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ABSTRACT 
 

 

Humans have an incredible ability to process and understand information from multiple 

sources such as images, video, text, and speech. Recent success of deep neural networks has 

enabled us to develop algorithms which give machines the ability to understand and interpret 

this information. Convolutional Neural Networks (CNN) have become a standard in extracting 

rich features from visual stimuli. Recurrent Neural Networks (RNNs) and its variants such as 

Long Short Term Memory (LSTMs) units have been highly successful in encoding and 

decoding sequential information like speech and text. Although these networks are highly 

successful when applied to narrow applications, there is a need to both broaden their 

applicability and develop methods which correlate visual information along with semantic 

content.  

This master’s thesis develops a common vector space between images and text.  This vector 

space maps similar concepts, such as pictures of dogs and the word “puppy” close, while 

mapping disparate concepts far apart. Most cross-modal problems are solved using deep neural 

networks trained for specific tasks. This research formulates a unified model using CNN and 

RNN which projects images and text into a common embedding space and also decodes the 

image and text embeddings into meaningful sentences. This model shows diverse applications 

in cross modal retrieval, image captioning and sentence paraphrasing and shows promising 

directions for neural networks to generalize well on different tasks. 
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Chapter 1 
 

 

    Introduction 

 

1.1  Introduction 
 

 One of the long standing goals of artificial intelligence is for machines to learn and 

understand the dynamics of complex environments. Infants learn to perform tasks and gain 

skills by interacting with the environment through visual and language information. Deep 

learning has enabled machines to understand such complex interactions and generalize well 

to new scenarios. Machine learning algorithms train on huge amount of data from images, 

text, audio, video etc. and try to come up with a function that closely represents the mapping 

between input and the desired output. For example, in an image classification problem, the 

algorithms learn to correlate the information in the image of a cat to the label ‘cat’ by 

continuously updating their internal parameters. This automated learning of features has 

replaced the use of traditional methods like Histogram of Oriented Gradients (HoG) [39] and 

Scale Invariant Features [40]. Recent success of Convolutional Neural Networks (CNN) for 

encoding images and Recurrent Neural Networks (RNN) for representing text information 

can be attributed to the back-propogation algorithm [41] which stochastically updates model 

parameters and guides the learning process. This work attempts to develop a Common Vector 

Space (CVS) which embeds both images and text. Similar concepts such as an image of a 

dog and the descriptions related to a dog are mapped close while dissimilar concepts are 

mapped far apart. A unified model is developed which can generalize well over different 

cross modal applications.  
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1.2  Contributions 
 

 The main contributions of this thesis work can be summarized as follows 

 A unified model which jointly trains on images and captions and learns to generate new 

captions given either an image or a text as a query. 

 Diverse applications of the joint model on three different tasks, namely image 

captioning, cross modal retrieval and sentence paraphrasing. 

 

1.3  Background 
 

 
1.3.1 Convolutional Neural Network: 
 

 Convolutional neural networks have become the defacto-standard for the tasks of image 

classification, segmentation and detection. Typically they comprise of the following layers: 

 Convolution layer 

 Pooling layer 

 Activation layer 

 Fully connected layer 

 A convolution layer consists of multiple filters which slide across the input image and 

produce a linear response from filter weights applied to the input pixels. Each filter learns a 

different set of representations of the original image eg: color, shape and edge information.  

 A pooling layer aggregates the information across a specified window in an image. The 

two popular pooling approaches used are max pooling and average pooling. Max pooling 

outputs the maximum of the pixels in the window under consideration whereas average pooling 
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outputs the average intensity of the pixels. Performing pooling reduces the spatial dimensions 

of the input. 

 An activation layer introduces non-linearity in the network. It helps to learn complex 

representations that exist between input image and desired target in the network. 

 A fully connected layer is used as a final layer in most of the classification problems. 

It is generally used to transform a high dimensional representation into an n-dimensional 

representation by connecting all the pixels in the input layer to each neuron in the output layer. 

 During training, the filters of the convolutional layers and weights of fully connected 

layers are learned by optimizing the cross entropy loss between predicted and groundtruth 

labels of samples in classification problems. An example of a typical CNN is shown in Figure 

1.  

 
Figure 1 An example Convolutional Neural Network. 

 

 

1.3.2 Recurrent Neural Networks 
 

 Recurrent Neural Networks (RNN) have achieved significant success in time-series 

problems and machine translation. A basic RNN unit consists of a hidden state and an input 

which together predict the next state of a sequence. Some of the most popular variants of RNNs 

are Gated Recurrent Units (GRU) and Long Short Term Memory (LSTM) units. LSTMs are 

often the preferred choice for long sequences as they tend to remember long term dependencies 

by using gating mechanisms. Figure 2 shows an example of a single LSTM unit 
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Figure 2 Basic LSTM cell [42]. 

where ct denotes the memory unit, ht denotes the hidden state, ft denotes the forget gate, it 

denotes input gate and ot denotes the output gate. 

The above gates followed by sigmoid and tanh activation units regulate the amount of 

information that needs to be passed to the consecutive time steps in the network. More 

commonly, LSTM networks are used in machine translation, which are otherwise known as 

sequence-sequnce models.  

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1)                                             (1) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1) 

                                          𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1)             

                                                           𝑔𝑡 = ∅(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1) 

                                                            𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡 

                                                            ℎ𝑡 = 𝑜𝑡∅(𝑐𝑡) 

 

           where it,  ot,  ft and gt are the input gate, output gate, forget gate and input node 

respectively. The cell memory state is given by ct which contains the overall information about 
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the cell. The hidden state ht is passed to future timesteps in the network which contains the 

aggregate information of the previous timesteps.  

 

 

Figure 3 Long Short Term Memory network with encoder and decoder chains [6]. 

