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Abstract 
  

  
Autism or Autism Spectrum Disorder (ASD) is a development disability which generally 

begins during childhood and may last throughout the lifetime of an individual. It is generally 

associated with difficulty in communication and social interaction along with repetitive 

behavior.  One out of every 59 children in the United States is diagnosed with ASD [11] and 

almost 1% of the world population has ASD [12]. ASD can be difficult to diagnose as there is no 

definite medical test to diagnose this disorder. The aim of this thesis is to extract features from 

resting state functional Magnetic Resonance Imaging (rsfMRI) data as well as some personal 

information provided about each subject to train variations of a Graph Convolutional Neural 

Network to detect if a subject is Autistic or Neurotypical. The time series information as well as 

the connectivity information of specific parts of the brain are the features used for analysis. 

The thesis converts fMRI data into a graphical representation where the vertex represents a part 

of the brain and the edge represents the connectivity between two parts of the 

brain. New adjacency matrix filters were added to the Graph CNN model and the model was 

altered to add a time dimension.  
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Chapter 1 
 
 

Introduction 

  
 
 
 

 

 

 The Center of Disease Control and Prevention (CDC) has recorded the number of 

subjects diagnosed with ASD to have increased by 30 percent with the number of subjects 

diagnosed jumping from one in 88 children to one in 59 children over the period of ten years 

[11].  In today’s world where technology has advanced by leaps and bounds, there is still no 

definite test for ASD. The only proven method to diagnose ASD is by observing the subject over 

a period and analyzing their behavior and development. This makes it difficult to diagnose ASD 

in a timely and effective manner.  The symptoms of ASD can sometimes be observed as early 

as 18 months of age or earlier [11]. However, most of the subjects do not receive their final 

diagnosis till they are much older. In case of disorders like ASD, the earlier it is diagnosed, 

higher are the chances of effectively helping the subject by reducing the symptoms.  

 

 

Figure 1. The left most image shows the Sagittal view, the middle image shows the 
Coronal view and the right most image shows the Axial view of a slice of the brain 

captured in the structural Magnetic Resonance Imaging data. 
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                             (a)                                  (b)         (c) 

  Figure 2 (a). The sagittal view of a sMRI scan [24]. 

 Figure 2 (b). The sagittal view of a dMRI scan [24]. 

Figure 2 (c). The sagittal view of an fMRI scan [24]. 

 

 The MRI data are brain scans which contain slices of the brain from three different 

views: axial, sagittal and coronal. There are three basic categories of data: structural Magnetic 

Resonance Imaging (sMRI), functional Magnetic Resonance Imaging (fMRI), diffusion 

Magnetic Resonance Imaging (dMRI). How do Magnetic Resonance Imaging (MRI) data help 

in diagnosis? FMRI data uses Blood Oxygenated Level Dependence (BOLD) effect to produce 

the fMRI scans. The raw fMRI information undergoes pre-processing to reduce the effect of any 

artifacts present in the data and to reduce it to a canonical form before extracting any features. 

After pre-processing, the resultant output is used to create a graphical representation of the 

data and extract features to perform classification using a deep learning model. 

 This master’s thesis focuses on pre-processing the fMRI data present in the ‘ABIDE I‘ 

dataset [11] and classifying the subjects into two categories, autistic and neurotypical, using 

deep learning models, specifically the Graph CNN model. The ABIDE I dataset contains 

information about 1114 subject obtained from 19 different sites from all around the world. It 

consists of 521 subjects with Autism and 593 subjects without Autism, with the age of the 

subjects ranging from 5 to 64 years [11]. This thesis explores the ability of Graph CNNs to 

perform detection of ASD with the help of features extracted from the dataset or the 

modifications made to the Graph CNN model created.  
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Chapter 2 
 
 

Background 

 
 
 
 
 
 

 

2.1 Graph 

 A graph is a structure which depicts the objects as vertices and the relationship between 

two objects as the edge connecting them. This structure can be used to extract features or 

analyze the pattern present in the data to perform classification or prediction.  

 An image is a gridded structure where all the vertices have the same fixed number of 

edges and each edge represents the same relationship between them. Performing analysis on 

a graph is difficult as it does not have the same gridded structure as an image [13]. A graph 

which is non-gridded in nature will have different number of edges connected to the vertices 

and the connection would not represent the same relationship between them. A CNN uses the 

same filter to analyze the data present in the entire image. If the relationship between the 

vertices are different in a graph then the same filter will be unable to extract meaningful features. 

Therefore, the traditional Convolution Neural Network (CNN) cannot be used to extract features 

or learn the properties of the graph.    

 

2.2 Graph Convolutional Neural Network   

 Utilizing the ideas of a CNN on graphs is not as simple as performing standard 

convolutions and pooling operations on the input graphs. This is due to the fact that standard 

convolution operations work only on gridded inputs. The modifications required to make 

convolutions operate on general graphs will be discussed in this section. Consider a graph 

where the matrix representing all the vertices is represented by  𝑉 ∈ 𝑅𝑁𝑋𝐹. The vertex matrix V 
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contains N vertices and each vertex has F features. The adjacency matrix A contains the 

connectivity information of all the vertices present in the graph. The values in the adjacency 

matrix represent if there is an edge present between two vertices as well as the value of the 

edge connecting them. Therefore, the adjacency matrix can be represented as, 𝐴 ∈ 𝑅𝑁𝑋𝑁. The 

N represents the number of vertices present in the graph. The performance of the Graph CNN 

is permutation invariant, meaning that it is direction agnostic. 

The aim of a graph convolutional neural network is to learn a function of the features of 

the input graph. The input graph contains feature information as well as the connectivity 

information of each vertex. There are two types of graph convolutional neural networks: spectral 

and spatial graph convolution neural networks.  Spectral graph convolutional neural networks 

are based on spectral graph theory [32]. In this network the signal of the input graph is first 

converted to its Laplacian form using the degree and adjacency matrix as shown in (1). 

 

 

In (1), D is the degree matrix calculated by performing row wise summation of the elements in 

the adjacency matrix and storing along the diagonal of an otherwise zero matrix, and A is the 

adjacency matrix containing the connectivity information. The model utilizes the spectral 

properties of the graph Laplacian [33] to perform filtering and pooling operations. The spectral 

graph convolutional neural network uses a filter defined in the Fourier space to filter the graph 

transformed into the spectral domain.  

