
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

12-12-2018 

Automatic Trellis Generation for Demodulation of Faster Than Automatic Trellis Generation for Demodulation of Faster Than 

Nyquist Signals Nyquist Signals 

Deepan Govindaraj 
dxg9266@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Govindaraj, Deepan, "Automatic Trellis Generation for Demodulation of Faster Than Nyquist Signals" 
(2018). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9976?utm_source=repository.rit.edu%2Ftheses%2F9976&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Automatic Trellis Generation For
Demodulation of Faster Than Nyquist

Signals

by
Deepan Govindaraj

Advisor: Prof. Miguel Bazdresch

Thesis Committee

Prof. William P Johnson, Professor, Graduate Program Director

Prof. Mark Indelicato, Professor

This Thesis is submitted for the partial fulfillment of the requirements for

the Degree of Master in Telecommunications Engineering Technology

Electrical, Computer and Telecommunications Engineering Technology

College of Applied Science and Technology

Rochester Institute of Technology

Rochester, NY

December 12, 2018



Abstract
Mobile communication has become one of the most important and fast devel-

oping technology in the past couple of decades. Future of telecommunication

raises a high demand for higher data rate and system capacity. There are

plenty of researches taking place across the world to provide a better service.

One such research is Faster than Nyquist signaling and it has grabbed the

attention of many researchers in the recent past. In digital communication

implemented using Nyquist pulses, the pulse rate is upper-bounded by twice

the channel bandwidth. Signaling above this rate results in the loss of pulse

orthogonality and introduces ISI. However, under certain conditions, it is pos-

sible to lose orthogonality and still maintain the same error probability, as

Nyquist signaling. This allows time-compression of the transmitted symbols,

resulting in a larger data rate than predicted by classic information theory

results. The ISI caused by FTN signaling has a trellis structure and the

transmitted symbols can be decoded using the Viterbi or BCJR algorithms.

In this thesis, we introduce an algorithm that can automatically generate

the trellis for any pulse shape, constellation and time-compression factor.

we have simulated the FTN system, processed and decoded by the Viterbi

decoder using the trellis generated by the proposed algorithm for BPSK and

PAM 4 constellations with raised cosine pulses. The simulation results are

promising and encourage more research in this direction. We have discussed

possible directions this research can be pursued in future work. Overall, the

results would indicate that the FTN technology has a significant potential

for the next generation wireless communication.
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Chapter 1

Introduction

An enormous amount of progress has been made in the communication tech-

nologies in the past couple of decades. On the other hand, computer net-

working has laid a foundation for the most significant global medium for

information exchange called the internet. The improvement in the existing

technology is a never ending urge for humanity, researchers have continuously

exploited the available resources to enhance the technologies, adapting to the

demand of the consumers.

This thesis work is based on research that has attracted many researchers

in recent years called FTN signaling. Harry Nyquist along with Shannon

has made some important contribution to the communication theory. While

Nyquist was working at Bell Labs, he published a paper on transmission

theory in which he discusses the Nyquist criterion. The Nyquist criterion has

served as the base of communication systems design for a long time[1]. In

this thesis, I will explore a contradicting idea to that of the Nyquist criterion

in order to improve the data rate of the communication system.
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1.1 Background

In digital communication, the source information is converted into digital

bits, then transform them into a sequence of real information carrying sym-

bols {ak}, k ∈ Z, using any modulation techniques. These symbols are

further converted into continuous signals just before transmitting through

a noisy wireless channel. These random symbols are assumed to belong to

a finite set (or constellation) A, and to be uncorrelated and uniformly dis-

tributed.

Most of the wireless communication technologies use raised cosine pulses

for transmission as they are practical to implement compared to the sinc

pulse or any other pulse shape for that matter, and they have a configurable

excess bandwidth. It also relatively has fast decaying tails based on its roll

off factor. According to Nyquist, if the pulses are transmitted at a pulse rate

that is upper bound by twice the channel bandwidth, they will be orthogonal

to each other[1], which means the pulses will not interfere with the adjacent

pulses. This pulse rate was defined as Nyquist rate, and the pulses can be

recovered using a matched filter. Signaling above this rate results in the loss

of pulse orthogonality and introduces Inter Symbol Interference (ISI). Most

of the communication systems today are based on the Nyquist criterion and

trying to approach Shannon’s capacity.

The idea of increasing the spectral efficiency by ignoring the Nyquist cri-

terion and transmitting pulses faster than the Nyquist rate is called Faster

than Nyquist signaling. The history of Faster than Nyquist signaling started

way back in 1975 when James Mazo [2] published his findings in the possibil-

ity of transmitting sinc pulses Faster than Nyquist and still able to achieve
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the Euclidean distance between symbol sequence as same as in Nyquist sig-

naling, where Euclidean distance in the distance between the pulses which

determines the probability of symbol error.

The set of modulation techniques that compress symbols in time and

frequency or both are known as faster than Nyquist signaling. Mazo did not

continue the research in FTN in 1975 as there were significant challenges

in implementing FTN systems like increased complexity in the receiver to

handle the ISI, the scarcity of resources back then and the demand for higher

data rate was less. As the demand for higher data rate is too high nowadays,

the researchers have started to show a keen interest in designing FTN system

for the next generation mobile communication.

1.2 Focus of the thesis

This master’s thesis mainly focuses in exploiting the possibilities of unfolding

the FTN systems and to recover the transmitted FTN symbols that are

influenced by ISI with better SER. The main goals of the thesis are as follows:

• Derive at a discrete time FTN model.

• Devise an algorithm to generate a trellis for demodulation of FTN

signals automatically.

• Study the results of symbol error rate for various modulation tech-

niques.

3



1.3 Contribution

The pulses that are influenced by ISI has a trellis structure, and the trans-

mitted symbols can be decoded using techniques such as Viterbi or BCJR

algorithms. In this thesis, we present an algorithm, that can automatically

generate the trellis of an FTN signaling scheme given the pulse shape, the

signaling rate and the constellation. The calculated trellis is stored in a ma-

trix with four columns: the current state, the input, the next state, and the

branch metric. This matrix along with the sampled symbols received from

the AWGN channel can serve as input to any trellis decoder. The main idea

behind the algorithm is to calculate all possible ISI values by considering

every amplitude of the interfering pulses. More background on the Viterbi

decoder and the algorithm is provided in chapter 5 and 6.
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Chapter 2

Literature Review

In this chapter, we will be discussing the survey on the literature of FTN

signaling, starting from the early developments to the current state-of-the-

art in chronological order. The Faster than Nyquist signaling makes its first

appearance in the literature in the mid 1960s. Even though it is more than

50 years in the past, there seems to be only a handful of papers regarding

FTN signaling up until very recently. The literature review is classified into

three chronological periods. Each section will focus on the highlights in the

research in the period and the problems faced by the researchers.

2.1 Early Days of FTN (the 1960s - 1985)

The early 1960s was the period when telecommunication started to emerge,

and the availability of resources was very minimal. It was Bell Labs and

its researchers who contributed to the advancement of communication for

the most part. The possibility of transmitting faster than Nyquist rate on a

6



band limited communication channel, for better spectral efficiency, grabbed

the thoughts of those researchers. Several researchers published their find-

ings, but none of them had promising results until Mazo’s work in 1975. In

those days it was considered that usage of FTN signaling posed more com-

plexity and sufficient technology was not available to handle the Inter-symbol

Interference. It was rendered not suitable for practical use, and the research

was suppressed within Bell labs.

To the best of our Knowledge, the first published reference on FTN dates

back to 1965, when Tufts, of Harvard University, showed that "it is possible to

transmit a finite sequence of real numbers at an arbitrarily high rate through

any linear, time invariant, noiseless transmission medium" [3]. Tufts also

derived an FTN scheme with an analytical framework for designing minimum

mean square equalization that was limited to a short burst of pulses. In 1967,

Landau [4] from Bell Labs undermined Tufts work by saying "data cannot

be transmitted at a rate higher than Nyquist’s Sampling rate" by defining a

concept called stable sampling. Soon after that Tufts challenged Landau’s

claim in 1968 by arguing that "it is possible to transmit any finite number of

data elements at rates Faster than the Nyquist rate" [5].

Also in 1967, Andrew.J.Viterbi [6] published an article in which he pro-

posed an algorithm for decoding convolution codes that was asymptotically.

During the same time, Saltzberg attempted to reduce the channel bandwidth

below the Nyquist bandwidth to simulate effective FTN transmission and ob-

served that "the system bandwidth can be reduced slightly below the Nyquist

band without catastrophic results" [7]. In 1970, Lucky from Bell labs argued

in his paper [8] that FTN transmission causes ISI that cannot be removed

7



by a decision feedback equalization, despite the advancement in equalization

which renders FTN unsuited for practical use.

Despite all these misconceptions, Mazo from Bell Labs published his paper

in 1975 that showed promising results that changed the viewpoint on FTN

transmission for all the researchers. He proposed that the pulses can be

transmitted Faster than Nyquist by 25% and still preserve the minimum

Euclidean distance which is considered to be one of the most important metric

to measure the performance of the communication system. He used sinc

modulated pulses in most of his work and proposed a transceiver architecture

based on it. He also focused on channel capacity and error control coding

techniques in his paper. Nevertheless, Mazo led a path for the researchers

to build on for the future. Around this time, Forney [9],[10] was pursuing

Viterbi’s work on the optimum viterbi decoder. He planted the idea of using

the Viterbi algorithm for maximum likelihood ISI receivers.

