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Abstract

Cognitive Radios (CRs) are designed to operate with minimal interference to the

Primary User (PU), the incumbent to a radio spectrum band. To ensure that the

interference generated does not exceed a specific level, an estimate of the Signal to

Interference plus Noise Ratio (SINR) for the PU’s channel is required. This can be

accomplished through determining the modulation scheme in use, as it is directly

correlated with the SINR. To this end, an Automatic Modulation Classification (AMC)

scheme is developed via cyclic feature detection that is successful even with signal

bandwidths that exceed the sampling rate of the CR. In order to accomplish this,

Compressed Sensing (CS) is applied, allowing for reconstruction, even with very few

samples. The use of CS in spectrum sensing and interpretation is becoming necessary

for a growing number of scenarios where the radio spectrum band of interest cannot be

fully measured, such as low cost sensor networks, or high bandwidth radio localization

services.

In order to be able to classify a wide range of modulation types, cumulants

were chosen as the feature to use. They are robust to noise and provide adequate

discrimination between different types of modulation, even those that are fairly similar,

such as 16-QAM and 64-QAM. By fusing cumulants and CS, a novel method of

classification was developed which inherited the noise resilience of cumulants, and the

low sample requirements of CS. Comparisons are drawn between the proposed method

and existing ones, both in terms of accuracy and resource usages. The proposed

method is shown to perform similarly when many samples are gathered, and shows

improvement over existing methods at lower sample counts. It also uses less resources,

and is able to produce an estimate faster than the current systems.
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Chapter 1
Introduction

1.1 Motivation

An ever increasing demand for data has driven the need for higher bandwidth devices.

However, most of the spectrum is already allocated for specific uses. Cognitive radio

seeks to address both of these issues by detecting and using available parts of the

spectrum. However, before Cognitive Radios (CRs) are feasible, several challenges

must be addressed, one of which is the ability to determine whether they are causing

interference to the Primary User (PU). CRs can estimate the Signal to Interference

plus Noise Ratio (SINR) of the channel, without requiring communication to or from

the PU, but only when the PU uses adaptive modulation [1]. Adaptive modulation

results in a change of modulation type when the SINR goes outside of a specified

range, and is used to maximize throughput. It can be found in many modern systems

such as WiFi and LTE. Performing modulation detection is known as Automatic

Modulation Classification (AMC) and can be done via cyclic feature detection, which

has been shown to be successful in both blind and non-blind classification [2]. However,

it is computationally expensive, which is most notably a problem in the 3.1 GHz to

10.6 GHz band, where the FCC has allowed for Ultra-Wideband (UWB) radios and

5G services to operate [3]. Another section of spectrum that will benefit from AMC is

the Citizens Broadband Radio Service, which operates at 3.55 GHz, and is 150 MHz
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CHAPTER 1. INTRODUCTION

wide [4]. This band is currently used for radar, but now allows operators to offer 5G

services without a license, so Dynamic Spectrum Access (DSA) is critically important.

Signal bandwidth is growing, which increases the hardware requirements to perform

AMC, if Nyquist sampling is performed.

1.2 Automatic Modulation Classification

Cognitive radios are usually designed to be Secondary Users (SUs) of the channel.

In order to limit the changes required to current hardware, a SU should not require

information from the PU. This means that the CR must determine whether its

transmissions are interfering with the PU’s ability to communicate. Since many

systems vary their modulation scheme based on the SINR of the channel, AMC

provides the possibility to indirectly gain information about the PU. There are two

main approaches to AMC: likelihood-based and feature-based. Likelihood-based relies

on decision trees, which requires a priori knowledge of statistical characteristics of

the signal(s) in question. At each node of the tree, the algorithm must compare the

statistical characteristics of the received signal with those of known signals. While this

approach provides the theoretical best performance, the number of parameters required

for such performance quickly becomes unwieldy. In contrast, feature-based classifiers

operate on details characterizing the signals, such as cyclic cumulants, phase variation,

and the variance of the zero-crossing intervals. These algorithms, which include cyclic

feature detection, tend to be simpler to implement, and still provide reasonable results.

One of the primary benefits of cyclic feature detection, in comparison to some of the

other feature-based classifiers, is that it is robust to noise, as well as carrier frequency

offset and phase jitter in some cases [5]. Despite the comparatively simpler algorithm,

cyclic feature detection is still expensive to implement in hardware, especially with

UWB signals. In order to overcome this limitation, sub-Nyquist sampling has been

suggested.

2



CHAPTER 1. INTRODUCTION

1.3 Compressed Sensing

To avoid sampling at the Nyquist rate, Compressed Sensing (CS) can be performed

[6]. While the Nyquist rate guarantees perfect reconstruction of the signal, it is

not necessary if perfection is not required. For example, JPEG makes use of the

Discrete Cosine Transform (DCT) to separate the lower frequencies in the image,

which are noticeable to humans, from the higher frequencies, which are not. The

higher frequencies can then be thrown away with minimal loss to the image quality.

CS uses a similar procedure, where it first transforms the signal into a domain

where it is sparse. A signal is said to be k-sparse if it consists primarily of samples

equal to zero, with k non-zero elements, where k is small [7]. However, the advantage

of CS is that the signal can be perfectly reconstructed if at least k log n samples are

collected correctly, where n is the number of samples [8]. Naturally, this is a large

improvement on Nyquist sampling, but requiring perfect sparsity excludes many real

world signals. Fortunately, if the original signal can be approximated by a sparse

signal, the reconstruction will still be successful, with minimal loss in quality.

1.4 Contribution of this Thesis

Performing AMC with narrowband signals is well documented, but as UWB signals

become prevalent for applications like distance estimation and short range commu-

nications, a need for methods to classify those signals will grow. The aim of this

work is to determine how best to implement AMC for such signals. CS algorithms

appear to be the most promising for this, as they are capable of recovering a signal

from incomplete data, and sense a broad bandwidth within a reasonable timeframe.

Some work has been done to incorporate CS methods into modulation classification,

especially for lower-order classifiers, but there has not been a comprehensive study

performed. This work is often performed with modulation schemes that are relatively

3



CHAPTER 1. INTRODUCTION

easy to distinguish, leading to results that may not be possible in a real world system.

To mitigate this issue, the modulation schemes used in WiFi were selected for this

work. In order to provide an accurate comparison, two existing modulation classifiers,

known as cumulants, were used, and compared against one another. Little work has

been done on the use of cumulants in a CS framework, so a comprehensive walkthrough

of how this was performed is provided. Beyond the implementation and testing of

several modulation classification schemes, the computational efficiency of each scheme

was derived. This allows for a high level comparison of the methods that is not

possible when only specific implementation results are provided. As the nature of CS

is well suited for low-power devices, like sensor arrays, this also provides information

about the tradeoff between accuracy and power that is inherent in such a system. For

posterity, the implementation will be made freely available.