 

 Figure 3 shows an example of an encoder-decoder network with LSTM units. The 

encoder and decoder may or may not share the same LSTM units. The encoder encodes the 

input sequence “How are you”, one word at a time using a word embedding. The final state of 

the encoder is the last hidden timestep of the input sequence. The encoder’s final time step is 

passed along with a start token as input to the first timestep of the decoder. The decoder is 

unrolled for variable timesteps and outputs a decoded sentence followed by an end token. This 

framework has shown promising results in machine translation and sentence paraphrasing.  
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Chapter 2 
 
 

Related Work 
 

 

 2.1 Cross Modal Applications 
 

 Image captioning was one of the earliest works that demonstrated outstanding 

capabilities of neural networks to generalize well on learning patterns in both vision and 

language modalities. Neural networks trained with back propogation tend to learn patterns in 

the image and correlate the relationships between objects in the image and individual words in 

the sentence. The branch of study that deals with similarities between different entities is called 

Metric Learning. The task of cross-modal retrieval involves learning similar representations 

between two modalities.  For example, given the two modalities of image and text, one can 

extract meaningful content from a database given a query of either modality. Images have 

diverse content and a sentence describing the image should capture not only the objects present 

in the image but also the relationship between them.  Often images can be described in many 

ways and capturing the right context in the sentence is challenging. For example, “a man is 

running” and “a man is not running” have most of words same but the word “not” changes the 

entire meaning of the description. CNNs have become the defacto standard in representing 

images and recurrent neural networks have been adept at capturing the syntactic and semantic 

representations of the sentence. In this thesis, neural networks with latest CNN and RNN 

architectures and current metric learning approaches are explored in cross-modal settings to 

enhance image2text, image2image, text2image, and text2text retrieval. 
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2.2 Current Metric Learning Approaches 
 

Metric learning models involving images and text include:  

 Extracting features from images and text using CNNs and language models (Bag of 

Words, LSTMs, skipgram)  

 Generate embeddings from these features using fully connected layers. 

 Form positive and negative pairing of data and use different loss functions for 

convergence. 

Some of the commonly used loss functions are: 

1) Contrastive Loss 

 In contrastive learning, positive and negative pairs of the data are formed by the 

distance between the image and caption encoding. Contrastive loss strives to have negative 

pairs be at least a margin distance away from positive pairs. The loss function is as follows:  

   𝐿𝑐 =
1

2𝑁
∑((𝑦)𝑑2 + (1 − 𝑦) max(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑, 0)2)                          (2) 

where d is the distance between the vectors in a pair. The first term minimizes the distance 

between positive pairs, while the second term penalizes negative samples whose distance is 

closer than a margin.  The distance can be Euclidean, cosine, or other appropriate metric. 

 

2) Triplet Loss 

 Triplets are formed by selecting an anchor sample and generating positive and negative 

examples with respect to the anchor sample. The distance between the positive sample and the 

anchor is minimized whereas the distance between the anchor and negative sample is 

maximized.  
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𝐿𝑐 =
1

2𝑁
∑ max (0,   |𝑓𝑎

𝑖 − 𝑓𝑝
𝑖|

2
− |𝑓𝑎

𝑖 − 𝑓𝑛
𝑖|

2
+  𝑚𝑎𝑟𝑔𝑖𝑛)

𝑁

𝑖=0

                      (3) 

where fa
i  is the feature embedding of the anchor, fp

i is the feature embedding of positive sample 

and fn
i is the feature embedding of negative sample. The triplet learning process is shown in 

the Figure 4. 

 

Figure 4  Optimizing latent space through triplet loss [12]. 

 

3)  Lifted Structured Loss 

 

 Lifted structure loss extends the concept of triplet loss by considering multiple negative 

samples for each positive sample. It ensures the distance between the positive and anchor 

sample is less than distance between anchor and all other negative samples in the batch. The 

lifted loss is defined as follows 

                                        𝐿𝑐 =
1

2|𝑃|
∑ max (0, 𝐽i,j)(𝑖,𝑗)∈P                                                       (4) 

where  

                                    𝐽i,j = max ( 𝑚𝑎𝑥
(𝑖,𝑘)∈𝑁

𝛼 − 𝐷𝑖,𝑘 , 𝑚𝑎𝑥
(𝑗,𝑙)∈𝑁

𝛼 − 𝐷𝑗,𝑙)                                   (5) 
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 where N denotes the set of negative samples and P denotes the set of positive samples. 

Each sample is compared against a positive sample and all other negative samples in the batch 

thereby forming tighter boundaries between samples during training. 

 Many approaches either use the above losses or the extensions of these to optimize the 

distance between embeddings of different modalities. Most of the metric learning approaches 

use labels as anchors to form positive and negative pairing. Two pictures of dogs are treated 

as similar examples irrespective of their color, orientation and background, whereas a picture 

of dog and cat are treated as negative pair.  

 On the contrary, in cross modal setting, there might not be labelled data with exclusive 

categories for each image and captions. More naturally occurring images and text contain 

multiple objects and various kind of actions describing their context. This poses a harder 

challenge to distinguish samples of any specific category. The general consensus is that the 

captions that were used to describe the image are treated as positive pairs and the rest of the 

captions in a dataset are treated as negative pairs. This assumption makes the general metric 

learning loss functions applicable to the problem of cross-modal retrieval.  

 

2.3 Related Work 
 

 

 Koch et al. [17] introduced siamese networks to learn similarities between characters 

using contrastive loss and achieved superior performance on one-shot image recognition tasks. 

Jiquan et al. [1] demonstrated that better features can be learned if multiple modalities are 

present during training. They also demonstrate a method to learn shared representations of 

different modalities. Scott et al. [2] proposed Deep Structured Joint Embedding (DSJE) which 

includes joint training of images and text and they show improved results on retrieval and zero-
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shot recognition tasks. Schroff et al. [12] proposed triplet loss to enhance similatity learning 

by considering triplets of data and showed improved performance on face recognition. Hoffer 

et al. [18] used triplet loss on metric learning problems and compared its performance to 

siamese networks which used contrastive loss.  Song et al. [15] proposed lifted structured loss 

which essentially takes advantage of all the samples in the batch. For each positive sample, it 

pushes all the negative samples away by a margin in a batch. This showed improved retrieval 

performance on standard benchmark datasets. Euclidean distance is used as standard distance 

metric in their experiments.  