Around 10 years later, Foschini in 1984 analyzed the feasibility of FTN

Signaling with Quadrature Amplitude Modulation (QAM) [11]. He compared

the results of FTN transmission between the binary symbols and QAM sig-

nals and concluded that the binary symbols offer only a minor gain over

QAM due to high spectral side-lobes and implementation complexity of the

ISI. Foschini said in his paper that "one cannot dismiss (FTN signaling us-

ing multi-level symbols)" and "(such) systems may have some value (over

QAM)." Unfortunately, Foschini’s paper in 1984 was the last one on FTN

signaling from Bell labs. On the other hand, Mazo’s work was pursued by

other researchers like Hajela and Mazo’s himself published a joint paper with

Landau in 1988 [12], which was his final work on FTN Signaling.

8



2.2 Mid Days of FTN (mid 1980s - 2000s

After the mid-1980’s, the Bell labs researchers seemed to have lost interest

in the FTN signaling, while other researchers picked up where they left and

continued on in various paths. Most of the work during this period was an

extension to Mazo’s work on calculating the minimum Euclidean distance.

There were very few papers on FTN published during this period involving

the concepts of using different modulated pulses, channel coding techniques

and ways to suppress the ISI caused by the FTN pulses. Most of the pub-

lishers did not pursue their course of research in FTN signaling after their

initial publications.

During the years 1987 to 1992, Hajela [13],[14] published a series of pa-

pers, mostly extending the work of Mazo, out of which his most important

contribution was to mathematically formulate the problem of finding mini-

mum Euclidean distance and prove that 25% increase in data rate was the

best possible result for an FTN system. Most of his work also employed sinc

pulse for simulations. It was in the year 2003, Liveris and Georghiades [15]

moved from sinc pulses to raised cosine pulses which were more practical to

implement. They mathematically showed that the 25% increase was pos-

sible with rRc pulses along with the minimum distance calculations. They

also designed constrained coding to keep the minimum Euclidean distance

constant for higher signaling rates. They claim that the ISI caused by the

FTN system can be removed practically using advanced coding techniques

like iterative Turbo equalization.

Since the approach towards raised cosine pulses was introduced, there

were many publications on different practical pulses and coding techniques.

9



After Foschini’s work with QAM signals in 1984, there were no attempts of

multi-level FTN systems until Wang and Lee’s [16] publication in 1995. Their

work was crucial with some fascinating ideas multi-level FTN, modification

of FTN transmit filter response and using a whitened matched filter at the

receiver. They also proposed the idea of using an iterative decoder to handle

ISI. Meanwhile, in the 1990s, few independent developments were made in the

field of equalization of coded and uncoded systems[17], and Berrou discovered

turbo codes and turbo equalization [18],[19].

2.3 Recent days of FTN (mid 2000s - present)

Most of the early work in FTN was hindered due to the unavailability of

processing resources and no need for higher data rates. However, due to

the recent escalation in the cost of channel bandwidth and reduced cost of

memory and processing resources, FTN has grasped the attention of many

researchers. FTN is considered as a method of trading processing complexity

for improved spectral efficiency. With that being said and all the other

advancements in the communication technologies, FTN has currently become

the most important ongoing research and a potential contender in the 5th

generating wireless communication.

Rusek and Anderson from Lund University in Sweden, have become the

most important contributors for the research in FTN signaling. It was ini-

tially started as Rusek’s Ph.D. thesis work. They continued to pursue this

course of research made various approaches to study FTN signaling in great

detail. They were the first to explore the possibility of combined time and

10



frequency FTN and expanded their research in channel capacity and finally

implementation of FPGA hardware. They also analyzed the capacity of FTN

signals when the modulation symbols are constrained to be independent and

identically distributed is higher than the traditional orthogonal signaling.

They also extended Mazo’s work on the in-variance of minimum Euclidean

distance for FTN signaling to Frequency-Time FTN using root-raised cosine

pulses. Their simulation results were better than the single dimensional FTN

system and also achieved same error performance as the conventional OFDM

system.

Over the years, Rusek and Anderson conducted various research on FTN

systems like the design of practical coding systems, equalization techniques

like turbo equalization and decoders such as BCJR decoders and Viterbi

decoders[20],[21]. In most of their simulations, they used an additive white

Gaussian noise (AWGN) channel. Moreover, they were the first to bring

FTN into practice by implementing their FTN transceiver in a complemen-

tary metal oxide semiconductor(CMOS) in a 65nm architecture and field-

programmable gate array(FPGA)[22],[23]. FTN was not only considered for

wireless communication, but also fiber optic communication. Many kinds of

research were performed on considering FTN in long-haul fiber optic commu-

nication links to increase spectral efficiency.They also attempted to review

the possibilities of applying FTN signalling to higher level modulation tech-

niques [24],[25].

In 2010, Yoo and Cho [26] proved that the FTN signaling using binary

modulation symbols could achieve the capacity od i.i.d Gaussian FTN sig-

naling as signaling tends to infinity. During the same year, Mcguire and

11



Sima reformulated the FTN system to propose a design for a low complexity

FTN receiver. They simulated an FTN receiver that can achieve ISI free

performance at high SNR. In 2017, Ji Zhou along with hi colleagues pro-

posed a capacity limit for the faster than Nyquist in which the performed

the simulation on a frequency division multiplex signaling[27].

Lately, FTN research has taken various directions like hardware imple-

mentation of frequency-Time FTN multi carrier system and study of FTN in

multiple input multiple output(MIMO) channels, multiple access, and broad-

cast systems[28]. In case of MIMO, not only frequency and time diversity is

considered, even spatial diversity is currently under investigation for massive

MIMO FTN systems. All these recent vibrant research developments indi-

cate that there is now a growing interest in the topic of FTN signaling and

its potentials are beginning to be recognized in the research community.
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Chapter 3

FTN Theory

Even though radio communication emerged way back in the 18th century, the

technologies were commercialized only in the early 19th century. The con-

tribution of renowned scientists like Marconi, Bose, Tesla has paved the way

for the future in wireless communication. It was in the late 1980s, when the

first generation of the mobile telephone was introduced. These used analog

frequency modulation and they were meant only for voice communication.

Later generation after generation the researchers continued to make it better

and faster. One of the ground-breaking discovery in digital communication

was Shannon’s Information theory based on the work of Harry Nyquist[1]. In

this chapter, we will be discussing the traditional Nyquist signaling and idea

of faster than Nyquist signaling along with its advantages and shortcomings.
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3.1 Nyquist Signaling

In digital communication, every information undergoes a series of stages be-

fore transmitted like encoder which converts the information into bits and

then these bits are modulated into a sequence of real symbols {ak}, k ∈ Z.

They are administered to a pulse shaping filter where it gets shaped into

a pulse p(t) suitable to be transmitted on a communication channel. The

pulse shapes considered in this thesis are sinc and raised cosine pulse. A

set of random symbols are generated that are assumed to belong to a finite

set (or constellation) A. These symbols are also uncorrelated and uniformly

distributed. The sequence of pulses are transmitted at the rate Rp, and they

are separated by a pulse duration Tp such that they don’t interfere with each

other. The transmitter generates the signal .

s(t) =
∑

k

akp(t− kTp), (3.1)

where Tp > 0. The pulses p(t− kTp) form an orthonormal set; that is,

∫ ∞
−∞

p(t−mTp)p(t− nTp) dt =


1, if m = n,

0, otherwise.
(3.2)

with this scheme, symbols are transmitted at a rate Rp = 1/Tp. The

received signal is represented as

r(t) = s(t) + n(t) (3.3)

where n(t) is white Gaussian noise with power spectral density N0/2. The
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symbols are estimated by calculating the sufficient statistics

rk =
∫ ∞
−∞

r(t)p(t− kTp) (3.4)

= ak + nk, (3.5)

where the noise samples nk are uncorrelated Gaussian random variables with

zero mean and variance σ2
n = N0/2.

If p(t − kTp) is an orthonormal set of pulses, then an integral of the

product of two different pulses is zero, and an integral of the product of the

same pulse is one. Which means at the sampling duration of a particular

pulse, all the other pulses interfere at zero, implying there is no intersymbol

interference.
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Figure 3.1: A train of 10 "sinc" pulses with ak = + − 1, Rb = 100B/s, and
pulses of duration 0.01 s. The red curves are individual pulses, while the
cyan curve is s(t), the sum of all pulses. The circles indicate the sampling
points, where s(kTp) = ak.

The Fig:3.1 represents a train of 10 sinc pulses with ak = [−111−1111−

1 − 1 − 1]. These pulses are transmitted at a bit rate of 100B/s with a

pulse duration of 0.01s. The red curves represent the individual sinc pulses

and the cyan curve is the s(t) which is the sum of all pulses. These pulses

are orthogonal to each other, and they are known as Nyquist pulses. The
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red circles indicate the sampling points which shows there is no ISI. The

communication technique described above is known as Nyquist signaling,

and it is optimal, in the sense that the probability of error is minimized. On

the other hand, the receiver can be implemented with much less complexity

using a filter matched to p(t) and sampled at kTp Effectively the receiver can

focus on one pulse and ak symbol at once without interfering from others.