 

 

U is the Eigen basis of L which is the spectrally transformed graph signal x. h is the filter in (2) 

which is used to perform the filtering operations on graphs. The Eigen basis calculated for a 

graph Laplacian is unique for each input graph therefore, the spectral filters learned for one 

graph will not generalize for other input graphs. The Kipf and Welling graph convolution model 

is an example of a spectral graph convolution [31]. 

𝐿 = 𝐷 − 𝐴 (1) 

𝑥 ∗ ℎ = 𝑈𝑇 . (𝑈𝑥 ⊙ ℎ) (2) 
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Figure 3. The graph convolution model created by Kipf and Wellington [31]. 

 

Spatial graph convolutional neural networks of 3D objects utilize the position of each vertex 

in the 3D space to create a function that represents the input graph. These neural networks use 

the position of the vertices in the 3D coordinate axis to calculate the distance of each vertex 

from all the other vertices present in the graph. If the 3D object were a surface scan, such as 

LiDAR, a mesh could be fit to all points.  In other instances, such as fMRI brain scans, it is 

possible all points are connected to one another in which case the distance is used to decide if 

two vertices are directly connected by an edge or not. The connectivity information is stored in 

the adjacency matrix of the graph. When an adjacency matrix contains zeros (meaning that two 

vertices are not directly connected), the adjacency matrix also contains the information 

regarding the k-hop neighbors of all the vertices.  The k-hop neighbor information represents 

the number of hops required by a vertex to reach some other vertex present in the graph. The 

number of hops can be decided by a variable k defined by the user. The adjacency matrices 

ranging from 1 to the kth power and k isotropic filters are used to create a kth order polynomial 

filter. This polynomial filter is then applied either on the Laplacian, L of the input graph or the 

adjacency matrix, A to filter the graph information. This filtering operation analyzes the distance 

information without any sense of direction and is therefore an isotropic method of filtering. In 
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order to overcome this limitation, Petroski Such et al. [17] partition the adjacency matrix into 

tensors, where each tensor represents a particular direction, and then applies separate filters 

on each partition.  



2.3 MRI (Magnetic Resonance Imaging)  

 There are three types of MRI data: functional MRI (fMRI), structural MRI (sMRI) and 

diffusion MRI (dMRI). FMRI data is a low-resolution data which captures the connectivity 

information between different parts of the brain over a period of time. SMRI data is a high 

resolution scan of the brain. The different groves and parts present in the brain can be clearly 

seen and is hence used to create an anatomical map of the brain. DMRI data contains 

information about the connectivity between different white matter regions in the brain. It is 

captured by analyzing the diffusion trajectory of water molecules in each voxel. 

 

2.3.1 SMRI 

 The sMRI data provides high resolution information about the anatomy of the brain as 

the information it captures does not change in the duration of a few minutes. Hence a tradeoff 

between time and resolution is observed here. The sMRI data depicts different types of tissues 

present by measuring the amount of water present in them [31]. This data is obtained using the 

transverse relaxation time (T2) pulse sequence. This pulse depicts gray matter as the darker 

region and white matter as the lighter region in the scans by measuring the concentration of 

water in different regions of the brain. Each subject’s sMRI data is used as a reference image 

to perform coregistration, normalization and segmentation of the fMRI data. 

 

2.3.2 FMRI 

 What is functional Magnetic Resonance Imaging (fMRI) data? How does fMRI data help 

in diagnosis? FMRI data measures the flow of blood in the brain using the Blood Oxygenated 

Level Dependent (BOLD) imaging [25] over a short period of time. Neurons do not have internal 

reserves of oxygen and therefore when they are active they are provided with oxygen at a 
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higher rate than inactive neurons. The BOLD imaging uses this principle and create a contrast 

between the active and inactive parts of the brain in an fMRI scan. This is in turn used to depict 

functional connectivity between different regions of the brain.  Multiple scans are collected in a 

very short interval of time to depict the change in flow of blood. The fMRI data like all the other 

MRI data contain scans with the slices of the brain from three different views: coronal, axial and 

sagittal planes. The information from each slice of each view is combined with the other slices 

and views to create the information for the entire brain of a subject.  

 There are two types of fMRI data: resting state fMRI and fMRI. The resting state fMRI 

data is collected when the subject is not performing any activity. This data is usually collected 

either before or after the subject performs a task. The rsfMRI reveals information about the 

residual connections still firing and the activity in the brain while the subject is in a complete 

resting state. The collection of fMRI data is carried out while a subject performs any task. The 

nature and type of the task performed by the subject depends on the objective of the scans. 

These scans provide us with information regarding the regions of the brain active as well as the 

connectivity between them while the subject performs the assigned task. Both the rsfMRI and 

fMRI data is collected using the, BOLD imaging method.   

 In this thesis research the rsfMRI data as well as the sMRI data from the Autism Brain 

Imaging Data Exchange (ABIDE I) dataset are used. The rsfMRI data provides information 

about the connectivity between different parts of the brain over a small duration of time while 

the subject is in resting state and the sMRI data provides a high resolution data which later 

separates the rsfMRI data into different region of interests (ROI).  
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Chapter 3 
 
 

Related work 

 
 
 
 
 
 

 

3.1 Convolutional Neural Networks for Brain Network 

 

 Kawahara et al. [16] proposed using a traditional CNN along with a few new filters added 

to predict cognitive and neuromotor outcomes of preterm infants. This paper introduced the use 

of edge to edge (E2E) filtering, edge to node (E2N) filtering as well as node to graph (N2G) 

convolutional filtering to extract features from the dataset and created a new network called 

BrainNetCNN [16]. These convolution layers perform simple convolution operations with filters 

of different shapes analyzing the connectivity in different ways. 

 
       

(a) 

Input Output 
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 (b) 

 
    

  (c) 

Input Output 

Input Output 
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(d) 

 

Figure 4. An adjacency matrix shown at four consecutive stages (a), (b), (c) and (d) of 
convolution. Two edge filters applied in yellow in the input matrix, the yellow cell in the 

output matrix shows the position of the corresponding output cell. Prior processed 
output values are in blue. The images depict how the filters move on the adjacency 

matrix in an edge to edge convolutional layer to analyze vertex A and create the first 
row of the output matrix [17]. 