4



Chapter 2
Background

2.1 Supporting Work

Implementations of CRs have been increasingly popular subjects of research in recent

years. Beginning with the seminal paper by Mitola [9], Software Defined Radios

(SDRs) have become the platform for CR communications research. With their ease

of reconfigurability and high bandwidth, they make an ideal hardware platform for

prototyping. In comparison to Application Specific Integrated Circuits (ASICs), Field

Programmable Gate Array (FPGA) designs are cheaper and faster to develop, so they

are often used in low cost systems that have intensive computing requirements beyond

what a typical processor could offer. In the past, the FPGA inside the SDR has been

configured to perform spectrum hole detection [10], energy-based spectrum sensing

[11], as well as a complete CR system [12].

Cyclic feature detection has long been used to determine the type of modulation

being performed [13], but it is only in recent years that CRs have begun to take

advantage of this type of classification [14]. It was shown to be capable of classifying

BPSK, QPSK, MSK, and FSK with an accuracy of at least 95% if the SINR was

greater than 1 dB. Furthermore, when combined with fourth-order cumulants, QAM

signals were able to be detected.

More recently, CS was developed [6], and is now becoming widely used in CRs

5



CHAPTER 2. BACKGROUND

[15]. Both energy detection and power-spectral density were shown to be inferior to

cyclic feature detection for simple spectrum sensing, even when CS was used with

cyclic feature detection, especially at low SINRs [16]. Because CRs do not need to

reconstruct the original signal from the PU precisely, CS is an excellent way to reduce

the computing power required, especially for spectrum sensing. When applied to AMC,

the accuracy is greatly decreased [17]. For a 0 dB signal which has been compressed

by a factor of 10, QAM, ASK, and PSK, were only able to be correctly identified 40%

of the time.

2.2 Cognitive Radios

To improve on the design of traditional radios systems, the radios are programmed

to learn and autonomously make “intelligent” decisions, like reducing the transmit

power to avoid wasting battery, which leads to the name Cognitive Radio (CR) [9].

Another key component of CRs is DSA, which determines how they use and reuse

spectrum. Most bands of the spectrum are allocated by the Federal Communications

Commission [18], meaning that only licensed users may transmit on those bands. As

the need for the radio spectrum increases, limiting the bands to a single user becomes

unrealistic. Radios must instead find a way to effectively share the spectrum without

interfering with each other’s communications. Normally, this is done with a Medium

Access Control scheme, like Time Division Multiple Access or Frequency Division

Multiple Access.

Part of the goal of CRs is to ensure that the licensed user, or PU can continue to

operate without knowing about the presence of another radio. Thus different access

schemes for CR are needed, known as DSA. Three types of DSA have been proposed:

Interweave, Overlay, and Underlay [19]. Interweave involves finding spectrum holes,

which are times when a channel is not in use, and transmitting during those holes.

Overlay requires the CR to have knowledge about the PU’s transmissions, and be

6



CHAPTER 2. BACKGROUND

able to decode them. Using this knowledge, the CR can transmit such that it does

not interfere with the original message. Finally, underlay DSA provides the CR

opportunities to take advantage of extra power in the PU’s transmission. Here, a

CR is allowed to transmit, so long as the PU’s SINR remains above a threshold.

In this manner, CRs are able to transmit for much longer periods of time without

interruption, as compared to interweave, and do not need to know as much about the

PU’s messages. However, underlay requires an estimate of the SINR of the PU.

2.3 Modulation

In order to transmit data over the air, radios modulate the information. Modulation

modifies the spectral characteristics of the data, improving the chance of recovery

by the receiver [20]. This usually involves shifting the data to a higher frequency,

like 2.4 GHz in the case of WiFi, or around 90 MHz for FM radio. The simplest

form of modulation is amplitude modulation, where the data signal is multiplied by a

higher frequency sine wave, also known as a carrier. The resulting time and frequency

domain signals are show in Figure 2.1, when the data signal is also a sine wave. A

sampling rate of 1 Hz is assumed to simply the scale and draw a stronger connection

to the Nyquist bandwidth. While simple, amplitude modulation is inefficient. It uses

twice the spectrum required by the original signal, also known as the baseband signal,
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Figure 2.1: Amplitute Modulation
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Figure 2.2: Frequency Modulation

and is not easy to demodulate. Improvements have been made, but it no longer sees

widespread use for analog signals.

Frequency modulation, whose time and frequency domain outputs can be seen

in Figure 2.2, is a more popular choice for analog signals. Instead of changing the

amplitude of the carrier wave, frequency modulation varies the frequency. This results

in increased spectrum use, but is more power efficient and is more noise resilient

than amplitude modulation [20]. It continues to enjoy widespread use in FM radio

broadcasts, as well as voice communication via two-way radio.

In order to modulate digital signals, bits must first be converted to symbols.

The symbols are vectors in the complex plane, having both an in-phase part and a

quadrature part. To reduce the bandwidth, a pulse shaping function is used. Finally,

the shaped symbols are shifted up to the carrier frequency using a mixer, much like

amplitude modulation, expressed as

s(t) = sI(t)cos(2πfct)− sQ(t)sin(2πfct). (2.1)

s(t) is the transmitted signal, sI(t) and sQ(t) are the real and imaginary parts of the

symbol vector respectively, and fc is the carrier frequency.

Generally, a modulation scheme will be referenced based on how it converts the

bits to symbols. Perhaps the simplest example of this is On Off Keying (OOK). The
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Figure 2.3: On Off Keying
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Figure 2.4: Symbol constellations

symbols are the same as the bits, meaning that if b[k] is the bit at sample k, sI [k] = b[k]

and sQ[k] = 0. A time and frequency domain example is show in Figure 2.3. While

easy, it requires infinite bandwidth in the theoretical case, and cannot encode more

than one bit. Additionally, it has a DC offset before it is mixed with the carrier signal.

A better version of OOK is Binary Phase-Shift Keying (BPSK). To better un-

derstand the improvement that BPSK offers over OOK, it is useful to look at the

locations of the symbols on the complex plane. Figure 2.4 shows this type of plot,

known as a symbol constellation.
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Figure 2.5: QPSK symbol constellation

Because the symbols will be affected by additive noise during transmission, they

are unlikely to remain in the same position in the constellation plot after reception,

but instead shift around randomly. The magnitude of the shift is related to the noise

power, so the further distance between the symbols in BPSK means that it is more

resilient.

Naturally, these are not the only two possibilities. Another option is Quadrature

Phase-Shift Keying (QPSK), whose symbol constellation is given in Figure 2.5. Since

there are four possible symbols, two bits can be encoded together, resulting in a

doubling of the bit rate, assuming that everything else remains equal. However, this

comes at a cost, since the symbols are closer together. This leads to an increased Bit

Error Rate (BER) for the same SINR, where the BER is defined to be the number of

bits per unit time that are incorrect [20]. Naturally, incorrect bits do not provide useful

information, and thus do not increase the throughput. Ignoring any error correction,

the system cannot be sure of which bit, or bits, was transmitted, so a retransmission

is required, which further reduces the throughput. For this reason, QPSK is best used

in systems with a somewhat high SINR.
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Figure 2.6: QAM symbol constellations

Both BPSK and QPSK use phase shifts to separate the symbols. This produces

constellations with good separation up through four symbols, but beyond that, better

schemes are possible. The most popular of these other schemes is Quadrature Amplitute

Modulation (QAM), where the symbols are placed on a grid, which is centered around

the origin. Constellations for 16-QAM and 64-QAM are shown in Figure 2.6.