 One of the most important aspect in similarity learning is the distribution of samples in 

a batch and the strategy of forming positive and negative pairs within a batch. Not all the 

negative samples are equally negative.  During training, optimizing Euclidean loss of positive 

and negative samples with respect to an anchor sample in a batch results in the formation of 

discrete clusters in the high dimensional space. Negative samples can be classified into three 

categories as follows 

 Hard negatives 

 Semi-hard negatives 

 Easy negatives 
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Figure 5 Distrubution of negative samples [20]. 

 

 Figure 5 shows the distrinution of negative samples with respect to an anchor sample. 

Hard negative samples are closer to positive samples, semi-hard negatives lie within margin 

distance from the positive samples and easy negatives already are far away from the anchor 

sample under consideration. Hard negative mining is a strategy that mines the hardest negatives 

for a given sample in a batch. Although hard negatives produce a high loss value, they also 

produce high gradients which might lead to bad convergence of the model. 

 Exploiting the success of generative adversarial networks [16], Duan et al. [19] 

proposed to use a generator that exploits all easy negative samples and transforms them into 

hard negative samples. A generator is trained adversarially to generate features which are 

similar to features from hard negative samples thereby enhancing the training. A combination 

of adversarial loss as well as metric learning loss functions helped in exploiting more 
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discriminative features from the network and improved retrieval results compared to standard 

metric loss functions. Figure 6 shows their model where the generator is a three layered fully 

connected network which generates synthetic negative samples.  

 

Figure 6 Deep Adversarial Metric Learning[19]. 

 

 

 Schroff et al. [12] proposed to use semi-hard negative mining which samples only 

semi-hard negatives for each sample. They found loss to be decaying smoothly compared to 

random negative sampling.  Chao et al. [21] proposed a margin based loss and also proposed 

distance weighted sampling which selects negative samples based on their distances. They 

show that learning the margin parameter removes the inherent bias that restricts all negative 

samples to be pushed apart by a constant margin value. 

 

 

2.4. Image-Text models 
 

 

 The main difference between metric learning and multi-modal learning is the encoding 

of different modalities in the shared high dimensional space. The similarity between images 
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can be expressed in the form of Euclidean distance between vector representations of these 

images.  This vectorization of images is generally a vector representation from a fully 

connected layer of a CNN. The effectiveness of the CNN also plays an important factor in 

learning discriminative features among images. In the context of multi-modal learning which 

involves images and captions, separate encoders for each modality are required due to 

difference in the structures. Images are encoded by CNN (image2vec) and a caption is passed 

through an RNN (sent2vec). Aviv et al. [22] used two way neural networks to optimize 

Euclidean loss between images and text in a common embedding space. Vendrov et al. [23] 

proposed to use order-violation penalty to enforce constraint on the order in which the 

embeddings are learned. In particular, they only use absolute value of image and text 

embeddings and use margin-based loss to optimize the model.  

 Faghri et al. [23]  proved hard negative mining can be useful and they showed 

significant improvements on cross modal retrieval problems. This is counterintuitive to metric 

learning problems where hard negative mining hurts performance by ignoring semi-hard and 

easy negative samples. Wehrmann et al. [25] proposed to use convolutional text encoders and 

perform convolutions over characters as opposed to words. They use an embedding matrix for 

characters and show significant reduction in number of paramters of the model. 

 You et al. [26] propose to use local context along with global loss to train the image 

embeddings. Their method represents each word in a caption by learning a word embedding 

matrix and perform series of 1-d convolutions over the individual words to get a final encoding 

of the caption.  
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Figure 7 Convolutional Semantic Model [26]. 

 

 Figure 7 shows their model which enforces a local loss between the intermediate 

convolutional layers of images and text. The margin based ranking loss is used for aligning 

both the local and global context.  

 Images consist of diverse content which can include objects as well as actions and 

attributes describing them. Most of the commonly occurring datasets like MSCOCO [7] and 

FLICKR 30K [27] contain only objects in the image and captions associated with them. 

Objects alone do not convey the semantic meaning of the image. Extending this idea,  Yan et 

al. [28] built a vocabulary consisting of image categories, attributes and actions using the 

captions corresponding to each image. A caption describing the image contains more semantic 

information. Using the example “Two men are fighting on the road”, semantic entities include 

“Two”, “men” , “fighting” and  “road”. Nouns, adjectives and cardinal numbers are extracted 

from each caption and frequently occurring words are treated as discrete classes. Using these 

diverse classes, they train a multi-label CNN to identify the semantic concepts in the image.  
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Figure 8 Image Sentence Matching using Multi-label CNN [28]. 

                    

  Figure 8 outlines their model where regions of an input image are passed to a multi-

label CNN. The class probabilities of the multi-label CNN represent the distribution of 

semantic concepts in the image. A gated fusion unit is used which takes the semantic concepts 

and global features extracted by Resnet-152 [9] and outputs a fused vector representation 

which effectively weighs the importance of global and local features. The architecture of the 

gated fusion unit is similar to an LSTM cell where the sigmoid activation is applied to the 

linear combination of inputs which regulates the amount of information passed from input 

stage to the output stage. A Gated Recurrent Unit (GRU) is used as a sentence encoder where 

consecutive words in a caption are passed at each timestep of the network. A sentence generator 

is also used as supervision which ensures that the image can also generate the relevant caption. 

The sentence generation and the margin based ranking loss can effectively guide the image to 

better represent the content in the sentence during training. During inference,  they extract ‘r’ 

regions from each test image and pass each region to a multi-label CNN  The value of ‘r’ was 

set to 50. Output class probabilities vectors are obtained for all the regions and they are max-

pooled. This results in a single vector which has the information of individual classes. The 

gated fusion unit combines the aggregate class probabilities vector which has the local context 

in the image along with the global feature vector extracted from Resnet-152 [9] to output the 
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final image embedding for the test image. This mechanism of learning semantic concepts and 

then matching it with the sentence embedding significantly improved the performance of 

retrieval. 

