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Abstract
Knowing the impact of bad programming practices or code smells has led researchers to

conduct numerous studies in software maintenance. Most of the studies have defined code

smells as bad practices that may affect the quality of the software. However, most of the

existing research is heavily focused on detecting traditional code smells and less focused

on mobile application specific Android code smells. Presently, there is a few papers that

focus on android code smells - a catalog for Android code smells. This catalog defines 30

Android specific code smell that may impact maintainability of an app. In this research, we

plan to introduce a detector tool called BadDroidDetector for Android code smells that can

detect 13 code smells from the catalog. We will also conduct an empirical study to know

the distribution of 13 smell that we detect and know the severity of these smells.
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Chapter 1

Introduction

Code smells [8] identify as bad design or coding practices. Code smells are not the same as

bugs and do not mean that the code deviates from the expected execution, rather than design

rules were violated, which may lead to long-term maintainability problems and technical

debt. On other researchers, Code smell defined as poor or bad practices that impact the

software maintainability negatively.

As of recent times, the popularity of mobile applications has seen an increase, which

means developers see an increase in market share. While there a huge number of applica-

tions, some of the developers try to write code as fast as they can without consideration of

the code quality, especially code smells; this results in issues with the maintainability of

the system.

According to [19], around 32 of the developers are not aware of code smells and their

pitfalls. As Ahmed et al.[15] claimed that there is a gap between the code smells that

receive a lot of attention in the research and those that appear n real-world applications,

we will try to build tool to capture the missing code smell which will simulate the real-life

code smell.

After analyzing the papers that have conducted a study on Android code smell, we

found that few researchers are focusing on mobile applications. In this context, we found

[11] proposed a set of android code smell specific for Android. These Android-specific

smells may threat several non-functional attributes of mobile apps, such as data integrity,

and source code quality. As highlighted by Hetch et al. [9], these type of smells can also

lead to performance issues. Due to the limited resource of mobile devices including the
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CPU and memory, it is essential to have a such a way to detect the code smells that may

affect the effectiveness and usability of using mobile applications. [11] has proposed a list

of the code smells that are associated with the problem.

Studying the available tool that detects the Android code smell, we found two tools

can identify a limited number of Android code smells. The first tool is aDoctor was built

by [16] to detect a limited number of code smells proposed by [11]. The tool utilizes the

Abstract Syntax Tree of the source code and applies detection rules based on the definitions

of the smells provided by Reimann et al. [11]. The second tool is Paprika [10] that can

detect software anti-patterns and also four specific code smell for android. In other words,

the tool can detect OO code smell, and even 4 type of android code smells which are

Member Ignoring Method (MIM), Leaking Inner Class (LIC), UI Overdraw (UIO) and

Heavy Broadcast Receiver (HBR).

Due to the limitation of tools to detect all android code smells defined by Reimann et

al. [11] and high growth of developing an Android application which developer build the

application on a limited resource ( the CPU and memory). It is important to build apps

have fewer quality issues since there is a list of Android code smell that should be avoided.

In 2013, Google Play store contained almost 2 millions of Android apps in the market of

which 11% are classified as low-quality apps. Due to the aforementioned reason, we aim to

extend the aDoctor tool to detect 13 code smells, defined by Reimann et al. [11]. In other

words, we will introduce a new code smell detector called BadDroidDetector that identifies

13 Android-specific code smells which that have not been in prior detector tools. The tool

will use the Reimann code smell rules to apply them in the detection strategy. Also, we will

perform a large-scale empirical study to understand code smell distribution on open source

Android projects.

Our research contribution provides the community with an open source tool to either to

build upon or to use in existing projects. We also perform an empirical study to understand

android code smells. Since the existing empirical studies use a small project to perform

their study, we aim to conduct our empirical study on a large-scale dataset. This research
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provides insight of the smells impact and better understanding of smells to be avoided.
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Chapter 2

Related Work

Research into Android related source code best practices has taken many forms, with re-

searchers either studying the occurrence and impact of traditional code smells in Android

apps or defining smells that are specific to the Android environment and the development of

tools to detect specific smell types. Android code smells are bad implementation practices

within Android applications that may lead to poor software quality [3]. The tool is pro-

posed called HOT-PEPPER to automatically correct code smells and evaluate their impact

on energy consumption. The tool is limited to refactoring specific code smell Internal Get-

ter/Setter, Member Ignoring Method, and HashMap Usage. Refactoring these code smells

effectively and significantly reduces the energy consumption of Applications.

aDoctor, a tool with the ability to detect 15 Android specific code smells was developed

by Palomba et al. [16]. With an average precision and recall of 98%, the tool detects

smells across multiple categories such as Energy Efficiency, and Energy Efficiency. Colton

et al. [5] provided the community with a tool, P-Lint, that, evaluates the source code

of an app for occurrences of 16 bad permission-related coding practices (i.e., permission

smells). Another static analysis tool, M-Perm, developed by Chester et al. [4] compares

permissions listed in the AndroidManifest.xml against the permissions used in the source

code for occurrences of permission misuse (i.e., dangerous permissions, under privileges

and over privileges) in the app. CheckDroid, developed by Yovine and Winniczuk [20],

provides developers with the ability to identify a range of bad practices implemented in

an app by reverse engineering the app and performing a taint-based analysis. Peruma [18]

performed an empirical study on the occurrence and severity of test smells in open source
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Android applications.

