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ABSTRACT 

Kate Gleason College of Engineering 
Rochester Institute of Technology 

Degree: Doctor of Philosophy  Program: Microsystems Engineering  

Author’s Name: Zachary A. Levinson 

Advisor’s Name: Dr. Bruce W. Smith 

Dissertation Title: MEASUREMENT OF AMPLITUDE AND PHASE PUPIL VARIATION FOR EUV 
LITHOGRAPHY SYSTEMS 

Aberration control and characterization in a state of the art photolithographic lens 

have the tightest tolerances of any optical system. This is especially true in next 

generation extreme ultraviolet lithography systems with estimates for the wavefront 

tolerance below 500 pm RMS. These systems use radiation at a wavelength of 13.5 nm. 

No materials sufficiently refract this radiation, so reflective lens designs must be used. 

The mirrors are constructed as Bragg reflectors and much of the intense power of the 

source is ultimately distributed through the system as heat with each reflection. 

Moreover, the angle dependent reflection of these mirrors can also lead to amplitude 

asymmetries across the pupil. While interferometric techniques are the de-facto standard 

of wavefront analysis, they require the use of additional optics and are therefore difficult 

to implement during system use. Moreover, interferometric techniques cannot measure 

amplitude pupil variation. 

In this work both the pupil amplitude and phase variation of several EUV 

lithography systems will be measured using images of binary targets formed by each 

system. Using the systems’ own images to monitor its wavefront has the benefit of 

providing an aberration monitor during system use. Models will be constructed between 

wavefront variation and a space-domain basis in which the effects of aberrations are 

separable. This allows both the amplitude and pupil variation to be rapidly extracted from 

these systems. Finally, the theory of anamorphic primary aberrations will be developed 

and the image-based method will be extended to these types of systems. 
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1. INTRODUCTION 

Just one year before the invention of the bipolar junction transistor the ENIAC 

computer was presented to the public. It was a state of the art computing machine, and a 

tremendous engineering endeavor—containing about 18,000 vacuum tubes and weighing 

over 30 tons.1 Over its nine-year life ENIAC computed more than humans had prior to its 

creation. Despite its achievements though, the invention of the transistor, and 

subsequently the integrated circuit, quickly made ENIAC and its vacuum tubes obsolete.1  

The integrated circuit (IC) allowed the same circuits to be produced in a smaller, 

more efficient, and more reliable package.2 ICs enable transistors, resistors, and 

capacitors to be fabricated in close proximity on the same semiconducting substrate. In 

1965 Gordon Moore observed that the number of transistors in ICs had doubled roughly 

every two years and predicted that it would continue to do so for at least another decade.3 

This observation—which has now become known as Moore’s law—became an almost 

prophetic driving force for the microelectronics industry. 

To continually increase the number of transistors in a given area the transistor size 

must be scaled smaller. This has the additional benefit of decreasing the operating 

voltage, and therefore the power consumption.4,5 The features on the wafer are formed 

via a microelectronic manufacturing process called photolithography.1 Thus, to continue 

increasing the number of transistors the minimum resolution of photolithographic 

processes must continue to decrease.6  
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1.1 Photolithography Systems 

The goal of a photolithography process is to transfer the image of a mask into a 

relief pattern on a wafer. A photosensitive film called photoresist is cast across a 

substrate and then selectively exposed to radiation. The radiation initiates a 

photochemical reaction, which allows the relief structure to be formed in a developing 

solution.7 For example, the radiation may cause a change in dissolution properties, thus 

allowing the exposed areas to be removed with a developing solution. 

Photolithography systems rely on an optical setup similar to a microscope, as 

shown in Figure 1. A Köhler illumination system is used so that light from a source point 

evenly illuminates the mask.6 The mask contains the pattern which is going to be 

transferred to the wafer, and it must block light in some areas and not in others. The mask 

diffracts the light from the source, which is subsequently collected by the objective lens 

system. Finally, the objective lens system focuses the light into the photoresist film. 6,8 

It is common in microelectronic manufacturing to use periodic patterns because 

this makes the photolithography process simpler. The space over which the pattern 

repeats is called the pitch. The minimum resolvable pitch by a photolithographic process 

is given by, 

, 
1.1 

where 𝑘𝑘� is a process dependent factor, 𝜆𝜆 is the wavelength, and 𝑁𝑁𝑁𝑁 is the numerical 

aperture, which characterizes the angle of the most extreme ray entering the optical  
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Figure 1. An example of a projection lithography system used for relief pattern transfer to a 
wafer.  

system.6,9 This relationship is called the Rayleigh criterion and shows that there are two 

ways to make smaller features on the wafer: 1) decrease wavelength, 2) increase NA. 

Photolithography processes used a mercury arc lamp source for over thirty 

years.10  The spectrum of this type of source is shown in Figure 2. Broadband radiation 

was used until the 1980s, when the spectral peak at 436 nm was isolated. Changing the 

wavelength requires new materials, new lenses, and new processes, so there is an 

economic incentive to not change wavelengths often.  The NA of these 436 nm systems 

was increased until around 1990 when the industry moved to the peak at 365 nm.10 In the 

mid-1990s excimer lasers had matured enough to be used in high volume manufacturing.  



4 
 

 

Figure 2. Typical spectrum of a mercury arc lamp. 6 

KrF excimer lasers at a 248 nm wavelength were used through the early 2000s when they 

were surmounted by ArF excimer lasers at a 193 nm wavelength.10 This is the historical 

trend of the photolithography industry: decrease the wavelength, increase NA. 

Increasing NA is not necessarily a trivial matter though. For example, to offer 

superior imaging performance to a lower NA lens, aberrations must be sufficiently 

controlled. Additionally, the depth of focus for a lithography system is given by, 

, 
1.2 

where 𝑘𝑘� is another process dependent factor.6,8 While increasing NA allows for smaller 

features to be resolved it also decreases the depth of focus. This limits the thickness of 

photoresist and allowable wafer topography. 

DOF = ±k2


NA2
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These trade-offs are the reason why resolution enhancement techniques, such as 

off-axis illumination, were developed. As seen in Figure 3, using an off-axis source tilts 

the diffraction orders with respect to the optical axis.11 This allows the objective lens to 

collect diffracted energy that may not be collected if an on-axis source were used. This 

type of illumination also has the benefit that the depth of focus will be infinite if the 0th 

and 1st diffraction orders are symmetric about the lens, assuming the lens is ideal.6  

Typically, a collection of mutually incoherent off-axis points will be used to 

illuminate the reticle in a lithography system. Some common configurations of off-axis 

illumination are given in Figure 4. The choice of source shape is largely pattern 

dependent, as each shape has its own unique advantages and disadvantages.  

 

Figure 3. Comparison of on-axis illumination and off-axis illumination for a single coherent 
point source. 
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Figure 4. Common lithography source shapes, a) conventional centered monopole, b) offset 
monopole, c) dipole, d) annulus 

The International Technology Roadmap for Semiconductors (ITRS)—a 

consortium which creates goals to push the semiconductor industry forward—predicts 

that to progress with continued scaling a major change needs to take place.12 Figure 5 

shows a comparison of four different next-generation patterning technologies. All of 

these technologies, with the exception of extreme ultraviolet (EUV) lithography, 

represent a move away from traditional wavelength scaling.  

 

Figure 5. ITRS evaluation of next-generation patterning methods. 12 
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At the present moment, none of these technologies are mature enough to be 

inserted into high-volume manufacturing (HVM). There is however a high motivation for 

EUV lithography (EUVL) to play a role in future patterning, as the industry has made a 

significant financial investment in this technology. State of the art HVM patterning 

requires multiple photolithographic exposures to obtain smaller pitches. There are various 

forms of multiple patterning, but they all significantly increase the cost per layer. The 

ITRS patterning requirements for the next ten years are given in Figure 6 and show that 

there is a point where the costs of multiple patterning exceed the costs of even a low 

throughput EUVL process.12,13 Therefore, it is reasonable to expect that EUVL will play 

a key role in future HVM patterning despite the challenges it faces. 

 

Figure 6. ITRS patterning requirements for the next ten years. 12 



8 
 

1.2 EUV Lithography 

EUVL should be considered an extension of optical lithography, though it 

provides an entirely unique set of challenges. The first challenge is creating sufficient 

radiation for photoresist exposure. Although several types of sources are being 

considered, the strongest contender is the laser produced plasma (LPP) source, as shown 

in Figure 7.14,15 A CO2 laser beam creates a high density Sn plasma where excited 

electrons emit EUV radiation when relaxing to their ground state. The radiation from the 

source is then formed into a beam by the collector mirror. 

An example of an EUVL optical system is shown in Figure 8. There are no 

materials which refract EUV wavelengths (𝜆𝜆=13.5 nm), so EUVL systems must use 

reflective optics.14 The non-zero chief ray angle, caused by the requirement to use 

reflective optics, is the source of many challenges which distinguish EUVL from its 

longer wavelength optical counterparts.16 

 

Figure 7. Laser produced plasma EUV source. 15 
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The mirrors in an EUVL system are Bragg reflectors fabricated using alternating 

layers of molybdenum and silicon. Some of the incident radiation is reflected at each 

interface, so significant reflectivity can be obtained by using many pairs of layers 

engineered to maximize constructive interference.17–19 The reticle is constructed in a 

similar way and tantalum nitride (TaN) is used as an absorbing material, as shown in 

Figure 9. This mirror configuration may only have a peak reflectivity around 70%, and is 

highly dependent on the incident angle, as shown in Figure 10. In a system with such 

mirrors and 13 reflections only 0.97% of the source power makes it to the wafer plane. 

The rest of the source power is distributed throughout the system as heat and scattering. 

This heat is expected to contribute to system drift and thermal dynamic aberrations. 

 

Figure 8. Schematic view of a typical EUV lithography system. The dashed black line shows 
the chief ray. 
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Figure 9. A typical EUV mask stack  

 
Figure 10. Reflectivity as a function of incident angle for a typical EUV multilayer mirror. 

The specific mirror plotted consists of 40 alternating pairs of 2.8 nm Mo and 4.2 
nm Si films with no interdiffusion. 20 

 

The use of reflective optics also leads to a geometrical effect known as 

shadowing, shown in Figure 11, where some features appear larger than they are 

physically.16,21 This is because the effective reflection plane does not occur at the surface 

of the reticle, but rather at some depth inside the reticle. Thus, nominally identical 

horizontal and vertical features on the reticle will appear different sizes on the wafer. 

Shadowing is a purely geometrical effect and therefore does not vary through focus, and 

can be corrected with an orientation dependent mask bias.22 While the absorber thickness 

does affect shadowing, it would occur even with a zero-thickness absorber because of the 

location of the effective reflection plane. 
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Further complications arise when considering high-NA EUV lithography. Due to 

the non-orthogonal beamline there is a maximum NA for a given chief ray angle such 

that the incident and diffracted cones of light do not overlap, as shown in Figure 12a and 

12b.16,23 In order to increase NA the chief ray angle must be increased as well, as in 

Figure 12c, but this is non-ideal due to the decrease in reflectivity with incident angle. In 

order for EUVL to be a viable technology there must be a solution to high-NA imaging. 

 

 
Figure 11. Shadowing in an EUVL system. Horizontal features (left) appear to increase in 

size while vertical features (right) do not have this problem. The right panel is in 
the plane of a space feature. 

 

(a) (b) (c) 

   

Figure 12. Geometrical considerations of high-NA EUVL. a) Reflective system close to the 
maximum NA, b) Larger NA with the same chief ray angle, c) the chief ray 
angle must increase to allow a higher-NA 
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1.2.1 Anamorphic systems 

The solution to the problem of high-NA lithography is to use an anamorphic 

optical system. Anamorphic systems have different magnifications in different axes of the 

lens.23,24 Historically these systems have primarily been used to fit a wide aspect ratio 

motion picture as a nearly square frame on a film strip.24,25 A comparison of looking 

directly into an isomorphic projection lens and an anamorphic projection lens is given in 

Figure 13a and b. The entrance pupil is defined as the image of the aperture stop seen 

from the front of the optic, while the exit pupil is the image as seen from the back of the 

optic.26,27 Asymmetric magnification causes the entrance pupil of the anamorphic lens to 

appear as an ellipse. Looking from the back of the lens, the pupil appears to be circular, 

as in Figure 13c. The test pattern shown in all three panels of Figure 13 is elliptical—as it 

appears through the isomorphic lens—but appears to be circular through the anamorphic 

lens.28  

This is useful in an EUVL system because the NA can be geometrically increased in one 

direction and effectively increased in the other direction via a higher magnification.23,29 

An example of anamorphosis in an EUVL system is shown in Figure 14. To maintain the 

 

Figure 13. Comparison of the entrance pupils of an isomorphic projection 
lens (a) and an anamorphic projection lens (b), and the (c) exit pupil of the 
same anamorphic lens 
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same feature size as in Figure 12 the reticle pattern must be stretched. A full field now 

occupies twice the space on the reticle in one direction as compared to an isomorphic 

system. Therefore, anamorphic lithography systems would require two half-field 

exposures for one equivalent isomorphic exposure field.29 

The NA is identical in both axes of the lens and the incident and diffracted beams 

do not overlap. Because the entrance and exit pupils are different shapes, anamorphic 

lenses have different properties than traditional lenses and must be analyzed separately 

from isomorphic lenses. Anamorphic imaging is expected to be implemented in next 

generation EUVL systems. 

In both isomorphic and anamorphic systems, increasing NA, by definition, means 

increasing the angular spread of light through the optic. The last mirror in the optical train 

of current generation EUVL systems is tilted so that the second to last mirror does not 

block the optical path. However, this is not possible with the increased angles at higher 

numerical apertures. At the most extreme angles required for 𝑁𝑁𝑁𝑁 > 0.5, the multilayer 

reflectivity is near zero. The solution to reduce the angular spread, yet still maintain high-

NA, is to create a hole in the second to last lens element—a central obscuration As of the 

date of writing the size of the central obscuration has not been published. However, 

ASML has determined that it should be smaller than 35% of the pupil radius. There are 

certain angular frequencies beyond this point which the optic can sufficiently resolve.30  
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Figure 14. An example of an anamorphic EUVL system 
 

1.3 Lens Quality Metrics 

So far we have presumed that all lenses are ideal. Even ideal lenses have 

aberrations, but there are also many possible non-idealities in real lenses. It is therefore 

necessary that we can establish and quantify the quality of an optic. This section will 

introduce non-idealities in optics and several metrics for judging optical quality. 

1.3.1 Point Spread Function 

The transfer of light through a linear optical system can be fully characterized by 

the point spread function. If the point spread function (PSF) of a system is known, the 

image can be determined by convolution of the PSF with the object, as in Figure 15.31 

The PSF is defined as the image of a coherent point object. The PSF could therefore be 

measured via the image of a contact hole—a common lithography pattern. Photoresist 

forms a relief structure though and will not record the full PSF. It is therefore impossible 

to directly measure the PSF of a lithography system through photoresist exposure. 

Further, most lithography systems are not even linear due to the use of partial coherence.6 
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Figure 15. Transfer of light through a linear imaging system via the point spread function. 

The Fourier transform of the PSF is called the optical transfer function (OTF) and 

is often a more convenient form for system analysis.31 The OTF and PSF of an ideal 

optical system are shown in Figure 16. The ideal PSF is called the Airy disk, and its 

contrast has been stretched in the two-dimensional representation of Figure 16. Stretching 

the contrast shows the characteristic sharp peak surrounded by concentric rings, also seen 

in the 𝑦𝑦 = 0 cutline of the Airy disk in Figure 16. 

From a more physical perspective, the transfer of light through an optical system 

can be characterized by amplitude and phase errors in the system’s exit pupil.26 In the 

case of a linear optical system, the transfer is characterized by the pupil function. The 

PSF is the impulse response of a linear optical system and can therefore be computed 

from the system’s transfer function. The pupil function is useful even in non-linear 

systems because the OTF can be computed from it. A simple way to quantify the quality 

of an optic is the Strehl ratio given by, 
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, 

1.3 

where 𝑃𝑃(𝑟𝑟, 𝜃𝜃) is the actual pupil function, and 𝑃𝑃�(𝑟𝑟, 𝜃𝜃) is the ideal pupil of the same 

system.32 The Strehl ratio should be as close to unity as possible for ideal imaging. 

 

Figure 16. The optical transfer function and point spread function of an ideal pupil 

1.3.2 Apodization 

Apodization is a technique where the transmission of a lens’ pupil is varied from 

the ideal top-hot profile.32 We will use the term apodization to refer only to intentional 

amplitude variation. The OTF and PSF of an apodized optical system is shown in Figure 

17. The pupil is defined by the function, 
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, 
1.4 

so that the transmission is just 5% at the edge of the pupil. Rings are not visible in the 

two dimensional PSF, despite being processed identically as that in Figure 16. In the cut-

line through the 𝑦𝑦 = 0 plane it is clear that the rings have been removed through the use 

of apodization—hence the literal translation of “removing the foot”. Apodization 

improves through-focus performance of a lens and has uses in numerous imaging 

applications but is not used in lithography.33,34 Therefore, any apodization of a 

lithography system is non-ideal and will instead be referred to as amplitude variation. 

 

Figure 17. The optical transfer function and point spread function of a Gaussian apodized 
pupil 

1.3.3 Aberrations 

Traditionally, aberrations are defined to be any error which causes a point object 

to not be imaged as a point. This type of error is caused by phase variation in the 

pupil.26,32 Marechal noted the following inequality for pure phase variation,35–37 

P (r) = e3r2 0  r  1
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, 
1.5 

where 𝛷𝛷(𝑟𝑟, 𝜃𝜃) is the phase error caused by aberrations. For small aberrations this can be 

simplified by a Taylor expansion as, 

, 
1.6 

where 𝜎𝜎 is the mean of the squared phase function, 𝛷𝛷�(𝑟𝑟, 𝜃𝜃).32 This inequality therefore 

relates the Strehl ratio to RMS wavefront error. 

 Historically several authors have attempted to quantify the maximum wavefront 

error under which an optical system can be considered diffraction limited. Lord Rayleigh 

proposed that a system can be considered diffraction limited if the peak-valley wavefront 

error does not exceed 𝜆𝜆/4.32,38 This results in different wavefront RMS for different types 

of aberrations, but corresponds to a range of Strehl ratios between 0.8 and 0.92 for the 

primary aberrations. Later Maréchal proposed that the Strehl ratio should be greater than 

0.82, corresponding to a wavefront RMS of approximately 𝜆𝜆/14.5. 35–37 

 When aberrations are present in a lithography system they primarily affect CD 

and image placement error.6 It is therefore prudent to evaluate these criteria in the context 

of lithography. We will use the Maréchal criterion to evaluate the performance of a 

lithography system with primary aberrations. In a purely astigmatic system the Maréchal 

criterion sets a limit of 169	𝑚𝑚𝜆𝜆. This leads to a system where with just 30 nm of defocus 

25 nm horizontal lines resolve while vertical lines do not. (e.g. an EUVL system with 

0.33 NA and a conventional circular illuminator with 0.25𝜎𝜎) This difference in useable 
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depth of focus is likely incompatible with state of the art lithography processes. In the 

same system but with primary coma, fully dense lines have a placement error of 1.0 nm. 

Further, the placement error increases to over 7 nm for fully dense 38 nm lines and 

spaces. The ITRS specifies an overlay error of less than 3.4 nm for the 7 nm node.39 This 

placement error is nearly a third of the overlay budget in the best-case scenario, and is 

therefore not tolerable in a lithography system. 

Aberration control and characterization in a state of the art photolithographic lens 

have the tightest tolerances of any optical system. State of the art DUV lithography 

systems have wavefront RMS below 2 nm (𝜆𝜆/100). Because wavefront error scales with 

wavelength, EUV lithography has an even tighter tolerance. Some authors have estimated 

the required wavefront tolerance to below 500 pm RMS (𝜆𝜆/27) for EUVL optics.40  

1.3.4 Flare 

An ideal mirror will reflect an incident point of light at the same angle, but a non-

ideal mirror only reflects most of the light at the same angle. The rest of the light is 

scattered at some other angles.41 In lithography any scattered light which makes it to the 

image plane is called flare. The total amount of light scattered by a surface can be 

quantified by the total integrated scatter (TIS) which is given by, 42 

, 
1.7 

where 𝑅𝑅 is the reflectance of the optic, 𝜎𝜎 is the RMS roughness of the surface, and 𝜃𝜃 is 

the incident angle. Flare was a concern in DUV lithography but will be even worse in 

TIS = R
⇣
1 e(4⇡σ cos ✓/λ)2
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EUVL systems because TIS varies as 𝜆𝜆��. The total scatter will be 137 times worse in an 

EUVL system than a ArF DUV system given identical roughness. 

 To determine the effect of flare on imaging, surface roughness must be considered 

as a random process. The roughness can be measured experimentally and its 

autocorrelation function can be computed.43 The power spectral density of the roughness 

characterizes the frequency content of the roughness and is the Fourier transform pair of 

the roughness autocorrelation function. Assuming perfect condenser optics, the image 

intensity with rough projection optics can be computed as, 

, 1.8 

where 〈𝐼𝐼(𝑥𝑥)〉 is the ensemble average of the image intensity, 𝐼𝐼� is the ideal intensity 

without scattering, and 𝑃𝑃𝑃𝑃𝐹𝐹������� is the point spread function of the scattering.44 This 

depends on the characteristics of the roughness. Assuming the roughness is characterized 

by a zero-mean, stationary, ergodic, and Gaussian distributed variable, the PSF can be 

given by, 

, 
1.9 

where 𝜎𝜎�is the RMS roughness, 𝐶𝐶�is the roughness autocorrelation function, and ℱ is the 

Fourier transform operator.44 Gaussian roughness therefore blurs the image intensity, 

resulting in a loss of contrast. 

 Roughness in EUVL optics can be the millimeter regime, so modeling, 

characterization, and compensation is critical to image process optimization.43 Typically, 

hI(x)i = PSF scatter ? I0
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the flare PSF is convolved with the ideal aerial image to obtain the effect of flare on the 

aerial image, which is called a flare map. This flare map can then be used to compensate 

on the mask for flare.  
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2. BACKGROUND 

2.1 Theory of Image Formation 

To define the inverse imaging problem, we will first consider the forward imaging 

problem. The geometrical theory of aberrations will be formalized. Next the wave theory 

of aberrations will be established. 

