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Abstract 

Vesicular stomatitis virus (VSV) is a negative sense, single-stranded RNA (ssRNA) virus that is 

currently studied for its uses as a vaccine viral vector and its potential in oncolytic therapy. The 

M protein of VSV is the active participant in the virus’s abrogation of the host innate immune 

response. This activity is thought to be due to the M protein’s ability to downregulate overall 

host transcription by blocking nuclear transport. A VSV mutant containing a D52G mutation in 

the M protein (22-20) has been shown to block nuclear transport while being defective as a 

suppressor of NF-κB activation. It is thus believed that while previous M protein mutant viruses 

are defective in both host transcription suppression and NF-κB activation, 22-20 is deficient in 

only one of these activities. This study aims to identify differentially expressed genes (DEGs) 

and pathways through transcriptome analysis of host response to VSV mutants. Our research 

leads us to believe that 22-20 does in fact down regulate overall host transcription, while being 

inefficient in suppressing NF-κB mediated immune response pathways. We also discovered 

important DEGs in the apoptosis pathway, including the antiapoptotic protein Mcl1, where 

downregulated by 22-20 to a greater degree than another mutant, 22-25. This combination of 

factors, deficiency in NF-κB suppression and increased apoptotic activation, could make 22-20 

an interesting candidate for oncolytic research.  
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Introduction 

Introduction to the Virus 

Vesicular stomatitis virus (VSV) is the prototypical member of the family Rhabdoviridae. Unlike 

many viruses, VSV can infect a diverse number of vertebrate and invertebrate hosts, and even 

some species of plants. Although the virus has a broad host range, its preferred hosts include 

horses, mules, cattle, bison, sheep, goats, and pigs. Clinical signs of infection include the 

formation of vesicles, on the skin on the muzzle, tongue, teats and above the hooves of 

susceptible livestock. Although VSV typically causes a non-fatal infection in mammals, it creates 

a burdensome socio-economic issue when it infects these livestock. In contrast to rabies, a 

closely related virus that is also a member of the Rhabdovirus family, VSV rarely infects humans 

outside of select cases, and only causes self-limiting, flu-like symptoms (3). 

Like other members of the Rhabdoviridae family, the VSV particle is bullet shaped (Figure 1) 

and is composed of two main components: the nucleocapsid or ribonuleoprotein (RNP) core 

group and the envelope group (3).  Each component has specialized functions. The 

nucleoprotein (N) encapsidates the viral RNA, thus forming the RNP core. This binding protects 

the genome from degradation once inside the host cell. The matrix (M) protein is a bridging 

molecule between the central RNP and the plasma membrane. It is also responsible for several 

other functions including regulation of apoptosis and inhibition of host RNA polymerase II and 

III activity. The transmembrane glycoprotein (G) protein is essential for attachment of the virus 

to the cellular receptor. Together, the catalytic large (L) protein and the non-catalytic 

phosphoprotein (P) form the viral RNA-dependent RNA polymerase complex which drives the 
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production of new viral RNA during replication and transcription. This complex adds a poly A tail 

to one end of each viral mRNA and also adds a modified cap structure to the other end, which 

enables its recognition by the host ribosomes (3). 

 
Figure 1. Diagram of VSV (ViralZone, SIB Swiss Institute of Bioinformatics) 

The RNA genome is approximately 11 kb long and encodes 5 major genes in the following 

order: 3’- N – P- M – G – L – 5’ (Figure 2). Transcription of the viral genome is polar and 

sequential, meaning there is a single transcription initiation site at the 3’ end of the genome 

and transcription of each gene depends on transcription and termination of the gene 

immediately upstream. For example, transcription of the P gene is dependent on the proper 

transcription and termination of the N gene. This polar and sequential mode of transcription 

results in attenuation of viral transcription because the viral polymerase is more likely to fall off 

the genome as it travels farther from the 3’end. In other words, efficiency of transcription 

decreases with increasing distance from the 3’end of the genome. As a result, the N 
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monocistronic mRNA is the most abundant while much less L mRNA is transcribed. This 

transcriptional attenuation results in production of a gradient of viral proteins (4). On average, 

there is 20%-30% more of the previous protein than the one following it (3). The proportional 

generation of these proteins is extremely important, since changing the order, decreases viral 

fitness. 

 
Figure 2. Vesicular stomatitis virus genome (ViralZone, SIB Swiss Institute of Bioinformatics) 

The infectious cycle of VSV 

Adsorption:  

The infectious cycle begins with the pH dependent, adsorption of the virion via the G protein to 

the cell surface receptor (3). This receptor is thought to be the LDL receptor (LDLR) along with 

other members of the LDL family (5) This family of receptors is found on many cell types and 

explains why VSV has such a broad host range (5). 

Penetration and uncoating:  

The pH and temperature dependent process of virus penetration, proceeds through the cell 

membrane quickly via receptor mediated endocytosis (3). Next the virus is uncoated (also a pH 

dependent process), during which the input viral proteins are released into the cytoplasm (3). 
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Transcription:  

VSV is a negative sense, single stranded RNA (ssRNA) virus, which means the genome is anti-

sense to mRNA therefore the host ribosomes are unable to recognize the 5’ end of the genome 

and initiate translation. First the viral polymerase must produce 5 monocistronic mRNAs from 

the input genome using a start and stop mechanism (Figure 3A). For example, the polymerase 

initiates transcription at the beginning of the N gene, generates a positive sense copy of the 

coding region, and then stops transcription at the end of the N gene and adds a modified cap 

and a polyA tail. The polymerase then reinitiates (starts) and the P gene and generates an 

mRNA encoding the P gene, which is capped and polyadenylated. As mentioned previously, 

transcription is polar and sequential, therefore once this process is complete, the polymerase 

Figure 3. Transcription and Replication of VSV Genome (Adapted from 
reference (6) with permission) 
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has produced a gradient of capped, monocistronic, polyadenylated viral mRNAs that can be 

recognized by the host ribosomes and translated into viral proteins (3). 

Replication:  

Once enough viral proteins have been produced, the RNA polymerase switches gears and uses 

the input negative sense genomes as a template to generate full-length positive sense RNA 

anti-genomes. These positive genomes are then replicated by the polymerase into full length, 

negative sense molecules that will be packaged into virions as genomes during assembly (Figure 

3B). An interesting question about the infectious cycle of negative sense RNA viruses is how the 

viral polymerase knows when to switch from transcription to replication. Evidence suggests 

that when the intracellular concentration of the N protein reaches a certain threshold, it will 

initiate the polymerase to create a template for the genomic RNA, thus beginning replication. 

This is logical as the amount of N is crucial since un-encapsidated RNA is rapidly degraded. This 

entire process of replication occurs within the cytoplasm of the host cell (3). 

Assembly and Budding:  

Post-translational glycosylation of G targets it for insertion into the cellular plasma membrane, 

where it functions as an “anchor” for the process of assembly. The M Protein binds with high 

affinity to membrane-bound G and then recruits the ribonucleoprotein cores (viral RNA plus N 

and lesser amounts of L and P) to join the complex, which are then released from the cell during 

a process called budding (3). This implies that the M protein is important for both assembly of 

the virion and eventual release of virions. The result of assembly and budding is the creation of 

a new bullet-shaped virion. 
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Type I Interferon Response 

Type I interferons (IFN-α and IFN-β) are a crucial component of the innate immune system. 

These cytokines are considered the first line of defense against viral infection. In fact, IFNs are 

not active against other foreign bodies aside from viruses. For the purposes of this research, we 

will focus on IFN-β (IFN) which are known to induce an antiviral state in cells making them 

resistant to subsequent viral attack. Once the IFN response is activated, the IFN protein is 

produced and secreted outside the cell. It can then bind to IFN receptors on the cell surface of 

both the infected cell and uninfected, neighboring cells (Figure 4). This binding then activates a 

complex signal transduction cascade that results in the activation of over 300 genes that 

function to block overall protein production inside the cell and therefore limit production of 

viral proteins (7). In addition to creating an antiviral state in the cell, IFN induction also helps 

the host mount an adaptive immune response by activating lymphocytes (i.e. macrophages, T 

and B-Cells and natural killer cells) and antigen presentation cells (APCs) (8). 

