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1. Abstract  

With the advent of 5G, IoT and 4k videos, online gaming, movie streaming and other data 

intensive applications, the demand for data is sky rocketing. Due to this surge in data, the load on 

the network increases. This heightened network load causes degradation in network 

performance. Which can lead to the customer Service Provider (CSP)s loosing revenue if the 

Service Level Agreement (SLA) are not met.  

This report describes how machine learning techniques such as tit for tat can be applied to 

telecom networks. Machine learning applied to telecom networks help detect congestion and 

maintain SLAs while increasing yield (revenue). 

Several experiments are run with varying conditions on the network, such as low, medium and 

high loads; different levels of SLA for bandwidth and delay. Once the original conditions are 

tested without applying any smart blocking techniques, machine learning is applied to detect 

congestion in the network and block flows to maintain SLA and increase the number of flows 

that generate revenue. 
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2. Literature Review 

The 5G system would increase the traffic volumes by at least a 100-fold (Olwal et al., 2016) with 

varying use of the network and QoS of multimedia applications. It is expected that the internet 

download speeds for each user would be a hundred Mbps and there would be about a hundred 

billion devices connected to the network (Olwal et al., 2016). 

Video is one of the major bandwidth (Chen et al., 2014) utilizing application in the network. 

Dropping low priority packets prove to provide a better-Quality experience (Caenegem et al., 

2008) to customers as in case of videos, which are the major bandwidth utilizers in the network. 

Caenegem et al. use an algorithm to assign priorities to packets based on the content i.e. packets 

containing video information would be considered more important than others like image data in 

the video stream. By using this approach, they were able to obtain better Quality of experience. 

Congestion control is one of the poor performing areas (Sharma & Kumar, 2016) in ad-hoc 

wireless mobile communication systems. With growing traffic, the delay increases and there is a 

significant increase in the number of packets dropped (Sharma & Kumar, 2016), which leads to a 

poor QoS.  

Performance analysis of delay and latency (Sadeghi & Barati, 2012) is a critical aspect for 

providing a good QoS. Sadeghi & Barati compare the network queueing performance based on 

Poisson distribution and Exponential distribution on OPNET (a simulation tool). It was observed 

that queuing the traffic in an exponential distribution proved to provide better QoS (Sadeghi & 

Barati, 2012) than letting the traffic flow in a normal fashion. It is expected that routing the 

traffic according to an exponential distribution should provide a better performance as well. 
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3. Architecture 

The following diagram shows the process flow of the experiments, data collection and analysis 

involved in this report. It consists of experiment components i.e. the network, the controller and 

the tools used (Iperf and ping) showed in blue. While the transition phase of data collection and 

storing is showed in grey. The analysis phase is shown in green. 

 

Figure 1: Architecture diagram 

The test is performed on a virtual Software Defined Network (SDN) topology created on 

Mininet. Working with POX controller set to make the switches work as Layer 2 forwarding 

devices.  
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Bandwidth and delay are 2 parameters taken into consideration for measuring network 

performance SLAs. IPerf is used (between two randomly selected hosts) to generate random data 

with varying loads in the network and measure the bandwidth. While ping is used to measure the 

delay in between the same two nodes (as were selected for IPerf) in the network. 

3.1. Mininet 

Mininet is useful for interactive development, testing, and demos, especially those using 

OpenFlow and SDN. OpenFlow-based network controllers prototyped in Mininet can usually be 

transferred to hardware with minimal changes for full line-rate execution. 

Mininet creates a realistic virtual network, running real kernel, switch and application code, on a 

single machine (VM, cloud or native), in seconds, with a single command. 

 

Figure 2: Mininet 

3.2. POX SDN Controller 

POX Controller is a simple python based open flow controller. It comes as the default controller 

for Mininet. Its main advantage is that it is simple and light weight. Implying it is not very useful 

for complex packet processing. 
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Figure 3: POX SDN Controller 

POX started life as an OpenFlow controller, but can now also function as an OpenFlow switch, 

and can be useful for writing networking software 

in general. POX officially requires Python 2.7 (though much of it will work fine with Python 

2.6), and should run under Linux, Mac OS, and Windows. 