In addition to custom-built tools, most IDE’s provide in-built support for developers to

detect common code quality issues. Integrated into Android Studio is a lint tool1 to aid

developers in the identification and correction of poor coding practices. The tool detects

code issues across four categories with the ability for developers to integrate it into the build

process. Other popular tools utilized by developers in detecting code quality include (but

not limited to) Checkstyle2, PMD3, FindBugs4, and JDeodorant5. These tools are utilized

primarily for the detection of violations of general Java programming guidelines/standards.

Habchi el al. [7] investigated the presence of smells in iOS apps (Objective-C and

Swift). The authors utilized a combination of object-oriented and iOS specific smells in

their study. Through a means of comparison, the authors observed that Android apps tend

to be more smelly than iOS apps.

A large-scale empirical study on the impact of smells on the quality metrics of Java

Mobile Edition based applications was conducted by Linares-Vásquez et al. [13]. Through

their work, the authors observed that the occurrence of certain smells is dependent on the

domain of the mobile app. However, the authors did not observe correlations between the

smells and quality metrics of the analyzed apps.

1https://developer.android.com/studio/write/lint/
2http://checkstyle.sourceforge.net/
3https://pmd.github.io/
4http://findbugs.sourceforge.net/
5http://jdeodorant.org/

https://developer.android.com/studio/write/lint/
http://checkstyle.sourceforge.net/
https://pmd.github.io/
http://findbugs.sourceforge.net/
http://jdeodorant.org/
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Chapter 3

Android code smells

In this section, we will list all the smells that are detected in Java, XML Layout and An-

droidManifest files.We provide a brief description of the 13 Android specific smells, used

in this study and also specified in Reimann et al. smell catalog [11]. In addition to describ-

ing each smell, we also provide a code snippet containing an example of the smell. The

complete smelly code files are available online1.

3.1 JAVA Smells

3.1.1 Bulk Data Transfer On Slow Network

Occurs when transferring data over a slower network connection. This action will con-

sume much more power than over a fast connection. Reimann et al’s catalogue claimed

that sending 90kbps over EDGE network’s type will consume 300mA * 9.1 min = 44 mAh

while sending 300kbps over 3G network’s type will consume 210mA * 2.7 min = 9.5 mAh,

which is less power compared to sending data over slow internet connection. It is important

for a developer to check the device’s connectivity before sending data. Fail to check the

network type of class used the Internet APIS will be determined smelly.

To detect this smell, the tool performs two steps to detect if the file is smelly or not.

First, it searches for a variable that has a type of HttpURLConnection or HttpClient to

determine if the class is accessing the internet since these are the APIs that are needed to

establish an internet connection. If the class has one of the variables of either of these two

1https://drive.google.com/drive/folders/1QPSmhLL8xOWYzLOONLizWE8smTJqE5J5

https://drive.google.com/drive/folders/1QPSmhLL8xOWYzLOONLizWE8smTJqE5J5
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Table 3.1: JAVA, XML and AndroidManifest smells detection rules

JAVA Smell Detection Rule

Bulk Data Transfer On Slow Network
Determines if a class deal with internet connection then check if
inside the class there is not checking Internet connection type.

Prohibited Data Transfer
Determines if class deal with the internet connection and check
if the class does not check if the Internet is not disabled.

Interrupting From Background
Determines if the class implement BroadcastReceiver and
Service then check if there are start activities on OnRecive
method.

Dropped Data
Determines if any user input controls were used in a class were
not utilized inside onSaveInstanceState method.

Early Resource Binding
Determines if requestLocationUpdates method call was used in
OnCreate method.

Uncached Views
Determines a class has getView method and View was set every
time the ListView is being scrolled.

Tracking Hardware Id
Determines a class has
TelephonyManagerġetDeviceId() or getImei().

Overdrawn Pixel
Determines a class has onDraw and does not call clipRect()
method.

XML smells

Nested Layout Determines an element has attribute call layout_weight.
Uncontrolled Focus Order Determines an UI element does not used directional controls.
Untouchable Determines a UI elements’ width be less then 48dp.

Not Descriptive
Determines an UI elements that doen not have
contentDescription.

AndroidManifest smell

Set Config Changes Determines if AndroidManifest has configChanges attribute.

datatypes the tool proceeds to perform a second search. This search looks inside each IF

condition for NETWORK_TYPE_LTE or NETWORK_TYPE_UMTS and TYPE_WIFI to

determine if the class has performed a network type check before sending data. If the tool

detects these types, the class will be marked as not smelly. Otherwise, it will be considered

as a smelly class. As shown in the given example 3.1, the class is fetching data without

checking the internet speed which makes the class smelly.



8

/*
** The method contains HttpURLConnection indicate the class dealing with Internet.**

*/
private InputStream fetch(String source) throws IOException {

OkHttpClient client = Utils.createOkHttpClient();
HttpURLConnection connection = client.open(new URL(source));
return connection.getInputStream();

}
/*

** The whole class does not check the Internet connectivity **
*/

Listing 3.1: Example - Bulk Data Transfer On Slow Network.

3.1.2 Prohibited Data Transfer

Occurs when developers do not check internet status before transmitting data in background

or foreground. In other words, the developers have to check if the user disables internet

connectivity before attempting to send any data in the background or foreground.

To detect this smell, the tool performs two steps to identify if the class is smelly or not.

First, it scans if the class requires an internet connection by following the same step done

in Bulk Data Transfer On Slow Network smell. If the class does require internet access, it

will perform the second step by looking for a variable of type NetworkInfo and obtains

the variables name. After getting the name, the tool scans each if condition to see if the

developer performs a null check on the variable. If a null check is performed, the class is

marked as not smelly. As shown in the given example 3.1, the class is fetching data without

checking the internet is available which makes the class smelly.