Since their separation is less than that of QPSK, they require even better SINR

to achieve a low BER. For this reason, many systems, including WiFi, use adaptive

modulation to send data quickly when possible, but still maintain communication

when the noise power increases [21]. The modulation scheme chosen directly correlates

with the SINR of the system, providing a method to gather information about the

PU’s SINR without any interaction or possibility of interference, which is critical for

underlay DSA.

2.4 Adaptive Modulation

Since different modulation schemes have higher throughputs at different SINRs, systems

change, or adaptive their modulation scheme to fit the current SINR. The differing

throughput values can be attributed to a combination of the maximum possible

throughput and the BER at a specific SINR. At low SINRs, they use BPSK, as it is

the most noise resilient, followed by QPSK, then 16-QAM, and finally 64-QAM.
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Figure 2.7: Throughput as a function of SINR for WiFi modulation schemes

A possible throughput curve for WiFi is given in Figure 2.7. Notice that the

maximum throughput levels off for brief periods. During this time, the current

modulation scheme is able to be decoded with a very small error rate, but switching

to a higher modulation would result in an increased number of errors, so the change is

not done. It is clear that knowing the modulation scheme provides a rough estimate

of the PU’s SINR. If the SU is allowed to send tones with a specific power, it can

observe how the modulation scheme changes to get a finer resolution SINR estimate.

2.5 Cyclostationarity

Signals in communications are often said to be wide sense stationary, meaning that

some of their statistical properties do not vary with time, meaning that

E[x] = E[x(t)],

Rx(τ) = Rx(t, τ).

12
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The mean does not rely on the time, and the autocorrelation only changes when

the time shift, τ , is varied [20]. Perhaps the most popular signal with this model is

Additive White Gaussian Noise, whose mean is zero, and whose variance is related

to the power of the noise, which is assumed to remain constant. However, not all

signals fall so nicely into this category. Consider, for example, the moving average of a

sine wave, where the averaging window is less than a period. The average will change

over time, but will still be periodic, and thus can be modeled using a cyclostationary

process. More formally, a process whose properties, such as mean and autocorrelation,

vary periodically with time is known as a cyclostationary process [22]. Mathematically,

this is expressed as

E[x(t)] = E[x(t+ T0)],

Rx(t, τ) = Rx(t+ T0, τ).

While similar to the stationary definitions, these still rely on t, since periodicity

without a time is not possible.

13



Chapter 3
Techniques for Modulation Classification

3.1 Fraction-of-Time Probability

Traditional probability theory is based on stochastic processes and in order to model

data, samples of these processes must be taken from a population. This is reasonable,

if the data in question are dice rolls, and the population is simply the six faces of a

die. However, when no such population exists, as is the case in many of the real world

signals that communications employ, this model does not work as well. Nevertheless,

because of the prevalence of the stochastic model, engineers often choose to represent

the data as a sample path of a stochastic process.

An alternative to this approach is to consider the Fraction-of-Time (FOT) proba-

bility model. This model is based on the idea that the data to be modeled are derived

from some process whose statistical parameters remain the same over a very long time

period. By working with the infinite time series of the data, similar statistics, such as

mean and variance can be calculated. These calculations are analogous to those in the

stochastic framework, where an infinite amount of samples are instead required [23].

The expectation operator of the FOT framework is

Eβ
t {z(t)} , lim

T→∞

1

T

∫ T/2

−T/2
z(t− u)ei2πβudu. (3.1)

This can be seen as a bandpass filter whose bandwidth approaches zero and whose

14



CHAPTER 3. TECHNIQUES FOR MODULATION CLASSIFICATION

center frequency is β [24]. In other words, it extracts a single sine wave from the input

signal, z(t), much like the expectation operator can be used to find a single value in

an ensemble. When β is set to zero, the sine wave extraction operator instead extracts

the average value from the data set, which is equivalent to finding the expected value.

Because of this duality, the calculation of traditional statistics such as mean, variance,

and other moments using FOT is mathematically valid [25].

3.2 Second-Order Cyclostationarity

Given the signal, x(t), the mathematical definition of autocorrelation is

Rxx(τ) =

∫ ∞
−∞

x(t)x(t− τ)dt (3.2)

assuming that the signal is stationary [20]. This can also be viewed as an expected

value,

Rxx(t1, t2) = E[x(t1)x
∗(t2)], (3.3)

which is more helpful for statistical signal processing. Here, no such assumption

about stationarity is made, as time continues to be present in the arguments to the

autocorrelation function. After defining t = (t1 + t2)/2 and τ = t1 − t2,

Rxx(t, τ) = E[x(t+ τ/2)x∗(t− τ/2)]. (3.4)

This form is particularly useful because its Fourier coefficients make up the Cyclic

Autocorrelation Function (CAF) [22], given by

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x(t+ τ/2)x∗(t− τ/2)e−i2παtdt. (3.5)
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Figure 3.1: Cyclic Autocorrelation Function for BPSK without pulse shaping

This form once again shows the connection between the two statistical frameworks, as

this could also be viewed as the sine wave extraction operator for x(t)x(t− τ). In fact,

this view is quite reasonable, as the goal of the CAF is to find the cycle frequencies,

or α values which are non-zero. Each α value corresponds to a particular Fourier

coefficient, which means that α gives the frequency at which the autocorrelation

function contains some power. These values will arise from sine waves which are the

naturally occurring product of two first order cyclostationary functions [25].

The CAF for a BPSK wave with no pulse shaping is shown in Figure 3.1. Note

that when α = 0 this is the traditional autocorrelation function, scaled by a factor.

This scaling factor results from the fact that the waveform contains power in other

cycle frequencies besides α = 0.

Taking the Fourier transform of the CAF results in the Spectral Correlation
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Figure 3.2: Spectral Correlation Function for BPSK without pulse shaping

Function (SCF), where

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)e−i2πfτdτ. (3.6)

When the value of α is set to be zero, this gives the Wiener-Khinchin Theorem for

stationary processes [20]. The theorem states that the Power Spectral Density (PSD)

for a stationary signal is equal to the Fourier Transform of the autocorrelation function.

The same BPSK wave as in Figure 3.1 was used to create the SCF shown in

Figure 3.2. α = 0 is the PSD of the signal. Other non-zero values are present at

various cycle frequencies. Note that the region of support for the SCF is limited to

the region shown in Figure 3.3 [26]. fs represents the sampling frequency. This region

follows from the Nyquist bandwidth, since it limits the bandwidth of the signal to be

±fs/2 along the f -axis. By rewriting (3.6) as

Sαx (f) = lim
T→∞

lim
Z→∞

1

TZ

∫ Z/2

−Z/2
XT (t, f + α/2)X∗T (t, f − α/2)dt, (3.7)
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Figure 3.3: Region of support for the Spectral Correlation Function

the limits of the α-axis are made clear [13]. XT is the Fourier transform of x(t) and is

given by

XT (t, f) =

∫ t+T/2

t−T/2
x(u)e−i2πfudu. (3.8)

Since α is the frequency shift, and is divided by two, shifting more than α is not

possible, as that would exceed the bandwidth of the sampled signal. It is also worth

noting that the SCF is symmetric about the f axis, meaning that it contains the same

values for α and −α. This was exploited in [15] to reduce the number of calculations

required.