Induction of an IFN response 

Inducers of the Type I IFN response are “pathogen-associated molecular patterns” (PAMPS). As 

illustrated in Figure 5, these inducers include double stranded RNA (dsRNA) which (7) can be 

produced by viruses as a replicative intermediate, and are recognized by “pattern recognition 

receptors” (PRRs) (8). There are several families of PRRs that induce IFN, which have been 

broken down into two main groups; toll-like receptors (TLR) and RIG-I like receptors (RLR). TLRs 

come in different forms to detect viral infection of the cell. TLRs are transmembrane proteins 

located on the intracellular endosomes membranes of  many cells including leucocytes, 

macrophages, dendritic cells, cells of adaptive immunity, and some non-immune cells (9). TLR-3 
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binds to dsRNA, which is not commonly produced by mammalian cells and thus is an indicator 

of viral infection. TLR-7 binds to viral ssRNA found in the cytoplasm (7). Finally, TLR-4 has been 

known to bind to the G protein of VSV (7). The TLR-4 pathway eventually initiates responses by 

Interferon Regulating Factor 3 (IRF-3) and NF-κB, both of which are important transcription 

factors that must be activated before IFN can be produced (7). 

RLRs are expressed in some immune cells and most non-immune cells (fibroblasts, myeloid and 

epithelial cells), and these receptors contain an RNA binding domain that recognizes virus-

specific RNA within the cytoplasm. RIG-I, the prototypical molecule for this group, has been 

shown to detect in vitro transcribed dsRNAs. Another member, MDA5, which has a very similar 

composition to RIG-I, recognizes poly(I:C) which is a simulated dsRNA, but not the in vitro 

transcribed dsRNA. RNA viruses are also differentially recognized by RIG-I and MDA5 (10). 

Evidence suggests that RIG-I is the RLR that recognizes VSV RNA in infected cells (11), therefore 

the RIG-I dependent pathway is the focus of the work proposed here. As shown in Figure 5, 

once a RLR binds to viral RNA it triggers a signal transduction cascade that activates 

transcription factors (NF-κB, c-Jun, and IRF-3) that are essential for induction of early IFN-α 

gene expression (Figure 4) (2). Normally NF-κB family members are sequestered in the 

cytoplasm and tightly bound to Inhibitors of κB (IκBs), which keeps the molecule inactive by 

masking the nuclear localization signal (NLS). After RLR-dependent activation, the IκBs are 

degraded and the NLS on NF-κB is revealed, allowing it to be translocated to the nucleus where 

it can induce IFN mRNA production (12). The IFN mRNA is then translated into IFN protein, 

which as previously mentioned, is secreted outside the cell where it binds to its receptors on 

the surface of the infected and uninfected neighboring cells. This binding activates another 
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cascading pathway that induces the production of Interferon-stimulated genes (ISG), the 

formulation of which creates many hundred more products, including RIG-I, which in turn 

replicates the process in a positive feedback loop (7). RIG-I knockout mouse fibroblast cells 

show that IFN production was  diminished following VSV infection, which led to a 1.5 log 

increase in viral titers observed in these test mice (7). 

Viral Evasion of the IFN Response 

To combat this extremely effective form of defense, viruses have developed ways to circumvent 

the host’s IFN response. For example, some viruses have evolved mechanisms to hide their RNA 

from RIG-I such as post-translational modification (PTM) of the RNA, competitive viral protein 

binding, and sequestering RNA into organelles other than the cytoplasm (11). Influenza A and 

Ebola virus (EBOV) use a sequestering method to hide its RNA from PRRs, though the 

mechanism varies (13). 
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VSV and the IFN Response 

VSV is exquisitely sensitive to the effects of IFN-β. In fact, one molecule of IFN is sufficient to 

block successful VSV infection (14). In response, VSV also has its own methods of evading the 

IFN response. It is believed that the M protein is the most active participant in evasion of the 

IFN response within VSV-infected cells. VSV strains that encode an N-terminus mutation in M 

protein that changes a methionine to an arginine at position 51 [M(M51R)] are not able to 

inhibit host gene expression or suppress the IFN response, however viruses encoding this 

mutation are still able to effectively replicate and assemble virions (7, 15). Research indicates 

that the M protein alone can down-regulate host mRNA production, since it is sufficient to 

inhibit nuclear export of mRNA even in the absence of other VSV proteins (7). The M protein is 

Figure 4. Interferon pathway (Adapted from reference (2) with permission) 
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also able to inhibit the host RNA-dependent polymerase II (16). It has been postulated that VSV 

inhibits host gene expression by binding to and interfering with the function of Rae1 and 

nucleoprotein Nup98, cellular components of the nuclear pore that are required for mRNA 

transport to the cytoplasm (7). These two nuclear pore proteins are complexed in the cell, and 

M binding to Nup98 is indirectly mediated by Rae1. Further study is necessary to determine the 

whether this binding has a direct impact on gene expression (7). An important mutant strain for 

this research has been T1026R1 (R1), which encodes the M(M51R) mutation. Infection with R1, 

as well as other strains encoding this mutation in M, results in induction of a robust IFN 

response, however these viruses are delayed in their ability to inhibit host gene expression. Due 

to these correlated activities, it has been hypothesized that the IFN response is suppressed 

because M limits global host gene expression (17). 

Project Foundation 

It is believed that M limits the IFN response through its ability to inhibit global host 

transcription (18), while others propose that the M protein also inhibits NF-κB, which in turn 

abrogates IFN expression through downstream suppression (12). This belief is based on the 

following: (1) M inhibits virus-mediated NF-κB activation when expressed during infection or 

independently, (2) the M(M51R) mutation found in R1 abrogates this function, and (3) M 

targets a step upstream of the IκB kinase (IKK) in the canonical NF-κB activation pathway. These 

findings indicate that there may be two independent abilities of M involved in the abrogation of 

IFN response. One is the ability of the M protein to inhibit global host transcription and the 

second is the blocking of NF-κB activation, through which, the VSV M protein evades the RIG-I 

dependent pathway that leads to IFN gene expression (Figure 5). 



 17 

 

However, another study shows that the M protein is not involved in suppression of the IFN 

response in chicken-embryo cells (CEC) (14). Researchers compared the IFN-inducing capacity 

of 36 plaque-derived subpopulations of field isolate VSV-IN no. 22 and found that only isolate 

22-20 was an excellent inducer of IFN, while its sister plaques induced little to no IFN in these 

cells. Interestingly, genome sequencing determined that the M gene of 22-20 was identical to 

another sister isolate, 22-25 (14). Since CEC are sensitive to the effects of the M protein on host 

transcription (19), it was concluded that the M protein does not play a role in suppression of 

Figure 5. RIG-I pathway during infection. (Adapted from reference (1) with 
permission)  
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the IFN response by VSV. These results could be explained if two viral functions, M-mediated 

inhibition of host transcription and regulation of an early step in IFN gene induction, are 

involved in regulation of IFN gene expression. While VSV mutant R1 may be defective in both 

functions, isolate 22-20 may be defective in only one - the one responsible for limiting IFN 

induction at an early step of transcription. As described above, it has been reported that in 

addition to inhibiting host gene expression, the M protein prevents activation of NF-κB (12). To 

determine if 22-20 is indeed defective in an early step of IFN gene induction, 22-20 and 22-25 

have been further characterized. To begin, the genomes of both viruses were sequenced.  

A single coding mutation was identified in the M gene of 22-20, which changed the highly 

conserved aspartic acid residue at position 52 of the M protein to a glycine [M(D52G)]. 

Interestingly, this mutation is located one amino acid away from the M(M51R) mutation found 

in R1. It was also determined that both 22-20 and 22-25 inhibited host gene expression, 

indicating that the M(D52G) mutation did not perturb this function of M. Immunofluorescences 

studies show that 22-25 prevents activation of NF-κB, while 22-20 activates this transcription 

factor. Finally, little to no IFN mRNA or IFN protein was detected in 22-20 or 22-25–infected 

cells; likely due to M-mediated inhibition of host gene expression. The researchers posit that 

the M51R mutation in R1 M results in a virus that is defective in two functions, inhibition of NF-

κB activation and host gene expression, while the M(D52G) mutation in 22-20 results in a virus 

that is only defective in an early step of IFN gene induction, preventing NF-κB activation (Table 

1). 
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Virus M Protein 

Mutation 

Transcription 

Inhibition 

(M protein) 

NF-κB 

activation 

suppressor 

 

Host 

Transcription 

Inhibited 

NF-κB 

Activated 

IFN gene 

expressed 

wt None Functional Functional Yes No No 

R1 M51R Defective Defective No Yes Yes 

22-25 None Functional Functional Yes No No 

22-20 D52G Functional Defective Yes Yes No  

The overall goal of this work is to use RNA-Seq to investigate host genome expression in mouse 

L929 cells infected with 22-20 or 22-25. As both viruses inhibit global host gene expression, this 

comparative transcriptome analysis will identify differentially expressed genes (DEG) that are 

involved in NF-κB activation and identify this and other host pathways that are perturbed 

during early VSV infection. There seem to be few M protein mutations that abrogate one 

cytopathic effect of the VSV M protein, while maintaining the ability to inhibit host gene 

expression. Therefore, comparing this set of viruses offers a unique opportunity to understand 

the actions of M protein during initial infection. This includes identifying which genes involved 

with the NF-κB response are differentially expressed and ascertain the effect that the M protein 

may have on host pathways during infection.  RNA-Seq will allow us to determine the effect of 

the [M(D52G)] mutation on the ability of M protein to abrogate the IFN response while still 

inhibiting host transcription. 