3.1.3 Interrupting From Background

Occurs when Activities start from BroadcastRecievers or Services that work in the back-

ground. This smell will result in the user being interrupted from performing a task when a

broadcast notification is received. To detect this smell, the tool scans the class for an imple-

mentation of either BroadcastReceiver or Service. If found, the tool searches for
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the the method, onReceive(), It considers the class smelly if the class has one of the fol-

lowing: startActivities, startActivityFromChild , startActivity and startActivityFromFrag-

ment. As shown in example of Interrupting From Background smell, the class is smelly

because onReceive() method has call to startActivity().
public class OnBootReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

final String action = intent.getAction();

if(Intent.ACTION_BOOT_COMPLETED.equals(action)) {
VpnProfile bootProfile = ProfileManager.getOnBootProfile();
if(bootProfile != null) {
Log.i(TAG, "starting profile ’" + bootProfile.getName() + "’ on boot");
Intent startVpnIntent = new Intent(context, GrantPermissionsActivity.class);
startVpnIntent.putExtra(context.getPackageName() + GrantPermissionsActivity.EXTRA_UUID,
bootProfile.getUUIDString());
startVpnIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
//startVpnIntent.putExtra(LogWindow.EXTRA_HIDELOG, true);
context.startActivity(startVpnIntent);
} else {
Log.d(TAG, "no boot profile configured");
}

}
}
}

Listing 3.2: Example - Interrupting From Background.

3.1.4 Dropped Data

Occurs when developers do not implement onSaveInstanceState(), which is a Bundle ob-

ject containing the activity’s previously saved state, and ensures that the user data is saved.

When the Activity is interrupted the onSaveInstanceState() method is triggered; if the de-

velopers implemented the logic to save the input data, it would not be a smell. In the

example below, the developer did not override onSaveInstanceState() even though the class

deals with user inputs (EditText). The code given below was reduced due to class size; we

only keep the method name and removing the body to show that the developer did not take

into account saving user input.

To detect this smell, the tool obtains the name of the variables if a class contains the

following datatypes: TextInputEditText, EditText, NumberPicker, Button, ToggleButton,

CheckBox, RadioButton, Spinner, SeekBar, DatePicker, and TimePicker. The tool will

check the body of the onSaveInstanceState() method if the value of these input controls are

being used. If not, the class is marked as smelly.
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public class FormFragment extends BaseFragment implements LoaderManager.LoaderCallbacks<Integer> {

private TextView mTitle;
private EditText mEditTitle;
private EditText mEditText;

@Override
public void onAttach(Activity activity) {

@Override
public Loader<Integer> onCreateLoader(int i, Bundle args) {

return l;
}
@Override
public void onLoadFinished(Loader<Integer> sender, Integer pid) {
}

public void clearForm() {
}

public void hideKeyboard() {
}

@Override
public void onLoaderReset(Loader<Integer> sender) {
}

}

Listing 3.3: Example - Dropped Data

3.1.5 Early Resource Binding

Occurs when energy-consuming physical components of an Android device are requested

too early. This action will result in more energy will being consumed. For example, re-

questing the GPS component of an Android device in the onCreate() method will result in a

waste of energy since there will be nothing visible to the user when this method is executed.

In our study, we detect if the GPS has been requested within the onCreate() method.

To detect this smell, the tool scans for call method name requestLocationUpdates in-

side the onCreate() method. If requestLocationUpdates method was called inside onCre-

ate(), the class is smelly. The GPS should be requested when the view loads for a user.

As provided in the example below, we observe that the class is smelly due to a call to

requestLocationUpdates inside onCreate ().

public class PointingLocationActivity extends Activity{

//this variabled are to manage the GPS-GPSListener
private LocationManager mlocManager = null;
private LocationListener mlocListener = null;

private Location location = null;
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/** Called with the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.pointer);
Bundle extras = getIntent().getExtras();

palina = PalinaList.getById(palinanr);
//creating the listener for the GPS
mlocManager = (LocationManager)getSystemService(Context.LOCATION_SERVICE);
mlocListener = new MyLocationListener();
mlocManager.requestLocationUpdates( LocationManager.GPS_PROVIDER, 0, 0, mlocListener);

sensorService = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
Sensor sensor = sensorService.getDefaultSensor(Sensor.TYPE_ORIENTATION);
if (sensor != null) {

sensorService.registerListener(mySensorEventListener, sensor,
SensorManager.SENSOR_DELAY_NORMAL);

Log.i("Compass MainActivity", "Registerered for ORIENTATION Sensor");

} else {
Log.e("Compass MainActivity", "Registerered for ORIENTATION Sensor");
Toast.makeText(this, "ORIENTATION Sensor not found",

Toast.LENGTH_LONG).show();
finish();

}
}

}

Listing 3.4: Example - Early Resource Binding

3.1.6 Uncached Views

Occurs when findViewById () is called in getView, which is a method responsible for

creating item’s view of a ListView, frequently while scrolling a ListView or switching

between pages of ViewPager. This could lead to slow behavior if the developer did not

check if the view was already created. The developer should reuse the view instead of

creating a new one.

To detect this smell, the tool scans the class override methods to find the method called

getView, which is a method responsible for setting the content of the individual views and

accepting a list of parameters. Once the tool finds the method, it obtains the name of View

parameter to check if the view name was used in a null condition check. The tool will mark

the class smelly if the obtained name was not found in any If conditions that performed a

null condition check.