 

 

 

 The edge to edge convolution layer applies filters over the neighboring edges of 

the two vertices in question and performs their weighted sum to get a value representing 

that edge. For example, consider a graph with four vertices: A, B, C and D. Figure 4 

shows the corresponding adjacency matrix of this graph. In order to perform edge to 

edge convolution two filters of dimensions N×1 are used. Therefore, in this example we 

use filters of dimensions 4×1. First the edge convolution is performed on vertex A. The 

value present in the adjacency matrix at position (A, A) depicts the connection of vertex 

A with itself. Therefore, we apply the filters to the row and column containing the 

connectivity information of all the edges connected to vertex A. The output of the two 

filters is then summed to create a single value which will be paced at position (A, A) in 

the output matrix.  Then the vertical filter is moved one position left to analyze the edges 

Input Output 
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of vertex A and vertex B as shown in Figure 4 (b). The same process as before is 

repeated to obtain the resultant output value of position (A, B). Once all the edges have 

been analyzed from vertex A’s point of view, the horizontal filter is moved one position 

below and the vertical filter is moved to the first column of the adjacency matrix. This 

process continues until the two filters have traversed through the entire adjacency 

matrix, filtering all edges. The size of the input matrix does not change after performing 

the edge to edge convolution. Hence, this layer was added before the edge to node 

(E2N) and the node to graph (N2G) convolution layers. The filtering process in edge to 

edge convolution process is carried out by using (3). 

 

 

 

 

   

 

 

 Where l represents the lth layer of the CNN model, m represents the mth feature map of 

the brain, Ω is the nodes present in the brain region under consideration and i, j are used to 

represent vertex number. 𝐴𝑙,𝑚 is the Adjacency matrix for the mth feature map of the lth layer. 

[𝑐𝑙,𝑚,𝑛, 𝑟𝑙,𝑚,𝑛] =  𝑤𝑙,𝑚,𝑛   ∈  𝑅2|Ω| such that [𝑤𝑙,1,𝑛, … … , 𝑤𝑙,𝑀𝑙,𝑛]  ∈ 𝑅2|Ω|𝑥𝑀𝑙
  are the weights 

learned at layer l for the nth filter. 𝐴𝑖,𝑗
𝑙+1,𝑛 is the Adjacency matrix obtained after performing edge 

to edge convolution [16]. 

Ai,j
l+1,n =  ∑ ∑ rk

l,m,nAi,k
l,m + ck

l,m,nAk,j
l,m

|Ω|

k=1

Ml

m=1

 

(3) 
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     (a) 

 
 

        (b) 

Input Output 

Input 
Output 
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     (c) 

 
   

 (d) 

 

Figure 5 (a), (b), (c) and (d). Show the two edge filters applied in yellow in the input 
matrix, the yellow cell in the output matrix shows the position of the corresponding 

output cell, the input adjacency matrix values in black and the output values in blue. 
The images depict how the filters move on the adjacency matrix in an edge to node 

convolutional layer to create the output matrix [17]. 

 

  

Input Output 

Input Output 
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Adjacency matrices can also be filtered to create a node vector.  The edge to node 

convolution operation is depicted in Figure 5 performs a filtering operation over all the 

neighboring edges of a single vertex and then calculates their weighted sum to generate the 

output nodes, one node per vertex. The horizontal filter moves one row down and the vertical 

filter moves one column to the right after every step. The input and the output dimensions are 

not the same. If the input was of dimension N×N then the output would have a dimension of 

N×1. This layer is used after the edge to edge convolution layer and before the node to graph 

layer. The filtering process in edge to node convolution layer is carried out by using (4). 

 

 

 

  

        

 Equation (4) is very similar to (3) for edge to edge convolution except, the feature maps 

is a vector of size N [16]. The edge to node graph convolution layer calculates a weighted sum 

of all the nodes in the graph and creates a single value for every feature map. Due to the nature 

of this convolution layer it is always used towards the end of the model. This layer is equivalent 

to converting from a convolution layer to a fully connected layer. The filtering process in node 

to node convolution layer is carried out by (5). 

 

 

  

 

 

 

 
 

 

Figure 6.  The architecture of the BrainNetCNN model. The depth of each block 
represents the number of feature maps [16]. 

 

𝑎𝑖,𝑗
𝑙+1,𝑛 =  ∑ ∑ 𝑟𝑘

𝑙,𝑚,𝑛𝐴𝑖,𝑘
𝑙,𝑚 + 𝑐𝑘

𝑙,𝑚,𝑛𝐴𝑘,𝑖
𝑙,𝑚

|Ω|

𝑘=1

𝑀𝑙

𝑚=1

 
(4) 

𝑎𝑙+1,𝑛 =  ∑ ∑ 𝑤𝑖
𝑙,𝑚,𝑛𝑎𝑖

𝑙,𝑚
|Ω|

𝑘=1

𝑀𝑙

𝑚=1

 
(5) 
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 The dataset used in this paper contained scans from 115 infants provided by the BC 

Children’s Hospital in Vancouver, Canada. The dataset was augmented to produce a dataset 

which was almost 256 times the original dataset. The input to the model is the adjacency matrix 

containing the connectivity information about the different regions of interest present in the 

neonatal atlas. The model predicts the cognitive and motor development scores of the subjects. 

 

3.2 3D CNN for classification of Functional Connectomes 

 Khosla et al. [18] preprocessed the rsfMRI data to extract the 3D spatial structure of 

rsfMRI data instead of only relying on the averaged information of each region. This paper used 

the connectivity information of each voxel with respect to each region of interest as the input to 

a 3D convolutional neural network model for detecting ASD. 

 Voxel-level maps are created by analyzing the connectivity information of each voxel 

with respect to the averaged value of each region of interest present in the selected atlas. The 

depth of each input image depends upon the number of regions defined in the atlas used to 

segment the brain. This depth of the images formed using the voxel-level maps range from 110 

to 400. These images are called as connectivity fingerprints and are used as the input to a 3D 

CNN model. 

 

 

Figure 7. The connectivity fingerprints used as the input to the 3D CNN model used for 
detecting if a subject is neurotypical or ASD [18]. 

 

 This paper has also experimented with the effects of using different atlases to perform 

segmentation of the brain. They concluded that the CC400 atlas performs the best with an 
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accuracy of 73.3% on the ABIDE I dataset [18]. 

