ref) queue
| Inac

datatype ’a chan =
Chn of ’a state ref * mutex_lock

fun channel () = Chn (ref Inac, mutexLock ())

fun send (Chn (ctntRef, lock)) m =
acquire lock;
(case !ctntRef of
Recv q =>
let
val (recvCond, msgCell) = dequeue q

in
msgCell := SOME m;
if (isEmpty q) then ctntRef := Inac else ();
release lock;
signal recvCond

end
| Send q =>
let
val sendCond = condition ()

in
enqueue (q, (sendCond, m));
release lock;
wait sendCond

end
| Inac =>
let
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val sendCond = condition ()
in
ctntRef := Send (queue [(sendCond, m)]);
release lock;
wait sendCond

end
)

fun recv (Chn (ctntRef, lock)) =
acquire lock;
(case !ctntRef of
Send q =>
let
val (sendCond, m) = dequeue q

in
if (isEmpty q) then ctntRef := Inac else ();
release lock;
signal sendCond;
m

end
| Recv q =>
let
val recvCond = condition ()
val msgCell = ref NONE

in
enqueue (q, (recvCond, msgCell));
release lock;
wait recvCond;
valOf (!msgCell)

end
| Inac =>
let
val recvCond = condition ()
val msgCell = ref NONE

in
ctntRef := Recv (queue [(recvCond, msgCell)]);
release lock;
wait recvCond;
valOf (!msgCell)

end
)

end
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2.2 One-to-many Synchronization

Implementation of one-to-many channels, compared to that of many-to-many

channels, requires fewer steps to synchronize and can execute more steps outside of criti-

cal regions, which reduces contention for locks. A channel is composed of a lock and one

of three possible states, as is the case for many-to-many channels. However, the state of

a thread trying to send only needs to be associated with one condition and one message,

rather than a queue.

The sending operation starts by creating a condition sendCond, then checks if the

channel’s state is inactive and tries to use the compare-and-swap operator to transaction-

ally update the state of the channel to a sending state. If successful, it simply waits on

its condition sendCond. After the receiving thread signals on sendCond, the sending op-

eration returns the unit value. If the transactional update fails and the channes is in the

receiving state, then the sending operation acquires the lock, dequeues an item from the

state’s associated queue where the item consists of a receiving condition recvCond, and a

cell for depositing the message to the receiving thread. It deposits the message in the cell.

Then, if there are no further items on the queue, the sending operation updates the state

to inactive; otherwise, it leaves the state in the receiving state. Next, it releases the lock it,

then signals on the receiving condition and returns the unit value.

The lock is acquired after the state is determined to be the receiving state, since

the expectation is that the current thread is the only one that tries to update the channel

from that state. If the communication classi�cation analysis were incorrect and there were

actually multiple threads that could call the sending operation, then there might be data

races. Likewise, due to the expectation of a single thread sending on the channel, the
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sending operation will never witness the state in the sending state, which would mean

another thread is in the process of sending a message.

The receiving operation acquires the lock and checks the state of the channel, just

like the receiving operation for many-to-many channels. If the channel is in a state where

there is no sending thread waiting, then it updates the state to receiving, behaving the

same as the receiving operation of many-to-many channels. If there is already a sending

thread waiting, then it updates the state to inactive and releases the lock. Then it signals

on the sending state’s condition and returns the message held in the sending state.

structure OneToManyChan : CHANNEL =
struct

datatype ’a state =
Send of condition * ’a

| Recv of (condition * ’a option ref) queue
| Inac

datatype ’a chan =
Chn of ’a state ref * mutex_lock

fun channel () = Chn (ref Inac, mutexLock ())

fun send (Chn (ctntRef, lock)) m =
let
val sendCond = condition ()

in
case (cas (ctntRef, Inac, Send (sendCond, m))) of
Inac =>
(* ctntRef is already set to sending state by cas *)
wait sendCond

| Recv q =>
let
(*
the current thread is the only one that
updates from this state

*)
val () = acquire lock
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val (recvCond, msgCell) = dequeue q
in
msgCell := SOME m;
if (isEmpty q) then ctntRef := Inac else ();
release lock;
signal (recvCond)

end
| Send _ => raise NeverHappens
end

fun recv (Chn (ctntRef, lock)) =
acquire lock;
(case !ctntRef of
Inac =>
let
val recvCond = condition ()
val msgCell = ref NONE

in
ctntRef := Recv (queue [(recvCond, msgCell)]);
release lock;
wait recvCond
valOf (!msgCell)

end
| Recv q =>
let
val recvCond = condition ()
val msgCell = ref NONE

in
enqueue (q, (recvCond, msgCell));
release lock; wait recvCond;
valOf (!msgCell)

end
| Send (sendCond, m) =>
(
ctntRef := Inac;
release lock;
signal sendCond;
m

)
)

end
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2.3 Many-to-one Synchronization

The implementation of many-to-one channels is very similar to that of one-to-

many channels.
structure ManyToOneChan : CHANNEL =
struct

datatype ’a state =
Send of (condition * ’a) queue

| Recv of condition * ’a option ref
| Inac

datatype ’a chan =
Chn of ’a state ref * mutex_lock

fun channel () = Chn (ref Inac, mutexLock ())

fun send (Chn (ctntRef, lock)) m =
acquire lock;
(case !ctntRef of
Recv (recvCond, msgCell) =>
(
msgCell := SOME m;
ctntRef := Inac;
release lock;
signal recvCond

)
| Send q =>
let
val sendCond = condition ()

in
enqueue (q, (sendCond, m));
release lock;
wait sendCond

end
| Inac =>
let
val sendCond = condition ()

in
ctntRef := Send (queue [(sendCond, m)]);
release lock;
wait sendCond

end
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)

fun recv (Chn (ctntRef, lock)) =
let
val recvCond = condition ()
val msgCell = ref NONE

in
case cas (ctntRef, Inac, Recv (recvCond, msgCell)) of
Inac =>
(
(* ctntRef is already set to receiving state by cas *)
wait recvCond;
valOf (!msgCell)

)
| Send q =>
let
(*
the current thread is the only one that
updates the state from this state

*)
val () = acquire lock
val (sendCond, m) = dequeue q

in
if (isEmpty q) then ctntRef := Inac else ();
release lock;
signal sendCond;
m

end
| Recv _ => raise NeverHappens
end

end

2.4 One-to-one Synchronization

A one-to-one channel can also be in one of three possible states, but there is no

associated lock. Additionally, none of the states is associated with a queue. Instead, the

potential states are that of a thread trying to send, with a condition and a message, that of

a thread trying to receive with a condition and an empty cell, or the inactive state.
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The sending operation creates a condition sendCond and checks if the channel’s

state is inactive and tries to use the compare-and-swap operator to transactionally update

the state of the channel to a sending state. If successful, it simply waits on its condition

sendCond, then returns the unit value. If the transactional update fails and the state is a

receiving state, then it deposits the message in the receiving state’s associated cell, updates

the channel state to inactive, then signals on the receiving state’s condition and returns

the unit value. If the communication analysis for the channel is truly one-to-one, then no

other thread will be trying to update the state, so no locks are necessary. Additionally, if

the channel is truly one-on-one, the sending operation will never witness a preexisting

sending state since it is running on the one and only sending thread.

The receiving operation creates a condition recvCond and an empty cell, then

checks if the channel’s state is inactive and tries to use the compare-and-swap opera-

tor to transactionally update the state of the channel to the receiving state. If successful, it

simply waits on its condition recvCond, then returns the sender’s message in the cell. If the

transactional update fails and the state is a sending state, then it updates the channel state

to inactive, then signals on the sending state’s condition and returns the message held in

the sending state. If the communication analysis for the channel is truly one-to-one, then

no other thread will be trying trying to update the state, so no locks are necessary. Ad-

ditionally, if the channel is truly one-to-one, the receiving operation will never witness a

preexisting receiving state since it is running on the one and only receiving thread.

structure OneToOneChan : CHANNEL =
struct

datatype ’a state =
Send of condition * ’a
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| Recv of condition * ’a option ref
| Inac

datatype ’a chan = Chn of ’a state ref

fun channel () = Chn (ref Inac)

fun send (Chn ctntRef) m =
let
val sendCond = condition ()

in
case cas (ctntRef, Inac, Send (sendCond, m)) of
Inac =>
(* ctntRef is already set to sending state by cas *)
wait sendCond

| Recv (recvCond, msgCell) =>
(
(*
the current thread is the only one that
accesses ctntRef for this state

*)
msgCell := SOME m;
ctntRef := Inac;
signal recvCond

)
| Send _ => raise NeverHappens
end

fun recv (Chn ctntRef) =
let
val recvCond = condition ()
val msgCell = ref NONE

in
case cas (ctntRef, Inac, Recv (recvCond, msgCell)) of
Inac =>
(
(* ctntRef is already set to receiving state by cas *)
wait recvCond;
valOf (!msgCell)

)
| Send (sendCond, m) =>
(
(*
the current thread is the only one that
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accesses ctntRef for this state

*)
ctntRef := Inac;
signal sendCond;
m

)
| Recv _ => raise NeverHappens
end

end

2.5 One-shot Synchronization

A one-shot channel consists of the same possible states as a one-to-one chan-

nel, but is additionally associated with a mutex lock, to account for the fact that multiple

threads may try to receive on the channel, even though only at most one message is ever

sent.

The sending operation is like that of one-to-one channels, except that if the state

is a receiving state, it simply deposits the message and signals on the receiving state’s

condition, without updating the channel’s state to inactive, which would be unnecessary,

since no further attempts to send are expected.

The receiving operation creates a condition recvCond and an empty cell, then

checks if the channel’s state is inactive and tries to use the compare-and-swap opera-

tor to transactionally update the state of the channel to the receiving state. If successful,

it simply waits on its condition recvCond, then returns the message deposited in its cell.

If the transactional update fails and the state is a sending state, then it acquires the lock,

signals on the state’s associated condition and returns the message held in the sending

state. It never releases the lock, blocking any additional attempts to receive, which is �ne
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if there is truly at most one message ever sent on the channel. If the state is a receiving

state, then the receiving operation attempts to acquire the lock, but it will never actually

acquire it since the thread associated with the receiving state will never release it.
structure OneShotChan : CHANNEL =
struct

datatype ’a state =
Send of condition * ’a

| Recv of condition * ’a option ref
| Inac

datatype ’a chan = Chn of ’a state ref * mutex_lock

fun channel () = Chn (ref Inac, lock ())

fun send (Chn (ctntRef, lock)) m =
let
val sendCond = condition ()

in
case cas (ctntRef, Inac, Send (sendCond, m)) of
Inac =>
(* ctntRef is already set to sending state by cas *)
wait sendCond

| Recv (recvCond, msgCell) =>
(
msgCell := SOME m;
signal recvCond

)
| Send _ => raise NeverHappens
end

fun recv (Chn (ctntRef, lock)) =
let
val recvCond = condition ()
val msgCell = ref NONE

in
case cas (ctntRef, Inac, Recv (recvCond, msgCell)) of
Inac =>
(
(* ctntRef is already set to receiving state by cas*)
wait recvCond;
valOf (!msgCell)
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)
| Send (sendCond, m) =>
(
acquire lock;
signal sendCond;
(* never releases lock, so blocks others forever *)
m

)
| Recv _ =>
(
acquire lock;
(* never able to acquire lock, so blocked forever *)
raise NeverHappens

)
end

end

2.6 One-sync Synchronization

An even more restrictive version of a channel with at most one send could be used

if it’s determined that the number of receiving threads is at most one, such as replCh in

the server example. The one-sync channel is composed of a possibly empty message cell,

a condition for a sending thread to wait on, and a condition for a receiving thread to wait

on.

The sending operation deposits the message in the cell, signals on the channel’s

condition recvCond, waits on the condition sendCond, and then returns the unit value.

The receiving operation waits on recvCond, then signals on sendCond, then returns the

deposited message.
structure OneSyncChan : CHANNEL =
struct

datatype ’a chan =
Chn of condition * condition * ’a option ref
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fun channel () =
Chn (condition (), condition (), ref NONE)

fun send (Chn (sendCond, recvCond, msgCell)) m =
(
msgCell := SOME m;
signal recvCond;
wait sendCond

)

fun recv (Chn (sendCond, recvCond, msgCell)) =
(
wait recvCond;
signal sendCond;
valOf (!msgCell)

)

end

2.7 Discussion

The example implementations of generic synchronization and specialized syn-

chronization suggest that cost savings of specialized implementations are signi�cant. For

instance, if you know that a channel has at most one sending thread and one receiving

thread, then you will lower synchronization costs by using an implementation that is

specialized for one-to-one communication. To be certain that the new program with the

specialized implementation behaves the same as the original program with the generic

implementation, you need to be certain that the specialized program behaves the same,

assuming one-to-one or less communication, and that the static classi�cation as one-to-

one is sound with respect to the semantics of the program.

Spending your energy to determine the topologies for each unique program and

then verifying them for each program would be exhausting. Instead, you would proba-
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bly rather have a generic procedure that can compute communication topologies for any

program in a language, along with a proof that the procedure is sound with respect to the

semantics of the programing language.

This work discusses proofs that a static analysis describing communication topolo-

gies is sound with respect to the dynamic semantics. Additionally, it would be important

to have proofs that the above specialized implementations are equivalent to the many-to-

many implementation under the assumption of particular communication topologies, but

such is beyond the scope of this work.
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Chapter 3

Mechanized Theory

The de�nitions and theorems of this work were constructed in the formal lan-

guage of Isabelle/HOL to enable mechanical veri�cation of the proofs. However, in this

presentation, the syntax of the stated de�nitions and propositions di�er from the actual

Isabelle/HOL syntax, in order to be more intuitive for those unfamiliar with Isabelle/HOL.

A static analysis for detecting communication topologies in Concurrent ML would

be necessary for useful optimizations or checks. The optimization to replace general syn-

chronization with specialized synchronization based on the results of static analysis is one

that could have signi�cant performance bene�t, as shown empirically by Reppy and Xiao.

However, if the static analysis of communication topologies is wrong, then the optimiza-

tion could produce an incorrect program. What you need is proof that the static analysis

is sound with respect to the actual communication topologies that occur when running a

program. However, the proof could also be erroneous, and with so many details, it could be

extremely di�cult for a human to manually check for errors. Isabelle/HOL automatically

checks for errors in proofs and speci�cations and is much more reliable than a human.