@Override
public View getView(int position, View rowView, ViewGroup parent) {

LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
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rowView = inflater.inflate(R.layout.tide_item, parent, false);

ViewHolder viewHolder = new ViewHolder();
viewHolder.headers = new TextView[6];
viewHolder.datas = new TextView[6];
viewHolder.dayTV = (TextView) rowView.findViewById(R.id.tideHeader);

rowView.setTag(viewHolder);
}

Listing 3.5: Example -Uncached Views

3.1.7 Tracking Hardware Id

For some use cases, it might be necessary to get a unique, reliable, unique device identi-

fier. This could be achieved by reading the IMEI, MEID, or ESN of the phone by calling

TelephonyManagerġetDeviceId() or getImei() (Note: getDeviceId() was deprecated in API

level 26). These methods require the permission READ_PHONE_STATE. Not only is

this an invasion of user privacy it is not stable or reliable. The developer should use an

alternative way to get the unique device id.

To detect this smell, the tool scans for TelephonyManagerġetDeviceId() or getImei()

inside the class. If the class calls one of them to obtain a unique id, the class will consider

smelly. As shown in the example, we can observe the class contains a call to getDeviceId()

which make the class smelly.

public void onCreate() {
Log.d(LOGTAG, "onCreate()...");
telephonyManager = (TelephonyManager)

// Get deviceId
deviceId = telephonyManager.getDeviceId();
// Log.d(LOGTAG, "deviceId=" + deviceId);

}

Listing 3.6: Example -Tracking Hardware Id

3.1.8 Overdrawn Pixel

Occurs when developers override a view onDraw(Canvas canvas) without using canvas.clipRect().

By default [6], the Android system deals with overdraws by removing invisible surface

thereby wasting process time if the view was not customized. Once a view is customized
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by overriding the view using onDraw(Canvas canvas), the system may not be able to re-

move any overlaps that occur. As shown below the developer did not call canvas.clipRect()

to clean the unseen surface.

To detect this smell, the tool scans the class override methods to find method call on-

Draw which is a method responsible for drawing a custom view and accept one parameter

as shown in the example. Once the tool find the method, it search for clipRect() is being

used inside method. The tool will mark the class smelly if the clipRect() was not found.

@Override
protected void onDraw(Canvas canvas) {

if (bitmap != null) {
canvas.drawBitmap(bitmap, 0, 0, null);

}

for (Pair<Path, Paint> p : paths) {
canvas.drawPath((Path) p.first, (Paint) p.second);

}

onDrawChangedListener.onDrawChanged();
}

Listing 3.7: Example -Overdrawn Pixel

3.2 XML Smells

3.2.1 Nested Layout

Occurs when layouts with elements that have the attribute weight set must be computed

twice. Since each new element requires initialization, layout, and drawing, parsing deep

nested LinearLayouts will increase the computation time exponentially.

To detect this smell, the tool scans inside each layout element for attribute call lay-

out_weight. The tool considers the file smelly if one of the element has it. As shown below

in the example, LinearLayout contains the element of EditText type has layout_weight

which make this file smelly.
<LinearLayout android:layout_height="wrap_content"

android:orientation="horizontal"
android:layout_width="fill_parent">

<EditText android:layout_height="wrap_content"
android:layout_weight="1"
android:layout_margin="5dip"
android:imeOptions="normal"
android:inputType="text">

</EditText>
</LinearLayout>

<ListView
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android:id="@+id/m_lv_packages"
android:layout_height="0dp"
android:layout_weight="1" >

</ListView>
</LinearLayout>

Listing 3.8: Example -Nested Layout

3.2.2 Uncontrolled Focus Order

Occurs when a developer is not using directional controls for UI elements. There are four

directions of navigation up, down, left (previous) and right (next). By default, the Android

system computes the nearest neighbor UI element and sets it appropriately. In some cases,

the Android system may not be able to make sense of the navigation direction. Therefore,

each UI elements should have one direction. An example is provided in Listing 3.8, all the

UI elements do not have one of four directional controls. In this case, the XML file has two

smells nested layout and Uncontrolled Focus Order.

To detect this smell, the tool scans inside each UI element for one of the follow-

ing:nextFocusUp,nextFocusDown,nextFocusLeft,nextFocusRight and nextFocusForward at-

tribute value. The tool consider the file smelly if one of them was not used. As shown below

in the example, LinearLayout contain element of EditText type has layout_weight which

make this file smelly.

3.2.3 Untouchable

When developers set up UI elements’ width to be less then 48dp (ca. 9mm). An example is

provided in Listing 3.9, we can observe ColorButton width is less then 48dp which make

the file smelly.

To detect this smell, the tool scans inside each layout element for attribute call lay-

out_width and gets the value of it. The tool checks if the value is less than 48dp and

considers the file smelly if it is. As shown in the example below, ColorButton has a width

of 40dp which is less 48dp which make this file smelly.
<android.support.v7.widget.CardView

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="16dp"
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card_view:cardElevation="1dp"
card_view:cardCornerRadius="4dp"
card_view:contentPadding="10dp"
android:orientation="horizontal">
<LinearLayout

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content">
<at.bitfire.icsdroid.ui.ColorButton

android:layout_width="40dp"
android:layout_height="40dp"
android:id="@+id/color"
android:layout_gravity="center"
android:layout_marginLeft="16dp"/>

</LinearLayout>
</android.support.v7.widget.CardView>

Listing 3.9: Example -Untouchable

3.2.4 Not Descriptive

Occurs when developers do not add a description for UI elements in the layout XML file to

add meanings for the UI. The UI description will be read by TalkBack which covert the text

written in the description to voice to help people who have a vision disability understand

the purpose of the UI.

