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Abstract
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Statistical Aspects of Music Mining:
Naive Dictionary Representation

by Qiuyi WU

Extensive studies have been conducted on both musical scores and audio tracks of
western classical music with the finality of learning and detecting the key in which a
particular piece of music was played. Both the Bayesian Approach and modern un-
supervised learning via latent Dirichlet allocation have been used for such learning
tasks. In this research work, we propose and develop the novel idea of treating mu-
sical sheets as literary documents in the traditional text analytics parlance, to fully
benefit from the vast amount of research already existing in statistical text mining
and topic modeling.

We specifically introduce the idea of representing any given piece of music as a col-
lection of "musical words" that we codenamed "muselets", which are essentially mu-
sical words of various lengths. Given the novelty and therefore the extremely diffi-
culty of properly forming a complete version of a dictionary of muselets, the present
paper focuses on a simpler albeit naive version of the ultimate dictionary, which we
refer to as a Naive Dictionary because of the fact that all the words are of the same
length. We specifically herein construct a naive dictionary featuring a corpus made
up of African American, Chinese, Japanese and Arabic music, on which we perform
both supervised and unsupervised learning.

For the exploration of pattern recognition and topic modeling, we venture out of
the traditional western classical music and embrace and explore other music genres.
We consider the musical score sheets and audio tracks of some of the giants of jazz
like Duke Ellington, Miles Davis, John Coltrane, Dizzie Gillespie, Wes Montgomery,
Charlie Parker, Sonny Rollins, Louis Armstrong, Bill Evans, Dave Brubeck, Thelo-
nious Monk. We specifically employ Bayesian techniques and modern topic mod-
eling methods to explore tasks such as: automatic improvisation detection, genre
identification, and key detection. Although some of the results based on the Naive
Dictionary are reasonably good, we anticipate phenomenal predictive performances
once we get around to actually build a full scale complete version of our intended
dictionary of muselets.

http://www.rit.edu/
http://faculty.university.com
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Chapter 1

Introduction

1.1 Motivation

FIGURE 1.1: Titanic in Music piece and Text Body

Music plays a big part of our lives but have you ever think of questions like:
How does music have the power to provoke different emotions? What’s the similar-
ity between music from different culture, or composers, or different genres?

Music piece and text articles are very similar in the sense that both carry the informa-
tion to narrate a certain story. Musicians express their feelings through music while
writers record events through words. Take the tragedy Titanic in Figure 1.1 as an ex-
ample, we learn the tragedy from the newspaper and feel anguished, but we can also
get the mourning from the song My Heart Will Go On. The melody contains a lot of
minor keys (e.g. D[, F],A[), which are more likely to trigger the dissonance via two
closely spaced notes hitting the ear simultaneously and thus to make people feel sad.

Here this psychoacoustical topic was transformed into the statistical question. Sup-
pose the melody we hear based on the feeling we gain from the music is denoted
as "Xfeel", the true melody of the song is denoted as "Xreal", then we would like to
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obtain the melody as complete as possible. We want to get close as much as possible
to the truth:

argmax
real

p(Xreal|Xfeel) (1.1)

From Bayesian inference, we can rewrite the posterior probability as:

p(Xreal|Xfeel) =
p(Xfeel|Xreal)p(Xreal)

p(Xfeel)
(1.2)

The probability of true melody given the melody we feel is the same as the right
side. Since the overall feeling towards the music would not change over time, we
can simplify the formula by removing the denominator:

argmax
real

p(Xreal|Xfeel) = argmax
real

p(Xfeel|Xreal)p(Xreal) (1.3)

Now to get the most probable true melody based on our feeling towards the melody,
we need to get the likelihood, which is the probability of the feeling for every melody;
and the prior probability of the true melody from the current knowledge. After-
wards we can maximize the product to get the melody as close to the real melody as
possible.

Of course Bayesian modeling is one of the approaches that works very well in key-
detection. Here I use probabilistic topic model and pattern recognition techniques
to detect the key in which a particular piece of music is played.

TABLE 1.1: Comparison between Text and Music in Topic Modeling

Text letter word topic document corpus

Music note notes* melody song album
* a series of notes in one bar can be regarded as a "word"

FIGURE 1.2: Piece of Music Melody

Compared with the role of text in Topic Modeling as showed in Table 1.1, we treat
a series of notes as "word", can also be called as "term", as single note could not
hold enough information for us to interpret, specifically, we treat notes in one bar3

as one "term". Melody4 plays the role of "topic", and the melodic materials give the
3In musical notation, a bar (or measure) is a segment of time corresponding to a specific number

of beats in which each beat is represented by a particular note value and the boundaries of the bar are
indicated by vertical bar lines.

4Harmony is formed by consecutive notes so that the listener automatically perceives those notes
as a connected series of notes.
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shape and personality of the music piece. "Melody" is also referred as "key-profile"
by Hu and Saul (2009a) in their paper, and this concept was based on the key-finding
algorithm from Krumhansl and Schmuckler (1990) and the empirical work from
Krumhansl and Kessler (1982). The whole song is regarded as "document" in text
mining, and a collection of songs called album in music could be regarded as "cor-
pus" in text mining.

FIGURE 1.3: Circle of Fifths (left) and Key-profiles (right)

Specifically, "key-profile" is chromatic scale showed geometrically in Figure 1.3 Cir-
cle of Fifths plot containing 12 pitch classes in total with major key and minor key
respectively, thus there are totally 24 key-profiles, each of which is a 12-dimensional
vector. The vector in the earliest model in Longuet-Higgins and Steedman (1971)
uses indicator with value of 0 and 1 to simply determine the key of a monophonic
piece. E.g. C major key-profile:

[1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1]

As showed in the figures below, Krumhansl and Schmuckler (1990) judge the key in
a more robust way. Elements in the vector indicate the stability of each pitch-class
corresponding to each key. Melody in the same key-profile would have similar set
of notes, and each key-profile is a distribution over notes.

Figure 1.4 (left part) shows the pitch-class distribution of C Major Piano Sonata No.1,
K.279/189d (Mozart, Wolfgang Amadeus) using K-S key-finding algorithm, and we can
see all natural notes: C, D, E, F, G, A, B have high probability to occur than other
notes. Figure 1.4 (right part) shows the pitch-class distribution of C Minor BWV.773
No. 2 in C minor (Bach, Johann Sebastian) and again we can see specific notes typical
for C Minor with higher probability: C, D, D], F, G, G], and A].

Usually different scales could bring different emotions. Generally, major scale arouse
buoyant and upbeat feelings while minor scales create dismal and dim environment.
Details for emotion and mood effects from musical keys would be presented in later
section.
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FIGURE 1.4: C minor key-profile (left) and C minor key-profile (right)

1.2 Thesis Scope

This thesis explores various aspects of statistical machine learning methods for mu-
sic mining with a concentration on soundtracks from Jazz legends like Charlie Parker
and Miles Davis. We attempt to create a Naive Lexicon analogy to the language dic-
tionary. That is to say, when people hear a music piece, they are hearing the audio
of an essay written with music words.

The target of this research work is to create homomorphism between musical and
literature. Instead of decomposing music sheet into a collection of single notes, we
attempt to employ direct seamless adaptation of canonical topic modeling on words
in order to "topic model" music fragments.

One of the most challenging components is to define the basic unit of the information
from which one can formulate a soundtrack as a document. Specifically, if a music
soundtrack were to be viewed as a document made up of sentences and phrases,
with sentences defined as a collection of words (adjectives, verbs, adverbs and pro-
nouns), several topics would be fascinating to explore:

• What would be the grammatical structure in music?

• What would constitute the jazz lexicon or dictionary from which words are
drawn?

All music is story telling as assumption, it is plausible to imagine every piece of
music as a collection of words and phrases of variable lengths with adverbs and
adjectives and nouns and pronouns.

ϕ : musical sheet → bag of music words

The construction of the mapping ϕ is non-trivial and requires deep understanding of
music theory. Here several great musicians offer insights on the complexity ofϕ from
their perspectives, to explain about the representation of the input space, namely,
creating a mapping from music sheet to collection of music "words" or "phrases":

• "These are extremely profound questions that you are asking here. I can’t answer them
within any specific time-frame. I’m interested in trying — I think? But you have
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opened up a whole lot of bigger questions with this than you could possibly imag-
ine." (Dr. Jonathan Kruger, personal communication with Dr. Ernest Fokoue,
November 24, 2018).

• "Your music idea is fabulous but are you sure that nothing exists? Do you know ’band
in a box’? It is a software in which you put a sequence of chords and you get an
improvisation ’à la manière de’. You choose amongst many musicians so they probably
have the dictionary to play as Miles, Coltrane, Herbie, etc." (Dr. Evans Gouno,
personal communication with Dr. Ernest Fokoue, November 05, 2018).

• Rebecca Ann Finnangan Kemp mentioned building blocks of music when it comes to
music words idea. (personal communication with Dr. Ernest Fokoue, November
20, 2018).

So the concept of notes is equivalent to alphabet, which can be extended as below:

• literature word ≡mixture of the 26 alphabets

• music word ≡mixture of the 12 musical notes

Since notes are fundamental, one can reasonably consider input space directly iso-
morphic to the 12 notes.

Two types of dictionaries are crated for the study of music genres and musicians.
One is note-based represented data, another is measure-based represented data.
There are 7 Main musicians we focused to study: Duke Ellington, Miles Davis, John
Coltrane, Charlie Parker, Louis Armstrong, Bill Evans, Thelonious Monk. There are
also three different genres of music and compare them with Jazz respectively. I select
songs from China, Japan and Arab due to their unique cultural characteristics.