By using an optimization without a soundness proof, you are trusting that it is sound. If

soundness has been proved, then you are trusting that the proof has no errors. If the proof

has been veri�ed by Isabelle/HOL, you are trusting that the Isabelle/HOL kernel is sound.

The less you need to trust the better.
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I extend Reppy and Xiao’s work by developing a mechanically checked speci�ca-

tion and proofs for communication topologies in Concurrent ML. The proof checker re-

quires that manipulations are constructed from a small kernel of primitive operations. It’s

possible that an intuitive step of reasoning in an informal proof requires multiple tedious

steps of precise manipulation in a mechanically checked proof. To avoid the chance of

running into these tricky scenarios, I speci�ed the static analysis as inference rules, rather

than as an algorithm. In Isabelle/HOL, algorithms are speci�ed as computable functions

that must be proved to terminate and be total, either automatically or with additional

details supplied by the user. Reppy and Xiao’s algorithm, as with many static analysis

algorithms, relies on accumulating values in a growing set with each recursive call un-

til reaching a �xpoint. In Isabelle/HOL it is easy to prove termination for functions that

branch on an inductive data type, however it is far from straight foward to prove ter-

mination for those that branch on whether or not a �xpoint has been reached. Thus,

reformulating the speci�cation as inference rules appears to make formal reasoning more

attainable.

Concurrent ML distinguishes itself from other languages for concurrency with its

generalized concept of events, event synchronization, and event combinators. Reppy and

Xiao’s work produces a static analysis for a subset, which only contained synchronization

on sending and receiving events. Originally, I wanted to extend Reppy and Xiao’s analysis

to encompass a more generalized notion of events, along with the event combinator for

choice. However, I quickly realized that the combination of creating a new speci�cation,

in an unfamiliar proof assistant, along with a more complex semantics in the language,

would be too much to deal with all at once. Instead, I adhered to Reppy and Xiao’s decision
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to construct the speci�cation and proofs for a small subset of Concurrent ML, containing

synchronization on just sending and receiving events. Since I constructed these speci�-

cations and proofs in Isabelle/HOL, it will be possible to easily extend the semantics and

theorems later, by using the proof assistant to pinpoint where the proofs and speci�cations

break upon changes.

The language for the mechanized speci�cation contains features found in untyped

lambda calculus with some extensions, such as functions, function application, pairs, �rst

and second selection, left and right cases, case distinction, and unit. Additionally, for con-

currency it contains thread spawning, channel creation, sending events, receiving events,

and synchronization. These features may be used together by binding the use of one fea-

ture to a name, and then sequencing to another term. Additionally, spawning, function

application, and case distinction require use of other features.

The dynamic evaluation is represented by a small step relation, and a variant of

a CEK machine, in which one pool evaluates to the next pool. A pool consists of many

states associated with the paths taken to reach each state. A state consists of a term to be

evaluated, an environment for looking up values from names, and a stack of continuations.

A valid small step relation always steps from one pool to the pool extended with at least

one new state. Terms containing names are not reduced. Instead, an environment can be

used to look up the values of names. Names are locally scoped so that they can be reused

with a precise meaning, e.g. a function parameter may be bound to a di�erent argument

each time it’s called. As such, for any term containing names, its corresponding value is

simply the term paired with its own environment.

The initial pool of a running program only contains an empty path associated with
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a state containing the program, an empty environment and an empty continuation stack.

Full evaluation is represented by the star predicate composed with the small step relation,

applied to the initial pool. It states that an initial pool takes zero or more transitive steps

to reach another pool.

The static evaluation is represented by a control �ow analysis relation. Control

�ow analysis is a "may" analysis, meaning that the analysis is sound if it holds for all

possible evaluations of the dynamic evaluation. It may also hold for evaluations that are

impossible to occur in the dynamic evaluation. Instead of associating each term with its

own environment, the control �ow analysis simply has one static environment for the

entire program. If a name takes on di�erent values in di�erent scopes during dynamic

evaluation, then the static environment simply considers both to be options.

The soundness theorem of the static evaluation with respect to dynamic evalua-

tion states that if full dynamic evaluation of a program reaches a pool containing some

environment, and the static evaluation holds for the program and some static environ-

ment, then the static environment is an abstraction of the dynamic environment. That is,

if a name maps to some value in the dynamic environment, then, in the static environment,

the name maps to a set containing the same value or an abstraction of the value. The static

evaluation relates static environments to initial programs, but soundness relates static en-

vironments to dynamic environments. Furthermore, the dynamic environment of a state

in a pool depends on, the terms, environments, and continuation stacks of states in previ-

ous pools. Thus, if the static evaluation holds for a static environment and a program, then

there must be a relation that holds for the same static environment and any pool that the

program may dynamically evaluate to. Generalizing static evaluation to work for pools,
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environments, and stacks, gives a version that that can relate the static environment to

each component and step of dynamic evaluation. The generalized static evaluation on the

initial pool is de�ned to follow from the static evaluation on the program. The preserva-

tion of the static evaluation of a pool across multiple steps of dynamic evaluation is proved

by induction on the star relation. The static evaluation on a pool is taken apart into a static

evaluation on a dynamic environment, thus relating the dynamic environment with the

static environment, which is essentially sound by de�nition.

The dynamic communication classi�cation consists of �ve relations to classify

channels in a pool, as one-to-many, many-to-one, one-to-one, one-shot, or one-sync. All

�ve classi�cation relations are de�ned in terms of how any two paths in the pool relate

to each other. The one-to-many classi�cation holds if any two paths that send on the

channel are ordered. If the sending paths are all ordered or there are no sending paths,

then there is simply at most one thread that sends on the channel. Likewise, The many-

to-one classi�cation holds if any two paths that receive on the channel are ordered. The

one-to-one classi�cation holds if all the receiving paths on the channel are ordered and all

the sending paths on the channel are ordered. The one-shot classi�cation holds if there is

at most one sending path on a channel, regardless of which paths receive on the channel.

The one-sync classi�cation holds if there is at most one sending and one receiving thread

on a channel.

The static communication classi�cation relations, as with dynamic communica-

tion, are de�ned in terms of paths that send and receive on a channel of interest. However,

these sites of sending and receiving on the channel, are approximations taken from the

static environment, whose content is in�uenced by the rules of static evaluation. The static
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�ows acceptance relation states that a set of �ows, i.e. a graph, accepts a program or term,

where each �ow is an abstract representation of a small step in the dynamic evaluation.

The relation is de�ned such that whether or not a given �nite set of �ows holds is decid-

able. The static paths are formed from the chaining of �ows, according to the rules ot the

static path existence relation. The set of static paths to a sending or receiving synchro-

nization site is bounded by the static �ows acceptance relation. Due to cycles in the graph,

the set of paths may be ini�te. The static one-to-many classi�cation holds if any two static

sending paths are uncompetitive, meaning that either they are ordered, like the dynamic

classi�cation, or there’s no way for the paths to occur in the same run of the program.

The many-to-one and one-to-one classi�cation also rely on the notion of noncompeiti-

tive paths, rather than simply unordered paths. Likewise, the static one-shot classi�cation

holds if any two static sending paths are singular, meaning that either they’re equal, like

the dynamic classi�cation, or they cannot occur in the same run of the program.

The soundness theorem of the static communication classi�cation relations to

their dynamic counterparts states that if a channel is statically classi�ed in some way,

then it is dynamically classi�ed the same way. For instance, if the static one-to-many

classi�cation holds for a static channel, then the dynamic one-to-many classifaction holds

for all dynamic counterparts of that channel. The static communication classi�cation is

a "must" analysis, meaning that if the classi�cation holds statically, then it must hold dy-

namically. Soundness depends on the soundness and preservation of its constituent parts,

including the soundness of static evaluation, the soundness of the uncompetitive relation

with respect to the unordered relation, the soundnes of the singular relation with respect

to equality of paths, and the soundness and preservation of the static path existence re-
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lation. As with static evaluation, many proofs of soundness for the static communication

classi�cation, rely on bridging the gap between the terms used in dynamic versions and

the terms used in the static versions. Generalizations of the static communication classi-

�cation relations with respect to additional dynamic terms - pools, environments, stacks,

and values - are derived to complete these proofs.

This work does not contain formal proofs that the specialized implementations are

behaviorally equivalent to a generic implementation, but the example implementations in

section 2 should provide good evidence for that.

3.1 Syntax

The syntax used in this formal theory contains a very small subset of Concurrent

ML’s features. The features include recursive functions with application, left and right

cases with case distinction, pairs with �rst and second selection, sending and receiving

events with synchronization, channel creation, thread spawning, and the unit literal. The

syntax is de�ned in a way to make it possible to relate the dynamic semantics of programs

to the syntax of programs. The syntax is de�ned in administrative normal form (ANF) [6],

in which every term is bound to a name. Furthermore, terms only accept names in place

of eagerly evaluated inputs.

Restricting the grammar to ANF allows the operational semantics to maintain

graph information by associating values with succinct names. Maintaining the values’ ties

to the syntax simpli�es proofs of soundness, since they must relate dynamic evaluation

information to static information based on the syntax.

Additionally, ANF melds nicely with the semantics of control paths, which suc-
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cinctly identify the evaluation taken to reach some intermediate result. Instead of relying

on additional metalanguage structures to associate atom operations with identi�ers, the

analysis can simply use the required names of ANF syntax to identify locations in the

program.

The ANF syntax is impractical for a programer to write, yet it is still practical

for a language under automated analysis since there is a straightforward procedure to

transform more user-friendly syntax into ANF.
datatype name = Nm string

datatype term =
Bind name complex term

| Rslt name

and complex =
Unt

| MkChn
| Atom atom
| Spwn term
| Sync name
| Fst name
| Snd name
| Case name name term name term
| App name name

and atom =
SendEvt name name

| RecvEvt name
| Pair name name
| Lft name
| Rht name
| Fun name name term
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3.2 Dynamic Semantics

The dynamic semantics describes how programs evaluate to values. A history of

execution is represented by a control path. A control path is a list of steps, where a step is

a term’s binding name or resulting name, paired with a mode of control indicating �ows

by sequencing, spawning, calling, or returning. Channels have no literal representation,

but each time a channel is created, it is uniquely identi�ed by the history of the execution

up until the step of creation. Atomic terms are not simpli�ed. Instead, atoms are evalu-

ated to closures consisting of the atom syntax, along with an environment that maps its

constituent names to their values.

In order to relate the static analyses to the operational semantics, I borrowed

Reppy and Xiao’s strategy of stepping between sets of execution paths and their associ-

ated terms. The semantics are de�ned as a CEK machine, rather than a substitution based

operational semantics. By avoiding simpli�cation of terms in the operational semantics,

it is possible to relate the static evaluations of the static semantics to the evaluations pro-

duced by the dynamic semantics, which in turn is relied on to prove soundness of the static

semantics.
datatype dynamic_step =
DSeq name

| DSpwn name
| DCll name
| DRtn name

type dynamic_path = dynamic_step list

datatype chan =
Chan dynamic_path name

datatype dynamic_value =
VUnt
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| VChn chan
| VAtm atom (name -> dynamic_value option)

type environment =
name -> dynamic_value option

The evaluation of some complex terms results in sequencing, meaning there is no

coordination with other threads, and there is no need to save terms on the continuation

stack for later evaluation. These terms are the unit literal, atoms, pairs, and �rst and second

selections. The evaluation depends only on the syntax and an environment for looking up

the values of names within the syntax. Additionally, all these terms evaluate to values in

a single step.
predicate seqEval:
complex -> environment -> dynamic_value -> bool

where

unit: env .
` seqEval Unt env VUnt

* atom: a env .
` seqEval (Atom a) env (VAtm a env)

* first: env np n1 n2 envp v .
env np = Some (VAtm (Pair n1 n2) envp),
envp n1 = Some v

` seqEval (Fst np) env v

* second: env np n1 n2 envp v .
env np = Some (VAtm (Pair n1 n2) envp),
envp n2 = Some v

` seqEval (Snd np) env v

The evaluation of a complex term for application or case distinction results in

�ows by calling. A calling �ow is characterized by the need to save a subterm in the

continuation stack for later evaluation. The evaluation depends on the syntax and an en-

vironment for looking up the values of names within the syntax. A term is evaluated to
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a subterm along with a new environment that will later be used in the evaluation of the

subterm. For case distinction, either the left or the right term is called, and the environ-

ment is updated with the corresponding name mapped to the value extracted from the left

or right pattern. For application, the body of the applied function is called, and the envi-

ronment is updated with the function’s parameter mapped to the application’s argument.

The environment is also updated with the function’s recursive name mapped back to the

function.
predicate callEval: complex -> env -> term -> env -> bool where

distincLeft: env ns nc envs v nl tl nr tr .
env ns = Some (VAtm (Lft nc) envs),
envs nc = Some v

` callEval (Case ns nl tl nr tr) env tl (env(nl -> v))

* distincRight: env ns nc envs v nl tl nr tr .
env ns = Some (VAtm (Rht nc) envs),
envs nc = Some v

` callEval (Case ns nl tl nr tr) env tr (env(nr -> v))

* application: env nf nf’ np tb envf na v .
env nf = Some (VAtm (Fun nf’ np tb) envf),
env na = Some v

` callEval
(App nf na) env tb
(envf(
nf’ -> (VAtm (Fun nf’ np tb) envf),
np -> v

))

The continuation stack maintains a record of terms that should be evaluated once

a corresponding called branch of the evaluation has returned. Each continuation in the

stack consists of a term, the environment for resolving the term’s names, and an unre-

solved name, to be resolved when the corresponding branch returns. The initial state of

execution consists of a program, an empty environment, and an empty stack of continu-
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ations. With each sequential step, the program is reduced to a subterm, and the environ-

ment is updated with the term’s name bound to the value of the complex term. Each time

a complex term’s inner term is called, the sequenced term is saved as a part of a contin-

uation and pushed onto a stack of continuations. A continuation is popped o� the stack

when a state’s term is reduced to a result term. A pool of states keeps track of all the states

that have been reached through the evaluation of an initial program. Each state is indexed

by the dynamic path taken to reach it. A pool’s leaf path indicates a state that has yet to

be evaluated. Additionally, the communication between threads is also recorded as a set

of correspondences consisting of the path to the sending state, the path to the receiving

state, and the channel used for communication.
datatype contin = Ctn name tm env

type stack = contin list

datatype state =
Stt program env stack

type pool =
dynamic_path -> state option

predicate leaf: pool -> dynamic_path -> bool where
intro: pool path stt .
pool path = Some stt,
(@ path’ stt’ .
pool path’ = Some stt’,
strictPrefix path path’

)
` leaf pool path

type corresp = dynamic_path * chan * dynamic_path

type communication = corresp set

The evaluation of a program may involve evaluation of multiple threads concur-
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rently and also communication between threads. Since pools contain multiple states and

paths, they can accommodate multiple threads as well. A single evaluation step depends

on one pool and evaluates to a new pool based on one or more states in that pool. The

initial pool for a program contains just one state indexed by an empty path. The state con-

tains the program, an empty environment, and an empty stack. The pool grows strictly

larger with each evaluation step, maintaining a full history. Each step adds new states and

paths extended from previous ones, and each step in the path indicates the mode of �ow

taken to reach the state. Only states indexed by leaf paths are used to evaluate to the next

pool.