 

3.3 Identification of autism spectrum disorder using deep learning and 

the ABIDE dataset 

 The main contribution of identification of autism spectrum disorder using deep learning 

and the ABIDE dataset written by Heinsfeld et al. [19] was the investigation of the connectivity 

in parts of the brain which showed a significant difference in their connectivity values for an 

ASD or neurotypical subject. This paper used autoencoders along with Multi-Layer Perceptron 

(MLP) to create a model and detect ASD.  

 The sMRI and rsfMRI data was obtained from the Preprocessed Connectomes 

Project (PCP) [20]. Here the raw data preprocessed by the C-PAC pipeline [21] was used. This 

pipeline performs skull stripping, motion correction, slice time correction, coregistration, 

smoothing and applies an atlas on the rsfMRI data to return a connectivity matrix. This 

connectivity matrix contains the connectivity information of all the region of interests present in 

the atlas. Therefore, if the CC200 atlas [22] was used then a connectivity matrix of shape N×N 

would be obtained, N representing the number of regions the atlas divides the brain into. 

 In addition to the connectivity information, the model also appends phenotypic 

information provided by the dataset for each subject. The data appended includes the age, sex 

of each subject and the Autism Diagnostic Observation Schedule (ASOD) score of the ASD 

subjects.   
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(a)                                                     (b)  

 

Figure 8 (a). The first autoencoder block used [19]. 

Figure 8 (b). The second autoencoder block used [19]. 

 

 

 
 

Figure 9. The MLP model created using the bottleneck layers of the two autoencoders 

and a softmax layer [19]. 

 

 The connectivity information was passed through two denoising autoencoders [23] 

one with an input of 19900 nodes, a bottle neck of 1000 nodes and the probability of corruption 

of the data as 0.2. The second autoencoder has an input of 1000 nodes, a bottleneck of 600 

nodes and the probability of corruption as 0.3. The bottlenecks of the two autoencoders are 
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then connected to a softmax layer to create an MLP model. The paper obtained an accuracy of 

70 percent, however, the use of ASOD features made it easy for the model to detect ASD. This 

is because, the ASOD value was only present for ASD subjects and not for neurotypical 

subjects. 
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Chapter 4 
 
 

Pre-processing 

 
 
 
 
 

 
 

 The MRI scans are extremely sensitive and even a slightest change in the parameters 

could greatly affect the captured data. The rsfMRI and the sMRI data is collected while the 

subject is awake and conscious inside the MRI machine. This increases the possibility of the 

subject moving their head inside the machine. This possibility along with multiple other factors 

can result in a variation between the data captured and the original information. The MRI data 

may get corrupted due to several causes like movement of the subject while scanning the brain, 

presence of noise in the scanner, variation in the shape and size of the brain of each subject, 

time required to capture the information and so on. In order to reduce the effect of noise or 

artifacts on the captured data some basic spatial and functional preprocessing methods are 

required to be executed before extracting any information from them. 

 The preprocessing methods that are essential to be applied to the sMRI data include: 

skull stripping, normalization, motion correction and noise reduction [26]. The preprocessing 

methods applied to rsfMRI data are: skull stripping, motion correction (realignment), 

normalization, time slice correction and coregistration. Once the data has been preprocessed 

to remove any artifacts or noise the data is then analyzed to extract the desired information. 

 The preprocessing was carried out by using Nilearn Neuro-Imaging library in python 

[10]. 
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4.1 Spatial normalization  

 The size and shape of the human brain varies from subject to subject. While performing 

segmentation or extracting features each point in one brain should lie in the same location in 

another brain, to analyze or extract the same region for all the subjects. This also prevents the 

neural network to learn on their individual shape and sizes. Therefore, all the brains must be 

modified to a standard shape and size using a predefined standard template. This helps the 

model to select region of interests uniformly and reduce the effect of distortion [28]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The figure shows the same slice sMRI scan of multiple subjects [2]. 
  

4.2 Skull stripping 

 Once all the brains have been converted to a predefined shape and size, the structure 

of the skull along with other parts of the body are removed as they does not provide any salient 

information. Hence all the information regarding the skull, eyes, spinal cord and the muscles in 

the face and neck are stripped from the dataset. 
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Figure 11. The axial view of a slice of a sMRI scans before and after the skull 
information was removed [3]. 

 

4.3 Realignment 

 The ABIDE dataset [1] contains scans from subjects with their age ranging from 5 to 64 

years. It is difficult for all the subjects to lie perfectly still while the scans are being captured. 

This results in a change in alignment of the brain over the multiple scans of the same individual. 

To reduce this noise component, a process to correct this motion is performed. The process 

involves selecting one of the brain volumes of the subject as the reference volume and then 

aligning the data present in all the volumes of that subject to the reference volume. This 

reference volume selected was the center scan. The realignment of the brain takes place by 

using three dimensional parameters and 3 rotational parameters to move the data. 

 

 

Figure 12. Slice of rsfMRI data before motion correction. 
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Figure 13. Slice of rsfMRI data after motion correction. 

 

4.4 Smoothing (Noise reduction) 

 The spatial noise present in the rsfMRI scans are generally Gaussian noise. This noise 

is independent of each voxel and centered around zero. Therefore by averaging the intensity 

of the BOLD values over large number of voxels will reduce the noise towards zero and the 

signal towards a nonzero value. Hence performing smoothing on the images will improve the 

Signal to Noise Ratio (SNR) of the images by lowering the overall spatial frequency. It is 

equivalent to passing the image through a low pass liter. The drawback to this process is that 

the lower the SNR, the greater the amount of smoothing required of the image. Hence, a good 

tradeoff value should be decided for the dataset being used to avoid loss of valuable 

information. Smoothing will also help improve the spatial correspondence between the brains 

of the subjects at a group level. 
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(a)            (b)      (c) 

Figure 14. The figure shows a slice of the sMRI scan with varying amount of smoothing 
applied to it. The figure (a) has no smoothing applied to it. The figure (b) has a filter of 4 mm 
Full Width Half Max (FWHM) applied to it. The figure (c) is the result of the application of a 

filter of 8 mm FWHM [5]. 

 

4.5 Slice time correction 

 The resting state functional MRI data for each subject includes scans that capture the 

time series information. Each scan is to be recorded at a particular point in time to obtain the 

BOLD information for the same instant. However, it requires some time to obtain information 

for each slice in a volume. Therefore, the data captured at different layers of the brain are 

obtained at different time points. In order to resolve this problem slice time correction is 

performed. Slice time correction method calculates the Fourier transform of the signal at each 

voxel to convert the signal of that slice of the brain into a sum of scaled and phase shifted sine 

waves of each voxel. After which these converted signals are moved forward or backward 

depending on the interpolation. These values are interpolated between the values of the points 

that were actually sampled to obtain a value that would mimic the voxel value that would have 

been captured at that time instant.  