To detect this smell, the tool scans inside each UI element for attribute call contentDe-

scription. The tool consider the file smelly if one element does not have contentDescrip-

tion. An example is provided in Listing 3.8 that shows the lack of adding contentDescrip-

tion to UI elemnts(EditText) which make the file smelly.

3.3 AndroidManifest Smell

3.3.1 Set Config Changes

Occurs when developers are trying to handle some configuration manually instead of al-

lowing the operating system to control the behavior. This action may result in memory

bugs due to developers not releasing the resources in memory. This can be accomplished

by adding the configChanges attribute to the AndroidManifest file. As shown in the exam-

ple provided in Listing 3.10, the developer wants to handle keyboardHidden, orientation

and screen size manually.



16

To detect this smell, the tool scans inside AndroidManifest xml file for attribute call

configChanges. The tool consider the file smelly if has this attribute configChanges.
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.dev.cromer.jason.cshelper"
android:configChanges="keyboardHidden|orientation|screenSize"
android:screenOrientation="portrait"
android:windowSoftInputMode="stateHidden">

Listing 3.10: Example -Set Config Changes

3.4 Android Code Smells Detector

We introduce a new Android code smells detector, coined BadDroidDetector, that can iden-

tify 13 Android-specific code smells provided by Reimann et al. [11]. The tools is an

open-source that can run quickly by giving the list of file that you need to analyze. After

providing the list of files to be scanned, BadDroidDetector will automatically scan all given

input and populate the same list along with the occurrences of all smell types. Internally,

BadDroidDetector utilizes JavaParser 2 to parse the Java source file through the use of an

abstract syntax tree (AST). Depending on the type of smell being detected, we override the

appropriate visit() method to perform our analysis/detection. The design of BadDroid-

Detector is such that it facilitates the inclusion of detection rules for additional smell types.

The output from BadDroidDetector is in the form of a CSV file. Each row in the CSV file

corresponds to a unit test file, and the associated columns contain boolean values indicating

if the specific smell type is present or not.

2https://javaparser.org/

https://javaparser.org/
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Chapter 4

Methodology

In our study, we want to investigate the occurrence of Android code smells and their impact

on the overall quality of Android applications. To achieve this, we conducted a two-phased

approach that consisted of (1) data mining and (2) smells detection.

4.1 Research Questions

We investigate the occurrence of Android specific code smells in Android apps and their

impact on the overall quality of the apps through a set of quantitative, comparative and

empirical experiments that answer the following research questions:

• RQ1: What is the frequency and distribution of Android specific smells in apps?

We intend to better understand the existence and frequency of smells occurrences by

analyzing a larger dataset of open-source mobile projects. The purpose of this analy-

sis is to verify whether the bad programming practices, mentioned in the catalog are

actually practical in the sense of them describing real-world programming scenarios.

• RQ2: To what extent does the severity of smells increase the risk of files change-

and bug-proneness? This research questions investigates the impact of these bad

programming practices to verify whether they have a negative impact on the project

maintainability. To do so, we analyze cluster the project files into infected (with

smells) and noninfected, then we verify whether infected files tend to be more ex-

pensive in terms of maintenance. This is achieved by empirically checking whether
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they are more prone to code changes and to bugs in comparison with the noninfected

files.

4.2 Data Mining Phase

Start

Open source
Android apps

Removal of private, dupli-
cate and forked repositories

Clone app
repositories

Extract
data from

Google Play
hosted apps

Extract
data from
GitHub
hosted
apps

Stop

Figure 4.1: Overview of the Data Mining Phase

Table 4.1: Overview of data obtained in the Data Mining Phase

Item Value

Total cloned repositories 2,011
Cloned apps hosted on GitHub 1,835
Cloned apps utilizing GitHub’s issue tracker 808
Total number of commit log entries 1,037,236
Total number of Java files affected by commits 6,379,006
Total volume of repositories cloned 53.8 GB

For data mining, we were able to obtain a copy of the same dataset that used in [18, 17].
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During the data mining process, [18] used F-Droid 1 to obtain the index of open-source

Android apps to clone what is available on Git-based version control systems excluding

duplicated and forked. For each of the cloned repositories, [18] was able to result in the

following data : (1) the entire commit log (2) list of all files affected by each commit,

(3) all available tags as for projects hosted on GitHub, the author, the popularity metrics

(including the number of Stargazers, Forks, Subscribers, and Releases) and issue tracker

details associated with each project. Depicted in Figure 4.1 is an overview of the Data

Mining Phase process, while Table 4.1 provides an overview of the data collected.

4.3 Detection Phase

The purpose of this phase is to detect Android smells that take place in either JAVA, XML

OR AndroidManifest files. Our files type selection is based on our analyzing of the defini-

tion of the Quality Smells Catalogue [11] addressed by Reimann et al.

The detection phase carries out multiple steps to detect the smells. Firstly, we detect and

separate all the JAVA, XML and AndroidManifest files using different parsers. Secondly,

the result of detecting and separating the files has been saved in different comma separated

values files (CSVs). Finally, we fed the CSV files to BadDroidDetector to identify the

smells in each file’s types. To do that, a helper tool was built to assist identifying and

separating all the files that in the form of JAVA, XML and AndroidManifest type. As

depicted in Figure 5.2, we first identify JAVA and XML which exist throughout the lifetime

of the app. Next, we check if the files are parsable then we save the list of identified JAVA

and XML files into CSV file and use them as input for BadDroidDetector. More detail will

be provided in each of the detection activities. An overview of the data collected/analyzed

in this phase is provided in Table 4.2.