1.3 Organization

This thesis creates two representations of music piece as "music words" or "muse-
lets", and applies them to topic modeling and pattern recognition methods. The
naive dictionary representation is homomorphism of musical arts based on literature
arts. Chapter 1 sheds light on the idea of "building blocks of music" and introduces
the whole scope of the work in this thesis. Chapter 2 reviews the relevant work in
text mining and music mining. Specifically, for text mining section, it demonstrates
two most common pattern recognition applications, digit recognition and speech
recognition. Then it concentrates on topic models, with two examples using latent
Dirichlet allocation model. For music mining section, it focuses on western classi-
cal music via key detection algorithm. In Chapter 3 I construct the music mining
model based on the work in text mining shows in the previous Chapter. It also
demonstrates the similarity and difference between two different sources in music
models (sheet music and audio music). Chapter 4 develops two representations of
music notes, also known as "muselets", and respectively employ these two represen-
tations into different models. Chapter 5 summarizes the whole research work and
also paves road for the potential future work.
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Chapter 2

Related Work

2.1 Text Analysis

Textual data containing rich resources sometimes can be very complicated. The way
to efficiently extract most useful information with the minimum efforts are demand-
ing. Text analytics (Figure 2.1), also referred as "text mining", include information
retrieval, lexical analysis, pattern recognition, annotation/tagging, sentiment anal-
ysis, topic modeling techniques. Here in this section we mainly focus on pattern
recognition and topic modeling, which also help us in the music analysis chapter
thereafter.

FIGURE 2.1: Word Cloud Generated via wordcloud Package

2.1.1 Pattern Recognition

Statistical machine learning methods and techniques have been successfully applied
to wide variety of important fields. In 1960s, nonparametric estimation gained its
attention with the help of Tom Cover and Peter Hart, who showed the nearest neigh-
bor with the error at most twice as often as the best possible discrimination method
(Devroye, Györfi, and Lugosi, 2013).

LNN = E{2η(X)(1− η(X))}
= 2E{A(1−A)} (A = min(η(X), 1− η(X)))

≤ 2E{A}E{1−A} (by Theorem B.1)
= 2L?(1− L?)
≤ 2L? (2.1)
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where L? is the Bayes probability of error in the best rule:

L? = E{min(η(X), 1− η(X))}

Handwritten Digit Recognition

The famous and ubiquitous technique is handwritten digit recognition. This data set
is also known as MNIST, and is usually the first task in some Data Analytics competi-
tions. Handwritten digit recognition captured the attention of the machine learning
and neural network community for many years, and has remained a benchmark
problem in the field. Below I show the example of a small sample of data using k
nearest neighbors technique to detect the handwritten digits. The handwritten digits
scanned from envelops by the U.S. Postal Service are normalized in 16×16 grayscale
images (Le Cun et al., 1990). The label below each plot in Figure 2.2 is the test result
learned from kNN algorithm.

TABLE 2.1: Confusion Matrix: KNN on MNIST Data

Reference

Prediction 0 1 2 3 4 5 6 7 8 9

0 355 0 6 3 0 2 0 0 5 0

1 0 255 1 0 3 1 0 1 0 0

2 2 0 183 2 1 2 1 1 1 1

3 0 0 2 154 0 4 0 1 6 0

4 0 6 1 0 182 0 2 4 1 2

5 0 0 0 5 1 145 3 0 1 0

6 0 2 0 0 2 2 164 0 0 0

7 1 1 2 0 2 0 0 139 1 4

8 0 0 3 0 1 3 0 0 148 1

9 1 0 0 2 8 1 0 1 3 169
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FIGURE 2.2: USPS Digit Recognition Dataset Using KNN

Speech Recognition

The triumph in speech recognition has been achieved using pattern recognition paradigms.
It prevails in the world of speech recognition for utilizing terms or words as pattern
and avoid the issue in phoneme level. Below is an example of transformed audio
tracks of a total of 328 readings of the same English words by different speakers.
Most of the readings are done by US born speakers of English while the remaining
ones are done by speakers born outside the US.

FIGURE 2.3: Audio Tracks of Selected Speakers

Consider Xi = (xi1, ..., xip)
> ∈ Rp to be the time domain representation of his/her

reading of an English sentence, and Yi ∈ {1, 2, 3, 4, 5, 6} is the response to distinguish
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the nationality of the speakers, and the set D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, we
can detect the nationality of the speakers from their audio track pattern (Table 2.2).

TABLE 2.2: Confusion Matrix: Multi-class Support Vector Machine
on Audio Track

Reference

Prediction ES FR GE IT UK US

ES 26 0 0 0 0 1

FR 0 25 0 0 0 0

GE 0 0 20 1 0 0

IT 0 0 1 24 2 1

UK 0 0 0 0 38 0

US 3 5 9 5 5 163

Using the binary classification task of US Born versus Non-US Born speakers. I
compare the following methods of classification: (1) kNearest Neighbors (2) LDA
(3) QDA (4) CART (5) Support Vector Machines (6) Naive Bayes in Figure 2.4. We
can see different techniques have different predictive accuracy. While Naive Bayes
has the largest test error, which is not surprising as it is not a robust classifier, kNN
and SVM appear to be quite robust with lower test errors.

FIGURE 2.4: 6 Pattern Recognition Techniques for Audio Detection

2.1.2 Topic Modeling

Topic modeling as one of the most popular text mining techniques has been exten-
sively studied and applied in many fields due to its intuitively easy concept of "dis-
cover hidden semantic structure in the text body". Before Latent Dirichlet Allocation
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(LDA) topic model became the most common one, another model, probabilistic la-
tent semantic analysis (PLSA), was proposed by Hofmann, 1999. This is an extension
of the model latent semantic indexing (LSI), first created by Deerwester et al., 1990.

LSA and pLSA

Suppose we have D documents with N words.

D = {d1, d2, d3, ..., dD}

W = {w1, w2, w3, ..., wN}.

The assumption in latent semantic analysis is that words share similar meaning
would appear in the same articles. So a matrix whose cell has word counts in per
document is created:

X =


x11 x12 x13 . . . x1D

x21 x22 x23 . . . x2D

...
...

...
. . .

...

xN1 xN2 xN3 . . . xND

 .

The matrix is factorized by SVD:

X = UΣV > =


u1

 . . .
ul


 ·

σ1 . . . 0
...

. . .
...

0 . . . σl

 ·


[ v1 ]
...

[ vl ]

 .
The approximation of X in LSA is X̂ = Û Σ̂V̂ >, and therefore it is computed by
truncating the matrices. In pLSA, the approximation of X based on fixed number of
topics Z = {z1, z2, ..., zK} is:

X = P (di, fj) = P (di|zk)diag(P (zk))P (fj |zk)> = Û Σ̂V̂ >

Both are factorization methods with normalization while in SVD, it is the spectral
norm byL2 norm. And pLSA uses log-likelihood to maximize θ = (P (wj |zk), P (zk|di)).

FIGURE 2.5: Graphical Model for pLSA

Figure 2.5 is the graphical model of pLSA. Nodes in the graphical model represent
random variables with shaded ones refer to observed variables and blank ones refer
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to latent variables. Plates in the graphical model demonstrate the replicates of the
process. Here we assume M number of documents in the corpus, and each docu-
ment contains N words(Blei, Ng, and Jordan, 2003). The graphical model can be
translated as the Equation (2.2).

P (dj , wi) = P (dj)P (wi|dj) (2.2)

P (wi|dj) =

K∑
k=1

P (zk|dj)P (wi|zk) (2.3)

Based on the observed words and documents, we can gain the conditional probabil-
ity P (wi|dj) by marginalizing over topics. P (zk|dj) is the probability of certain topic
zk appearing in certain document dj , and P (wi|zk) is the probability of the word wi
showing in a specific topic zk. EM algorithm(Blei, Ng, and Jordan, 2003) is applied
to get the optimal result.

Generative Process:

1. Determine the number of words in the documents

2. Choose a topic mixture for the document over a fixed set of topics

3. Generate the words in the document by

(a) Picking a topic based on the document’s multinomial distribution

(b) Picking a word based on the topic’s multinomial distribution

Latent Dirichlet Allocation

Because pLSA does not have a generative process to create documents from scratch,
and thus could "spread out" with small weights on many topics to cause overfitting
issue, LDA is proposed to avoid this situation. LDA learns the topic representation
of topics in each document and the word distribution of each topic. It backtracks
from the document level to identify topics that are likely to have generated the cor-
pus.

FIGURE 2.6: Graphical Model for LDA

Shaded nodes w is only observed variables in the graphical model (Figure 2.6). The
model can be translated as the Equation (2.4). The posterior is intractable to com-
pute, thus the common way to turn is to approximate the posterior via variational
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EM algorithm, or Gibbs sampling.

P (θ, z,w, β|α, η) =

K∏
k=1

p(βk|η)

D∏
d=1

p(θd|α)

(
N∏
n=1

p(zd,n|θd)p(wd,n|β1:K , zd,n)

)
(2.4)

The topic distribution under each document is a Multinomial distribution Mult(θ)
with its conjugate prior Dir(α). The word distribution under each topic is a Multi-
nomial distribution Mult(β) with its conjugate prior Dir(η). For the nth word in
the certain document, first we select a topic z from from per document-topic dis-
tribution Mult(θ), then select a word under this topic w|z from per topic-word dis-
tribution Mult(β). Repeat for M documents: For M documents, there are M inde-
pendent Dirichlet-Multinomial Distributions; for K topics, there are K independent
Dirichlet-Multinomial Distributions.

Generative Process:

1. Randomly assign each word in each document to one of the K topics

2. For each document d

(a) Assume all topic assignments except for the current one are correct
(b) Calculate two proportions:

i. Proportion of words in document d that are currently assigned to
topic z: P (topic z|document d)

ii. Proportion of assignments to topic k over all documents that come
from this word w: P (word w|topic z)

iii. Multiply the two proportions and assign a new topic based on the
probability: P (word w|topic z)× P (topic z|document d)

3. Until we reach a steady state

LDA Implementation: Short Story Analysis

Here I borrow the example from Silge (2018) to show how LDA topic model works
in text analysis. The short stories is collected from gutenbergr package. After
manipulating the raw text data by removing the stop words, indicating important
words, we get the Figures 2.7. Individual story emphasis on different narrative ele-
ments and words. Some stories contain a lot of animals while others contain many
family names.
After the data has been cleaned and Document-Term matrix (DTM) is created, we
can feed it into the topic model. Figure 2.8 demonstrates the words with highest
probabilities in each topic. Different topic is mixture of different words. For topic 4,
it focuses on family relationship. For topic 2, it probably tells story about birds.
Figure 2.9 shows the document probabilities for each topic. We can see each topic
is related to 1∼3 stories. We can also find that each short story only has one topic,
which not commonly happen in text mining. Because in this scenario we have small
number of documents with relatively large number of topics corresponding to the
documents.