 

4.6 Coregistration  

 The anatomical label maps of the brain are created to fit over the sMRI data. Therefore, 

the sMRI scan is used to coregister the rsfMRI data to the right dimensions and then the 

anatomical label map is used to segment the rsfMRI data into segments. The sMRI data 

0 FWHM 4 FWHM 8 FWHM 
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containing the anatomical data is present in the T2- weighted format while the rsfMRI data is 

present in the T1- weighted format [24]. The goal of coregistration is to align the sMRI and 

rsfMRI data in order to apply the anatomical masks created using the sMRI data. This is 

required so that we can have a one to one match of the ROIs defined in the atlas with the areas 

in the rsfMRI data.  

 

 

        

 

Figure 15. The red represents slice of the sMRI scan overlaid on the rsfMRI slice [24]. 
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Chapter 5 
 
 

Feature extraction 

 
 
 
 
 
 

 
 

5.1 Atlas  

 The brain atlas in an anatomic label map which is used to divide and label region of 

interests (ROIs) in the brain [6]. The atlas chosen divides the brain into multiple segments. 

These segments are used to extract and analyze the time series and connectivity information 

from the rsfMRI data. There are multiple atlases designed by neurologists and they all divide 

the brain into different number of segments. Different atlases may focus on different parts of 

the brain as well. Some of the atlases are Harvard Oxford (HO) atlas [6], Automated Anatomical 

Labeling (AAL) atlas [7] [8], Craddock 200 (CC200), Craddock 400 (CC400) [22] and many 

more. This thesis primarily focused on using the HO atlas [6] for analysis.   
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Figure 16. Different types of atlas and the regions they cover in a slice of non-pre-
processed brain scan [35]. 

 

 

 The HO atlas [6] contains 111 ROIs which cover regions from the cortical and 

subcortical regions of the brain.  

 
 

Figure 17. The Harvard Oxford atlas applied on a slice of pre-processed brain scan. 
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5.2 Time series 

 As the rsfMRI data contains multiple scans of the slices of the brain taken over time. 

The data collected is used to track any change in the neurological activity of a subject. Once 

the rsfMRI data is pre-processed to reduce noise and remove unnecessary artifacts, the desired 

atlas is superimposed on it. The atlas will segment the data into ROIs. Then the average 

intensity value of each region is calculated and used as the value representing that ROI.  

 

 
Figure 18. Time series information of a voxel present in a pre-processed rsfMRI data. 

 
5.3 Connectivity 

 The anatomical label map divides the brain into different region of interests depending 

on the atlas used. Once the brain is divided, the connectivity information between these regions 

is to be calculated. This is done by calculating the average value of all of the voxel present in a 

ROI and then representing that ROI with the averaged value. This process is repeated for all 

the scans taken at different points in time. Once the average value representing all the ROIs is 

calculated then the correlation value between the ROIs is calculated to obtain the connectivity 

matrix. The correlation values range from -1 to 1, with -1 indicating that the two ROIs are 
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inversely correlated and 1 indicating that the ROIs are highly correlated. The model used in this 

thesis does not support negative edge values. Hence, the connectivity values are shifted by 1 

and the range changes to 0 to 2 from -1 to 1. 

 The basic idea was to analyze the BOLD values of each voxel and if the voxels had 

intensities which were highly correlated and the voxels were in two different ROIs then the two 

ROIs were said to be connected. 

 

Figure 19. Connectivity between different parts of the brain when the HO atlas is 
applied to define ROIs. 

 

5.4 3D coordinates of the ROIs 

 The rsfMRI data was converted to the Montreal Neurological Institute 152 (MNI152) 

space from the voxel space to perform the various pre-processing steps. The rsfMRI data was 

converted back into voxel space to extract the x, y and z coordinates of the points representing 

each ROI segmented using an atlas. Once these coordinates are obtained they are used to 

restrict the number of outgoing edges that a vertex has.  

 The coordinate plane is divided into 8 parts and the x, y and z coordinates are used to 

check which of the 8 sections does the ROI points resides in. After which the distance of all the 

points from a vertex is calculated and then depending on the number of edges per vertex 

declared the nearest k neighbors are then considered connected to the vertex in question. The 

value of the edge that connects two vertices represents the distance between them in the 

baseline model.   
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Chapter 6 
 
 

Model 
 
 
 
 
 

 
 

6.1 Baseline model 

6.1.1 Graph Convolution 

 The Graph CNN model used in this thesis was proposed by Dominguez et al [29]. It is a 

variation of the Petroski Such et al. [30] model. This model is a spatial graph convolution model 

and it uses the x, y and z coordinates of the vertices to extract spatial features. The input graph 

is a function of vertices and edges: G = (V, A), where A ∈ RN×N×m is the adjacency matrix with N 

number of vertices in the graph and m are the number of slices of adjacency matrix used to 

represent direction. V ∈ RN×F is the vertex matrix with F vertex features present in each vertex of 

the graph.  The model proposed by Petroski Such et al. [30] used shift invariant convolutional 

filters to represent a polynomial of the adjacency matrix where an increase in the degree of the 

adjacency matrix represented the neighbors’ k hop away from the corresponding vertex. The 

equation (4) is used to represent this. 

 

 

The value of A represents the immediate neighbors, A2 represents the two-hop neighbors and Ak 

represents the k hop neighbors. The hi filter is an isotropic filter used to extract features from all 

the vertices at the same distance from their corresponding vertex. Dominguez et al. [29] only 

used the information regarding self-connected vertices and one-hop neighbors. These 

connections were used as the model should learn higher order polynomials through the multiple 

convolutions performed on it. 

𝐻 = ℎ0𝐼 +  ℎ1𝐴 + ℎ2𝐴2 + ⋯ +  ℎ𝑘𝐴𝑘          𝐻 ∈  𝑅NxN (6) 
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Figure 20 (a). 1-hop graph convolution filter [30]. 

Figure 20 (b). Standard 3×3 convolution filter [30]. 

Figure 20 (c). The nine different edge connections combined to form a 3 × 3 filter to analyze 

direction [30]. 