For the evaluation a leaf path proceeding from a result term, a continuation is

popped of the stack. The pool’s new state is formed from the term and environment in

the continuation, and the environment is updated with the continuation’s name bound to

the result’s value. A sequencing evaluation step of a program picks a leaf state and relies

on sequential evaluation of its top complex term. It updates the state’s environment with

the value of the complex term and reduces the program to the sequenced term. A calling

evaluation step relies on the calling evaluation of a state’s top complex term. The binding

name, sequenced term, and environment are pushed onto the stack, and the new state gets

its program and environment from the calling evaluation of the complex term. In the case

of channel creation, the evaluation updates the state’s environment with the value of the

new channel consisting of the path leading to its creation; it leaves the stack unchanged

and reduces the program to the sequenced term. In the case of spawning, the evaluation

updates the pool with two new paths extending the leaf path. For one, the leaf path is

extended with a sequential step whose state has the sequenced term and the environment
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updated with binding name bound to the unit value along with the original continuation

stack. For the other, the leaf path is extended with a spawning step. Its state has the

spawned term, the original environment, and an empty continuation stack.

In the case where two leaf paths in the pool correspond to synchronization on the

same channel, and one synchronizes on a sending event and the other synchronizes on

a receiving event, the evaluation updates the pool with two new paths and correspond-

ing states. It updates the pool with a new state containing the sending event’s sequenced

term, its environment updated with the unit value, and its stack unchanged. It updates

the pool with a new state containing the receive event’s sequenced embedded term, the

environment updated with the sent value, and its stack unchanged. Additionally, the com-

munication is updated with the sending and receiving paths, and the channel used for

communication.
predicate dynamicEval:
pool -> communication -> pool -> communication -> bool

where

return: pool path n env nk tk envk stack’ v comm .
leaf pool path,
pool path = Some (Stt (Rslt n) env ((Ctn nk tk envk) # stack’)),
env n = Some v

` dynamicEval
pool comm
(pool(
path @ [DRtn n] ->
(Stt tk envk(nk -> v) stack’)

))
comm

* seq: pool path n c t’ env stack v .
leaf pool path,
pool path = Some (Stt (Bind n c t’) env stack),
seqEval c env v

` dynamicEval
pool comm
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(pool(
path @ [DSeq n] -> (Stt t’ (env(n -> v)) stack)

))
comm

* call: pool path n c t’ env stack tc envc comm .
leaf pool path,
pool path = Some (Stt (Bind n c t’) env stack),
callEval c env tc envc

` dynamicEval
pool comm
(pool(
path @ [DCll n] -> (Stt tc envc ((Ctn n t’ env) # stack))

))
comm

* makeChan: pool path n t’ env stack .
leaf pool path,
pool path = Some (Stt (Bind n MkChn t’) env stack)

` dynamicEval
pool comm
(pool(
path @ [DSeq n] ->
(Stt t’ (env(n -> (VChn (Chan path n)))) stack)

))
comm

* spawn: pool path n tc t’ env stack comm .
leaf pool path,
pool path = Some (Stt (Bind n (Spwn tc) t’) env stack)

` dynamicEval
pool comm
(pool(
path @ [DSeq n] -> (Stt t’ (env(n -> VUnt)) stack),
path @ [DSpwn n] -> (Stt tc env [])

))
comm

* sync: pool paths ns nse ts envs stacks nsc nm
envse pathr nr nre tr envr stackr nrc envre chan comm .
leaf pool paths,
pool paths = Some
(Stt (Bind ns (Sync nse) ts) envs stacks),

envs nse = Some
(VAtm (SendEvt nsc nm) envse),
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leaf pool pathr,
pool pathr = Some
(Stt (Bind nr (Sync nre) tr) envr stackr),

envr nre = Some
(VAtm (RecvEvt nrc) envre),

envse nsc = Some (VChn chan),
envre nrc = Some (VChn chan),
envse nm = Some vm

` dynamicEval
pool comm
(pool(
paths @ [DSeq ns] -> (Stt ts (envs(ns -> VUnt)) stacks),
pathr @ [DSeq nr] -> (Stt tr (envr(nr -> vm)) stackr)

))
(comm ∪ {(paths, chan, pathr)})

3.3 Dynamic Communication

Whether or not two threads compete to synchronize on a channel can be deter-

mined by looking at the paths of the pool. If two paths are ordered, that is, one is the pre�x

of the other or vice versa, then the shorter path synchronizes before the longer path. Two

ordered paths either indicates that the two paths occur in the same thread, or that the

shorter path precedes the spawning of the thread associated with the longer path. Two

paths may indicate two threads that compete to synchronize only if they are unordered.

The dynamic one-to-many classi�cation means that there is no competition on

the sending end of a channel; any two paths that synchronize to send on a channel are

ordered. The dynamic many-to-one classi�cation means that there is no competition on

the receiving end of a channel; any two paths that synchronize to receive on a channel

are ordered. The dynamic one-to-one classi�cation means that there is no competition

on either the receiving or the sending ends of a channel; any two paths that synchronize

on a channel are necessarily ordered for either end of the channel. The dynamic one-
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shot classi�cation means there is only one dynamic path that synchronizes and sends on

a given channel. The dynamic one-sync classi�cation means there is only one dynamic

path that sends on a given channel and at most one thread that receives on it.
predicate isSendPath: pool -> chan -> dynamic_path -> bool where
intro: pool path n ne t’ env stack nsc nm enve chan .
pool path = Some (Stt (Bind n (Sync ne) t’) env stack),
env ne = Some (VAtm (SendEvt nsc nm) enve),
enve nsc = Some (VChn chan)

` isSendPath pool chan path

predicate isRecvPath: pool -> chan -> dynamic_path -> bool where
intro: pool path n ne t’ env stack nrc enve chan .
pool path = Some (Stt (Bind n (Sync ne) t’) env stack),
env ne = Some (VAtm (RecvEvt nrc) enve),
enve nrc = Some (VChn chan)

` isRecvPath pool chan path

predicate forEveryTwo: (’a -> bool) -> (’a -> ’a -> bool) -> bool where
intro: p r .
∀ path1 path2 .
p path1 ∧ p path2 → r path1 path2

` forEveryTwo p r

predicate ordered: ’a list -> ’a list -> bool where
first: path1 path2 .
prefix path1 path2

` ordered path1 path2

* second: path2 path1 .
prefix path2 path1

` ordered path1 path2

predicate oneToMany: tm -> chan -> bool where
intro: t0 chan pool comm .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
forEveryTwo (isSendPath pool chan) ordered

` oneToMany pool chan

predicate manyToOne: tm -> chan -> bool where
intro: t0 chan pool comm .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
forEveryTwo (isRecvPath pool chan) ordered

` manyToOne t0 chan
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predicate oneToOne: tm -> chan -> bool where
intro: t0 chan pool comm .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
forEveryTwo (isSendPath pool chan) ordered,
forEveryTwo (isRecvPath pool chan) ordered

` oneToOne t0 chan

predicate oneShot: tm -> chan -> bool where
intro: t0 chan pool comm .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
forEveryTwo (isSendPath pool chan) (op =)

` oneShot t0 chan

predicate oneSync: tm -> chan -> bool where
intro: t0 chan pool comm .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
forEveryTwo (isSendPath pool chan) (op =),
forEveryTwo (isRecvPath pool chan) ordered

` oneSync t0 chan

3.4 Static Semantics

The static semantics describes an estimation of the intermediate static values and

terms that might result from running a program. Although the estimations are imprecise

with respect to the dynamic semantics, they are certainly accurate, which is con�rmed

by the mechanically checked proofs of soundness. The static semantics enable deduction

of static information about channels and events, which is crucial for statically deducing

information about synchronization on channels and communication classi�cation. The

static values consist of the static unit value, static channels, and static atom values. The

static unit value is no less precise than the dynamic unit value, but static channels and

static atom values are imprecise versions of their dynamic counterparts. A static channel

is identi�ed only by the name it binds to at creation time, rather than the full path that

leads up to its creation. A static atom value is simply an atomic term without an environ-
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ment for looking up its constituent names. A static environment contains the intermediate

evaluation results by associating names to multiple potential static values. Thus, in addi-

tion to some static values being imprecise, the results of evaluation may have even lower

precision by containing multiple potential static values. In order to �nd the return value

of a term, it is useful to fetch the name embedded within the term’s eventual result term,

which is formally de�ned by resultName.
datatype static_value =
SUnt

| SChn name
| SAtm atom

type static_value_map =
name -> static_value set

fun resultName: term -> name where
n .
` resultName (Rslt n) = n

* n c t’ .
` resultName (Bind n c t’) = (resultName t)

The static evaluation is a control �ow analysis (0CFA) that describes a relation

between a program term and two maps to static values. The �rst map is the static en-

vironment, which contains names mapped to the evaluations of terms they bind to. The

second map is the static communication, containing names of channels mapped to values

that might be sent over the channels identi�ed by those names.

The de�nition of static evaluation is syntax-directed, meaning the proof of a static

evaluation is de�nied to be structurally inductive following the self-similar structure of

the syntax. It should be possible to decide if a static evaluation holds by unraveling the

program term into smaller and smaller terms, until reaching a term without any smaller

terms. Additionally, for any given program, there should be instances of static environ-
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ments, such that the static evaluation holds, in which case, there is likely an algorithm to

compute the static environments from a program, by following the basic structure of the

de�nitional proof of static evaluation. This certainly appears likely, but it has not been

formally proven in this work.

The static evaluation relation is de�ned in a single de�nition. The de�nition is

fairly uniform and mimics the structure of the syntax. The static evaluation for each syn-

tactic form is very similar. For instance, if a term has a sequenced term, the static eval-

uation of the term is de�ned by the static evaluation of its sequenced term, whether the

orginal term is a spawning term, a function term, or a case distinction term. In contrast,

in the de�nition of dynamic evaluation, the evaluation of certain syntactic forms is more

similar to some forms than others. Case distinction terms are evaluated similarly to appli-

cation terms. They both require saving some terms on the continuation stack, while eval-

uating other terms. Function terms are dynamically evaluated similarly to other atomic

terms. The static evaluation has only a single global environment for looking up values of

names in the whole program, whereas the dynamic evaluation associates local environ-

ments with di�erent terms in the program, allowing the same names to resolve to di�erent

values depending on the context. Therefore, the static evaluation is less precise.
predicate staticEval:
static_value_map -> static_value_map -> term -> bool

where

result: staticEnv staticComm n .
` staticEval staticEnv staticComm (Rslt n)

* unit: staticEnv n staticComm t’ .
SUnt ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n Unt t’)
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* makeChan: n staticEnv staticComm t’ .
(SChn n) ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n MkChn t’)

* sendEvt: nc nm staticEnv n staticComm t’ .
(SAtm (SendEvt nc nm)) ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Atom (SendEvt nc nm)) t’)

* recvEvt: nc staticEnv n staticComm t’ .
(SAtm (RecvEvt nc)) ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Atom (RecvEvt nc)) t’)

* pair: n1 n2 staticEnv n staticComm t’ .
(SAtm (Pair n1 n2)) ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Atom (Pair n1 n2)) t’)

* left: na staticEnv n staticComm t’ .
(SAtm (Lft na)) ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Atom (Lft na)) t’)

* right: na staticEnv n staticComm t’ .
(SAtm (Rht na)) ∈ staticEnv n,
staticEval staticEnv staticComm t

` staticEval staticEnv staticComm (Bind n (Atom (Rht na)) t’)

* function: nf nt tb staticEnv staticComm n t’ .
(SAtm (Fun nf nt tb)) ∈ staticEnv nf,
staticEval staticEnv staticComm tb,
(SAtm (Fun nf nt tb)) ∈ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Atom (Fun nf nt tb)) t’)

* spawn: nf nt tb staticEnv staticComm n t’ .
SUnt ∈ staticEnv n,
staticEval staticEnv staticComm tc,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Spwn tc) t’)

* sync: staticEnv ne n staticComm t’.
∀ nsc nm nc .
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(SAtm (SendEvt nsc nm)) ∈ staticEnv ne
→ SChn nc ∈ staticEnv nsc
→ SUnt ∈ staticEnv n ∧ staticEnv nm ⊆ staticComm nc,
∀ nrc nc .
(SAtm (RecvEvt nrc)) ∈ staticEnv ne

→ SChn nc ∈ staticEnv nrc
→ staticComm nc ⊆ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Sync ne) t’)

* first: staticEnv nt n staticComm t’ .
∀ n1 n2 .
(SAtm (Pair n1 n2)) ∈ staticEnv nt

→ staticEnv n1 ⊆ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Fst nt) t’)

* second: staticEnv nt n staticComm t’ .
∀ n1 n2 .
(SAtm (Pair n1 n2)) ∈ staticEnv nt

→ staticEnv n2 ⊆ staticEnv n,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Snd nt) t’)

* distinction: staticEnv ns nl tl n staticComm nr tr t’ .
∀ nc .
(SAtm (Lft nc)) ∈ staticEnv ns

→ staticEnv nc ⊆ staticEnv nl,
staticEnv (resultName tl) ⊆ staticEnv n,
staticEval staticEnv staticComm tl,
∀ nc .
(SAtm (Rht nc)) ∈ staticEnv ns

→ staticEnv nc ⊆ staticEnv nr,
staticEnv (resultName tr) ⊆ staticEnv n,
staticEval staticEnv staticComm tr,
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (Case ns nl tl nr tr) t’)