2.1.1 Geometrical Image Formation 

We consider a general imaging system as shown in Figure 18. Light travelling 

from a point on the potentially extended source is imaged onto the mask. This light 

diffracts at the mask, creating a new wavefront that serves as the input of the imaging 

system. The system transforms that light in a unique way and outputs a new wavefront, 

which can vary in amplitude and phase from the ideal wavefront. In the ideal case the 

new wavefront converges to a point in the image plane.26,27 

 

Figure 18. An example of the type of imaging system being studied.  

The coordinate systems which will be used for analysis of this imaging system are 

shown in Figure 19. Let 𝑃𝑃�∗ be the Gaussian image of an object located at 𝑃𝑃�. The image 



23 
 

at 𝑃𝑃�∗ is formed by a spherical wavefront centered at that point and going through the 

center of the exit pupil plane, 𝑂𝑂�� . In the presence of aberrations the image of an object at 

𝑃𝑃� may form at some different point 𝑃𝑃�. 

 

Figure 19. Coordinate systems in the object and image planes. 

The vector 𝑃𝑃�∗𝑃𝑃����������⃑  characterizes the effect of an aberration from the perspective of 

the rays, and is therefore called the ray aberration.45 Likewise, the difference between the 

actual wavefront W and the Gaussian reference wavefront S is given by the optical path 

difference, 

, 2.1 

where 𝑄𝑄� and 𝑄𝑄 are the intersection of the ray 𝑃𝑃��𝑃𝑃� with S and W, respectively, as shown 

in Figure 20. The wave aberration can be rewritten as, 

. 2.2 

Because the center of the exit pupil is on the same wavefront as 𝑄𝑄�,26 

 =
⇥
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. 2.3 

For any point (𝑋𝑋�, 𝑌𝑌�, 𝑍𝑍�) in the object plane there is a corresponding point in the 

image plane given by (𝑋𝑋�, 𝑌𝑌�, 𝑍𝑍�). These are called conjugate points. The path difference 

in the pupil will therefore depend on the two conjugate points and can be characterized 

by a function 𝑉𝑉(𝑋𝑋�, 𝑌𝑌�, 𝑍𝑍�, 𝑋𝑋�, 𝑌𝑌�, 𝑍𝑍�), called the point characteristic function. 46 The wave 

aberration can therefore be re-written as,  

. 2.4 

 

Figure 20. Geometry of the exit pupil and image planes. 

The Gaussian reference sphere can be given by the equation,  

. 2.5 

The coordinates of the Gaussian point are also related to the coordinate in the object 

plane by the lateral magnification as, 

 = [P0Q] [P0O
0
1]

 = V (X0, Y0, 0, X, Y, Z) V (X0, Y0, 0, 0, 0, D1)

(X X?
1 )

2 + (Y  Y ?
1 )

2 + Z2 = X?2
1 + Y ?2

1 +D2
1
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. 
2.6 

Therefore, the wave aberration is only a function of the coordinates (𝑋𝑋�, 𝑌𝑌�, 𝑋𝑋�, 𝑌𝑌�).  

For now, our optical system is defined to be rotationally invariant. Rotational 

invariance is useful in optical systems because a conventional lens’ aberrations should be 

independent of its rotation. This requirement means that the wavefront aberration must 

also be rotationally invariant. If the system is rotated through an angle 𝜃𝜃 we can relate the 

new rotated coordinates to the unrotated coordinates by the relations, 

. 
2.7 

We now consider the quantity (𝑋𝑋� + 𝑌𝑌�), which is given in the rotated system by, 

. 2.8 

The quantity (𝑋𝑋� + 𝑌𝑌�) has the same functional form regardless of the rotation, and 

therefore it is rotationally invariant. It can also be shown that the quantity (𝑋𝑋�𝑋𝑋 + 𝑌𝑌�𝑌𝑌) is 

rotationally invariant.  We can therefore expect that a power series expansion of the wave 

aberration will include powers of (𝑋𝑋�� + 𝑌𝑌��) and (𝑋𝑋� + 𝑌𝑌�) and (𝑋𝑋�𝑋𝑋 + 𝑌𝑌�𝑌𝑌). The wave 

aberration can be expanded as,32,45 

X?
1 = MX0

Y ?
1 = MY0

X 0 = X cos ✓  Y sin ✓
Y 0 = X sin ✓ + Y cos ✓

X 02 + Y 02 = X2 cos2 ✓ + Y 2 sin2 ✓ + Y 2 cos2 ✓ +X2 sin2 ✓ = X2 + Y 2
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. 

2.9 

The rays are normal to the wavefront, therefore for ray 𝑄𝑄𝑃𝑃�, which passes through 

the points (𝑋𝑋, 𝑌𝑌, 𝑍𝑍) and (𝑋𝑋�, 𝑌𝑌�, 0), the direction cosines are given by,32 

, 
2.10 

, 
 

. 
 

Using implicit differentiation of the Gaussian reference sphere, 

. 
2.11 

Simplifying, 

. 
2.12 

Through differentiation of the wave aberration, as given in Equation 2.4, we also have,  

. 
2.13 

Combining, 

(X0, Y0, X, Y ) = a0 + b0(X
2
0 + Y 2

0 ) + b1(X
2 + Y 2) + b2(X0X + Y0Y )
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2
0 + Y 2

0 )
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2
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. 
2.14 

We can simplify this expression and repeat the same process in Y to obtain,26,32,45 

, 
2.15 

. 
 

These expressions connect the wave aberration to the ray aberration exactly. 

However, they require a priori knowledge of the aberrations to know 𝑅𝑅�. Nevertheless, 

these expressions show that aberrations must involve X and Y. Therefore, in our series 

expansion of the wave aberration the terms corresponding to 𝑎𝑎�, 𝑏𝑏�, 𝑐𝑐�, and so on do not 

represent aberrations.45 

The quantity (𝑋𝑋� + 𝑌𝑌�) corresponds to 𝑏𝑏� and represents an optical path 

difference which is null at the center of the pupil but varies quadratically moving towards 

the edges. This represents a wavefront which has a different radius than the Gaussian 

reference, and will therefore converge either faster or slower than the reference sphere. 

No matter which, the image point will be focused in a different plane than the reference.45 

The quantity (𝑋𝑋�𝑋𝑋 + 𝑌𝑌�𝑌𝑌) corresponds to 𝑏𝑏� and represents a tilted wavefront. 

Using Equation 2.15 we can find, 
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. 
 

 This corresponds to a transverse shift of the image point in the Gaussian image plane. 

The quantity (𝑋𝑋� + 𝑌𝑌�)� corresponds to 𝑐𝑐� and is the only term which does not 

vanish for (𝑋𝑋�, 𝑌𝑌�) = (0,0).  In expanded form this term is given as, 

. 2.17 

We can now make analogies between this form and the 1st order focus and tilt errors. 

There are no odd-parity terms, so the image point will not be shifted within its focal 

plane. This term is also independent of the object coordinates and contributes 

quadratically increasing phase shifts, or in other words: quadratically increasing focal 

shifts. Thus, rays entering the lens at different heights will be focused in different 

planes.26,32,45  These effects describe the term commonly called spherical aberration. 

 The quantities corresponding to 𝑐𝑐� and 𝑐𝑐� are generally considered together. If we 

take 𝑐𝑐� = 𝑐𝑐�, this term can be expanded to, 

. 2.18 

Again, we can now make analogies between this form and the 1st order focus and tilt 

errors. In this case, points in different pupil axes will be focused in different planes. This 

effect of orientation dependent focus errors is the common effect of astigmatism.26,32,45 

 The term corresponding to 𝑐𝑐� has an odd-parity component, so we can expect it to 

contribute transverse image shifts. Expanding this quantity, we obtain, 

Y1  Y ?
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R0

n1
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X4 + 2X2Y 2 + Y 4

X2
0 (2X

2 + Y 2) + Y 2
0 (X
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. 2.19 

This term corresponds to an image point shift which varies cubically with the object point 

coordinates. This effect is also known as distortion.45 

 Finally, expanding the quantity corresponding to 𝑐𝑐� we obtain, 

. 2.20 

As the object is moved further off-axis, the image point is shifted further from its 

Gaussian point in both directions. It is however shifted more in one direction, which 

creates the comet tail smear associated with coma.45 

2.1.1.1 Refraction at an ideal spherical interface 

We now briefly consider an ideal spherical interface, as shown in Figure 21. The 

object and image points are given by black circles, while the vertex and center of 

curvature are given by gray circles. The optical path length from the object point to the 

image point is, 

. 2.21 

We can analyze the triangle defined by the object point, the incident point, and the 

center of curvature using the law of cosines to obtain, 

. 2.22 

Similarly, the length of the ray on the image side can be written as, 

X(X0Y
2
0 +X3

0 ) + Y (X2
0Y0 + Y 3

0 )

X0X
3 +X2Y Y0 + Y 2XX0 + Y0Y

3

OPL = n1lo + n2li

l2o = R2 + (so +R)2  2R(so +R) cos
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. 2.23 

Therefore, the optical path length can be written as, 

. 
2.24 

 

Figure 21. The geometry of an ideal spherical interface 

Fermat’s principle states that light travels along the path that takes the least time. 

In more mathematical terms, the derivative of an optical path length with respect to 

position is zero. In this case, the angle 𝜙𝜙 can be taken as the position variable so that, 

. 
2.25 

In all cases 𝑅𝑅 > 0 and sin 𝜙𝜙 > 0 so this expression can be simplified to, 

. 
2.26 
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This expression is exact, but requires knowledge of the lengths of the rays. We can avoid 

that by using Equations 2.22 and 2.23. Using a Taylor expansion of cos𝜙𝜙 and (1 +

𝑥𝑥)��/� keeping only the first two terms in both expansions, we obtain, 

, 
2.27 

 

. 
2.28 

For small angles, we observe, 

. 
2.29 

Combining with Equations 2.27 and 2.28, 

, 
2.30 

 

. 
2.31 

Inserting these expressions into Equation 2.26 we can find,27 

. 
2.32 

This equation allows computation of the image location formed by an ideal 

spherical interface. In practice, it is most convenient to solve this equation numerically. 

The focal length of a lens is defined as the image location of an infinitely distant object, 

which can be approximated to the third-order as, 
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. 
2.33 

In the paraxial, or first-order, approximation only the first term occurs, and the object is 

focused to a point. Including the higher order term, we see that the focal length depends 

quadratically on the ray height at the interface. This is exactly spherical aberration as 

derived in the previous section. Further, in two dimensions an off-axis object point will 

not be focused to a point due to oblique astigmatism. Thus, aberrations are not only due 

to manufacturing defect, and can be considered on a theoretical basis.8,27 

Aberration balancing is considered a crucial step in modern lens design. 

Typically, several rays are traced through the system and the optical path length from 

surface to surface is computed. The wavefront is defined by surfaces of constant path 

length, and the wavefront aberration can be determined through comparison to a 

Gaussian reference.47  Aberrations can be balanced with optical components that 

contribute nearly equivalent aberrations in the opposite direction. For example, spherical 

aberration can be corrected by adding a compensation plate which contains an aspheric 

surface. There are several competing objective lens system designs for EUVL scanners. 

The composite RMS wavefront error is 0.12𝜆𝜆–0.23𝜆𝜆 in these designs at 0.25 NA.14  

2.1.2 Coherent Image Formation 

We now consider again a linear shift invariant optical system that transforms an 

input object to an output image, as in Figure 18. A monochromatic point source of light 

far away from an aperture creates even illumination with parallel wavefronts. 
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Figure 22. The geometry of the coherent diffraction problem 

 Via Huygen’s principle we assume the electric field can be represented as a sum 

of point sources emitting spherical waves as,48,49 

. 
2.34 

The distance from a point in the aperture to the screen is given by 

. 2.35 

and the distance from the center of the aperture to the screen is given by 

. 2.36 

The distance between the screen and a point can then be simplified and Taylor expanded 

to obtain, 

dE(x0) = E0(x)
eikR

R
dx

R =
p
(x x0)2 + z2

R0 =
p
x02 + z2
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. 
2.37 

We can conclude from Equation 2.37 that �
�
≈ �

��
	 for large distances. The electric field in 

the receiving plane is then given by, 

. 
2.38 

After some algebraic manipulation, this can be expanded to, 

. 
2.39 

We would prefer to ignore the quadratic phase term in Equation 2.39, so we must 

determine where it will be negligible.48 This occurs when that term is near unity, or, 

. 
2.40 

Equation 2.40 implies, 

, 
2.41 

where a is the half-width of the aperture. Therefore, the screen must be very far away as 

compared to the size of the aperture. We have already assumed that 𝑅𝑅� is large, so we can 

therefore ignore the quadratic phase term in the integrand. We also note that, 
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. 
2.42 

The x-component of the wave vector can be interpreted as a spatial frequency, which we 

will call u. Finally, the integral can be simplified to, 

. 
2.43 

This is the Fraunhofer diffraction integral and is a form of Fourier integral.48,49 Therefore, 

the electric field in the receiving plane of a uniformly illuminated aperture is given by the 

Fourier transform of the aperture. The receiving plane will therefore be called the 

frequency domain. 

Equation 2.43 represents the electric field in the entrance pupil of the imaging 

system. We know from Section 2.1 that aberrations are caused by phase in the exit pupil 

which is characterized by the pupil function. For an ideal pupil, the pupil function simply 

characterizes the shape of the aperture. The electric field in the exit pupil is expressed 

through multiplication with the pupil function as an inverse Fourier transform, or, 

. 
2.44 

We also know that the imaging system transforms the incident radiation into a 

wavefront converging on the image plane. Therefore, the electric field in the image plane 

can be expressed as,48,49 
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. 
2.45 

Using the shift theorem of the Fourier transform,50 

. 
2.46 

After carrying out the Fourier transform with respect to 𝑢𝑢′ and rearranging, 

. 
2.47 

where 𝑚𝑚(𝑥𝑥) is the mask function, and 𝐻𝐻(𝑥𝑥) is the point spread function and is the 

Fourier transform of the pupil function. Equation 2.47 is easily recognized as a 

convolution integral. The image plane intensity can be easily obtained through the 

squared modulus of this integral. 6,26,41 

 We therefore see that the pupil function is the transfer function of the imaging 

system in the coherent limit. For an ideal grating object, the diffracted spectrum samples 

the pupil function. In general, the pupil function is complex valued and can be given as, 

. 2.48 

where α(u,v) represents the pupil amplitude function, and W(u,v) represents the pupil 

phase function.28 In an unaberrated system, the amplitude function is uniformly 

transmitting and the phase is zero at best focus. It is customary to expand the phase 

function in a Fourier-Zernike series as, 
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, 
2.49 

where (ρ,ϕ) represents polar coordinates defined in terms of (u,v), and 𝑍𝑍� represents the 

n-th Zernike polynomial.6,28 

 The Zernike polynomials form a complete set of orthogonal polynomials over the 

unit circle and fulfill,45 

. 
2.50 

This differential equation can be solved via separation of variables by assuming a 

solution of the form, 

, 2.51 

where 𝑛𝑛 and 𝑚𝑚 are integers with −𝑛𝑛 < 𝑚𝑚 < 𝑛𝑛 and even 𝑛𝑛 −𝑚𝑚. The azimuthal 

component can be shown to be given by, 

, 
2.52 

while the radial component can be shown to be given by, 

. 
2.53 

The radial solution can be obtained by the appropriate change of variables to transform 

Equation 2.50 into a hypergeometric equation. The complete Zernike polynomial is then 

given by the product of Equations 2.52 and 2.53, as in Equation 2.51.45 
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The Zernike radial polynomials are commonly normalized so that 𝑅𝑅��(𝑟𝑟 = 1) = 1 

and 𝑅𝑅��(𝑟𝑟 = 0) = 0 for 𝑚𝑚 ≠ 0. In lithography it is customary to order the polynomials 

by a single index, rather than by n and m.6 The primary Zernike polynomials are given in 

Table 1 in both polar and Cartesian forms. It is extremely uncommon to work with the 

Zernike polynomials in Cartesian coordinates. This form is provided in Table 1 for 

comparison to Equations 2.6 – 2.9. The Zernike polynomials exactly reproduce the form 

of the geometric aberrations derived in Section 2.1. Contour plots of the first few terms 

are given in Figure 23. 

Table 1. The primary Zernike polynomials in both polar and Cartesian 
coordinates 

N Name Polar Equation Cartesian Equation 

1 Piston 1 1 

2 Tilt X 𝑟𝑟 cos 𝜃𝜃 𝑢𝑢 

3 Tilt Y 𝑟𝑟 sin 𝜃𝜃 𝑣𝑣 

4 Defocus 2𝑟𝑟� − 1 2(𝑢𝑢� + 𝑣𝑣�) − 1 

5 Astigmatism 90° 𝑟𝑟� cos 2𝜃𝜃 𝑢𝑢� − 𝑣𝑣� 

6 Astigmatism 45° 𝑟𝑟� sin 2𝜃𝜃 2𝑢𝑢𝑣𝑣 

7 Coma X (3𝑟𝑟� − 2𝑟𝑟) cos𝜃𝜃 3𝑢𝑢(𝑢𝑢� + 𝑣𝑣�) − 2𝑢𝑢 

8 Coma Y (3𝑟𝑟� − 2𝑟𝑟) sin 𝜃𝜃 3𝑣𝑣(𝑢𝑢� + 𝑣𝑣�) − 2𝑣𝑣 

9 Spherical 6𝑟𝑟� − 6𝑟𝑟� 6(𝑢𝑢� + 𝑣𝑣�)� − 6(𝑢𝑢� + 𝑣𝑣�) 

10 Trefoil X 𝑟𝑟� cos 3𝜃𝜃 𝑢𝑢� − 2𝑢𝑢𝑣𝑣� 

11 Trefoil Y 𝑟𝑟� sin 3𝜃𝜃 2𝑢𝑢�𝑣𝑣 − 𝑣𝑣� 
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Figure 23. Contour plots of the 3rd order Zernike polynomials. Indices are given for the 
single index classification, along with their classical names. 

2.1.3 Partially Coherent Image Formation 

Informally, the coherence of light refers to its ability to create an interference 

pattern. An ideal monochromatic wave is sinusoidal and can interfere with any other ideal 

monochromatic wave. However, no wave is strictly monochromatic and interference 

requires a statistical similarity. In general, there are two types of coherence: 1) temporal 

and 2) spatial.26 These refer to the ability of a light field to interfere with a temporal or 

spatially shifted version of itself. Light which is perfectly correlated is said to be 

coherent, while light which is perfectly uncorrelated is said to be incoherent. Anything in 

between is considered partially coherent.26 

To develop an imaging theory for a partially coherent source we will consider a 

single point of a spatially extended source at two different points in the receiving plane, 

as in Figure 24. We begin with the mutual coherence function, as defined by Wolf,26,51 

, 2.54 

where 𝐸𝐸� is an electric field at 𝑃𝑃�, 𝜏𝜏 = 𝑡𝑡� − 𝑡𝑡� is the time difference between the two 

field points, and the angle brackets denote a long time average, i.e.,51 

12(⌧) = (P1, P2, ⌧) = hE1(t+ ⌧)E⇤
2 (t)i
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. 
2.55 

 

Figure 24. Geometry of a partially coherent source and its receiving plane 

We must now determine how the mutual coherence of the spatially extended 

source of a lithography system propagates to the image plane. The intensity in the image 

plane can be determined by letting 𝑃𝑃� = 𝑃𝑃� and 𝜏𝜏 = 0	so that,26 

. 2.56 

The spectral width of lithography sources is quite small so we will make a quasi-

monochromatic approximation and assume that our source is temporally coherent.6,51,52 

Under this assumption the mutual coherence function becomes, 

, 2.57 
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which is the cross-correlation of the two electric fields. If the receiving plane is 

sufficiently far away from the source, the electric field can be given by,26 

, 
2.58 

where 𝑅𝑅� is the distance between the source point and 𝑃𝑃�, ℰ is the complex amplitude of 

the field. The electric fields in this form, and therefore their mutual coherence, are 

solutions to the wave equation. The mutual coherence function is then, 

. 
2.59 

The time origin in a temporally coherent field is arbitrary, so we can offset the time axis 

by 𝑅𝑅�/𝑐𝑐 to obtain, 

. 
2.60 

If the source is far away then 𝑅𝑅� ≈ 𝑅𝑅� so, 

, 
2.61 

where 𝐼𝐼(𝑃𝑃�) is the intensity distribution of the source and 𝑘𝑘� is the mean wavenumber. 

The distance between the source point and the field points is given by, 

, 2.62 
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where R is the distance between the source point and the mid-point of the two field 

points. So, the path difference between the two field points is, 

. 

2.63 

Using a Taylor series and some algebra, 

. 
2.64 

We can express the spatial frequency in terms of this geometry as,26 

, 
2.65 

. 
 

Combining, the mutual intensity can be written as, 

. 
2.66 

This again is a Fourier integral and is called the van Cittert-Zernike theorem.26 This 

theorem implies that a quasi-monochromatic incoherent source creates mutual coherence 

in a far field plane given by the Fourier transform of its intensity function. The phase 

term at the front can be safely ignored if the distance between 𝑃𝑃�and 𝑃𝑃� is much less than 

the mean wavelength.26 
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 We found in Equation 2.47 that the electric field in the image plane due to a 

coherent source is given by the convolution of the transmitted electric field with the point 

spread function, 

. 
2.67 

Because the mutual coherence follows its own wave equation, we can find the mutual 

coherence in the image plane via, 

. 
2.68 

Taking the Fourier transform of the mutual coherence function, 

. 
2.69 

The intensity in the image plane can be obtained by letting 𝑃𝑃� = 𝑃𝑃� which implies that 

𝑢𝑢�
(�) = 𝑢𝑢�

(�) = 𝑢𝑢. The intensity is then given by, 

. 
2.70 

The source intensity and pupil function can be grouped together so that the image plane 

intensity can be written as, 

, 
2.71 
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⇣
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where TCC is the transmission cross coefficient and is given by, 

. 
2.72 

This can be extended to two dimensions as, 

 
2.73 

. 
2.74 

Equation 2.74 is often referred to as the Hopkins imaging equation and provides a 

general solution to computing partially coherent imagery in the presence of 

aberrations.26,53 The TCC allows the action of a partially coherent imaging system to be 

separated from the object. These solutions though are considerably more difficult to 

interpret physically than in the coherent limit. The TCC can be interpreted as an overlap 

integral between the source, the pupil function, and a reflection of the pupil function. The 

pupil function is averaged over the partially coherent source, so an ideal grating object 

would sample the source-average pupil function. 