SLDA Implementation: Political Blog Post Analysis

Supervised LDA is an extension of the general LDA topic models (Mcauliffe and
Blei, 2008). It enriches the model by associating each document with a label. The
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FIGURE 2.7: Highest TF-IDF Words in the Stories

response is usually the rating score(for movies or books), or the count (for websites
or blogs views).

Generative Process

1. Draw topic proportions (θ|α) from Dir(α)

2. For each word

(a) Draw topic assignments (z|θ) from Mult(θ)

(b) Draw word (w|z, β1:K) from Mult(βz)

3. Draw response variable (y|z1:N , η, σ
2) from N(η>z̄, σ2)

In this case I analysis 273 US political blogs with 71,654 blog posts ranked by Techno-
rati score for the whole 2012 year. The higher Technorati score is, the more influential
the blog post is, and more people would read the posts. The score ranked from 83
to 876, with the most frequent score 127 containing 8,135 blog posts through 366
days. We are going to predict the Technorati score from the topic proportions and
log(number of posts) over the entire year.

I divided the total 71,654 blog posts into 10 categories with equal number of posts in
each category, and labeled them from 0 to 9 consistently.
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FIGURE 2.8: Highest Word Probabilities for Each Topic

TABLE 2.3: 10 Categories for Blog Posts

Score 83∼95 96∼110 111∼126 127∼444 445∼466

Annotation 0 1 2 3 4

Score 467∼553 554∼624 625∼657 658∼687 688∼876

Annotation 5 6 7 8 9

From the topic-document distribution in Figure 2.11 we can notice that some doc-
ument such as Doc 2 focus on Topic Economics with highly probable words such as
"gold", "market", "economic". While other documents contain mixture of several top-
ics such as Doc 3, Doc 8, Doc 9.
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FIGURE 2.9: Distribution of Document Probabilities for Each Topic

FIGURE 2.10: Graphical Model for SLDA

FIGURE 2.11: Topic Document Distribution
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Given a particular blog https://thinkprogress.org, Technorati score for the blog https://thinkprogress.org
is 127, which falls into the 3rd category.

TABLE 2.4: Particular Blog and its Score

Score 127∼444

Annotation 3

From sLDA model, I get the predicted annotation with the highest probability falling
into Category 3, consistent with the label.

FIGURE 2.12: Prediction for blog thinkprogress.org

2.2 Music Analysis

Extensive studies have been conducted on both musical scores and audio tracks of
western classical music with the finality of learning and detecting the key in which
a particular piece of music was played. Both the Bayesian Approach and modern
unsupervised learning via latent Dirichlet allocation have been used for such learn-
ing tasks. In this section I will give brief introduction to the relevant music mining
techniques developed in recent years.

2.2.1 Topic Models

Probabilistic topic model has been employed in many fields. Hu (2009) shows in
her paper using Latent Dirichlet Allocation in text, image and music. In music part
she mainly focus on western classical music due to its clear and mature formation in
music theory. She applied LDA to classical symbolic music for automatic harmonic
analysis. Her work goes beyond bag-of-words representation and discard the order
of notes in each segment with the idea of "bag of segments" where each segment is
treated as "bag of notes". Figure 2.13 shows key judgments for Bach’s Prelude in C
minor, WTC-II. The top three keys in each measure segment are the judgments from
LDA model, the bottom three keys are judgments from human experts.
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FIGURE 2.13: Note. Reprinted from “A probabilistic topic model for
music analysis”, by Hu, Diane J and Lawrence K Saul. , (2009).

2.2.2 Other Key-finding Algorithms

Except topic modeling approach, decades ago another method proposed by Krumhansl
and Kessler (1982) in key detection is very influential. They used "flat" major profile
by removing all keys that were not in the current melody. E.g. C major key-profile:

[1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1]

The key-profile they created were based on the experimental data. They conducted
a series of experiments with listener hearing incomplete melody in separate trails.
Later Krumhansl & Schmuckler created well-know KS key-finding algorithm in 1990
based on the empirical work from Krumhansl & Kessler (1982).

FIGURE 2.14: Note. Reprinted from “MIDI toolbox: MATLAB tools
for music research”, by Eerola, T. and Toiviainen, P. , (2004).

Figure 2.14 shows the probability of the tone for C major and C minor keys from
(Krumhansl and Kessler, 1982). The approach has been examined and reached 83%
accuracy rate on 48 preludes from Bach, 70% accuracy rate on Shostakovich’s pre-
ludes.
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Chapter 3

Music Mining

Music and text are similar in the way that both of them can be regraded as infor-
mation carrier and emotion deliverer. People get daily information from reading
newspaper, magazines, blogs etc., and they can also write diary or personal jour-
nal to reflect on daily life, let out pent up emotions, record ideas and experience.
Same power could come from music! Composers express their feelings through mu-
sic with different combinations of notes, diverse tempo1, and dynamics levels2, as
another version of language. All these similarities drive people to ask questions like:

• Could music deliver information tantamount to text?

• Can we efficiently use text mining approach in music field?

• Why music from diverse culture can bring people so many different feelings?

• What’s the similarity between music from different culture, or composers, or
genres?

• To what extend do people grasp the meaning behind each piece of music ex-
pressed by the composer?

And more and more, just name a few. After all, the power of music and the meaning
behind it have puzzled scientists for long time, though some relative researches has
been studied, in comparatively low frequencies. Furthermore, the process of deeply
digging into the music structure and decompose it appear to be tabu for many peo-
ple, especially music enthusiasts who regard the natural integral attribution of music
as sacred and inviolable. I personally encountered the difficulty during this research
as one of my friends commented that "Deciphering music in a mathematical way seems
intriguing, but to me it is cruel as music itself embodies intuitively mysterious beauty." I ad-
mit his philosophy point that "distance creates beauty", while we could not ignore
the fact that the modern advancing techniques attract more and more researchers
tend to study the complex system behind intuition, especially the fast-pacing devel-
opment in Neuroscience recent decades, avails people to find the answer about how
music stimulates our brain to reflect mixture of emotional and intellectual reaction.

This chapter is dedicated to using text mining tool in music field, specifically, apply-
ing Topic Modeling to Improvisational Jazz Music and other Music genres such as
Chinese music and Japanese Music.

1In musical terminology, tempo ("time" in Italian), is the speed of pace of a given piece.
2In music, dynamics means how loud or quiet the music is.
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3.1 Intuition Behind Model

Similar to the work from Blei (2012) in text mining, Figure 3.1 illustrates the intuition
behind our model in music concept. We assume an album, as a collection of songs,
are mixture of different topics (melodies). These topics are the distributions over
a series of notes (left part of the figure). In each song, notes in every measure are
chosen based on the topic assignments (colorful tokens), while the topic assignments
are drawn from the document-topic distribution.

FIGURE 3.1: Intuition behind Music Mining

3.2 LDA for Sheet Music

In this section, I’ll show the generative process of sheet music based on the graphical
model as well as the corresponding computation.

3.2.1 Model

α θ z u β η

L

N

M

K
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Dirichlet: p(θ|α) =
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

θαi−1
i p(β|η) =

Γ(
∑

i ηi)∏
i Γ(ηi)

K∏
i=1

θηi−1
i (3.1)

Multinomial: p(zn|θ) =
K∏
i=1

θ
zin
i p(xn|zn, β) =

K∏
i=1

V∏
j=1

β
(zinx

j
n)

ij (3.2)

Notation

• u: notes (observed)

• z: chord per measure (hidden)

• θ chord proportions for a song (hidden)

• α: parameter controls chord proportions

• β: key profiles

• η: parameter controls key profiles

3.2.2 Generative Process

1. Draw θ ∼ Dirichlet(α)

2. For each harmony k ∈ {1, ...,K}

• Draw βk ∼ Dirichlet(η)

3. For each measure un (notes in nth measure) in song m

• Draw harmony zn ∼Multinomial(θ)

• Draw pitch in nth measure xn|zn ∼Multinomial(βk)

Terms for single song:

p(θ|α) =
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

θαi−1
i (3.3)

p(β|η) =
Γ(
∑

i ηi)∏
i Γ(ηi)

K∏
i=1

θηi−1
i (3.4)

p(zn|θ) =
K∏
i=1

θ
zin
i (3.5)

p(xn|zn, β) =

K∏
i=1

V∏
j=1

β
(zinx

j
n)

ij (3.6)

Joint Distribution for the whole album:

p(θ, z,x|α, β, η) =
K∏
k=1

p(β|η)
M∏
m=1

p(θ|α)
( N∏
n=1

p(zn|θ)p(xn|zn, β)
)

(3.7)
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Summary

• Assume there are M documents in the corpus.

• The topic distribution under each document is a Multinomial distributionMult(θ)
with its conjugate prior Dir(α).

• The word distribution under each topic is a Multinomial distribution Mult(β)
with the conjugate prior Dir(η).

• For the nth word in the certain document, first we select a topic z from per
document-topic distribution Mult(θ), then select a word under this topic x|z
from per topic-word distribution Mult(β).

• Repeat for M documents. For M documents, there are M independent Dirichlet-
Multinomial Distributions; for K topics, there are K independent Dirichlet-
Multinomial Distributions.

3.2.3 Estimation

For per-document posterior is

p(β, z, θ|x, α, η) =
p(θ, β, z,x|α, η)

p(x|α, η)
=

p(θ|α)
∏N
n=1 p(zn|θ)p(xn|zn, β1:K)∫

θ p(θ|α)
∏N
n=1

∑K
z=1 p(zn|θ)p(xn|zn, β1:K)

(3.8)

Here we use Variational EM (VEM) ?? instead of EM algorithm to approximate pos-
terior inference because the posterior in E-step is intractable to compute.