* application: staticEnv nf na n staticComm t’ .
∀ nf’ nt tb .
(SAtm (Fun nf’ nt tb)) ∈ staticEnv nf

→ staticEnv na ⊆ staticEnv nt,
staticEnv (resultName tb) ⊆ staticEnv n),
staticEval staticEnv staticComm t’

` staticEval staticEnv staticComm (Bind n (App nf na) t’)
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It is straightforward to follow the rules of static evaluation in order to build up

functions mapping names to static values for the static environment and the static commu-

nication. Recasting the example server implementation into the ANF syntax demonstrates

this informal procedure. The unit value, and left and right case constructors are used to

represent natural numbers.
bind u1 = unt
bind r1 = rht u1
bind l1 = lft r1
bind l2 = lft l1

bind mksr = fun _ x2 =>
(
bind k1 = mkChn
bind srv = fun srv’ x3 =>
(
bind e1 = recvEvt k1
bind p1 = sync e1
bind v1 = fst p1
bind k2 = snd p1
bind e2 = sendEvt k2 x3
bind z5 = sync e2
bind z6 = app srv’ v1
rslt z6

)
bind z7 = spawn
(
bind z8 = app srv r1
rslt z8

)
rslt k1

)

bind rqst = fun _ x4 =>
(
bind k3 = fst x4
bind v2 = snd x4
bind k4 = mkChn
bind p2 = pair v2 k4
bind e3 = sendEvt k3 p2
bind z9 = sync e3
bind e4 = recvEvt k4
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bind v3 = sync e4
rslt v3

)

bind srvr = mksr u1
bind z10 = spawn
(
bind p3 = pair srvr l1
bind z11 = app rqst p3
rslt z11

)
bind p4 = pair srvr l2
bind z12 = app rqst p4
rslt z12

Let’s see how an informal procedure can produce the static environments by fol-

lowing the structure of the de�nitional proof structure of static evaluation. We start at the

top of the program and pick the rule from the de�nition of static evaluation that might hold

true for the current syntactic form. Then we choose the smallest environment that sati�es

that rule’s conditions. In the server implementation, the program starts with bind u1 =

unt in ..., which only uni�es with the rule concluding with staticEval staticEnv

staticComm (Bind n Unt ...), with n = (Nm "u1"). The conditions for that rule require

SUnt ∈ staticEnv (Nm "u1"), staticEval staticEnv staticComm ... . We choose the

smallest static environment, for which SUnt ∈ staticEnv (Nm "u1") holds, and that hap-

pens to be λ n . if n = (Nm "u1") then {SUnt} else {}. Since there’s no condition

that directly states what’s required of the static communication, we can simply choose an

empty environment to start with. The second condition is static evaluation on a smaller

term, which indicates that we should repeat this procedure again for the remainder of the

program, incrementally adding more static values for each binding name in the program.

We continually repeat this procedure from the top of the program until there’s nothing
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more we can add to the static environments. The rule for synchronization is the only rule

in which there are conditions on the static communication environment. So we will only

add to the static communication environment when we encounter synchronization terms.

The following static environments result from following this informal procedure on the

example ANF server implementation. To make the presentation clear, the syntactic sugar

(r1 -> {rht u1}, ...) is used to mean λ n . if n = (Nm "r1") then {SAtm (Rht (Nm

"u1"))} else ... else {}. The representation of static values closely resembles the

concrete syntax for complex terms.
val serverStaticEnv: name -> static_value set =
(
u1 -> {unt},
r1 -> {rht u1},
l1 -> {lft r1},
l2 -> {lft l1},
mksr -> {fun _ x2 => ...},
x2 -> {unt},
k1 -> {chn k1},
srv -> {fun srv’ x3 => ...},
srv’ -> {fun srv’ x3 => ...},
x3 -> {rht u1, lft r1, lft l1},
e1 -> {recvEvt k1},
p1 -> {pair v2 k4},
v1 -> {lft r1, lft l1},
k2 -> {chn k4},
e2 -> {sendEvt k2 x3},
z5 -> {unt},
z7 -> {unt},
u5 -> {unt},
rqst -> {fun _ x4 => ...},
x4 -> {pair srvr l1, pair srvr l2},
k3 -> {chn k1},
v2 -> {lft r1, lft l1},
k4 -> {chn k4},
p2 -> {pair v2 k4},
e3 -> {sendEvt k3 p2},
z9 -> {unt},
e4 -> {recvEvt k4},
v3 -> {rht u1, lft r1, lft r2},
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srvr -> {chn k1},
z10 -> {unt},
p3 -> {pair srvr l1},
z11 -> {rht u1, lft r2},
p4 -> {pair srvr l2},
z12 -> {rht u1, lft l1}

)

val serverStaticComm: name -> static_value set =
(
k1 -> {pair v2 k4},
k4 -> {rht u1, lft l1, lft l2}

)

The static reachability describes terms that might be reachable from larger terms,

during dynamic evaluation. A sound approximation for dynamically reachable terms are

terms that are transitively embedded within larger terms. A term is statically reachable

from itself, and an initial term can statically reach any term that its embedded terms can

statically reach.
predicate staticReachable: term -> term -> bool where
refl: t .
` staticReachable t t

* spawn: tc tz n t’ .
staticReachable tc tz

` staticReachable (Bind n (Spwn tc) t’) tz
* distincLeft: tl tz n ns nl nr tr t’ .

staticReachable tl tz
` staticReachable (Bind n (Case ns nl tl nr tr) t’) tz

* distincRight: tr tz n ns nl tl nr t’ .
staticReachable tr tz

` staticReachable (Bind n (Case ns nl tl nr tr) t’) tz
* function: tb tz n nf nt tb t’ .

staticReachable tb tz
` staticReachable (Bind n (Atom (Fun nf nt tb)) t’) tz

* seq: t’ tz n c .
staticReachable t’ tz

` staticReachable (Bind n c t’) tz
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3.5 Static Communication

To describe communication statically, it is helpful to identify each term with a

short description. The term identi�er of a binding term is the binding name, and indication

of its use in a binding. The term identi�er of a result term is the embedded name, and

indication of its use in a result.
datatype tm_id =
IdBind name

| IdRslt name

fun termId: term -> tm_id where
n c t’ .
` termId (Bind n c t’) = IdBind n

* n .
` termId (Rslt n) = IdRslt n

type tm_id_map = tm_id -> name set

The static communication describes a sound approximation of the static paths

that communicate on static channels. The static sending identi�er classi�cation means

that a term identi�er might represent a synchronization to send on a given static channel.

The static receiving identi�er classi�cation means that a term identi�er might represent

a synchronization to receive on a given static channel.
predicate staticSendId:
static_value_map -> term -> name -> tm_id -> bool

where
intro: t0 n ne t’ nsc nm staticEnv nc .
staticReachable t0 (Bind n (Sync ne) t’),
(SAtm (SendEvt nsc nm)) ⊆ staticEnv ne,
(SChn nc) ∈ staticEnv nsc

` staticSendId staticEnv t0 nc (IdBind n)

predicate staticRecvId:
static_value_map -> term -> name -> tm_id -> bool

where
intro: t0 n ne t’ nrc staticEnv nc .
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staticReachable t0 (Bind n (Sync ne) t’),
(SAtm (RecvEvt nrc)) ∈ staticEnv ne,
(SChn nc) ∈ staticEnv nrc

` staticRecvId staticEnv t0 nc (IdBind n)

In the server implementation, the static channel identi�ed by the name k1 is

waited on by the server. It has one receiving identi�er in the server function at identi-

�er bind p1 and a sending identi�er in the request function at identi�er bind z9. The

channel ideti�end by the name k4 is sent with a client’s request for the server to reply on.

It has a receiving identi�er in the request function at bind v3 and a sending identi�er in

the server function at bind z5.

Reppy and Xiao’s work relies on detecting the liveness of channels in order to

gain higher precision in the static classi�cation of communication. Since formal proofs

are inherently complicated with numerous details, it was easier to �rst formally prove

soundness for a version without the added complication of considering liveness of chan-

nels.

The de�nitions are purposely structured to allow adding live channel analysis to

the de�nition fairly easily with just a few alterations. Section 4 expands on these alter-

ations and outlines a strategy that is likely to result in formal proofs of soundness.

For the lower precision version without the liveness of channels, there are four

modes - sequencing, calling, spawning, and returning - indicating how the term identi�er

�ows to the identi�er of the next term. A �ow is a triplet of a term identi�er, a mode of

�ow, and a term identi�er for the next term. A static step is just a term identi�er along

with the mode it uses to �ow to the next term. A static path is a list of static steps.
datatype mode =
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MSeq
| MSpwn
| MCll
| MRtn

type flow = tm_id * mode * tm_id

type graph = flow set

type static_step = tm_id * mode

type static_path = static_step list

The evaluation of a term results in the �ow to new terms, via sequencing, calling,

returning, or spawning. The static �ows acceptance describes a set of all the �ows that

could be traversed during a program’s evaluation. It depends on the static environment.

For a result term, there are no demands on the �ow graph. For all bind terms, except those

binding to case distinction and function application, the sequential �ow from the top term

to the sequenced term accept the term, and the accepting �ows are also the accepting �ows

for the sequenced term. For binding to a function, the accepting �ows are also accepting

�ows for the body of the function. For binding to thread spawning, the spawning �ow

from the top term to the spawned term might be traversed, and the accepting �ows are

also accepting �ows for the spawned term.

In the case of case distinction, the calling �ow from the case distinction term to

its left case’s term accept the case distinction term, and the calling �ow from a term to the

right case’s term accept the case distinction term. The returning �ow from the result of

the left case’s term to the sequenced term accept the result term, and the returning �ow

from the result of the right case’s term to the sequenced term also accept the result term.

Additionally, the accepting �ows for a term are also accepting �ows for its left case’s term,
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right case’s term, and the sequenced term.

In the case of application, if the applied name is actually bound to a function,

then a calling �ow from the application term to the function’s body accept the application

term, and the returning �ow from the result of the function to the sequenced term accept

the application term. Additionally, the accepting �ows for the application term are also

accepting �ows for the sequenced term.
predicate staticFlowsAccept:
static_value_map -> graph -> term -> bool

where

result: staticEnv graph n .
` staticFlowsAccept staticEnv graph (Rslt n)

* unit: n t’ graph staticEnv .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n Unt t’)

* makeChan: n t’ graph staticEnv .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n MkChn t’)

* sendEvt: n t’ graph staticEnv nc nm .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept
staticEnv graph
(Bind n (Atom (SendEvt nc nm)) t’)

* recvEvt: n t’ graph staticEnv nc .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Atom (RecvEvt nc)) t’)

* pair: n t’ graph staticEnv n1 n2 .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Atom (Pair n1 n2)) t’)

63



* left: n t’ graph staticEnv ns .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Atom (Lft ns)) t’)

* right: n t’ graph staticEnv ns .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Atom (Rht ns)) t’)

* function: n t’ graph staticEnv tb nf nt .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’,
staticFlowsAccept staticEnv graph tb

` staticFlowsAccept staticEnv graph (Bind n (Atom (Fun nf nt tb)) t’)

* spawn: n t’ tc graph staticEnv .
{
(IdBind n, MSeq, termId t’),
(IdBind n, MSpwn, termId tc)

} ⊆ graph,
staticFlowsAccept staticEnv graph tc,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Spwn tc) t’)

* sync: n t’ graph staticEnv nse .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Sync nse) t’)

* first: n t’ graph staticEnv nt .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’,

` staticFlowsAccept staticEnv graph (Bind n (Fst nt) t’)

* second: n t’ graph staticEnv nt .
(IdBind n, MSeq, termId t’) ∈ graph,
staticFlowsAccept staticEnv graph t’,

` staticFlowsAccept staticEnv graph (Bind n (Snd nt) t’)

* distinction: n tl tr t’ graph staticEnv ns .
{
(IdBind n, MCll, termId tl),
(IdBind n, MCll, termId tr),
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(IdRslt (resultName tl), MRtn, termId t’),
(IdRslt (resultName tr), MRtn, termId t’)

} ⊆ graph,
staticFlowsAccept staticEnv graph tl,
staticFlowsAccept staticEnv graph tr,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (Case ns nl tl nr tr) t’)

* application: n t’ graph staticEnv nf na .
∀ nf’ nt tb .
(SAtm (Fun nf’ nt tb)) ∈ staticEnv nf

→
{
(IdBind n, MCll, termId tb),
(IdRslt (resultName tb), MRtn, termId t’)

} ⊆ graph,
staticFlowsAccept staticEnv graph t’

` staticFlowsAccept staticEnv graph (Bind n (App nf na) t’)

The smallest graph of �ows that accepts a progam is �nite. Additionally, the

static acceptance relation is syntax-directed, which o�ers guidance towards computing

the graph from a program. Thus, to statically determine communication classi�cations,

it should be possible to compute the two shortest paths that send or receive on the same

channel. The server implementation represented as a control �ow graph illustrates how

static �ows acceptance can interpret a graph from a program.
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  chn k1:
    send sites: {bind z9}
    recv sites: {bind p1}
  chn k4:
    send sites: {bind z5}
    recv sites: {bind v3}

The static path traceability means that a static path with a given starting term

identi�er, and ending condition, can be traced by traversing the �ows in a graph. The
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empty path statically exists if the starting term identi�er meets the ending condition. Oth-

erwise, a path statically exists if the last static step corresponds to a �ow that meets the

ending condition, and the longest strict pre�x of the path statically exists.
predicate staticTraceable:
flow set -> tm_id -> (tm_id -> bool) -> static_path -> bool

where
empty: start graph isEnd .
isEnd start

` staticTraceable graph start isEnd []

* snoc: graph star middle path isEnd end mode .
staticTraceable graph start (λ l . l = middle) path,
isEnd end,
(middle, mode, end) ∈ graph

` staticTraceable graph start isEnd (path @ [(middle, mode)])

In the graph of the server implementation, there are two paths each corresponding

to its own thread that lead to sending on static channel chn k1 and a potentially in�nite

number of paths that lead to receiving on channel chn k1, but all on the same thread.

There are an in�nite number of paths that lead to sending on static channel chn k4, and

two paths that lead to receiving on static channel chn k4. This is analysis is better than

nothing, but it’s still somewhat imprecise. The static chn k4 corresponds to multiple dis-

tinct dynamic channels, each with just one sender and one receiver. The higher precision

analysis discussed in section 4 addresses this issue.