3.3. IPerf 

IPerf is a tool to determine the maximum bandwidth that can be achieved in between two 

devices. It can generate pseudo random data at a given rate and test for bandwidth. 
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Figure 4: Iperf 

It supports tuning of various parameters related to timing, buffers and protocols (TCP, UDP, 

SCTP with IPv4 and IPv6). For each test it reports the bandwidth, loss, and other parameters. 

3.4. Network Topology 

 

Figure 5: Virtual network topology 

 

Distributed hybrid tree- The virtual topology is built with 2 central routers (currently working 

as just Layer 2 devices) connected to each other. Which are in turn connected to a central switch 

each. Each of the central switches are in turn connected to 10 other switches. And each switch is 

connected to 16 hosts. Thus, creating a sub-network of 160 hosts on each side of the network 

(subnet). Totaling up to 320 hosts in the entire network. 
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The choice of the network is based on creating a balanced network with sufficient hosts to 

generate enough load in the network.  
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4. Methodology 

The test is performed by generating flows that would generate load on the network to purposely 

degrade network performance. If there are flows that do not meet the SLA, flows would start to 

begin getting blocked. Thus, clearing up the network for successive flows to meet the SLA. Once 

flows start meeting the SLA, more flows would be generated, keeping a balance of flows 

meeting the SLA. 

A coefficient is used in this algorithm for generating flows. The value of the coefficient is used 

in a probabilistic approach to generate a flow. A flow will probably be generated based on the 

value of the coefficient as the probability of generating the flow. 

4.1. Creating a topology 

A virtual topology is created in Mininet using the Mininet.Topo class as a skeleton. On which 

various network devices such as switches are added using the self.addSwitch() method. Followed 

by addition of links joining the switches as described in the topology section above. Based on the 

topology configuration chosen, switches are added, linked and configured. Varying parameters 

such as meshed network of switches, or different subnets in the network, number of networks 

will result in network topology being generated differently. 

Finally, all the hosts are added. A suitable IP addressing scheme is chosen based the parameters 

chosen before initializing the topology. Once that is complete, the configuration and names are 

dumped on to the host and added to the network topology.  
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Figure 6: Code to create topology 

After the topology has been created, the network is started, and all the configurations are dumped 

on to the devices. 

4.2. Generating flows 

After a certain interval of time, a new thread is created that creates a new instance of an object 

and calls a function that selects 2 random hosts from the list of hosts in the network. One from 

the first network and the other from the 2nd. The first hosts is made a IPerf server and the other 

host is made as a client. This is done to stress the link between the two routers. The duration and 

target bandwidth is determined as the parameters while initiation of the program. Along with that 

ping is performed for the same durations as the IPerf.  
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4.3. Collecting data 

The result of IPerf and ping are taken every certain interval and put into individual files along 

with the timestamp for the host pairs. If the hosts pair selected are h11 and h21. For IPerf the 

files are names as h11-h21.iperf.dat. While the files generated by ping are named as h11-

h21.ping.txt. A few sample files are attached below: 

Table 1: h1001-h2040.iperf.dat 

20:41:42 ------------------------------------------------------------ 

20:41:42 Client connecting to 10.0.1.40, TCP port 5001 

20:41:42 TCP window size: 85.3 KByte (default) 

20:41:42 ------------------------------------------------------------ 

20:41:42 [  3] local 10.0.0.1 port 59018 connected with 10.0.1.40 port 5001 

20:41:43 [ ID] Interval       Transfer     Bandwidth 

20:41:43 [  3]  0.0- 1.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:44 [  3]  1.0- 2.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:45 [  3]  2.0- 3.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:46 [  3]  3.0- 4.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:47 [  3]  4.0- 5.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:48 [  3]  5.0- 6.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:49 [  3]  6.0- 7.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:50 [  3]  7.0- 8.0 sec  1.91 MBytes  16.0 Mbits/sec 

20:41:50 [  3]  0.0- 8.0 sec  15.3 MBytes  16.0 Mbits/sec 
Table 2: h1001-h2040.ping.txt 

 

20:41:42 PING 10.0.1.40 (10.0.1.40) 56(84) bytes of data. 