 

6.1.2 Graph pooling 

This model also performs graph pooling to reduce the graph structure by reducing the 

size of the adjacency matrix and reduce the graph signal by reducing the vertex matrix, as in 

equations (5) and (6). 

 

 

 

 

The non-zero entries in the column of matrix P indicates the clusters to which the corresponding 

vertices of the original graph belong. Then each cluster is represented by a single vertex value. 

This clustering algorithm analyzes the connection between vertices and not the values of the 

vertices. 



𝐴𝑚
𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑃𝑇 𝐴𝑚𝑃 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚 ∈ { 1, 2, … , 𝑀}  (7) 

𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝑃𝑇
𝑉  (8) 

(a) 

(b) (c) 
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6.2 Edge feature model 

6.2.1 Adjacency convolution 

         The adjacency matrix contains the information about the connectivity between different 

ROIs in the scan. This connectivity information is very important as the difference in the 

connectivity between various regions helps us to distinguish between subject with and without 

ASD.  

 A filter of shape 1×1×m is applied to the adjacency matrix A ∈ RN×N×m to extract spatial 

information. This filter is used to perform 3D convolution over the adjacency matrix to calculate 

the cross-correlation between connectivity values of the vertices. The output is of the shape 

N×N×m×D, where D is the number of filters instead of N×N×1×D as the padding variable was 

set to ‘same’ instead of ‘valid’. This output is then collapsed to create a new adjacency matrix 

with the same shape as the input adjacency matrix or it is collapsed to create new features for 

the vertices in the graph. If the output of the adjacency convolution layer is used to create new 

features, then the output is summed along the non-required dimensions to produce a matrix of 

shape N×D. The result of the summation is then concatenated with the vertex matric V ∈ RN×F to 

produce a vertex of shape N×(F+D). If the output of the adjacency convolution layer is summed 

along the depth, then it will create a new adjacency matrix with the same dimension as the old 

one.  
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          (a)             

Figure 21 (a). Adjacency convolution layer with filter of dimensions (1×1×m), where m = 

number of slices and a new adjacency matrix as the output. 

 

    

 

 

 

 

 

 

 

 

 

(b)  

Figure 21 (b). The output of the adjacency convolution layer with the filter shown in Figure 21 

(a). 

 

6.2.2 Variation of adjacency convolution 

  Features are extracted from the adjacency matrix in a manner similar to the one used in 

the adjacency convolution layer. However, here a filter of shape 1×N×m is used to perform 3D 
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convolution over the adjacency matrix. The idea here is to analyze the connectivity information 

of one vertex with respect to all its connections vertices. 

 

 

 

                  

   

             

 

 

(a) 

Figure 22 (a). Adjacency convolution layer with filter of dimensions (1×N×m), where N = 

number of vertices and m = number of slices and a new adjacency matrix as the output. 

 

 
 
 

 

 

 

 

 

 

 

 

    (b) 

Figure 22 (b). The output of the adjacency convolution layer with the filter shows in Figure 22 

(a) 

 

 

 

8 

111

1 

1 

32 

111 

111 

8 111 

111 

111 

111 

8 

8 

111 

111 

8 



 

34 
 

6.3 Temporal model 

 The Graph CNNs used earlier would reduce the vertex feature information to the number 

of filters applied. This could cause the loss of valuable information. Therefore, in order to retain 

the vertex feature information, a new Graph CNN model was created called temporal graph 

convolutional neural network model. The temporal model has a block containing two layers 

defining one graph convolution layer. The block contains one convolution layer and one graph 

convolution layer. The standard convolution layer first expands the dimension of the input vertex 

matrix to create a vertex matrix of dimensions N×F×1. Then standard convolution is performed 

to create a vertex matrix of the shape N×F×Ft  where, Ft is the number of temporal features. This 

vertex matrix is then passed through a modified graph convolution layer. This layer uses the x, y 

and z coordinates of the vertices to select which vertices to connect and the connectivity values 

are calculated using the atlas as the edge values. Then the modified graph convolution layer 

performs graph convolution on the new third dimension, Ft of the vertex matrix. Therefore, we do 

not lose any vertex features but only extract information. 

 

 

 

 

  

(a)                                       (b) 

 

Figure 23 (a). The input vertex matrix passed into the standard convolution layer. 

Figure 23 (b). The output vertex matrix obtained from the standard convolution layer. It is used 

as the input for the temporal graph convolution layer. 
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 The adjacency convolution layer was combined with this new temporal graph 

convolutional neural network model. Adding this layer to the temporal model allowed additional 

extraction of information from the connectivity matrix obtained from analyzing the time series 

information of the scans. The adjacency convolution layer was used with a filter of shape 1×N×l 

and the output matrix was summed along its dimensions such that we would obtain new features. 

These new features were concatenated to the three dimensional vertex matrix of shape N×F×Ft 

to create a new vertex matrix of shape N×(F+D)×Ft, where D is the number of filters applied in 

the adjacency convolution layer . 
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Chapter 7 
 
 

Dataset 
 
 
 
 

 
 

 The dataset contains information about 1035 subjects collected from 17 different 

international sites out of which 539 subjects have ASD and 573 subjects are Neurotypical. The 

subjects include 948 men and 164 women between the ages of 6 to 64 at the time their scans 

were captured. The dataset provides the sMRI and the rsfMRI data of each subject as well as 

several other features regarding the subjects. Some of these features are: the site where the 

scans were taken, the subject identification number, the sex of the subject, the age of the subject 

at the time the data was captured, the dominant hand of the subject, scores of different tests 

given to the subjects and so on. All of the information which provides additional knowledge on 

the subjects are provided in a csv file.  

 The sMRI and the rsfMRI data for each subject is provided in the format of ‘rest.nii.gz’ as 

well as ‘anatomical.nii.gz’. The time series information captured in each rsfMRI data is different 

as the length of time series depends on the site where the data was captured. Along with a 

variation in the length of the time series information there are other variations observed in the 

MRI scans captured at different sites. 

 The dataset was randomly split in the ratio 9:1 to create train and test splits respectively. 