The static inclusion means that two static paths might be traced in the same run of

a program. Ordered paths might be inclusive, and also a path that diverges from another

at a spawn point might be inclusive. This concept is useful for achieving greater precision,

since if two paths cannot occur in the same run of a program, only one needs to be counted

towards the communication classi�cation. The predicates are intended to be applied to

paths starting from the beginning of a program.
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predicate staticInclusive: static_path -> static_path -> bool where
first: path1 path2 .
prefix path1 path2

` staticInclusive path1 path2

* second path2 path1 .
prefix path2 path1

` staticInclusive path1 path2

* spawnFirst: path n path1 path2 .
` staticInclusive
(path @ [(IdBind n, MSpwn)] @ path1)
(path @ [(IdBind n, MSeq)] @ path2)

* spawnSecond: path n path1 path2 .
` staticInclusive
(path @ [(IdBind n, MSeq)] @ path1])
(path @ [(IdBind n, MSpwn)] @ path2)

The uncompetitiveness means that two paths can’t compete during a run of a

program. Either they are ordered or they cannot occur in the same run of a program. The

singularity means that two paths are the same or only of them can occur in a given run of

a program.
predicate uncompetitive: static_path -> static_path -> bool where
ordered: path1 path2 .
ordered path1 path2

` uncompetitive path1 path2

* notInclus: path1 path2 .
¬ (staticInclusive path1 path2)

` uncompetitive path1 path2

predicate singular: static_path -> static_path -> bool where
refl: path .
` singular path path

* notInclus: path1 path2 .
¬ (staticInclusive path1 path2)

` singular path1 path2

The static one-to-many classi�cation means that there is at most one thread that

attempts to send on a given static channel at any time during a run of a given program,

but there may be many threads that attempt to receive on the channel.
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predicate staticOneToMany: term -> name -> bool where
intro: staticEnv staticComm t graph nc .
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
forEveryTwo (staticTraceable graph (termId t)
(staticSendId staticEnv t nc)) uncompetitive

` staticOneToMany t nc

The static many-to-one predicate means that there may be many threads that at-

tempt to send on a static channel, but there is at most one thread that attempts to receive

on the channel for any time during a run of a given program.
predicate staticManyToOne: term -> name -> bool where
intro: staticEnv statcComm t graph nc .
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
forEveryTwo (staticTraceable graph (termId t)
(staticRecvId staticEnv t nc)) uncompetitive

` staticManyToOne t nc

The static one-to-one classi�cation means that there is at most one thread that

attempts to send and at most one thread that attempts to receive on a given static channel

for any time during a run of a given program.
predicate staticOneToOne: term -> name -> bool where
intro: staticEnv staticComm t graph nc .
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
forEveryTwo (staticTraceable graph (termId t)
(staticSendId staticEnv t nc)) uncompetitive,

forEveryTwo (staticTraceable graph (termId t)
(staticRecvId staticEnv t nc)) uncompetitive

` staticOneToOne t nc

The static one-shot classi�cation means that there is at most one attempt to syn-

chronize to send on a static channel in any run of a given program.
predicate staticOneShot: term -> name -> bool where
intro: staticEnv staticComm t graph nc .
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staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
forEveryTwo (staticTraceable graph (termId t)
(staticSendId staticEnv t nc)) singular

` staticOneShot t nc

The static one-sync classi�cation means that there is at most one attempt to send

on a static channel and at most one thread that attempts to receive on a static channel in

any run of a given program.
predicate staticOneSync: term -> name -> bool where
intro: staticEnv staticComm t graph nc .
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
forEveryTwo (staticTraceable graph (termId t)
(staticSendId staticEnv t nc)) singular,

forEveryTwo (staticTraceable graph (termId t)
(staticRecvId staticEnv t nc)) uncompetitive

` staticOneSync t nc

3.6 Formal Reasoning

The semantics and analyses must contain many details. To ensure the correctness

of proofs, it is necessary to check that there are no subtle errors in either the de�nitions

or the proofs. Proofs require many subtle manipulations of symbols. The di�erence be-

tween a false statement and a true statement can often be di�cult to spot, since the two

may be very similar lexically. However, a mechanical proof checker, such as the one in

Isabelle/HOL, has no di�culty discerning between valid and invalid derivations. Mechan-

ical checking of proofs can notify users of errors in the proofs or de�nitions far better and

faster than manual checking. This work has greatly bene�ted from Isabelle’s proof checker

in order to correctly de�ne the language semantics, control �ow analysis, communication

analysis, and other helpful de�nitions. For instance, some bugs in the de�nintions were
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found while trying to prove soundness. The proof checker would not accept the proof

unless I provided facts that should be false, indicating that the de�nitions did not state my

intentions. After correcting the errors in the de�nitions, the proof was completed such

that the proof checker was satis�ed.

The reasoning involved in proving the soundness of each communication classi�-

cation is based around breaking the goal into simpler subgoals, and generalizing assump-

tions to create useful induction hypotheses. It is often useful to create helper de�nitions

that can be deduced from premises of the theorem being proved and enable general rea-

soning across arbitrary programs. A frequent pattern is to de�ne predicates in terms of

semantic structures, like the environment, stack, and pool, and deduce the instantiation

of these predicates on the initial program state.

Some aspects of the generalized predicate de�nitions exist simply to prove that

they imply instantiations of the term based predicates on the initial program. The gen-

eralized de�nitions are necessary in order to allow direct access to properties that would

otherwise be deeply nested in an inductive structure and inaccessible by a predictable

number of logical steps for an arbitrary program.

One of the most di�cult aspects of formal reasoning is in developing adequate

de�nitions. It is often possible to de�ne a single semantics in multiple ways. For instance,

the sortedness of a list could be de�ned in terms of the sortedness of its tail or in terms of

the sortedness of its longest strict pre�x. To prove theorems relating sortedness to other

relations, it may be important that the other relations are inductively de�ned on the same

subpart of the list. Some relations may only be de�nable on the tail, while others can

be de�ned only on the strict pre�x. in such cases, it is necessary to de�ne sortedness in
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two ways, and prove their equivalence, in order to prove theorems relating to less �exible

relations.
predicate sortedLeft: nat list -> bool where
empty:
` sortedLeft []

* uni: x .
` sortedLeft [x]

* cons: x y zs .
n ≤ y,
sortedLeft (y # zs)

` sortedLeft (x # y # zs)

predicate sortedRight: nat list -> bool where
empty:
` sortedRight []

* uni: z .
` sortedRight [z]

* snoc: xs y z .
sortedRight (xs @ [y]),
y ≤ z

` sortedRight (xs @ [y] @ [z])

lemma sortedEquiv: xs .
` sortedLeft xs ≡ sortedRight xs

3.7 Soundness

The theorem for soundness of static one-to-many classi�cation states that if a

static channel is statically classi�ed as one-to-many for a given program, then any corre-

sponding dynamic channel is classi�ed as one-to-many for the same program. The sound-

ness of classi�cation of many-to-one, one-to-one, one-shot, and one-sync all follow the

same pattern.
theorem staticOneToManySound: t0 nc pathc .
staticOneToMany t0 nc

` oneToMany t0 (Chan pathc nc)

theorem staticManyToOneSound: t0 nc pathc .
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staticManyToOne t0 nc
` manyToOne t0 (Chan pathc nc)

theorem staticOneToOneSound: t0 nc pathc .
staticOneToOne staticEnv t0 nc

` oneToOne t0 (Chan pathc nc)

theorem staticOneShotSound: t0 nc pathc .
staticOneShot t0 nc

` oneShot t0 (Chan pathc nc)

theorem staticOneShotSound: t0 nc pathc .
staticOneSync t0 nc

` oneSync t0 (Chan pathc nc)

The formal proofs of soundness of each static classi�cation follow a similar struc-

ture. Let’s examine in some detail the formal proof of soudness of static one-to-many

classi�cation, by unwinding the theorem into the lemmas that it follows from. The fol-

lowing diagram illustrates the key dependencies of the theorems and lemmas in used in

the derivations.
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staticOneToManySound

staticTraceableSound staticInclusiveSound staticSendIdSound

staticFlowsAcceptPoolPreserved

staticEvalPoolPreserved

staticEvalSound

staticReachableSound

staticInclusivePreserved

strictPrefixPreserved

The soundness of static one-to-many classi�cation is proved by a few simpler

lemmas and the de�nitions of static and dynamic one-to-many classi�cation. There is an

isomorphic correspondence between the paths of dynamic evaluation and the paths of

static evaluation, by de�nition. The static paths are derived from the static �ow graph.

Although it is possible to directly derive the dynamic paths from the static �ow graph,

deriving an isomorphoic path structure keeps the paths’ relation to the �ow graph clear.

Additionally, for the higher precision analysis, static paths are not isomorphic to dynamic

paths.

The three main lemmas state the soundness of static path existence, the soundness

of static inclusiveness, and the soundness of static sending identi�er classi�cation. These
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lemmas depend on a correspondence between static paths and dynamic paths. The lemma

for soundness of static inclusiveness states that any two dynamic paths traced by running

a program correspond to statically inclusive static paths. It follows from a straightforward

case analysis of static inclusivity. The lemma for soundness of static path existence states

that for any dynamic path traced by running a program, there is a corresponding static

path that is statically traceable. The lemma for soundness of static sending identi�er clas-

si�cation states that if running a program reaches a synchronization on a sending event,

then that identi�er for that synchronization is statically classi�ed as sending.
predicate pathsCorrespond: dynamic_path -> static_path -> bool where
empty:
` pathsCorrespond [] []

* seq: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DSeq n])
(staticPath @ [(IdBind n, MSeq)])

* spawn: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DSpwn n])
(staticPath @ [(IdBind n, MSpwn)])

* call: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DCll n])
(staticPath @ [(IdBind n, MCll)])

* return: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DRtn n])
(staticPath @ [(IdRslt n, MRtn)])

lemma staticTraceableSound: t0 pool comm path t
env stack staticEnv staticComm graph isEnd .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
pool path = Some (Stt t env stack),
staticEval staticEnv staticComm t0,
staticFlowsAccept staticEnv graph t0,
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isEnd (termId t)
` exists staticPath .
pathsCorrespond path staticPath

∧ staticTraceable graph (termId t0) isEnd staticPath

lemma staticInclusiveSound: t0 pool comm path1 stt1 path2 stt2
staticPath1 staticPath2 .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm
pool path1 = Some stt1,
pool path2 = Some stt2,
pathsCorrespond path1 staticPath1,
pathsCorrespond path2 staticPath2

` staticInclusive staticPath1 staticPath2

lemma staticSendIdSound: t0 pool comm path n ne t’ env
stack nsc nm env’ pathc nc staticEnv staticComm .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
pool path = Some (Stt (Bind n (Sync ne) t’) env stack),
env ne = Some (VAtm (SendEvt nsc nm) env’),
env’ nsc = Some (VChn (Chan pathc nc)),
staticEval staticEnv staticComm t0

` staticSendId staticEnv t0 nc (IdBind n)

The soundness of static path existence is proved by generalizing static �ows accep-

tance and static evaluation over pools, such that information about a step in the program

can be deduced by a �xed number of logical steps regardless of the location of the program

step or the size of the program. Without such generalization, it would be possible to prove

soundness for a �xed program, but not any arbitrary program.

The generalization of static �ows acceptance is comprised of static �ows accep-

tance of values, static �ows acceptance of environments, static �ows acceptance of stacks,

and static �ows acceptance of pools. In most cases, it simply states that a subterm of some

semantic element is also statically accepting. The exception is in the case of static �ows

acceptance of a non-empty stack, where there is an additional condition that the graph

contains a �ow from a result identi�er to the term identi�er of the continuation. This
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information is consistent with static �ows acceptance of terms, but provides direct infor-

mation about a �ow in the graph, which would otherwise only be deducible by a varying

number of logical steps depending on the program.
predicate staticFlowsAcceptValue:
static_value_map -> graph -> dynamic_value -> bool

where

unit: staticEnv graph .
` staticFlowsAcceptValue staticEnv graph VUnt

* chan: staticEnv graph nc .
` staticFlowsAcceptValue staticEnv graph (VChn nc)

* sendEvt: staticEnv graph env nc nm.
staticFlowsAcceptEnv staticEnv graph env

` staticFlowsAcceptVal
staticEnv graph (VAtm (SendEvt nc nm) env)

* recvEvt: staticEnv graph env nc.
staticFlowsAcceptEnv staticEnv graph env

` staticFlowsAcceptVal
staticEnv graph (VAtm (RecvEvt nc) env)

* left: staticEnv graph env np .
staticFlowsAcceptEnv staticEnv graph env

` staticFlowsAcceptVal
staticEnv graph (VAtm (Lft np) env)

* right: staticEnv graph env np .
staticFlowsAcceptEnv staticEnv graph env

` staticFlowsAcceptVal
staticEnv graph (VAtm (Rht np) env)

* function: staticEnv graph tb env nf np .
staticFlowsAccept staticEnv graph tb,
staticFlowsAcceptEnv staticEnv graph env

` staticFlowsAcceptVal
staticEnv graph (VAtm (Fun nf np tb) env)

* pair: staticEnv graph env .
staticFlowsAcceptEnv staticEnv graph env

` staticFlowsAcceptVal
staticEnv graph (VAtm (Pair n1 n2) env)
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predicate staticFlowsAcceptEnv:
static_value_map -> graph -> env -> bool

where
intro: staticEnv graph env .
∀ n v .
env n = Some v

→ staticFlowsAcceptValue staticEnv graph v
` staticFlowsAcceptEnv staticEnv graph env

predicate staticFlowsAcceptStack:
static_value_map -> graph -> name -> stack -> bool

where

empty: staticEnv graph nr .
` staticFlowsAcceptStack staticEnv graph nr []

* cons: nr t graph staticEnv graph env stack’ n env .
{(IdRslt nr, MRtn, termId t)} ⊆ graph,
staticFlowsAccept staticEnv graph t,
staticFlowsAcceptEnv staticEnv graph env,
staticFlowsAcceptStack staticEnv graph (resultName t) stack’

` staticFlowsAcceptStack staticEnv graph nr ((Ctn n t env) # stack’)

predicate staticFlowsAcceptPool of
static_value_map -> graph -> pool -> bool

where
intro: pool staticEnv graph .
∀ path t env stack .
pool path = Some (Stt t env stack)

→
staticFlowsAccept staticEnv graph t

∧ staticFlowsAcceptEnv staticEnv graph env
∧ staticFlowsAcceptStack staticEnv graph (resultName t) stack

` staticFlowsAcceptPool staticEnv graph pool

The �ows described by the various versions of static �ows acceptance depend on

static environments in order to look up the �ow in the case where the term is a func-

tion. The static environment is constrained by the static evaluation of the program that is

dynamically evaluated. Generalized versions of static evaluation that related the static en-
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vironment to other elements of dynamic evaluation enable further deduction about �ows.