20:41:42 64 bytes from 10.0.1.40: icmp_seq=1 ttl=64 time=0.091 ms 

20:41:43 64 bytes from 10.0.1.40: icmp_seq=2 ttl=64 time=0.189 ms 

20:41:44 64 bytes from 10.0.1.40: icmp_seq=3 ttl=64 time=0.139 ms 

20:41:45 64 bytes from 10.0.1.40: icmp_seq=4 ttl=64 time=0.077 ms 

20:41:46 64 bytes from 10.0.1.40: icmp_seq=5 ttl=64 time=0.048 ms 

20:41:47 64 bytes from 10.0.1.40: icmp_seq=6 ttl=64 time=0.067 ms 

20:41:48 64 bytes from 10.0.1.40: icmp_seq=7 ttl=64 time=0.059 ms 

20:41:49 64 bytes from 10.0.1.40: icmp_seq=8 ttl=64 time=0.200 ms 

20:41:50  

20:41:50 --- 10.0.1.40 ping statistics --- 

20:41:50 8 packets transmitted, 8 received, 0% packet loss, time 7126ms 

20:41:50 rtt min/avg/max/mdev = 0.048/0.108/0.200/0.057 ms 
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4.4. Parsing the results 

Once all the data collection is complete, all the files generated are processed to extract relevant 

information and stored along with the exact timestamp as a list.  

For example, in the first file for reading iperf.dat it will extract the host pair from the file name 

and store the names in memory. It will read the time data and store it in a new object created for 

that row, set the host pair to the host pair for that file which is in memory. Next it will extract the 

bandwidth and map it to the same object. It will add the object to the list and then move on to the 

next row. 

Similarly, for the ping.txt file, it extracts the host pair from the file name. Get the timestamp and 

rtt from the last part and add them to a list. 

4.5. Dumping to the database 

Once the data is extracted, the java program when called with the command line argument of 

load, generates a unique BATCH_ID for that batch, loops through all the data that was extracted, 

attaches the unique BATCH_ID and prepares SQL insert statements. The statements are 

executed as a batch for quick loading into the database. A count of the rows inserted for each file 

is accumulated. At the end of the batch, the accumulated counts for each table is kept in a 

separate table along with the BATCH_ID to keep track of the number of rows inserted in each 

batch. Upon completion, the java program returns the BATCH_ID. 

Each batch has a set value of link bandwidth, SLA, session parameters (duration and target 

bandwidth). 

Once all the batches for a session are complete, they are inserted into another table called 

sessionmap along with the session link bandwidth, SLA, session name made from the session 
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parameters (duration, target bandwidth) and the number of time the session ran (i.e. no 

coefficient, learning or applying phase).  

After loading to the database, the data is normalized to the closest 1 second timestamp. 

4.6. Generating graphs 

The data that is loaded is normalized to a 1 second interval. This gives flexibility to compare the 

values in a sequential manner. 

 

Figure 7: Joins in database for creating graphs 

Views are created to get the required information from each table. Which are joint based on 

batch_id. 

BandwdthSLA is a view that contains the max, min bandwidths, the number of flows that met 3 

levels of SLA for bandwidth. Similarly, DelaySLA contains the max, min delays, the number of 

flows that met 3 levels of SLA for delay.  

The table batch_run is populated with the number of rows inserted into each table, the number of 

flows dropped, and the number of flows blocked. While sessionmap contains a mapping of each 

batch to a session, e.g. a session might be DoubleSLA2x1000 indicating that the session was run 

with the SLA set to double of what was usually considered. 2 indicated that the test was run for 

the 2nd time i.e. the applying phase after 0 (no coefficient) and 1(learning phase). While 1000 

indicated that there were 1000 flows generated in the session.  
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5. Experiments 

The experiments were different values of intervals, bandwidth of the links, target bandwidth, 

durations etc. 