  

Table 1. VSV Functional Differences. 
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Broader Impacts 

VSV has become increasingly attractive as a platform for the generation of recombinant viral 

vaccines for several reasons: (1) the general human population lacks antibodies to the virus; (2) 

human infections are rare and when they do occur the symptoms are mild; (3) the virus is not 

genotoxic; (4) replication occurs in the cytoplasm therefore insertion into the host genome is 

not a concern; (5) the virus is amenable to editing thanks to the development of a reverse 

genetics system to create recombinant viruses (20). Recombinant VSV has already been used as 

a vaccine vector for deadly viruses such as Marburg and Ebola virus (21). The Ebola virus 

vaccine made with recombinant VSV (rVSV-ZEBOV) has gone through phase 1 and 2 trials, with 

minimal side effects (22). A more recent test in Guinea, Africa showed that, after thousands of 

tests with the pseudotyped VSV, not one patient became infected with the Ebola virus (23). It 

has also been shown that, using a booster type immunization, pseudotyping VSV with the 

glycoprotein of lymphocytic choriomeningitis virus (VSV-GP), has circumvented the rapid 

creation of antibodies against the wt VSV, making it an even better viral vector (20). 

For many of these same reasons, researchers are trying to use VSV as an anticancer agent. VSV, 

and several other viruses are being considered for this type of therapy, creating the burgeoning 

field of oncolytics; the use of certain viruses to selectively destroy cancer cells. The majority of 

human cancer cells lack an IFN response, making infection by mutant M51R VSV more likely 

(24). This, in turn, will produce cell death by apoptosis, leading to tumor reduction. Healthy 

cells can mount a much more robust immune response, keeping them safe from harm.  
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Materials and Methods 

Cells, viruses, and infections 

Monolayer of mouse fibroblast L929 (ATCC CCL-1) were grown in complete media containing 

Eagle’s Minimum Essential Medium (EMEM) supplemented with 10% Horse Serum (HS). VSV 

field isolates 22-20 and 22-25 were generous gifts from Philip Marcus (University of 

Connecticut) and have been previously described. The heat resistant strain of the Indiana 

serotype of VSV was used as the wild type (wt) virus (31, 32). All viruses were grown on either 

baby hamster kidney cells or Vero cells as previously described (33). Cells were infected with 

each virus at a multiplicity of infection (MOI) of 5 PFU/cell unless otherwise stated. Virus was 

adsorbed in MEM for 3 h at 37 °C in the absence of serum. 

RNA Isolation 

Total RNA was isolated from infected L929 cells at 1 hour and 3 hours post infection (hpi) using 

the TRIZol Plus RNA Isolation Kit (Life Technologies) according to the manufacturer’s directions. 

To ensure that the highest quality RNA is used in this analysis, 4 biological replicates of each 

condition were isolated. RNA was quantitated via nanodrop and bioanalyzer. For each 

condition, the 2 highest quality samples were used for RNA-Seq. 

RNA-Seq 

Full workflow integrated service (RNA-Seq through Data QC and Analysis) was provided by 

ProteinCT Biotechnologies (Madison, WI). Complementary DNA (cDNA) libraries were prepared 

using the Illumina TruSeq strand specific mRNA sample preparation system (Illumina). Briefly, 

mRNA was extracted from total RNA using polyA selection, followed by RNA fragmentation. 
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Strand specific libraries were constructed by first-strand cDNA synthesis using random primers, 

sample cleanup and second-strand synthesis using DNA Polymerase I and RNase H. A single 'A' 

base was added to the cDNA fragments followed by ligation of the adapters. Final cDNA library 

was achieved by further purification and enrichment with PC. The quality of the cDNA library 

was checked using the Agilent 4200 TapeStation. The libraries were sequenced (Single end 

100bp reads) using the Illumina HiSeq4000. Ten samples per lane were run, with final counts 

reaching over 20 million reads per sample. 

Data QC and Analysis 

The fastQC program was used to verify the quality of the raw Illumina reads. The GRCm38 

(mm10) mouse reference genome and Ensembl gene annotations (v82) were used for read 

mapping. The raw sequence reads were mapped to the reference genome using Subjunc aligner 

from Subread (25), with majority of the reads (over 90% for all samples) aligned to the genome. 

The output from Subread is a BAM file (.bam). This is the binary version of a SAM file (.sam), 

which, in turn, is a tab-delimited text file that contains sequence alignment data. The alignment 

BAM files were compared against the gene annotation general feature format (GFF) files. GFF 

files (.gff) are formatted to describe multiple features of DNA, RNA and protein sequences. 

Following comparison, the raw counts for each gene were generated using the featureCounts 

tool from Subread, with over 90% of reads overall assigned to genes. The raw counts data were 

normalized using the voom method from the R Limma package (26). Based on the differential 

expression of genes, further analyses were carried out to detect enriched biological functions.  
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Internal RNA-Seq Workflow 

This workflow closely follows the pipeline outlined in Pertea et. al. (27) with modifications. The 

HISAT2 aligner software was used to map the raw data from the Illumina reads that was 

provided by ProteinCT to the GRCm38 genome (with annotations for single-nucleotide 

polymorphisms (snps) and transcripts) (28). This aligner also provided a high rate of alignment, 

ranging from 85.16% - 95.16%. SAMtools (29, 30) was then used to convert the SAM output 

files from HISAT2 into BAM files. These converted files were subsequently compared to the 

Ensembl gene annotations (v90) GTF file using Stringtie (31). These gene assignments were also 

well above 90%. The Stringtie output (estimated counts) were then converted to raw counts to 

use as input for differential expression analysis using R Bioconductor packages. 

Differential Expression and Biological Pathway Analysis 

This section of the workflow closely follows that described in Law et. al. (32) with modifications. 

The raw read counts were normalized using the edgeR package and the voom method in R 

Limma package (26, 33, 34). Subsequently, the differential expression of genes was analyzed. 

Enrichment analysis, including gene set testing and specific pathway enrichment, was 

completed using the camera and kegga methods respectively from the R Limma package. 

Visuals for pathway enrichment and gene expression were created using the R Pathview 

package (35). 
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Results 

Multidimensional Scaling 

Multidimensional scaling (MDS) of the transcriptome data was performed to determine sample 

relationship similarity (Figure 6). The MDS plot suggests that the technical replicates cluster 

closely together, indicating that this experiment should yield reliable results. This plot further 

indicates that gene expression in mock (1 hpi) and 22-20 (1 hpi) are similar, indicating that 

Figure 6. Multidimensional scaling (MDS) plot of the transcriptome data to 
identify sample clustering patterns. Number after the underscore represents 
the hours after infection (1 or 3 hr.) followed by the replicate number. 
Leading logFC dim 1: First MDS component (X-Axis); Leading logFC dim 2: 
Second MDS component (Y-Axis). Plot was generated via the edgeR package 
in R. 
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there is not much change in host cell gene expression within the first hour of infection. 

Likewise, of the 3 hpi samples, wt and 22-20 are more “related” to each other and 22-25 is the 

most different. Overall, samples from different groups are well separated. Consequently, each 

biological group (virus strain) clustered closely together and each condition (time), separate 

from each other (Figure 6).  

Heatmap Analysis 

Variable analysis of the top 100 DEGs confirmed the trends in clustering of samples observed in 

the multidimensional scaling (Figure 6). The analysis of the “top 100 DEG” illustrates the 

differences in host gene expression between the infections at 3 hpi versus the mock infected 

cells and even the infections at 1 hpi (Figure 7). Furthermore, a large number of genes in this 

subset are down regulated in response to viral infection by the group at 3 hpi than those at 1 

hpi.  

This clustering of 1hpi and 3hpi genes, can also be seen with 1093 DEGs (Figure 8). 