 

 

TCC =

Z
duS(u)P (u1  u)P ⇤(u2  u)

I(x, y) =

Z Z
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Z Z
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2.2 Linear Algebra Techniques 

2.2.1 Eigenvector Decomposition 

Eigenvector decomposition is a special form of matrix factorization which applies 

only to square diagonalizable matrices. For a matrix A which has these properties, the 

eigenvector decomposition is stated as,54,55  

. 2.75 

where X is a matrix of eigenvectors and 𝜦𝜦 is a diagonal matrix of eigenvalues. The 

eigenvectors fulfill the property, 

, 2.76 

where 𝑥𝑥�� is the i-th column of X and 𝜆𝜆� is the i-th element of the diagonal of 𝜦𝜦. The 

eigenvectors are orthogonal and span the entire space of A. Therefore, they form a basis 

in which A can be perfectly represented as, 

, 
2.77 

where the dagger symbol represents the Hermitian conjugate of a matrix.55 To find the 

eigenvectors of a matrix one must solve the system of equations generated by, 

, 2.78 

where I is the appropriate identity matrix. This system is not linearly independent, so any 

matrix may have multiple forms of equivalent eigenvectors.56 It is therefore possible to 

AX = X⇤

Ax̂i = ix̂i

A =

kX

i=1

ix̂ix̂i
†

det (A I) = 0
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find one set of eigenvectors which point in the opposite direction of another set. Both sets 

are factorizations valid however and should be considered equivalent. 

2.2.2 Singular Value Decomposition 

Eigenvector decomposition is a very useful technique and—despite its restriction 

to only square matrices—applies to many problems. Singular value decomposition (SVD) 

is a generalization of eigenvector decomposition to rectangular matrices. Any matrix 

multiplied by its transpose will generate a square symmetric matrix.54 Symmetric 

matrices are diagonalizable and can therefore be analyzed with eigenvector 

decomposition. Let B represent an arbitrary n x m matrix. The eigenvector decomposition 

of B†B states, 

. 2.79 

The eigenvectors of B†B will not fulfill the eigenvalue equation for B, but we can make 

the following definition,57 

. 2.80 

V is an orthogonal matrix, so this definition implies that, 

, 2.81 

where 𝜮𝜮 is a diagonal matrix containing the square roots of the the diagonal elements of 

𝜦𝜦. This is the singular value decomposition of the matrix B.  

In the case that B is a square matrix, U and V can be interpreted as rotation 

matrices because they are both orthogonal matrices. The matrix 𝜮𝜮 is diagonal and 

(
B†B

)
V = V⇤

Bv̂i =
p
iûi

B = U⌃V†
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therefore represents a scaling. SVD can be interpreted geometrically as a rotation and 

stretching and rotation of the unit disc.57  

2.2.3 Principal Component Analysis 

Principal component analysis (PCA) is a statistical technique to identify the 

directions of highest variation in a high dimensional dataset. To begin, the covariance 

matrix of a mean-centered dataset is computed and decomposed into its eigenvectors.57,58 

The eigenvectors are then sorted by decreasing eigenvalue. The direction of highest 

variation is given by the eigenvector with the highest eigenvalue and is termed PC1. SVD 

can be used equivalently to compute PCA. Therefore, PCA can be interpreted 

geometrically as determining the basis in which the original data is rotated to reduce 

redundancy and highlight variation. 

This process is depicted in Figure 25 where PCA was used to analyze data 

representing a line in R3 with Gaussian noise. In Figure 25 this is the direction which 

appears to be a least-squares line of best fit to the data. In actuality, this direction 

minimizes the error orthogonal to the data—not orthogonal to the axis. 
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Figure 25. Data representing a line in R3 with Gaussian noise (blue circles) with the  
orthogonal directions of highest variation identified (black arrows) via PCA.  

2.2.4 SOCS decompositions 

 Sum of coherent systems (SOCS) decomposition is a technique to compute partially 

coherent imagery fast via eigenvector decomposition of the TCC. We can see from Equation 2.74 

that the TCC function can be described by a Hermitian matrix T because, 

, 2.82 

This matrix can become quite large, but it can be decomposed into a product of a smaller matrix, 

, 2.83 

where P is called the pupil shift operator and P† is its Hermitian adjoint.59,60 Further 

decomposition of the pupil shift operator via singular value decomposition gives the relation, 

, 2.84 

where U is a matrix whose rows represent the eigenvectors of PP†, V† is a matrix whose columns 

represent the eigenvectors of P†P, and L is a diagonal matrix with the singular values of P.   

TCC(f 0, g0, f 00, g00) = TCC⇤(f 00, g00, f 0, g0)

T = P†P

P = ULV†



49 
 

 Noting Equation 2.83, it is apparent that V contains the eigenvectors of the TCC matrix, 

which leads to the eigenvalue decomposition of T, 

. 2.85 

The TCC eigenfunctions, 𝛷𝛷�, are obtained by reshaping the columns of V†. The image plane 

intensity can in turn be decomposed using the eigenfunctions of the TCC function as,61 

, 
2.86 

where 𝛹𝛹�  is the k-th image intensity eigenfunction given as,  

. 2.87 

 

  

T = VL2V†

I(x, y) =

NX

k=1

L2
kk | k(x, y)|2

 k(x, y) = F1 {Φk(x, y)M(x, y)}
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3. MEASURING PUPIL VARIATION 

3.1 A naïve example 

Consider a 1D slit pupil with a pupil function given by, 

𝑃𝑃(𝑢𝑢) = 𝛼𝛼(𝑢𝑢)𝑒𝑒��(�). 3.1 

Diffraction of a line-space array with pitch P from a coherent source has the spectrum, 

	𝑀𝑀�(𝑢𝑢) =
1
2 𝛿𝛿
(𝑢𝑢) +

1
𝜋𝜋 𝛿𝛿 �𝑢𝑢 −

1
𝑃𝑃� +

1
𝜋𝜋 𝛿𝛿 �𝑢𝑢 +

1
𝑃𝑃�, 

3.2 

assuming only the 0th and ±1st diffraction orders are collected by the lens. This spectrum 

samples the pupil function as, 

𝐸𝐸�(𝑢𝑢) = 𝑀𝑀�(𝑢𝑢)𝑃𝑃(𝑢𝑢) =
𝑃𝑃(0)
2 𝛿𝛿(𝑢𝑢) +

𝑃𝑃(𝜌𝜌�)
𝜋𝜋 𝛿𝛿(𝑢𝑢 − 𝜌𝜌�) +

𝑃𝑃(−𝜌𝜌�)
𝜋𝜋 𝛿𝛿(𝑢𝑢 + 𝜌𝜌�), 3.3 

where 𝜌𝜌� is defined to be the spatial frequency, or 1/𝑃𝑃. The electric field in the image-

domain is given by the Inverse Fourier Transform, or, 

𝐸𝐸(𝑥𝑥) =
𝑃𝑃(0)
2 +

𝑃𝑃(𝜌𝜌�)
𝜋𝜋 𝑒𝑒������ +

𝑃𝑃(−𝜌𝜌�)
𝜋𝜋 𝑒𝑒�������. 3.4 

The image is therefore given by, 

𝐼𝐼(𝑥𝑥) = 𝐸𝐸(𝑥𝑥)𝐸𝐸∗(𝑥𝑥). 3.5 
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After simplification, 

𝐼𝐼(𝑥𝑥) =
𝛼𝛼(0)�

4 +
𝛼𝛼(𝜌𝜌�)�

𝜋𝜋� +
𝛼𝛼(−𝜌𝜌�)�

𝜋𝜋� −
2𝛼𝛼(𝜌𝜌�)𝛼𝛼(−𝜌𝜌�)

𝜋𝜋�

+
𝛼𝛼(0)𝛼𝛼(𝜌𝜌�)

𝜋𝜋 cos[2𝜋𝜋𝜌𝜌�𝑥𝑥 +𝑊𝑊(𝜌𝜌�) −𝑊𝑊(0)]

+	
𝛼𝛼(0)𝛼𝛼(−𝜌𝜌�)

𝜋𝜋 cos[2𝜋𝜋𝜌𝜌�𝑥𝑥 +𝑊𝑊(0) −𝑊𝑊(−𝜌𝜌�)]

+
4𝛼𝛼(𝜌𝜌�)𝛼𝛼(−𝜌𝜌�)

𝜋𝜋� cos� �2𝜋𝜋𝜌𝜌�𝑥𝑥 +
𝑊𝑊(𝜌𝜌�) − 𝑊𝑊(−𝜌𝜌�)

2
�	. 

3.6 

Suppose the pupil function is given by an ideal top-hat transmission with some 

combination of, for example, third-order and fifth-order coma aberration. This can be 

given as, 

𝑃𝑃(𝑢𝑢) = 𝑒𝑒�������������(������������)�, 3.7 

where A is the amount of third-order coma, and B is the amount of fifth-order coma. 

Coma is an odd-parity aberration, therefore the pupil function has the property, 

𝑊𝑊(−𝜌𝜌�) = 	−𝑊𝑊(𝜌𝜌�), 3.8 

and in this specific case, 

𝑊𝑊(0) = 0. 3.9 

The image can then be given by, 

𝐼𝐼(𝑥𝑥) =
1
4 +

2
𝜋𝜋 cos

[2𝜋𝜋𝜌𝜌�𝑥𝑥 +𝑊𝑊(𝜌𝜌�)] +
4
𝜋𝜋� cos

�[2𝜋𝜋𝜌𝜌�𝑥𝑥 +𝑊𝑊(𝜌𝜌�)]. 3.10 
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Both of the sinusoidal terms have the same phase shift given by 𝑊𝑊(𝜌𝜌�). The spatial 

frequency 𝜌𝜌� is known and we can measure the aerial image I(x). The phase shift can be 

fit to an experimental aerial image with, for example, non-linear least squares. Therefore, 

the value of the pupil function at 𝜌𝜌� can be determined experimentally from the aerial 

image. However, the amount of third-order coma can be written as, 

𝑁𝑁 = −𝐵𝐵
10𝜌𝜌�� − 12𝜌𝜌�� + 3𝜌𝜌�

3𝜌𝜌�� − 2𝜌𝜌�
+

𝑊𝑊(𝜌𝜌�)
3𝜌𝜌�� − 2𝜌𝜌�

. 3.11 

Therefore, there are multiple combinations of A and B that can lead to the same aberrated 

aerial image. Measuring the image of one pitch is not sufficient to determine both low 

and high order aberrations. A single binary target that can measure both low and high 

order aberrations from the same image does not exist. The value of the pupil function at 

𝜌𝜌� is given by, 

𝑊𝑊(𝜌𝜌�) = 10𝐵𝐵𝜌𝜌�� + (3𝑁𝑁 − 12𝐵𝐵)𝜌𝜌�� + (3𝐵𝐵 − 2𝑁𝑁)𝜌𝜌�, 3.12 

Therefore, low- and high-order effects get lumped into one effective low-order term if the 

high-order term is ignored. If we also measure the image of another pitch with spatial 

frequency 𝜌𝜌� then we have, 

𝑁𝑁 = −𝐵𝐵
10𝜌𝜌�� − 12𝜌𝜌�� + 3𝜌𝜌�

3𝜌𝜌�� − 2𝜌𝜌�
+

𝑊𝑊(𝜌𝜌�)
3𝜌𝜌�� − 2𝜌𝜌�

. 3.13 

Combining, 

𝑊𝑊(𝜌𝜌�)
3𝜌𝜌�� − 2𝜌𝜌�

−
𝑊𝑊(𝜌𝜌�)

3𝜌𝜌�� − 2𝜌𝜌�
= 𝐵𝐵 �

10𝜌𝜌�� − 12𝜌𝜌�� + 3𝜌𝜌�
3𝜌𝜌�� − 2𝜌𝜌�

−
10𝜌𝜌�� − 12𝜌𝜌�� + 3𝜌𝜌�

3𝜌𝜌�� − 2𝜌𝜌�
�. 3.14 
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Simplifying, 

𝐵𝐵 =
𝑊𝑊(𝜌𝜌�)(3𝜌𝜌�� − 2𝜌𝜌�) −𝑊𝑊(𝜌𝜌�)(3𝜌𝜌�� − 2𝜌𝜌�)

(10𝜌𝜌�� − 12𝜌𝜌�� + 3𝜌𝜌�)(3𝜌𝜌�� − 2𝜌𝜌�) − (10𝜌𝜌�� − 12𝜌𝜌�� + 3𝜌𝜌�)(3𝜌𝜌�� − 2𝜌𝜌�)
. 3.15 

If instead the pupil function were even-parity it wound have the property, 

𝑊𝑊(𝜌𝜌�) = 𝑊𝑊(−𝜌𝜌�). 3.16 

Equation 3.10 therefore becomes, 

𝐼𝐼(𝑥𝑥) =
1
4 +

2
𝜋𝜋 cos

[𝑊𝑊(𝜌𝜌�) −𝑊𝑊(0)] cos[2𝜋𝜋𝜌𝜌�𝑥𝑥] +
4
𝜋𝜋� cos

�[2𝜋𝜋𝜌𝜌�𝑥𝑥]. 3.17 

The sinusoidal term involving the pupil function acts as a phase shift and can also be 

experimentally determined from an aerial image. Therefore, for either even- or odd-parity 

aberrations, if we have images from two different pitches we can determine both the low- 

and high-order aberrations from experimentally measured quantities. 

 This example serves two purposes: 1) to illustrate the most basic form of the 

inverse problem we are solving, and 2) to show that there is not enough information in a 

single image to measure high-order aberrations. In practice aberrations are not correlated 

with sinusoidal phase shifts to measure aberrations in lithography systems. This is 

because lithographers generally cannot directly measure the aerial image and because this 

method could be extremely sensitive to noise. All aberration measurements do correlate 

an image-domain quantity with aberrations though. 
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3.2 Interferometric techniques 

Interferometric techniques use the interference of a reference beam and a test 

beam, which has been modified by the test optic, to infer the pupil phase variation. There 

are two general categories of interferometric aberration measurements: 1) common path 

and 2) separate path interferometry. The reference beam takes a separate path in the 

latter, while the beams are split after the test optics in the former. Separate path 

interferometry is highly sensitive to atmospheric variation and vibration and is therefore 

considered incompatible with EUVL systems. 

A form of common path interferometry is already available onboard modern 

lithography scanners. Integrated Lens Interferometer at Scanner (ILIAS) uses a point 

source at the reticle plane to image the pupil plane.62 The point source is transformed by 

the test optic and is imaged in the wafer plane approximately as a point. The wafer plane 

contains a set of gratings, instead of a wafer, which causes a far-field interference pattern 

proportional to the gradient of the wavefront in the shearing direction. This setup is 

shown in Figure 26. The aberrated wavefront of the test optic can then be inferred from 

measuring the wavefront gradients in multiple directions.  

Interferometric techniques, such as ILIAS, are the de facto standard for aberration 

measurement, including DUV lithography systems. These techniques can be very 

accurate, but require additional optics and do not accurately reflect the system while it is 

in use. Moreover, interferometric techniques cannot measure pupil amplitude variation. 

Therefore, an alternative measurement technique is required for EUVL systems.  
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Figure 26. Setup for a lateral shearing interferometer in a lithography system, as in 
Integrated Lens Interferometer at Scanner (ILIAS)  

3.3 Image-based techniques 

In 1999 Dirksen et al. introduced the aberration ring test (ART) to measure the 

lens aberrations of a scanner from images formed by the scanner itself.63 A cylindrical 

hole is etched into a reticle to form a 𝜆𝜆/2 phase feature, as in Figure 27. An unaberrated 

system should image the hole as a circular ring. Any deviation from a circle can therefore 

be attributed to aberrations. The edges of the ring are expanded in a Fourier series as, 

, 
3.18 

where (𝑟𝑟, 𝛹𝛹) are polar coordinates in the wafer plane and z is the defocus. Each Fourier 

component is then correlated to an aberration type. For example for coma X, 

, 3.19 

where 𝛽𝛽� is a model parameter and 𝑍𝑍� is the amount of coma X. Higher-order terms are 

lumped into an equivalent low-order term and can be determined by exposing an 

aberration ring at multiple illumination settings (ARTEMIS).64 This requires solving a 

system of equations with the Fourier components at each illumination setting, i.e., 

r(z, ) = a0(z) +
X

m

am(z) cosm +
X

m

bm(z) sinm 

Cx = a1 = 7Z7
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. 

3.20 

ARTEMIS can measure up to Z25 with a 3𝜎𝜎 reproducability between 8 and 23 m𝜆𝜆 (1.5–

4.5 nm on a DUV system and 0.11–0.31 nm in EUV) depending on the aberration type.64 

An alternative to ARTEMIS, which requires a special test structure on the reticle, 

is to have test structures directly built into the reticle and wafer stages. The transmission  

 

Figure 27. An SEM micrograph of the cylindrical phase hole on a reticle with a depth of 
𝝀𝝀/𝟐𝟐 (left) and an image of the phase hole formed in resist (right) 63 

image sensor (TIS) method uses a grating in the reticle stage and correlates 

measurements from a photodetector in the wafer stage with the effects of aberrations.  

Even parity aberrations are correlated with best focus shifts, while odd parity aberrations 

are correlated with image shifts. The TIS method can measure astigmatism, coma, and 

spherical aberration, but cannot measure three-foil because three-foil does not affect the 

imaging of horizontal and vertical gratings. Higher-order terms can be measured by using 

multiple illumination settings, in which case the test is referred to as TIS at multiple 

illumination settings (TAMIS) and has 3𝜎𝜎 reproducibility of 10-15 m𝜆𝜆 (2–3 nm on a 

DUV system or 0.14–0.20 nm in EUV).  
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Phase features have proven to be difficult to create on EUV reticles, so 

ART/ARTEMIS are not an option for EUVL. An example of 50 nm and 100 nm phase 

features on an EUVL reticle is shown in Figure 28. There is extreme etch undercutting, 

which destroys the 50 nm features, and significantly blurs the 100 nm features. Similarly, 

TIS/TAMIS have been difficult to implement in EUVL because image sensors can be 

unreliable. This, combined with its inability to measure three-foil, makes TIS/TAMIS not 

a viable option for EUVL.  

(a) (b) 

  

Figure 28. Transmission electron micrographs of (a) 50 nm and (b) 100 nm phase features 
post etch. 

The ideal aberration measurement technique for EUVL uses binary targets and 

images formed in resist. To this end, we have identified a number of pattern types, 

already present on most masks, which are sensitive to specific types of Zernike 

polynomials, as shown in Figure 29a. If a certain aberration is present, then there will be 

a phase or amplitude difference between the measurement sites of these targets.  

The pupil variation of an optical system can then be extracted via the images of 

these targets as in the algorithm described by Figure 29b. To begin, we assume that the 

system is aberration free. Several aerial image simulations are computed and a model is 
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fit to these simulations via non-linear least squares. This model can then be inverted to fit 

to experimental data (either aerial image or CD data) and obtain an initial guess for that 

aberration. This process is repeated for each aberration to obtain an initial guess for the 

aberrated wavefront. Finally, the process repeats until the algorithm converges on a 

solution for the pupil variation. 

As an example, if astigmatism 90º is present in the system the diffraction 

information for a vertical grating and that of a horizontal grating of the same pitch will 

experience opposite phase shifts, causing an orientation dependent shift in CD. Moreover, 

this difference in CD will be focus dependent, as seen in Figure 30. These targets have 

been designed to interrogate third order aberrations only. It is difficult to directly 

interrogate high order terms due to the partially coherent source averaging the pupil.  

(a) (b) 

  

Figure 29. (a) Examples of metrology targets for each primary aberration. The red lines 
denote measurement locations. The aberration is interrogated by the CD 
difference at measurement sites. (b) A flowchart for the iterative algorithm of 
image-based pupil characterization. 
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(a) (b) 

  

Figure 30. Variation in aerial image CD for vertical lines and spaces through focus and 
different levels of Z5 (a), and the variation in the difference in vertical and 
horizontal aerial image CD through focus and Z5 (b).  

3.4 Optimization of image-based metrology targets 

The dimensions of the targets need to be optimized for each system and 

illumination setting. A target will be most sensitive when its diffracted spectrum is 

centered at the extrema of the Zernike polynomial it is meant to interrogate. Using this 

technique to optimize targets to interrogate third and fifth order astigmatism, there is only 

a minor difference in the aberration phase RMS between the two aberrations, as seen in 

Figure 31. There is, however, a large difference in aerial image contrast and NILS. 

Therefore, we observe a trade-off between target printability and aberration sensitivity. 

Smaller structures are more sensitive to aberrations, but the most sensitive structures 

may not be printable. Instead, we balance printability and aberration sensitivity to 

determine the optimum target by considering the worst-case scenario. After choosing a 

source shape, the required depth of focus (DOF) is determined. These are used as inputs 

in aerial simulations that are constrained by determining the minimum NILS to be 

considered printable and the desired aberration tolerances.  
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For example, we will consider target optimization for an NXE:3100 system. We chose 

an annular source with 0.5–0.8 σ at 0.25NA and a maximum of ±75nm defocus. A NILS 

threshold of 2 was used to define printability, while aberration tolerances were 

determined via the mean aberration levels extracted using the image-based technique in 

the Alpha Demo Tool (ADT), a prototype EUVL system. It was assumed that the 

NXE:3100 system would have less severe aberrations than the ADT. 

(a) 

 
(b) 

 

Figure 31. Diffraction information and resulting aerial images for 20nm (a) vs. 33nm (b) 
line/ space array overlaid with 3rd and 5th order 90º astigmatism respectively; 
0.33 NA, 0.2σ. 
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Using this approach NILS contours were constructed for each metrology target, as 

shown in Figure 32. The target to interrogate spherical aberration is not present in this 

figure because spherical aberration is measured by shifts in best focus, rather than by CD. 

Instead, this target was optimized by centering the ±1st, ±2nd, and ±3rd diffraction orders 

at the pupil edge. Next, a point was chosen in between the pitch determined for the ±1st 

and ±2nd diffraction orders, and likewise for the ±2nd and ±3rd diffraction orders. This 

gives a total of five pitches to interrogate spherical aberration. For this source we 

determined pitches of 42 nm, 64 nm, 85 nm, 105 nm, and 125 nm to be optimal. 