 Martin et al. [38] proposed to use selective pooling of the convolutional feature maps 

in the setting of a two branch network to enhance cross modal retrieval. Figure 9 shows their 

model where the selective pooling is applied at the pool block before the affine normalization 

of the image embedding.  

 

 

Figure 9 Selective pooling of convolutional feature maps for image-sentence matching [38]. 

 

Selective spatial pooling is given by (6): 

 

                         ℎ[𝑘] = max 𝐺(: , ∶, 𝑘) + min 𝐺(: , ∶, 𝑘) , 𝑘 = 1 𝑡𝑜 𝐷′                                  (6) 

 

 where G is a convolutional feature map of size width x height x 𝐷′. 𝐷′ represents the 

number of feature maps of last layer of Resnet-152 [9].  The selective spatial pooling can be 

considered as an aggregation of max pooling and min pooling. A simple recurrent unit (SRU) 

which is a 4-layer GRU network serves as a text encoder for captions. During training, all the 
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parameters of Resnet-152 [9], SRU and the embedding layers are learned by optimizing the 

margin based ranking loss between image and caption pairs.  

 Sah et al. [43] proposed a Common Vector Space (CVS) which brings similar concepts 

from different modalities closer in this space. They used different variants of metric learning 

loss functions [12, 15, 17]  during training to achieve a common latent representation between 

images and text. One of the key difference between other methods is the way they infer the 

embeddings from CVS. During inference, they use the embeddings from either modality to 

reconstruct the original images using an image generator.  
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Chapter 3 
 
 

Methodology 

    

3.1 Baseline Model 
 

                
Figure 10 Baseline Model. 

 In order to establish a CVS between images and text, we need encoders which extract 

semantic information from individual modalities. Figure 10 shows the baseline architecture 

which is used for cross modal retrieval in this research. An input image is passed through a 

deep convolutional network [8, 9, 10] which extracts global features. These features are passed 

through a fully connected layer whose output is the vector representation of the image in the 

common embedding space. The sentence is encoded via GRU or LSTM and then passed into 

a fully connected layer. Margin based similarity loss is enforced on the image and text 
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embeddings which ensures similar concepts come closer and dissimilar concepts are pushed 

far apart by at least margin in the common embedding space.  

 

Margin based Ranking Loss 

 Face recognition has seen significant progress in recent years and most of it can be 

attributed to metric learning loss functions that enhance the learning of the model. Several 

novel loss functions have been proposed [15, 17, 18, 19, 21], which exploit the batch to form 

exhaustive positive and negative pairs. Given a batch of samples, each sample is compared 

against all other samples in the batch. The number of triplets that can be formed in a batch is 

of the order O(n3). The number of contrastive pairs that can be formed in a batch is of the order 

O(n2). Optimizing over all these combinations is computationally infeasible and pose heavy 

memory constraints on fitting large models on standard GPUs. Sampling strategies such as 

hard and semi-hard negative mining  have thus been proposed to mitigate this issue. Equation 

(7) shows an extension of triplet and lifted structured loss for cross modal tasks.       

 

Lsim = ∑ ∑ max(0, 𝛼 − 𝑆(𝑖, 𝑐) + 𝑆(𝑖, 𝑐𝑘))𝑘𝑚 + ∑ ∑ max(0, 𝛼 − 𝑆(𝑐, 𝑖) + 𝑆(𝑐, 𝑖𝑘))𝑚𝑘        (7) 

  

 where  is the margin of separation of positive and negative pairs, c denotes a caption 

and i denotes an image. In (7), ‘m’ denotes the total number of images and ‘k’ denotes the total 

number of sentences in a batch. The first term in the equation is associated with caption 

retrieval where a single  image is compared against all the ‘k’ captions in the batch. The second 

term in the equation is associated with image retrieval where each caption in the batch is 

compared against all other ‘m’ images in the batch. This loss essentially enforces the common 

embedding space to form distinct clusters for different entitites. The term S(c, i) computes the 
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similarity between a caption and an image and S(i, c) computes the similarity between an image 

and caption. This similarity can be a cosine similarity as shown in (8) or we can use the order 

violation penalty proposed in [23]. The order violation penalty enforces hierarchy of captions 

over image given by (9). It is always computed with the caption embedding being the anchor. 

The baseline model is a simplified model with all the necessary image and text pipelines.  

 

                                         𝑆(𝑖, 𝑐)𝑐𝑜𝑠𝑖𝑛𝑒 = 𝑖. 𝑐𝑇                                                      (8) 

 

                                                  𝑆(𝑖, 𝑐)𝑜𝑟𝑑𝑒𝑟 = 𝑚𝑎𝑥(0, |𝑐| − |𝑖|)2                                                (9) 

 

 where i, c  denote the image and caption embeddings and |i| denotes the absolute value 

of the image embedding. 

 

 

3.2 Show, Translate and Tell (STT) 
 

 

 

Figure 11 Common Vector Space (CVS) of Images and Text. 
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 Figure 11 shows the CVS of images and text embeddings. CNNs and RNNs act as 

encoders for images and text. Images and captions which are semantically similar are mapped 

closer in this CVS. For example, in Figure 11, the image of a man running is eqiuvalently 

described by the sentence “A man is running”. They are treated as positive pairs marked by 

the blue circle and star in the Figure 11. The margin based ranking loss in (7) brings these 

positive pairs closer and maps all the other negative pairs denoted by red circle and red star far 

apart by atleast margin.   

               

 

Figure 12 Show, Translate and Tell. 