Furthermore, although our analysis and that of Protein CT used different parameters were used 

by internal analytics to obtain gene subsets, this study confirms the groupings and patterns of 

ProteinCT, even when considering clustering remains similar between a small subset (Figure 7) 

and a large one (Figure 8). Biological groups clustered together, with 22-20 (1 hpi) associating 

with Mock (1 hpi) and 22-20 (3 hpi) with wt (3 hpi). We also notice that the three infections at 3 

hpi are more similar than the earlier infections, as is expected based on the previous results 

(Figure 8). When considering the number of genes used in the ProteinCT overall heatmap, we 

increased the number of genes in our analysis to 1500. The intention here was verify whether 
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our analytical pipeline would provide similar results.  We summarily found that our internal 

analysis confirms this clustering of genes through variable analysis of the “top 1500 DEG” 

(Figure 9) which were obtained using parameters similar to the “top 100 DEG” (Figure 7). 

Venn Diagram Comparison 

Further analysis finds that 12.99 %, of the overall number of genes (15,556), are similar 

between the following three comparisons: 22-20 (3hpi) versus Mock; 22-25 (3hpi) versus Mock, 

wt (3hpi) versus Mock (Figure 10). There are, however, far more genes that are differentially 

expressed that are in common between the wt and 22-20 viruses than between wt and 22-25 

viruses (869 versus 87, respectively). This demonstrates the association between 22-20 and wt 

and may explain their clustering in both MDS and heatmap analyses (Figures 6-9). 22-20 

maintains 508 differentially expressed genes in common with 22-25, independent of those in 

common with wt. 19 genes were found to be differentially expressed between 22-20 and wt (7 

up regulated, 12 down regulated, adjusted p- value < 0.05) (Figure 11). Of the 2528 genes in 

common between 22-25 and 22-20, 137 total genes were found differentially expressed (71 

upregulated, 66 downregulated, adjusted p-value < 0.05) (Figure 12). Here, we notice that 

distinct groups of genes seem to be up or downregulated between 22-25 and 22-20 just as can 

be seen between 22-20 and wt. It was also discovered that within the 22-25 versus 22-20 

comparison, both hallmark gene sets for interferon alpha and gamma response were down 

regulated (Table 2). This suggests that 22-25 downregulates both IFN Type I and IFN Type II 

pathways, when compared to the effects of 22-20. Furthermore, it is evident that far more 

genes in this gene set were downregulated by 22-25 than by 22-20 (Figure 13). Of the genes 

found in this gene set, 5 - Cxcl10, Irf9, Ifit3, Gbp2, Rsad2 - were found to be differentially 
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expressed (adjusted p-value < 0.05) (Table 3). All 5 of these genes had a negative log fold 

change (logFC) indicating downregulation. 

KEGG and Gene Ontology Analysis 

KEGG pathway analysis reveals that several important pathways, including NF-κB, RIG-I, 

Autophagy and Apoptosis, include differentially expressed genes (Figures 14 – 21). 21 genes in 

the NF-κB pathway were found to be differentially expressed (FDR < 0.05) by 22-20 (3hpi) 

versus Mock (1hpi) with 8 upregulated and 13 downregulated (Table 4). This follows a trend 

which indicates an overall down regulation of the pathway (Figure 14). The differences in the 

induced gene expression for this pathway between 22-25 and 22-20 appear to consist of further 

down regulation. Interestingly, there were no significant variations (adjusted p-value < 0.05) 

found between 22-25 (3hpi) and 22-20 (3hpi) for the NF-κB pathway.  

In the RIG-I pathway, 10 genes were found to be differentially expressed (adjusted p-value < 

0.05) in 22-20 (3hpi) versus Mock (1hpi) with 4 upregulated and 6 downregulated genes (Table 

5). Again, there appears to be larger amount of down regulation of genes than up regulation 

regarding 22-25 versus 22-20 (Figure 17).  In this instance, one gene, Cxcl10/IP10, was found to 

be significantly downregulated between 22-25 (3hpi) and 22-20 (3hpi).  

We also found 36 DEG in the Apoptosis pathway (adjusted p-value < 0.05) in response to 22-20 

(3hpi) versus Mock (1hpi) with 12 upregulated and 24 downregulated (Table 6).  By comparison, 

3 DEG were found in response to 22-25 (3hpi) versus 22-20 (3hpi), all of which exhibited 

upregulation. Two of these genes, Mcl1 and Atf4, were found to be significantly expressed by 

22-25 and 22-20, an occurrence that was unique to the apoptosis pathway.
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Figure 7. Variable comparison of the Top 100 genes that are differentially expressed in VSV-infected L929 cells (RIT Internal 
Analysis).  A subset of the top 100 DEGs were selected (based on an adjusted p-value <0.05) from the comparison between 22-
20 (3 hpi) and Mock. The genes were sorted based on adjusted p-value, smallest to largest. The expression values for these 
same genes were analyzed across all samples and normalized to standard deviation units (z-score) by row (genes). Red: 
increased expression, blue: decreased expression. The dendrogram at the top of the heatmap displays the hierarchical clustering 
of the virus sample replicates. The dendrogram to the left of the heatmap displays the hierarchical clustering of genes, with 
gene names shown along the right side of the heatmap. 
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Figure 8. Variable comparison of the “overall top genes” that are differentially expressed in VSV-
infected L929 cells (ProteinCT). The genes were selected based on the following parameters: a 
standard deviation (SD) of expression values larger than 30% of the mean expression values 
(Mean) and had a mean log counts-per-million (logCPM) > 1. These parameters were chosen to 
define the most significantly expressed genes within the experiment. 1093 genes met these 
criteria and were plotted against all samples. Red: increased expression, blue: decreased 
expression. The dendrogram at the top of the heatmap displays the hierarchical clustering of the 
virus sample replicates. The dendrogram to the left of the heatmap displays the hierarchical 
clustering of these genes. 
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Figure 9. Variable comparison of the top 1500 genes that are differentially expressed in VSV-
infected L929 cells (RIT Internal Analysis). DEGs were selected based on an adjusted p-value < 0.05. 
The genes were sorted based on adjusted p-value, smallest to largest. A subset of the top 1500 
genes were selected from the comparison between 22-20 (3 hpi) and Mock. The expression values 
for these same genes were analyzed across all samples and normalized to standard deviation units 
(z-score) by row (genes). Red: increased expression, blue: decreased expression. The dendrogram 
at the top of the heatmap displays the hierarchical clustering of the virus sample replicates. The 
dendrogram to the left of the heatmap displays the hierarchical clustering of these genes. 
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Figure 10. Venn Diagram of Viral-Modulated Gene Expression. The mRNA differential 
expressions of wt or mutant M viruses relative to mock-infected cells are depicted in three 
overlapping circles. DEGs were selected based on a cutoff adjusted p-value < 0.05 which 
includes both up and downregulated genes. The numbers indicate the mRNA counts in the 
indicated area. The number of genes not found significant is 10289 (lower right-hand 
corner). 
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Figure 11: Variable comparison of DEGs between 22-20 (3 hpi) and wt (3 hpi) infected L929 cells. 
DEGs were selected based on an adjusted p-value < 0.05. Those genes that passed this cutoff, were 
selected from each sample within the group comparison of 22-20 (3 hpi) and wt (3 hpi). The 
expression values for these same genes were analyzed across all samples and normalized to 
standard deviation units (z-score) by row (genes). Red: increased expression, blue: decreased 
expression. The dendrogram at the top of the heatmap displays the hierarchical clustering of the 
virus sample replicates. The dendrogram to the left of the heatmap displays the hierarchical 
clustering of genes, with gene names shown along the right side of the heatmap. 
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Figure 12. DEGs between 22-25 and 22-20. DEGs were selected based on an adjusted p-value < 0.05. Those genes that passed this cutoff, 
were selected from each sample within the group comparison of 22-25 (3 hpi) and 22-20 (3 hpi). The expression values for these same genes 
were analyzed across all samples and normalized to standard deviation units (z-score) by row (genes). Red: increased expression, blue: 
decreased expression. The dendrogram at the top of the heatmap displays the hierarchical clustering of the virus sample replicates. The 
dendrogram to the left of the heatmap displays the hierarchical clustering of genes, with gene names shown along the right side of the 
heatmap 
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Table 2: 22-25 (3 hpi) versus 22-20 (Gene Set Testing).  DEGs within the comparison of 22-25 (3 hpi) and 22-20 (3 hpi) were matched to 
hallmark gene sets found in the Molecular Signatures Database (MSigDB). Hallmark gene sets with a false discovery rate (FDR) < 0.05 were 
selected via camera method in Limma. Gene Set: Name of gene set from MSigDB; NGenes: Number of genes in the set; Direction: Direction of 
differential expression (e.g. “Up” or “Down”); Pvalue: raw p-value; FDR: Benjamini-Hochberg FDR adjusted p-value 

Gene Set NGenes Direction PValue FDR 

HALLMARK_INTERFERON_ALPHA_RESPONSE 127 Down 2.60E-07 1.30E-05 

HALLMARK_INTERFERON_GAMMA_RESPONSE 217 Down 4.34E-05 0.001 

 

Table 3: Hallmark IFN Alpha Genes 22-25 (3 hpi) versus 22-20 (3 hpi). Genes that contributed to the Hallmark Interferon Alpha Response Gene 
Set with an adjusted p-value < 0.05. The group comparison is solely 22-25 versus 22-20. ENSEMBL: Ensembl name for gene; SYMBOL: HUGO 
Gene Nomenclature Committee (HGNC) approved gene symbol; logFC: log fold change; AveExpr: Average expression of the gene across all 
samples; P.Value: raw p-value; adj.P.Val: Benjamini-Hochberg correction statistic for multiple tests. 