3.3 Higher-Order Cyclostationarity

Not all modulation schemes are distinguishable using the CAF, or the SCF. For

example, compare Figure 3.2, showing the SCF of BPSK, with Figure 3.4, showing the

SCF of QPSK. Despite using two different modulation schemes, they are not easily

distinguishable. Thus, higher-order statistics, such as moments and cumulants, are

required to determine the type of modulation in use. The lag product, defined as

Lx(t, τ )n =
n∏
j=1

x(∗)j(t+ τj), (3.9)
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Figure 3.4: Spectral Correlation Function for QPSK

is simply the time delayed product of x(t). The notation (∗) indicates that the

conjugation is optional. An nth-order statistic may have up to n/2 conjugations,

where different conjugations will produce different values, leading to multiple outcomes

for the same order. Taking the expected value of the lag product yields the Temporal

Moment Function, given by

Rx(t, τ )n = E[Lx(t, τ )n]. (3.10)

This corresponds to the nth-order autocorrelation function, which when evaluated

with n = 2, is equal to (3.3). Similarly, the Cyclic Temporal Moment Function is

Rα
x(t, τ )n = lim

T→∞

1

T

∫ T/2

−T/2
Rx(t, τ )ne

−i2παtdt, (3.11)

and generalizes the CAF given in (3.5). Since the integration limits approach infinity,

Rx(t, τ )n can be replaced with Lx(t, τ )n [27].
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While moments could be used for classification, better alternatives exist, especially

when the radio scene has multiple signals [27]. This led to the use of cumulants, which

are robust to noise and have the superposition property, like voltage sources in a

circuit. The moments do not have this useful property [25]. The Temporal Cumulant

Function is

Cx(t, τ )n =
∑
P

[
(−1)p−1(p− 1)!

p∏
j=1

Rx(t, τvj)|vj |

]
, (3.12)

and is calculated using lower-order moments. Alternatively, it can be written as

Cx(t, τ )n = Rx(t, τ )n −
∑
P,p6=1

[
p∏
j=1

Cx(t, τvj)|vj |

]
, (3.13)

which instead uses lower-order cumulants [28]. The summation is performed over P ,

which is the set of all possible partitions of the set {1, 2, ..., n}, the counting numbers

up to n. For n = 3, the set to be partitioned is {1, 2, 3}, and P is

P = {{1, 2, 3},

{{1}, {2, 3}},

{{1, 3}, {2}},

{{1, 2}, {3}}}

{{1}, {2}, {3}}}.

Each row is a different partition, meaning that it contains each element of the original

set in one and only one of the subsets. For example, the second partition, {{1}, {2, 3}},

has two subsets containing either 1, or 2 and 3. Compare this to the first partition,

{1, 2, 3}, where all three values are in the same subset. These variations are important

because they affect p, the number of subsets in each partition. For the prior P ,

p = {1, 2, 2, 2, 3}. Note that multiple partitions may have the same value of p, such

as {{1}, {2, 3}} and {{1, 2}, {3}}, and it is important that each is included in the
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summation. In (3.13), p = 1 is skipped because it is equal to the first term on the

right hand side. Finally, j indexes each partition, iterating through all of its subsets.

When the current partition is {{1}, {2, 3}}, j = 1 indicates the set {1}, and j = 2

references {2, 3}. |vj| simply means the number of elements in the subset indexed by

j, being 1 and 2 for the previous example, representatively.

A 4th-order example is given next to clarify. For simplicity, the number of

conjugations is set to zero. Since it has been shown that odd order moments for most

communication signals are zero [25], they will be ignored for the analysis, meaning

that partitions containing sets with one or three elements are not included. One

such partition like this is {{1}, {2, 3, 4}}. The first subset, where j = 1, has only one

element, so |vj| is also one. This results in the inclusion of Rx(t, τ1)1 in the product,

but this is no different than the mean of the signal, shifted by τ . The mean of the

possible symbol values, when all symbols are considered, for the modulation schemes

discussed in Section 2.3, excluding OOK, is zero. If the symbol constellations are

viewed as probability distributions, and each symbol is equiprobable, the mean for each

can be calculated. For example, in QPSK, the possible symbol values, or probabilistic

outcomes, are ±i and ±1, so the mean is 1
4

((1) + (−1) + (i) + (−i)) = 0. Because

the mean is zero, the product containing this moment will also be zero, and is thus

ignored. Similar logic can be applied for the third-order moments, leaving only the

second and fourth-order moments. P is then:

P = {{1, 2, 3, 4},

{{1, 2}, {3, 4}},

{{1, 3}, {2, 4}},

{{1, 4}, {2, 3}}}.

There are four partitions, so there will be four addends, using (3.12). The first partition
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has only one subset, so p will equal one for this iteration. The other three partitions

all have two subsets, so p will be two in those iterations. Additionally, since p is either

one or two, (p− 1)! is always one, and can be ignored. For clarify, the contribution of

each partition will be analyzed separately, and i will be used to index P , the partition

list. For the four possible values of i, the contributions are:

i = 1 : (−1)1−1Rx (t, {τ1, τ2, τ3, τ4})4

i = 2 : (−1)2−1Rx (t, {τ1, τ2})2Rx (t, {τ3, τ4})2

i = 3 : (−1)2−1Rx (t, {τ1, τ3})2Rx (t, {τ2, τ4})2

i = 4 : (−1)2−1Rx (t, {τ1, τ4})2Rx (t, {τ2, τ3})2 .

The values of τ in each of the moments of a contribution correspond to the values in

that partition of P . The second partition consists of two subsets: {1, 2} and {3, 4},

and thus two second-order moments. For the first moment, the τ values are {τ1, τ2}

and {τ3, τ4} for the second. This ensures that all possible combinations of the τ vector

are considered. For simplicity, τ is set to zero. The fourth-order cumulant resolves to

Cx(t,0)4 = Rx (t,0)4 − 3 (Rx (t,0)2)
2 .

This form is not yet useful, as it changes with time. By using the FOT expectation

operation, the Cyclic Temporal Cumulant Function or cyclic cumulant, given by

Cα
x (τ )n = lim

T→∞

1

T

∫ T/2

−T/2
Cx(t, τ )ne

−i2παtdt, (3.14)

can be calculated [28], and is the form that is used for modulation classification. Here,

α serves the same function that it does in the CAF, and is zero unless otherwise noted

for this work. Since this notation does not convey the number of conjugations, the

cyclic cumulant is instead written as Cnq. The order of this cumulant is n, and q is
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Table 3.1: Second-order cumulants of QPSK

x x2 xx∗

1 1 1
-1 1 1
i -1 1
−i -1 1

Sum 0 4

the number of conjugations. Notation with a hat, shown as Ĉnq, denotes when the

cumulant is an estimate, instead of an exact value.