Note that the interval of Tp is crucial here, and if the pulses are not separated

by precisely nT , they will not have the zero-ISI property.

According to Nyquist criterion, it is also necessary that the pulse rate

should be less than twice the channel bandwidth Rp ≤ 2B, where B is

the bandwidth of s(t). Equality is achieved when p(t) is a sinc function.

The signal s(t) needs to be carrier modulated to a suitable frequency to

be transmitted within the channel bandwidth. The carriers perform this

modulation since they have been allocated to a particular frequency. Since

we do not have that restriction, we work with directly with the baseband

signal for simulations.

3.2 Faster than Nyquist Signaling

When the pulses are transmitted at an interval Tp where Rp = 1/Tp, and if

they are not orthogonal to each other, and they tend to have ISI, where the

neighboring pulses are not invisible to each other and they overlap at one’s

sampling duration[29]. In that case, the received symbols become

rk = ak + nk + ISI, (3.6)
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The effect of ISI is usually as increases in the probability of symbol error.

However, the interference does not always degrade the system performance.

For example, partial response signaling systems introduce ISI in a controlled

manner, to shape the spectral density of s(t) [30]. The ISI can either be a

constructive interference or destructive interference depending on the polarity

of the pulses interfering.

In 1975, Mazo[2] discovered that in some instances the orthogonality could

be lost without increasing the probability of error. He proposed that if the

pulses transmitted at the rate faster than Nyquist and squeezing them in

time by introducing a multiplier, ultimately a time compression factor. In

this case, the transmitted signal will be represented as

sF T N(t) =
∑

k

akp(t− τkTp), (3.7)

where µ ≤ τ ≤ 1 is the time-compression factor, and µ is the Mazo limit,

which depends on p(t). Note that we can use this signal to transmit at a rate

Rp/τ which is potentially larger than 2B. In Fig. (3.2), a same set of sinc

pulses representing the following sequence [−1,−1, 1, 1,−1,−1,−1, 1, 1,−1]

is transmitted with τ = 1 which has no ISI and with τ = 0.8 that has

ISI.The blue line represents the actual transmitted signal s(t). In both the

cases D = 4 (number of lobes). The fact that we can transmit at a higher

rate than Nyquist with the same probability of error is surprising.In this

scenario, with Rp = 100 and τ = 0.8, the pulses in the FTN system arrive

at 20% faster than the traditional system. The set of modulation techniques

that compress symbols in time, frequency or both is known as faster than

Nyquist signaling [20].
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(a) Nyquist pulses (τ = 1) with D = 4.
There is no ISI.
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(b) non-orthogonal pulses (τ = 0.8) with
D = 4.

Figure 3.2: Same set of pulses transmitted at Nyquist rate and Faster than
Nyquist

3.2.1 Error Probability

The FTN Signal sF T N(t) still has the shape of P (f), even though 1/τ more

bits are carried in the same bandwidth. Euclidean distance or the minimum

distance dmin is the parameter that determines the probability of symbol

error Es. The dmin and Es plays an enormous role in understanding FTN

systems. The signal s(t) generated by the sequence of bits ak. Let si(t) and

sj(t) be two signals whose symbols are same up to n0 and different thereafter

at least at the position n0+1. Then d2
min is the least square Euclidean distance

between any such pair,

(1/2Eb)
∫
|si(t)− sj(t)|2dt, i = j (3.8)

The error rate for the symbols with the best detection tends to
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Q
√
d2

minEb/N0 (3.9)

As SNR grows, the square minimum distance d2
min in eq. (3.9) with binary

orthogonal pulses is always 2, no matter what the pulse shape. This quantity

is called the matched filter bound, and it and the corresponding error rate

Q
√

2Eb/N0
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Chapter 4

FTN Transmitter and Receiver

Even though we live in a digital era, all of the present-day communication

systems use analog wave-forms to communicate digital information from one

place to another. The communication systems are designed with some con-

straints to consider, like signal power, spectral efficiency, bandwidth, the

probability of symbol and bit error and complexity to name a few. The

information from the source to the transmission channel undergoes various

conversions to ensure the recovery of the information on the receiver end.

The Figure 4.1 shows all the blocks of a communication system both on the

sender and the receiver side.

The crucial role of a transmitter in a communication system is to guide

the information source all the way to transform to the format that the com-

munication channel could carry them to the destination. Any information

source can be represented as binary digits by an encoder. In this thesis, we

will not be discussing about the encoder, as we will presume that the infor-

mation source is already encoded in binary digits by randomly generating it
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Figure 4.1: Block diagram of a Communication System

which are equally distributed and independent. The binary digits are passed

into a pulse shaping filter to transform them into a waveform of pulses that is

better suitable to be transmitted into the communication channel. Then the

pulses are modulated to different amplitudes and phases based on the modu-

lation scheme before transmitting the signal into the channel. In this chapter,

we will discuss about the building blocks of an FTN transmitter, how the

signal is transmitted in the AWGN channel and its bandwidth efficiency and

channel capacity.

4.1 Pulse Shaping Filter

Pulse shaping is a process of changing the binary information into a wave-

form of transmitted pulses that is suitable for the communication channel
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available. Considering the situation for increasing data rate for a system

such as this with a fixed bandwidth without degrading the accuracy of the

signal, we see the bandwidth constraint to be constant. One possible way is

to modify the pulses effectively such that it requires less bandwidth than the

contemporary means. The pulse shape determines the signal’s spectrum. So,

always deciding the pulse shaping filter for the transmitter is a trade-off be-

tween spectral efficiency and the complexity. In a system with band-limited

channels during the increased modulation rate of a transmitted signal, it is

highly probable to have distortion or ISI due to bandwidth limitation. Since

we are going to induce ISI ourselves, we can’t afford this. So it requires fixing

the transmitted waveform into the shape such that the signal remains in the

prescribed bandwidth. Usually, these pulse shaping filters at the transmitter

are used in reference to the corresponding matched filter at the receiver end

for optimal performance. There are many pulse shaping filters in practice.

In this thesis, we will be using Sinc shaped filter and Raised cosine filter for

very specific purposes which will be discussed further.

4.1.1 Sinc Shaped filter

The Sinc function sinc(x) is one of the common pulse shapes which is also

called as “Sampling function”. The full name of this function is “Sine car-

dinal”, but it is commonly referred to as “Sinc”. In digital communication

and information theory normalized version of this function is used where it

is represented as

sinc(x) = sin(πx)/(πx) (4.1)
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−1 0 1

Figure 4.2: Sinc Pulse

In other words, the Sinc pulse is a sine wave that decays in amplitude

as 1/x as shown in the figure 4.2. The Fourier transform of a Sinc pulse

is equivalent to a rectangular shape in the time domain. Due to this, it is

also called as boxcar filter. The phase components of this pulse are all zeros,

and it is symmetrical in the time domain. Theoretically, this is the best

pulse shaping filter, but it cannot be implemented precisely. Moreover, it is

a non-causal filter with slow decaying tails.

26



−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·10−2

Frequency (Hz)

A
m
p
li
tu
d
e
(V

/H
z)

Figure 4.3: Magnitude spectrum of "Sinc" Pulse. The blue lines represent a
"Sinc" pulses transmitted in time domain. The red line represents the channel
bandwidth utilized by this transmission.

The Fig:4.2 represents a sinc pulse in the time domain, which has im-

pulse response from the pulse shaping filter centered at 0 and decaying tails

symmetric on both sides. Fig:4.3 represents the sinc pulses in a frequency

domain with the 50Hz channel bandwidth as shown in the figure, as we know

Rp = 2B.
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Figure 4.4: Eye Diagram of Sinc Pulse

The Fig:4.4 represents an Eye diagram of the sinc pulse. An eye diagram

is a pattern of series of pulses from different time instance plotted over and

over again to provide a holistic view of the signal. It is mostly used to

evaluate the integrity of the signal and effects of channel noise and ISI. As

shown in the figure, if the signal converges at certain points, then its assured

that the signal did not experience any ISI.

The Sinc pulses have to be transmitted at a precise time interval, in

order to satisfy Nyquist criterion and achieve bandwidth efficiency. If not

the results will be catastrophic with ISI and problems like phase error and
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synchronization. In this thesis, we use sinc pulse, and we also control the

number of lobes of the sinc pulse with a variable D as we needed a controlled

environment for testing the influence of ISI

4.1.2 Raised Cosine filter

The raised cosine pulse has the shape similar to that of the sinc pulse, but

with a configurable, fast decaying tails. The name raised cosine refers to the

shape of the pulse in the frequency domain, not in the time domain. Raised

cosine pulse basically can be bandwidth-efficient with more bits/sec/Hz and

power efficient. Unlike sinc pulse, Rc pulse does not take a sharp rectangular

shape in the frequency domain, with an everlasting tail in the time domain,

it has configurable time, and frequency domain shapes based on its roll-off

factor β.