ENSEMBL SYMBOL logFC AveExpr P.Value adj.P.Val 

ENSMUSG00000034855 Cxcl10 -4.03 0.91 1.36E-05 0.012 

ENSMUSG00000002325 Irf9 -0.72 3.44 4.94E-05 0.022 

ENSMUSG00000074896 Ifit3 -3.10 0.57 7.10E-05 0.022 

ENSMUSG00000028270 Gbp2 -5.27 -1.82 2.02E-04 0.038 

ENSMUSG00000020641 Rsad2 -6.31 -0.77 4.24E-04 0.049 
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Figure 13. Hallmark Interferon Alpha Response Gene Set. Genes that contributed to the enrichment of this gene set were matched to those 
the group comparison of 22-25 (3 hpi) and 22-20 (3 hpi). The expression values for these same genes were analyzed across all samples and 
normalized to standard deviation units (z-score) by row (genes). No adjusted p-value cutoff was used to ensure a more comprehensive 
model.  Gene names are shown along the right side of the heatmap. Red: increased expression, blue: decreased expression. The dendrogram 
at the top of the heatmap displays the hierarchical clustering of the virus sample replicates. The dendrogram to the left of the heatmap 
displays the hierarchical clustering of genes, with gene names shown along the right side of the heatmap 
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Figure 14. NF-κB Signaling Pathway: 22-20 (3 hpi) versus Mock (3 hpi). Genes involved in NF-κB 
Signaling Pathway for the group comparison of 22-20 (3 hpi) versus Mock (3 hpi). Key indicates log2 
fold-change (lfc). Red: increased expression, green: decreased expression. 
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Table 4: NF-κB Signaling Pathway - DEGs: 22-20 (3 hpi) versus Mock. Genes involved in the NF-κB 
Signaling Pathway with an adjusted p-value < 0.05. The group comparison is solely 22-20 (3 hpi) versus 
Mock. ENSEMBL: Ensembl name for gene; SYMBOL: HGNC approved gene symbol; logFC: log fold 
change; AveExpr: Average expression of the gene across all samples; P.Value: raw p-value; adj.P.Val: 
Benjamini-Hochberg correction statistic for multiple tests. 

ENSEMBL SYMBOL logFC AveExpr P.Value adj.P.Val 

ENSMUSG00000061132 Blnk -1.44 -0.48 5.35E-03 2.73E-02 

ENSMUSG00000024401 Tnf -1.19 1.87 2.38E-05 7.10E-04 

ENSMUSG00000021277 Traf3 -0.80 5.65 5.66E-03 2.84E-02 

ENSMUSG00000057329 Bcl2 -0.79 4.78 5.88E-05 1.30E-03 

ENSMUSG00000028191 Bcl10 -0.71 5.24 2.01E-06 1.56E-04 

ENSMUSG00000032487 Ptgs2 -0.71 6.33 3.83E-05 9.60E-04 

ENSMUSG00000026875 Traf1 -0.63 3.93 1.84E-03 1.29E-02 

ENSMUSG00000047123 Ticam1 -0.52 4.21 4.44E-04 4.80E-03 

ENSMUSG00000030341 Tnfrsf1a -0.47 6.53 2.85E-05 7.99E-04 

ENSMUSG00000024927 Rela -0.42 6.36 1.02E-03 8.51E-03 

ENSMUSG00000035476 Tab3 -0.29 4.87 6.99E-03 3.31E-02 

ENSMUSG00000027164 Traf6 -0.28 5.76 6.05E-03 2.99E-02 

ENSMUSG00000042228 Lyn -0.27 5.00 1.07E-02 4.43E-02 

ENSMUSG00000028163 Nfkb1 0.30 7.33 1.44E-03 1.09E-02 

ENSMUSG00000017652 Cd40 0.43 5.03 3.15E-04 3.86E-03 

ENSMUSG00000022414 Tab1 0.43 5.34 1.15E-03 9.27E-03 

ENSMUSG00000020941 Map3k14 0.54 4.94 7.20E-05 1.46E-03 

ENSMUSG00000026072 Il1r1 0.56 6.76 3.57E-03 2.06E-02 

ENSMUSG00000015312 Gadd45b 0.59 5.79 3.49E-04 4.11E-03 

ENSMUSG00000027962 Vcam1 0.76 6.54 9.08E-07 9.32E-05 

ENSMUSG00000018930 Ccl4 5.65 -2.94 1.29E-03 1.01E-02 
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Figure 15. NF-κB Signaling Pathway: 22-25 (3 hpi) versus 22-20 (3 hpi). Genes involved in NF-κB 
Signaling Pathway for the group comparison of 22-25 (3 hpi) versus 22-20 (3 hpi). Key indicates log2 
fold-change. Red: increased expression, green: decreased expression. 
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Figure 16. RIG-I Like Receptor Pathway: 22-20 (3 hpi) versus Mock (3 hpi). Genes involved in RIG-I Like Receptor Pathway for the group 
comparison of 22-20 (3 hpi) versus Mock (3 hpi). Key indicates log2 fold-change. Red: increased expression, green: decreased expression. 
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Figure 17. RIG-I Like Receptor Signaling Pathway: 22-25 (3 hpi) versus 22-20 (3 hpi). Genes involved in RIG-I Like Receptor Signaling Pathway 
for the group comparison of 22-25 (3 hpi) versus 22-20 (3 hpi). Key indicates log2 fold-change. Red: increased expression, green: decreased 
expression. 
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Table 5. RIG-I Like Receptor Signaling Pathway DEGs. Genes involved in the RIG-I-Like Signaling 
Receptor Pathway with an adjusted p-value < 0.05. The first column displays the group comparison 
within which the genes are expressed. ENSEMBL: Ensembl name for gene; SYMBOL: HGNC approved 
gene symbol; logFC: log fold change; AveExpr: Average expression of the gene across all samples; 
P.Value: raw p-value; adj.P.Val: Benjamini-Hochberg correction statistic for multiple tests. 

 ENSEMBL SYMBOL logFC AveExpr P.Value adj.P.Val 

22-20 vs Mock  ENSMUSG00000024401 Tnf -1.19 1.87 2.38E-05 7.10E-04 

22-20 vs Mock  ENSMUSG00000057329 Bcl2 -0.79 4.78 5.88E-05 1.30E-03 

22-20 vs Mock  ENSMUSG00000028191 Bcl10 -0.71 5.24 2.01E-06 1.56E-04 

22-20 vs Mock  ENSMUSG00000032487 Ptgs2 -0.71 6.33 3.83E-05 9.60E-04 

22-20 vs Mock  ENSMUSG00000047123 Ticam1 -0.52 4.21 4.44E-04 4.80E-03 

22-20 vs Mock  ENSMUSG00000030341 Tnfrsf1a -0.47 6.53 2.85E-05 7.99E-04 

22-20 vs Mock  ENSMUSG00000017652 Cd40 0.43 5.03 3.15E-04 3.86E-03 

22-20 vs Mock  ENSMUSG00000020941 Map3k14 0.54 4.94 7.20E-05 1.46E-03 

22-20 vs Mock  ENSMUSG00000015312 Gadd45b 0.59 5.79 3.49E-04 4.11E-03 

22-20 vs Mock  ENSMUSG00000027962 Vcam1 0.76 6.54 9.08E-07 9.32E-05 

22-25 vs 22-20 ENSMUSG00000034855 Cxcl10 -4.03 0.91 1.36E-05 1.15E-02 
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Figure 18. Apoptosis: 22-20 (3 hpi) versus Mock (3 hpi). Genes involved in Apoptosis for the group comparison of 22-20 versus Mock. Key 
indicates log2 fold-change. Red: increased expression, green: decreased expression. 
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Table 6. Apoptosis. Genes involved in Apoptosis with an adjusted p-value < 0.05. The first column 
displays the group comparison within which the genes are expressed. Highlighted gene symbols 
indicate genes that were expressed differently within multiple group comparisons. ENSEMBL: Ensembl 
name for gene; SYMBOL: HGNC approved gene symbol; logFC: log fold change; AveExpr: Average 
expression of the gene across all samples; P.Value: raw p-value; adj.P.Val: Benjamini-Hochberg 
correction statistic for multiple tests. 