 

 

 The baseline model constructs a CVS where the relationships between images and text 

are expressed in terms of the similarity score between their respective embeddings. CVS is a 

continuous space- without training, data points corresponding to images and text from the 

original dataset would be mapped arbitrarily. Training CVS forms dense clusters of matching 

images and captions. In order to explore the information contained in these CVS data points, 

we need to decode them into meaningful representations. Modality specific decoders can 

generate either images or captions. One of the early approaches related to this idea was 

proposed by Sah et. al [43] where they decode CVS embeddings using an image generator to 

generate images. Their method does not train the decoder along with the encoders during 
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training. They use a pre-trained image generator [44] as decoder which accepts a 4096 

dimensional vector as input to generate images. This limits the interpretability of CVS in that 

the underlying distribution of CVS might be different from the input distribution that is 

expected by the image generator. More often, the generated images experienced the 

phenomenon of mode collapse.  Inspired by [43] and  image captioning models [29, 30, 31, 

32], we propose Show, Translate and Tell (STT) which represents images and text in the CVS 

and also decodes the embeddings into captions by using an RNN. Figure 12 shows the 

schematic of the proposed model. STT offers a simple way to infer the embeddings in CVS by 

using an RNN as a decoder which is trained along with the image and text encoders. This 

ensures that decoder is aware of the distribution of the CVS embeddings. Since the output of 

the decoder was intended to be paraphrase captions, RNN was the preferred choice to generate 

these sentences. 

During training, a single sample constitutes an image and two captions (caption A and 

caption B) as shown in the Figure 12.  The captions describe the contents of an image. Features 

are extracted from image and caption ‘A’ using deep convolutional and recurrent networks. 

These features are projected into a CVS which aligns similar images and captions.  

 Caption ‘B’ which is always semantically similar to caption ‘A’ is used to enhance the 

overall quality of the model. The left side of the model in Figure 12 comprises of encoder 

models which encode a modality into its corresponding representation. The right side of the 

model is a recurrent neural network which acts as a decoder for both the image and caption A. 

Individual components of the model can be viewed in Figure 13.  
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Figure 13 Image Captioner and Sentence Paraphraser. 

 

 

 Image sentence matching is closely related to sentence paraphrasing and image 

captioning. In image captioning models, an input image is projected into its feature space and 

passed to an RNN. During training, the RNN tries to correlate words in the sentence with the 

objects and actions in the image. A vocabulary of words is built using the most frequently 

occurring words in the captions. Each word in the vocabulary is encoded into a vector 

representation by a randomly initialized word embedding matrix. The word embedding matrix 

acts as a look-up table for the words in the caption. During training, the embedding matrix is 

also learned along with the weights of RNN and CNN. This ensures the word embedding 

matrix accurately learns the relationships between words and the underlying context within a 

sentence.  
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  During training, the grountruth words are passed as input at current timestep instead of 

the word predicted by previous timestep. Cross-entropy loss between the predicted words from 

each timestep of RNN and the groundtruth sentence is used to optimize the parameters of the 

model. During testing, an image is passed through the network along with a start token for 

decoding the words in the sentence. Equation (10) denotes the loss that is used to train an image 

captioner. 

                                                        LIC =  − ∑ log 𝑃(𝑆𝑡|𝐼;  𝜃)𝑁
𝑡=1                                        (10) 

 

  where P(St) is the probability of observing the correct word St at time t,  denotes the 

paramters of the model and I denotes the image features. 

  Sentence paraphrasing models transforms a caption ‘A’ into caption ‘B’ which is 

semantically similar to caption ‘A’. The words in the caption are encoded into vector 

representations by the embedding matrix. Sentence paraphrasing models are modeled in 

encoder-decoder framework where both encoder and decoder use recurrent neural networks. 

During testing, the input to the model is the encoded sentence representation by the encoder 

along with the start token. Equation (11) denotes the cross entropy loss used to train the 

sentence paraphraser. 

 

                              Lpara =  − ∑ log 𝑃(𝑆𝑡|𝐸;  𝜃)𝑁
𝑡=1                                                       (11)                                                     

                                                      

 where Pt(St) is the probability of observing the correct word St at time t, E denotes the 

encoder representation of the sentence and  𝜃 denotes the paramters of the model.  

The sentence paraphrasing model ensures the two sentences are closer in the embedding space. 

It also ensures the encoded representation captures the semantic context which can be decoded 
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into a similar representation. Combining the benefits of the image captioning model and 

sentence paraphrasing model, Figure 12 is a unified model which can perform three different 

tasks namely image-caption retrieval, image captioning and sentence paraphrasing.   

 Equation (12) shows the loss for the unified model. 

 

                                                    𝐿 = 𝜆1𝐿𝐼𝐶 + 𝜆2𝐿𝑝𝑎𝑟𝑎 + 𝜆3𝐿𝑠𝑖𝑚                                                    (12) 

 

 where LIC, Lpara and Lsim correspond to the image captioning, sentence paraphrasing 

and similarity loss respectively. 𝜆1, 𝜆2 and 𝜆3 are the weights for each of the components of 

the above loss functions.  
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3.3 STT with Attention 

 

 

 
Figure 14 Show, Translate and Tell model with Attention. 

 

 

 Figure 14 describes the Show, Translate and Tell model with attention.  The input 

image is passed  through an object detector which outputs region proposals with objectness 

score in the image. The object detector used in this process is Faster R-CNN [36] which is a 

two-stage object detection network. In the first stage, it outputs region proposals with amount 

of objectness in each of them. These proposals are later refined in the second stage and 

bounding box regressor head localizes the objects in the image. The number of proposals after 

the first stage is 300. We consider a subset of ‘M’ of these proposals based on their objectness 

score and extract the portions in the original image. These extracted proposals are passed 

through a pre-trained Resnet-152 layer CNN [9] and ‘M’ regional embeddings are obtained. In 
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our experiments, we set the value of ‘M’ to be 36. For more local information and semantic 

understanding of the contents in the image, we follow [37] to introduce attention between the 

region proposals  in the image and individual words in the sentence.  The similarity matrix  

introduced by [37] calculates the similarity between regions in the image and words in the 

sentence and is given by  

 