FIGURE 3.2: Variational EM Graphical Model

Blei, Ng, and Jordan (2003) proposed a way to use variational term q(β, z, θ|λ, φ, γ)
(Eq.3.9) to approximate the posterior p(β, z, θ|x, α, η) (Eq.3.10). That is to say, by
removing certain connections in the graphical model in Figure 3.2, we obtain the
tractable version of lower bounds on the log likelihood.

q(β, z, θ|λ, φ, γ) =

K∑
k=1

Dir(βk|λk)
M∑
d=1

(q(θd|γd)
N∑
n=1

q(zdn|φdn)) (3.9)

p(β, z, θ|x, α, η) =
p(θ, β, z,x|α, η)

p(x|α, η)
(3.10)

With the simplified version of posterior distribution, we aim to minimize the KL Dis-
tance (Kullback–Leibler divergence) between the variational distribution q(β, z, θ|λ, φ, γ)
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and the posterior p(β, z, θ|x, α, η) to obtain the optimal value of the variational pa-
rameters γ, φ, and λ (Eq.3.12). That is to obtain the maximum lower boundL(γ, φ, λ;α, η)
(Eq.3.13).

lnp(x|α, η) = L(γ, φ, λ;α, η) +D(q(β, z, θ|λ, φ, γ)||p(β, z, θ|x, α, η)) (3.11)
(λ∗, φ∗, γ∗) = argmin

λ,φ,γ
D(q(β, z, θ|λ, φ, γ)||p(β, z, θ|x, α, η)) (3.12)

L(γ, φ, λ;α, η) = Eq[lnp(θ|α)] + Eq[lnp(z|θ)] + Eq[lnp(β|η)] + Eq[lnp(x|z, β)]

− Ez[lnq(θ|γ)]− Eq[lnq(z|φ)]− Ez[lnq(β|λ)] (3.13)

Algorithm 1 Variational EM for Smoothed LDA in Sheet Music

for t← 1 : T do
E-step
Fix model parameters α, η. Initialize φ0

ni := 1
k , γ

0
i := αi + N

k , λ
0
ij := η

for n← 1 : N do
for i← 1 : k do
φt+1
ni := exp(Ψ(γti ))

∏V
j=1 β

xjn
ij

end for
Normalize φt+1

n to sum to 1
end for
γt+1 := α+

∑N
n=1 φ

t+1
n

λt+1
j := η +

∑M
d=1

∑Nd
n=1 φ

t+1
dn x

j
dn

M-step
Fix the variational parameters γ, φ, λ
Maximize lower bound with respect to model parameters η, α
until converge

end for

3.3 LDA for Audio Music

In this section, I’ll show the generative process of audio music based on the graphical
model as well as the corresponding computation.

3.3.1 Model

θα z u

βη

c

A,Σ

L

N

M

K
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Draw chroma-vector cn from probability distribution (Hu and Saul, 2009b):

p(cn|un, A) =
1√

(2π)p|Σ|
exp

{
−1

2
(cn −Aun)>σ−1(cn −Aun)

}
(3.14)

Notation

• u: notes (observed)

• z: chord per measure (hidden)

• θ chord proportions for a song (hidden)

• α: parameter controls chord proportions

• β: key profiles

• c: chroma feature for certain time period

• A: V × V matrix

• Σ: covariance matrix

3.3.2 Generative Process

1. Draw θ ∼ Dirichlet(α)

2. For each harmony k ∈ {1, ...,K}

• Draw βk ∼ Dirichlet(η)

3. For each measure un (notes in nth measure) in song m

• Draw harmony zn ∼Multinomial(θ)

• Draw pitch in nth measure xn|zn ∼Multinomial(βk)

• Draw chroma vector cn ∼ N(Aun,Σ) to infer the hidden notes

Terms for single song:

p(θ|α) =
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

θαi−1
i (3.15)

p(β|η) =
Γ(
∑

i ηi)∏
i Γ(ηi)

K∏
i=1

θηi−1
i (3.16)

p(zn|θ) =
K∏
i=1

θ
zin
i (3.17)

p(xn|zn, β) =
K∏
i=1

V∏
j=1

β
(zinx

j
n)

ij (3.18)

p(cn|un, A) =
1√

(2π)p|Σ|
exp

{
−1

2
(cn −Aun)>σ−1(cn −Aun)

}
(3.19)
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Joint Distribution for the whole album:

p(θ, z,x, β, c|α, η,A) =
K∏
k=1

p(β|η)
M∏
m=1

p(θ|α)
( N∏
n=1

p(zn|θ)p(xn|zn, β)p(cn|xn, A)
)

(3.20)

Summary

The input of the song in audio music is not notes but chroma feature c ∈ R12. So
in audio music the notes are now latent variables and only the chroma vector gets
observed. The extra step in generative process is to have chroma vector cn drawn
from probability distribution with additional parameters A and Σ to learn (Eq.3.14).

3.3.3 Estimation

Again here we use Variational Bayes to approximate the intractable posterior. To
minimize the KL Divergence between the approximate posterior and the true proba-
bility (Eq.3.22), we need to maximize the lower bound L(γ, φ, λ, ω;α, η,A) (Eq.3.23).

lnp(c|α, η,A) = L(γ, φ, λ, ω;α, η,A) +D(q(β, θ, z,x|λ, φ, γ, ω)||p(β, θ, z,x|x, α, η, A))

(3.21)

(λ∗, φ∗, γ∗, ω∗) = argmin
λ,φ,γ

D(q(β, θ, z,x|λ, φ, γ, ω)||p(β, θ, z,x|x, α, η, A)) (3.22)

L(γ, φ, λ, ω;α, η,A) = Eq[lnp(θ|α)] + Eq[lnp(z|θ)] + Eq[lnp(β|η)]

+ Eq[lnp(c|x, A)] + Eq[lnp(x|z, β)]− Ez[lnq(θ|γ)]

− Eq[lnq(z|φ)]− Ez[lnq(β|λ)]− Ez[lnq(x|ω)] (3.23)

Notice here xn as binary vector indicating if certain pitch among the 12 pitches is
available in nth measure, we can get the variational term for xn:

p(xn|wn) =
V∏
j=1

wx
j
n
jn (1− wjn)1−xjn (3.24)
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Algorithm 2 Variational EM for Smoothed LDA in Audio Music

for t← 1 : T do
E-step
Fix model parameters α, η, A.
Initialize φ0

ni := 1
k , γ0

i := αi + N
k , λ0

ij := η, ω0
jn := z

for n← 1 : N do
for i← 1 : k do
φt+1
ni := exp(Ψ(γti ))

∏V
j=1 β

ωj
n

ij

end for
Normalize φt+1

n to sum to 1
end for
γt+1 := α+

∑N
n=1 φ

t+1
n

λj := η +
∑M

d=1

∑Nd
n=1 φ

t+1
dn ω

j
dn

wjn := cjnδa− 1
2a

2δ + z
M-step
Fix the variational parameters γ, φ, λ, ω
Maximize lower bound with respect to model parameters A, η, α
until converge

end for

3.4 Model Comparison

3.4.1 Text Mining vs. Music Mining

Text Mining:

α θ z w β η

N

M

K

p(θ, z,w|α, β, η) =

K∏
k=1

p(β|η)

M∏
m=1

p(θ|α)
( N∏
n=1

p(zn|θ)p(wn|zn, β)
)

Music Mining:

α θ z u β η

L

N

M

K
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p(θ, z,x|α, β, η) =
K∏
k=1

p(β|η)
M∏
m=1

p(θ|α)
( N∏
n=1

p(zn|θ)p(xn|zn, β)
)

where

• xn is a V×1 indicator vector for a series of notes from a certain pitch∈ {A,A],B, ..., G]}
among 12 in nth measure

• zn ∈ {A major, F minor,...,E[ major} is a scalar given 24 key-profiles where zin = 1 for
a specific i.

The difference between Text Mining and Music Mining (for sheet music) is that in
music model, we have one more plate on node "notes". We regard whole notes in
one measure as one "term", so we have L number of notes in one measure, which
can be regarded as the length of each "term". Due to the equal duration in music
measure, we have terms with the same number of notes in Music Mining.

3.4.2 Sheet Music vs. Audio Music

Sheet Music

α θ z u β η

L

N

M

K

p(θ, z,x|α, β, η) =
K∏
k=1

p(β|η)
M∏
m=1

p(θ|α)
( N∏
n=1

p(zn|θ)p(xn|zn, β)
)

Audio Music

θα z u β η

c

A,Σ

L

N

M

K
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p(θ, z,x, β, c|α, η,A) =
K∏
k=1

p(β|η)
M∏
m=1

p(θ|α)
( N∏
n=1

p(zn|θ)p(xn|zn, β)p(cn|un, A)
)

The observed notes in Sheet Music become hidden variables in Audio Music, so
there is one more step in Audio Music compared with Sheet Music. That is to draw
chroma vector from Gaussian distribution to infer the hidden notes.
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Chapter 4

Application

4.1 Improvisational Learning

Extensive studies have been conducted on both musical scores and audio tracks of
western classical music with the finality of learning and detecting the key in which
a particular piece of music was played. Both the Bayesian Approach and modern
unsupervised learning via latent Dirichlet allocation have been used for such learn-
ing tasks. In this research work, we venture out of the western classical genre and
embrace and explore jazz music. We consider the musical score sheets and audio
tracks of some of the giants of jazz like Duke Ellington, Miles Davis, John Coltrane,
Dizzie Gillespie, Wes Montgomery, Charlie Parker, Sonny Rollins, Louis Armstrong
(Instrumental), Bill Evans, Dave Brubeck, Thelonious Monk (Pianist). We specifi-
cally employ Bayesian techniques and modern topic modelling methods (and even
occasionally a combination of both) to explore tasks such as: automatic improvisa-
tion detection, genre identification, key learning (how many keys do the giants of
jazz tended to play in, and what are those keys) and even elements of the mood of
the piece.

4.1.1 Why Jazz

Classical Music is one of the music genres that have been heavily studied due to
its stability and complete notation system1, which leaves less room for composers to
improvise like other non-European music and popular music. Jazz as one of popular
music style originated from African-American in the late 19th century is usually
regarded as "America’s classical music". We select Jazz mainly based on its unique
traits listed below:

• Never the same, creative and innovative.

• Jazz is pretty improvisational and solo based.

• Jazz is flexible, though, still follow the music theory.

• Many variations in each chord, though not Jazz specifically.

We are intended to study both sheet music and audio music to track the improvi-
sational part of Jazz. For any given song, we would assume the printed form and
audio form to be consistent. Therefore any inconsistent part between the two forms
would be regarded as solo part.