A single random split was used to run all the experiments. In order to obtain the margin of error 

for the experiments two additional unique random splits of the ratio 9:1 were created. These splits 

were then used to rerun the experiments and calculate the margin of error. 
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Chapter 8 
 
 

Results 

 
 
 
 

 
 

 The Dominguez et al. [29] model was run to set the baseline for this experiment. The 

model was run with the different variations of the adjacency convolution layer and it was 

modified to implement the time domain version as well.  In addition to this, an extensive ablation 

analysis was also carried out to find the right architecture and phenotypic features. The results 

for all of these experiments along with their architecture and various parameters used are given 

below: 

 

8.1 Baseline results 

        Architecture of the model: two graph convolution layers of depth four, one graph 

convolution layer of depth eight, one fully connected layer of depth 32 and last fully connected 

layer of depth two (number of classes). The train batch size was 200, test batch size 105 (entire 

test dataset) with the learning rate starting at 0.01 with a decay rate of 0.25, the learning rate 

was updated after every 200 iterations and the number of edges per vertex was 25. The model 

was trained for 2500 iterations. 

 The model was tested to evaluate if the sparse version of the Dominguez et al. [29] model 

performed better or a non-sparse version: 
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Figure 24. The model used to obtain the baseline results. 

 

Table 1: Baseline results with and without sparsity. 
 

Model Features Accuracy 

Sparse baseline  Age, sex 47.115 ± 0.965 

Non-sparse baseline Age, sex 48.0769 ± 0.619 

 

 

 The model was run with the adjacency values changed from using the distance 

information to the connectivity information. The non-sparse version of the model was used. 

 

Table 2: The baseline model is with adjacency matrix elements as the distance between the 

vertices. The baseline connectivity model is the baseline model with the adjacency matrix 

elements as connectivity values instead of distance between vertices. Here 25 is the number 

of vertices connected to each vertex. 

Model Features Accuracy 

Non-sparse baseline Age, sex 48.0769 ± 0.619 

Baseline connectivity-25  Age, sex 51.08 ± 0.307 

 

 

8.2 Number of neighbors per vertex  

 Architecture of the model: two graph convolution layers of depth four, one graph 

convolution layer of depth eight, one fully connected layer of depth 32 and last fully connected 

layer of depth two (number of classes). The train batch size was 200, test batch size 105 (entire 

test dataset) with the learning rate starting at 0.01 with a decay rate of 0.25, the learning rate 

GC 8 FC 2 FC 32 GC 4 GC 4 
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was updated after every 200 iterations and the number of edges per vertex varied. The model 

was run with the adjacency values changed from using the distance information to the 

connectivity information. The non-sparse version of the model was used and it was trained for 

2500 iterations. 

 The experiment was to test to check the number of vertices each vertex should be 

connected to when the connectivity information was used as the values for the adjacency matrix 

and sparsity was set to false.  

 

Table 3: The baseline connectivity model to explore the effects of increasing the number of 

vertices connected to each vertex. Here the number of vertices connected to a vertex is 

changed to 55 and 111. 

Model Features Accuracy 

Baseline connectivity-55 Age, sex 52.58 

Baseline connectivity-111  Age, sex 54.47 ± 0.803 

 

 

8.3 Phenotypic features results 

 Architecture of the model: two graph convolution layers of depth four, one graph 

convolution layer of depth eight, one fully connected layer of depth 32 and last fully connected 

layer of depth two (number of classes). The train batch size was 200, test batch size 105 (entire 

test dataset) with the learning rate starting at 0.01 with a decay rate of 0.25, the learning rate get 

updated after every 200 iterations and the number of edges per vertex was 111. The model was 

run with the adjacency values changed from using the distance information to the connectivity 

information. The non-sparse version of the model was used and it was trained for 2500 iterations. 

 This experiment evaluates the effect of the fiq, piq and viq phenotypic features on the 

model. 
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Table 4: The baseline connectivity model to explore the effects of different phenotypic 
features. Here the number of vertices connected to a vertex is 111 and the features 
experimented with are full scale IQ (fiq), verbal IQ (viq) and performance IQ (piq). 

 
Model Features Accuracy 

Baseline connectivity-111  Age, sex, fiq 49.04 

Baseline connectivity-111  Age, sex, piq 52.96 

Baseline connectivity-111  Age, sex, viq 49.04 

Baseline connectivity-111  Age, sex, fiq, piq, viq 56.87 ± 0.979 

 

8.4 Adjacency convolution results 

 Architecture of the model: adjacency convolution layer with four filters, graph convolution 

layers with four filters, adjacency convolution layer with eight filters, one fully connected layer of 

depth 32 and last fully connected layer of depth two (number of classes). The train batch size 

was 200, test batch size 105 (entire test dataset) with the learning rate starting at 0.01 with a 

decay rate of 0.25, the learning rate get updated after every 200 iterations and the number of 

edges per vertex was 111. The model was run with the adjacency values changed from using 

the distance information to the connectivity information. The non-sparse version of the model 

was used and it was trained for 2500 iterations. 

 The experiment explored the two different types of filters as well as the effect of changing 

the adjacency matrix and concatenating features to the vertex matrix. 

 

 

 

 

Figure 25. The model used to analyze the different variations of the adjacency convolution 

layer. 

 

EC 8 FC 2 FC 32 GC 4 EC 4 
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8.4.1 Filter of dimension 1×N×m  

 

Table 5: The adjacency convolution layer along with the baseline connectivity model to explore 

the effects of new adjacency matrix and new features concatenated to the vertex matrix. F1 is 

filter of shape (1×N×m). 

 

 

8.4.2 Filter of dimension 1×1×m  

 

Table 6: The adjacency convolution layer along with the baseline connectivity model to explore 
the effects of new adjacency matrix and new features concatenated to the vertex matrix. F2 is 

filter of shape (1×1×m). 
 

 

8.5 Temporal model 

 Architecture of the model: convolution layer with four filters to perform convolution on the 

vertex matrix, temporal graph convolution layers with four filters, convolution layer with eight 

filters to perform convolution on the vertex matrix, temporal graph convolution layers with eight 

filters, one fully connected layer of depth 32 and last fully connected layer of depth two (number 

of classes). The train batch size was 200, test batch size 105 (entire test dataset) with the 

learning rate starting at 0.01 with a decay rate of 0.25, the learning rate get updated after every 

Model Features Accuracy 

Adjacency convolution f1 new matrix Age, sex, fiq, piq, viq 60.41 

Adjacency convolution f1 new 

features 

Age, sex, fiq, piq, viq 65.18 ± 1.079 

Model Features Accuracy 

Adjacency convolution f2 new matrix Age, sex, fiq, piq, viq 55.86 

Adjacency convolution f2 new 

features 

Age, sex, fiq, piq, viq 56.94 
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200 iterations and the number of edges per vertex was 111. The model was run with the 

adjacency values changed from using the distance information to the connectivity information. 