As with the generalized versions of static �ows acceptance, the generalized versions of

static evaluation are designed to preserve static environments across dynamic evaluations

of pools. They also provide direct access to binding information from names to static val-

ues in a �xed number of logical steps. Static evaluation of terms correlates terms to static

values, but the generalized static evaluations correlate dynamic evaluation structures of

values, environments, and stacks, to static values. The abstraction function relates dy-

namic values to static values and helps with the larger goal of relating dynamic semantic

elements to static values and static environments.
fun abstract: dynamic_value -> static_value where
` abstract VUnt = SUnt

* path n .
` abstract (VChn (Chan path x)) = SChn x

* atom env .
` abstract (VAtm atom env) = SAtm atom

predicate staticEvalValue:
static_value_map -> static_value_map -> dynamic_value -> bool

where

unit: staticEnv staticComm .
` staticEvalValue staticEnv staticComm VUnit

* chan: staticEnv staticComm chan .
` staticEvalValue staticEnv staticComm (VChn chan)

* sendEvt: staticEnv staticComm env nc nm .
staticEvalEnv staticEnv staticComm env

` staticEvalValue staticEnv staticComm
(VAtm (SendEvt nc nm) env)

* recvEvt: staticEnv staticComm env nc .
staticEvalEnv staticEnv staticComm env

` staticEvalValue staticEnv staticComm
(VAtm (RecvEvt nc) env)

* left: staticEnv staticComm env n .
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staticEvalEnv staticEnv staticComm env
` staticEvalValue staticEnv staticComm
(VAtm (Lft n) env)

* right: staticEnv staticComm env n .
staticEvalEnv staticEnv staticComm env

` staticEvalValue staticEnv staticComm
(VAtm (Rht n) env)

* function: nf np tb staticEnv staticComm env .
{SAtm (Fun nf np tb)} ⊆ staticEnv f,
staticEval staticEnv staticComm tb,
staticEvalEnv staticEnv staticComm env

` staticEvalValue staticEnv staticComm
(VAtm (Fun nf np tb) env)

* pair: staticEnv staticComm env n1 n2 .
staticEvalEnv staticEnv staticComm env

` staticEvalValue staticEnv staticComm
(VAtm (Pair n1 n2) env)

predicate staticEvalEnv:
static_value_map -> static_value_map -> env -> bool

where
intro: staticEnv staticComm env .
∀ n v .
env n = Some v

→ {abstract v} ⊆ staticEnv n
∧ staticEvalValue staticEnv staticComm v

` staticEvalEnv staticEnv staticComm env

predicate staticEvalStack:
static_value_map -> static_value_map

-> static_value set -> stack -> bool
where
empty: staticVals n staticEnv staticComm t env stack’ .
` staticEvalStack staticEnv staticComm staticVals []

* cons: staticVals staticEnv staticComm stack’ .
staticVals ⊆ staticEnv n,
staticEval staticEnv staticComm t,
staticEvalEnv staticEnv staticComm env,
staticEvalStack staticEnv staticComm (staticEnv (resultName t)) stack’

` staticEvalStack staticEnv staticComm staticVals ((Ctn n t env) # stack
’)
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predicate staticEvalPool:
static_value_map -> static_value_map -> pool -> bool

where
intro: pool staticEnv staticComm .
∀ path t env stack .
pool path = Some (Stt t env stack)

→
staticEval staticEnv staticComm t

∧ staticEvalEnv staticEnv staticComm env
∧ staticEvalStack staticEnv staticComm (staticEnv (resultName t)) stack

` staticEvalPool staticEnv staticComm pool

A variant of star that inducts on the left of the transitive connection is helpful for

relating dynamic path existence to static path existence, since it mirrors the direction that

way paths grow, which in�uenced the choice of induction on the longest strict pre�x of

paths in the de�nition of static path existence.
predicate starLeft: (’a -> ’a -> bool) -> ’a -> ’a -> bool where
refl: r z z .
` starLeft r z z

* trans: r x y z .
starLeft r x y,
r y z

` starLeft r x z

lemma starImpliesStarLeft: r x z .
star r x z

` starLeft r x z

lemma starLeftTrans: r x y z .
starLeft r x y,
starLeft r y z

` starLeft r x z

The lemma for soundness of static path existence follows from the generalized

de�nitions of static �ows acceptance, the de�nition of static path existence, and the preser-

vation of static �ows acceptance across multiples steps of evaluation.
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lemma staticFlowsAcceptPoolPreserved: t0 pool comm staticEnv staticComm
graph .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
staticEval staticEnv staticComm t0,
staticFlowsAcceptPool staticEnv graph [[] -> (Stt t0 [->] [])]

` staticFlowsAcceptPool staticEnv graph pool

The preservation of static �ows acceptance over pools is proved by the equiva-

lence between star and its leftward variant, and induction on the leftward variant. The

preservation of static evaluation of pools over multiple steps is also relied upon.
lemma staticEvalPoolPreserved: pool comm pool’ comm’ staticEnv staticComm .
star dynamicEval pool comm pool’ comm’
staticEvalPool staticEnv staticComm pool

` staticEvalPool staticEnv staticComm pool’

The soundness of static inclusiveness is derived from various lemmas that pre-

serve relations from pairs of dynamic paths to pairs of corresponding static paths. Some

of these lemmas are the preservation of the strict pre�x relation from static to dynamic

paths, and the preservation of static inclusiveness over extension of static paths.
lemma strictPrefixPreservedCorresp: staticPathath1 staticPath2 dynamicPath1

dynamicPath2 .
strictPrefix staticPathath1 staticPath2,
pathsCorrespond dynamicPath1 staticPath1,
pathsCorrespond dynamicPath2 staticPath2

` strictPrefix dynamicPath1 dynamicPath2

lemma staticInclusivePreservedUnorderedExtension: path1 path2 l1 l2 .
staticInclusive path1 path2,
¬ (prefix path1 path2),
¬ (prefix path2 path1)

` staticInclusive (path1 @ [l1]) (path2 @ [l2])

These various preservation lemmas are derived from the basic properties of lists

and straight forward properities of path correspondence, such as commutativity, as well

as foundational principles like induction of corresponding paths.
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The lemma for soundness of static sending identi�er classi�cation staticSendIdSound

is proved using the lemma for soundness of static evaluation for synchronization of a send

event, and the lemma for soundness of static evaluation. Since only sending identi�ers are

relevant, the soundness of static reachability is used to ensure that the static step is indeed

a sending identi�er.
lemma sendChanStaticEvalSound: t0 pool comm staticEnv staticComm path
n ne t’ env stack nsc nm enve pathc nc .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
staticEval staticEnv staticComm t0,
pool path = Some (Stt (Bind n (Sync ne) t’) env stack),
env ne = Some (VAtm (SendEvt nsc nm) enve),
enve nsc = Some (VChn (Chan pathc nc))

` SChn nc ∈ staticEnv nsc

lemma staticEvalSound: t0 pool comm staticEnv staticComm path t env stack n
v .
staticEval staticEnv staticComm t0,
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
pool path = Some (Stt t env stack),
env n = Some v

` abstract v ∈ staticEnv n

lemma staticReachableSound: t0 pool comm staticEnv staticComm path t env
stack .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
pool path = Some (Stt t env stack)

` staticReachable t0 t

Both the soundness of static evaluation on the synchronization of a send event,

and the soundness of static evaluation follow from the preservation of static evaluation

over multiple steps of dynamic evaluation.

The lemma for soundness of static reachability relies on a reformulation of static

reachability de�ned by proofs that induct on a larger term containing the reachable term.

This de�nition is useful for forward derivations of reachability relations, however it doesn’t
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o�er much guidance for deciding reachability. In contrast, the de�nition of the original

static reachability relation is syntax-directed in order to portray a clear connection to a

computable algorithm that can determine the reachable term from an initial program. To

show that a term is reachable from the initial program, it is necessary to show that each

intermediate term is reachable from the initial term. Thus, the induction needs to enable

unraveling the goals from the end of the program to the beginning, maintaining the initial

program state in context for each subgoal. Because the static reachable relation is a "may"

analysis, the generalized relations hold unless there is a clear reason that it could never

hold. For instance, in the relation over atoms, for all atoms other than functions, it holds

without any additional demands.
predicate staticReachableForward: term -> term -> bool where

refl: t0 .
` staticReachableForward t0 t0

* spawn: t0 n tc t’ .
staticReachableForward t0 (Bind n (Spwn tc) t’)

` staticReachableForward t0 tc

* distincLeft: t0 n ns nl tl nr tr t’ .
staticReachableForward t0 (Bind n (Case ns nl tl nr tr) t’)

` staticReachableForward t0 tl

* distincRight: t0 n ns nl tl nr tr t’ .
staticReachableForward t0 (Bind n (Case ns nl tl nr tr) t’)

` staticReachableForward t0 tr

* function: t0 n nf np tb t’ .
staticReachableForward t0 (Bind n (Atom (Fun nf np tb)) t’)

` staticReachableForward t0 tb

* seq: t0 n nf np tb t’ .
staticReachableForward t0 (Bind n c t’)

` staticReachableForward t0 t’

predicate staticReachableAtom: term -> atom -> bool where
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sendEvt: t0 nc nm .
` staticReachableAtom t0 (SendEvt nc nm)

* recvEvt: t0 nc .
` staticReachableAtom t0 (RecvEvt nc)

* pair: t0 n1 n2 .
` staticReachableAtom t0 (Pair n1 n2)

* left: t0 nl .
` staticReachableAtom t0 (Lft nl)

* right: t0 nr
` staticReachableAtom t0 (Rht nr)

* function: t0 tb nf np tb .
staticReachableForward t0 tb

` staticReachableAtom t0 (Fun nf np tb)

predicate staticReachableVal: term -> dynamic_value -> bool where
unit: t0 .
` staticReachableValue t0 VUnt

* chan: t0 c .
` staticReachableValue t0 (VChn c)

* atom: t0 t env .
staticReachableAtom t0 t,
staticReachableEnv t0 env

` staticReachableValue t0 (VAtm t env)

predicate staticReachableEnv: term -> env -> bool where
intro: t0 env
∀ n v .
env n = Some v

→ staticReachableValue t0 v
` staticReachableEnv t0 env

predicate staticReachableStack: term -> stack -> bool where
empty: t0 .
` staticReachableStack t0 []

* cons: t0 tk envk stack’ .
staticReachableForward t0 tk,
staticReachableEnv t0 envk,
staticReachableStack t0 stack’

` staticReachableStack t0 ((Ctn nk tk envk) # stack’)
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predicate staticReachablePool: term -> pool -> bool where
intro: t0 pool .
∀ path t env stack .
pool path = Some (Stt t env stack)

→ staticReachableForward t0 t
∧ staticReachableEnv t0 env
∧ staticReachableStack t0 stack

` staticReachablePool t0 pool

The soundness of static reachability follows from the de�nitions its generalized

form of static reachability of pools and its soundness.
lemma staticReachablePoolSound: t0 pool .
star dynamicEval [[] -> (Stt t0 [->] [])], {} pool comm

` staticReachablePool t0 pool

The soundness of static reachability of pools follows from the lemma that the for-

ward static reachability implies the syntax-directed static reachability, and the equivalence

between star and the leftward star. It relies on induction of the leftward star and constructs

the static reachability proposition using the forward de�nition.
lemma staticReachableForwardImpliesStaticReachable: t0 t.
staticReachableForward t0 t

` staticReachable t0 t

lemma staticReachableTrans: t1 t2 t3 .
staticReachable t1 t2,
staticReachable t2 t3

` staticReachable t1 t3

The lemma that the forward variant of static reachability implies the syntax-

directed static reachability follows from induction on the forward static reachability and

the transitivity of static reachability, which follows from induction on static reachability.
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Chapter 4

Higher Precision Static Analysis

In many programs, like in the server example, channels are created within func-

tions. The functions may be applied multiple times, creating multiple distinct channels

with each application. It may be that each channel is used just once and then discarded.

However, the static analysis described so far would identify all the distinct channels by

the same name, since each distinct channel is created by the same piece of syntax. Thus,

it would classify those channels as being used more than once, when actually they might

be used at most once each.

It is possible to be more precise by trimming the program under analysis down to

just the part where the static channel is live. The static channel cannot be live between the

last use of a corresponding dynamic channel and the creation of a new dynamic channel

with the same name. Thus, each truncated program would have just one dynamic channel

corresponding to the static channel under analysis.

The higher precision analysis uses a trimmed down graph to better di�erentiate

between distinct channels. A trimmed graph is specialized for a particular dynamic chan-

nel. From the creation step, it must contain transitive �ows to all the program steps where

the channel is live. It should also be as small as possible, for higher precision.

In the whole graph used in the previous analysis, a spawning �ow connects a
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child thread to the rest of the program. For a trimmed graph, it may be that the channel

of interest is not created until after some spawn step, so there is no need to include the

spawning �ow in the trimmed graph. However, later on in the program it may become

apparent that the channel of interest is sent via another channel to that spawned thread.