5.1. Intervals 

Initially it was anticipated that there might be delays in collecting metrics and the interval was 

set to be at 10s. Implying a new flow would be generated after 10 seconds. Network statistics 

would be collected every half interval time, i.e. 5 seconds.  

After carefully inspecting all the data collected, it was found that the data collected was precise 

to 1 second (with variations in a few micro seconds). So, the interval was set to 2 seconds and 

the network statistics were taken every 1 second. 

5.2. Duration 

The tests were run with several different values for duration. Ranging from 4 to 32 seconds. 

Whenever a flow is generated it would be run for that amount of duration. Implying there would 

duration/interval amount of flows running at the same time during the entire test, except the 

initiation and tear down of the batch. For example, let’s say we take interval to be 2 and duration 

to be 8. At t=0 a new flow would be generated. After 2 seconds another flow would be 

generated, at t=2, taking the current number of flows to 2. Again after 2 seconds, another flow 

would be generated, at t=4, taking the total number of flows to 4, and so on. After the end of the 

8 seconds, the first flow would be teared down, and a new flow be generated. Keeping the total 

number of flows to be constant at duration/interval. 



14 | P a g e  

 

Table 3: Duration of flows with time 

 

5.3. Bandwidth 

The target bandwidth is varied throughout the tests to generate different amounts of load in the 

network. Bandwidths are kept as multiples of 16 Mbits/sec. Ranging from 16 Mbits/sec to 128 

Mbits/sec. 

The product of duration and bandwidth gives the constant amount of load that is always present 

in the network.  
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6. Results 

6.1. Revenue Increase 

The following table shows the comparison for percentage of flows that meet the SLA for 

different load conditions along with the flows that generate revenue with the experiments being 

run with the SLA set to bandwidth of 1Mb/sec and delay set to 100 msec. Along with the 

different phases of the experiment, i.e. without any blocking coefficient, then with learning the 

coefficient by applying a blocking factor to decide the probability of generating the next flow 

and modifying the value of the coefficient based on the success of the current flow. And that 

being followed by the applying phase where the coefficient is fixed to a set value, which is the 

average value of the coefficient in the learning phase. 

Table 4: SLA Comparison for high load flows 

 

As can be seen from the table above, with heavy loads having load factor of 512 Mb (8sec * 64 

Mb/sec or 16sec * 32 Mb/sec) or higher, when no blocking is applied, only 17.69 generate 

revenue for 8x64 while no flows generate revenue for 16x32 and 16x64. After applying the 

machine learning technique, to learn an optimal value of the coefficient, the flows that generate 

revenue are increased to 52.61 (197.31%), 57.7(100%) and 50.02(100%) respectively. After 

applying this blocking coefficient, we see a further improvement in the flows that meet the SLA 
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and generate revenue. The increase in the number of flows that generate revenue being 58.26 

(229.33%), 77.73(100%) and 61.93(100%) respectively. 

Although it works great for higher loads, it doesn’t increase significant revenue with lower loads 

as there isn’t enough congestion in the network. As can be seen in the table below which again 

compares the number of flows that meet the SLA for bandwidth and delay. 

Table 5: SLA Comparison for low load flows 

 

From the table above, it is seen that with light loads having load factor of 64 Mb (4sec * 16 

Mb/sec) the, when no blocking is applied, almost all flows meet the SLA 994.75 generate 

revenue. For 4x32 there are 713.38 flows that generate revenue and for 8x16 there are 173.21 

flows that generate revenue. For 8x32 there are only 15.48 flows that generate revenue. After 

applying the machine learning technique, to learn an optimal value of the coefficient, the flows 

that generate decreased to 991.79(-0.02 %) while for 4x32 the flows that generate revenue 

increased to 730(2.33 %). While for 8x16 the flows that generate revenue increased to 

199.54(15.20 %) and 40.92(196.45 %) for 8x32. After applying this blocking coefficient, we see 

a improvement in the flows that meet the SLA and generate revenue for 4x32 and 8x16. The 

increase in the number of flows that generate revenue being 734.05 (2.90 %) and 213.03 (22.99 
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%) respectively. While for 4x16 and 8x32, it decreased from the learning phase, to 991.79(-0.30 

%) for 4x16 and 40.92(164.34 %) for 8x32. 