The remaining aberrations were interrogated via a CD difference and can be optimized 

using this balance of printability and aberration sensitivity. In Figure 32 the aberration 

levels extracted from the ADT are given by the dashed lines. One can simply find the 

intersection of the dashed lines and the NILS contour to find the optimal target. For the 

five-bar structure used to interrogate coma, things are a bit more complicated. Here, we 

must maintain printability for both edges of the exterior bars. Therefore, the most 

sensitive edges are shown with the average NILS for both edges. With this consideration 

in mind the optimization procedure for the coma target is identical to that of the 

astigmatism and trefoil targets. Using this methodology it was determined that the 

optimal pitches for the chosen annular source were 55 nm, 51 nm, and 51 nm, for 

astigmatism, coma, and trefoil, respectively. 



62 
 

  

 

Figure 32. NILS contours for astigmatism 90º (top left), coma X (top right), and trefoil X 
(bottom).  
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4. EXTRACTION OF AMPLITUDE VARIATION 

4.1 Choosing a basis to represent amplitude pupil variation 

We have seen that Zernike polynomials are used to express pupil phase variation because 

they reproduce the terms derived from a geometrical treatment of aberrations. This makes 

the Zernike polynomials the most efficient basis for expressing pupil phase variation, 

though this is not guaranteed to be the case for pupil amplitude variation.  The Zernike 

polynomials also have the property that they are orthonormal over the unit circle and 

rotationally invariant. As mentioned previously, these are very useful qualities for a 

function describing an isomorphic optic with a circular pupil. 

We therefore seek some set of functions, other than the Zernike polynomials, 

which are orthonormal across the unit circle and which are rotationally invariant. The 

function we are looking for, V(x,y), must be a superposition of rotational invariants, and 

therefore satisfies, 

∇�𝑉𝑉 + 𝛼𝛼 �𝑥𝑥 �
��
+ 𝑦𝑦 �

��
�
�
𝑉𝑉 + 𝛽𝛽 �𝑥𝑥 �

��
+ 𝑦𝑦 �

��
� 𝑉𝑉 + 𝛾𝛾𝑉𝑉 = 0. 4.1 

In polar coordinates the differential operators can be expressed as, 

𝜌𝜌 �
��
= 𝑥𝑥 �

��
+ 𝑦𝑦 �

��
, 4.2 

and 

��
��
= 𝑦𝑦 �

��
− 𝑥𝑥 �

��
. 4.3 
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where 𝜌𝜌 and 𝜙𝜙 are polar coordinates defined for x and y in the usual way. The differential 

equation then becomes, 

(1 + 𝛼𝛼𝜌𝜌�) ��

���
𝑉𝑉 + ��

�
+ (𝛼𝛼 + 𝛽𝛽)𝜌𝜌� �

��
𝑉𝑉 + �

��
��

���
𝑉𝑉 + 𝛾𝛾𝑉𝑉 = 0	. 4.4 

Assuming that the function V is separable, 

𝑉𝑉 = 𝑅𝑅(𝜌𝜌)𝐺𝐺(𝜙𝜙). 4.5 

Combining these two equations it is easy to see that, 

𝐺𝐺�� = −𝑚𝑚�𝐺𝐺, 4.6 

and therefore, 

𝐺𝐺 = �cos𝑚𝑚𝜙𝜙sin𝑚𝑚𝜙𝜙 , 4.7 

The differential equation for the radial component becomes, 

𝜌𝜌(1 + 𝛼𝛼𝜌𝜌�)𝑅𝑅�� + [1 + (𝛼𝛼 + 𝛽𝛽)𝜌𝜌�]𝑅𝑅� + �𝛾𝛾𝜌𝜌 − ��

�
�𝑅𝑅 = 0. 4.8 

Now let 𝑥𝑥 = 𝑟𝑟�. We can show that, 

𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟 = 2√𝑥𝑥

𝑑𝑑𝑅𝑅
𝑑𝑑𝑥𝑥  4.9 

and 

𝑑𝑑�𝑅𝑅
𝑑𝑑𝑥𝑥� = 4𝑥𝑥

𝑑𝑑�𝑅𝑅
𝑑𝑑𝑥𝑥� + 2

𝑑𝑑𝑅𝑅
𝑑𝑑𝑥𝑥  4.10 

Using these to change the variable of the differential equation, 
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𝑥𝑥(1 + 𝛼𝛼𝑥𝑥)
𝑑𝑑�𝑅𝑅
𝑑𝑑𝑥𝑥� + �1 + �𝛼𝛼 +

1
2𝛽𝛽� 𝑥𝑥�

𝑑𝑑𝑅𝑅
𝑑𝑑𝑥𝑥 +

1
4
�𝛾𝛾 −

𝑚𝑚�

𝑥𝑥
� 𝑅𝑅 = 0	. 4.11 

The coefficients corresponding to the first derivative and the function itself are not 

analytic for 𝑥𝑥 = 0 and 𝑥𝑥 = −1/𝛼𝛼, therefore these are singular points of the differential 

equation. This corresponds to 𝑟𝑟 = 0 and 𝑟𝑟� = −1/𝛼𝛼. This means that the singularity at 

𝑥𝑥 = −1/𝛼𝛼 will occur in the real plane for negative 𝛼𝛼. We can further examine the 

singularities by multiplying by (𝑥𝑥 − 𝑥𝑥�)�/𝑥𝑥(1 + 𝛼𝛼𝑥𝑥) to obtain, 

(𝑥𝑥 − 𝑥𝑥�)�𝑅𝑅�� + (𝑥𝑥 − 𝑥𝑥�)�
��(���/�)�
�(����)

𝑅𝑅� + (����)�

��(����)
�𝛾𝛾 − ��

�
�𝑅𝑅 = 0. 4.12 

Using 𝑥𝑥� = 0, we obtain, 

𝑥𝑥�𝑅𝑅�� +
1 + �𝛼𝛼 + 𝛽𝛽2� 𝑥𝑥

1 + 𝛼𝛼𝑥𝑥 𝑥𝑥𝑅𝑅� +
1

4(1 + 𝛼𝛼𝑥𝑥)
[𝛾𝛾𝑥𝑥 − 𝑚𝑚�]𝑅𝑅 = 0. 4.13 

It is clear that in this case the terms associated with 𝑅𝑅� and 𝑅𝑅 are analytic for 𝑥𝑥 = 0. 

Similarly using 𝑥𝑥� = −1/𝛼𝛼, 

(𝑥𝑥 + 1/𝛼𝛼)�𝑅𝑅�� +
1 + �𝛼𝛼 + 𝛽𝛽2�𝑥𝑥

𝛼𝛼𝑥𝑥 �𝑥𝑥 +
1
𝛼𝛼�𝑅𝑅

� +
�𝑥𝑥 + 1𝛼𝛼�
4𝛼𝛼𝑥𝑥

�𝛾𝛾 −
𝑚𝑚�

𝑥𝑥
�𝑅𝑅 = 0 4.14 

which is also analytic for 𝑥𝑥 = −1/𝛼𝛼.	We can therefore conclude that the singularities at 

𝑥𝑥 = 0 and 𝑥𝑥 = −1/𝛼𝛼 are both regular singular points. 

We are interested in solutions around 𝑥𝑥 = 0, but we also know that the singularity at 𝑥𝑥 =

−1/𝛼𝛼 is a weak singularity because it is a regular singular point. The differential 
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equation can be reduced to an associated Euler equation by using the Taylor series of the 

terms corresponding with 𝑅𝑅′ and with 𝑅𝑅, 

𝑥𝑥�𝑅𝑅�� + 𝑥𝑥𝑅𝑅� − �
𝑚𝑚
2�

�
𝑅𝑅 = 0 4.15 

Now assuming a solution, 

𝑅𝑅(𝑥𝑥) = 𝑥𝑥�� 4.16 

We can find, 

𝑟𝑟�(𝑟𝑟� − 1) + 𝑟𝑟� − �
𝑚𝑚
2�

�
= 0 4.17 

Therefore we find that the exponent of the singularity is, 

𝑟𝑟� = ±𝑚𝑚/2 4.18 

The solution around 𝑟𝑟 = 0 is therefore of the form, 

𝑅𝑅(𝑥𝑥) = 𝑥𝑥�/�𝐹𝐹(𝑥𝑥) 4.19 

We can find, 

𝑑𝑑𝑅𝑅
𝑑𝑑𝑥𝑥 = 𝑥𝑥

�/� �
𝑚𝑚
2𝑥𝑥 𝐹𝐹

(𝑥𝑥) + 𝐹𝐹′(𝑥𝑥)� 4.20 

And 

𝑑𝑑�𝑅𝑅
𝑑𝑑𝑥𝑥� = 𝑥𝑥

�/� �𝐹𝐹�� +
𝑚𝑚
𝑥𝑥 𝐹𝐹

� +
𝑚𝑚� − 	2𝑚𝑚
4𝑥𝑥� 𝐹𝐹� 4.21 

Therefore, 
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𝛼𝛼𝑥𝑥(1 + 𝛼𝛼𝑥𝑥)𝐹𝐹�� + �(𝑚𝑚 + 1)𝛼𝛼 + 𝛼𝛼(𝑚𝑚 + 1)𝛼𝛼𝑥𝑥 +
1
2𝛽𝛽𝛼𝛼𝑥𝑥�𝐹𝐹

�

+ 𝛼𝛼 �
1
4 𝛾𝛾 +

𝑚𝑚
4 (𝛼𝛼𝑚𝑚 + 𝛽𝛽)� 𝐹𝐹 = 0 

4.22 

Letting 𝑧𝑧 = −𝛼𝛼𝑥𝑥 we obtain, 

𝑧𝑧(1 − 𝑧𝑧)𝐹𝐹�� + �𝛼𝛼(𝑚𝑚 + 1)(𝑧𝑧 − 1) +
1
2𝛽𝛽𝑧𝑧� 𝐹𝐹

� − �
1
4 𝛾𝛾 +

𝑚𝑚
4
(𝛼𝛼𝑚𝑚 + 𝛽𝛽)� 𝛼𝛼𝐹𝐹 = 0 4.23 

This is in the form of a hypergeometric equation, 

𝑧𝑧(1 − 𝑧𝑧)𝐹𝐹�� + [𝑐𝑐 − (𝑎𝑎 + 𝑏𝑏 + 1)𝑧𝑧]𝐹𝐹� − 𝑎𝑎𝑏𝑏𝐹𝐹 = 0 4.24 

Clearly, 

𝑐𝑐 = −(𝑚𝑚 + 1)𝛼𝛼 4.25 

We can also find, 

𝑎𝑎� + �𝛼𝛼(𝑚𝑚 + 1) +
1
2𝛽𝛽 + 1� 𝑎𝑎 + 𝛼𝛼 �

1
4 𝛾𝛾 +

𝑚𝑚
4 (𝛼𝛼𝑚𝑚 + 𝛽𝛽)� = 0 4.26 

And 

𝑏𝑏 =
𝛼𝛼
𝑎𝑎 �
1
4 𝛾𝛾 +

𝑚𝑚
4
(𝛼𝛼𝑚𝑚 + 𝛽𝛽)� 4.27 

Solving these simultaneous equations, 

𝑎𝑎 = −
1
2 �𝛼𝛼

(𝑚𝑚 + 1) +
1
2𝛽𝛽 + 1� +

1
2�1 − 𝛼𝛼𝛾𝛾 + 𝐷𝐷 4.28 

And 
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𝑏𝑏 = −
1
2 �𝛼𝛼

(𝑚𝑚 + 1) +
1
2𝛽𝛽 + 1� −

1
2�1 − 𝛼𝛼𝛾𝛾 + 𝐷𝐷 4.29 

Where 

𝐷𝐷 = 𝛼𝛼�(2𝑚𝑚 + 1) + 2𝛼𝛼(𝑚𝑚 + 1) + 𝛼𝛼𝛽𝛽 + 𝛽𝛽 �
𝛽𝛽
4 + 1� 

4.30 

Therefore, 

𝑅𝑅(𝑥𝑥) = 𝑥𝑥�/�𝐹𝐹(𝑎𝑎, 𝑏𝑏, −𝛼𝛼(𝑚𝑚 + 1),−𝛼𝛼𝑥𝑥) 4.31 

If we choose 𝛼𝛼 = −1, the coefficient of 𝑅𝑅′′ is zero for both 𝑥𝑥 = 1 and 𝑥𝑥 = 0, 

which allows us to normalize the functions to the edge of the pupil. The solution to the 

differential equation is then, 

𝑅𝑅(𝑟𝑟) = 𝑟𝑟�	𝐹𝐹 �
1
2 �𝑚𝑚 −

𝛽𝛽
2� +

1
2
�𝛽𝛽

�

4 + 𝛾𝛾,
1
2 �𝑚𝑚 −

𝛽𝛽
2� −

1
2
�𝛽𝛽

�

4 + 𝛾𝛾,𝑚𝑚 + 1, 𝑟𝑟�� 4.32 

This will be singular at 𝑟𝑟� = 1 if 𝑐𝑐 − 𝑎𝑎 − 𝑏𝑏 = 0 or, 

(𝑚𝑚 + 1) = �(𝑚𝑚 + 1) −
1
2𝛽𝛽 − 1� 

4.33 

Therefore if  𝛽𝛽 = −2, the function will only be finite within the pupil if F is a 

terminating polynomial. 

Let �
�
�𝑚𝑚 − �

�
� − �

�
��

�

�
+ 𝛾𝛾 = −���

�
, therefore, 

𝛾𝛾 = 𝑛𝑛(𝑛𝑛 − 𝛽𝛽) 4.34 

And  
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𝑅𝑅(𝑟𝑟) = 𝑟𝑟�𝐹𝐹 �
𝑚𝑚 + 𝑛𝑛 − 𝛽𝛽

2 , −
𝑛𝑛 − 𝑚𝑚
2 ,𝑚𝑚 + 1, 𝑟𝑟�� 4.35 

For even n-m this results in a terminating sum of polynomials. We will normalize the 

functions to the edge of the pupil so that, 

𝑅𝑅��(𝑟𝑟 = 1) = 1 4.36 

Therefore, 

𝑅𝑅��(𝑟𝑟) = (−1)
���
� 𝐹𝐹 �

𝑛𝑛 + 𝑚𝑚− 𝛽𝛽
2 , −

𝑛𝑛 −𝑚𝑚
2 ,𝑚𝑚 + 1, 𝑟𝑟�� 𝑟𝑟�		 4.37 

The hypergeometric function can be rewritten in terms of Jacobi polynomials using the 

identity, 

𝐹𝐹(𝑝𝑝 + 𝑛𝑛, −𝑛𝑛, 𝑞𝑞, 𝑥𝑥) = 𝐺𝐺�(𝑝𝑝, 𝑞𝑞, 𝑥𝑥) 4.38 

Where 𝐺𝐺� is a Jacobi polynomial. Thus, 

𝑅𝑅��(𝑟𝑟) = (−1)
���
� �

𝑛𝑛 +𝑚𝑚
2�

𝑚𝑚
�𝑟𝑟�𝐺𝐺���

�
�𝑚𝑚 −

𝛽𝛽
2 ,𝑚𝑚 + 1, 𝑟𝑟��		 4.39 

Jacobi polynomials are defined as, 

𝐺𝐺�(𝑝𝑝, 𝑞𝑞, 𝑥𝑥) =
𝑥𝑥���(1 − 𝑥𝑥)���

𝑞𝑞�
�
𝑑𝑑
𝑑𝑑𝑥𝑥
�
�

{𝑥𝑥�����(1 − 𝑥𝑥)�����} 4.40 

Using this definition with the solution for the radial function, it can be shown that, 

𝑅𝑅��(𝑟𝑟) = �
(−1)� �𝑛𝑛 −𝑚𝑚2 − 𝛾𝛾� ! (𝑛𝑛 − 𝑘𝑘 − γ)!

𝑘𝑘! �𝑛𝑛 −𝑚𝑚2 � ! �𝑛𝑛 −𝑚𝑚2 − 𝑘𝑘 − 𝛾𝛾� ! �𝑛𝑛 + 𝑚𝑚2 − 𝑘𝑘 − 𝛾𝛾� !
(𝑟𝑟� − 1)�𝑟𝑟������

���
� ��

���

 4.41 
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Where 

𝛾𝛾 =
𝛽𝛽 + 2
2  4.42 

The series requires both that 𝑛𝑛 > 𝑚𝑚 and 𝑛𝑛 − 𝑚𝑚 − 𝛽𝛽 be even parity so that ���
�
− 𝛾𝛾 is a 

whole number. Therefore, 𝑛𝑛 − 𝑚𝑚 must have the same parity as 𝛽𝛽. If 𝛽𝛽 is odd, then there 

will be some terms in 𝑅𝑅��(𝑟𝑟) that go as, 

��𝑟𝑟� − 1�
���

 4.43 

This term is only real valued for 𝑟𝑟� > 1, which is outside of the pupil. Therefore, 𝛽𝛽 

should be even parity. We can also observe that the lowest order term in the basis will 

occur for 𝑛𝑛 = 𝑚𝑚 + 𝛽𝛽 + 2. 

Suppose, for example, 𝛽𝛽 = 2.  The lowest order (𝑛𝑛,𝑚𝑚) combination is (5,1), in 

which case the lowest order term is 𝑟𝑟�(𝑟𝑟� − 1)�. This is inadequate to account for low-

order pupil variation. Low order terms occur last in the series, so we can require the 

lowest order term to be linear in r by requiring, 

𝑛𝑛 − 2 �
𝑛𝑛 −𝑚𝑚
2 − 𝛾𝛾� − 𝛾𝛾 = 0 4.44 

This implies, 

𝛽𝛽 = 2(𝑚𝑚 − 1) − 2 4.45 

If we require the lowest order term to coincide with 𝑚𝑚 = 1, then 𝛽𝛽 = −2 and the solution 

then becomes, 
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𝑅𝑅��(𝑟𝑟) = �
(−1)�(𝑛𝑛 − 𝑘𝑘)!

𝑘𝑘! �𝑛𝑛 − 𝑚𝑚2 − 𝑘𝑘� ! �𝑛𝑛 +𝑚𝑚2 − 𝑘𝑘� !
𝑟𝑟����

���
�

���

 4.46 

This is the definition of the radial component of the Zernike polynomials. Therefore, the 

only set of functions with the properties that we desire over the unit circle are the Zernike 

polynomials. Therefore, if we want to express amplitude pupil variation in a basis that is: 

1) orthogonal over the unit circle, 2) rotationally invariant, the only choice is to use 

Zernike polynomials. 

 This does not mean that the Zernike polynomials are the only choice of basis for 

amplitude pupil variation. It only means that the only basis over the unit circle which has 

the properties that we desire to express pupil variation is the Zernike polynomials. If we 

loosen our requirements to, for example, not require rotational invariance, other bases 

may efficiently express amplitude pupil variation. 

4.2 Comparison of the properties of several orthonormal bases 

4.2.1 Zernike Polynomials 

Any function defined over the unit circle, 𝑓𝑓(𝑟𝑟, 𝜙𝜙), can be expanded in terms of Zernike 

polynomials by solving the integral given by Equation 4.52.65 The Zernike polynomials 

are designed to be rotationally invariant, which means that the expansion coefficients of a 

version of 𝑓𝑓 rotated by 𝜃𝜃, given by 𝑓𝑓(𝑟𝑟, 𝜙𝜙 − 𝜃𝜃), are only modified by a linear azimuthal 

phase term.45 The Zernike moments of a rotated function are therefore given by Equation 

4.48. This can be seen by rotating the example image of Figure 35a and then expanding it 

in Zernike polynomials. The choice of this image is arbitrary--any function defined over 

the unit circle is an equally valid choice. Some of the resulting Zernike moments are 
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shown in Figure 35b, where it is seen that the moments vary only by an azimuthal phase 

factor.65 

𝑎𝑎|�|� 	=
���
� ∫ ∫ 𝑓𝑓(𝑟𝑟, 𝜙𝜙)𝑅𝑅��(𝑟𝑟)𝑒𝑒����𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝜙𝜙

�
���

��
��� . 

 
4.47 

𝑎𝑎|�|�
(�) = 𝑎𝑎|�|� ⋅ 𝑒𝑒����. 

	
4.48 

Rotational invariance is useful in optical systems because a lens' aberrations 

should be independent of its rotation. For example, the total amount of 3rd order  

 

Figure 33. a) The image which was rotated then expanded in orthonormal bases. The 
units are normalized distance so that the function is defined over the unit circle. b) 
Zernike expansion coefficients for 3rd order astigmatism, coma, spherical aberration, and 
trefoil for the image in part (a) through rotation. 
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astigmatism in a lens will remain constant through the lens' rotation, though the amount 

of 3rd order astigmatism 90° (𝑍𝑍�) and 3rd order astigmatism 45° (𝑍𝑍�) contributing to this 

total 3rd order astigmatism may change. Put another way, the quantity 𝑎𝑎�� + 𝑎𝑎�� remains 

constant as a function of rotation angle, while 𝑎𝑎� and 𝑎𝑎� themselves change through 

rotation. This gives rise to the sinusoidal behavior of the moments in Figure 35b. 

4.2.2 Legendre Polynomials 

The Legendre polynomials form a complete orthogonal set over the interval −1 ≤ 𝑥𝑥 ≤ 1. 

The polynomials can be generated via the Rodrigues' formula, Equation 4.49, where 𝑛𝑛 is 

a positive integer.66 

𝑃𝑃�(𝑥𝑥) =
�

���!
��

���
(𝑥𝑥� − 1)�	. 

 
4.49 

These polynomials are normalized so that the values at the edge of the interval are 

𝑃𝑃�(𝑥𝑥 = 1)	=1  and 𝑃𝑃�(𝑥𝑥 = −1) = (−1)�. Here we extend the Legendre polynomials 

over the 2D Cartesian plane by using all of the possible products of the Legendre 

polynomials in 𝑥𝑥 and 𝑦𝑦, denoted by 𝑃𝑃�
(�). This combination of polynomials is orthogonal 

over a unit square and fulfills the orthogonality condition, 

𝐶𝐶�� � � 𝑃𝑃�
(�)(𝑥𝑥, 𝑦𝑦)𝑃𝑃�

(�)(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 𝛿𝛿��
�

����

�

����
, 

 

4.50 

where 𝛿𝛿�� is the Kronecker delta and 𝐶𝐶�� is an orthogonality constant.28 These 

polynomials are not orthogonal over the unit circle, but that does not prevent them from  
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being used as an expansion basis. One must simply recompute all of the 2D-Legendre 

moments if another term is added to the series expansion. 