Since there is no spawning �ow already connecting that thread to the trimmed graph, a

�ow with a sending mode is used between the sending identi�er and the receiving identi-

�er of synchronization in order to link the part of the thread with the live channel into the

graph. In additions to the new mode of sending, previous modes of sequencing, calling,

returning, and spawning are also included.
datatype mode =
MSeq

| MSpwn
| MSend name
| MCll
| MRtn

type flow = tm_id * mode * tm_id

type static_step = tm_id * mode

type staticPath = static_step list

To demonstrate some key concepts of the higher precision analysis, an additional

loop function lp is added to the example server implementation. The loop basically just

wastes steps, but it is used to demonstrate how liveness analysis treats functions that don’t

contain any channel of interest.
bind u1 = unt
bind r1 = rht u1
bind l1 = lft r1
bind l2 = lft l1

bind lp = fun lp’ x1 =>
(
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bind z1 = case x1 of
lft y1 =>
(
bind z2 = app lp’ y1
rslt z2

)
| rht y2 =>
(
bind u2 = unt
rslt u2

)
bind u3 = unt
rslt u3

)

bind mksr = fun _ x2 =>
(
bind k1 = mkChn
bind z4 = lp l2
bind srv = fun srv’ x3 =>
(
bind e1 = recvEvt k1
bind p1 = sync e1
bind v1 = fst p1
bind k2 = snd p1
bind e2 = sendEvt k2 x3
bind z5 = sync e2
bind z6 = app srv’ v1
rslt z6

)
bind z7 = spawn
(
bind z8 = srv r1
rslt z8

)
rslt k1

)

bind rqst = fun _ x4 =>
(
bind k3 = fst x4
bind v2 = snd x4
bind k4 = mkChn
bind p2 = pair v2 k4
bind e3 = sendEvt k3 p2
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bind z9 = sync e3
bind e4 = recvEvt k4
bind v3 = sync e4
rslt v3

)

bind srvr = mksr u1
bind z10 = spawn
(
bind p3 = pair srvr l1
bind z11 = app rqst p3
rslt z11

)
bind p4 = pair srvr l2
bind z12 = app rqst p4
rslt z12

The static �ows acceptance for higher precision is similar to that of the lower

precision analysis. However, it must additionally consider �ows with the sending mode.

To accommodate the sending �ow from sender to receiver, the initial program must be

carried each inference rule.
predicate staticFlowsAcceptTm:
static_value_map -> graph -> term -> term -> bool

where

result: staticEnv graph n .
` staticFlowsAcceptTm staticEnv graph t0 (Rslt n)

* unit: n t’ graph staticEnv .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n Unt t’)

* makeChan: n t’ graph staticEnv .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n MkChn t’)

* sendEvt: n t’ graph staticEnv nc nm .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’
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` staticFlowsAccept
staticEnv graph
(Bind n (Atom (SendEvt nc nm)) t’)

* recvEvt: n t’ graph staticEnv nc .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Atom (RecvEvt nc)) t’)

* pair: n t’ graph staticEnv n1 n2 .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Atom (Pair n1 n2)) t’)

* left: n t’ graph staticEnv ns .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Atom (Lft ns)) t’)

* right: n t’ graph staticEnv ns .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Atom (Rht ns)) t’)

* function: n t’ graph staticEnv tb nf np .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’,
staticFlowsAcceptTm staticEnv graph t0 tb

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Atom (Fun nf np tb)) t’)

* spawn: n t’ tc graph staticEnv.
{(IdBind n, MSeq, termId t’),
(IdBind n, MSpwn, termId tc)} ⊆ graph,

staticFlowsAcceptTm staticEnv graph t0 tc,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Spwn tc) t’)

* sync: n t’ graph staticEnv nse .
(IdBind n , MSeq, termId t’) ∈ graph,
∀ nsc nm nc ny.
(SAtm (SendEvt nsc nm)) ∈ staticEnv nSE,

→ (SChn nc) ∈ staticEnv nsc
→ staticRecvId staticEnv t0 nc (IdBind ny)
→ (IdBind n, MSend nse, IdBind ny) ∈ graph),
staticFlowsAcceptTm staticEnv graph t0 t’
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` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Sync nse) t’)

* first: n t’ graph staticEnv np .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’,

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Fst np) t’)

* second: n t’ graph staticEnv np .
(IdBind n , MSeq, termId t’) ∈ graph,
staticFlowsAcceptTm staticEnv graph t0 t’,

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Snd np) t’)

* distinction: n tl tr t’ graph staticEnv ns .
{
(IdBind n, MCll, termId tl),
(IdBind n, MCll, termId tr),
(IdRslt (resultName tl), MRtn, termId t’),
(IdRslt (resultName tr), MRtn, termId t’)

} ⊆ graph,
staticFlowsAcceptTm staticEnv graph t0 tl,
staticFlowsAcceptTm staticEnv graph t0 tr,
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (Case ns nl tl nr tr) t’)

* application: staticEnv n t’ graph nf na .
∀ nf’ np tb .
(SAtm (Fun nf’ np tb)) ∈ staticEnv nf

→
{
(IdBind n, MCll, termId tb),
(IdRslt (resultName tb), MRtn, termId t’)

} ⊆ graph),
staticFlowsAcceptTm staticEnv graph t0 t’

` staticFlowsAcceptTm staticEnv graph t0 (Bind n (App nf na) t’)

predicate staticFlowsAccept:
static_value_map -> graph -> term -> bool

where
intro: staticEnv graph n .
staticFlowsAcceptTm staticEnv graph t0 t0

` staticFlowsAccept staticEnv graph t0

The server implementation represented as a graph illustrates how static accep-
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tance by �ows can interpret a program as a �ow graph.
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For the liveness of channel analysis, it is necessary to track any name built on a

channel. A name is built on a channel if the name binds to a static value containing a

channel of interest or a static value that contains names thar are built on the channel. For

93



the name to be considered built on a channel in the case where the tracked name possibly

binds to a function, the channel simply needs to be live in the body of the function. This

condition is represented formally as the requirement that there is a name, such that it is a

free variable in the function, and it’s built on the channel.

fun freeVarsAtom: atom -> name set where
nc nm .
` freeVarsAtom (SendEvt nc nm) = {nc, nm}

* nc .
freeVarsAtom (RecvEvt nc) = {nc}

* n1 n2 .
` freeVarsAtom (Pair n1 n2) = {n1, n2}

* n .
` freeVarsAtom (Lft n) = {n}

* n .
` freeVarsAtom (Rht n) = {n}

* nf np tb .
` freeVarsAtom (Fun nf np tb) = freeVarsTerm tb \ {nf, np}

and freeVarsComplex: complex -> name set where
` freeVarsComplex Unt = {}

* ` freeVarsComplex MkChn = {}

* atom .
` freeVarsComplex (Atom atom) = freeVarsAtom atom

* t .
` freeVarsComplex (Spwn t) = freeVarsTerm t

* n .
` freeVarsComplex (Sync n) = {n}

* n .
` freeVarsComplex (Fst n) = {n}

* n .
` freeVarsComplex (Snd n) = {n},

* ns nl tl nr tr .
` freeVarsComplex (Case ns nl tl nr tr) =
{ns} ∪ freeVarsTerm tl ∪ freeVarsTerm tr \ {nl, nr}

* nf na .
` freeVarsComplex (App nf na) = {nf, na},

and freeVarsTerm: term -> name set where
n c t .
` freeVarsTerm (Bind n c t) = freeVarsComplex c ∪ freeVarsTerm t \ {n}
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* n .
` freeVarsTerm (Rslt n) = {n}

predicate staticBuiltOnChan: static_value_map -> name -> name -> bool where

chan: nc staticEnv n .
SChn nc ∈ staticEnv n

` staticBuiltOnChan staticEnv nc n

* sendEvt: nsc nm staticEnv n nc .
(SAtm (SendEvt nsc nm)) ∈ staticEnv n,
(
staticBuiltOnChan staticEnv nc nsc

∨ staticBuiltOnChan staticEnv nc nm
)

` staticBuiltOnChan staticEnv nc n

* recvEvt: nrc staticEnv n nc .
(SAtm (RecvEvt nrc)) ∈ staticEnv n,
staticBuiltOnChan staticEnv nc nrc

` staticBuiltOnChan staticEnv nc n

* pair: n1 n2 staticEnv n nc .
(SAtm (Pair n1 n2)) ∈ staticEnv n,
(
staticBuiltOnChan staticEnv nc n1

∨ staticBuiltOnChan staticEnv nc n2
)

` staticBuiltOnChan staticEnv nc n

* left: na staticEnv n nc .
(SAtm (Lft na)) ∈ staticEnv n,
staticBuiltOnChan staticEnv nc na

` staticBuiltOnChan staticEnv nc n

* right: na staticEnv n nc .
(SAtm (Rht na)) ∈ staticEnv n,
staticBuiltOnChan staticEnv nc na

` staticBuiltOnChan staticEnv nc n

* function: nf np tb nfv .
(SAtm (Fun nf np tb)) ∈ staticEnv n,
nfv ∈ freeVarsAtom (Fun nf np tb),
staticBuiltOnChan staticEnv nfv n

` staticBuiltOnChan staticEnv nc n
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The static channel liveness describes entry functions and exit functions. The entry

function maps a term identi�er to a set of names built on the given channel, if those names

are live at the entry of that term identi�er. The exit function maps a term identi�er to a

set of names built on the given channel, if those names are live at the exit of that term

identi�er.

The following diagram illustrates the entry and exit sets of each term id for chan-

nel chn k1 in the server example. Each entry set appears right above its related term

identi�er, and each exit set appears right below its related term identi�er.
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The following diagram illustrates the entry and exit sets of each term id for chan-

nel chn k4 in the server example. Each entry set appears right above its related term

identi�er, and each exit set appears right below its related term identi�er.
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predicate staticChanLive:
static_value_map -> tm_id_map

-> tm_id_map -> name -> term -> bool
where

result: staticEnv entr nc ny exit .
(
(staticBuiltOnChan staticEnv nc ny)
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→ {ny} ⊆ entr (IdRslt ny)
)

` staticChanLive staticEnv entr exit nc (Rslt ny)

* unit: exit n entr t’ staticEnv nc .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n Unt t’)

* makeChan: exit n entr t’ staticEnv nc .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n MkChn t’)

* sendEvt: exit n entr staticEnv nc nsc nm t’ nc .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc nsc

→ {nsc} ⊆ entr (IdBind n)
),
(
staticBuiltOnChan staticEnv nc nm

→ {nm} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc
(Bind n (Atom (SendEvt nsc nm)) t’)

* recvEvt: exit n entr staticEnv nc nr nrc.
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc nr

→ {nr} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc
(Bind n (Atom (RecvEvt nrc)) t’)

* pair: exit n entr staticEnv tc n1 n2 t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
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staticBuiltOnChan staticEnv nc n1
→ {n1} ⊆ entr (IdBind n)
),
(
staticBuiltOnChan staticEnv nc n2

→ {n2} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n (Atom (Pair n1 n2)) t’))

* left: exit n entr staticEnv nc na t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc na

→ {na} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n (Atom (Lft na)) t’))

* right: exit n entr staticEnv nc na t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc na

→ {na} ⊆ entr (IdBind n)
),
entr (termId e) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t

` staticChanLive staticEnv entr exit nc (Bind n (Atom (Rht na)) e)

* function: exit n entr tb np n staticEnv nc t’ nf .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(entr (termId tb) \ {nf, np}) ⊆ entr (IdBind n),
staticChanLive staticEnv entr exit nc tb,
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc
(Bind n (Atom (Fun nf np tb)) t’)

* spawn: exit n entr t’ tc nc staticEnv .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
entr (termId t’) ⊆ exit (IdBind n),
entr (termId tc) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc tc,
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staticChanLive staticEnv entr exit nc t’
` staticChanLive staticEnv entr exit nc
(Bind n (Spwn tc) t’)

* sync: exit n entr staticEnv nc ne t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc ne

→ {ne} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’,

` staticChanLive staticEnv entr exit nc
(Bind n (Sync ne) t’)

* first: exit n entr staticEnv nc na t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc na

→ {na} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n (Fst na) t’)

* second: exit n entr staticEnv nc na t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc na

→ {na} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc
(Bind n (Snd na) t’)

* distinction: exit n entr tl nl tr nr staticEnv nc ns t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(entr (termId tl) \ {nl}) ⊆ entr (IdBind n),
(entr (termId tr) \ {nr}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc ns

→ {ns} ⊆ entr (IdBind n)
),
staticChanLive staticEnv entr exit nc tl,
staticChanLive staticEnv entr exit nc tr,
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entr (termId t’) ⊆ exit (IdBind n),
exit (IdRslt (resultName tl)) ⊆ entr (tmId t’),
exit (IdRslt (resultName tr)) ⊆ entr (tmId t’),
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n (Case ns nl tl nr tr) t’)

* application: exit n entr staticEnv nc na nf t’ .
(exit (IdBind n) \ {n}) ⊆ entr (IdBind n),
(
staticBuiltOnChan staticEnv nc na

→ {na} ⊆ entr (IdBind n)
),
(
staticBuiltOnChan staticEnv nc nf

→ {nf} ⊆ entr (IdBind n)
),
entr (termId t’) ⊆ exit (IdBind n),
(
SAtm (Fun nf’ xp tb) ∈ staticEnv nf

→ exit (IdRslt (resultName tb)) ⊆ entr (tmId t’);
)
staticChanLive staticEnv entr exit nc t’

` staticChanLive staticEnv entr exit nc (Bind n (App nf na) t’)

The following diagram illustrates the graph of the server example, containing only

live �ows for channel chn k1.
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The following diagram illustrates the graph of the server example, containing only

live �ows for channel k4.
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The static path liveness for the higher precision analysis states that a channel is

live for an entire static path found within a graph.
predicate staticPathLive:
graph -> tm_id_map -> tm_id_map -> tm_id

-> (tm_id -> bool) -> static_path -> bool
where
empty: graph entr exit start isEnd .
` staticPathLive graph entr exit start isEnd []

* edge: graph entr exit start middle path isEnd end .
staticPathLive graph entr exit start (λ l . l = middle) path,
isEnd end,
(middle, MSeq, end) ∈ graph,
¬ Set.is_empty (exit middle),
¬ Set.is_empty (entr end)

` staticPathLive graph entr exit start isEnd (path @ [(middle, edge)])

As with the lower precision analysis, the higher precision analysis relies on rec-

ognizing whether or not two paths can actually occur within in a single run of a program.