−1 0 1

Figure 4.5: Raised cosine pulse β = 0.5
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−1 0 1

Figure 4.6: Raised cosine pulse β = 1

As depicted in the Figures 4.5 and 4.6, β governs the bandwidth occupied

by the pulse and the rate at which the tails of the pulse decay. A value of

β = 0 offers the narrowest bandwidth, but the slowest rate of decaying tails

in the time domain, almost representing the characteristics of a sinc pulse,

on the other hand when β = 1, it requires twice the bandwidth and taking

the shape of a perfect cosine pulse in the frequency domain, but the tails

decay rapidly in the time domain, which provides a significant advantage in

case if Inter-symbol interference.
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Figure 4.7: Magnitude spectrum Raised cosine pulse with roll-off factor β =
0.5. The blue lines represent a "rc" pulses transmitted in time domain with
the utilization of 25% excess bandwidth and the red line corresponds to the
Rp/2
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Figure 4.8: Magnitude spectrum of Raised cosine pulse with roll-off factor
β = 1. The blue lines represent a "rc" pulses transmitted in time domain
with the utilization of 50% excess bandwidth and the red line corresponds
to the Rp/2

Basically, roll-off factor gives the measure of the excess bandwidth oc-

cupied by a digital filter as compared to that of the theoretical minimum

Nyquist bandwidth. Bandwidth utilization is the most crucial parameter

in wireless communication. In real-time communication, the signals usually

tend to occupy the bandwidth more than specified by Nyquist. Officially

this excess bandwidth is referred to as a roll-off factor. The roll-off factor is

represented as
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β = ∆B/(Rp/2) (4.2)

∆B = (βRp)/2 (4.3)

where ∆B is the excess bandwidth required due to the roll-off factor and

Rp is the pulse rate. In this thesis we use raised cosine pulse as the pulse

shaping filter with configurable beta values, depending on the bandwidth

available and the system variable are adjusted accordingly to accommodate

the changes and produced the train of rc pulses to be transmitted. Fig:4.5

is a raised cosine pulse in the time domain with roll-off factor β = 0.5 and it

is clearly visible that the tails are decaying fast than the sinc pulse. In this

case of β and symbol rate Rs = 100, the excess bandwidth required is

∆B = (0.5 ∗ 100)/2 (4.4)

∆B = 25Hz (4.5)
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Figure 4.9: Eye Diagram of Raised cosine pulse β = 0.5
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Figure 4.10: Eye Diagram of Raised cosine pulse β = 1

Since the pulse rate itself requires 50Hz of bandwidth for this transmis-

sion, along with this excess bandwidth of 25Hz, the Fig:4.7 represents the

above scenario in frequency domain utilizing 75Hz bandwidth. Furthermore,

when the roll-off factor is increased the tail starts to decay faster. In Fig:4.6,

the raised cosine pulse is represented with β = 1. The decay in the side lobes

is the key in this thesis because, it reduces the influence of ISI in the resulting

signal and this pulse requires an excess bandwidth ∆B = 50Hz, resulting in

the total bandwidth of 100Hz. The frequency domain representation of this

scenario is shown in Fig:4.8 and followed by the eye diagram of this raised
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cosine pulse in Fig:4.10.

4.2 Modulator

In digital communication, modulation is a process of varying one or more

properties of a periodic waveform. In this thesis, we mostly deal with the

amplitude. Amplitude modulation is a most commonly used technique for

transmitting information using radio carrier wave. In AM, the amplitudes of

the pulse are defined in a set called constellation A, which is in turn defined

by the ModulationM, which is the number of elements in the constellation.

Based on the modulation parameter the bit density is defined as the number

of bits a pulse carries based on the amplitude modulation, and it is an ex-

ponential function and its unit is bits/Hz-s. We have two such modulation

techniques implemented in this thesis, which are Binary Phase Shift Keying

(BPSK), 4-Pulse Amplitude Modulation.

4.2.1 Binary Phase Shift Keying

BPSK is a digital modulation technique which transmits data by changing

the phase of the signal at a precise time. It is the simplest form of phase shift

keying which uses two phases that are separated by 180. It is also called as 2-

PSK.The BPSK constellation used in this thesis is [-1,1], and the Modulation

M = 2 and it modulates at 1 bit/symbol as shown in the Fig:3.1.
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Bit Error Probability of BPSK

The probability of bit error of BPSK under additive white Gaussian noise

can be represented as

Pb = Q(
√

(2Eb)/N0) (4.6)

where

Q(x) =
∫ ∞

x
1/2πe−u2/2du (4.7)
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4.2.2 4-Pulse amplitude modulation
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Figure 4.11: A train of 20 "sinc" pulses with 4-PAM constellation A =
[−3,−1, 1, 3], Rb = 100B/s, and pulses of duration 0.01 s and D = 4. The
red curves are individual pulses, while the cyan curve is s(t), the sum of all
pulses. The circles indicate the sampling points, where s(kTp) = ak.

Pulse amplitude modulation is a modulation technique where the amplitude

of the pulses is modified to transmit information. 4-PAM, as the name sug-

gests it has 4 different amplitudes which in turn is the modulation index M.

The constellation used for 4-PAM in this thesis is A= [-3, -1, 1, 3] . This
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modulation technique carries two bits per pulse, so it has a better data rate.

A sequence of Sinc pulses modulated to 4-PAM with the above constellation

is shown in Fig: 4.11

Bit Error Probability of 4-PAM

The probability of bit error of 4PAM under additive white Gaussian noise

can be represented as

Pe = Q(
√

(2Ep/5N0) (4.8)

4.3 AWGN Channel

Additive White Gaussian noise is the simplest noise model used in commu-

nication theory due to its nature. As its name suggests, this noise could be

added to any information system that might be intrinsic, and it has uniform

power across the frequency spectrum, and it is uniformly distributed in the

time domain with an average value of zero. It has power equivalent to the

variance of the Gaussian density. If No is the noise power, the variance σ2 is

represented as

σ2
n = N0/2 (4.9)

So the probability of error can be calculated as

Pe = Q(
√
a2

k/σ
2
n) = Q(

√
SNR) (4.10)
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4.3.1 Channel Capacity and Bandwidth Efficiency

Channel capacity C is a measurable rate in bits/sec which is the maximum

amount of information an AWGN channel can carry with low error probabil-

ity. Shannon derived an equation to calculate the channel capacity. He stated

that channel capacity is an ultimate limit that it is possible to approach the

maximum capacity by sophisticated systems. However, it is impossible to

carry information above the capacity with low error probability.

If it is a band-limited system with bandwidth W Hz, power is limited

in Watts, and the noise power spectral density is No in watts/Hz, then the

capacity for a AWGN channel is given by,

C = W log2(1 + (P/N0W )) (4.11)

The capacity C increases monotonically with W and reaches its maximum

value of P/N0log2e as W →∞. If data rate is defined as R

R ≤ Wlog2(1 + (p/N0W )) (4.12)

4.4 Matched Filter

Matched filters are optimum linear time-invariant filters that increases the

SNR and decreases the error probability. Matched filters are implemented

using a known signal as the reference signal so that it could be compared

to the unknown signal coming out of the AWGN channel added with noise.

This is done by using a time-reversed form of the reference signal and the

convoluted received signal. This filter tends to provide maximum possible
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instantaneous SNR for the signal added with Gaussian noise[31].

Figure 4.12: Block Diagram of a Matched Filter

According to Eq:4.13, the received signal is the addition of the transmitted

signal and the noise added in the AWGN channel. The idea is to minimize

the effect of the noise in the received signal to recover the transmitted signal,

which is done in an optimal manned by the matched filter. Usually, the

output signal power is desired to be higher than the noise power which results

in maximizing the SNR. The filter gives a sharp peak response to the desired

pulse at the input which helps to determine the amplitude of the pulse at a

particular sampling duration which will be discussed in the next section.

The general matched filter representation in shown in Figure 4.12. For

the transmitted signal s(t) and n(t)

r(t) = s(t) + n(t) (4.13)
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The impulse response of the pulse shaping filter and the matched filter

being p(t) and g(t) respectively, and output of matched filter being y(t) is

represented as

y(t) = r(t) ∗ h(t) (4.14)

Since the filter is linear, the output can be represented as

y(t) = s(t) ∗ h(t) + n(t) ∗ h(t) = x0(t) + n0(t) (4.15)

Generally Signal to Noise ratio is defined as

SNR = a2
k/w

2
k (4.16)

and it is depended on g(t), If g(t) = p(t), then SNR is maximum.

4.5 Sampler

Sampling is a crucial process in the receiver that determines the performance

of the communication system. In Nyquist signaling, the received signal is

sampled every Tp duration. But in FTN signaling, the signal is sampled at

τTp duration as the pulses are accelerated by the time acceleration factor τ .

In Figure:3.2, the small red bubbles represent the samples of the signal and

you can notice that, in the first figure the signal is sampled at every Tp = 0.01

duration, while the same set of pulses are transmitted in the second figure

with τ = 0.8, so the signal is sampled at τTp = 0.008 duration.
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Chapter 5

FTN Decoder
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Figure 5.1: FTN Decoder using trellis decoding.