Figure 34a shows the rotation of Figure 35a and its subsequent expansion in 

Legendre polynomials. This time the variation in expansion coefficients is not a simple 

sinusoid, and therefore the Legendre polynomials are not a rotationally invariant basis. 

4.2.3 Hermite Polynomials 

The Hermite polynomials form a complete orthogonal set over the interval −∞ ≤ 𝑥𝑥 ≤ ∞. 

The Rodrigues' formula for Hermite polynomials is given by Equation 4.51.66 There is no 

analytic formula for the value 𝐻𝐻�(𝑥𝑥 = ±1). 

 

Figure 34. The image in Figure 35a was again rotated and expanded in Legendre 
polynomials and Hermite polynomials.  The moments for a) Legendre polynomials for 
𝑃𝑃�
(�), 𝑃𝑃�

(�), 𝑃𝑃�
(�), 𝑃𝑃��

(�) and b) Hermite polynomials for 𝐻𝐻�
(�), 𝐻𝐻�

(�), 𝐻𝐻�
(�), 𝐻𝐻��

(�) are plotted as 
a function of rotation angle. 
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𝐻𝐻�(𝑥𝑥) = (−1)�𝑒𝑒�
� ��

���
𝑒𝑒���. 

 
4.51 

Again we extend the basis over the 2D Cartesian plane by using all of the possible 

products of the Hermite polynomials in 𝑥𝑥 and 𝑦𝑦. The notation 𝐻𝐻�
(�) is used to refer to the 

N-th product of two Hermite polynomials. The same orthogonality argument made for 

Legendre polynomials holds for Hermite polynomials. Similarly, like Legendre 

polynomials, the Hermite polynomials are not rotationally invariant. This can again be 

seen in Figure 34b where Figure 35a was again rotated and expanded this time in Hermite 

polynomials.  

4.3 Extraction of amplitude variation 

The multilayer reflectivity of mirrors in an EUVL system can vary dramatically as 

a function of incidence angle. This introduces a diffraction intensity imbalance in 

partially coherent imagery. This intensity imbalance can cause image variation through 

focus. Any optical system can be affected by this type of variation, but these effects 

become non-negligible with the tighter tolerances of EUVL systems. For this reason, we 

have adopted a more general definition of system aberration: any variation during 

imaging which introduces error to the pupil. 

We redefine the amplitude function in terms of a separate Fourier-Zernike series, 

. 
4.52 

Extraction of amplitude variation follows a similar procedure to that for phase variation, 

but is considered separately with a yet unknown basis. To reconstruct the pupil amplitude 

↵(u, v) = 1 +
1X

n=0

bnZn(⇢,φ)
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function 𝑁𝑁(𝑢𝑢, 𝑣𝑣), image data is iteratively fit to simulations to determine the values of the 

average value of the function over each diffraction order. This value corresponds to the 

source-averaged sample of the pupil amplitude function. This approach is identical to that 

used to extract pupil phase with one complication: the best choice of basis is unknown, so 

the source-averaged value of the amplitude function needs to be determined for each 

diffraction order instead of an expansion coefficient.  

This pupil sampling process is illustrated in Figure 35. The amplitude function 

can be reconstructed through interpolation after iteratively fitting samples. Barnes 

objective analysis is used to interpolate across the pupil between the samples. This 

procedure—commonly used in meteorological modeling—uses an initial guess for each 

grid point, then iteratively refines it from the error computed from the known values. The 

weight of each error is proportional to the inverse of its distance from other points. 67,68 

To begin the objective analysis we assume that the amplitude function 𝑁𝑁(𝜌𝜌, 𝜃𝜃) is 

Fourier decomposable. Then a corresponding filtered function 𝑁𝑁�(𝜌𝜌, 𝜃𝜃) is constructed as, 

, 
4.53 

where 𝑟𝑟 and 𝜃𝜃 are polar coordinates defined with respect to a point in the pupil (𝜌𝜌, 𝜙𝜙), 

and the filter 𝑊𝑊(𝑟𝑟) is given as, 

, 
4.54 

where 𝑘𝑘 is an arbitrary shape parameter. Equation 4.53 can be written in terms of the 

known discrete values of 𝑁𝑁 as, 

eA(⇢,φ) =

Z 2⇡

✓=0

Z 1

r=0

A(⇢+ r,φ+ ✓)W (r)rdrd✓

W (r) =
1
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, 
4.55 

where 𝑁𝑁 is the number of known data points. A corrected amplitude function can then be 

computed from the smoothed error field as, 

 
4.56 

where 𝛾𝛾 is a number chosen to be between zero and one. This corrected field can be 

iteratively computed until the error reaches some prescribed limit. This interpolation has 

high accuracy even when the samples are disordered and unevenly spaced. At this step, 

the amplitude function has been determined but further expansion of the interpolated 

function in an orthogonal basis is useful. Zernike polynomials were chosen in Figure 35 

because of the a priori knowledge that the original function was composed in this basis. 

This method can reproduce the original function with little error from a small 

number of samples. To illustrate this, 500 random amplitude functions composed of 

third-order Zernike amplitude polynomials (𝑍𝑍�5 − 𝑍𝑍�11) were sampled in the 𝜌𝜌 = 0.5 

and 𝜌𝜌 = 0.9 pupil zones with a partially coherent 0.1𝜎𝜎 source. The amplitude functions 

were randomly generated with a mean range of 19.09% of the pupil transmission 

deviation. These functions were then reconstructed using the scheme proposed in Figure 

35. The RMS of each initial function varied, so it would be inappropriate to directly 

compare the RMS error (RMSE) from these cases. Instead, the error was normalized to 

the range of the original function to facilitate comparison. The NRMSE (as a percentage 

of the range) closely follows a normal distribution with a mean of 7.08% and a standard  

eA0(⇢,φ) =

PN
i=0 Aie

r2i /4k

PN
i=0 e

r2i /4k

eA1(⇢,φ) = eA0 +
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Figure 35. Flowchart of pupil amplitude reconstruction. First the pupil function is sampled 
via the diffracted spectrum of the targets used for phase interrogation. The value of these 
samples is determined via iterative fitting to aerial image simulations. Next Barnes analysis 
is used to interpolate between the samples to construct the original function. Finally, the 
interpolated function is expanded in a Fourier-Zernike series.  

deviation of 1.96%. The NRMSE distribution of the 500 randomly generated functions is 

shown in Figure 36 with and without the use of interpolation via Barnes objective 

analysis, this shows that the use of interpolation decreases the mean NRMSE. 

Closer inspection of Figure 35 would reveal that the error manifests itself as a 

smoothing of the original function. This can be seen by comparing the extracted series 

coefficients for one of the reconstructed functions to the exact coefficient, Figure 37a. 

The original functions were composed of random arrangements of third-order Zernike 

polynomials, but higher order terms appear in the reconstructed function. This blurring 

effect is from the pupil-averaging of the partially coherent source, which can be reduced 

by increasing both the source coherence and the number of pupil samples. Still, the 

function can be reconstructed with little error with only the 3rd order Zernike 

polynomials used to compose the original function. This is compared to an expansion in 

the first 36 combinations of Cartesian Legendre polynomials (Figure 37b) where the 
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expansion would require more terms to reach a similar RMSE. This is verified by plotting 

the RMSE after adding each term for both series expansions, as in Figure 37c. In this 

plot, the RMSE decreases at a faster rate when a Zernike basis is used. 

We have used this method successfully to extract pupil variation from an EUV 

imaging system. The algorithm converges in around ten iterations, which takes 3.2 hours 

to complete on a machine with a 3.6 GHz quad-core Intel i7 processor and 16GB of 

RAM. This must be completed every time a wavefront is extracted. 

 

Figure 36. NRMSE distribution of the reconstructed amplitude functions with and without 
interpolation via Barnes objective analysis. The distribution for functions reconstructed 
without interpolation is semi-transparent to show the entirety of both distributions. 
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Figure 37. Comparison of an orthogonal function expansion of an interpolated amplitude 
function in a) Zernike polynomials, and b) the first 36 combinations of Cartesian Legendre 
polynomials. The RMSE after adding each additional polynomial for both series expansions 
is given in part c). 
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5. THE QUIP ALGORITHM 

5.1 The QUIP Algorithm 

To speed up the process of wavefront extraction, we must separate the model 

building and wavefront fitting steps. This can be achieved by building models linking 

wavefront variation to image plane behavior. This may result in a lengthy model building 

step, but this only needs to be completed once for each imaging system and illuminator. 

Afterwards, wavefront variation can be extracted rapidly. 

First we will consider a 1D aerial image through focus, which we call a through-

focus intensity volume, as in Figure 38a. This is part of a higher dimensional dataset 

when aberrations are present in the system. For example, a system with an unknown 

amount of spherical aberration can be described by a four dimensional dataset, as shown 

in Figure 38b. This dataset can be decomposed using PCA and each principal component 

can be interpreted as its own intensity volume, as shown in Figure 39. We will refer to 

these principal components as eigenfunctions.  

 The eigenfunction shows the aerial image variation caused by a certain aberration. This 

can be seen in Figure 39 where the first eigenfunction shows the maximum intensity of lines 

increasing with positive defocus. This has the effect of shifting the best focus of that pattern. The 

eigenfunctions of the primary phase aberrations are given in Figures 40–42. It can be seen from 

the eigenfunctions that astigmatism causes an orientation dependent change in best focus, 

spherical aberration causes a pitch dependent change in best focus, coma causes placement error 

and asymmetric smear across the field, and finally trefoil causes a CD difference in patterns with  
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(a) (b) 

  

Figure 38. A 1D aerial image through defocus (a) represents an intensity volume which is 
part of a higher dimensional space (b) when aberrations are present in an optical 
system. 

 

      

Figure 39. The first two principal components, or eigenfunctions, of the dataset shown in 
Figure 38. 
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60⁰ symmetry. It is also apparent that even-parity phase polynomials (as given in Figures 40 and 

41) cause through-focus variation unlike odd-parity phase polynomials (as given in Figure 42). 

 We can now determine the action of amplitude aberrations using this same type of 

analysis. The eigenfunctions of the primary Zernike polynomials as applied to amplitude pupil 

variation (given as ZAn) are given in Figures 43–45. It is seen that, unlike their phase counterparts, 

the even-parity Zernike amplitude polynomials do not cause through-focus variation, while the 

odd-parity components do. ZA5 and ZA6 can be seen to cause orientation dependent changes in 

contrast, ZA9 causes pitch dependent changes in contrast, ZA7 and ZA8 cause a field and focus 

dependent pattern smear, and finally ZA10 and ZA11 cause focus dependent changes in contrast 

and placement error.  

 We now define the function, 

 (5.1 

where 𝛹𝛹�
(�) is the k-th image intensity eigenfunction, computed via SOCS decomposition, of the 

unaberrated system and 𝛹𝛹�  is the k-th image intensity eigenfunction of the aberrated system.  

  
Figure 40. Eigenfunction for a 60 nm pitch line/space array with astigmatism. Because the 

action of astigmatism is orientation dependent the eigenfunction in this case 
consists of both plots together. Coordinates are given at the mask level with the 
dashed lines representing the mask edge. 

 

✏k(x, y) = | (0)
k (x, y)|2  | k(x, y)|2
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Figure 41. Eigenfunction for a 30 nm line at 60 nm pitch and 90 nm pitch with spherical 

aberration. Because the action of spherical aberration is pitch dependent the 
eigenfunction in this case consists of both plots together.  

 

    
Figure 42. Eigenfunction for a 50 nm CD five-bar pattern with coma (left) and 

eigenfunction for a 35 nm brick wall structure with trefoil (right). The left most 
feature in this trefoil eigenfunction represents the right side of a bar.  

 
Figure 43. Eigenfunction for a 60 nm pitch line/space array with ZA5 and ZA6. Because the 

action of these aberrations are orientation dependent the eigenfunction in this 
case consists of both plots together.  
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Figure 44. Eigenfunction for a 30 nm line at 60 nm pitch and 90 nm pitch with ZA9. Because 

the action of ZA9 is pitch dependent the eigenfunction in this case consists of 
both plots together. 

   
 

Figure 45. Eigenfunction for a 50 nm CD five-bar pattern with ZA7 and ZA8 (left) and the 
eigenfunction for a 35 nm brick wall structure with ZA10 and ZA11 (right). The 
left most feature of the ZA10 and ZA11 eigenfunction represents the right side of 
a bar. 

 

The coma eigenfunction (Figure 42) is compared in Figure 46 to 𝜀𝜀�(𝑥𝑥) computed 

via Equation (5.1 for this system with coma, as shown in. There is a RMS error (RMSE) 

of 0.67x10-3 between these two curves. Similar error, as given in Table 2, is obtained by 

comparing the other eigenfunctions shown in Figures 40–45 to the appropriate 𝜀𝜀�(𝑥𝑥) 

through defocus. It is clear now that 𝜀𝜀�(𝑥𝑥)	represents the directions of highest variation in 

the image intensity when aberrations are present.  
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Figure 46. Comparison of 𝜺𝜺𝜺𝜺(𝒙𝒙) and the PCA eigenfunction for an imaging system with 
coma (Z7) with zero defocus.  

Table 2. Phase and amplitude RMSE between 𝜺𝜺𝜺𝜺(𝒙𝒙) and eigenfunctions computed 
via PCA. 

Name 
Phase 

RMSE 
Amplitude 

RMSE 

Z5/Z6 0.50x10-3 0.19x10-3 

Z7/Z8 0.20x10-3 0.20x10-3 

Z9 0.67x10-3 0.10x10-3 

Z10/Z11 0.89x10-3 0.82x10-3 

 
The projection, or inner product, of an aberrated aerial image onto the 

eigenfunction yields a single number. The curve of projection coefficients therefore 

forms a function that relates the amount of aberration in the pupil to an image space 

measurement. An example of this function for coma is given in Figure 47. The amount of 

aberration in an aerial image can be determined if the projection coefficient has odd 

parity and can be inverted into a function. More details on obtaining inverse pupil 

solutions will be given in Section 5.3. 
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Figure 47. Coefficient for aerial images aberrated with coma projected onto the coma 
eigenfunction. The slope of the line may change with changes in the imaging 
system, but this function is representative of the projection function for coma. 

5.2 ΔCD Eigenfunctions 

As mentioned previously, lithographers do not typically directly measure the 

aerial image. It is therefore advantageous to consider the CD analogue to aerial image 

aberration eigenfunctions. We have seen that the eigenfunctions of an aberrated intensity 

volume are related to the aberrated components of the TCC matrix. Therefore, one could 

calculate the eigenfunctions using either method and obtain identical eigenfunctions. 

While it is always possible to compute aerial images from a TCC, it is not possible in 

general to find CDs from an aerial image. For the simplest of cases an analytic CD 

function may be possible, but in practice root-finding algorithms are the safest approach. 

This property means that while the aerial image aberration eigenfunctions could be 



88 
 

computed directly, there is no such CD eigenfunction that can be computed directly from 

either the aerial image or aerial image eigenfunction. 

There are two ways to calculate the aerial image eigenfunctions, so we should 

consider using PCA to find eigenfunctions of the ΔCD function. Examples of this are 

given in Figures 48–51 for astigmatism, coma, spherical aberration, and trefoil. To 

compute these the ΔCD function is computed as in Figure 30, then PCA is used to find 

the eigenfunction representing the variation due to aberrations. The projection of ΔCD 

functions onto their respective eigenfunctions is also shown. Each of the curves is 

invertible into a single-valued function and can therefore be used to measure aberrations 

from experimental CD measurements. It appears in Figure 50 that the model for spherical 

aberration is given by a quadratic curve, and therefore would exhibit degeneracy over a 

wider aberration range. However in Figure 52 it can be seen that over a range of ±λ/4 the 

projection function is actually a cubic function rather than quadratic. Therefore, there is 

no risk of degeneracy in modeling spherical aberration in this way. 
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Figure 48. An example of a ΔCD eigenfunction (left) and the projection curve (right) for 
astigmatism. Astigmatism is interrogated by the CD difference between orthogonal lines 
and spaces. 

 

Figure 49. An example of a ΔCD eigenfunction (left) and the projection curve (right) for 
coma. Coma is interrogated by the CD difference between the outer two bars of 
a five bar structure. 
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Figure 50. An example of a ΔCD eigenfunction (left) and the projection curve (right) for 
spherical aberration. Spherical is interrogated by a heuristic computed from a 
constant CD line at pitches 1:1, 1:2, and 1:4. 

 

Figure 51. An example of a ΔCD eigenfunction (left) and the projection curve (right) for 
trefoil. Trefoil is interrogated by the CD difference between orthogonal lines 
and spaces. 
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Figure 52. An example of a ΔCD eigenfunction (left) and the projection curve (right) for 
spherical aberration over an extended range of ±250mλ. 

 

As we saw in Section 3.1, the effects of certain aberration terms are confounded 

in the image domain. The eigenfunction can therefore be interpreted as being a function 

of multiple aberration terms. For example, the eigenfunction corresponding to coma is 

shown in Figure 53 for varying amounts of trefoil. There are five lines plotted in Figure 

53, despite it appearing that there are only three, because the eigenfunction variation is 

even-parity in the Z10 axis. However, the projection coefficient onto the correct 

eigenfunction is unique for coma given varying amounts of trefoil, as seen in Figure 54. 

The amount of coma in the presence of trefoil can therefore be determined because each 

(𝑍𝑍7, 𝑍𝑍10) point maps to a unique projection coefficient.  
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Figure 53. Comatic eigenfunction with varying amounts of trefoil. There are five lines 

plotted, despite only three being visible. This is because two are on top of each 
other because the eigenfunction is even in the Z10 axis. 

  
Figure 54. Projection coefficient for coma ΔCD functions onto the appropriate 

eigenfunction with different amounts of trefoil. 
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5.3 Obtaining inverse pupil solutions 

Aberrations can be extracted using the QUIP algorithm as follows: 1) the appropriate 

eigenfunctions are determined, 2) the projection functions are determined for each eigenfunction, 

3) experimental data is projected onto the eigenfunctions with a guess for interacting terms, 4) the 

model is inverted, 5) the process is repeated iteratively. This process is shown as a flowchart in 

Figure 55 and is explained in more detail in the rest of this section. 

 First the targets and source shape are chosen. The aberration separable basis (ASB) can 

be pre-computed via computation of the TCC if aerial image data is used. Otherwise, the basis 

will need to be computed via PCA. Next, a simulated full factorial experiment is run. Using aerial 

image data this experiment results in a set of intensity volumes, and results in a set of ΔCD 

functions if using CD data. Each simulated function (intensity volume or ΔCD) is projected onto 

the ASB eigenfunctions and a model is constructed between the treatment combinations and 

projection coefficients. Each model consists of a system of polynomial equations fit to the 

projection coefficients via non-linear least squares. If the relationship is linear the model can be 

formalized as 

, (5.2 

where C(n) is the projection of each intensity volume onto the nth eigenvolume, 𝛽𝛽(�) represents 

the model coefficients, and C�(n) represents the mean projection coefficient onto the nth 

eigenvolume. In the linear case this could be formed into a matrix equation as 

C(n) = tc · (n) + C̄(n)
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. 

(5.3 

Finally, an experimental intensity volume can be projected onto the eigenvolumes and the model 

can be inverted as, 

, (5.4 

 

 

Figure 55. A flowchart for the aberration separable basis algorithm of image-based pupil 
characterization. 

where C� is the projection of an experimental intensity volume onto the model eigenfunctions. In 

reality, the relationship between treatment combinations and projection coefficients is rarely 

linear, as seen in Figure 54. The techniques outlined in Equations 13-15 can be easily adapted to 

higher-order polynomials, or the projection function can be interpolated through known points. 

For example, in a four-dimensional space with only spherical aberration the forward model is 

generalized with an n-degree polynomial as 

. (5.5 
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In the non-linear case the model cannot be written in a matrix form and must be inverted by 

solving the system of equations numerically.  

 If the eigenfunctions include interacting terms, then an initial guess must be given to 

project the function into a single dimension in aberration space. For example, when fitting coma 

in the presence of trefoil a guess must be given for trefoil. Similarly, when fitting trefoil in the 

presence of coma a guess must be given for coma. This process can be repeated to refine both 

terms. 

Fitting aberrations to ΔCD eigenfunctions can have errors below 0.25	𝑚𝑚𝜆𝜆 

(3.4	𝑝𝑝𝑚𝑚 for 𝜆𝜆 = 13.5	𝑛𝑛𝑚𝑚) with only a small number of simulations. A set of points 

randomly distributed within the parameter space can be used to verify a model. In Figure 

56, 25 random points were used to verify a model trained with only seven aberration 

treatment combinations to obtain an RMSE of 0.12	𝑚𝑚𝜆𝜆. Similarly, coma in the presence 

of trefoil achieves an RMSE of 0.22	𝑚𝑚𝜆𝜆 using a model generated from a 7� full factorial 

experiment. 

These models only need to be built once, as compared to the purely iterative 

algorithm where many of the same simulations would be repeated with each iteration. An 

example of an iterative solution is shown in Figure 58 for both third-order coma and 

trefoil. This requires two models be built: 1) coma in the presence of trefoil and 2) trefoil 

in the presence of coma. Because the models have already been built, each iteration is 

very fast—100 iterations can run in under one second. 
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Figure 56. An example of model verification using 25 Gaussian distributed points. Training 
the model on only seven aberration treatment conditions gives an RMSE on the 
order of single picometers.  

 

Figure 57. An example of model verification using 25 Gaussian distributed points for coma 
in the presence of trefoil. 
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Figure 58. An iterative solution for both coma and trefoil obtained via the QUIP 
eigenfunction algorithm. 

5.4 Measuring high-order aberrations 

Pure low order Zernike aberrations do not exist in real lithography systems. The aberrated 

wavefront is most accurately described by a combination of low- and high- order terms. 