The importance of q, the number of conjugations, can be seen by considering a toy

example involving C20 and C21 of QPSK. Table 3.1 shows the outcomes of calculating

the two cumulants in question with and without the optional conjugation. Dividing

the sum of x2 and xx∗ by four produces the theoretical value of C20 and C21 for QPSK,

respectively.

As an alternative to these representations of moments and cumulants, they can be

calculated from their deriving functions, given as

ΦX(ω) =

∫ ∞
−∞

fX(u)eiωudu,

MX = E [Xn] =
∂n

∂ωn
ΦX(ω)

∣∣∣∣
ω=0

, (3.15)

CX =
∂n

∂ωn
ln (ΦX(ω))

∣∣∣∣
ω=0

. (3.16)

While not helpful for calculating the cumulant of a sample path, this form demonstrates

why the value of a cumulant for a given probability distribution, or modulation scheme,

is constant. The results of several such calculations are shown in Table 3.2 [29]. All

calculations are done using a constellation of unit variance, which is reflected in the

second row of the table. Since the symbols are normalized, the power of the signal is

always one, which is equivalent to the second-order cumulant with one conjugation, as
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Table 3.2: Theoretical cumulant values for selected modulation schemes

Modulation Scheme

Order (n) # of Conjugations BPSK QPSK 16-QAM 64-QAM

0 1 0 0 02 1 1 1 1 1
0,4 -2 1 -0.68 -0.6194 2 -2 -1 -0.68 -0.619
1,5 16 -4 2.08 1.79726 3 16 4 2.08 1.7972
0,4,8 -272 -34 -13.9808 -11.50228 2,6 -272 34 -13.9808 -11.5022

there are no lower-order moments to subtract.
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Chapter 4
Techniques for Undersampling

In order to undersample a signal, it must be sparse in some domain. This sparsity

means that less samples are required to extract enough meaningful data from the

signal in order to reconstruct it. An example of the compression process is given in

Figure 4.1. The x vector, or original signal, is sparse, as seen by the white squares.

At the output z, the signal is no longer sparse, having been compressed. The signal

is also in in the “dark” domain, having been both compressed and transformed by

Ψ

x

y

=

Figure 4.1: Visual representation of CS using colored matrices
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the Φ matrix. For clarity, Φ is sometimes represented as AΨ, where A performs the

compression, and Ψ is the transformation matrix. Here, the compression matrix will

refer to the identity matrix with rows removed, but other options, such as Bernoulli

or Gaussian matrices are possible [8]. Since the signal is no longer sparse, it can be

efficiently sampled. The transformation performed is often the Fourier transform, but

can also be a wavelet transform, or the DCT. Note that lowercase bold letter denote

vectors, and upper case bold letters indicate matrices.

For the reconstruction to work, the sampling matrix, Φ must fulfill the Restricted

Isometry Property. This property is stated as

(1− δS)||c||22 ≤ ||ΦSc||22 ≤ (1 + δS)||c||22, (4.1)

and was first introduced in [30]. Here, ΦS is an S-large subset of the columns of Φ, c

is any real vector with length S, and || · ||2 takes the `2 vector norm of the argument.

As the constant δS approaches zero, the system begins to behave like an orthonormal

system, from which recovery is a straightforward task. In general, two forms are

possible for the recovery equation. The traditional approach, in which sparsity is an

afterthought, is given as,

arg min
x
||z −Φx||22 + λ||x||1. (4.2)

The sparsity constraint is enforced by the second term, and λ determines the level of

sparsity. The alternative method, known as basis pursuit, uses only the `1 norm, and

is shown as

arg min
x
||x||1 subject to Φx ≈ z. (4.3)

This method can be easily approximated using a greedy algorithm, as shown in

Section 4.1, making it much faster to solve than (4.2).
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Algorithm 4.1 Orthogonal Matching Pursuit
Input: Dictionary D, signal z, target sparsity K or target error ε
1: I ← {}
2: r ← z
3: x← 0
4: while stopping criterion not met do
5: k̂ ← arg maxk̂〈Dk̂, r〉
6: I ← (I, k̂)
7: x←D†Iz
8: r ← z −DIx

Output: x

4.1 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is one such greedy algorithm. Originally derived

in [31], OMP enforces sparsity by adding values one at a time until either a desired

sparsity level is reached, or the residual falls below a specified threshold. Algorithm 4.1

details the implementation of OMP. In order to reduce the residual as fast as possible,

the inner product, denoted 〈·, ·〉, is taken between the residual and the dictionary.

The maximum value of the inner product is produced by the basis vector that is most

in line with the current residual. The index of this basis vector is denoted k̂, and

added to I. I is then used to index D, whose pseudoinverse is multiplied with the

input signal z, giving the current reconstruction. This reconstruction is then tested

against the signal to determine if the error stopping criteria has been met. While the

pseudoinverse can be computationally difficult, here it is fairly efficient, due to the

fact that each iteration only adds a column, so the previous pseudoinverse can be

applied to speed up the computation [32].

In the specific case of cumulant reconstruction, the calculation of the pseudoinverse

can be further optimized to increase the amount of possible preprocessing. The first,

and most important, optimization is the removal of the loop. In order to justify this,

it was noted that the maximum dot product between D and r, which is equivalent to
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z, occurs in the first column more than 98% of the time. To take advantage of this, k̂

was set to 1. Additional iterations are not required, as only one cycle frequency is

needed to perform the classification.

Without knowing the number of iterations, or which columns would be selected,

2n − 1 pseudoinverses would be required, where n is the number of columns in D. If

the columns of D are considered a set, there are 2n possible subsets, but a column will

always be selected, so the empty set can be ignored. In the single iteration case, DI

will contain a single column, so n pseudoinverses have to be precomputed. However,

because k̂ = 1, only one pseudoinverse needs to be found. Thus, the optimization

removes almost all of the complexity associated with the precomputation of the

pseudoinverse(s).

These pseudoinverses are fairly straightforward to calculate, but require a division

operation, which can be quite expensive. However, this operation can be eliminated

by considering the Moore-Penrose pseudoinverse, given by

D†I = (D∗IDI)
−1D∗I , (4.4)

when DI is a single column. D∗ denotes the Hermitian, or conjugate, transpose of

the matrix. DI is only one column wide, so

D∗D = ||DI ||22, (4.5)

whose inverse is simply the multiplicative inverse. The pseudoinverse then collapses

to

D†I =
D∗I
||DI ||22

, (4.6)

which is simply a row vector. Reconstruction is performed by multiplying D†I with z,

which is the same as the dot product between
(
D†I

)T
and z.
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Chapter 5
Using Cumulants to Classify Modulation Schemes

5.1 Methods of Estimation

Three primary methods were chosen for cumulant estimation: direct, Fourier Transform,

and CS. An estimator of the n-th order moment is given in Equation (5.1), which is

required for the direct method equations given as

M̂n =
1

N

N∑
i=1

zn[i], (5.1)

Ĉ40 = M̂4 − 3M̂2
2 , (5.2)

Ĉ80 = M̂8 − 28M̂6M̂2 − 35M̂2
4 + 420M̂4M̂

2
2 + M̂4

2 . (5.3)

In order to simplify the design of the CS estimator, only the cumulants without

conjugations were calculated. This has been done in the past and shown to produce a

successful classifier [33].