In the previous two chapters, we discussed how digital information is trans-

mitted across an AWGN channel and received by a receiver, both in a tradi-

tional sense and Faster than Nyquist. When the sinc or raised cosine pulses

are transmitted at Nyquist rate without inter-symbol interference, the signal

is only influenced by the white Gaussian noise and maybe few more factors,
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but we do not consider them in this thesis. In this case, the received signal

can be sampled at Tp duration. These estimated information bits can be

decoded from the sampled channel output by a decision rule, where you can

set up a threshold based on the average of the minimum distance.

When the pulses are transmitted at a rate faster than Nyquist, the re-

ceived signal has to be sampled at τTp duration, and the samples are not

only influenced by the noise, but also with the ISI which tends to encode the

samples into a trellis structure. The received samples rk contain information

not only about ak, but also about some of the symbols that are transmitted

before and after it. Due to this dependency and the trellis structure, the es-

timated information bits can be decoded using a trellis decoder like Viterbi

or BCJR. If tau ≥ µ, the Euclidean distance between symbol sequences is

the same as in the Nyquist signaling and it is the distance which determines

the probability of error. We use Viterbi decoder in this thesis, in order to

decode the bits, due to its elegance and its less complexity. Before diving

into the way, the Viterbi decoder used in this context, a little background on

Viterbi decoder is provided.

5.1 Viterbi Decoder

The Viterbi decoder uses Viterbi algorithm for decoding a bitstream that has

been encoded using a trellis code. It was proposed by Andrew Viterbi in 1967

[10]. The algorithm was initially designed to decode the convolution code,

but later on, many inventions were made on it and its application started to

grow. It is used for finding the most likely sequence of hidden states called
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the Viterbi path.

The Viterbi decoding algorithm uses two variables to decode the esti-

mated information bits: the branch metric and the path metric. The branch

metric is a measure of the distance between what was transmitted and what

was received, and it is defined for each transition in the trellis. The trellis

is unfolded in each time instance a sample is received, and the number of

states of the trellis is defined by 2k−1, where k is the constraint length of

the convolution code. The transitions tend from the current state to the

next state based on the input bit, and a branch metric is associated with

each transition. In every time instant, the euclidean distance between the

received bit and the expected bit is calculated and, it is called the branch

metric of a transition.

The path metric is associated with a state in the trellis or a value asso-

ciated with each node. As the trellis proceeds, the path metric corresponds

to the euclidean distance with respect to the received bit sequence over the

most likely path from the initial state to the current state in the trellis. By

most likely path, we mean the path with the smallest euclidean distance be-

tween the initial state and the current state, measured over all possible paths

between the two states. Depending on the number of inputs, the number of

transitions converges to a particular node. The node metric is calculated by

the modulus of sum of the previous node metric and the branch metric of

the transition. The path with the smallest euclidean distance minimizes the

total number of bit errors and is most likely when the BER is low. According

to the Viterbi algorithm, the receiver can compute the path metric for a state

and time incrementally using the path metrics of previously computed states
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and the branch metrics.

In case the receiver has computed the branch metric for each state s at

time step I, the value of the branch metric is the total number of bit errors

detected when comparing the received bit to the most likely transmitted

message considering all the bits that could have been sent by the transmitter

until time i. Among all the possible states at time i, the most likely state is

the one with the smallest branch metric. If there is more than one such state,

they are all equally good possibilities. In order to determine the path metric

at the time i + 1 for each state s, we have to notice that if the transmitter

is at state s at time i+1, then it must have been in only one of two possible

states at the time i. More details about the branch metric and node metric

calculation will be explained in the coming sections with an example.

5.1.1 Determining the most likely path

The main loop of the algorithm contains two major steps, the first one is to

calculate the branch metric for the transitions, and the next is to compute

the path metrics as described before. Let’s see a step by step approach of

determining the path metrics. 1) Add the branch metric to the path metric

for the old state. 2) Compare the sums for the paths arriving at the next

state ( The number of paths approaching a particular state depends on the

number of incoming bits) 3) Select the path with the smallest value, breaking

ties arbitrarily. This path corresponds to the one with fewest errors.

Once all the path metrics are determined for every time instant, the path

metric of all the states at the last time instant is compared to trace the

most likelihood path. The state with the minimum path metric is selected
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and traced back to the state with the minimum branch metric that led to

the current states path metric, and it is traced back so forth unto the first

state. The survivor path is one that has a chance of being the most likelihood

path. The Viterbi algorithm is so practical as the number of survivor paths

is much smaller than the total number of paths in the trellis. In any case, if

the paths tend to have the same metric, it is considered most likely the ties

would break, and the metric will change after a certain time step based on

the decoder’s future knowledge.

5.1.2 Decoding FTN signals using Viterbi decoder

Based on the background in the Viterbi decoder, we know all we need to

decode the transmitted information sequence is the trellis and the branch

metric. As discussed earlier, the transmitted bit sequence {ak} constrained

to the constellation A, is transmitted using a pulse shape p(t) at τTp interval.

The transmitted FTN signal is represented as

sF T N(t) =
∑

k

akp(t− τkTp), (5.1)

When the signal comes out of the AWGN channel and passed through

the matched filter, it is sampled at τTp intervals and the channel output

is determined. Our significant contribution in this thesis is to present an

algorithm to generate the trellis of an FTN signaling scheme automatically.

The algorithm that is implemented for simulation will be explained in detail

in the next chapter. In this section, we will discuss an example of how the

trellis is generated and the process of decoding the FTN signals based on
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that trellis.

In order to generate the trellis, all we need is the pulse shape, the signaling

rate and the constellation. In the Figure:5.3, we have a sequence of 11 bits

ak = [1, 1, 1,−1,−1,−1,−1, 1,−1, 1, 1 (shown in red, -1 added in either side

for padding) constituting the constellation)A = −1, 1 with modulation index

M = 2. The pulse shape used in this example is a raised cosine pulse with

β = 1 and their side lobes are truncated with D = 2. As you can notice

in the figure that the pulses are transmitted faster than Nyquist rate with

τ = 0.9. The pulse interval is supposed to be 0.01 in Nyquist signaling, but

it is τTp = 0.01 ∗ 0.9 = 0.009, due to which the pulses are interfered with the

adjacent pulses at their sampling duration τTp causing ISI. In the figure, at

the duration 0.02, the pulse is interferes with 2 pulses transmitted at 0.01

and 0.03. The plot in cyan represents the signal s(t) and the blue lines are

plotted to mark the possible amplitudes the signal could take during the

sampling duration. Due to the interference of two pulses, the amplitude of

the signal at a sampling duration could have 8 possible values (M (D + 1),

2(2 +1) = 8. With this short sequence of pulses, we have covered all possible

combinations.
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s1 = [−1,−1]

s2 = [−1, 1]

s3 = [1,−1]

s4 = [1, 1]

s1

s2

s3

s4

−1.18

−1

0.82

1

−1

−0.82

1

1.18

Figure 5.2: Trellis of a D = 2 FTN signal, using a BPSK constellation and
raised-cosine pulses with roll-off factor 0.5. The solid lines represent an input
“-1” and the dotted lines an input “1”.

With that being said, the information is extracted from this plot to gener-

ate the trellis. The main idea behind the algorithm is to calculate all possible

combinations of the transmitted pulses and incoming pulses along with the

amplitudes variations of the center pulse caused by the ISI of the adjacent

pulses. As discussed earlier, all we need to generate a trellis is the number

of states, current state, input, next state and branch metrics. The trellis

represented in the Figure:5.2 is generated from the pulses represented in the

Figure:5.3. Consider a sample at time t that is interfered with pulses t-1 and

t+1, the pulses t-1 and t is the current state and t+1 is the input and t and

t+1 becomes the next state and the amplitude sampled at the time t is the
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branch metric.
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Figure 5.3: Sinc pulses to demonstrate trellis generation and Viterbi decoding

Figure 5.4: Most likely path computation using Viterbi decoder
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Let us see an example that leads us to the generation of the trellis from

the plot. In Figure:5.3, at time t=0.02, the pulse transmitted is +1 preceded

by -1 at (t − 1), so the current state becomes [-1,1], and the input is +1

that is transmitted at t+1, so the next state is [1,1] and the sample captured

at time t is 1 which is the branch metric. In Figure:5.2, the current state

corresponding to this example is s2 and the transition that is leading to s4

which is the next state, the solid line represents the input 1 from the time t

which is unlike the traditional Viterbi algorithm. Similarly, let us see another

example with the pulse transmitted at t=0.09 interfered with the pulses t-1

and t+1. The current state is [1,-1] which is state s3 in the trellis and since

the incoming pulse is 1, the next state is [-1,1], so the transition leading from

s3 to s2 is a dotted line since the pulse transmitted at t is -1 and the sample

of s(t) at time t is -0.82 which is the branch metric of this transition.