Trefoil is not a high-order comatic term, but patterns that are sensitive to coma will be 

sensitive to trefoil and vice-versa. This is equally true for low- and high-order terms of 

the same kind of aberration. Therefore, measuring high-order terms poses the same 

computational challenges as measuring coma and trefoil together. 

 As outlined in Section 3.1, high-order terms can be measured by using multiple 

pitches of the same type of target. This gives enough information to distinguish between 

low- and high-order terms in the image domain. Using the QUIP algorithm, high-order 

terms are fit by creating a model for the low-order term in the presence of the high-order 

term, and vice versa. Then the algorithm proceeds as above for coma and trefoil. 
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Any algorithm that measures high-order aberrations needs to perform accurately 

under three types of situations: a wavefront composed from only third-order, one 

composed from only fifth-order aberrations, and one composed from a mixture of both 

third- and fifth-order aberrations. These three taste cases assure that the algorithm is not 

changing the low-order terms and is correctly fitting the high-order terms. 

Examples of these three test cases are shown in Figures 59 –61, where the solved 

value of each aberrations is shown at the end of each iteration. In the case of Figures 59 

and 60, it can be seen that the value of fifth- and third- order astigmatism (respectively) is 

zero. Similarly, it can be seen in Figure 61 that the iterative solution seems to oscillate 

between two values while converging. This is expected because the two terms are 

confounded. We begin by assuming no aberrations, and so the algorithm tried to correct 

phase errors with both terms. These sum into one term that is effectively double what it 

should be. In response, both terms will decrease due to the initial overcompensation. Both 

terms will in turn increase due to an undercompensation, ad infinitum. 

An additional 24 trials of each case were run (25 total for each case). In each case 

the mean error was below 0.001	𝜆𝜆. This error is slightly higher than can be achieved with 

synthetic data composed of purely third-order aberrations. However, it is still a very 

acceptable level of error. 
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Figure 59. An example of measuring a synthetic wavefront composed from only third-order 
astigmatism using the QUIP algorithm. 

 

Figure 60. An example of measuring a synthetic wavefront composed from only fifth-order 
astigmatism using the QUIP algorithm. 
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Figure 61. An example of measuring a synthetic wavefront composed from both third- and 
fifth-order astigmatism using the QUIP algorithm. 

5.5 The effects of noise on aberration retrieval 

There can be a considerable amount of variation in CD-SEM measurements and the 

aberration retrieval method involves non-linear least squares regression. It is therefore 

worthwhile to consider the effect of this noise on regression. The CD variation was found 

to closely follow a normal distribution. An example histogram of the difference between 

individual measurements and the mean CD at each dose is given in Figure 62 for the left 

CD of a five-bar structure. In this specific example, the standard deviation is 0.42 nm and 

the standard deviations of the other structures are given in Table 3.  Synthetic data was 

then computed by adding Gaussian noise to a linear regression to the experimental data. 

This synthetic data can stand in as an analogue of the real data for further analysis. 
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Figure 63 shows the linear regression of the synthetic data with a 95% confidence 

interval for the slope. The actual line that the data was computed from is contained within 

the confidence interval but does not match the linear regression on the noisy data. The 

aberration levels are extracted from a difference in CD and will not be accurate if only a 

simple linear regression is used. However, the confidence intervals provide bounds on the 

CD, and therefore the aberration levels. Aberration extraction should proceed as follows: 

1) compute confidence intervals for both CDs used for extraction, 2) determine the 

confidence interval for the difference in CDs from the edges of the CD confidence 

intervals, 3) fit aberrations to the edges of the CD difference confidence interval to 

determine bounds on the aberration levels, as in the flowchart in Figure 64. 

To better understand the error limits of this method CDs were computed for the 

unaberrated case and Gaussian noise was added to the data. The mean was zero for all 

cases and the standard deviation was as given in Table 3. Confidence intervals were 

computed and aberrations were extracted as in Figure 64. This process was repeated 10 

times and the mean extracted value for each aberration type is given in Table 4. These 

values provide an error measurement for the algorithm which depends on the standard 

deviation of the noise for each structure. In all cases the uncertainty is below 0.001 λ. 

Table 3. Standard deviation of CD measurements for each structure type 

Aberration Name Structure Type Standard Deviation [nm] 

Astigmatism Line/Space Array 0.36 

Coma 5-bar Structure 0.42 

Trefoil T-Bar 0.45 
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Figure 62. Histogram of residuals for the left CD of a five-bar structure. The residuals are 
computed between individual CD measurements and the mean at that dose. The residuals 
closely follow a normal distribution with a mean of 0 nm and a 0.42 nm standard deviation.  

 
Figure 63. Synthetic CD data computed from the line CD=0.5642*E-2.1448 with Gaussian 
noise with a 0.42 nm standard deviation. The dashed black line is the true line from which 
the data was computed. A 95% confidence interval for a linear fit to the data is show in the 
shaded region between the thick black lines. The true line is within the confidence interval, 
but is not the line of best fit, given by the solid thin black line. 
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Table 4.Aberrations extracted from confidence intervals based around the ideal CD (no aberration) 
with noise given by the standard deviations in Table 3. 

Aberration Name X aberration [mλ] Y aberration [mλ] 

Astigmatism 0.005 -0.548 

Coma 0.336 -0.466 

Trefoil -0.752 -0.396 

 

 

Figure 64. Flowchart of aberration extraction using the image-based method adapted for 
confidence intervals. 

5.6 QUIP Software 

QUIP provides a methodology to measure the aberrations of a lithography system from 

images formed by that system. The software package contains three major components: 

1) image viewer, 2) model builder, 3) wavefront analyzer. Additionally, there are two 
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different wavefront fitting algorithms that can be used. The necessary software 

components change depending on which algorithm is in use. 

5.6.1 Image viewer 

The first step to wavefront analysis in QUIP is to use the image viewer to extract the 

necessary image data. The software can read CD-SEM and scanner lot reports to 

automatically link this data to image measurements. The image viewer interface in shown 

in Figure 65. To begin, either CD-SEM micrographs or through focus image stacks are 

loaded into the software. Stage errors can be corrected through subpixel image rotation 

and registration algorithms. If necessary, noise can be filtered from the image and, 

finally, a region of interest is selected and optionally interpolated. The CD or through-

focus intensity volume can then be extracted from this region. 

In CD-SEM micrographs there is often a large amount of high frequency noise 

originating from secondary electron noise. This type of noise affects CD measurements 

but can be filtered by using either a median filter or a Savitzky-Golay filter. An example 

of unfiltered vs. median filtered image is given in Figure 66a. The effect of the filter is 

more easily seen when comparing intensity line scans between the two images, Figure 

66b.  

Rotation correction is computed by selecting an edge which should be straight. 

The software can then determine the appropriate offset to correct the rotation of this edge. 

Other stage errors can be corrected through the registration of the image stack. Image 

translation is determined with subpixel accuracy via the frequency domain phase of the 

cross-correlation of adjacent images.69 Next, the image can be interpolated to a higher 

pixel grid, which also deconvolves the response of the CCD sensor. This process is 
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Figure 65. The Image Viewer interface showing a sample image from an EUV actinic mask 
microscope. 

 

Figure 66. Example of SEM micrograph image processing for NXE:3100 case study. a) A 
comparison of the original (left) and median filtered (right) images, b) plot of a intensity 
line scan across the line in part (a) for both the original and filtered images. 

(a) (b) 

 
 

Figure 67. (a) An example image at the original resolution and after Fourier interpolation 
(inset). (b) Column-wise average of the interpolated region in the inset of panel (a) to 
estimate the aerial image. 



106 
 

shown in Figure 67a, where an image collected at approximately 15 nm/px was 

interpolated to approximately 5 nm/px. Finally, the aerial image or SEM line scan can be 

approximated via the normalized column-wise median of the interpolated region. The CD 

can then be measured by thresholding the profile, or the through-focus intensity volume 

can be captured by saving the profile from a through-focus image stack. 

5.6.2 Model builder 

The next step in wavefront analysis in QUIP is to pre-build a model if the PCA-based 

algorithm is to be used. The Model Builder interface is shown in Figure 68. The software 

assists in setting up and running the aerial image simulations necessary to build the 

desired models. Response variables can be amplitude and/or phase pupil variation 

specified by Zernike polynomials. An optional setup file can be used to specify the 

default values of the interface.  

After running the appropriate simulations, the eigenvolumes obtained via PCA 

can be viewed directly in the software. The eigenvolume shows the aerial image variation 

caused by a certain aberration. A polynomial model is constructed between the simulated 

treatment combinations and projections of intensity volumes onto the selected 

eigenvolumes. The appropriate order of the polynomial can be determined via Akaike 

information criterion. This is an information theoretic approach to quantifying over-

fitting risk, and is built-in to the software. The RMSE of the models is also computed to 

quantify the robustness of the models. 
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Figure 68. The Model Builder interface showing the setup for a sample model to interrogate 

coma pupil variation. The top screen shows the simulation setup while the bottom screen 

shows choosing the response variable and the option to add interacting terms. 
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Figure 69. The Model Builder interface showing the result of building a model for coma. 

5.6.3 Wavefront analyzer 

The final step in wavefront analysis in QUIP is to use the wavefront analyzer. The 

interface of this component is shown in Figure 70. Like the Model Builder, an optional 

setup file can be used to specify defaults values. If a model has been pre-built in the 

Model Builder, then this can be loaded into the software and an inverse pupil solution can 

be obtained rapidly by loading the corresponding experimental data. If the iterative 
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algorithm is to be used, then the appropriate simulations must be set up at this point. 

Regardless of algorithm, the results of the analysis are output both numerically and 

graphically. In addition, the results may be saved to a CSV file. 

(a) (b) 

  

Figure 70. (a) The Wavefront Analyzer interface showing a sample setup to interrogate the 
primary phase aberrations. (b) The Wavefront Analyzer showing the results running the 
setup shown in panel (a) using the iterative algorithm.  

5.6.4 Program Setup 

No matter which algorithm is used, image data must be obtained first. This can either be 

micrographs from a CD-SEM or focus stacks via SHARP or AIMS EUV. If the 

wavefront is to be fit to micrographs then CDs need to be measured. This can be done 

either in the offline SEM software or in the QUIP Image Viewer. In either case care 

should be taken to ensure that the pattern is being recognized and measured correctly. 

Mismeasurements do not always stand out as outliers and contribute to error in the 

extracted wavefront. 
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After image data has been prepared the data must be formatted into an appropriate 

CSV file that the QUIP Wavefront Analyzer can read. The image data for all of the used 

structures can be placed into a single CSV file, or into their own files. Let M be the 

number of CDs measured for a given target and let N be the number of test cases for each 

CD. The data for any given structure will be given by a (M+1) x (N+2) array of cells. 

The first cell of the first row should contain the name of the structure and the remaining 

cells in that row should be empty. The second row should contain the headings for the 

independent variable and the CDs. These cells act as labels for the data and appropriate 

names should be chosen to aid in setting up the software. The remaining cells should 

contain the measured data. This format is shown graphically in Figure 71. Additional data 

can be added in the same file in adjacent columns. 

 
Figure 71. An example of the CSV header structure for data files 

The Wavefront Analyzer provides a very general framework for fitting 

aberrations to image data. The software can be setup to fit any response (aberration) to 

any image data, but only certain combinations will give an accurate measurement. 

Therefore, care must be taken to setup the software correctly. After initial setup a plain 

text file can be saved to recall settings at a later date. A summary of the recommended 

settings is given in Table 5. Finally, before fitting can begin the appropriate PROLITH 

files must be provided. These files can be created manually or can be generated 

automatically by the QUIP software. (Chose Tools > PROLITH File Generator) Data 

measured through dose must be calibrated to an aerial image threshold, which can also be 



111 
 

done automatically by the QUIP software. (Choose Tools > Dose Calibration) After 

fitting the user will be presented with the final result of the wavefront extraction, as well 

as tabulated results and a bar plot of the wavefront after each iteration. 

Table 5. Recommended settings for wavefront extraction via QUIP 
Structure Name Independent 

Variable 

Number of 

Structures 

CD1 CD2 CD3 Response 

Vertical/Horizontal 

Lines 

Focus 2 Vertical Horizontal  Astigmatism 90º 

45º/135º Lines Focus 2 45º 135º  Astigmatism 45º 

5-Bar Vertical Dose 1 Left Right  Coma X 

5-Bar Horizontal Dose 1 Top Bottom  Coma Y 

Line Through Pitch Focus 3 1:1 1:2 1:4 Spherical 

T-Bar Horizontal Dose 1 Left Right  Three-foil X 

T-Bar Vertical Dose 1 Top Bottom  Three-foil Y 
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6. EXPERIMENTAL RESULTS 

6.1 SHARP Pupil Extraction 

The SHARP High-NA Actinic Reticle Review Project (SHARP) is an EUV 

lithography mask microscope at Lawrence Berkeley National Laboratory. A schematic 

view of the system is shown in Figure 72. SHARP forms a magnified image of the mask 

at 13.5 nm wavelength onto a CCD sensor via interchangeable Fresnel zone plate lenses. 

Because the lenses are interchangeable a wide range of magnified numerical apertures are 

available, from 0.0625 to 0.156 NA (equivalent to 0.25 to 0.625 NA on a 4x lithography 

system). Synchrotron radiation is focused onto the MEMS mirror in Figure 72 and is 

subsequently imaged onto the photomask. The MEMS mirror scans the pencil-like 

synchrotron beam across the aperture, synthesizing arbitrary partially coherent source 

shapes.70 

The target dimensions of the structures used for this experiment are given in Table 6. 

These values were determined by calculating the pitches required to sample the 50% and 

90% pupil zones. All data was collected using a 0.0625 NA lens with a conventional 0.1𝜎𝜎 

source. This source was chosen in order to resemble a fully coherent source and yet 

introduce a small amount of pupil averaging. Each target was imaged through its full 

depth of focus with the smallest step size available—±2.7 µm in 0.3 µm steps.  

Images were subsequently analyzed in the QUIP Image Analyzer. 71 First the images 

were registered to eliminate stage errors. Next, a small region of interest was inspected 

using interpolation. The images were collected at approximately 15 nm/px and were 

interpolated to 5 nm/px. The image intensity was approximated by finding the column- 
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Figure 72.  A schematic view of the SHARP microscope at the Advanced Light Source. EUV 
light at a wavelength of 13.5 nm from a bending magnet is focused on the photomask. The 
photomask is imaged on a CCD sensor using Fresnel zone plate lens. 

wise median of the interpolated region. This is subsequently normalized such that the 

intensity volume peaks at the ideal value at best focus. 

A 102 full factorial experiment was run for each Zernike polynomial. The phase 

design unit was 100 mλ and the amplitude design unit was 50%. The aberration separable 

basis was computed via custom code written in MATLAB. Vector aerial image 

simulations were then computed in PROLITH72, a commercial lithography simulation 

engine. Models were created between treatment combinations and projections of intensity 

volumes onto the aberration basis. The polynomial order was chosen via Akaike 

information criterion (AIC), an information theoretic approach to quantifying over-fitting 

risk.73 100 points normally distributed through the parameter space were used for model 

verification via AIC. Finally, the pupil variation was extracted using these models. 

The required polynomial order (along with its associated AIC weight) is presented in 

Table 7 with the RMSE for both phase and amplitude models. The RMSE corresponds 
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Table 6. CDs of the metrology targets used for pupil function extraction on SHARP. 

Aberration Name Structure Type Target CD [nm] 

Astigmatism 90° 
(𝑍𝑍�) 

Vertical/Horizontal 
Lines 120 

Astigmatism 45° 
(𝑍𝑍�) 45°/135° Lines 120 

Coma X (𝑍𝑍�) Vertical 5-bar 200 

Coma Y (𝑍𝑍�) Horizontal 5-bar 200 

Spherical (𝑍𝑍�) Line through pitch 120 

Trefoil X (𝑍𝑍��) Horizontal T-Bar 140 

Trefoil Y (𝑍𝑍��) Vertical T-Bar 140 
 

to the error of the 100 normally distributed points and is on the order of 0.2 mλ and 0.2% for 

phase and amplitude, respectively. This amount of error is comparable to the error of the iterative 

algorithm from previous studies. All models were built on a machine with 16 GB RAM using a 

3.6 GHz quad-core Intel i7 processor. The QUIP eigenfunctions were computed directly from the 

TCC in 32.5 seconds and total runtime to build all models was 20 hours. The bulk of this time is 

spent on full vector image simulations.  

 A comparison of the pupil variation extracted with both the iterative and QUIP 

algorithms is given in Table 3. The iterative algorithm took 3.2 hours to converge on a solution on 

the same machine described above, while the QUIP algorithm took 0.2 seconds to obtain an 

inverse solution. The amplitude and phase pupil variation are plotted in Figure 73, as extracted by 

the QUIP algorithm. The difference between the two algorithms is insignificant and is likely 

caused by numerical complications when fitting to aerial image data. When CD data is used there 

is no difference between the two algorithms. 
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Table 7. Required polynomial orders, and their associated RMSE for phase and 
amplitude variation, for each Zernike polynomial. 

Name Polynomial Order 

Phase 
RMSE 
[mλ] 

Amplitude 
RMSE 

[%] 

Z5 6 (0.632 AIC 
weight) 

0.18 0.35 

Z6 5 (0.500 AIC 
weight) 

0.19 0.25 

Z7/Z8 4 (0.496 AIC 
weight) 

0.10 0.20 

Z9 6 (0.995 AIC 
weight) 

0.10 0.15 

Z10/Z11 6 (0.742 AIC 
weight) 

0.12 0.18 

Table 8. A comparison of the extracted phase and amplitude variation using both 
the iterative algorithm and QUIP algorithm. 

Name Iterative 
Phase 
[mλ] 

Iterative 
Amplitude 

[%] 

QUIP        
Phase 
[mλ] 

QUIP 
Amplitude 

[%] 

Z5 -1.0 +14.9 -3.5 +5.1 

Z6 -3.5 +0.3 -2.4 +0.4 

Z7 0.0 -10.0 -0.8 -10.1 

Z8 0.0 -15.4 +0.1 -15.7 

Z9 +2.7 +2.8 +1.8 +4.9 

Z10 0.0 -10.3 +0.2 -10.2 

Z11 -23.2 +3.9 -23.7 +4.3 
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Figure 73. Pupil amplitude and phase extracted from SHARP with only third-order terms. 
(Z5–Z11) 

6.2 AIMS EUV™ Pupil Extraction 

AIMS, like the SHARP microscope, is a system built for actinic reticle inspection. 

However, unlike SHARP, AIMS is designed to use optics more similar to those used in 

production scanners. Instead of a zone plate lens, AIMS uses reflective optics to form an 

image on a CCD sensor with 750x magnification. An aspheric mirror is used for the 

primary mirror, while the remaining three mirrors are spherical, as in Figure 74.74 

6.2.1 Third-Order Only 

A preliminary wavefront was extracted from the AIMS EUV exposure system using the 

QUIP algorithm. Examples of these structures compared to images as formed on the 

AIMS EUV tool are given in Figure 84. The target CDs, at the mask level, of the 

structures used for this experiment are given in Table 13. These values were chosen to 

match previous experiments on NXE:3300 systems. In those experiments the target CDs 

were determined using an optimization procedure that balances aberration sensitivity and 

target printability. A total of 38 image sequences were captured from the AIMS EUV  
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Figure 74. A schematic view of the projection optics in the AIMS EUV system. 74 

system through ±1 µm of defocus with a defocus step of 66.7 nm. All exposures were 

completed using an annular source with 0.702σi – 0.894σo at 0.0825 NA (0.33 4xNA). 

This report concerns only the 10 sequences for the features described in Table 13. 

The red lines in Figure 84 denote the measurement locations used for wavefront 

extraction. CDs were measured using custom offline metrology software developed in 

MATLAB. Images were provided by ZEISS as MATLAB arrays with floating point 

values ranging from zero to unity. In this normalization unity corresponds to the intensity 

of a large open area and zero corresponds to no light. Each focal plane in the array was 

written to a 16-bit PNG image using the same normalization. This converts the values to 

integers ranging from zero to 65535.  This process can then be undone in the metrology 

software in order to restore the original tool normalization. This software was calibrated 

to the AIMS EUV system by measuring the CD in pixels of both the lines and spaces of 

three arrays with different pitches. This information was used to compute the spatial 

resolution of the images as 4.420 nm/px in mask level coordinates. 
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This resolution was used for to obtain CD data in nanometers. CDs are measured 

from the images by averaging a region either column-wise or row-wise depending on the 

feature orientation. The images are normalized to the ideal aerial image extrema, as 

obtained via a PROLITH simulation. The width of the averaging regions was 500 nm 

with the length varying depending on the target type. Where it was possible to do so the 

data was averaged over several identical features. 

The measurements obtained from the images are plotted in Figure 76–81.  In the 

case of coma and trefoil, not all of the data was used for aberration extraction. The gray 

region in the plot denotes the regions that were used to extract the wavefront. The 

estimated Zernike coefficients for a third-order wavefront is given in Table 10 and the 

wavefront is plotted in Figure 82. Due to a confidentiality agreement the extracted values 

are normalized to the highest term. Both the purely iterative and QUIP algorithms were 

used with the CD data extracted from the AIMS images. The models converged after 

eight iterations with no difference between the two algorithms. 

 

Figure 75. Comparison of the targets used for aberration interrogation and their images as 
formed on the AIMS EUV tool. 
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Table 9. CDs of the metrology targets used for pupil function extraction on AIMS EUV. 

Aberration Name Structure Type Target CD [nm] 

Astigmatism 90° (𝑍𝑍�) Vertical/Horizontal Lines 120 

Astigmatism 45° (𝑍𝑍�) 45°/135° Lines 120 

Coma X (𝑍𝑍�) Vertical 5-bar 100 

Coma Y (𝑍𝑍�) Horizontal 5-bar 100 

Spherical (𝑍𝑍�) Line through pitch 104 

Trefoil X (𝑍𝑍��) Horizontal T-Bar 120 

Trefoil Y (𝑍𝑍��) Vertical T-Bar 120 

 

 

 

Figure 76. CD data for vertical spaces (left), horizontal spaces (middle), and their difference 
(right). These are the targets used to interrogate astigmatism 90º (Z5).  
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Figure 77. CD data for 45º spaces (left), 135º spaces (middle), and their difference (right). 
These are the targets used to interrogate astigmatism 45º (Z6).  