 ENSEMBL SYMBOL logFC AveExpr P.Value adj.P.Val 

22-20 vs Mock ENSMUSG00000021250 Fos -6.27 3.12 2.08E-10 3.24E-07 

22-20 vs Mock  ENSMUSG00000039936 Pik3cd -2.23 -0.16 2.30E-04 3.16E-03 

22-20 vs Mock  ENSMUSG00000002083 Bbc3 -2.07 2.24 2.17E-06 1.64E-04 

22-20 vs Mock  ENSMUSG00000024401 Tnf -1.19 1.87 2.38E-05 7.10E-04 

22-20 vs Mock  ENSMUSG00000052684 Jun -1.05 6.55 9.43E-08 2.12E-05 

22-20 vs Mock  ENSMUSG00000027381 Bcl2l11 -0.91 5.78 1.75E-05 5.97E-04 

22-20 vs Mock  ENSMUSG00000038612 Mcl1 -0.81 8.96 4.08E-07 5.29E-05 

22-20 vs Mock  ENSMUSG00000057329 Bcl2 -0.79 4.78 5.88E-05 1.30E-03 

22-20 vs Mock  ENSMUSG00000028914 Casp9 -0.75 3.85 2.43E-03 1.57E-02 

22-20 vs Mock  ENSMUSG00000026875 Traf1 -0.63 3.93 1.84E-03 1.29E-02 

22-20 vs Mock  ENSMUSG00000031668 Eif2ak3 -0.61 5.16 4.99E-05 1.16E-03 

22-20 vs Mock  ENSMUSG00000023249 Parp3 -0.58 4.14 3.85E-04 4.35E-03 

22-20 vs Mock  ENSMUSG00000004446 Bid -0.55 6.76 1.36E-05 5.20E-04 

22-20 vs Mock  ENSMUSG00000030341 Tnfrsf1a -0.47 6.53 2.85E-05 7.99E-04 

22-20 vs Mock  ENSMUSG00000025887 Casp12 -0.45 4.64 1.01E-03 8.47E-03 

22-20 vs Mock  ENSMUSG00000019979 Apaf1 -0.45 4.80 4.53E-03 2.43E-02 

22-20 vs Mock  ENSMUSG00000024927 Rela -0.42 6.36 1.02E-03 8.51E-03 

22-20 vs Mock  ENSMUSG00000034573 Ptpn13 -0.42 4.75 2.94E-03 1.79E-02 

22-20 vs Mock  ENSMUSG00000054509 Parp4 -0.42 4.61 7.99E-03 3.62E-02 

22-20 vs Mock  ENSMUSG00000024959 Bad -0.37 4.61 1.16E-02 4.71E-02 

22-20 vs Mock  ENSMUSG00000059552 Trp53 -0.36 6.84 1.17E-02 4.73E-02 

22-20 vs Mock  ENSMUSG00000031834 Pik3r2 -0.34 6.81 1.82E-04 2.67E-03 

22-20 vs Mock  ENSMUSG00000024590 Lmnb1 -0.29 7.34 1.53E-03 1.14E-02 

22-20 vs Mock  ENSMUSG00000063065 Mapk3 -0.24 6.45 1.08E-02 4.47E-02 
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22-20 vs Mock  ENSMUSG00000023004 Tuba1b 0.20 9.87 9.90E-03 4.20E-02 

22-20 vs Mock  ENSMUSG00000042406 Atf4 0.24 8.73 1.60E-03 1.17E-02 

22-20 vs Mock  ENSMUSG00000026509 Capn2 0.26 8.08 9.56E-04 8.18E-03 

22-20 vs Mock  ENSMUSG00000028163 Nfkb1 0.30 7.33 1.44E-03 1.09E-02 

22-20 vs Mock  ENSMUSG00000071369 Map3k5 0.32 5.71 8.15E-04 7.30E-03 

22-20 vs Mock  ENSMUSG00000041417 Pik3r1 0.35 6.78 7.31E-04 6.82E-03 

22-20 vs Mock  ENSMUSG00000004936 Map2k1 0.36 6.09 1.29E-04 2.11E-03 

22-20 vs Mock  ENSMUSG00000028063 Lmna 0.36 9.95 4.08E-03 2.26E-02 

22-20 vs Mock  ENSMUSG00000024122 Pdpk1 0.37 6.94 7.94E-04 7.17E-03 

22-20 vs Mock  ENSMUSG00000020941 Map3k14 0.54 4.94 7.20E-05 1.46E-03 

22-20 vs Mock  ENSMUSG00000015312 Gadd45b 0.59 5.79 3.49E-04 4.11E-03 

22-20 vs Mock  ENSMUSG00000027859 Ngf 1.01 6.59 1.59E-04 2.45E-03 

22-25 vs 22-20  ENSMUSG00000042406 Atf4 0.36 8.73 9.61E-05 2.49E-02 

22-25 vs 22-20  ENSMUSG00000030265 Kras 0.45 6.33 1.16E-04 2.77E-02 

22-25 vs 22-20  ENSMUSG00000038612 Mcl1 0.50 8.96 1.80E-05 1.33E-02 
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Figure 19. Apoptosis: 22-25 (3 hpi) versus 22-20 (3 hpi). Genes involved in Apoptosis for the group comparison of 22-25 (3 hpi) versus 22-20 (3 
hpi). Key indicates log fold-change. Red: increased expression, green: decreased expression.
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Figure 20. Autophagy - Animal: 22-20 (3 hpi) versus Mock (3 hpi). Genes involved in Autophagy – 
Animal for the group comparison of 22-20 (3 hpi) versus Mock (3 hpi). Key indicates log fold-change. 
Red: increased expression, green: decreased expression. 
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Table 7. Autophagy. Genes involved in Autophagy with an adjusted p-value < 0.05. The first column 
displays the group comparison within which the genes are expressed. ENSEMBL: Ensembl name for 
gene; SYMBOL: HGNC approved gene symbol; logFC: log fold change; AveExpr: Average expression of 
the gene across all samples; P.Value: raw p-value; adj.P.Val: Benjamini-Hochberg correction statistic 
for multiple tests. 