1Western notation is created to indicate the pitches, tempo, metre and rhythms for a piece of music
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4.1.2 Data Preprocessing

There are two types of data format in our study: mxl file for sheet music, mid file for
audio music. Both data are collected from MuseScore2 containing music pieces from
Duke Ellington, Miles Davis, John Coltrane, Charlie Parker, Louis Armstrong, Bill
Evans, Thelonious Monk. These musicians were mainly active in Jazz music during
last century (1900 ∼ 1999).

Sheet Music

• Transfer mxl file to xml file

• Use xml files to extract notes in each measure

• Create matrices based on the extracted notes (Appendix A)

FIGURE 4.1: Transforming Notes from Music Sheets to Matrices

Based on the concept of duration (the length of time a pitch/ tone is sounded), and
in each measure the duration is fixed, we can create Measure-Note matrices. In
Measure-Note matrices, we use letter {C, D, E, F, G, A, B} to denote the notes from
"Do" to "Ti", "flat" and "sharp" to denote [ and ], and "O" to denote rest3.

Audio Music

Different from sheet music, which we created the data and developed the analysis
from scratch, the audio music in the format of midi data were generated based on
Toolbox in MATLAB (Toiviainen and Eerola, 2016). We use the Toolbox to visualize
the audio music and track the improvisational or solo part in wave form.

Take song Sarabande from J.S. Bach’s Partita in A minor for Solo Flute (BWV 1013) as
an example: Figure 4.2 shows the movement of the key over time. The key moves
from a minor to F major, further to b minor finally move back to a minor.

2MuseScore: https://musescore.org/en
3A rest is an interval of silence in a piece of music.
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FIGURE 4.2: Maximum key correlation coefficients across time of
song Sarabande

Figure 4.3 displays the dynamic tonality model with the dispersion of the key center
between the alternate local keys. The tonality movement is also consistent with the
key correlation plot in Figure 4.2. We can see the tonal center begins from a minor
and then moves to other regions such as F, d, a, b and finally moves back to a minor.

FIGURE 4.3: 16 beats of the tonality animation of song Sarabande
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4.2 Other Music Genres

As I mentioned in the very beginning of this thesis, the initial motivation triggers
me to do this topic is to answer the question Why music from diverse culture can bring
people so many different feelings? So purely focusing on Jazz would not sufficiently
help me to figure out the answer. Therefore I decide to add three different genres
of music and compare them with Jazz respectively. I select songs from China, Japan
and Arab due to their unique cultural characteristics.

Chinese Music

Chinese classical music reaches its peak around 224 to 262 A.D. It is based on the
pentatonic scale, with heptatonic scale occasionally appear as the expansion. From
Deva (1999), he mentioned that the exertion of timbre raises tone to a position of
great importance. For example, Chinese musicians use use of portamento and vi-
brato which give a feeling of weeping or complaint.

Japanese Music

The traditional Japanese folk songs use pentatonic scale based on Western musical
rules. In this pentatonic scale the subdominant and leading tone are ignored. This
would lead to a musical scale with no half steps between note. According to Deva
(1999), though Chinese music was exported to Japan, Japan did have a musical tradi-
tion before the advent of Chinese influences. The tradition existed in popular songs,
indigenous Shinto religion (based on ancestor and nature worship), ritual and chant
and possibly in court music and dances.

Arabic Music

Arabic music is originated from Cairo, Egypt, the center of Arab world. Morocco,
Saudi Arabia and Lebanon are also well-known areas generate many Arabic songs.
Maqam is the basis of Arabic songs. It appears like the mode, but actually not. It
can determine the tonic note, dominant note, and ending note. Unlike the tradition
of Western music, Arabic music contains microtones. Microtones are notes that lie
between notes in the Western chromatic scale. While notes in the chromatic scale are
separated by semitones, notes in Arabic music can be separated by quarter tones.

4.3 Input Data

As demonstrated in the previous Section 4.1 and Section 4.2, for Jazz part I mainly
studied work from 7 Jazz musicians (Duke Ellington, Miles Davis, John Coltrane,
Charlie Parker, Louis Armstrong, Bill Evans, Thelonious Monk), and for the com-
parison with other music genres we focus on Chinese, Japanese, and Arabic music.
So I create two different albums based on the Measure-Note matrices I generated in
previous Step 4.1.2. I use two different ways to demonstrate the album.
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4.3.1 Note-Based Representation

FIGURE 4.4: Music Key

Based on the 12 keys (5 black keys + 7 white keys) in the Figure 4.4, I make note-
based representation according to the pitch class in Table A.1: forsaking the order
of notes, we describe each measure in the song as a 12-dimension binary vector
X = [x1, x2, ...x12], where xi ∈ {0, 1} (Table 4.2, Appendix A.2)

TABLE 4.1: Pitch Class

Pitch Class Tonal Counterparts Solfege

1 C, B] do

2 C], D[

3 D re

4 D], E[

5 E, F[ mi

6 F , E] fa

7 F], G[

8 G sol

9 G], A[

10 A la

11 A], B[

12 B, C[ ti
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TABLE 4.2: Notes collection from 4 Music Genres

Document Pitch Class Genre

China 1 0 0 0 0 1 0 1 0 0 0 0 1 China

China 2 0 0 0 0 1 0 1 0 0 0 0 0 China

China 3 0 0 0 0 0 0 1 0 0 0 0 1 China
...

...
...

China 7 0 1 0 0 1 0 1 0 0 0 0 1 China

China 8 0 0 0 0 1 0 1 0 0 0 0 1 China
...

...
...

Japan 1 1 0 1 1 0 0 1 0 0 0 0 0 Japan

Japan 2 1 0 0 0 0 0 0 1 0 0 0 0 Japan
...

...
...

• Document: song names, tantamount to document in text mining

• Pitch Class: binary vector whose element indicates if certain note is on, tanta-
mount to word in text mining

• Genre: labeled contain Chinese songs, Japanese songs, Arabic songs, to com-
pare with Jazz songs later

• The dimension of this data frame is 1469× 3

Create the document term matrix (DTM) whose cells reflect the frequency of terms in
each document. The rows of the DTM represent documents and columns represent
term in the corpus. Ai,j contains the number of times term j appeared in document
i.
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TABLE 4.3: Document Term Matrix

Term

Document 000000000000 000000000100 000000010100 ...

Arab 5 15 6 20 ...

Arab 7 0 5 5 ...

China 6 1 12 0 ...

China 7 13 0 1 ...

Japan 4 8 4 1 ...

Japan 5 0 0 0 ...

USA 4 2 1 0 ...
...

...
...

...

4.3.2 Measure-Based Representation

TABLE 4.4: Notes collection from 7 musicians

Document Notes Musician

Charlie 1 B[ O O O O O O O Charlie

Charlie 1 B B[ A A[ G G G[ F Charlie

Charlie 1 E F G[ B[ G G A[ O Charlie
...

...
...

Charlie 7 E E E E G G C O Charlie

Charlie 8 F] O O O O O O O Charlie
...

...
...

Duke 1 C C C G G G G G Duke

Duke 1 F F F A[ A[ A[ B[ B[ Duke
...

...
...

• Document: song names, tantamount to document in text mining

• Notes: a series of notes in one measure, tantamount to word in text mining

• Musician: the composer, tantamount to the label for later analysis
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• The dimension of this data frame is 5149× 3

Create the document term matrix (DTM) whose cells reflect the frequency of terms in
each document. The rows of the DTM represent documents and columns represent
term in the corpus. Ai,j contains the number of times term j appeared in document
i. Dimension of DTM is 83 × 2960 with the last column as label: Duke, Miles, John,
Charlie, Louis, Bill, Monk.

TABLE 4.5: Document Term Matrix

Term

Document O O O O O O O O B D B B D D E E C A A] B D C A O ...

Miles 6 40 0 0 ...

Louis 2 32 0 0 ...

Sonny 3 26 0 0 ...

Miles 2 25 0 0 ...

Duke 4 0 9 0 ...

Sonny 4 14 0 0 ...

Charlie 9 0 0 8 ...
...

...
...

...

We can also talk a close look at the most frequent terms in the whole album: terms
appear more than 20 times:

TABLE 4.6: Most Frequent Terms

Term

O O O O O O O O

C C C C C C C C

A A A A O O O O

B[ B[ B[ B[ B[ B[ B[ B[

B B B B B B B B

D D D D D D D D

G G G G G G G G

A A A A A A A A
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4.4 Pattern Recognition

We take the topic proportion matrix as input and employ it on machine learning
techniques for classification. We conduct the supervised analysis via 5 models with
k-fold cross-validation:

• K Nearest Neighbors

• Multi-class Support Vector Machine

• Random Forest

• Neural Networks with PCA Analysis

• Penalized Discriminant Analysis

Algorithm 3 Supervised Analysis: 10-fold cross-validation with 3 times resampling

for i← 1 : 3 do
for j ← 1 : 10 do

Split dataset D = {zl, l = 1, 2, ..., n} into k chunks so that n = Km
Form subset Vj = {zl ∈ D : i ∈ [1 + (j − 1)×m, j ×m]}
Extract train set Tj := D\{Vj}
Build estimator ĝ(?)(·) using Tj
Compute predictions ĝ(j)(xl) for zk ∈ Vj
Calculate the error ε̂j = 1

m

∑
zl∈Vj l(yl, ĝ

(j)(xl))
end for
Compute CV(ĝ) = 1

K

∑K
j=1 ε̂j

Find ĝ(?)(·) = argmin
j=1:J

{CV(ĝ(·))}with lowest prediction error

end for

4.4.1 K-Nearest Neighbors

kNN predicts the class of song via finding the k most similar songs, where the simi-
larity is measured by Euclidean distance between two song vectors in this case. The
class (label) here is the 7 musicians: Duke, Miles, John, Charlie, Louis, Bill, Monk.