                                                                      𝑠𝑖𝑗 =  
𝑣𝑖

𝑇𝑒𝑗

||𝑣𝑖|| ||𝑒𝑗|| 
                                                            (13) 

                                                                       
 

 

 where sij is the similarity between ith  region (vi) and jth word (ej).  Based on the above 

similarity matrix, an attended sentence vector is calculated as  

    

                    ai
𝑡 = ∑ 𝛼𝑖𝑗𝑒𝑗

𝑛

𝑗=0
                                                   (14) 

 

where  

                                                   𝛼𝑖𝑗 =  
exp (𝜆1𝑠𝑖𝑗)

∑ exp (𝜆1𝑠𝑖𝑗)𝑛
𝑗=1

                                      (15) 

 

  𝛼𝑖𝑗  is the attention weights which calculates the importance of each word in the 

sentence with respect to ith region. The similarity between an image and text is then defined as 

a mean of similarity between image regions and attended sentence vectors. Equation 16 shows 

the aggregate similarity score between an image and a text. 

 

                                              𝑆(𝐼, 𝑇) =  
∑ 𝑅(𝑣𝑖,𝑎𝑖

𝑡)𝑘
𝑖=1

𝑘
                                                     (16) 
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 where R(vi, ai
t ) is the similarity of ith image region and attended sentence vector 

given by  

  

     𝑅(𝑣𝑖, 𝑎𝑖
𝑡) =

𝑣𝑖
𝑇𝑎𝑖

𝑇

|𝑣𝑖| |𝑎𝑖
𝑡|

                                                           (17) 

 

 This way of calculating similarity between regions in the image and words can be 

directly plugged into (7) where the similarity of the negative pairs is reduced thereby bringing 

the positive samples closer in the common embedding space. One difference between this 

attention model and STT is that a single image is represented by multiple region embeddings 

rather than a single feature vector. We add an average pooling layer which aggregates these 

multiple region embeddings into a single representation which can be used as an input to the 

decoder.  The joint training of the decoder and individual image and text encoders  along with 

the attention model helps in aligning the image regions with the individual words and also in 

generating high quality sentences.  
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Chapter 4 
 
 

                                                               Implementation and Results 

4.1 Datasets 
 

 Some of the popular cross modal datasets which include images and captions associated 

with them include 

 MSR-VTT [33] 

 Caltech-UCSD Birds 200 [4] 

 Flowers 102 dataset [3] 

 MSCOCO [7] 

 FLICKR 30K [27] 

 

 

 MSR-VTT [33] is a large scale video to text dataset which bridges video and language. 

It has comprehensive categories and diverse video content which can be used for video 

retrieval, event detection tasks.  

 Caltech-UCSD Birds 200 [4] is a medium scale dataset consisting of 200 categories of 

birds along with attributes for each image. Each image is also annotated with 10 captions which 

describe the content in the image.  

 Flowers 102 [3] dataset is a dataset by University of Oxford which consists of 102 

different categories of flowers with 10 captions associated with each image.  

 MSCOCO [7] dataset is a large-scale dataset comprised of common objects that are 

found in nature. It is widely used for multi-label classification, object detection, semantic 

segmentation and cross modal retrieval. 
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Table 1 Summary of cross-modal datasets. 

 

 This work focuses on bridging natural image content and corresponding descriptions. 

Caltech-UCSD Birds dataset [4] and Flowers 102 dataset [3] are very specific to birds and 

flowers and the diversity of the dataset in terms of datasets and semantic content is limited. 

These datasets are more oriented towards zero shot image retrieval and classification. MSR-

VTT [33] is  more suitable for temporal video analysis, video segmentation and captioning. In 

this work, MSCOCO [7] and FLICKR 30K [27] datasets are explored which contain real-world 

images with short descriptions associated with them.  

 

4.2 Training Details 
 

 

 Each image is passed through a Resnet-152 CNN [9] and features are extracted from 

the global average pooling layer. For the embedding network, we use a single fully connected 

layer. Training is performed in multiple stages. In the first stage, we pre-compute the features 

from Resnet-152 [9] and train the image embedding and sentence encoder from scratch for 15 

epochs with a learning rate of 0.0002 and lower the learning rate to 0.00002 for the next 15 

Statistics MSR-VTT Caltech 

Birds 

Flowers 

102 

MSCOCO FLICKR 30K 

Data Video and 

Text 

Images, 

Captions 

Images, 

Captions 

Images, 

Captions 

Images, 

Captions 

# train 

samples 

260K 8855 7034 82,783 29,783 

# validation 

samples 

_ 2933 1155 40,504 1000 
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epochs. We use Adam optimizer for optimizing the parameters of the model. Once we have 

the model trained with the precomputed features, we finetune the Resnet-152 CNN along with 

embedding layers and sentence encoder with a learning rate 0.00002 for another 15 epochs. 

We found the model to be highly sensitive to the learning rate and higher learning rates often 

led to model getting stuck at local minimum.  We use Tensorflow deep learning framework for 

all our experiments.   

 For the sentence representation, we use a 1-layer GRU network. The hidden dimension 

of the GRU was set to 1024. We experimented by stacking more layers, but there was no 

significant improvement by introducing more parameters. This complemented with our usage 

of only one fully connected layer for generating embeddings. The vocabulary of words was 

built by counting the frequency of all the words in the captions present in the dataset. A word 

is considered to exist in vocabulary if the frequency of its occurrence is greater than three.  The 

size of the vocabulary is 26,375 words. The word embedding dimension was set to 300.  

 For the margin based ranking loss, we set the margin to 0.05 and we use order violation 

penalty [23] for computing the similarity metric. The batch size is set to 128, so the number of 

contrastive examples for each matching pair would be 127. We employ hard negative mining 

where we only consider the hardest negative distance instead of aggregating all the negative 

distances. We noticed a significant performance improvement in retrieval with hard negative 

mining strategy. 