Figure:5.4 is the demonstration of trellis decoding for the signal transmit-

ted in figure:5.3. The trellis is represented only for a segment of the signal

from the time instance 0.04 to 0.1. The process of trellis decoding comprises

of three steps, calculating the branch metrics, calculating the node metrics

and finally, tracing the survival path to decode the bits. These steps will be

discussed in detail in the following sections

Calculating the branch metrics

The trellis shown in the Figure:5.4 is unfolded for every time instant men-

tioned earlier. The branch metric is calculated for every transition of every

time instant. The channel output in the figure represents the samples taken

from the received signal. The channel output is subtracted with the branch
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metric from the model trellis shown in the Figure:5.2 and the modulus of the

result is fed to the corresponding transitions in the decoding trellis. Since

the signal represented here is only influenced by ISI and not any noise, at

least one of the branch metric must be zero as the euclidean distance will be

zero. In the last time instant, the transition leading from state s3 to s2 has

a branch metric 0, as the current state is [1,-1] and the next state is [-1,1],

the branch metric in the model trellis, and the channel output is -0.82 whose

euclidean distance is 0.

Calculating the node metrics

Once the branch metrics are computed for all the transition in the trellis,

the node metrics are calculated. In this context, the node corresponds to

the states and the four nodes in every time instant have two transitions

converging at each one of them. To calculate the node metric for a particular

node, the minimum value of the sum of the node metric of the previous state

and the branch metric of the transition leading from the previous state and

the current state is computed. For example, consider the state s1 in the last

time instant has two transitions from previous state s1 and s3. The sum of

node metric and the transition leading from s1 is 2.54 and the one leading

from s3 is 0.18 which is minimal, hence assigning that as the node metric of

the current state.

Tracing the survival path and decoding the estimated bits

The process of tracing the survival path can be performed once all the node

metrics are computed or even for a segment of time which will reduce the
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processing requirements and memory capacity. It starts by picking the least

of the node metrics in the last time instant and working our way backward

by traversing through the transition that led to the node metric of the node.

The nodes and the branches are traced back to the beginning of the trellis.

For example, the node metric of state s2 in the last state is the least. It

was computed by picking the branch that was led from s3 from the previous

state and this node metric was in turn computed by selecting the branch led

from the state s2 from the previous state and likewise. Once the survival

path is identified, the final step is to decode the pulses in every time instant.

A mentioned earlier the solid line represents -1 and the dotted represents

1. The decoder then identifies the branches of the survivor path in every

time instance, and the decoder output is computed. The input ak and the

estimated decoder bits bk is them compared to calculate the signal to noise

ratio.
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s1 = [−1,−1,−1,−1]

s2 = [−1,−1,−1, 1]

s3 = [−1,−1, 1,−1]

s4 = [−1,−1, 1, 1]

s5 = [−1, 1,−1,−1]

s6 = [−1, 1,−1, 1]

s7 = [−1, 1, 1,−1]

s8 = [−1, 1, 1, 1]

s9 = [1,−1,−1,−1]

s10 = [1,−1,−1, 1]

s11 = [1,−1, 1,−1]

s12 = [1,−1, 1, 1]

s13 = [1, 1,−1,−1]

s14 = [1, 1,−1, 1]

s15 = [1, 1, 1,−1]

s16 = [1, 1, 1, 1]
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Figure 5.5: Trellis of a D = 4 FTN signal, using a BPSK constellation and
raised-cosine pulses with roll-off factor 0.5. The solid lines represent an input
“-1” and the dotted lines an input “1”.
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s1 = [−3,−3]

s2 = [−3,−1]

s3 = [−3, 1]

s4 = [−3, 3]

s5 = [−1,−3]

s6 = [−1,−1]

s7 = [−1, 1]

s8 = [−1, 3]

s9 = [1,−3]

s10 = [1,−1]

s11 = [1, 1]

s12 = [1, 3]

s13 = [3,−3]

s14 = [3,−1]

s15 = [3, 1]

s16 = [3, 3]

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

Figure 5.6: Trellis of a D = 2 FTN signal, using a 4-PAM constellation and
raised-cosine pulses with roll-off factor 0.5. The solid lines represent an input
“-1” and the dotted lines an input “1”.Branch metrics are not displayed due
to space constrain
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In Figure:5.5, the trellis of a D = 4 FTN signal, using a BPSK con-

stellation using a raised cosine pulse with β = 0.5 is represented. Due to

the value of D, four pulses two from the front and two from the back will

be interfering with the concerned pulse which results in a 16 level trellis

two transitions leaving and converging at every state. The branch metrics

are the samples from the s(t) captured at the center pulse at τTp duration.

Similarly Figure:5.6 represents the trellis for 4-PAM constellation using the

similar raised-cosine pulses and D = 2. In this case, two pulses one from

each side will be interfering with the center pulse, but due to the number

of elements in the constellation, there will be four possible inputs for every

state. Similarly, the branch metrics are sampled from the s(t) captured at

the center pulse at τTp duration.

5.1.3 Determining the Euclidean distance for Nyquist

and Faster than Nyquist signaling

In this section, we are going to consider a sequence of bits transmitted, both

in Nyquist signaling and Faster than Nyquist signaling and calculate the

euclidean distance between the transmitted and received bits. This example

is performed to prove the statement we made earlier that, the euclidean

distance is same for Nyquist signaling and Faster than Nyquist siganling up

to a certain τ values for different pulses.

In this example, we considered a transmitted sequence ak = [−1 − 1 −

1111 − 1 − 1], in which the first and the last -1 is used for padding. In

table:5.1, the first three rows represents the transmitted sequence and the

next three for the received sequence bk. Since we considered D = 2 and
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τ = 0.9, the trellis presented in Fig:5.2 corresponds to this scenario. By

keeping the trellis as reference, the current states have been mapped in the

second row for every corresponding transmitted bit including the previous

and the next bit. For instance the first state is s1 since the current state is

[−1− 1] considering the padded bit and the input is −1, so the next state is

obviously [−1 − 1]. In the second instant the current state is [−1 − 1] and

the input is 1, which leads to the state s2 and so forth. In the third row, the

branch metrics are determined from the trellis based on the transition from

one state to another.

Table 5.1: Calculating Euclidean distance for Nyquist and Faster than
Nyquist signaling

Transmitted sequence  ak -1 -1 1 1 1 -1

Actual states s1 s2 s4 s4 s3 s1

Branch metric of the 
transmitted sequence

-1.18 -1 1 1.18 1 -1

Received sequence  bk -1 -1 -1 1 1 -1

Decoded states s1 s1 s2 s4 s3 S1

Branch metric of the received 
sequence

-1.18 -1.18 -1 1 1 -1

Euclidean distance of FTN 
Signaling

0 -0.18 2 0.18 0 0

Euclidean distance of Nyquist 
Signaling

0 0 2 0 0 0

2

2

In the received sequence, we have deliberately introduced an error in the

third bit. considering that the decoded states will have a change of survivor

path. The decoded states and the appropriate branch metrics are determined

from the trellis by similar methods we used on the transmitted sequence. The

euclidean distance of FTN signaling is calculated by measuring the displace-

ment in the branch metrics in each state. Due to the error the transitions
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between the second, third and fourth instances have changed which resulted

in the displacement that is captured in the row 7. The calculation of eu-

clidean distance of Nyquist signaling is straight forward, by measuring the

displacement between the transmitted and the received sequence. As you

can notice the cumulative euclidean distance of both Nyquist and Faster

than Nyquist signaling are same.
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Chapter 6

Algorithm

Algorithm 1 Trellis generation for FTN signals
Input: D, A, τ , Tp, interpolator p(t)
Output: Trellis matrix T

1: Let M = |A|
2: Let nst = MD{number of trellis states}
3: Let rowindex = 1
4: Let S = A×A× . . .×A {Repeated D times}
5: Let tISI = τ

(
−D

2 : D
2

)
6: for sindex = 1 to nst do
7: cs = S[sindex]
8: for i = 0 to M − 1 do
9: T[rowindex+ i, 1] = cs

10: end for
11: for cindex, input in enumerate(A) do
12: T[rowindex+ cindex− 1, 2] = input
13: ns = [cs[2 : end], input]{Next state}
14: T[rowindex+ cindex− 1, 3] = ns
15: {Branch metric calculation}
16: a = [cs, input]
17: bm = 0
18: for (tindex, t) in enumerate(tISI) do
19: bm = bm+ a[tindex]p(t)
20: end for
21: T[rowindex+ cindex− 1, 4] = bm
22: end for
23: rowindex = rowindex+M
24: end for
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The algorithm presented in Alg:1 used the following conventions.Indexable

arrays or vectors are written in bold face. The constellation A is considered

indexable. The iterator enumerate(a) returns a tuple consisting of the index

and the current value of a. The symbol : is used to represent a range in

the usual way. Text between brackets {} are comments. The pulse p(t) is

implemented as an interpolator that can return the pulse amplitude for any

t.

The generation of the trellis is the most important part of this thesis

and the algorithm presented above facilitates that purpose. In this chapter

we will be discussing the logic behind the algorithm and its implementa-

tion. The algorithm takes four important variables as input, first of all the

constellation A which is determined by the modulation technique and the

minimum euclidean distance. The pulse shape p(t) with pulse duration Tp is

the second parameter. The variable D represents the number of side lobes

of the pulse and it ideally determines the structure of the trellis and finally

the time compression factor τ . The output of the algorithm will be a matrix

with four columns, the current state, the next state, input and the branch

metrics.