With heavy loads we see more flows meeting the SLA. After the algorithm was applied, we see a 

significant improvement. 

6.2. Doubling SLA 

Like the previous table, the following table shows the comparison for percentage of flows that 

meet the SLA for different load conditions along with the flows that generate revenue with the 

experiments being run with the SLA set to bandwidth of 1Mb/sec but the delay set to 50 msec. 

Table 6: SLA Comparison for double SLA 

 

After increasing the set SLA for delay, we see similar results. The number of flows that are 

successful have increased significantly whenever the flows run for more than 8seconds. When 

the flows are run without any blocking coefficient, the number for flows that generate revenue 
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are 994.01 for 4x16, 729.37 for 4x32, 152.82 for 8x16, 12.03 for 8x32 and 19.13 for 8x64. While 

for 16x32 and 16x64 there are no flows that generate revenue when no blocking is used.  

After applying the machine learning algorithm, to learn the value of the coefficient, the number 

of flows that generate revenue is decreased by a small fraction to 993.77(-0.02 %) for 4x16 while 

for the rest of the cases, the number of flows that generate revenue are increased to 742.22(1.76 

%), 425.41(167.86 %), 171.62(1326.60 %), 105.13(449.56 %), 74.46(100.00 %), 50.51(100.00 

%) respectively. 

After applying this learned coefficient, the number of decreased for the 4x16 to 992.77(-0.12 %), 

while the number of flows that generate revenue for the rest of the cases increased to 748.62(2.64 

%), 569.05(258.30 %), 189.68(1476.72 %), 127.82(568.17 %), 67.37(100.00 %), 52.57(100.00 

%) respectively.  

6.3. Delay comparison 

The following table shows the comparison of average bandwidth; and minimum, average and 

maximum delay in the network for different cases of length and bandwidth.  

Table 7: Delay comparison 

 

As seen from the table above, the average delay has gone down with blocking in both cases of 

learning the coefficient and applying the value of the coefficient in the algorithm. 
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6.4.  Coefficient Values 

The following diagrams show the charts for values of coefficient for 3 different scenarios. 

The first chart shows the values of coefficient stacked on top of each other for different values of 

length and bandwidth. 

 

Figure 8: Graph showing value of coefficients over time 
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This graph shows the values of the coefficients at the initial few times of the experiment being 

performed. Looking at the graph in the learning phase, the value of the coefficient keeps on 

decreasing as the load keeps on increasing over time.  

However, if we look over a wide range of time as in the graph below: 

 

Figure 9: Graph showing value of coefficients over long range 

After looking at the coefficient in the learning phase, over a wide range of time, the coefficient 

eventually saturates to a stable value, average of which is applied in the 3rd phase which is the 

applying phase. Where the average value of the coefficient from the learning phase is used as the 

probability of generating new flows. 

For low load such as 8x64, value of the coefficient fluctuates from the mid to the higher end 

indicating that the network frequently changes clears up and gets blocked again. 
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We can see the graph as below. 

 

Figure 10: Graph showing value of coefficients for duration: 8sec bandwidth: 64 Mb/sec 

For higher loads such as 16x32 the graph is below: 
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Figure 11: Graph showing value of coefficients for duration: 16sec bandwidth: 32 Mb/sec 

 

In this case the value of the coefficients dips to a low value as there are more flows running 

simultaneously in the network. And as we keep blocking the flows, the value of the coefficient 

increases and then comes down again. 

 

A similar case is observed for loads such as 16x64 
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Figure 12: Graph showing value of coefficients for duration: 16sec bandwidth: 64 Mb/sec 

6.5. Extreme cases 

The following table shows the comparison of the number of flows that meet the SLA for 

bandwidth and delay for extreme cases of length and target bandwidth. 