 Table 2 shows the statistics for MSCOCO data that were used in our experiments. 
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Table 2 MSCOCO statistics. 

MSCOCO Baseline Model STT Model 

Training images 113,287 (train+val) 113,287  

Number of captions 565,435 565,435 

Total number of samples 565,435 11,308,700 

Test images 5000 5000 

 

 For the baseline model, a sample constitutes an image and caption. Since each image 

is associated with a set of five captions, the training set of images constitute 565,435 samples 

in total. For the STT model, a sample constitutes an image and two similar captions. Since we 

have five captions associated with each image, there can be 20 different combinations. Hence, 

the total number of samples for the STT model would be 11,308,700. 

Table 3 shows the statistics for FLICKR 30K dataset that we used in our experiments. 

 

Table 3 FLICKR 30K statistics. 

FLICKR 30K Baseline Model STT Model 

Training images 29,783 29,783  

Number of captions 148,915 148,915 

Total number of samples 148,915 2,978,300 

Test images 1000 1000 

 

 For the baseline model, a sample constitutes an image and caption. Since each image 

is associated with a set of five captions, the training set of images constitute 148,915 samples 

in total. For the STT model, a sample constitutes an image and two similar captions. Since we 
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have five captions associated with each image, there can be 20 different combinations. Hence, 

the total number of samples for the STT model would be 2,978,300. 

 

4.3 Evaluation Metrics 
 

 The following evaluation metrics are used as a standard to compare the performance of 

cross-modal retrieval. 

4.3.1 Recall@K 

 Recall@K computes the recall at different values of K. It is a metric which computes if 

the rank of retrieved sentence is within the top K ranks. All the test set images and their 

associated captions are passed through the model and their embeddings are extracted. Each 

image embedding in the test set is compared with all other caption embeddings and similarity 

metric is computed. The similarity is sorted in descending order and appropriately all other 

captions are ranked. If the rank of the groundtruth sentence is within the top K ranks, the 

caption is counted as a positive retrieval. Typical values of  K are 1, 5 and 10. The overall 

recall score is the  percentage of samples within the top K ranks. 

 For the image retrieval, we rank all images in the test set with every caption. The images 

are sorted in descending order with respect to the similarity with respect to query caption and 

ranked. If the rank of the groundtruth image is within the top K ranks, the image is counted as 

a positive retrieval. 

  

4.3.2 Median rank 

 After computing the ranks for each samples, the median of these ranks is computed. 

Ideally the median value should be 1 which implies all the samples should be correctly 

retrieved. 
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4.3.3 Mean rank 

 Mean rank is the mean of the ranks of all samples in the test set. The mean rank should 

also be equal to 1 in the perfect scenario where all the samples are correctly retrieved.  

 

4.4  Baseline Results 
 

 
4.4.1 MSCOCO 

 
 

Table 4 Results of MSCOCO sentence retrieval using baseline model. 

 

   

 
Table 5 Results of Image retrieval on MSCOCO test set using baseline model. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

Baseline 1 FC 1024 41.4 75.1 85.9 2 12.2 

Baseline 1 FC 2048 42.5 76 86.5 2 11.6 

  

 Tables 4 and 5 show the results of sentence retrieval and image retrieval on MSCOCO 

dataset using the baseline model.  The model configuration indicated in the tables is ‘1 FC’ 

which indicates that the image and text branches consist of one fully connected layer each.  

The column ‘Emb dim’ indicates the size of the image and text embeddings. The network 

architecture comprises of a Resnet-152 layer CNN for encoding images and GRU recurrent 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

Baseline 1 FC 1024 55.5 85.2 92.3 1 4.6 

Baseline 1 FC 2048 56.4 85.2 92.6 1 4.7 
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network for encoding captions. From Table 4 and Table 5, we can conclude that increasing the 

embedding dimension does not significantly affect the retrieval performance. There is a slight 

improvement in other metrics. 

 The recall scores increase as we increase the values of K. This implies that there are 

significant number of retrievals within the top 10 ranks. The recall values of sentence retrieval 

are comparatively higher than image retrieval due to the fact that each image is associated with 

five different captions. A sentence retrieval is considered a positive retrieval if the retrieved 

sentence belongs to any of the five associated captions for the image. In the image retrieval 

case, each caption is associated with only one image which makes the problem more 

challenging.  This is evident from the R@1 scores of sentence and image retrieval which are 

55.5 and 41.4 respectively.  

 

4.4.2 FLICKR 30K 

 

 
  

Table 6 Results of Sentence Retrieval using Baseline model on FLICKR 30K dataset. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

Baseline 1 FC 1024 40.2 67.1 79.4 2 15.442 

Baseline 1 FC 2048 38.4 67.4 77.5 2 13.4 

 

 

 Table 6 shows the results of sentence retrieval using baseline model on FLICKR 30K 

dataset. The recall scores are comparatively lower than that of MSCOCO due to fewer samples 

in the dataset. The model quickly overfits the training data hurting the performance on the test 

set. We tackle overfitting by monitoring the model’s performance on validation data and 

choosing the best model accordingly.  
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Table 7 Results of Image Retrieval using Baseline model on FLICKR 30K dataset. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

Baseline 1 FC 1024 27.42 55.58 67.9 4 28.98 

Baseline 1 FC 2048 27.1 55.9 68.2 4 24.5 

 

 Table 7 shows the results of image retrieval using Baseline model on FLICKR 30K 

dataset. The recall scores are considerably lower compared to MSCOCO due to less number 

of samples. From Tables 6 and 7, it is clear that increasing the size of embedding does not help 

the performance of the retrieval model. 