1https://f-droid.org/

https://f-droid.org/


20

Figure 4.2: Overview of the Detection Phase

Figure 4.3: Overview of the Detection Phase

4.3.1 Files Detection

As we illustrate at the beginning of the section, before detecting the code smells, we first

identified and saved the java and XML files. The file detector tool is a standalone tool

that only takes the directory’s path that has all application needed to be scanned. Below a

description of how we detected JAVA and XML files.
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Table 4.2: Overview of cumulative data obtained in the Detection Phase throughout all
versions of projects

Item Cumulative Latest Version

Java

Total Files 1931175 268814
Files not exhibiting any smells 1611286 24431
Files containing 1 or more smells 306743 24503
Files containing 2 or more types of smells 27382 2081
Files containing 3 or more types of smells 1157 66
Files containing 4 or more types of smells 0.00 0.00
Files associated with a GitHub issue 94120 7852

XML

Total Files 366527 61782
Files not exhibiting any smells 0 0
Files containing 1 or more smells 366527 61782
Files containing 2 or more types of smells 365769 61554
Files containing 3 or more types of smells 118159 14283
Files associated with a GitHub issue 12652 1671

AndroidManifest

Total Files 98126 5871
Files not exhibiting any smells 98095 5871
Files containing 1 or more smells 31 2
Files associated with a GitHub issue 2994 114

4.3.1.1 JAVA File

After directory’s path as assigned as input to the tool, the tool will start scanning inside

each folder and capture the file the has .java extension. Once the tool has found a java

file, the tool parses the java file by using JavaParser to obtain an AST to make sure the file

syntax is correct. If the file was parsed correctly, we do further analysis to obtain app name

where the file was found, relative file path and full path, file name, associated XML file,

total imports, TotalMethodStatements, and PackageClassName. After obtaining all these
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data; the result will be appended into CSV file that will have all scanned java files that exist

in the given directory.

4.3.2 XML File Detection

The same tool was used to scan JAVA files, utilize to scan XML file as well. We used a

different parser to parse an XML file. We choose dom4j [?] to parse XML files since it is

the most popular framework for Java. Before parsing XML file, the tool checks if the file

name is AndroidManifest or the file’s location within the following locations: res/layout/

or resources/layout/ to start parsing the XML file by utilizing Dom4j for parsing. It is

essential only to scan the XML files that deal with UI in activity or fragment components.

As android documentation addressed [1], the architecture layout resources for the UI are in

res/layout/ or resources/layout/. After the parsing done, the tool will extract the following

date: app name where the file was found, relative file path and full path, file name and save

the obtained data by following the same mechanisms we did JAVA file detection.

After the file populated, we import the data from CSV file to the MySQL database to

extract all the AndroidManifest files into separate CSV file so we can use it as input for

BadDroidDetector. Once we have the list of all AndroidManifest, we create another CSV

file that has all scanned file without AndroidManifest. By doing so, we will have two CSV

files that can be used as an input for BadDroidDetector. More details will be provided in

Android Code Smells sections.

4.3.3 Android Code Smell Detection

After detecting JAVA and XML files, we ran the BadDroidDetector three time to identify

the occurrence and distribution of Android Code Smells. One ran for the JAVA file smells

and others for AndroidManifest and XML smells.

BadDroidDetector utilized JavaParser when the ran was for JAVA smells depending

on type smell, we override the appropriate visit() method to perform our analysis and

detection. Results provided by BadDroidDetector were saved in a CSV file for analysis
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and interpretation.

Utilizing Dom4j, BadDroidDetector parses the XML source file. Depending on the

type of smell being detected, we override the runAnalysis() method to perform our

analysis/detection rules. Results provided by BadDroidDetector were saved in a database

for analysis and interpretation.
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Chapter 5

Analysis & Discussion

In this chapter, we present answers to our research questions by analyzing the occurrence

and impact of test smells in the studied apps.

5.1 RQ1: What is the frequency and distribution of An-
droid specific smells in apps?

Motivation: Most of the prior research on the code quality of Android apps has focused

on the existence of traditional code smells in the source code of the app [14]. Similar to

this, we aim to understand the degree to which Android specific code smells are present in

the apps source code. The results of this RQ aims to better inform developers on the most

common type of Android code smells that are most likely to be present in their codebase

and be in a better position to address these issues earlier on in the development lifecycle.

To this extent, we investigate the distribution and the frequency of occurrence of Android-

specific smells in the apps in our study. This RQ also involves the study of co-occurrence

of smells as a means of investigating the relationship among the various smells.

Approach: Our approach first involved executing our smell detection tool on our cor-

pus of apps. We next performed standard statistical analysis to obtain the distribution of

smells as well as the degree to which each smell type occurs in apps and files. Additionally,

we also studied the co-occurrence of each smell type. Since the smells in our study impact

Java source code files, layout (XML) files and the AndroidManifest.xml file, our analysis

and reporting are also categorized into these three categories.
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Table 5.1: Distribution of overall smells throughout the lifetime Android apps

Smell Type Distribution

JAVA

Dropped Data 66.66%
Uncached Views 13.25%
Bulk Data Transfer On Slow Network 7.71%
Overdrawn Pixel 5.73%
Prohibited Data Transfer 3.29%
Interrupting From Background 1.73%
Tracking Hardware Id 1.53%
Early Resource Binding 0.09%

XML

Not Descriptive UI 41.72%
Uncontrolled Focus Order 41.81%
Untouchable 8.67%
NestedLayout 7.79%

AndroidManifest

Set Config Changes N/A

Result:

Presented in Table 5.1, are the distribution of smells in our studied apps. We also

provide details of the occurrence of each smell type in apps and files in Table 5.2 as well

as smell co-occurrence in Tables 5.3 and 5.4.