 ENSEMBL SYMBOL logFC AveExpr P.Value adj.P.Val 

22-20 vs Mock ENSMUSG00000039936 Pik3cd -2.23 -0.16 2.30E-04 3.16E-03 

22-20 vs Mock ENSMUSG00000020108 Ddit4 -1.21 4.77 1.82E-06 1.46E-04 

22-20 vs Mock ENSMUSG00000037204 Atg101 -1.16 4.16 2.06E-05 6.48E-04 

22-20 vs Mock ENSMUSG00000030269 Mtmr14 -1.05 3.64 1.03E-05 4.43E-04 

22-20 vs Mock ENSMUSG00000038894 Irs2 -0.91 7.40 2.27E-07 3.80E-05 

22-20 vs Mock ENSMUSG00000057329 Bcl2 -0.79 4.78 5.88E-05 1.30E-03 

22-20 vs Mock ENSMUSG00000033124 Atg9a -0.66 5.13 6.67E-04 6.43E-03 

22-20 vs Mock ENSMUSG00000041895 Wipi1 -0.64 4.79 6.52E-05 1.38E-03 

22-20 vs Mock ENSMUSG00000029512 Ulk1 -0.64 4.32 9.08E-05 1.68E-03 

22-20 vs Mock ENSMUSG00000027244 Atg13 -0.64 4.49 1.84E-04 2.69E-03 

22-20 vs Mock ENSMUSG00000028550 Atg4c -0.63 2.38 5.63E-03 2.83E-02 

22-20 vs Mock ENSMUSG00000031668 Eif2ak3 -0.61 5.16 4.99E-05 1.16E-03 

22-20 vs Mock ENSMUSG00000042628 Zfyve1 -0.59 3.54 2.63E-03 1.66E-02 

22-20 vs Mock ENSMUSG00000013663 Pten -0.51 7.12 2.76E-05 7.85E-04 

22-20 vs Mock ENSMUSG00000028278 Rragd -0.44 3.72 1.92E-03 1.33E-02 

22-20 vs Mock ENSMUSG00000078566 Bnip3 -0.39 4.53 8.83E-03 3.88E-02 

22-20 vs Mock ENSMUSG00000024959 Bad -0.37 4.61 1.16E-02 4.71E-02 

22-20 vs Mock ENSMUSG00000025907 Rb1cc1 -0.36 4.46 3.79E-03 2.15E-02 

22-20 vs Mock ENSMUSG00000032470 Mras -0.36 4.10 4.48E-03 2.41E-02 

22-20 vs Mock ENSMUSG00000031834 Pik3r2 -0.34 6.81 1.82E-04 2.67E-03 

22-20 vs Mock ENSMUSG00000038375 Trp53inp2 -0.32 6.50 1.68E-03 1.21E-02 

22-20 vs Mock ENSMUSG00000033628 Pik3c3 -0.31 4.29 7.16E-03 3.37E-02 

22-20 vs Mock ENSMUSG00000070934 Rraga -0.29 6.74 6.75E-04 6.49E-03 

22-20 vs Mock ENSMUSG00000027164 Traf6 -0.28 5.76 6.05E-03 2.99E-02 

22-20 vs Mock ENSMUSG00000063065 Mapk3 -0.24 6.45 1.08E-02 4.47E-02 

22-20 vs Mock ENSMUSG00000029578 Wipi2 -0.23 7.74 3.73E-03 2.13E-02 

22-20 vs Mock ENSMUSG00000029471 Camkk2 0.32 6.59 1.17E-02 4.73E-02 
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22-20 vs Mock ENSMUSG00000041417 Pik3r1 0.35 6.78 7.31E-04 6.82E-03 

22-20 vs Mock ENSMUSG00000004936 Map2k1 0.36 6.09 1.29E-04 2.11E-03 

22-20 vs Mock ENSMUSG00000024122 Pdpk1 0.37 6.94 7.94E-04 7.17E-03 

22-20 vs Mock ENSMUSG00000024142 Mlst8 0.39 5.22 1.10E-03 9.01E-03 

22-20 vs Mock ENSMUSG00000026289 Atg16l1 0.41 5.85 8.11E-04 7.27E-03 

22-20 vs Mock ENSMUSG00000040506 Ambra1 0.41 5.32 4.14E-03 2.28E-02 

22-20 vs Mock ENSMUSG00000022419 Deptor 0.45 6.11 1.62E-03 1.18E-02 

22-20 vs Mock ENSMUSG00000005102 Eif2ak4 0.51 5.54 8.31E-04 7.39E-03 

22-20 vs Mock ENSMUSG00000041341 Atg2b 0.51 5.65 2.86E-03 1.76E-02 

22-20 vs Mock ENSMUSG00000055980 Irs1 1.63 8.36 6.77E-08 1.65E-05 

25-20 vs 22-20 ENSMUSG00000030265 Kras 0.45 6.33 0.0001 0.03 

 

Finally, 37 genes in the Autophagy pathway were found to be differentially expressed (FDR < 

0.05) in 22-20 (3hpi) versus Mock (1hpi) with 11 upregulated and 26 downregulated (Table 7). 

One gene, Kras, was found to be downregulated in 22-25 (3hpi) versus 22-20 (3hpi). It seems, 

therefore, at that the D52G mutation does not have a significant effect on these pathways at 

the transcription level, since there are very few significantly different genes between the 22-25 

and 22-20 groups. However, these small variations on certain genes may reveal what changes 

have occurred in the host due to the D52G mutation in the M protein. 

Gene Ontology (GO) analysis demonstrates the effect of the 22-20 and 22-25 viruses on 

separate groups of genes. Biological processes involved with host response to virus were 

upregulated in 22-20 when compared to Mock, and there appears to be no further upregulation 

by 22-25 for the same groups when compared to 22-20 (Figure 22). This is to be expected, as 

the host cell would begin to defend itself in the initial stages of infection. However, 22-25 is has 

a greater level of downregulated genes that are involved in the biological processes for viral 
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response (Figure 23). This indicates that while earlier analysis showed there were few genes of 

significant difference within certain pathways, overall immune response to 22-25 is reduced in 

comparison to 22-20.  Furthermore, though 22-25 continues to down regulate other biological 

processes in comparison to 22-20, including RNA metabolism and cell death, the overwhelming 

differences between the two viruses are within the viral response processes. 

 

Figure 21. Autophagy - Animal: 22-25 (3 hpi) versus 22-20 (3 hpi). Genes involved in Autophagy – 
Animal for the group comparison of 22-25 (3 hpi) versus 22-20 (3 hpi). Key indicates log fold-
change. Red: increased expression, green: decreased expression. 
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Figure 22. Biological Process: Up Regulated Genes. These biological processes from the Gene Ontology 
(GO) were found to be enriched through Gene Set Enrichment Analysis (GSEA). a) 22-20-3 versus Mock 
(3 hpi), Processes: response to virus, defense response to virus, defense response to other organisms, 
defense response, immune effector process, response to other organism, response to external biotic 
stimulus, response to biotic stimulus, regulation of immune effector process, regulation of defense 
response; b) 22-25 (3 hpi) versus 22-20 (3 hpi), Processes: T-helper 1 cell activation, granuloma 
formation, chronic inflammatory response, chronic inflammatory response, epithelial cell 
proliferation involved in liver morphogenesis, hepatocyte proliferation, liver morphogenesis, liver 
regeneration,  positive regulation of transcription from RNA polymerase II promoter in response to 
endoplasmic reticulum stress, mammary gland epithelial cell differentiation, mammary gland 
epithelial cell proliferation. 

a) 

b) 
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Figure 23. Biological Process: Down Regulated Genes. These biological processes from the Gene 
Ontology (GO) were found to be enriched through Gene Set Enrichment Analysis (GSEA).  a) 22-20-3 
versus Mock (3 hpi), Processes: regulation of transcription from RNA polymerase II promoter,  positive 
regulation of biological process, positive regulation of cellular process, positive regulation of RNA 
metabolic process, positive regulation of metabolic process, negative regulation of cellular process, 
regulation of cell death, positive regulation of nucleobase-containing compound metabolic process, 
positive regulation of macromolecule metabolic process, negative regulation of biological process; b) 
22-25 (3 hpi) versus 22-20 (3 hpi), Processes: response to virus, defense response to virus, defense 
response to other organism, response to other organism, response to external biotic stimulus, 
response to biotic stimulus, innate immune response , defense response, immune response , immune 
effector process. 

a) 

b) 
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Discussion 

Until recently, it was believed that the 22-20 and 22-25 M protein gene sequences were 

identical (14), however we identified a D52G mutation in the M protein of 22-20 (unpublished), 

which abrogates its ability to inhibit NF-κB. We also found that little to no IFN mRNA or protein 

in 22-20 infected L929 cells, which we propose was due to M-mediated inhibition of host 

transcription. With this in mind the goals of this study were the following: (1) find NF-κB 

response genes that are differentially expressed between 22-25 and 22-20, (2) determine host 

pathways that are affected by the M protein, and (3) identify host genes that may be involved 

in M-mediated inhibition of host transcription and/or regulation of the IFN response. 

First, the results of the MDS plot indicate that our VSV mutants elicit unique host gene 

responses, while still conveying important clustering results. That fact that mock and 22-20 

(1hpi) cluster together, illustrates that one hour is not a sufficient time lapse to see meaningful 

changes in host transcription. Conversely, the correlation between wt (3hpi) and 22-20 (3hpi), 

indicates that the host response to these mutants is similar. Overall, it can be determined that 

our samples should provide us with reliable data. 

The clustering of different samples and biological groups (Figure 6) was confirmed through 

hierarchical clustering and heatmap analysis of genes which suggests that 22-20 and wt have a 

similar impact on overall host gene expression, even though they are discordant for NF-κB 

activation (12). We expected that wt and 22-25 would cluster since their M proteins do not 

contain M51R or D52G mutations, they both block NF-κB activation, and they both inhibit host 



 53 

transcription (Table 1). It is possible that wt clusters closely to the 22-20 mutant because wt is a 

“lab strain” virus and therefore, wt may be attenuated in comparison to 22-25.  