Algorithm 4 k-Nearest Neighbors

for i← 1 : n do
Choose the value of k for D = {(x1, Y1), ..., (xi, Yi), ..., (xn, Yn), Yi ∈ {1, ..., g}}
Let x? be a new point. Compute d?i = d(x?,xi)

end for
Rank all the distance d?i in order: d?(1) ≤ d

?
(2) ≤ ... ≤ d

?
(k) ≤ ... ≤ d

?
(n)

Form Vk(x?) = {xi : d(x?,xi) ≤ d?(k)}
Predict response Ŷ ?

kNN = Most frequent label in Vk(x?) = argmax
j∈{1,...,g}

{p(k)
j (x?)}

where p(k)
j (x?) = 1

k

∑
xi∈Vk(x?) I(Yi = j)
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4.4.2 Support Vector Machine

The task of Support Vector Machine (SVM) is to find the optimal hyperplane that sep-
arates the observations in such a way that the margin is as large as possible. That is to
say, the distance between the nearest sample patterns (support vectors) should be as
large as possible. SVM is originally designed as binary classifier, so in this case there
are more than two classes, we use multi-class SVM. Specifically, we transform sin-
gle multi-class task into multiple binary classification task. We train K binary SVMs
and maximize the margins from each class to the remaining ones. We choose linear
kernel (Eq.4.1) due to its excellent performance on high dimensional data that are
very sparse in text mining.

K(xi,xj) =< xi,xj >= x>i xj (4.1)

Algorithm 5 Multi-class Support Vector Machine

for k ← 1 : K do
Given D = {(x1, Y1k), ..., (xi, Yik), ..., (xn, Ynk), Yik ∈ {+1,−1}}
Find function h(x) = w>x + b that achieves

max
w,b

[
min
yik=+1

(
|w>xi+b|
||w||

)
+ min
yik=−1

(
|w>xi+b|
||w||

)]
= max

w,b

2
||w|| = min

w,b

1
2 ||w||

2

subject to Yik(w>xi + b) ≥ 1,∀i = 1, 2, ..., n
end for
Get argmax

k=1,...,K
fk(x) = argmax

k=1,...,K
(w>k x + bk)

4.4.3 Random Forest

Random Forest (RF) as an ensemble learning method that optimal the performance
of single tree. Compared with tree bagging, the only difference in random forest is
that then select each tree candidate with random subset of features, called "feature
bagging", for correction of overfitting issue of trees. If some features weigh more
strongly than other features, these features will be selected in many ofB trees among
the whole forest.

Algorithm 6 Random Forest

for b← 1 : B do
Draw with replacement from D a sample D(b) = {z(b)

1 , ..., z
(b)
n }

Draw subset {i(b)1 , ..., i
(b)
d } of d variables without replacement from {1, 2, ..., p}

Prune unselected variables from the sample D(b) to ensure D(b)
sub is d dimension

Build tree (base learner) ĝ(b) based on D(b)
sub

end for
Output the result based on the mode of classes ĝRF (x) = argmax

j∈{1,...,B}
{p(b)
j (x)}

where p(k)
j (x?) = 1

B

∑
I(ĝ(b)(x) = j)

4.4.4 Neural Network with PCA Analysis

Principal Components Analysis (PCA) as one of the most common dimension re-
duction methods can help improve the result of classification. Neural Network with
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Principal Component Analysis method proposed by Ripley (2007) is to run princi-
pal component analysis on the data first and then use the component in the neural
network model. Each predictor has more than one values as the variance of each
predictor is used in PCA analysis, and the predictor only has one value would be re-
moved before the analysis. New data for prediction are also transformed with PCA
analysis before feed to the networks.

Algorithm 7 Neural Network with PCA Analysis

Given data D = {x1, ...,xn},xi ∈ Rm, finding Σ̂ as estimates
for i← 1 : p do

Obtain eigenvalues λ̂i and eigenvectors êi from Σ̂
Obtain principal components yi = ê>j X

end for
Get p-dimensional input vector y = (y1, y2, ..., yp)

> after PCA analysis
for j ← 1 : q do

Compute linear combination hj(y) = β0j + β>j y for each node in hidden layer
Pass hj(y) through nonlinear activation function zj = ψ(β0j +

∑p
l=1 βljyl)

end for
Combine zj with coefficients to get η(y) = γ0 +

∑q
j=1 γjψ(β0j +

∑p
l=1 βljyl)

Pass η(y) with another activation function to output layer µk(y) = φk(η(y))

4.4.5 Penalized Discriminant Analysis

Linear Discriminant Analysis (LDA) is common tool for classification and dimen-
sion reduction. However, LDA can be too flexible in the choice of β with highly
correlated predictor variables. Hastie, Buja, and Tibshirani (1995) came up with Pe-
nalized Discriminant Analysis (PDA) to avoid the overfitting performance resulting
from LDA. Basically a penalty term is added to the covariance matrix Σ′W = ΣW +Ω.

Algorithm 8 Penalized Discriminant Analysis

for i← 1 : n do
Given data D = {(x1, Y1), ..., (xn, Yn)},xi ∈ Rq
Compute within-class covariance matrix Σ̂w =

∑n
i=1(xi − µyi)(xi − µyi)> + Ω

Compute between-class covariance matrix Σ̂b =
∑m

j=1 nj(xj − µyj )(xj − µyj )>
end for
Maximize the ratio of two matrices: ŵ = argmax

w

w>Σ̂bw

w>Σ̂ww
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4.4.6 Model Evaluation

Note-Based Model

FIGURE 4.5: Pattern Recognition on Jazz and Chinese Music

FIGURE 4.6: Pattern Recognition on Jazz and Japanese Music

FIGURE 4.7: Pattern Recognition on Jazz and Arabic Music

Measure-Based Model
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TABLE 4.7: Confusion Matrix: K Nearest Neighbors

Reference

Prediction Charlie Duke John Louis Miles Monk Sonny

Charlie 7 1 6 0 2 3 1

Duke 0 0 0 0 0 0 0

John 0 0 4 0 0 0 1

Louis 0 0 3 6 2 0 1

Miles 0 10 7 8 5 7 1

Monk 0 0 0 0 0 0 0

Sonny 0 1 0 1 0 0 2

TABLE 4.8: Confusion Matrix: Support Vector Machine

Reference

Prediction Charlie Duke John Louis Miles Monk Sonny

Charlie 11 0 0 0 0 0 0

Duke 0 12 0 0 0 0 0

John 0 0 20 0 0 0 0

Louis 0 0 0 15 0 0 0

Miles 0 0 0 0 9 1 0

Monk 0 0 0 0 0 9 0

Sonny 0 0 0 0 0 0 6
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TABLE 4.9: Confusion Matrix: Random Forest

Reference

Prediction Charlie Duke John Louis Miles Monk Sonny

Charlie 11 0 0 0 0 0 0

Duke 0 12 0 0 0 0 0

John 0 0 20 0 0 0 0

Louis 0 0 0 15 0 0 0

Miles 0 0 0 0 8 0 0

Monk 0 0 0 0 1 10 0

Sonny 0 0 0 0 0 0 6

TABLE 4.10: Confusion Matrix: Neural Networks

Reference

Prediction Charlie Duke John Louis Miles Monk Sonny

Charlie 11 0 0 0 0 0 1

Duke 0 12 0 0 0 1 1

John 0 0 20 0 0 0 0

Louis 0 0 0 15 0 0 1

Miles 0 0 0 0 9 1 0

Monk 0 0 0 0 0 9 0

Sonny 0 0 0 0 0 0 3
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TABLE 4.11: Confusion Matrix: Penalized Discriminant Analysis

Reference

Prediction Charlie Duke John Louis Miles Monk Sonny

Charlie 11 0 0 0 0 0 0

Duke 0 12 0 0 0 0 0

John 0 0 20 0 0 0 0

Louis 0 0 0 15 0 0 0

Miles 0 0 0 0 9 1 0

Monk 0 0 0 0 0 9 0

Sonny 0 0 0 0 0 0 6

TABLE 4.12: Model Accuracy Comparison

Model Accuracy

K Nearest Neighbors 28.92%

Support Vector Machine 98.80%

Random Forest 98.80%

Neural Network 95.18%

Discriminant Analysis 97.78%

FIGURE 4.8: Pattern Recognition on Different Jazz Musicians
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4.4.7 Comments and Conclusion

For note-based model we can see that the five supervised machine learning tech-
niques could all classify different music genre with error rate no more than 35%. In
addition, the performance of random forest, k nearest neighbors, and neural net-
works with PCA analysis are much better than the other two methods. Among the
three comparisons (Jazz vs. Chinese music, Jazz vs. Japanese music, Jazz vs. Arabic
music), the comparison of Jazz vs. Chinese would give better result than the other
two, with random forest reaching lower than 0.1 error rate. For recognition between
Jazz and Chinese songs, random forest is the best one with lowest error rate and
variance. For recognition between Jazz and Japanese songs, k nearest neighbors,
neural network and random forest have comparatively low error rate, but k near-
est neighbors’ performance has smaller variance. For comparison between Jazz and
Arabic songs, neural network and random forest have comparatively low error rate,
while they all have large variance.

For measure-based model, we can see that from the confusion matrix of training set,
the model accuracy rate is very high for all techniques expect k nearest neighbors.
However, but for the test set all the model fails to provide very good result with
lowest error rate as 0.4 from random forest. It is obvious that this scenario has the
challenging of overfitting issue. Further investigation is necessary if we want to use
this representation.

4.5 Latent Dirichlet Allocation Model

4.5.1 Perplexity

In topic modeling, the number of topics is crucial for the to achieve its optimal per-
formance. Perplexity is one way to measure how well is predictive ability of a prob-
ability model. Having the optimal topic number is always helpful in the sense to
reach the best result with minimum computational time. Perplexity of a corpus D of
M documents is computed as below Equation (4.2).