 

Figure 78. CD data for the left and right bars of a vertical five-bar structure (left and 
middle plots, respectively), and their difference (right). This is the target used to interrogate 
coma X (Z7). The grey region denotes the region used for aberration extraction. 
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Figure 79. CD data for the top and bottom bars of a horizontal five-bar structure (left and 
middle plots, respectively), and their difference (right). This is the target used to interrogate 
coma Y (Z8). The grey region denotes the region used for aberration extraction. 

 

Figure 80. CD data for the left and right ends of a horizontal T-bar structure (left and 
middle plots, respectively), and their difference (right). This is the target used to interrogate 
trefoil X (Z10). The grey region denotes the region used for aberration extraction. 
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Figure 81. CD data for the top and bottom ends of a vertical T-bar structure (left and 
middle plots, respectively), and their difference (right). This is the target used to interrogate 
trefoil Y (Z11). The grey region denotes the region used for aberration extraction. 

Table 10. Extracted Zernike aberration values for each aberration type for the AIMS EUV.  

Zernike 
Term 

Aberration 
Name 

Direction Iterative Phase 
[A.U] 

QUIP Phase 
[A.U] 

Z5 
Astigmatism 

90º 0.859 0.859 

Z6 45º 0.658 0.658 

Z7 
Coma 

X -0.268 -0.268 

Z8 Y -0.745 -0.745 

Z9 Spherical  -0.215 -0.215 

Z10 
Trefoil 

X 1.000 1.000 

Z11 Y -0.255 -0.255 
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Figure 82. Extracted wavefront from AIMS EUV plotted with all third-order terms. (Z5–Z11) 

6.2.2 Third and Fifth Order 

Third- and fifth- order terms were measured from the AIMS EUV using the additional 

pitches given in Table 11. The procedure for data analysis was identical to that of the 

previous section. This time, only the QUIP algorithm was used. The extracted pupil phase 

variation is plotted in Figure 83 and is tabulated in   
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Table 12. The results here are normalized to the same value as in  in order to facilitate 

comparison between the two techniques. Comparing Figure 83 to Figure 82, the wavefront 

obtained by fitting only low-order terms is very similar to the wavefront obtained using 

third- and fifth-order terms. This is expected because the extracted third-order terms 

contain the effects of all high-order terms lumped into the single low-order term. It 

should be noted that four-foil was not measured in this analysis because it would require 

a third pitch of the targets used to interrogate astigmatism. 

Table 11. Additional pitches used to measure third- and fifth-order aberrations 
from AIMS EUV. 

Aberration Name Structure Type Target CD [nm] 

Astigmatism 90° (𝑍𝑍�) 
Vertical/Horizontal 

Lines 
160 

Astigmatism 45° (𝑍𝑍�) 45°/135° Lines 160 

Coma X (𝑍𝑍�) Vertical 5-bar 140 

Coma Y (𝑍𝑍�) Horizontal 5-bar 140 

Spherical (𝑍𝑍�) Line through pitch 80 

Trefoil X (𝑍𝑍��) Horizontal T-Bar 100 

Trefoil Y (𝑍𝑍��) Vertical T-Bar 100 
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Figure 83. Wavefront extracted from AIMS EUV with all third-order terms and their fifth-
order counterparts. (Z5–Z16, Z19,Z20) 
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Table 12. Extracted Zernike aberration values for each aberration type 
for the AIMS EUV. 
Aberration Name Aberration Order Value [A.U.] 

Astigmatism 90º 
3 0.752 

5 0.134 

Astigmatism 45º 
3 0.383 

5 0.228 

Coma X 
3 -0.161 

5 -0.081 

Coma Y 
3 -0.691 

5 -0.013 

Spherical 
3 -0.201 

5 -0.027 

Three-Foil X 
3 0.879 

5 0.074 

Three-Foil Y 
3 -0.188 

5 -0.087 

 

6.3 NXE:3300 Pupil Extraction 

The NXE:3300 is a state-of-the-art production EUV lithography tool produced by 

ASML. It uses a full-field catoptric lens with 0.33 NA. An approximate wavefront was 

extracted from the IMEC NXE:3300 exposure system using the RIT image-based method 

and the QUIP algorithm. The tool is capable of free-form sources through the use of the 

FlexPupil system, but all exposures presented here were completed with an annular 
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source. The sources in modern lithography processes are co-optimized with the mask 

layout to optimize the contrast, MEEF, process window, and other imaging effects. 

Another way of looking at free-form sources is that they increase the performance of 

certain patterns by decreasing the performance of other patterns. For example, a 

horizontal dipole source will print vertical lines very well and will not print most pitches 

of horizontal lines at all. In our case, we  do not care about the process window of our 

structures, and are using them as a way to sample the pupil. Because we do not want to 

bias any particular pupil direction, an azimuthally symmetric source is the best choice for 

aberration extraction. Partially coherent “conventional” sources and annular sources are 

both good choices. CD measurements from micrographs of resist images is fit to pupil 

wavefront error via aerial image simulations. Examples of these structures compared to 

images formed in resist on the IMEC NXE:3300 system are given in Figure 84. 

6.3.1 First Extraction 

The target CDs of the structures used for this experiment are given in Table 13. 

These values were determined using an optimization procedure that balances aberration 

sensitivity and target printability. Six exposures were completed on the IMEC NXE:3300 

system, as detailed in Table 14. All exposures were completed using an annular source 

with 0.702σi – 0.894σo. The first two wafers were used to center the process window for 

the remaining four wafers used for wavefront extraction. The red lines in Figure 84 

denote the measurement locations used for wavefront extraction. 

Confidence intervals are shown in Figures 5–10 for all the metrology structures 

used in this work. In each case the confidence intervals are shown for both CDs as well as 
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the computed confidence intervals for the CD difference. Through-focus data is known to 

vary quadratically so a second-order polynomial is used for these strucutres. 

A total of 10 iterations were needed for the wavefront extraction models to 

converge on a solution. The extracted wavefront is given in Table 15 with margin of error 

and a plot of the final extracted wavefront is given in Figure 91. The wavefront has a total 

RMS of 49.00 mλ or 0.66 nm. Only one pitch of each target type was measured in this 

dataset, so only third-order aberrations can be extracted. 

 

 
Figure 84. Comparison of the targets used for aberration interrogation and their images in 
resist via NXE:3300 exposure 

 

Table 13. CDs of the metrology targets used for pupil function extraction on NXE3300. 

Aberration Name Structure Type Target CD [nm] 

Astigmatism 90° (𝑍𝑍�) Vertical/Horizontal Lines 30 

Astigmatism 45° (𝑍𝑍�) 45°/135° Lines 30 

Coma X (𝑍𝑍�) Vertical 5-bar 25 

Coma Y (𝑍𝑍�) Horizontal 5-bar 25 

Spherical (𝑍𝑍�) Line through pitch 30 

Trefoil X (𝑍𝑍��) Horizontal T-Bar 30 

Trefoil Y (𝑍𝑍��) Vertical T-Bar 30 
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Table 14. Summary of the exposed wafers. 

Wafer Number Type 

1 FEM 

2 CDU 

3 Energy meander 

4 Fine focus meander 

5 Coarse focus meander 

6 FEM 

 

 Figure 85. 95% confidence intervals for a second order polynomial fit to CD data for 
vertical and horizontal lines. This is the target used to interrogate astigmatism 90º (Z5). The 
markers are the raw CD-SEM data, while the thin black line is the line of best fit. The thick 
black lines represent the edges of the confidence interval. 
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Figure 86. 95% confidence intervals for a second order polynomial fit to CD data for 45º 
and 135º lines. This is the target used to interrogate astigmatism 45º (Z6). 

 

Figure 87. 95% confidence intervals for a linear regression to CD data through dose for a 
vertical five-bar structure. This is the target used to interrogate coma X (Z7). 
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Figure 88. 95% confidence intervals for a linear regression to CD data through dose for a 
horizontal five-bar structure. This is the target used to interrogate coma Y (Z8). 

 

Figure 89. 95% confidence intervals for a linear regression to CD data through dose for 
horizontal T-bars. This is the target used to interrogate trefoil X (Z10). 
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Figure 90. 95% confidence intervals for a linear regression to CD data through dose for 
vertical T-bars. This is the target used to interrogate trefoil Y (Z11).  

Table 15. Extracted Zernike aberration values for each aberration type for the IMEC NXE:3300. 
The margin of error was obtained by extracting aberrations from the confidence intervals on the CD 
difference of metrology structures. 

Aberration Name Structure Type Zernike estimate [mλ] 

Astigmatism 90° (𝑍𝑍�) Vertical/Horizontal 
Lines 86.56 ± 0.55 

Astigmatism 45° (𝑍𝑍�) 45°/135° Lines 27.49 ± 0.70 

Coma X (𝑍𝑍�) Vertical 5-bar 0.14 ± 0.18 

Coma Y (𝑍𝑍�) Horizontal 5-bar 86.17 ± 0.19 

Spherical (𝑍𝑍�) Line through pitch -10.42 ± 0.53 

Trefoil X (𝑍𝑍��) Horizontal T-Bar 18.39 ± 0.20 

Trefoil Y (𝑍𝑍��) Vertical T-Bar 95.87 ± 0.60 
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Figure 91. Wavefront extracted from NXE3300 with all third-order (Z5–Z11) 

6.3.2 Second Extraction 

In the time between exposure and when analysis was completed, the ILIAS sensor 

was cleaned on the IMEC NXE:3300. This sensor is used for on-board aberration 

measurements which are used for feed forward controls to attempt to reduce aberrations. 

In response to this cleaning, a second dataset was exposed. This dataset also contained 

additional pitches to measure high order terms. 

6.3.3 Third-Order Only 

The procedure to measure third-order aberrations remained unchanged between the first and 

second runs. However, the dose range on the energy meander wafer was expanded to make it 

easier to extract the odd-parity aberrations (coma and trefoil) over a wider change in aerial image 
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threshold. The wavefront extraction converged in 15 iterations, and the results are given in Table 

16. The RMS of the wavefront is 32.27 𝑚𝑚𝜆𝜆 (0.44 nm). Comparing these results to Table 15, there 

is a clear resemblance between the two wavefronts. This is perhaps clearer when considering 

Figure 92, where the wavefront from this run was extracted. Coma and three-foil Y have remained 

the largest terms. The X-direction counterparts of these terms have remained small. The total 

amount of astigmatism has been reduced. This is a good indication of the repeatability of this 

method and shows how this technique could be used to track system variation over time. 

Table 16. Extracted Zernike aberration values for each aberration type for the IMEC NXE:3300. 

Aberration Name Value [mλ] 

Astigmatism 90º -20.3 

Astigmatism 45º +22.5 

Coma X -05.3 

Coma Y -59.9 

Spherical +08.9 

Three-Foil X -03.3 

Three-Foil Y -57.7 
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Figure 92. Wavefront extracted from IMEX NXE:3300 with all third-order terms.  (Z5–Z11) 

6.3.4 Third and Fifth Order 

Third- and fifth-order terms were extracted from CD data from images formed by the IMEC 

NXE:3300 system in resist. The same structures used to extract third order terms were used, in 

addition to the ones listed in Table 17. The analysis is identical to the previously listed 

experiments. The QUIP models converged in 25 iterations, and the results are given in Table 18 

and plotted in Figure 93. The extracted wavefront had an RMS of 25.30 𝑚𝑚𝜆𝜆 (0.34 nm). Again, 

this wavefront bears resemblance to the purely third-order wavefront. This is because the third-

order wavefront represents a lumped contribution of high-order terms into a single low-order 

term. When third- and fifth- order terms are extracted the high-order contribution is lumped into 

the fifth-order terms. Again, four-foil was not extracted in this analysis due to the requirement of 

a third pitch of the astigmatism target. 
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Table 17. Additional pitches used to measure third- and fifth-order aberrations from the IMEC NXE:3300 exposure 

system. 

Aberration Name Structure Type Target CD [nm] 

Astigmatism 90° (𝑍𝑍�) 
Vertical/Horizontal 

Lines 
40 

Astigmatism 45° (𝑍𝑍�) 45°/135° Lines 40 

Coma X (𝑍𝑍�) Vertical 5-bar 35 

Coma Y (𝑍𝑍�) Horizontal 5-bar 35 

Spherical (𝑍𝑍�) Line through pitch 40 

Trefoil X (𝑍𝑍��) Horizontal T-Bar 30 

Trefoil Y (𝑍𝑍��) Vertical T-Bar 30 
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Table 18. Extracted Zernike aberration values for each aberration type for the IMEC NXE:3300. 

Aberration Name Aberration Order Value [mλ] 

Astigmatism 90º 
3 -16.7 

5 -5.7 

Astigmatism 45º 
3 +17.4 

5 +2.3 

Coma X 
3 -3.6 

5 -5.6 

Coma Y 
3 -40.8 

5 -9.3 

Spherical 
3 +05.5 

5 0.0 

Three-Foil X 
3 -6.4 

5 -1.2 

Three-Foil Y 
3 -48.5 

5 -12.2 

 

Figure 93. Wavefront extracted from IMEC NXE:3300 with all third-order terms and their 
fifth-order counterparts. (Z5–Z16, Z19,Z20) 



138 
 

7. ABERRATIONS IN ANAMORPHIC 

LITHOGRAPHY SYSTEMS 

As we have seen, Zernike aberrations are used as the aberration basis in isomorphic 

optics with rotational symmetry because they reproduce geometrical aberrations. That 

physical interpretation is the reason why Zernike polynomials specifically are used over 

any other basis. This is important because it allows lens designers to minimize the 

residual wavefront and allows for wavefront compensation and correction.  

It is well established that Zernike polynomials do not describe the primary 

aberrations of optical systems with non-circular pupils. For example, ISO standard 

14999-4:2015 describes how to interpret interferometric measurements and states that it 

is not possible to fit Zernike polynomials to non-circular pupils.75 Cassegrain telescopes 

are catoptric and have a central obscuration. The most famous is undoubtedly the Hubble 

Space telescope, which has an 𝜖𝜖 = 0.33 central obscuration. The Hubble telescope is also 

famous for being launched with a large figure error in its primary mirror, causing a large 

amount of residual spherical aberration. In a comparison of the aberrations pre- and post-

correction NASA scientists state, “As is customary in HST optical studies, they [Zernike 

polynomials] are orthonormalized for a 33% central obscuration, which accounts for the 

OTA’s secondary mirror.”76 Other authors, besides Mahajan who has written extensively 

on the subject, have derived aberration bases for non-circular pupils.77–79 Therefore, it is 

reasonable to believe that anamorphic optics may have different aberrations than 

isomorphic optics. 
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7.1 Primary aberrations of anamorphic optics 

Anamorphic optics are defined as having different magnification factors in different 

directions of the pupil.24,29,80 This leads to differently shaped entrance and exit pupils. In 

a lithographic anamorphic projection lens the entrance pupil will be elliptical while the 

exit pupil will be circular. However, as one rotates an anamorphic optic the magnification 

changes, which in turn changes the action of the optic. 

Of course, the optics of a lithography system would never be rotated, which can 

make this point difficult to visualize, but no less important. It is helpful to use a real 

anamorphic objective, such as the one by Bausch & Lomb in Figure 94. That lens was 

held in a purpose-built stand and the entrance pupil was imaged as a function of rotation 

in Figure 95. As the optic is rotated the image is skewed from perfect circles to an ellipse 

with a vertical major axis. It is only after a rotation of 180° that the optic again images 

the object as circles, therefore anamorphic optics can only be considered reflection 

invariant.28 

Counterintuitively, because the action of the optic changes through rotation, phase 

errors in the pupil can lead to different kinds of effects in the image through rotation. 

Therefore, the phase error should be described by different kinds of aberrations as the 

optic is rotated. Because anamorphic optics are only reflection invariant we can expect 

that their wavefront aberration will have the same quality.28,80–82 The wavefront 

aberration can be expanded in a power series using the reflection invariant terms: 𝑋𝑋��, 𝑌𝑌��, 

𝑋𝑋� , 𝑌𝑌� , 𝑋𝑋𝑋𝑋�, 𝑌𝑌𝑌𝑌�, as,  
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Figure 94. Bausch & Lomb anamorphic lens. (top) The lens in its purpose-built stand, 

and (bottom) imaging the entrance pupil of the lens. 
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Figure 95. A comparison of the images of the same object as an anamorphic projection 

lens is rotated. The top shows the effective demagnification in the horizontal 

and vertical pupil axes. 

 

Φ(𝑋𝑋�, 𝑌𝑌�, 𝑋𝑋, 𝑌𝑌) 	= 	𝑎𝑎� +	𝑏𝑏�	𝑋𝑋�� +	𝑏𝑏�𝑌𝑌�� 	+	𝑏𝑏�𝑋𝑋� + 𝑏𝑏�𝑌𝑌� 	+	𝑏𝑏�𝑋𝑋�𝑋𝑋 + 𝑏𝑏�𝑌𝑌�𝑌𝑌	 +	𝑐𝑐�𝑋𝑋�� +

	𝑐𝑐�𝑌𝑌�� 	+	𝑐𝑐�(𝑋𝑋�𝑌𝑌�)� 	+	𝑐𝑐�𝑋𝑋� 	+	𝑐𝑐�(𝑋𝑋�𝑋𝑋)� 	+	𝑐𝑐�𝑋𝑋��𝑋𝑋	 +	𝑐𝑐�𝑋𝑋�𝑋𝑋� 	+	𝑐𝑐�𝑌𝑌� 	+	𝑐𝑐�(𝑌𝑌�𝑌𝑌)� 	+

	𝑐𝑐�𝑌𝑌��𝑌𝑌	 +	𝑐𝑐��𝑌𝑌�𝑌𝑌� 	+	𝑐𝑐��(𝑋𝑋𝑌𝑌)� 	+	𝑐𝑐��𝑋𝑋�𝑌𝑌�𝑌𝑌	 +	𝑐𝑐��𝑋𝑋��𝑌𝑌�𝑌𝑌	 +	𝑐𝑐��𝑌𝑌��𝑋𝑋�𝑋𝑋	 +

	𝑐𝑐��𝑌𝑌�𝑋𝑋�𝑋𝑋	 +	𝐶𝐶��(𝑋𝑋�𝑌𝑌)� 	+	𝐶𝐶��𝑋𝑋�𝑋𝑋𝑌𝑌�𝑌𝑌	 +	𝑐𝑐��(𝑌𝑌�𝑋𝑋)�	+	. ..	, 

(7.1) 

where 𝑋𝑋 and 𝑌𝑌 are pupil plane coordinates and X0 and Y0 are object space coordinates. If 

the system were rotationally invariant this expression would simplify to the Seidel 

representation of aberrations. Instead, we find that the primary aberrations of anamorphic 

optics are only separable in Cartesian coordinates, instead of polar coordinates, and 

therefore can be written as a product of 1D aberrations. Ignoring terms that do not contain 

𝑋𝑋 or 𝑌𝑌, we can see that there are sixteen primary aberrations of anamorphic systems. This 
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description is equivalent to having separate Seidel aberrations in each plane of symmetry 

of the optic, as described by Wynne.80,82  

We now consider the anamorphic analogue to an isomorphic singlet: two crossed 

cylindrical lenses, as in Figure 96.  In general, this system is not stigmatic and has at most 

two Gaussian conjugates. Moving either lens in this system would cause defocus only in 

one direction. This is the definition of astigmatism in an isomorphic optic, but it is more 

appropriate for this system to interpret this kind of phase error as defocus. In this case, 

the method for correction of the phase error is the same, but this is not guaranteed to be 

the case. 

 

Figure 96. Two crossed cylindrical lens forming a stigmatic image. This is the simplest 

anamorphic optical system. 

To this point, we simulated the residual wavefronts of an anamorphic objective 

patent lens, Figure 97.83 This lens is made of four distinct sections: 1) an isomorphic 

section which forms an intermediate image of the object, 2) an isomorphic doublet used 

to focus the optic, 3) and 4) two separate anamorphic objective sections.  Residual 

wavefronts for this optic were computed using ZEMAX OpticStudio84. The lens was 

detuned by tilting the first cylindrical surface in the X direction by 2 mm. Residual 
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wavefronts in the ideal and detuned cases are shown in Figure 98. Tilting an isomorphic 

singlet is known to cause an apparent increase in both tilt and coma. The tilting action 

does not cause coma in the lens, but coma is balanced by tilt. Therefore, tilting the lens 

unbalances it and causes an apparent increase in coma. Detuning the anamorphic 

objective in the same way should create the same kinds of aberrations, but instead we see 

a very large amount of trefoil.  Attempting to correct this phase error as trefoil instead of 

coma could introduce new phase errors, so it would be incorrect in this case to interpret 

this as trefoil. 

 

Figure 97. Schematic view of the anamorphic objective patent lens used for simulation of 
residual wavefronts shown in the XZ plane. 
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Figure 98. Orthogonal function expansions of residual wavefronts for (left) an isomorphic 
singlet and (right) the anamorphic objective patent lens. The residual wavefront was 
computed in ZEMAX OpticStudio in both the ideal and detuned states. 