A visual representation of the Ĉ40 estimator is shown in Figure 5.1. Note that this

process is iterative and the estimate improves as more samples are obtained. Once the

desired number of samples is obtained, the iteration stops, and the final estimate is

calculated. The only computations that need to be performed after all of the samples

are obtained are a squaring operation, multiplication by a constant, and one addition.

The Fourier Transform method relies on the use of the Fast Fourier Transform
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zi (·)2 (·)2 + N−1

+ N−1 (·)2 −3 + Ĉ40

Ĉ20

Figure 5.1: Estimation of the 4th-order cumulant value

z (·)2 (·)2 FFT

FFT (·)2 −3 + Ĉα
40

Ĉ20

Figure 5.2: Estimation of the 4th-order cumulant value using FFTs

(FFT) and is outlined in Figure 5.2 for Ĉα
40. Because an FFT is used, the entire

sample path must be obtained before calculations can start. Notice also, that all

Fourier coefficients, as indicated by the α, are calculated, instead of the singular

coefficient in the case of the direct method. These extra coefficients are seldom used

for classification and are discarded in this method.

Although the Fourier Transform approach calculates extraneous information, it is

a building block for the CS method. If the transform is performed using a matrix, the

cumulant can be estimated by

Ĉα
40 = F [[z]]4 − 3[[F [[z]]2]]2. (5.4)

[[·]]n indicates the element-wise power operation and F is the Fourier Transform

matrix. Since the first row of this matrix has all elements equal to 1
N
, the first element

of Ĉα
40 is equivalent to Ĉ40. This equation was originally derived in [34], but there
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were some inconsistencies, so the full derivation of the CS method is shown.

First, the incoming samples are compressed via

z = Ax, (5.5)

where A is an M ×N compression matrix discussed in Chapter 4.

Defining R[[x]] to be the autocorrelation matrix, also given by E[xxH ], even powers

of the samples can be found, such as:

[[x]]4 = diag
(
R[[x]]2

)
= Pxvec

(
R[[x]]2

)
. (5.6)

A row selection matrix, Px ∈ {0, 1}N×N2 , removes the unneeded autocorrelation

matrix entries, and the vec(·) operation stacks the columns of the argument to form

an N2 × 1 vector. Other variants of P are also required, such as Pz, which is an

M ×M2 matrix that performs the same function.

The relationship between the compressed and non-compressed autocorrelation

matrices, which requires removing the rows and columns not present in z, is given as,

R[[z]]2 = AR[[x]]2A
T . (5.7)

Because the P matrix acts upon vectors, instead of matrices, the vectorizing operation

is performed, which when combined with the identity that states vec(ABC) =

(CT ⊗A)vec(B), where ⊗ denotes the Kronecker product, produces

vec
(
R[[z]]2

)
= (A⊗A)vec

(
R[[x]]2

)
. (5.8)
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Combining Equations (5.4) through (5.8) leads to:

Ĉα
40 = FPxvec

(
R[[x]]2

)
− 3PFxvec

(
RF [[x]]2

)
,

= FPxvec
(
R[[x]]2

)
− 3PFxvec

(
FR[[x]]2F

T
)
,

= [FPx − 3PFx(F ⊗ F )] vec
(
R[[x]]2

)
. (5.9)

Finally, the matrix inside the brackets is inverted, and (5.8) applied to produce

[[z]]4 = Pz(A⊗A) [FPx − 3PFx(F ⊗ F )]† Ĉα
40. (5.10)

This matches the traditional CS problem when only [[z]]4 is known and Φ is equal to

Pz(A⊗A) [FPx − 3PFx(F ⊗ F )]†.

5.2 Method of Decision

A Bayesian hypothesis test was performed to determine which of the modulation

schemes the unknown signal was using. To simplify the decision making process,

only the two cumulants whose theoretical values were closest to the estimate were

considered. This reduced the problem to a binary hypothesis test, and allowed the

application of
P (x|w1)

P (x|w2)

w1

≷
w2

P (w2)

P (w1)
. (5.11)

Finding P (x|w1) was done empirically by plotting the values of the cumulants to

determine which distribution was most appropriate. If the variance was required for

the selected distribution, e.g. Gaussian, it was estimated using

σ2
z =

1

N − 1

N∑
i=1

(zi − µz)2. (5.12)
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Figure 5.3: Block diagram of the modulation classifier

The a priori probabilities P (w1) and P (w2) were both assumed to be 0.5, as no further

information was estimated to influence them. The output of this decision was then

used as the prediction of the detector, which was compared against ground truth to

determine if it had decided correctly. Figure 5.3 shows the complete system. The

preliminary selector performs the conversion to a binary hypothesis test, while the

final selector uses the Bayesian hypothesis test to determine the output.

5.3 Approach

In order to determine the most promising way to implement modulation classification

using cumulants, each method was implemented and tested using simulations. First,

comparisons between two different orders, 4 and 8, were performed. There has been an

increasing amount of research in recent years regarding higher order cumulants [35] [36]

[37]. This is because they have been shown to be more discriminating, especially with

higher order modulation schemes such as 16-QAM and 64-QAM or even 256-QAM, as

is made clear by Table 3.2.

Two cumulants, Ĉ40 and Ĉ80 were chosen for the initial investigation. Their

performance in different scenarios, such as number of samples, SINR, carrier offset,

and phase shift, were considered. In addition to the probability of deteection (PD) each

cumulant achieved, a metric was added for Ĉ80 to determine how often it successfully

classified a set of samples that Ĉ40 did not. This provided insight into the performance

gain that was achievable using 8th-order cumulants that could not be obtained with

the 4th-order ones.
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Having selected Ĉ40, the analysis continued by comparing the direct and FFT

approaches. Finally, the CS approach was included. For the CS approach, two methods

of reconstruction were considered, convex optimization and OMP. Initially, these two

methods were pit against one another, and then the better algorithm was tested

against the direct method of cumulant calculation.
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Chapter 6
Results and Analysis

WiFi was chosen as the target networking standard for this research. It is very

prolific, meaning that there are plenty of opportunities for spectrum reuse, as well

as being well documented, for ease of development. However, it also presents a few

challenges. Most notably is the use of Orthogonal Frequency Division Multiplexing

(OFDM), which divides the channel bandwidth into many smaller bandwidth channels.