P (D) = exp

(
−
∑M−1

d=0 log p(wd;λ)∑M−1
d=0 Nd

)
(4.2)

Apart from the above common way, there are many other methods to find the opti-
mal topics. The existing ldatuning package stores 4 methods to calculate all met-
rics for selecting the perfect number of topics for LDA model all at once.
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TABLE 4.13: Perplexity of Different Matrices

Topics Number Griffiths2004 CaoJuan2009 Arun2010 Deveaud2014

2 -7454.086 0.11290217 13.856421 1.8604276

4 -6821.928 0.07120480 8.508257 1.7877936

6 -6516.431 0.06146701 5.613616 1.7126743

8 -6322.309 0.05740186 3.728195 1.6422201

10 -6184.650 0.05336498 2.404497 1.5998098

16 -6112.754 0.06507096 1.328469 1.3594688

20 -6101.264 0.07099931 1.512142 1.2242214

26 -6129.508 0.09352393 1.856783 1.0760613

30 -6121.120 0.10582645 2.545512 0.9585189

36 -6177.121 0.12330036 4.078891 0.8530592

40 -6183.168 0.14128330 5.226102 0.7767756

46 -6224.206 0.15072742 5.372056 0.7119278

50 -6253.992 0.16448002 6.637710 0.6719547

60 -6352.595 0.20606817 7.769699 0.5844223

72 -6325.653 0.25947947 9.892807 0.4742397

80 -6393.940 0.26968788 10.187645 0.4463054

Table 4.13 shows 4 different evaluating matrices. The extrema in each scenario illus-
trates the optimal number of topics.

• minimum

– Arun2010 (Arun et al., 2010)

– CaoJuan2009 (Cao et al., 2009)

• Maximum

– Deveaud2014 (Deveaud, SanJuan, and Bellot, 2014)

– Griffiths2004 (Griffiths and Steyvers, 2004)
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FIGURE 4.9: Evaluating LDA Models

From perplexity we can come to the conclusion that the optimal number of topics is
around 8∼12. In this scenario Metric Deveaud2014 is not as informative as the other
three.

4.5.2 Discussion

Figure 4.10 shows the top 10 tokens in the topics from two scenarios.

For Measure-Based Scenario, we can see some topics purely natural keys:
e.g. Topic 1: [E,O,O,O,O,O,O,O] , Topic 5: [B,D,B,B,D,D,E,E].
While some topics are very complicated with many sharps and flats in the notes:
e.g. Topic 3: [B[,A, F,A[,B[,B[,O,O], Topic 6: [F,G, F,E,E[,B[, C],D].

For Note-Based Scenario, each token is a 12-dimension vector indicating which of
the pitch are "on" in certain measure. Some of the topics contains many active notes:
e.g. In Topic 2, some tokens have at most 7 active pitches.
While some topics are very silent with only few active notes:
e.g. In Topic 4 most pitches are mute, tokens have at most 3 active pitches.
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FIGURE 4.10: Top 10 Tokens in Selected Topic in Two Scenarios

Figure 4.11 shows the per-topic per-word probability of Measure-Based Scenario.
We can see some topics appear very complicated with most of terms with flat or
sharp notes (Topic 3, Topic 4). Some topics are very simple (Topic 8). Some topics
contain too many terms with the same probability (Topic 2, Topic 4).

FIGURE 4.11: Topic Terms Distribution from Measure-Based Scenario
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Figure 4.12 shows the per-topic per-word probability of Note-Based Scenario. Topic
4 and Topic 2 have certain distinctive terms while terms in Topic 9 have fairly similar
probability. Further investigation involved musician is needed to better interpret the
result.

FIGURE 4.12: Topic Terms Distribution from Note-Based Scenario

Lastly I draw chord diagram to see some potential relationship between topics learned
from topic models and the targeted subjects.
In Figure 4.13, we can see:

• American songs (Jazz music in this case) are particularly dominant in Topic 9,
which has most probable term [1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1]. It can also be inter-

preted as pitch class set: {C,E,G,A,B},

• Arabic songs contribute mostly to Topic 3, which has various terms equally
distributed (see Figure 4.12).

• Most of Chinese songs attributes to Topic 4 and Topic 5 which contain most
probable G major or E minor scale {E,F],B}

• Japanese songs seem to have similar contribution to every topic.

In Figure 4.14, we can see:

• Musician John Coltrane, Sonny Rollins and Louis Armstrong has some certain
preference towards certain topics.

• Other musicians do not show clear bias to a specific topic.
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FIGURE 4.13: Chord Diagram for Music Genres

FIGURE 4.14: Chord Diagram for Jazz Music
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Chapter 5

Conclusion

5.1 Summary

In this thesis I create two different representations in Chapter 4.3 for symbolic music
and transform the music notes in music sheet into matrices for statistical analysis
and data mining. Specifically, each song can be regarded as a text body consisting
of different musical words. One way to represent these musical words is to seg-
ment the song into several parts based on the duration of each measure. Then the
words in each song turn out to be a series of notes in one measure. Another way
to represent music words is to restructure the notes in each segment based on the
fixed 12-dimension pitch class. Both representations have been employed in pat-
tern recognition and topic modeling techniques respectively, to detect music genres
based on the collected songs, and figure out the potential connections between mu-
sicians and latent topics.

The predictive performance in pattern recognition for note-based representation turns
out to be very good with 88% accuracy rate in the optimal scenario. In Chapter 4.5.2
I explore several aspects among music genres and musicians to see the hidden asso-
ciations between different elements. Some genres contain very strong characteristics
which make them very easy to detect. Jazz musicians John Coltrane, Sonny Rollins
and Louis Armstrong show their particular preference towards certain topics. All
these features are employed in the model to help better understand the world of
music.

Furthermore, various model comparisons have been demonstrated in Chapter 3.
I’ve compared latent Dirichlet allocation models between text mining and music
mining. Within music field, compared symbolic music topic model and audio music
topic model. In Chapter 2, I also include several relevant projects I’ve done during
this two-year graduation training and compare LSA model with pLSA model, gen-
eral LDA model with supervised LDA model, digit recognition with speech recog-
nition in application.

5.2 Future Work

Music mining is a giant research field, and what I’ve done is merely a tip of the ice-
berg. Look back to the initial motivation that triggers me to embark on this research
work: Why does music from diverse culture have so powerful inherent capacity to bring
people so many different feelings and emotions? I have to say, to ultimately find out how
to replace human intelligence with statistical algorithms for melody interpretation
is still remain to be discovered.
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Several potential studies I would love to continue exploring in the foreseeable future:

• Facilitate audio music and symbolic music transformation via machine learn-
ing technique.

• Deepen the understanding of musical lexicon and grammatical structure and
create the dictionary in a mathematical way.

• How to derive representations for smooth recognition of Jazz by statistical
learning methods?

• Apart from notes, can we embed other inherent musical structure such as ca-
dence, tempo to better interpret the musical words?

• Explore the improvisation key learning (how many keys do the giants of jazz
tended to play in, and what are those keys).

• Musical harmonies and its connection with elements of mood.
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Appendix A

Selected Code

A.1 R Code for Extracting Notes from Music Sheet

Song Hot House from Charlie Parker and Dizzie Gillespie in mxl format:

FIGURE A.1: Piano Sheet for song Hot House

Transfer mxl file to xml file (partial code only for the second measure ):
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<measure number="1" width="252.10">
<harmony print-frame="no">

<root>
<root-step>G</root-step>
</root>

<kind text="m7b5">half-diminished</kind>
</harmony>

<note default-x="12.00" default-y="-20.00">
<pitch>

<step>B</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>

<duration>6</duration>
<tie type="stop"/>
<voice>1</voice>
<type>eighth</type>
<stem>down</stem>
<beam number="1">begin</beam>
<notations>

<tied type="stop"/>
</notations>

</note>
<note default-x="41.81" default-y="-20.00">

<pitch>
<step>B</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
<type>eighth</type>
<accidental>flat</accidental>
<stem>down</stem>
<beam number="1">end</beam>
</note>

<note default-x="71.63" default-y="-25.00">
<pitch>

<step>A</step>
<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
<type>eighth</type>
<stem>up</stem>
<beam number="1">begin</beam>
</note>

<note default-x="101.44" default-y="-25.00">
<pitch>

<step>A</step>
<alter>-1</alter>
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<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
<type>eighth</type>
<accidental>flat</accidental>
<stem>up</stem>
<beam number="1">end</beam>
</note>

<note default-x="131.25" default-y="-30.00">
<pitch>

<step>G</step>
<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
<type>eighth</type>
<stem>up</stem>
<beam number="1">begin</beam>
</note>

<note default-x="161.06" default-y="-30.00">
<pitch>

<step>G</step>
<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
<type>eighth</type>
<stem>up</stem>
<beam number="1">end</beam>
</note>

<note default-x="190.88" default-y="-30.00">
<pitch>

<step>G</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
<type>eighth</type>
<accidental>flat</accidental>
<stem>up</stem>
<beam number="1">begin</beam>
</note>

<note default-x="220.69" default-y="-35.00">
<pitch>

<step>F</step>
<octave>4</octave>
</pitch>

<duration>6</duration>
<voice>1</voice>
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<type>eighth</type>
<stem>up</stem>
<beam number="1">end</beam>
</note>

</measure>
<measure number="2" width="243.00">

R code for creating Measure-Note matrix based on the extracted notes:

library(stringr)
library(XML)
source(’MusicFunction.R’)

doc <- xmlParse(file = "example.xml")
xml_data <- xmlToList(doc)
part <- xml_data[["part"]]
measure <- part[names(part) == "measure"]
## key signatures finding
attr <- measure[[1]][names(measure[[1]]) == "attributes"]
key <- attr$attributes$key$fifths
## store notes per measure every iteration ##
mat <- list()
for (i in 1: length(measure)) {

note <- measure[[i]][names(measure[[i]]) == "note"]
not <- list() ## list of notes per measure ##
for (j in 1:length(note)) {

step <- note[[j]][["pitch"]][["step"]]
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dura <- as.numeric(note[[j]][["duration"]])
if( length(dura)==0 ){next}
acc <- note[[j]][["accidental"]]
not[[j]] <- rep(paste(step,acc, sep = ’ ’ ), dura)

print(dura)
}
mat <- append(mat,list(unlist(not)))

}
mat <- lapply(mat, ’length<-’ , max(lengths(mat)))
## create measure-note matrix ##
mat <- matrix(unlist(mat), nrow = length(measure), byrow = T)
## replace rest part NA to "O"
mat[is.na(mat)] <- "O"
## Use Key Signature Function to get the complete version
mat <- trans(key,mat)
mat <- matrix(str_replace_all(mat,"natural",""), nrow = length(measure))
write.csv(file = ’~/exampl e.csv’, x = mat)