The below table lists the number of trellis states and number of branch

metrics each combination of these variables results in.
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Table 6.1: Calculating number of trellis states and number of branch metrics

Modulation index
M

Number of Interfering pulses 
D

Number of Trellis states 
T=MD

Number of branch metrics
B=MD+1

2 2 4 8

2 4 16 32

2 6 64 128

4 2 16 64

4 4 256 1024

4 6 4096 16384

We have simulated this algorithm in Julia and Matlab and the Alg:1

represents the Julia implementation. In the next section we will see a couple

of examples of the code execution on both Julia and Matlab implementations

that will lead to the generation of the branch matrix. As mentioned above,

this branch matrix helps us to generate the trellis presented in the previous

chapter.

6.1 Matlab Implementation

In this section, we will see an example of the Matlab implementation step

by step, right from declaring the input variables with appropriate values,

followed by execution of the main function that leads to the output branch

matrix.

In this example, we are considering a basic scenario of D = 2, τ = 0.9 and

a BPSK constellation A = [−1, 1]. The table:6.2 initializes all the necessary

input variables required for the generation of the branchmatrix.
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Table 6.2: Matlab Input variables

Variables Value Description

Constellation A [-1,1] Possible amplitudes of the symbols

M 2 Modulation parameter (No of elements in the constellation)

D 2 Number of interfering pulses

β 0.5 Roll-off factor

τ 0.9 Time acceleration factor

fs 1000 Sampling frequency

Tp 0.01 Pulse duration

Number of states = MD 4 Number of states of the trellis.

Number_of_branchmetric = MD+1 8 Each state has two inputs (-1,1) that leads to the next state.

[p] = rcpulse(β,D,Tp,Ts,'rc') pulse(p)- raised cosine The function rcpulse takes β,D,Tp,Ts as inputs and generates a pulse p

p = p./max(p) - The pulse p is normalized to amplitude 1

branchmatrix(1,1) = cellstr('Currentstate');
branchmatrix(1,2) = cellstr('Input');
branchmatrix(1,3) = cellstr('Nextstate');
branchmatrix(1,4) = cellstr('Branch value');

branchmatrix(1,4) The output branch matrix is initialized. It produces a empty table with 
the titles in the first row

Once all the variables are initialized, the main logic of the code begins

with a for loop.

fork = 0 : 1 : (numberofbranchmetric)− 1 , where k = 0 : 1 : 7, iterates

for 8 times in this case. In the next section we will see two iterations of k

as example, that will generate two rows in the branch matrix and then the

final branch matrix output is presented
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6.1.1 Iteration:1, where k = 0

Table 6.3: Iteration 1

Code Result Description

b=deci2bin(k,L) b=deci2bin(0,3) = 000 Binary representation with L bits

ak = b*2-1 [-1 -1 -1] Converting b to [-1 1], input sequence

impulses = zeros(1,length(ak)*fs*Tp*τ) 
impulses(1:fs*Tp*τ:end) = ak

impulses(1x27) Impulses is initialized with sequence of zeros and the 
input sequence ak is inserted every (fs*Tp*τ) position 

s = conv(impulses,p) Signal (s) The impulses is convoluted with the pulse p to generate 
the signal s

Outputs = s(start_samp:fs*Tp*τ:end); 
Outputs = Outputs(1:length(ak))

[-1.09, -1.18, -1.09] The transmitted signal is sampled at τTp duration

branch_value(k+1)=Outputs((D+2)/2) Outputs(2) = -1.18 The sample value of the centre pulse is the branch 
metric for ak input sequence 

branchmatrix(k+2,1) = cellstr( num2str(b(1,1:D))); branchmatrix(2,1)= -1 -1 Current state

branchmatrix(k+2,2) = cellstr(num2str(b(D+1))); branchmatrix(2,2)= -1 Input

branchmatrix(k+2,3) = cellstr(num2str(b(1,2:D+1))); branchmatrix(2,3)= -1 -1 Next state

branchmatrix(k+2,4) = cellstr(num2str(branch_value(k+1))); branchmatrix(2,4)= -1.18 Branch metric

In the end of the first iteration, the first row of the branchmatrix will be

populated with the data generated in the last four rows of table:6.3.

6.1.2 Iteration:2, where k = 1

Table 6.4: Iteration 2

Code Result Description

b=deci2bin(k,L) b=deci2bin(1,3) = 001 Binary representation with L bits

ak = b*2-1 [-1 -1 1] Converting b to [-1 1], input sequence

impulses = zeros(1,length(ak)*fs*Tp*τ) 
impulses(1:fs*Tp*τ:end) = ak

impulses(1x27) Impulses is initialized with sequence of zeros and the 
input sequence ak is inserted every (fs*Tp*τ) position 

s = conv(impulses,p) Signal (s) The impulses is convoluted with the pulse p to generate 
the signal s

Outputs = s(start_samp:fs*Tp*τ:end); 
Outputs = Outputs(1:length(ak))

[-1.09, -1, 0.91] The transmitted signal is sampled at τTp duration

branch_value(k+1)=Outputs((D+2)/2) Outputs(2) = -1 The sample value of the centre pulse is the branch 
metric for ak input sequence 

branchmatrix(k+2,1) = cellstr( num2str(b(1,1:D))); branchmatrix(2,1)= -1 -1 Current state

branchmatrix(k+2,2) = cellstr(num2str(b(D+1))); branchmatrix(2,2)= 1 Input

branchmatrix(k+2,3) = cellstr(num2str(b(1,2:D+1))); branchmatrix(2,3)= -1 1 Next state

branchmatrix(k+2,4) = cellstr(num2str(branch_value(k+1))); branchmatrix(2,4)= -1 Branch metric
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In the end of the second iteration, the second row of the branchmatrix will

be populated with the data generated in the last four rows of table:6.4.

6.1.3 Branch Matrix

The for loop continues the remaining iteration to completely populate the

branchmatrix. The final output of the branchmatrix for this example is

shown in the table:6.5.

Table 6.5: Output Branch Matrix

This information is vital for the creation of the trellis represented in

Fig:5.2. The trellis created using this branchmatrix is fed to the Viterbi

decoder, which in-turn uses it to decode the channel output that was trans-

mitted with the same input parameters.
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6.2 Julia Implementation

In this section, we will see an example with the Julia implementation. The

variables and the code used in this example will correspond to the algorithm

presented in Alg:1. In order to arrive at the same output branch metric,

the values assigned to the input variables are similar to that we used in

the Matlab implementation. The variables are declared in the Table:6.6 and

followed by the code implementation in the Table:6.7.

Table 6.6: Julia Input variables

Variables Value Description

Constellation A [-1,1] Possible amplitudes of the symbols

M 2 Modulation parameter (No of elements in the constellation)

D 2 Number of interfering pulses

β 0.5 Roll-off factor

τ 0.9 Time acceleration factor

fs 1000 Sampling frequency

Tp 0.01 Pulse duration

nst = MD 4 Number of states in the trellis.

rowindex 1 Enumerate the rows in the Trellis matrix T

S = A x A x …..x A (Repeated D times) [-1 -1] Every iteration produces the next two bit combination constrained to 
the elements in the constellation 

tISI = τ(-D/2 : D/2) (-0.9:0.9) Calculate ISI timing instants

[p] = rcpulse(β,D,Tp,Ts,'rc') pulse (p) – raised cosine The function rcpulse takes β,D,Tp,Ts as inputs and generates a pulse p

p = p./max(p) - The pulse p is normalized to amplitude 1

Trellis matrix T T(8,4) The output Trellis matrix is initialized. It creates a empty table T to feed 
the current state, input, next state and the branch metrics

The main logic is slightly different in this case, the main for loop sindex

iterates based on the number of states, which is four in this example, feeding

two rows at once to the Trellis matrix T. Each row is handled by a nested

for that iterates based on the constellation A = [−11].
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Table 6.7: Julia Code Execution

In the end of one sindex iteration, the Trellis matrix T will have two rows

populated and each row is generated by the cindex iteration as show in the

Table:6.7. By the end of four sindex iterations, the Trellis matrix T will have

8 rows populated with values for current state, input, next state and the

branch metrics. The Trellis matrix T generated by the Julia implementation

is same as the branchmatrix presented in the Table:6.5.
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Chapter 7

Simulation Results

We ran various simulations with different values of D (Number of lobes), τ

(Time acceleration factor), β (Roll-off Factor) and M (Modulation Index)

and made quite interesting observations. With the slight variation of any

one of the above parameters, changes the entire simulation, like a new set

of branch metrics are determined, and a new trellis is formed to decode the

channel output. Below is the table that lists the above variables and the

different values we used respectively.

Variable Value
Modulation Index (M) 2(BPSK), 4(PAM-4)

Roll off factor (β) 0.5,0.75 (rc pulses)
Time Acceleration factor (τ) 0.7,0.8,0.9

Number of lobes (D) 2,4,6

Table 7.1: Simulations performed with different combination of variables
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Figure 7.1: Bit error rate of an BPSK FTN signaling scheme with D = 2
and τ = 0.7 and β = 0.75.