Individual channels then send low rate symbols independently and in parallel, and

those symbols are then placed back into a serial stream by the receiver. This presents

many advantages in terms of throughput and bit error rate, but makes AMC more

difficult by masking which modulation scheme is in use. Fortunately, it is possible

to extract a single channel from the OFDM signal [38] [39]. This step is not covered,

however the effects of doing so, such as a phase shift or carrier frequency offset were

investigated. The four modulation schemes considered were BPSK, QPSK, 16-QAM,

and 64-QAM. A listing of their cumulants is given in Table 3.2.

6.1 Distributions and Variances

In order to determine the distribution of the cumulant estimates, 10000 estimates of

random inputs were found and plotted after being scaled to be a Probability Density

Function. One such plot can be seen using the direct method in Figure 6.1. The

distributions appear to be normal, supporting the proof given in [40], so that was
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Figure 6.1: Distribution of cumulant estimates using the direct method

chosen as the distribution to use in Equation (5.11).

While the variances are not equal, the 16-QAM variance is smaller. This means

that using Equation (5.11) with the experimental variances would result in an increase

in the number of errors associated with 16-QAM, and a decrease in the 64-QAM errors.

This shift is undesirable in the application of underlay DSA as described in Chapter 2.

A misclassification of 16-QAM as 64-QAM would inform the system that the PU is

performing better than it really is, which may cause the SU to raise its transmit power

above an acceptable level. More generally, the BER of a system remains approximately

constant when using adaptive modulation, but the throughput varies with the SINR.

Increasing the SINR of the channel forces the system to lower its throughput in order

to maintain an acceptable BER without increasing transmit power. In the underlay

DSA situation, this SINR increase comes from the SU’s transmissions. A smaller

SINR increase, which would come from misclassifying 64-QAM as 16-QAM, would

affect the BER less, and thus lead to a smaller, or nonexistent, drop in PU throughput.
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Naturally, this is also not desirable, but it is a better outcome than the first case. For

this reason, it was assumed that the variances were equal for all modulation schemes

across all cases. The theoretical values of BPSK and QPSK are too far away to factor

into this issue. As will be shown, they are rarely misclassified, even at low SINRs or

sample sizes.

6.2 Classification without Signal Impairments

The performance of the estimators was first assessed when there was no phase shift,

carrier frequency offset, or noise. Instead, the number of samples was varied to

determine how well the estimators would work when they undersampled the signal.

Note that true compression, where N samples are gathered and only M are used

(N > M), was not performed. Because the estimators do not improve if multiple

samples of the same symbol are provided, the number of symbols input to the estimator

was simply decreased. Nevertheless, the standard compression ratios are still useful.

This work uses 1000 samples as a compression ratio of 1.

The first comparison was between the direct methods for Ĉ40 and Ĉ80, as shown in

Figure 6.2. The two lines near the top represent the estimators raw performance. On

the bottom is a line with starred markers that shows the cases where Ĉ80 successfully

classified the modulation scheme, but Ĉ40 did not. This indicates the improvement

Ĉ80 offers above Ĉ40, which is quite minimal for this case. More precisely, Ĉ80 offers

no improvement over Ĉ40 in the case of 16-QAM, and only a 2% increase in accuracy

when classifying 64-QAM.

The FFT and direct method for Ĉ40 were then compared, and the plots shown in

Figure 6.3. As expected, there is no difference between the two methods, so the extra

overhead of calculating the various frequencies is not required.

The effectiveness of the two methods of reconstruction, convex optimization and

OMP is shown in Figure 6.4. Both methods fail to classify BPSK, as they are only
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Figure 6.2: C40 versus C80 as a function of sample count
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Figure 6.3: C40 with FFT versus direct as a function of sample count
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Figure 6.4: C40 with ideal reconstruction versus greedy method

Table 6.1: Powers of BPSK and QPSK

Symbol x2 x4

-1 1 1
1 1 1
-i -1 1
i -1 1

provided with x4, which is indistinguishable from QPSK, as shown in Table 6.1. There

is no difference in BPSK and QPSK when they are raised to the fourth power. To

overcome this, Ĉ20 was used, and its output is shown in Figure 6.5. This is very

successful, even at lower sample counts, as was the OMP reconstruction method. The

performance in the 64-QAM case for the OMP method is best explained with the

confusion matrices shown in Table 6.2. Across the top of the table are the correct

modulation schemes, and the side labels indicate which scheme was predicted. This

means that in the 10 sample case, the classifier predicts 64-QAM for both 16-QAM

and 64-QAM, with little regard for the true modulation scheme. Unfortunately, this is
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Figure 6.5: C20 for BPSK versus QPSK classification

Table 6.2: Confusion matrices for OMP reconstructions

(a) 10 samples

BPSK QPSK 16-QAM 64-QAM

BPSK 0.004 0 0.283 0.206
QPSK 0.996 1 0.015 0.004
16-QAM 0 0 0.015 0.024
64-QAM 0 0 0.687 0.766

(b) 512 samples

BPSK QPSK 16-QAM 64-QAM

BPSK 0 0 0 0
QPSK 1 1 0 0
16-QAM 0 0 0.819 0.337
64-QAM 0 0 0.181 0.663

not correctable by modifying the thresholds, as shown by Figure 6.6. Because 64-QAM

is correct half of the time, this leads to better than expected performance. At 512

samples, this is not the case, and the classifier is behaving much more reasonably.

The single column optimization, described in Section 4.1, was then tested against

the standard OMP method to ensure that the computational optimization did not

reduce the accuracy. Figure 6.7 shows the difference. This change results in comparable

performance for all cases except 64-QAM at extremely low sample counts, but those

estimates were not reliable to start.

The optimized method was then compared against the direct method, as seen in
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Figure 6.6: Variances of 10 sample estimates
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Figure 6.7: C40 with standard OMP versus optimized OMP as a function of sample count
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Figure 6.8: C40 with direct versus greedy method

Figure 6.8. As expected, the OMP method fails to classify the BPSK. However, it

performs the same in QPSK, and offers a significant improvement in the 16-QAM

case.

6.3 Classification with Noise

Using 500 samples, which corresponds to approximately 75% accuracy in the noiseless

case, the performance of the two methods was compared across a range of SINR values

from 0 dB to 30 dB. This range was chosen to match the SINR range over which

WiFi is specified to operate [21]. Figure 6.9 compares the performance of Ĉ40 against

Ĉ80. Similar to the noiseless case, Ĉ80 offers little improvement over Ĉ40. This was

expected, since cumulants are generally considered to be resilient to noise.