The static inclusiveness states which paths might occur within the same run of the pro-
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gram. In contrast to the analogous de�nition for the lower precision alysis, the higher

precision de�nition needs to consider paths containing the sending mode. As mentioned

earlier, the path from the synchronization on sending to the synchronization on receiving

is necessary to ensure that all uses of a channel are reachable from the channel’s creation

identi�er. The singularity means that only one of the two given paths can occur in a run

of program. The uncompetitveness means that the two given paths do not compete in any

run of a program.
predicate staticInclusive: static_path -> static_path -> bool where
ordered: path1 path2 .
prefix path1 path2 ∨ path2 path1

` staticInclusive path1 path2

* spawnLeft: path n path1 path2 .
` staticInclusive
(path @ [(IdBind n, MSpwn)] @ path1)
(path @ [(IdBind n, MSeq)] @ path2)

* spawnRight: path n path1 path2 .
` staticInclusive
(path @ [(IdBind n, MSeq)] @ path1)
(path @ [(IdBind n, MSpwn)] @ path2)

* sendLeft: path n path1 path2 .
` staticInclusive
(path @ [(IdBind n, MSend ne)] @ path1)
(path @ [(IdBind n, MSeq)] @ path2)

* sendRight: path n path1 path2 .
` staticInclusive
(path @ [(IdBind n, MSeq)] @ path1)
(path @ [(IdBind n, MSend ne)] @ path2)

predicate singular: static_path -> static_path -> bool where
refl: path .
` singular path path

* notInclus: path1 path2 .
¬ (staticInclusive path1 path2)

` singular path1 path2

predicate uncompetitive: static_path -> static_path -> bool where
ordered: path1 path2 .
ordered path1 path2

` uncompetitive path1 path2
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* notInclus: path1 path2 .
¬ (staticInclusive path1 path2)

` uncompetitive path1 path2

The communication classi�cations are described using the liveness properties, but

are otherwise similar to the lower precision classi�cations.
predicate staticOneToMany: term -> name -> bool where
intro: staticEnv staticComm t graph entr exit nc
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
staticChanLive staticEnv entr exit nc t,
forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticSendId staticEnv t nc)) uncompetitive

` staticOneToMany t nc

predicate staticManyToOne: term -> name -> bool where
intro: staticEnv staticComm t graph entr exit nc
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
staticChanLive staticEnv entr exit nc t,
forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticRecvId staticEnv t nc)) uncompetitive

` staticManyToOne t nc

predicate staticOneToOne: term -> name -> bool where
intro: staticEnv staticComm t graph entr exit nc
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
staticChanLive staticEnv entr exit nc t,
forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticSendId staticEnv t nc)) uncompetitive,

forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticRecvId staticEnv t nc)) uncompetitive

` staticOneToOne t nc

predicate staticOneShot: term -> name -> bool where
intro: staticEnv staticComm t graph entr exit nc .
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
staticChanLive staticEnv entr exit nc t,
forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticSendId staticEnv t nc)) singular
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` staticOneShot t nc

predicate staticOneSync: term -> name -> bool where
intro: staticEnv staticComm t graph entr exit nc .
staticEval staticEnv staticComm t,
staticFlowsAccept staticEnv graph t,
staticChanLive staticEnv entr exit nc t,
forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticSendId staticEnv t nc)) singular,

forEveryTwo (staticPathLive graph entr exit (IdBind nc)
(staticRecvId staticEnv t nc)) uncompetitive

` staticOneSync t nc

4.1 Higher Precision Soundness Proof Strategy

To prove soundness of the static communication classi�cation, it should be possi-

ble to use previous techniques of generalizing propositions over pools and other semantic

components, along with �nding equivalent representations of propositions that vary in

their inductive subcomponent. One thing that will make carrying out the formal proof

particularly tricky is that dynamic paths in the dynamic semantics need to correspond to

static paths from the trimmed graphs, which might also contain sending �ows, instead of

the spawning �ows of the dynamic paths. The correspondence between these dynamic

paths and static paths is not bijective, as it is for the lower precision analysis. However,

�nding a satisfactory correspondence for each dynamic and static path is critical for prov-

ing soundness.

Essentially, it will be necessary to show that static properties that hold for some

static path are preserved for corresponding dynamic paths. However, in the higher preci-

sion analysis these paths correspond modulo the channel of interest. An an outline of the

derivation of soundness of one-shot classi�cation demonstrates the strategy so far.
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staticOneShotSound

staticPathLiveSound staticInclusiveSound staticSendIdSound

staticFlowsAcceptPoolPreserved

staticEvalPoolPreserved

staticEvalSound

staticReachableSoundstaticInclusivePreserved

strictPrefixPreserved

staticChanLivePoolPreserved

staticBuiltOnChanSound

theorem staticOneShotSound: t0 nc pathc .
staticOneShot t0 nc

` oneShot t0 (Chan pathc nc)

The theorem for soundness of one-shot classi�cation depends on correlating dy-

namic paths with static paths.
predicate pathsCorrespond: dynamic_path -> static_path -> bool where

empty: pathsCorrespond [] []

* seq: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DSeq n])
(staticPath @ [(IdBind n, MSeq)])

* spawn: path staticPath n .
pathsCorrespond path staticPath
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` pathsCorrespond
(path @ [DSpwn n])
(staticPath @ [(IdBind n, MSpwn)])

* call: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DCll n])
(staticPath @ [(IdBind n, MCll)])

* return: path staticPath n .
pathsCorrespond path staticPath

` pathsCorrespond
(path @ [DRtn n])
(staticPath @ [(IdRslt n, MRtn)])

predicate dynamicBuiltOnChanVal val -> chan -> bool where
chan: chan .
` dynamicBuiltOnChanVal (VChn chan) chan

* closure: env c atom .
dynamicBuiltOnChanEnv env chan

` dynamicBuiltOnChanVal (VClsr atom env) chan

and dynamicBuiltOnChanEnv: environment -> chan -> bool where
intro: env n v chan .
env n = Some v,
dynamicBuiltOnChanVal v chan

` dynamicBuiltOnChanEnv env chan

predicate pathsCorrespondModChan:
tm -> chan -> dynamic_path -> static_path -> bool

where

chan: t0 pathc nc pathsfx stt staticPath comm .
pathsCorrespond ((DSeq nc) # pathsfx) staticPath

` pathsCorrespondModChan
t0 (Chan pathc nc)
(pathc @ (DSeq nc) # pathsfx) staticPath

* send: t0 pool comm pathr nr pathsfx stt paths ns nse tsy envsy stacksy
nre try envry stackry chanc chan staticPathre staticPathsfx .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
pool paths = Some (Stt (Bind ns (Sync nse) tsy) envsy stacksy),
pool pathr = Some (Stt (Bind nr (Sync nre) try) envry stackry),
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{(paths, chanc, pathr)} ⊆ comm,
envry chan nr = Some vry
dynamicBuiltOnChanVal vry chan,
pathsCorrespondModChan t0 chan paths staticPathpfx,
pathsCorrespond pathsfx staticPathsfx

` pathsCorrespondModChan t0 chan
(pathr @ (DSeq nr) # pathsfx)
(staticPathpfx @ [(IdBind ns, MSend nse), (IdBind nr, MSeq)] @

staticPathsfx)

Additionally the soundness theorem follows from the soundness of static path

liveness, the soundness of static inclusiveness, and the soundness of sending identi�er

classi�cation. The reasoning about the sending identi�er classi�cation is identical to that

of the lower precision analysis, but the reasoning for the former two is signi�cantly more

complicated and not yet completed. The complication arises from the correlation between

dynamic paths and static paths. The proofs depend on �nding a static path that depends on

a given dynamic path. In the lower precision analysis the correlation was straightforward.

There was only one possible static path to choose for it to correlate with the given dynamic

path. In the higher precision analysis, the relationship between the two kinds of paths is

not so simple, and �nding a description of the static path that correlates with the dynamic

path is more challenging.

The proposition isSendPath pool’ (Chan pathc nc) path’ is derived by unfold-

ing the de�nition of oneShot. It is generalized by pool’ path’ = Some (Stt t’ env’

stack’),

dynamicBuiltOnChanState (Stt t’ env’ stack’) (Chan pathc nc) in the soundness of

static path liveness. Since the static chan liveness depends on names being statically built

on the channel, the soundness theorem also depends on the soundness of static built-on-

channel classi�cation with respect to the dynamic built-on-channel classi�cation.
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predicate dynamicBuiltOnChanStack: contin list -> chan -> bool where
env: envk chan nk tk stack’ .

dynamicBuiltOnChanEnv envk chan
` dynamicBuiltOnChanStack (Ctn nk tk envk # stack’) chan

* stack: envk chan nk tk stack’ .
dynamicBuiltOnChanStack stack’ chan

` dynamicBuiltOnChanStack (Ctn nk tk envk # stack’) chan

predicate dynamicBuiltOnChanState: state -> chan -> bool where
env: env chan t stack .
dynamicBuiltOnChanEnv env chan

` dynamicBuiltOnChanState (Stt t env stack) chan

* stack: stack chan t env .
dynamicBuiltOnChanStack stack chan

` dynamicBuiltOnChanState (Stt t env stack) chan

lemma staticPathLiveSound: t0 pool comm path t env stack
staticEnv staticComm entr exit nc graph isEnd pathc .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
pool path = Some (Stt t env stack),
dynamicBuiltOnChanState (Stt t env stack) (Chan pathc nc)
staticEval staticEnv staticComm t0,
staticChanLive staticEnv entr exit nc t0,
staticFlowsAccept staticEnv graph t0,
isEnd (tmId t)

` exists staticPath .
pathsCorrespondModChan pool comm (Chan pathc nc) path staticPath

∧ staticTraceable graph entr exit (IdBind nc) isEnd staticPath

lemma staticInclusiveSound: t0 pool comm staticEnv entr exit nc graph
staticComm

path1 stt1 pathc staticPath1 path2 stt2 staticPath2 .
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool comm,
staticChanLive staticEnv entr exit nc t0,
staticFlowsAccept staticEnv graph t0,
staticEval staticEnv staticComm t0,
pool path1 = Some stt1,
pathsCorrespondModChan pool comm (Chan pathc nc) path1 staticPath1,
staticTraceable graph entr exit
(IdBind nc) (staticSendId staticEnv t0 nc) staticPath1,

pool path2 = Some stt2,
pathsCorrespondModChan pool comm (Chan pathc nc) path2 staticPath2,
staticTraceable graph entr exit
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(IdBind nc) (staticSendId staticEnv t0 nc) staticPath2
` staticInclusive staticPath1 staticPath2

Additional lemmas are needed to prove the soundness of static path liveness.

These lemmas include preservation of the correspondence of paths, preservation of the

static chan liveness, and soundness of a name statically built on a static channel.

lemma pathsCorrespondModChanPreservedSnoc:
t0 chan path staticPath site step .
pathsCongruentModChan t0 chan path staticPath,
pathsCongruent [site] [step]

` pathsCongruentModChan t0 chan (path @ [site]) (staticPath @ [step])

lemma staticChanLivePoolPreserved: staticEnv entr exit xc t0 pool’ comm’ .
staticLiveChanPool staticEnv entr exit xc [[] -> (Stt t0 [->] [])],
staticEval staticEnv staticComm t0,
star dynamicEval [[] -> (Stt t0 [->] [])] {} pool’ comm’

` staticLiveChanPool staticEnv entr exit xc pool’

lemma staticBuiltOnChanSound: v pathc nc env n pool path
t’ env’ stack’ staticEnv staticComm pool graph t0 .
dynamicBuiltOnChanVal v (Chan pathc nc),
env n = Some v,
pool path = Some (Stt t’ env’ stack’),
staticEvalPool staticEnv staticComm pool,
staticChanLivePool staticEnv entr exit nc pool,
staticFlowsAcceptPool staticEnv graph t0 pool

` staticBuiltOnChan staticEnv nc n

The formal proofs for these lemmas are under active development at the time of

this writing.
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Chapter 5

Conclusion

In this thesis, I developed a formal theory for a subset of Concurrent ML. The main

contributions consist of formal speci�cations of dynamic and static evaluation, dynamic

and static communication classi�cation, dynamic and static channel liveness, and various

related concepts. The formal speci�cations enabled the creation of mechanically checked

formal proofs of soundness of static evaluation and static communication classi�cation.

Through the process of developing these formal proofs, I noticed a number of important

reasoning patterns - generalization of propositions to related concepts on alternate struc-

tures; skewing the direction of induction to di�erent subparts of structures; changing the

direction of inference from forward to backward. This work is a small contribution based

on a signi�cant amount of previous related work. Additionally, there are many ways for

this work to be extended.

5.1 Related Work

There has been much research on both dynamic and static analysis of concurrent

languages. The formal communication classi�cation analysis and soundness proofs in this

work are based on the analysis and proofs of Specialization of CML message-passing primi-

tives by Reppy and Xiao [17]. The mechanization of concurrency analyses is prevalent, and

mechanization is typically the main goal when developing the analyses. Examples include
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type checkers in compilers, model checking tools for concurrency models, such as Lustre

[9] and Kind [20], and also veri�cation libraries in proof assistants, such as A�eldt et al’s

Coq library [2]. These systems can verify certain properties of concurrency programs or

models, but they don’t make any guarantees about the analysis itself. Rather than focus

on mechanizing the analysis, this work has focused on mechanizing the theory of anal-

yses for concurrent languages, i.e. the meta-theory of concurrency. There have been a

number of works on the meta-theory of Concurrent ML, such as the work of Reppy and

Xiao, Nielson et al [15], Kobayashi et al [11], and Gasser et al [7]. There has been relatively

little work to mechanize theories of Concurrent ML; however, there has been much work

in the mechanization of the theories of π-calculus [13], such as the work by Gay [8] and

Melham [12].

5.2 Future Work

The formal syntax, semantics, and communication analysis of this work form the

basis of a framework for studying Concurrent ML events, synchronization mechanisms,

and their applications. These language features enable the construction of reactive pro-

grams, which have separation of parts that are conceptually distinct, yet still depend on

each other.

This work has kicked o� the framework with a formal communication analysis

that has practical applications in aiding optimizations for parallel computation. In the

future, additional analyses could be built on the existing semantics, in order to verify the

correctness of language extensions or optimizations. Extending the semantics to handle

event combinators for choosing events, sequencencing events, guardining events, among
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others, would be an important next step.

Concurrency is a double edged sword. Without speci�cation of ordering, pro-

grams may describe their behavior more clearly or allow parallelism for faster execution.

On the other hand, unspeci�ed orderings may also lead to nondeterministic behavior,

which may be not be wanted. To gain the bene�ts of concurrency without its hindrance,

the language could be extended with syntax to identify blocks of code that are required

to be deterministic, along with a corresponding static analysis that checks if such code is

actually deterministic. The determinism analysis could rely on the static communication

analysis to ensure that all synchronized receiving events receive from at most one channel,

and that channel is sent on by at most one thread, and that thread is also deterministic.

Other analyses could aid optimizations for incremental computation [1]. One possible op-

timization could transform a program into one that checks for altered dependencies and

only recomputes the data that depends on altered dependencies.
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