For the smells that are detected in Java files, we observed that the most occurring An-

droid smell is DroppedData, when compared with the other smells. Furthermore, the

DroppedData smell occurred in over 79% of the overall analyzed apps. The reason be-

hind this phenomenon is due to developers assuming that users will continually be using

the app (and not accounted for interruptions). Interestingly, we observed that the smell

UncachedViews has a high co-occurrence with this smell. The reason for this could be

due to both smells being associated with some form of user input/interaction. Since the
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Figure 5.1: Distribution of overall Java Layout smells throughout the lifetime Android apps

Figure 5.2: Distribution of overall XML Layout smells throughout the lifetime Android
apps

smell UncachedViews is related to the UI (particularly to ListViews), the high occurrence

(13%) of it is also not surprising, since most of the apps have some form of user interac-

tion. This smell indicates that developers force the ListView to create items of a view when

users scroll or switch between pages. Interestingly, even though the smell Overdrawn Pixel

appears in approximately 29.65% of the apps, the spread of the smell in the source Java
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Table 5.2: Occurrence per App and File

Smell Type
Smell Occurrence Per

App File

JAVA

Dropped Data 79.32% 11.65%
Uncached Views 34.64% 2.32%
Overdrawn Pixel 29.65% 1.00%
Bulk Data Transfer On Slow Network 28.08% 1.35%
Prohibited Data Transfer 21.97% 0.58%
Interrupting From Background 9.42% 0.30%
Tracking Hardware Id 4.76% 0.27%
Early Resource Binding 1.35% 0.02%

XML

Not Descriptive UI 100% 99.78%
Uncontrolled Focus Order 100% 99.99%
NestedLayout 61.32% 18.62%
Untouchable 51.56% 20.74%

AndroidManifest

Set Config Changes 0.10% 0.031%

files is low. This could be due to developers opting to manually create the UI instead of

a dynamic (code-based) approach. Most likely the UI’s are simple or developers prefer a

no-code based approach.

We observed an extremely high co-occurrence, of over 90%, between Prohibited Data

Transfer and Bulk Data Transfer On Slow Network. This high co-occurrence is not surpris-

ing as both smells are related to networking. This indicates that developers ignore checking

the internet status before transmitting data in the background, and also ignore selecting the

network connection type (e.g. EDGE, 3G and WiFi) at the same type.

When it comes to XML layout based smells, we found that Not Descriptive UI and

Uncontrolled Focus Order are the two smells that occur the most. These two smells are

accessibility related and will negatively impact disabled individuals trying to use the app.
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Table 5.3: Co-occurrence of Java smells

Smell Type BDTSNR DD ERB IF OP PDT THI UV

BulkDataTransferOnSlowNetwork 10.90% 0.02% 0.21% 0.08% 42.01% 0.53% 1.38%
DroppedData 1.26% 0.00% 0.06% 0.41% 0.41% 0.35% 5.57%
EarlyResourceBinding 1.37% 2.73% 0.00% 0.34% 0.00% 0.00%
InterruptingFromBackground 0.95% 2.30% 0.00% 0.00% 0.24% 0.43% 0.00%
OverdrawnPixel 0.10% 4.80% 0.00% 0.00% 0.00% 0.25% 0.64%
ProhibitedDataTransfer 98.32% 8.23% 0.01% 0.13% 0.00% 0.05% 0.04%
TrackingHardwareId 2.68% 15.07% 0.00% 0.49% 0.95% 0.10% 0.37%
UncachedViews 0.80% 28.04% 0.00% 0.00% 0.28% 0.01% 0.04%

Abbreviations:
BDTSNR = BulkDataTransferOnSlowNetwork
DD = DroppedData
ERB = EarlyResourceBinding
IF = InterruptingFromBackground
OP = OverdrawnPixel
PDT = ProhibitedDataTransfer
THI = TrackingHardwareId
UV = UncachedViews

Table 5.4: Co-occurrence of Layout smells

Smell Type NestedLayout UncontrolledFocusOrder NotDescriptiveUI Untouchable

NestedLayout 99.99% 99.79% 38.24%
UncontrolledFocusOrder 18.62% 99.78% 20.74%
NotDescriptiveUI 18.65% 99.99% 20.77%
Untouchable 34.34% 99.98% 99.93%
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Developers should strive to ensure that the apps being designed and built adhere to acces-

sibility standards and guidelines, and thus be usable by all users, regardless of disabilities

[2]. However, our study highlighted that his not the case in reality. Out analysis of over

1,975 apps indicated that at least one file, in each app, contained either both or one of

these accessibility smells. Looking at the co-occurrence of these two smells we noticed

that 90% each smell co-occurs with the other. This further provides us with more evidence

that developers do not pay attention to accessibility considerations in their apps. It is also

interesting to note that the other layout smells, also have a high co-occurrence with the

accessibility smells. This further highlights the lack of accessibility support in UI’s.

For our AndroidManifest smell, we obtained an interesting finding when we only de-

tected 31 instances of Set Config Changes which only appears in two apps from 1,975

apps. The Set Config Changes smell occurs when a developer requests the Android op-

erating system to stop automatically handling some configuration changes (like orientation

change, font size change) and instead the developer manually makes these changes. This

action will introduce memory bugs by not clearing the resources in memory. A small occur-

rence of this smell indicates that developers prefer to allow the operating system to handle

configuration changes rather than implementing custom code. However, we will conduct

further studies on these two apps on GitHub’s issues to know if the app has issues related

to memory when the first time the smell was introduced. Also interesting is that both of the

smells occur once the file is created.