In Figure:7.1, we present the bit error rate of an FTN system with D =

2, τ = 0.7 with BPSK constellation using a raised cosine pulse with roll-off

factor β = 0.75. The plot in blue color corresponds to the case where no

trellis decoding is involved on recovering the bits. Instead, the traditional

decision rule method was performed on the received signal. The effect of

ISI is quite evident in this case as it has resulted in a very large BER and

poor SNR. The plot in cyan represents the theoretical bit error rate for the

Nyquist BPSK. The plot in red corresponds to the BER of Viterbi decoded
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FTN. The results are much better than the decision rule BER. It is also too

close to the theoretical BER, but it must be considered that this system is

operating at a rate 1/τ = 1.42 times faster than the Nyquist system.
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Figure 7.2: Bit error rate of an BPSK FTN signaling scheme with D = 4
and τ = 0.8 and β = 0.75.
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Figure 7.3: Bit error rate of an BPSK FTN signaling scheme with D = 6
and τ = 0.9 and β = 0.5.

The Figure:7.2 represents the bit error rate of an FTN system with D =

4, τ = 0.8 with BPSK constellation using a raised cosine pulse with roll-off

factor β = 0.75. The colors of the plots remain the same. The decision

rule has shown some improvement compared to the previous scenario, but

still, the BER of the Viterbi decoding is consistent and still better than the

decision rule. Figure:7.3 represents the bit error rate of an FTN system

with D = 6, τ = 0.9 with BPSK constellation using a raised cosine pulse

with roll-off factor β = 0.5. The BER of the decision rule has shown some
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more improvement, but the Viterbi decoder BER is still holding its position,

However, we need to notice that even though the τ is increased to 0.9, the

D = 6 which means 6 neighbouring pulses are interfering with the center

pulse which increases the processing complexity of the decoder very high.

In addition to that the roll-off factor β is reduced to 0.5 which means the

side lobes will have higher amplitudes which make things even worse, but

still, the Viterbi decoder has consistently performed. Plots with the other

combinations of D, β, τ , are presented in the Appendix.
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Figure 7.4: Bit error rate of an PAM-4 FTN signaling scheme with D = 2
and τ = 0.9 and β = 0.75.
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Now lets focus on the simulation results of a different constellation. The

last 3 figures represent the plots for PAM-4 constellation with various D,τ and

β values. The figure 7.4 represents the bit error rate of an FTN system with

D = 2, τ = 0.8 using a raised cosine pulse with roll-off factor β = 0.5. The

performance of the Viterbi decoded output is considerably degraded to that

of the theoretical BER and nonetheless compared to the BPSK systems which

is obvious because of its complexity. However it carries twice the number of

bits carried by the BPSK systems and it shows better performance than the

decision rule decoded output, specifically at higher SNR values.
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Figure 7.5: Bit error rate of an PAM-4 FTN signaling scheme with D = 4
and τ = 0.9 and β = 0.75.
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Figure 7.6: Bit error rate of an PAM-4 FTN signaling scheme with D = 6
and τ = 0.9 and β = 0.75.

The figures 7.5 and 7.6 represent the bit error rate of an FTN systems

with D = 4 and D = 6 with the same τ and β values. These systems also

show similar kind of performance to that of the D = 2. The performance of

this trellis decoding is also proportional to amount of computing resources

and number if input bits. With the simulation results presented in the the-

sis, I hereby concur that trellis decoding for FTN system works it is worth

exploring. I have also specified few ways to improve the performance of this

system in the future work section of the next chapter.
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Chapter 8

Conclusion

In this thesis, we have described an algorithm that automatically generates

the trellis that describes the ISI in a faster than Nyquist communication sys-

tem. The algorithm takes the pulse shape, the constellation and the time

compression factor as inputs and provides us with a trellis with necessary

states and branch metrics as output stored in a matrix that helps us in de-

coding the channel output from the FTN system. We constructed the entire

communication system around the algorithm and demonstrated its efficiency

by simulating various scenarios of test cases. We have shown examples of

trellis generated by the algorithm for BPSK constellation with D = 2 and D

= 4 and for 4-PAM constellation with D = 2. We have also presented simula-

tion results, various plots distributed across various input parameters. All of

them confirm that the FTN system along with our algorithm can operate at

a bit error rate similar to that of Nyquist system while operating at a much

higher data rate.
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8.1 Difficulties Faced

I have encountered many difficulties over the course of this thesis and found

ways to overcome them. The most important instance was to modify the

traditional Viterbi algorithm to work for our need, as you know the Viterbi

algorithm works well binary for both states and branch metrics, but in this

thesis the Viterbi decoder has to work with integers for the states and decimal

values for the branch metrics. It was not easy to handle the complexity that

the decoder posed due to the increase in interference at higher D values. The

increase in the trellis levels and the branch metric made it really difficult to

debug in terms of synchronization and errors in the algorithm.

8.2 Future Work

The research in FTN signalling has caught the attention of many researchers

and it will be much productive to pursue this further. This direction or

research in FTN signalling has enormous potential for improvement. I have

mentioned a few ideas for improvement to this thesis work below.

• Implementing the Viterbi decoding for other Modulation techniques

like QPSK, QAM etc, and analyze the SNR performance.

• Reduce the complexity of the receiver by letting it pick the D value

based on β, when the interference of the side lobes become negligible.

• Reduce the memory and processor utilization by implementing parallel

computing and tracing the survivor path for a section of the trellis and

clearing the memory.
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• Hardware implementation of the algorithm to emulate real world ap-

plications.
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Appendix 1

Rest of the plots simulated for BPSK.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 2 and τ = 0.7
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 2 and τ = 0.7
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 2 and τ = 0.9
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 2 and τ = 0.9
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 2 and τ = 0.8
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 2 and τ = 0.8
and β = 0.75.

89



0 2 4 6 8 10 12 14
10−6

10−5

10−4

10−3

10−2

10−1

SNR (dB)

B
E
R

BER Viterbi

BER Decision Rule

BER Theory

(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 4 and τ = 0.7
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 4 and τ = 0.7
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 4 and τ = 0.8
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 4 and τ = 0.8
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 4 and τ = 0.9
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 4 and τ = 0.9
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 6 and τ = 0.7
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 6 and τ = 0.7
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 6 and τ = 0.8
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 6 and τ = 0.8
and β = 0.75.
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(a) Bit error rate of an BPSK FTN sig-
naling scheme with D = 6 and τ = 0.9
and β = 0.5.
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(b) Bit error rate of an BPSK FTN sig-
naling scheme with D = 6 and τ = 0.9
and β = 0.75.
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Appendix 2

Matlab Code to derive the states and branch metrics for the trellis

1 f unc t i on [ branch_value , branchmatrix ]=branch_metric ( f s ,

Ts ,Tp, Tt ,D, beta , start_samp , const ,M)

2 %%

3 L = (D+1) ; % Generate b i t based on i n t e r f e r e n c e

4 number_of_branchmetric = M̂ L ;

5 [ p ] = r cpu l s e ( beta ,D,Tp, Ts , ’ r c ’ ) ; % Generates nece s sa ry

pu l s e ( s i n c or rc )

6 p = p ./max(p) ;

7 %%

8 branchmatrix (1 , 1 ) = c e l l s t r ( ’ Current s tate ’ ) ;

9 branchmatrix (1 , 2 ) = c e l l s t r ( ’ Input ’ ) ;

10 branchmatrix (1 , 3 ) = c e l l s t r ( ’ Nextstate ’ ) ;

11 branchmatrix (1 , 4 ) = c e l l s t r ( ’ Branch value ’ ) ;

12 %%

13 i f M~=2

14 X = pam_counter (L ,M) ;

15 end
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16 f o r k=0:1 : ( number_of_branchmetric )−1 % No o f

Amplitude p o s s i b i l i t i e s Based on I n t e r f e r e n c e

17 %k=0;

18 i f (M == 2)

19 b=dec i2b in (k ,L) ; % Binary Values f o r every K

Value

20 a_k = b∗2−1; % Converting Binary in to

Bipo lar

21 e l s e

22 f o r pam = 1 : 1 : L

23 a_k(1 ,pam) = const (X(k+1,pam) ) ;

24 b=a_k ;

25 end

26 end

27 impulses = ze ro s (1 , l ength (a_k)∗ f s ∗Tp∗Tt) ;

28 impulses ( 1 : f s ∗Tp∗Tt : end ) = a_k ;

29 %% Generate the t ransmit ted s i g n a l

30 % Signa l s i s the analog s i g n a l that can be transmit ted

.

31 s = conv ( impulses , p ) ;

32 %plo t ( t1 , s , ’ c ’ ) ;

33 %% Training Sequence

34 Outputs = s ( start_samp : f s ∗Tp∗Tt : end ) ; % b i t s sampled at

ntT time

35 Outputs = Outputs ( 1 : l ength (a_k) ) ;
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36

37 branch_value (k+1)=Outputs ( (D+2)/2) ; % Ass ign ing the

Center Sampled value to the Branch metr ic

38 branchmatrix ( k+2 ,1)=c e l l s t r ( num2str (b ( 1 , 1 :D) ) ) ;

39 branchmatrix ( k+2 ,2)= c e l l s t r ( num2str (b(D+1) ) ) ;

40 branchmatrix ( k+2 ,3)= c e l l s t r ( num2str (b ( 1 , 2 :D+1) ) ) ;

41 branchmatrix ( k+2 ,4)= c e l l s t r ( num2str ( branch_value (k+1) )

) ;

42 end
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