Having shown that the FFT method and the convex optimization reconstruction

are not useful using the samples test, they were not evaluated further. OMP was then

tested against the direct method, once again using 500 samples, and the results are
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Figure 6.9: C40 versus C80 as a function of SINR

given in Figure 6.10. As was the case with Ĉ80, no change in performance was noted

from the introduction of noise.
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Figure 6.10: Direct versus OMP as a function of SINR

6.4 Frequency and Phase Shifts

Traditional modulation estimation schemes rely on preprocessing steps to remove

Carrier Frequency Offset (CFO) and phase shifts [41]. Since the estimators considered

do not have any preprocessing, the predictions are poor, as seen by the results in

Figure 6.11 and Figure 6.13. The excellent classification of 64-QAM is only because

the system guesses 64-QAM nearly every time, as seen by Table 6.3. To understand

why this occurs, it is helpful to see the distribution of the cumulant estimates, as

shown in Figure 6.12. This behavior stems from the fact that a frequency shift is also

Table 6.3: Confusion matrix for a -0.0005 Hz CFO

BPSK QPSK 16-QAM 64-QAM

BPSK 0 0 0 0
QPSK 0 0 0 0
16-QAM 0 0 0 0
64-QAM 1 1 1 1
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Figure 6.11: Ĉ40 versus Ĉ80 as a function of CFO
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Figure 6.12: Distributions of cumulant estimates after frequency shift
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Figure 6.13: Ĉ40 versus Ĉ80 as a function of phase shifts

a phase shift by a continuously varying amount. Each symbol in BPSK is rotated

a little further than the previous, leading to a constellation that does not have any

repeated symbols, which means that it is uniform. Furthermore, this distribution

is approximately circular, so the zero-valued cumulants are expected [42]. Of the

four cumulant values listed in Table 3.2, 64-QAM at -0.619 is closest to zero, so it is

selected.

A simple phase rotation is also considered, and the results are shown in Figure 6.13.

Once again, the results are not good. Although the Ĉ80 produces better results, it

is in no way a reliable classifier, and it would be better to simply perform the phase

correction before attempting to determine the modulation scheme.

6.5 Computational Efficiency

The accuracy of the different methods is naturally important, but the computing cost

to execute the different algorithms should also be considered when selecting one for
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use. When such algorithms are implemented in hardware, e.g. an FPGA or an ASIC,

the more complex ones will take more area, driving up cost and energy consumption.

Additionally, a complex algorithm takes more time to run, so results are delayed,

which means that the cognitive radio cannot make decisions as quickly.

In order to help inform a decision about which algorithm to choose, the Ĉ40

direct, Ĉ80 direct, and OMP methods were analyzed to determine their computational

efficiency. The metrics considered were required number of resources, such as adders

and multipliers, memory, and latency after receiving the last sample. Additionally,

possible parallel operations are noted, and the reduction in latency found. For latency

calculations, Mv indicates the time required to multiply two variables, Mc is the time

required to multiply by a constant, and A is the addition time needed.

6.5.1 Fourth-Order Cumulants by the Direct Method

Using Figure 5.1, the resource usage for 4th-order cumulants by the direct method

is straightforward. To find the latency after the final sample, the critical path was

required. It was assumed that Mv > Mc > A, which meant that this path was

the lower one. The latency was then found to be 2Mv + 2Mc + 2A. Overall, the

implementation required three variable multipliers, three constant multipliers, three

adders, and two registers to hold intermediate results.

6.5.2 Eighth-Order Cumulants by the Direct Method

In order to find the latency and resource usage of the estimator for the 8th-order

cumulant, Figure 6.14 was drawn. It functions in the same manner as the 4th-order

direct estimator, but has several more moments to estimate and combine. The critical

path of the design follows the M6 branch, as that requires four multipliers, as opposed

to the three in the others. To lessen the impact this branch has, it was combined last

in the adder tree at the end. It is assumed that the fourth multiplier takes more time
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Figure 6.14: Estimation of the 8th-order cumulant value

to execute than two adders, thus the latency is 4Mv + 2Mc + 2A. The total usage

requirements are nine variable multipliers, eight constant multipliers, eight adders,

and four registers, which is two to three times larger than the Ĉ40 estimator.
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Figure 6.15: Cumulant estimation using OMP

6.5.3 Fourth-Order OMP

Using the optimized form from Section 4.1, D†I is known ahead of time, and its

precomputation is not included in the efficiency analysis. Figure 6.15 shows the

runtime requirements for the OMP method. This method requires three variable

multipliers and two adders. The two variable multipliers raise the sample to its fourth

power, as required by Equation (5.10). The output of the first variable multiplier,

along with one of the adders, is used to compute Ĉ20, so that BPSK and QPSK can be

differentiated. The third variable multiplier and the other adder are used to compute

the dot product. It has a latency of 3Mv + A since the dot product can be computed

as the samples arrive. Alternatively, the multiplier with DI could be replaced with

n constant multipliers, since the values of DI are already known. This changes the

resource usage to be two variable multipliers, n constant multipliers, and two adders,

with a latency of 2Mv +Mc + A.

6.5.4 Pipelining

In order to decrease the number of resources required for the direct methods, pipelining

was used. This means that the resource can be reused in the next iteration, instead

of having multiple of the same type operating in parallel. Figure 6.16 shows how

the design could be partitioned. No stage uses more than one of the same resource,
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Figure 6.16: A possible pipelining of the direct 4th-order estimator

Table 6.4: Resource usage and latencies for cumulant estimation methods

Method 4th-order Direct 8th-order Direct OMP

Mv 3 9 2
Mc 3 8 nResources
A 3 8 2
Mv 2 4 2
Mc 2 2 1Latency
A 2 2 1

Cycles/Sample 1 1 1

Mv 1 1 1
Mc 1 5 1Alt. Resources
A 1 2 1
Mv 3 9 3
Mc 1 1 0Alt. Latency
A 1 1 1

Alt. Cycles/Sample 3 9 3

so the design can be implemented with one of each. However, this raises an issue if

the samples arrive at the same rate as the stages operate. Because the adder and

multiplier resource are busy for three out of the four stages, a new sample cannot begin

to be processed until the previous one has reached the end of stage three. Here, it will

be assumed that this is true, but should the sampling rate be higher, a buffer would

be required to hold incoming samples. Naturally, this increases the latency required,

as well as the number of registers to hold the data. A similar process was done with

Ĉ80 to arrive at Table 6.4. Naturally, designs that are somewhere in between the two
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options are also possible by placing more than one of a resource in a pipeline stage.

In other words, the design can be carefully tuned to meet the resource and latency

requirements of the particular application.
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Chapter 7
Conclusion

Increasing device bandwidth and a scarcity of unallocated spectrum will continue to

drive the need for CRs. In turn, this will result in a need for modulation scheme

identification methods that are accurate and computationally efficient, such that

underlay DSA can be performed. Traditional methods of modulation classification

involve the use of spectral correlation, or cumulants. Examples and explanations

of each were provided, and the drawbacks of spectral correlation mentioned. For

this reason, cumulants were chosen as the focus, and a novel method of performing

classification using CS was derived. This method was compared to existing methods,

and was found to perform similarly at higher bit counts, and outperformed traditional

methods at lower ones. The resource and timing requirements of each algorithm were

also investigated, and potential tradeoffs mentioned. Since there is a tradeoff between

latency and resources, it was not possible to provide a recommendation on which

system to use, but the bounds of each were derived to give guidelines.

Future work could extend the classifier to be robust to frequency shifts and phase

offsets, eliminating the need for these to be corrected in preprocessing steps, which

would further decrease the computational requirements for AMC. The use of more

advanced decision methods, such as one that considers multiple cumulants, could also

be added. Finally, increasing the number for modulation schemes considered would

increase real-world applicability.
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