The non-sparse version of the model was used and it was trained for 2500 iterations. This 

architecture along with the described parameters provided an accuracy of 63.76 ± 1.29 %.  

 

 

 

TGC = Temporal Graph Convolution layer 

FC = fully connected layer 

Figure 26. The temporal model used on the ABIDE-I dataset. 

 

 The adjacency convolution layer is added to the temporal Graph CNN model and the 

following architecture is used:  convolution layer with four filters to perform convolution on the 

vertex matrix, temporal graph convolution layers with four filters, adjacency convolution layer with 

four filters and the new features are concatenated to the vertex matrix, convolution layer with 

eight filters to perform convolution on the vertex matrix, temporal graph convolution layers with 

eight filters, adjacency convolution layer with eight filters and the new features are concatenated 

to the vertex matrix, one fully connected layer of depth 32 and last fully connected layer of depth 

two (number of classes). All the other parameters were kept constant. This architecture provided 

an accuracy of 66.37 ± 0.82 %. 

 

 

 

 

 

 

TGC 8 FC 2 FC 32 TGC 4 TGC 4 
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AC = Adjacency Convolution layer 

TGC = Temporal Graph Convolution layer 

FC = fully connected layer 

Figure 27. The combination of temporal graph convolution and adjacency convolution layer 

used on the ABIDE-1 dataset. 

 

In all the experiments executed the data was preprocessed using the HO atlas. In order 

to evaluate how well the model would perform on another atlas, the data is preprocessed using 

the CC400 atlas. This preprocessed data is then used as an input for our best model: the 

temporal model combined with the adjacency convolution layer. We obtained an accuracy of 

69.15%.  The output from the model shown in Figure 25 for the data pre-processed with the HO 

and the CC400 atlas was used to perform voting. Combing the results from these two different 

atlases increased the accuracy to 70.23%. 

 

8.6 Comparisons with other models 

 Khosla et al. [18] preprocessed the raw rsfMRI data to extract voxel maps and create 

connectivity fingerprints for each atlas. They then used the connectivity fingerprint as an input to 

a 3D CNN model and trained the model to predict ASD. Khosla et al. [18] obtained the state of 

the art result of 73.30% by using an ensemble of all the atlases. 

 Dvornek et al. [36] used the raw time series information from preprocessed rsfMRI data 

and a Long Short Term Memory (LSTM) model. The LSTM model was able to predict ASD with 

an accuracy of 70.1%. Aghdam et al. [38] combined the time series information obtained from 

the preprocessed rsfMRI with the gray and white matter information obtained from the sMRI data. 

AC 8 FC 2 FC 32 TGC 4 AC 4 
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They obtained an accuracy of 64.13% when this data was passed through a linear SVM. Nielsen 

et al. [37] calculated the connectivity information from preprocessed rsfMRI data. The 

connectivity matrix along with a few phenotypic features like age, gender, handedness and the 

site where the data was collected were used as inputs. Using the site where the data was 

collected does not let the model generalize well, so it is preferred to learn features independent 

of the site. This is important as the data captured from different sites has multiple differences. 

Nielsen et al. [37] were able to predict ASD with only 59.6 accuracy.  

 Table 7: Comparing the best result of this research with other works 

 

 

 

 

 

 
 

Model Features Accuracy 

3D CNN [18] rsfMRI 73.30 

Long Short Term Memory (LSTM) 

[36] 

rsfMRI 70.1 

Support Vector Machine (SVM) [38] rsfMRI, gray matter and white matter 64.13 

Radial basis function kernel (RBF) 

SVM [37] 

rsfMRI, age, sex, handedness, fiq, piq, 

viq and site 

59.6 

Temporal + Adjacency convolution 

f1 new features +voting  

(ho and cc400 atlas) 

rsfMRI, age, sex, fiq, piq and viq 70.23 
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Chapter 9 
 

 

Conclusion 

 
 
 
 

 

 

 ASD, being a neurological disorder can be predicted by analyzing the connectivity 

information between different parts of the brain. A Graph CNN model analyzed the graph 

created by using the ABIDE-I dataset to detect ASD in subjects. The model utilized the spatial 

information of the ROIs as well as the edge value connecting them. In addition to these features, 

the time series information and the phenotypic features also helped in improving the ability of 

the Graph CNN model to detect ASD in subjects.  

When the Dominguez et al. [29] model was modified to use the connectivity information 

in place of the distance information in the adjacency matrix the accuracy improved. When the 

number of edges per vertex was defined to be equal to the number of ROIs present in the atlas, 

we further saw an improvement in the results.  

Adding multiple phenotypic features helped to provide more data regarding each 

subject. When added individually to the model, these features did not show any substantial 

improvements. However, when they were all added to the vertex matrix together they showed 

an improvement in the results. The result obtained was 56.87 ± 0.979%. 

The adjacency convolution layer had four different possible variations. It was seen that 

when the filter of shape 1xNxl was used to perform the convolution operation and the output of 

the convolution operation was summed to create new features, the result obtained was 65.18 

± 1.079. 

The temporal model performed graph convolutions on the time series information and 

obtained an accuracy lower than the Dominguez et al. [29] model with the best configuration of 

the adjacency convolution layer. However, when the temporal model was combined with the 
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adjacency convolution layer, an accuracy of 66.37 ± 0.82% was achieved for data preprocessed 

using the HO atlas. 

The results obtained by passing the data preprocessed using the HO atlas and the 

CC400 atlas through the temporal graph convolution model increased the accuracy to 70.23%.  
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Chapter 10 
 
 

Future Work 
 
 
 
 

 

 
 There are many steps that can be taken to improve the current results using the Graph 

CNN. One major problem that was brought to light with this research was that the size of the 

dataset was too small to train even a slightly deep neural network. Performing data augmentation 

will increase the dataset size which in turn will help improve the results.  

As each atlas may segment different parts of the brain in different sizes, combining the 

information from all the different atlases will help increase the information present for each 

subject. It will also help analyze the connectivity between various regions without missing any 

data.  

Analyzing the connectivity between each voxel in the brain without using an atlas will help 

create a graph where no information is lost due to averaging.  
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