A.2 Specific R Function

Key Signature Function

trans <- function(key, n){ # Key Signature Function
#############
### Flats ###
#############
## F major/D minor ##
n[n=="B "] = ifelse(key == "-1", "B flat", "B ")
## B-flat major/G minor ##
n[n=="B "] = ifelse(key == "-2", "B flat", "B ")
n[n=="E "] = ifelse(key == "-2", "E flat", "E ")
## E-flat major/C minor ##
n[n=="B "] = ifelse(key == "-3", "B flat", "B ")
n[n=="E "] = ifelse(key == "-3", "E flat", "E ")
n[n=="A "] = ifelse(key == "-3", "A flat", "A ")
## A-flat major/F minor ##
n[n=="B "] = ifelse(key == "-4", "B flat", "B ")
n[n=="E "] = ifelse(key == "-4", "E flat", "E ")
n[n=="A "] = ifelse(key == "-4", "A flat", "A ")
n[n=="D "] = ifelse(key == "-4", "D flat", "D ")
## D-flat major/B-flat minor ##
n[n=="B "] = ifelse(key == "-5", "B flat", "B ")
n[n=="E "] = ifelse(key == "-5", "E flat", "E ")
n[n=="A "] = ifelse(key == "-5", "A flat", "A ")
n[n=="D "] = ifelse(key == "-5", "D flat", "D ")
n[n=="G "] = ifelse(key == "-5", "G flat", "G ")
## G-flat major/E-flat minor ##
n[n=="B "] = ifelse(key == "-6", "B flat", "B ")
n[n=="E "] = ifelse(key == "-6", "E flat", "E ")
n[n=="A "] = ifelse(key == "-6", "A flat", "A ")
n[n=="D "] = ifelse(key == "-6", "D flat", "D ")
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n[n=="G "] = ifelse(key == "-6", "G flat", "G ")
n[n=="C "] = ifelse(key == "-6", "C flat", "C ")
## C-flat major/A-flat minor ##
n[n=="B "] = ifelse(key == "-7", "B flat", "B ")
n[n=="E "] = ifelse(key == "-7", "E flat", "E ")
n[n=="A "] = ifelse(key == "-7", "A flat", "A ")
n[n=="D "] = ifelse(key == "-7", "D flat", "D ")
n[n=="G "] = ifelse(key == "-7", "G flat", "G ")
n[n=="C "] = ifelse(key == "-7", "C flat", "C ")
n[n=="F "] = ifelse(key == "-7", "F flat", "F ")
##############
### Sharps ###
##############
## G major/E minor ##
n[n=="F "] = ifelse(key == "1", "F flat", "F ")
## D major/B minor ##
n[n=="F "] = ifelse(key == "2", "F flat", "F ")
n[n=="C "] = ifelse(key == "2", "C flat", "C ")
## A major/F-sharp minor ##
n[n=="F "] = ifelse(key == "3", "F flat", "F ")
n[n=="C "] = ifelse(key == "3", "C flat", "C ")
n[n=="G "] = ifelse(key == "3", "G flat", "G ")
## E major/C-sharp minor ##
n[n=="F "] = ifelse(key == "4", "F flat", "F ")
n[n=="C "] = ifelse(key == "4", "C flat", "C ")
n[n=="G "] = ifelse(key == "4", "G flat", "G ")
n[n=="D "] = ifelse(key == "4", "D flat", "D ")
## B major/G-sharp minor ##
n[n=="F "] = ifelse(key == "5", "F flat", "F ")
n[n=="C "] = ifelse(key == "5", "C flat", "C ")
n[n=="G "] = ifelse(key == "5", "G flat", "G ")
n[n=="D "] = ifelse(key == "5", "D flat", "D ")
n[n=="A "] = ifelse(key == "5", "A flat", "A ")
## F-sharp major/D-sharp minor ##
n[n=="F "] = ifelse(key == "6", "F flat", "F ")
n[n=="C "] = ifelse(key == "6", "C flat", "C ")
n[n=="G "] = ifelse(key == "6", "G flat", "G ")
n[n=="D "] = ifelse(key == "6", "D flat", "D ")
n[n=="A "] = ifelse(key == "6", "A flat", "A ")
n[n=="E "] = ifelse(key == "6", "E flat", "E ")
## C-sharp major/A-sharp minor ##
n[n=="F "] = ifelse(key == "7", "F flat", "F ")
n[n=="C "] = ifelse(key == "7", "C flat", "C ")
n[n=="G "] = ifelse(key == "7", "G flat", "G ")
n[n=="D "] = ifelse(key == "7", "D flat", "D ")
n[n=="A "] = ifelse(key == "7", "A flat", "A ")
n[n=="E "] = ifelse(key == "7", "E flat", "E ")
n[n=="B "] = ifelse(key == "7", "B flat", "B ")
return(n)

}
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Further explanation for Key-Signature Function above:

Because key-signature in music piece reflects in the xml file looking like this,

<key>
<fifths>-1</fifths>

</key>

in the form of number. And then I came to know that in music there is an amazing
circle called "Circle of Fifth" that can relate the number <fifths>-1</fifths>
with the key I want. Based on this circle I wrote a function to transfer the number
into flat/shape and then got the complete version of the Measure-Note Matrix.

FIGURE A.2: Circle of Fifth

Key Index Function

ind <- function(x){
ind = ifelse(x == "C ", 1,

ifelse(x == "B sharp", 1,
ifelse(x == "C sharp", 2,
ifelse(x == "D flat", 2,
ifelse(x == "D ", 3,
ifelse(x == "E flat", 4,
ifelse(x == "D sharp", 4,
ifelse(x == "E ", 5,
ifelse(x == "F flat", 5,
ifelse(x == "F ", 6,
ifelse(x == "E sharp", 6,
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ifelse(x == "F sharp", 7,
ifelse(x == "G flat", 7,
ifelse(x == "G ", 8,
ifelse(x == "A flat", 9,
ifelse(x == "G sharp", 9,
ifelse(x == "A ", 10,
ifelse(x == "B flat", 11,
ifelse(x == "A sharp", 11,
ifelse(x == "B ", 12,
ifelse(x == "C flat", 12, 0)))))))))))))))))))))

return(ind)
}

TABLE A.1: Pitch Class

Pitch Class Tonal Counterparts Solfege

1 C, B] do

2 C], D[

3 D re

4 D], E[

5 E, F[ mi

6 F , E] fa

7 F], G[

8 G sol

9 G], A[

10 A la

11 A], B[

12 B, C[ ti
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A.3 MATLAB Code for Tonality Animation

FIGURE A.3: Melodic contour of song Sarabande

Figure A.3 depicts two melodic contours with different degrees of resolution. The
larger the resolution, the more coarse the contour.

%% Reference %%
Toiviainen, P., & Eerola, T. (2016). MIDI Toolbox 1.1.
URL: https://github.com/miditoolbox/1.1

nmat = readmidi(’Sarabande.mid’);
prelude = onsetwindow(nmat, 0, 32, ’beat’);
keysomanim(prelude,1,2,’beat’,’strip’);

plotmelcontour(prelude,0.25,’abs’,’:r.’); hold on
plotmelcontour(prelude,1,’abs’,’-bo’); hold off
legend([’resolution in beats=.25’;
’resolution in beats=1.0’]);
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Appendix B

Theorem

B.1 Inequalities

Theorem B.1.1. X ∈ R, let f(x) and g(x) be monotone nondecreasing functions. Then

E{f(X)g(X)} ≥ E{f(X)}E{g(X)}

If f(x) is monotone increasing and g(x) is monotone decreasing, then

E{f(X)g(X)} ≤ E{f(X)}E{g(X)}

Proof. For the first inequality:

E{f(X)g(X)} − E{f(X)}E{g(X)}

=

∫
f(x)g(x)µ(dx)−

∫
f(y)µ(dy)

∫
g(x)µ(dx)

=

∫ (∫
[f(x)− f(y)]g(x)µ(dx)

)
µ(dy)

=

∫ (∫
h(x, y)g(x)µ(dx)

)
µ(dy) (where h(x, y) = f(x)− f(y))

=

∫
R2

h(x, y)g(x)µ2(dxdy) (from Fubini’s theorem)

=

∫
x>y

h(x, y)g(x)µ2(dxdy) +

∫
x<y

h(x, y)g(x)µ2(dxdy)

=

∫
x>y

h(x, y)g(x)µ2(dxdy) +

∫
x

(∫
y>x

h(x, y)g(x)µ(dy)

)
µ(dx)

=

∫
x>y

h(x, y)g(x)µ2(dxdy) +

∫
y

(∫
x>y

h(y, x)g(y)µ(dx)

)
µ(dy)

=

∫
y

(∫
x>y

[h(x, y)g(x) + h(y, x)g(y)]µ(dx)

)
µ(dy)

=

∫
y

(∫
x>y

h(x, y)[g(x)− g(y)]µ(dx)

)
µ(dy) ( h(x, y) ≥ 0 and g(x)− g(y) ≥ 0 )

≥ 0



Appendix B. Theorem 61

For the second inequality:

E{f(X)g(X)} − E{f(X)}E{g(X)}

=

∫
f(x)g(x)µ(dx)−

∫
f(y)µ(dy)

∫
g(x)µ(dx)

=

∫ (∫
[f(x)− f(y)]g(x)µ(dx)

)
µ(dy)

=

∫ (∫
h(x, y)g(x)µ(dx)

)
µ(dy) (where h(x, y) = f(x)− f(y))

=

∫
R2

h(x, y)g(x)µ2(dxdy) (from Fubini’s theorem)

=

∫
x>y

h(x, y)g(x)µ2(dxdy) +

∫
x<y

h(x, y)g(x)µ2(dxdy)

=

∫
x>y

h(x, y)g(x)µ2(dxdy) +

∫
x

(∫
y>x

h(x, y)g(x)µ(dy)

)
µ(dx)

=

∫
x>y

h(x, y)g(x)µ2(dxdy) +

∫
y

(∫
x>y

h(y, x)g(y)µ(dx)

)
µ(dy)

=

∫
y

(∫
x>y

[h(x, y)g(x) + h(y, x)g(y)]µ(dx)

)
µ(dy)

=

∫
y

(∫
x>y

h(x, y)[g(x)− g(y)]µ(dx)

)
µ(dy) ( h(x, y) ≥ 0 and g(x)− g(y) ≤ 0 )

≤ 0
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