 

When the experiment is repeated with extreme values of length and bandwidth, it is seen that the 

coefficient doesn’t help much.  
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The number of flows that generate revenue without applying blocking are 500.5 for 1x256 and 

91.45 for 256x1. While learning the optimal value of the coefficient, the number of flows that 

generate revenue are 500.5 for 1x256 which is the same without applying any blocking. While 

for the 256x1 no flows generate any revenue. While applying the coefficient to the network, the 

number of flows that generate revenue are increased to 101.96(9.1 %) for 256x1 while it remains 

the same for 1x256. 

It is seen that fewer the flows running simultaneously in the network with very high target 

bandwidth, the network performs better. Unlike in the case of very high number flows running 

with very low target bandwidth. In which case the network performance is completely degraded.  
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7. Discussion 

7.1. Limitations 

The experiments were performed on a Linux machine installed on a Personal Computer (PC) 

which have limited amount of resources at its disposal.  

The database is shifted to the cloud, which does reduce the load on the computer, but still is not 

very efficient to handle high loads of data being generated in the virtual network. 

This experiment might be run on super computers/ research computers with much higher 

computing capability. 

7.2. Algorithm Improvements 

The experiments were tested with only one strategy – tit for tat, which works in increasing 

revenue. But might not be the best algorithm that might be applied to increasing revenue. 

One more improvement could be tit-tit-tat-tat i.e. modifying the coefficient only if there are 2 

consecutive flows that don’t meet the SLA. And, increasing the coefficient if there are 2 

successful flows that meet the SLA. 

Similarly, more experiments can be run with extending the learning phase to more observations 

in network behavior.   
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8. Learnings 

8.1. Moving from VM to local installation of Ubuntu 

As the size of the virtual topology kept increasing and the load on the network started increasing, 

VM was unable to handle all the load by itself. There were several instances where the CPU was 

completely occupied. Since in a VM the resources are shared with the host PC, there leaves a 

significant reduction in the amount of resources available for Mininet to keep the network 

occupied. 

8.2. Moving the local SDN controller and database to the cloud 

To ease up the resources even further, the SDN controller was tried to move to the cloud on 

Amazon Web Services (AWS) cloud. It was a simple transition. POX controller was cloned from 

github onto amazon Linux installation on AWS. Security measures taken to allow only hosts 

from only the local PC’s IP address and the port for the POX controller that is 3366. 

The database server was one bulky application that consumed a lot of processing power and 

memory. This was also moved to the cloud. Initially it was tried to move onto Amazon 

Relational Database Services (RDS), however there were issues connecting to Amazon RDS 

from java. This was mainly because Amazon RDS gives a single database even on Microsoft 

SQL Server. To overcome this issue, he database was moved to Microsoft Azure. Which allowed 

creating of multiples databased on a single server, just like on a physical device. 

8.3. Moving back SDN controller to the local machine 

It was observed that communicating with the SDN controller on the cloud introduced lot of delay 

in the network. So, the controller was moved back to the local machine on ubuntu alongside 

Mininet. 
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However, the database server continued to stay on the cloud, as the database interaction of the 

program was at the end of the program. And at times during the generation of a new flow. 

8.4. Moving the installation from a computer running on i5 to i7 processor 

Initial tests were run on a 4th gen i5 processor that had a 3MB cache memory. Which lead to a lot 

of packets being dropped. The processor couldn’t process all the packets that were generated in 

the network. 

8.5. Deciding on the conditions for changing in the value of the coefficient 

Tit for tat was applied to the value of the coefficient. In the learning phase, the coefficient was 

started with a value of 1. If a flow did not meet the SLA, the value of coefficient would be 

decreased by multiplying it with 0.9. If later a flow satisfied the SLA, the value of the coefficient 

would be multiplied by 1.1. This led to the value of the coefficient going down to 0 with heavy 

loads and no new flows being generated, which implied the value of the coefficient would never 

increase. So, a bottom limit of 0.1 was set and an upper limit was set to 1 for keeping a limit on 

the ever-increasing value of the coefficient for lower loads.  
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9. Summary 

The virtual network topology has been set up in Mininet with 160 hosts on each side of the 

network, with 16 hosts connected to a switch. Totaling up to 320 hosts in the entire network.  