5.2 RQ2: To what extent does the severity of smells in-
crease the risk of files change- and bug-proneness?

Motivation: Through RQ1 we observed a widespread occurrence of Android smells in

our large corpus of apps. However, to further highlight that these smells impact both code

quality and maintainability we investigate the degree to which these smells increase the

likelihood of change- and bug-proneness of files.

Approach: To answer RQ2, we compute the Odds Ratio (OR) for all the smells, similar
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to the prior work [12]. As stated in Chapter 5, we obtained the dataset of the commits

and issues for each app that we cloned. To calculate the OR for the change-proneness,

we need to prepare the data before computing the OR. We count the distinct commits for

each distinct file over the lifetime of the app in order to count how many time the file was

changed. By obtaining this data, we have a list that contains the file and the number of

changes that happen for each file along with a total number of smells for each smell type.

From this resultset, we execute queries to get for each smell type the number of the files

that have the following attributes (1) has a smell and has > 1 commits, (2) has a smell and

no commits, (3) has no smell no commits, and (4) has no smell and has > 1 commits.To

measure the OR for bug-proneness, we followed a similar approach. We retrieved the issue

tracker details of apps from their GitHub repository. Through queries, we obtained a count

of files: (1) has a smell and has issues, (2) has a smell and no issues, (3) has no smell and

no issues, and (4) has no smell and no issues.

Result: Table 5.5 shows the result of computing OR for change/ bug proneness for each

smell type. The table contain list of smell names along with the OR change/ bug proneness.

Results from our change-proneness study showed that files infected with almost all

smell types were prone to changes. Files infected with the smell Interrupting From Back-

ground were more prone to changes. This is interesting since this smell is not as widespread

in our corpus when compared to the other smells. A possible reason for this is due to de-

velopers embedding business logic into this file and hence this file undergoing multiple

revisions. We noticed that the OR values for the smells associated with networking were

more-or-less the same. This indicates that these smells are related, and once again shows

that during the development of the app developers will be frequently updating files that

contain these smells.Not surprisingly, the XML files show high change-proneness due to

the smells being UI related. During the development of the app, the developer would be

making multiple updates to the UI based on either requirements or user feedback changes.

These files also demonstrated, relatively, high OR values for bug-proneness. This is re-

flective of the nature of mobile apps. Mobile apps tend to be UI heavy and therefore the
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Table 5.5: Odds Ratio for bug and change-proneness. Bold indicates that the obtained
result was statistically significant (p< 0.05).

Smell Type
Odds Ratio

Change
Proneness

Bug
Proneness

JAVA

Interrupting From Background 3.20 0.04
Early Resource Binding 2.74 0.15
Dropped Data 2.64 0.80
Bulk Data Transfer On Slow Network 2.07 0.60
Prohibited Data Transfer 2.26 0.54
UncachedViews 1.81 0.52
OverdrawnPixel 1.03 0.53
TrackingHardwareId 0.000048 1.14

XML

Uncontrolled Focus Order 4.05 2.10
Not Descriptive UI 2.65 1.76
Untouchable 2.25 1.45
NestedLayout 1.53 0.83

AndroidManifest

Set Config Changes 2.97 2.23

issues raised by the users are related to the UI that the user interacts with. Though the

AndroidManifest smell shows a high OR value for change- and bug-proneness, it is not

statistically significant. This is due to the low number of apps/files exhibiting this smell.

Further research in this area is required. More research is also required on the smell Track-

ingHardwareId, as it shows a statistically significant bug-proneness OR value but an ex-

tremely low change-proneness OR value. Most likely the developer introduced this smell

earlier on in the project and due to privacy issues (possibly reported by users), updates the

file containing this smell.
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Chapter 6

Threats to Validity

In this chapter, we present factors that may impact the applicability of our observations

in real-life situations. An argument can be made that our corpus of apps is not entirely

representative. However, due to cost constraints, it had to be limited to open source apps.

Furthermore, the apps are diverse and have also been used in prior studies. The detection

methodology in our tool may also be subject to threats. To counter this, we performed

manual verification by the authors and external subject matter experts on the accuracy of

tools detection abilities. Further, as an open source tool, we welcome the community to

contribute to updates to the tool. Additionally, due to different coding styles by developers,

there will be instances where the tool fails to detect smells or detects false positives. Cater-

ing to all styles is not feasible and hence this study utilized the rules published in the smells

catalog. Not all developers utilize GitHub’s issue tracking system, nor do they associate

commits with issues. This is a possible reason for the OR values in our bug-proneness

study. We would need to extend this initial work by focusing on projects that adhere to

well-established software engineering principles/processes.
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Chapter 7

Conclusion & Future Work

The goal of this work to extend the aDoctor tool [16] by adding the missing smells that

aDoctor was not detecting, and to conduct an empirical study on the 13 smells that we

are extending to show the distribution and severity of these smell in Android apps. We

introduce a tool that detects 13 smells that were listed in [11] catalog. We ran the tool

against a large dataset that contains over 1500 Android apps were listed on F-droid website.

we observed that the most occurring An-droid smell is DroppedData, when compared with

the JAVA smells while we found that Not Descriptive UI and Uncontrolled Focus Order are

the two smells that occur the most layout XML smells.

For future work, we plan to study the whole catalog of 30 smells to see what an impact

will cause on Android devices resources. The resources that we will look at are the CPU,

GPU, memory and battery usage. Also, we plan to build a plugin for this tool that can

scan the project at run-time and give refactoring recommendations to remove smells. By

doing this will reduce the number of smells and educate developers who do not know about

Android smells.
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