7.2 A new aberration basis 

We have seen that the Zernike polynomials are defined as the solutions to,  

(1 − 𝑟𝑟�) �
��
���

+ (1 − 3𝑟𝑟�) ��
��
+ �
��

���
���

+ 𝑛𝑛(𝑛𝑛 + 1)𝑟𝑟𝑉𝑉 = 0, (7.2) 

where r and 𝜙𝜙 are polar coordinates. Transforming Equation (7.2) to Cartesian 

coordinates from polar coordinates, 

∇�𝑉𝑉 − �𝑥𝑥 �
��
+ 𝑦𝑦 �

��
�
�
𝑉𝑉 − 2 �𝑥𝑥 �

��
+ 𝑦𝑦 �

��
� 𝑉𝑉 + 𝑛𝑛(𝑛𝑛 + 1)𝑉𝑉 = 0. (7.3) 

Alternatively, if only one dimension is considered the differential equation becomes, 

(1 − 𝑥𝑥�) �
��
���

− 2𝑥𝑥 ��
��
+ 𝑛𝑛(𝑛𝑛 + 1)𝑉𝑉 = 0. (7.4) 

This is easily recognized as Legendre’s differential equation. Therefore, Legendre 

polynomials represent balanced aberrations in a 1D slit pupil.28 Because the primary 
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anamorphic aberrations are separable in Cartesian coordinates, products of Legendre 

polynomials should be used as an orthonormal basis to represent balanced anamorphic 

aberrations. Products of Legendre polynomials are orthogonal over the unit square, so 

they must be reorthogonalized over the unit circle. This is achieved via the Gram-

Schmidt process as,28,85–87 

𝑁𝑁���(𝑢𝑢, 𝑣𝑣) = 𝑃𝑃���(𝑢𝑢, 𝑣𝑣) − ∑
��(�,�)
��

𝑄𝑄���� 	�
��� , (7.5) 

where 𝑁𝑁� is an anamorphic aberration function, 𝑃𝑃� is a 2D Legendre polynomial, and 

𝑄𝑄����  is given by,  

𝑄𝑄���� = ∫ ∫ 𝑃𝑃���(𝑢𝑢, 𝑣𝑣)𝑁𝑁�(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
�√����

���√����
��
���� . (7.6) 

These polynomials can be re-orthogonalized again over an annulus to account for 

a central obscuration, 

𝑁𝑁���(𝑢𝑢, 𝑣𝑣; 𝜖𝜖) = 𝑁𝑁���(𝑢𝑢, 𝑣𝑣; 𝜖𝜖 = 0) − ∑
��(�,�;�)

��
𝑄𝑄���� 	�

��� , (7.7) 

where 𝜖𝜖 is the obscuration as a percentage of the pupil radius, 𝑁𝑁�(𝑢𝑢, 𝑣𝑣; 𝜖𝜖) is an annular 

anamorphic aberration function, 𝑁𝑁�(𝑢𝑢, 𝑣𝑣; 𝜖𝜖 = 0) is one of the anamorphic circle 

polynomials derived in Equation (7.7), and 𝑄𝑄����  is given by,  

𝑄𝑄���� = ∫ ∫ 𝑁𝑁���(𝑢𝑢, 𝑣𝑣; 𝜖𝜖 = 0)𝑁𝑁�(𝑢𝑢, 𝑣𝑣; 𝜖𝜖)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
�√����

���√����
��
���� −

∫ ∫ 𝑁𝑁���(𝑢𝑢, 𝑣𝑣; 𝜖𝜖 = 0)𝑁𝑁�(𝑢𝑢, 𝑣𝑣; 𝜖𝜖)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
�√�����

���√�����
��
���� . 

(7.8) 

 It is also possible to orthogonalize the Legendre polynomials with a gap in their 

domain centered at the origin with a width of 2𝜖𝜖, then orthogonalize the resulting terms 
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over an annulus. Two Gram-Schmidt processes are required either way, and the 

computation complexity is equivalent. 

The Gram-Schmidt process generates the functions in an arbitrary order, so we 

will need to determine the best way to order the terms in this basis. The Zernike 

polynomials each have a radial order n and an azimuthal order m, but are often given 

ordered by a single index. One of the most common ordering schemes is the one 

proposed by Wyant.88 First a new quantity is calculated for each combination of (𝑛𝑛,𝑚𝑚) 

𝑛𝑛� = ���
�

. (7.9) 

The polynomials are then ordered by increasing 𝑛𝑛� and decreasing 𝑚𝑚. 

Similarly, each anamorphic aberration function is proportional to a 2D Legendre 

polynomial, which in turn is a product of a different Legendre polynomial in each pupil 

direction. Therefore, the 2D Legendre polynomial can be referred to by combinations 

(𝑞𝑞, 𝑟𝑟), and  

𝑁𝑁��� = 𝑁𝑁�� ∝ 𝑃𝑃�(𝑢𝑢)𝑃𝑃�(𝑣𝑣). (7.10) 

From the orders of the Legendre polynomials we define an intermediate quantity,  

𝑛𝑛 = 𝑞𝑞 + 𝑟𝑟
𝑚𝑚 = 𝑞𝑞 − 𝑟𝑟  . (7.11) 

The terms n and m are analogous to the Zernike radial and azimuthal orders. It is 

important to remember however that the anamorphic basis is not separable in polar 

coordinates, so the terms in Equation (7.11) can only provide an analogy to the Zernike 

basis. This generates a sequence that is similar to that of the Zernike polynomials, but 

aberration types appear out of order. To fix this we define two new ordering coefficients, 
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𝑛𝑛� = ����

�
𝑚𝑚� = −|𝑚𝑚| + 𝑛𝑛 +𝑚𝑚𝑚𝑚𝑑𝑑(𝑛𝑛, 2)

. (7.12) 

Finally, the anamorphic aberration functions can be ordered by increasing 𝑛𝑛� and 

decreasing 𝑚𝑚′. This puts the functions in a familiar order for those already familiar with 

the Wyant Zernike ordering scheme. 3rd and 5th order anamorphic aberrations ordered in 

this proposed scheme are shown in Figure 99. Analytic solutions are given in Tables 19 

and 20 for the anamorphic circle polynomials and annular polynomials. More details on 

computation can be found in Appendix A: Annular anamorphic polynomials, and the 

annular polynomials are computed for several obscurations in Appendix B: Annular 

anamorphic polynomial tables. Finally, interferograms for third-order anamorphic 

polynomials are given with 0% and 20% obscurations in Figures 100 and 101. 

 Notably, spherical aberration is no longer described by a single azimuthally 

symmetric term but rather by two separate terms, as expected from the previous 

descriptions of anamorphic aberrations. Additionally, while four-foil is a higher order 

aberration in isomorphic optics, it is a primary aberration in anamorphic optics. 

This residual wavefront of the detuned patent lens was expanded in the proposed 

anamorphic basis in Figure 102a. There are several terms which only appear in either the 

Zernike basis or anamorphic basis. The terms in Figure 102a have been grouped together 

to facilitate comparison. Zernike defocus and spherical aberration are azimuthally 

symmetric but are plotted in comparison to the corresponding anamorphic aberration in 

the X direction. Similarly, astigmatism 90° does not exist in the anamorphic basis 

because it is indistinguishable from separate defocus in the X and Y directions. Noting 

these differences, we can see that trefoil does not appear in the anamorphic expansion 
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and instead has been correctly attributed to coma. The expansion in the proposed 

anamorphic basis makes the necessary correction for the phase error clear, while the 

Zernike expansion does not. 

This is made clearer when examining the transfer matrix between the proposed 

anamorphic basis and the Zernike polynomials, Figure 102. Many terms in the 

anamorphic basis are represented in part by the same Zernike terms. In the example 

patent lens, correcting the apparent trefoil error from the Zernike expansion would help to 

decrease the anamorphic coma, but it would introduce anamorphic trefoil. Amongst the 

anamorphic primary aberrations, this same relationship between the two interpretations 

also applies to the defocus, spherical, and four-foil terms. 

 

Figure 99. The 3rd and 5th order aberrations of an anamorphic optical system. The names 
provided are the closest isomorphic aberrations.  
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Table 19. Analytic solutions for the first 40 anamorphic circle polynomials. 
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Table 20. Analytic solutions for the first 18 annular anamorphic polynomials. 
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Table 20. (Continued from previous page)
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Figure 100. Interferograms for the third-order anamorphic circle polynomials. 
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Figure 101. Interferograms for the third-order annular anamorphic polynomials with a 20% obscuration. 
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(a) (b)  

  

 

Figure 102. (a) Orthogonal function expansions of residual wavefronts the anamorphic 
objective patent lens in both a Zernike basis and the proposed anamorphic basis. The 
residual wavefront was computed in ZEMAX OpticStudio in both the ideal and detuned 
states. Note that defocus Y and spherical Y do not exist in the Zernike polynomials, Zernike 
defocus and spherical is shown as being in the X direction in this plot. Similarly, 
astigmatism 90° does not exist in the anamorphic basis. (b) Transfer matrix between 
Zernike polynomials and the anamorphic primary aberrations. The stars are placed in the 
terms which have the largest magnitude for each particular term. 

7.3 Simulating anamorphic aberrations 

We have written a custom application in MATLAB to compute aberrations using the 

proposed basis for anamorphic aberrations, as seen in Figure 103. The Gram-Schmidt 

process described by Equation (7.5) is a computationally expensive procedure. Computing 

high order terms can be quite slow, so the anamorphic basis is pre-computed up to A68. 

This ensures that computation of pupil filters is fast on any machine. The application 

supports creating a wavefront with both phase and amplitude errors in the proposed 

anamorphic basis. Once an anamorphic wavefront has been generated the user has several 

options: the wavefront can be exported directly to PROLITH72, it can be written to a 
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PROLITH pupil filter file, or it can be expanded in Zernike polynomials for simulation in 

any existing software. 

It is often necessary to simulate the effects of aberrations at multiple levels, a so-

called simulation set. The application will compute the equivalent sets of Zernike 

coefficients to vary in groups to achieve the desired simulation. Varying levels of 

anamorphic aberrations cannot be run directly through PROLITH as simulation sets, and 

instead must be run as a series of single simulations with pupil filter files. This is because 

some simulations may require Zernike coefficients to be simulated in decreasing order to 

achieve the desired simulation, which PROLITH does not allow. Instead, the application 

can write the necessary PROLITH pupil filter files for a simulation set along with a 

MATLAB script to run the simulation. The interface for simulation sets is shown in 

Figure 104. This software is freely available.89 

 

 

Figure 103. Screenshot of software written to generate anamorphic pupil filters. 



156 
 

 

Figure 104. Screenshot of the same software showing the simulation set capabilities of the 
software. 

7.4 Using Zernike polynomials to describe anamorphic aberrations 

As noted in the previous section, it is sometimes acceptable to simulate anamorphic 

aberrations by way of Zernike polynomials. The wavefront should be composed in the 

anamorphic basis, then transformed into the Zernike basis. This is simply a mathematical 

technique to enable existing simulation software to carry out simulations with the new 

anamorphic basis. Carrying out simulations with Zernike polynomials directly would 

incorrectly describe the aberrations. 

If the phase error in the pupil is perfectly known, using either the proposed basis 

or a Zernike basis will yield equivalent image simulations. However, the Zernike basis 

will provide the incorrect physical interpretation for correction. Therefore, using a 

Zernike basis is inadequate for designing, optimizing, and correcting an anamorphic 

optic. Moreover, if the phase errors are not known and are instead being measured 

experimentally the correct basis must be used. Interferometric techniques, which correlate 

Zernike pupil error with experimental measurements of the wavefront gradient, can be 
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easily adapted to use the proposed basis. Image-based techniques, which correlate 

Zernike pupil error with resist CD variation, can be similarly adapted. 

7.5 Image-based metrology of anamorphic aberrations 

The targets used for isomorphic systems are shown in Figure 105. The targets for 

astigmatism and spherical aberration are imaged through-focus, while the targets for 

coma and trefoil are imaged through exposure dose. 

The effects of the terms in the proposed anamorphic aberration basis are similar to 

their isomorphic counterparts. Therefore, many of the metrology targets can be reused to 

interrogate the anamorphic aberration basis. Astigmatism 90° does not occur in 

anamorphic basis, so only 45° and 135° lines and spaces are necessary. The targets for 

coma remain unchanged. Spherical aberration is interrogated by a line of constant CD at 

various pitches, but in the anamorphic basis there are two kinds of spherical aberration. 

Therefore, we will need a set of spherical targets in both a vertical and horizontal 

orientation. Referring to Figure 97, the extrema of anamorphic three-foil and four-foil are 

very close together. This presents a difficulty when using a partially coherent source to 

image the targets. 

To investigate this further, a full factorial experiment was run with anamorphic 

three-foil (A11 and A12) and four-foil (A13 and A14). The existing targets for three-foil 

were simulated through focus and through aerial image threshold. Each aberration was 

run at three levels with a design unit of 100	𝑚𝑚𝜆𝜆, focus and threshold were run at five 

levels each with design units of 25	𝑛𝑛𝑚𝑚 and 0.05, respectively. The results of ANOVA 

for this DOE are given in Table 21. A11-A14 can be interrogated by measuring the existing 

T-bar targets both through focus and through exposure. 
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Figure 105. The binary targets used to interrogate aberrations both anamorphic and 
isomorphic aberrations. 

Table 21. Results of ANOVA for DOE to determine the sensitivity of T-Bar targets to 

A11–A14. Fields marked with an X were found to be statistically significant. 

Term T-Bar CDL-

 

T-Bar CDT-

 
A11 X X 
A12 X X 
A13  X 
A14 X X 

A11*Focus X  
A12*Focus X  
A13*Focus  X 
A14*Focus X  

A11*Threshold X X 
A12*Threshold X X 
A13*Threshold  X 
A14*Threshold X X 
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8. CONCLUSIONS 

State-of-the-art diffraction limited lithography processes have the tightest 

aberration tolerances of any optic. However, the aberrations of in-use tools cannot be 

easily monitored using the standard aberration retrieval methods. The proposed method 

allows one to measure both third- and fifth-order pupil variation from CD-SEM 

micrographs of images formed in resist. The pupil variation can either be in amplitude, 

phase, or a mixture of the two. 

EUV lithography systems have aberration tolerances measured in picometers. 

However, in terms of wavelength this is a looser restriction than their DUV counterparts. 

This makes EUV lithography systems a better candidate for image-based techniques than 

state-of-the-art DUV systems because the image process variation caused by aberrations 

can be easily measured as CD variation. In addition, roughly 30% of the light at each 

reflective multilayer interface is lost to heat. This leads to thermal aberrations that vary 

throughout tool use. This aspect of EUV lithography systems means that it is imperative 

that aberrations can be measured during tool use. 

It has been shown both theoretically and experimentally that the best basis to use 

to express amplitude pupil variation is the Zernike polynomials. Amplitude pupil 

variation was measured experimentally by interrogating individual pupil samples. 

Aberration retrieval is achieved by using one-dimensional and two-dimensional 

binary targets which are sensitive to a specific type of aberration at multiple pitches, in 

combination with an algorithm based in-part on principal component analysis. This 
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approach removes the computationally expensive simulations from outside of the 

iterative loop, thus allowing rapid pupil characterization. Once models are built, the pupil 

can be characterized in under one second. Additionally, a new method of measuring 

spherical aberration was presented. This removed the necessity of subjective analysis 

from the aberration retrieval scheme. 

This approach is very flexible and has been demonstrated on three different kinds 

of tools: 1) an actinic EUV mask microscope, 2) a production lithography scanner, and 3) 

a catoptric mask inspection tool. 

Finally, a new basis was proposed to express the primary aberrations of anamorphic 

lithography systems. This basis is derived from first reducing the Zernike polynomials to 

one dimension, then reorthogonalizing a product of one-dimensional aberrations over the 

unit circle. Zernike polynomials are used for isomorphic optics because both the optics 

and the Zernike basis are rotationally invariant. Additionally, they accurately reproduce 

the primary aberrations achieved by expanding the wavefront error in a power series. We 

found the analogous power series for the reflection invariant anamorphic systems, and 

then constructed a new basis which reproduces these aberrations. This new basis can be 

ordered using a scheme analogous to the Wyant Zernike scheme. This enables direct 

comparison between the two bases. Anamorphic EUVL systems will have a central 

obscuration in the objective lens, so results were also computed for several different 

annular pupils. 
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10. APPENDIX A: ANNULAR ANAMORPHIC 

POLYNOMIALS 

This section provides more details on computing the proposed anamorphic aberration 

basis. The aberration basis can be computed using the Gram-Schmidt process, or by a 

matrix formulation proposed by Mahajan.86 Both methods are presented here in the 

Mathematica programming language. The same thing can be done in MATLAB, but 

Mathematica provides two specific benefits here: 1) it is better for obtaining analytic 

solutions, and 2) the Mathematica code is easier to understand than MATLAB code. 

To obtain the anamorphic circle polynomials from the Legendre polynomials 

using the matrix method: 

MaxPoly = 70; 
LOrder := {{0, 0}, {1, 0}, {0, 1}, {2, 0}, {1, 1}, {0, 2}, 
{3, 0}, {2,1}, {1, 2}, {0, 3}, {4, 0}, {3, 1}, {2, 2}, {1, 3}, 
{0, 4}, {5, 0}, {4, 1}, {3, 2}, {2, 3}, {1, 4}, {0, 5}, {6, 0}, 
{5, 1}, {4, 2}, {3, 3}, {2, 4}, {1, 5}, {0, 6}, {7, 0}, {6, 1}, 
{5, 2}, {4, 3}, {3, 4}, {2, 5}, {1, 6}, {0, 7}, {8, 0}, {7, 1}, 
{6, 2}, {5, 3}, {4, 4}, {3, 5}, {2, 6}, {1, 7}, {0, 8}, {9, 0}, 
{8, 1}, {7, 2}, {6, 3}, {5, 4}, {4, 5}, {3, 6}, {2, 7}, {1, 8}, 
{0, 9}, {10, 0}, {9, 1}, {8, 2}, {7, 3}, {6, 4}, {5, 5}, {4, 6}, 
{3, 7}, {2, 8}, {1, 9}, {0, 10}, {11, 0}, {10, 1}, {9, 2}, {8, 
3}, {7, 4}, {6, 5}, {5, 6}, {4, 7}, {3, 8}, {2, 9}, {1, 10}, 
{0, 11}, {12, 0}, {11, 1}, {10, 2}, {9, 3}, {8, 4}, {7, 5}, 
{6, 6}, {5, 7}, {4, 8}, {3, 9}, {2, 10}, {1, 11}, {0, 12}, 
{13, 0}, {12, 1}, {11, 2}, {10, 3}, {9, 4}, {8, 5}, {7, 6}, 
{6, 7}, {5, 8}} 
 
L2D[j_] := 
LegendreP[LOrder[[j]][[1]],u]*LegendreP[LOrder[[j]][[2]], v] 
 
AreaFactor = Pi; 
Cpp[m_, n_] :=  Integrate[Integrate[ L2D[m]*L2D[n], {v, -Sqrt[1 - 
u^2], Sqrt[1 - u^2]}], {u, -1, 1}, Assumptions -> u \[Element] 
Reals && v \[Element] Reals]/AreaFactor 
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Q = Assuming[u \[Element] Reals && v \[Element] Reals, 
CholeskyDecomposition[Array[Cpp, {MaxPoly, MaxPoly}]]]; 
M = Assuming[u \[Element] Reals && v \[Element] Reals, 
Inverse[Transpose[Q]]]; 
A[J_] := Simplify[Sum[M[[J]][[j]]*L2D[j], {j, 1, J}], u 
\[Element] Reals && v \[Element] Reals] 
 
n[i_] := (LOrder[[i]][[1]] + LOrder[[i]][[2]]) 
m[i_] := (LOrder[[i]][[1]] - LOrder[[i]][[2]]) 
mprime[i_] := -Abs[m[i]] + n[i] + Mod[n[i], 2] 
nprime[i_] := (n[i] + mprime[i])/2 
Acircle = Array[A, {MaxPoly}]; 
TableForm[Table[{i, nprime[i], mprime[i], Acircle[[i]]}, {i, 1, 
MaxPoly}]] 
 

To obtain the annular anamorphic polynomials from circle polynomials using the 

Gram-Schmidt method: 

MaxPoly = 28; 
F = {{1}}; 
 
PupilIntegrate [f_] := PupilIntegrate[f] =  
  Integrate[ 
    Integrate[f, {v, -Sqrt[1 - u^2], Sqrt[1 - u^2]}], {u, -1, 1},  
    Assumptions -> u \[Element] Reals && v \[Element] Reals] -  
   Integrate[ Integrate[ 
     f, {v, -Sqrt[\[Epsilon]^2 - u^2],  
      Sqrt[\[Epsilon]^2 - u^2]}], {u, -\[Epsilon], \[Epsilon]},  
    Assumptions -> \[Epsilon] >= 0 && \[Epsilon] <  
       1 && \[Epsilon] \[Element] Reals && u \[Element] Reals &&  
      v \[Element] Reals] 
 
AreaFactor = Pi*(1 - \[Epsilon]^2); 
c[j_, k_] := c[j, k] = -1/AreaFactor * 
PupilIntegrate[Acircle[[j]]*F[[k]]] 
 
Gj[j_] := Gj[j] = Sum[c[j, k]*F[[k]], {k, 1, j - 1}] + 
Acircle[[j]] 
 
Fj[j_] := AppendTo[F, Simplify[Gj[j]/ 
    Sqrt[PupilIntegrate[Gj[j]^2]/AreaFactor], \[Epsilon] >=  
     0 && \[Epsilon] < 1 && \[Epsilon] \[Element] Reals,  
   TimeConstraint -> 10000]] 
 
For[i=2,i<MaxPoly+1,i++,Fj[i]; Print[F[[i]]]] 
 

The anamorphic circle polynomials could also be computed in Mathematica using 

the Gram-Schmidt method. Many of the computations in the matrix method can be 
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parallelized, but can become very resource intensive. This is because it involves a matrix 

inversion, so computing higher order terms can become impossible using this technique. 

The matrix inversion could be replaced with a least squares regression for the appropriate 

column vector from the identity matrix, but this is also computationally limiting. 

The Gram-Schmidt process offers an alternative to the resource intensity of the 

matrix method, but this comes at the sake of computation time. The 28th annular 

anamorphic polynomial, for example, took around 12 hours to compute on a iMac 3.1 

GHz Core i7 with 16 GB RAM. Of course all of this can be avoided by just computing 

the terms numerically. In this case the Gram-Schmidt process should not be used due to 

its numerical instability. 
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11. APPENDIX B: ANNULAR ANAMORPHIC 

POLYNOMIAL TABLES 

This section provides the annular anamorphic polynomials computed over several 

annular pupils. All solutions are computed from the results given in Table 20. This 

includes the results for 𝜖𝜖 = 0, which reproduce the results given in Table 19. 

Table 22. Annular anamorphic polynomials for 𝜖𝜖 = 0.0. 
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Table 23. Annular anamorphic polynomials for 𝜖𝜖 = 0.05. 
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Table 24. Annular anamorphic polynomials for 𝜖𝜖 = 0.10. 
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Table 25. Annular anamorphic polynomials for 𝜖𝜖 = 0.15. 
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Table 26. Annular anamorphic polynomials for 𝜖𝜖 = 0.20. 
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Table 27. Annular anamorphic polynomials for 𝜖𝜖 = 0.25. 
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Table 28. Annular anamorphic polynomials for 𝜖𝜖 = 0.30. 
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Table 29. Annular anamorphic polynomials for 𝜖𝜖 = 0.35. 
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