Flows are generated between a randomly chosen host from the first network to another randomly 

chosen host in the second network. Thus, making the all the packets flow through the link 

between the central routers and congesting that link.  

Different sessions have been run with different values of duration and target bandwidth to test 

different load conditions on the network. Initially experiments were run with each simulation 

generating 100 flows each. It showed how machine learning helped identify congestion and help 

meet SLA for flows in the network and increase number of flows that generate revenue. To 

verify the results further, the experiments were run with 500 flows and later with 1000 flows in 

each simulation. 

Once the session was run without any blocking coefficient, all the sessions were run again with 

tit for tat algorithm to learn an optimistic value of blocking coefficient. And this value was later 

used to apply the blocking coefficient on the network to maintain SLA and increase the number 

of flows generating revenue. 
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Applying tit for tat, the number of flows that meet the SLA, increased. This has been observed 

mostly with high loads which have higher changed of congestion and the network performance 

degrading. This is most prominently seen in the sessions with 16x64, where the revenue earned 

without applying the algorithm was 0, as there were no flows that met the SLA. After applying 

the algorithm to learn the coefficient, the number of flows that generate revenue was increased to 

50.02 (100 %). And while applying this learned value of the coefficient to generate flows, the 

revenue increased further to 61.93 (100 %).  
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In extreme cases, the fewer the number of flows, the better of the performance. Like for example 

in the case of duration =1 second and bandwidth=256Mb/sec, 500 flows generate revenue. As 

the number of flows are increased, the performance degrades a lot. For example when the 

duration was made to 256 seconds (128 flows running simultaneously), the number of flows 

generating revenue reduced to 0.  

Although the results show an improvement, with applying the coefficient, it might not be the best 

approach. Future work, focusing on getting a better value of blocking coefficient might prove to 

be better.   
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11. Appendix 

11.1. Folder structure 

File Type File Name 

Folder archive 

Python Script Properties.py 

Shell Script call.ksh  

Shell Script initiateSession.ksh 

Java Executable monitoring.jar  

Python Script nIperfSessions.py 

Shell Script results.ksh  

Text File dbcon.properties 

 

The package to create virtual SDN topology in Mininet, generate and collect data consists of 

several Python scripts, Shell scripts and a java executable file. The source codes for all the files 

can be found at https://github.com/nabarunjana/mininet-test  

https://github.com/nabarunjana/mininet-test/blob/master/Properties.py
https://github.com/nabarunjana/mininet-test/blob/master/call.ksh
https://github.com/nabarunjana/mininet-test/blob/master/initiateSession.ksh
https://github.com/nabarunjana/mininet-test/blob/master/monitoring.jar
https://github.com/nabarunjana/mininet-test/blob/master/nIperfSessions.py
https://github.com/nabarunjana/mininet-test/blob/master/results.ksh
https://github.com/nabarunjana/mininet-test
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11.2. Initialization flow 

 

11.3. File Description 

11.3.1. archive 

The archive folder consists of archived files generated in batches with specific parameters such 

as duration of each flow, the target bandwidth for each flow, the type of the flow: e.g. without 

any coefficient, learning the value of the coefficient, applying the coefficient, etc. 

11.3.2. Properties.py 

This python script is written to help ease the make changes to the database the program connects 

to. This is like the Properties class in java. This has methods for reading a file and getting a 

property. This is used in the program to read database connection properties specified in the 

dbcon.properties file. 

11.3.3. call.ksh 

This is a shell script that is the starting point for the program that can keep track of the batches 

that run with the required session parameters and load the details later to the database into a table 

called sessionmap. This calls initiateSession.ksh with the values of length of the flows, the target 

bandwidth and the phase of the experiment. 
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11.3.4. initiateSession.ksh 

This shell script does some maintenance jobs such as zipping all the files generated and moving 

zipped files to the archive directory.  

Once the folder cleared, it calls the nIperfSessions.py to create the virtual topology with the 

parameters from call.ksh  and decides upon the number of flows to generate during the 

experiment and start generating flows and collecting data. 