We also determined that there were no DEGs between 22-25 and 22-20 for the NF-κB pathway, 

suggesting that these viruses do no target molecules in this pathway at the transcriptional level. 

Therefore, we hypothesize that these viruses regulate the function of one of the proteins in this 

pathway by altering its translation, stability, or PTM such as phosphorylation or ubiquitination. 

In fact, a recent study found that VSV encoding the M(M51R) mutation did exert distinct 

changes at the proteome and phosphoproteome levels compared to mock-infected cells (36). In 

contrast, we see only a few genes that are significantly differentially expressed between 22-25 

and 22-20 at 3hpi on the transcriptomic level. This may be due to the fact that 22-20 and 22-25 

both inhibit overall host transcription, rendering most differences in gene expression 

insignificant. The evasion of the innate immune response via PTM would not be unique to VSV. 

Many viruses, including Influenza A, Hepatitis B, and Ebola, have developed mechanism by 

which they circumvent the immune response (37). Therefore, we believe viruses such as R1 and 

22-20 may activate positive regulators of the NF-kB pathway by effecting the proteome or PTM 

of key components, resulting in NF-kB activation. These viruses may also inactivate negative 

regulators of the pathway. In contrast viruses that are able to block NF-kB (wt, 22-25) may 

inactivate positive regulators, or activate negative regulators of this pathway at the protein or 

PTM level.  

The patterns of minimal differences between 22-20 and 22-25, at the transcriptomic level, 

extended to other important pathways including the RIG-I and autophagy pathways. We found 

that apoptosis is the only pathway where 22-25 shows significant differences (both up and 
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downregulated) in genes that are differentially expressed by 22-20. Again, we notice that there 

is minimal significance at the transcriptional level. However, these significant genes might 

provide insight into the effect of the M protein on apoptosis. Previous studies have shown that 

the M protein induces cell rounding, a hallmark of apoptosis and it has been shown that the M 

protein has an effect on programmed cell death (38). VSV containing an M protein mutant, 

rM51R-M, illustrated how changes to the M protein affects the pathways through which VSV 

induces apoptosis (39). The wt virus primarily activated apoptosis through the mitochondrial 

(intrinsic) pathway via caspase 9 (Casp9), while rM51R-M, primarily activated apoptosis through 

the death receptor (extrinsic) pathway via caspase 8 (Casp8).  It was also observed that rM51R-

M induced apoptosis much more rapidly than the wt virus (39). Further research determined 

the effects of VSV wt on other specific genes within the apoptosis pathway including Mcl1 and 

Bid (40).  

Mcl1 is an antiapoptotic protein within the Bcl2 protein family, which includes both pro and 

antiapoptotic proteins (40). Mcl1 has a high turnover rate (~1hr) and it was discovered that the 

wt virus, through its inhibition of host transcription, caused a rapid depletion of the remaining 

Mcl1 proteins (40). We found that host expression of Mcl1 was more downregulated by 22-20 

than by 22-25. This could potentially mean that 22-20 is more effective at overall host gene 

inhibition than 22-25. However, this is one of the few differences between 22-20 and 22-25 

DEGS, so further study is necessary. We also found that Bid, Bcl2 and Casp9 were all 

downregulated by 22-20 and 22-25. Bid is a proapoptotic member of the Bcl2 family, which is 

known to instigate cross talk between the extrinsic and intrinsic pathways through activation by 

Casp8 (40). Casp8 was not found to be differentially expressed by the host in response to 22-20 
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or 22-25 while the downregulation Bid is likely also due to the inhibition of overall host 

transcription. The downregulation of Bcl2, found on the mitochondria, might indicate that 22-

20 and 22-25 are activating the intrinsic pathway. This would be interesting since rM51R-M 

primarily activates apoptosis via the extrinsic pathway. Proteomic research could help to 

determine which pathway is being regulated by 22-20 and 22-25. 

We also found that 87 of the same genes are differentially expressed in 22-25 and wt viruses 

(Figure 12). Since it was discovered that host transcription, in response to 22-25 and wt, do not 

cluster closely at 3hpi (Figure 6), this group of genes could potentially reveal genes that are 

important for VSV infection. Two interesting genes, Ifit3 and Rsad2, were both found to be 

significantly downregulated by 22-25 in comparison to the 22-20 response. The Ifit gene family 

consists of antiviral factors that are important to the IFN response pathway (41). Ifit3 has been 

shown to positively regulate the functions of Ifit1, a foreign RNA binding protein. By forming a 

multiprotein complex with Ifit1, Ifit3 enables are more effective immune response (42). Thus, 

the downregulation of Ifit3 would negatively affect the ability of Ifit1 to bind to VSV 

transcription products, which would then hinder the host ability to fight infection. Rsad2, also 

known as Viperin, is an ISG, which is activated by Type I and II IFN. Many viruses stimulate this 

protein following their detection by RLRs, however, it has been found that VSV elicits a 

response by independent means (43, 44). VSV activates IRF1/3 directly, which then stimulates 

Viperin, effectively circumventing the RLR mediated response (44).  Unfortunately, due to the 

broad activity of Viperin to many viruses, it has been difficult to determine its function in 

response to VSV. Viperin activities, including metabolism and signaling mediation, tend to be 

associated with the regulation of lipids (44). This regulation affects Hepatitis C replication and 
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Influenza budding,  there is no known involvement with VSV replication (44). It is therefore 

possible that the reduced expression of Viperin (and Ifit3) could be due to other factors 

including overall host transcription inhibition, or the fact that 22-25 has a greater impact on 

immune response pathways (Figure 23b), or more specifically or 22-20 may be regulating IRF-3 

differently than 22-25. 

Finally, our GO analysis (Figures 22-23) indicated that when compared to mock, 22-20 

downregulated biological processes associated with normal cell function and transcript 

regulation (Figure 23a). Since we do not see the same gene sets named for 22-25 compared to 

22-20 (Figure 23b), we can safely assume that 22-25 is affecting normal function and transcript 

regulation in a similar manner to 22-20. This suggests that both 22-20 and 22-25 downregulate 

overall host transcription. As expected, we found that many gene sets associated with infection 

and the immune response were upregulated by 22-20 (Figure 22a). Host response to 22-25 

displays downregulation of biological processes (Figure 23b) that are associated with infection 

and immune response. It is also worth noting that we did not find any biological processes that 

were further upregulated by 22-25 in comparison to 22-20 (Figure 22b). These results indicate 

that 22-25 is more effective at abrogating the immune response, and the two viruses act 

similarly in terms of down regulating overall transcription. These findings support the heatmaps 

clustering (Figures 7-9), which indicates the virus samples at 3 hpi downregulate host genes in 

comparison to 1 hpi samples. 
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Future Work 

There are several interesting projects that we believe could stem from this research. For 

example, we found that there were 19 DEGs between 22-20 and wt. Further analysis of the 

pathways affected by these genes and their significance could provide us with insight into the 

usefulness of 22-20 as an oncolytic agent. As such, since apoptosis activity is an important 

factor in oncolytics, we could investigate the regulation of apoptosis in 22-20-infected cells. 

Focusing on specific DEGs that we discovered, we might also investigate the role of 

Rsad2/Viperin in VSV infection as well as determine whether Ifit3 regulation is affecting Ifit1 

activity. We could also perform RNA-Seq analysis on the host transcriptome in response to R1 

and compare this response to that of 22-20. This would help to solidify our understanding of 

the M51R and D52G mutations and their effect on M protein function. 

Conclusion 

Clinical applications of VSV would benefit tremendously from an improved understanding of 

VSV-host interactions; therefore, we investigated the effect of VSV on host gene expression. 

Our findings show that the VSV M protein effects key biological pathways such as RIG-I/NF-κB, 

IFN-alpha and apoptosis. GO analysis also illustrates how 22-20 and 22-25 affect normal 

function and transcript regulation similarly, supporting the conclusion that 22-20 and 22-25 

both downregulate overall host response. Since 22-20 downregulates host transcription and 

suppresses the IFN response, it could potentially be an oncolytic viral candidate. There is still, of 

course, a need to investigate the effect of these viruses on the host at the proteomic level since 

we found little significant difference between 22-20 and 22-25 at the transcriptomic level for 
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key pathways. However, evidence that 22-20 downregulates Mcl1 more than 22-25, indicates 

that 22-20 has potential as an apoptosis promoting viral mutant. By shedding light on how VSV 

affects the host, these types of studies facilitate the development of VSV as an oncolytic agent 

and a recombinant vaccine platform. 
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