11.3.5. results.ksh 

This shell script keeps a track of the pairs that were selected along with the bandwidth and 

amount of data that were transferred between them. The results for each host pair are appended 

to the results.txt file. 

11.3.6. nIperfSessions.py 

This is the main python script that creates the virtual topology after inheriting Mininet.Topo 

class, and adding switches, hosts, and links. Once the topology is set up, it starts the network and 

dumps all the configurations. 

Once the topology is set up, it will set up monitoring the network performance ad host device 

statistics. 

It then creates new threads for each flow, which in then selects 2 random hosts (one from each 

subnet) and performs IPerf and ping to measure bandwidth and delay between them. The output 

of these tests is put into individual files for each pair that is selected.  
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11.3.7. monitoring.jar 

This is a java executable file that when called with the command line argument of load, loops 

through all the files in the current folder and checks for the desired generated files, parses them, 

and loads them into the database as a batch. At the end it inserts a row into the batch_run table 

that has a count of the number of rows that were inserted into each table. 

To create the database schema automatically, the monitoring.jar application may be called with 

the create command line argument. This relies on the dbcon.properties for getting connection 

details. To load an archive file again, the monitoring.jar application may be called with the zip 

command line argument followed by an optional BATCH_ID. 

To delete all entries related to one batch I'd, the monitoring.jar application may be called with the 

delete command line argument followed by the BATCH_ID. 

11.3.8. dbcon.properties 

This file has details for the program to connect to the database, with simple parameters such 

username, password, database etc. This is used by nIperfSessions.py and monitoring.jar. 

e.g.  

host=18.222.28.122 

user=mydbuser 

port=1433 

password=passwd 

database=mydb 

dbserver=sqlserver 
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11.4. Setup 

The whole program works in a Linux environment with Mininet, Python, Java, and SQL server. 

The below commands are useful to install the necessary components in Ubuntu and to set up the 

environment with SNMP and necessary tools: 

sudo apt-get update 

sudo apt-get -y install git 

cd ~ 

git clone git://github.com/mininet/mininet 

mininet_installed=`./mininet/util/install.sh -a|tail` 

echo $mininet_installed 

sudo apt-get -qqy install curl gawk net-tools python-pip python-pyodbc openjdk-8-jre freetds-

bin freetds-dev  

pip install numpy 

 

sudo apt-get -qqy install snmp snmpd snmp-mibs-downloader 

echo "Downloading MIBs" 

echo `sudo download-mibs|wc -l` 

mkdir -p ~/.snmp/mibs 

sudo sed -i -re 's/([a-z]{2}\.)?#rocommunity/rocommunity/g' /etc/snmp/snmpd.conf 

sudo service snmpd restart 

 

#Clone mininet - test 

codethere=`ls ~/mininet-test|wc -l` 

if [ $codethere -le 0 ]; then 

 git clone https://github.com/nabarunjana/mininet-test 

 mkdir mininet-test/archive 

 chmod 777 mininet-test/*sh  mininet-test/*py 

fi 

sudo curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add - 

sudo curl https://packages.microsoft.com/config/ubuntu/16.10/prod.list > 

/etc/apt/sources.list.d/mssql-release.list 

 

sudo apt-get update 

sudo ACCEPT_EULA=Y apt-get -qqy --allow-unauthenticated install msodbcsql 

# optional: for bcp and sqlcmd 

sudo ACCEPT_EULA=Y apt-get -qqy --allow-unauthenticated install mssql-tools 

echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bash_profile 

echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc 

source ~/.bashrc 

# optional: for unixODBC development headers 

sudo apt-get -qqy install unixodbc-dev 
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sudo apt-get -qqy install xfce4 xrdp 

echo xfce4-session >~/.xsession 

sudo service xrdp restart 

 

11.4.1. Known issues: 

Sometimes, curl fails to add the mssql source to add to the source list and needs to be added by 

exclusively switching to the root user (sudo su) and then executing the command and then exit 

back to user mode. And then continue with the further steps of installing msodbcsql and mssql-

tools. 
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