 

4.5  Results of STT Model 

 

4.5.1 MSCOCO 
 

 
Table 8 STT results on MSCOCO for Sentence Retrieval. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

STT 1 FC 1024 54.7 83.6 92.1 1 4.5 

STT 1 FC 2048 55.1 83.5 91.8 1 4.5 

 

            Table 8 shows the results of STT on MSCOCO for sentence retrieval. The model 

configuration indicated in the tables is ‘1 FC’ which indicates that the image and text branches 

consist of one fully connected layer each.  The column ‘Emb dim’ indicates the size of the 

image and text embeddings. The recall scores seem improve by 0.4%  when the embedding 

dimension is increased. The scores are low compared to the baseline results. One reason might 
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be that the model is overfitting the data since the new dataset for STT is 20 the original image-

caption pairs with many repetitive pairs as indicated in Table 3.  

 

Table 9 STT results on MSCOCO for Image Retrieval. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

STT 1 FC 1024 41 74.8 86 2 9 

STT 1 FC 2048 41.3 75.2 86 2 9.3 

 

 Table 9 shows the results of STT on MSCOCO for image retrieval. The recall scores 

do not seem to improve significantly with the increase in embedding dimension.   

Image Captioning 

 The STT model is flexible and can perform diverse tasks.  The top part of STT shown 

in Figure 13 can effectively be used as an image captioner. The task of image-sentence 

matching is performed by representing images and text close to each other in the common 

embedding space. This high dimensional space is comprised of many naturally occurring 

images and text that lie outside of the dataset. Our image captioner effectively generates 

sentences which lie near the vicinity of the corresponding images. Table 10 shows the results 

of image captioning on MSCOCO 1K test set. 

 

Table 10 Image Captioning Results of STT model on MSCOCO 1k test set. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT 1024 0.683 0.506 0.362 0.259 0.236 0.850 

STT 2048 0.671 0.492 0.351 0.250 0.232 0.822 
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 Table 10 indicates that the STT model is able to achieve good image captioning scores. 

The effect of embedding dimension is clearly less significant in image captioning when 

compared to cross modal retrieval.  

 

Sentence Paraphrasing 

 The task of sentence paraphrasing model involves generating a paraphrase which is 

semantically similar to the input sentence. This task is particularly challenging due to the fact 

that a sentence can be described in many ways. The generated sentence should not only capture 

the context of a sentence but it should also be syntactically different from the input sentence. 

We evaluate our STT model on the task of sentence paraphrasing. Table 11 shows the result 

of sentence paraphrasing on MSCOCO 1K test set.  

 

Table 11 Sentence paraphrasing results on MSCOCO 1K test set using STT model. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT 1024 0.744 0.578 0.435 0.324 0.275 1.10 

STT 2048 0.734 0.568 0.426 0.317 0.270 1.069 

 

 

 From Table 11, it is clear that the STT model can generalize well on sentence 

paraphrasing tasks. It is able to obtain good scores which can be attributed to the fact that we 

are jointly training the model on sentence paraphrases which contain more context. The 

sentence decoder in STT model effectively makes sure the embeddings in the common vector 

space have semantic meaning and enables captioning and paraphrasing applications. 
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Visualizations 

1) Good examples 

 

Figure 15 Sample STT output on MSCOCO. 
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Figure 16 Sample STT output on MSCOCO. 

  

 Figures 15 and 16 show STT outputs on a sample images. From the figures, we can 

observe that the top 3 retrieved sentences are a part of the groundtruth sentences for the image. 

This indicates that the STT model was able to retrieve sentences very well. The image 

captioning and sentence paraphrasing results also describe the image well. 

2) Bad examples 

 

 

Figure 17 Sample STT output on MSCOCO. 
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 Figure 17 shows an example where STT model failed to retrieve the right captions. The 

retrieved captions describe content related to a group of animals and giraffes. This might be 

due to the texture formed by the wooden spoons on the table as well as resulting color similar 

to the color of giraffes. The captioning and paraphrasing show good results even though the 

retrieval failed.  

 

Figure 18 Sample STT output on MSCOCO. 

 Figure 18 shows an example of ambiguous retrieval. Although the retrieved sentences 

for the query image are semantically related to the image, they do not belong to the groundtruth 

sentences which makes this a negative retrieval. The retrieved captions might be related to 

another image with similar content. This example depicts that the cross-modal retrieval is very 

challenging when there is high overlap of semantic content in the dataset. 

4.5.2  FLICKR 30K 

 

 
Table 12 Sentence Retrieval results on FLICKR 30K dataset using STT model. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

STT 1 FC 1024 38.9 66.9 78.4 3 13.3 

STT 1 FC 2048 38.4 67.4 77.5 2 13.4 
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Table 13 Results of Image Retrieval on FLICKR 30K dataset using STT model. 

Variant Model Emb dim R@1 R@5 R@10 Med R Mean R 

STT 1 FC 1024 27.2 55.4 68.4 4 27.6 

STT 1 FC 2048 27.1 55.9 68.2 4 24.5 

  

 Table 12 and 13 show the results of sentence retrieval and image retrieval on FLICKR 

30K using STT model. STT model’s performance is lower than the baseline model for retrieval 

but still shows strong performance. STT results on FLICKR 30K [27] are consistent with 

MSCOCO [7].  

Table 14 Results of Image Captioning on FLICKR 30K using STT model. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT 1024 0.513 0.330 0.204 0.129 0.178 0.252 

STT 2048 0.508 0.323 0.198 0.124 0.167 0.216 

 

  

Table 15 Results of Sentence Paraphrasing on FLICKR 30K using STT model. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT 1024 0.569 0.394 0.262 0.176 0.217 0.398 

STT 2048 0.548 0.364 0.233 0.151 0.189 0.292 

 

 Tables 14 and 15 show the results of image captioning and sentence paraphrasing on 

FLICKR 30K [27] using STT model. As the embedding dimension is increased, the scores 

decreased. This indicates that increasing the embedding size is not always beneficial.  
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Visualizations 

1) Good examples 

 

Figure 19 Sample STT output on FLICKR 30K. 

 

 Figure 19 shows an example of a good retrieval for a query image. The sentence ‘A 

man surfing in the ocean’ is repeated twice in the dataset and they belong to two different 

image samples. Captioning results describe the image in more detail although the syntax is 

slightly affected. The paraphrasing also outputs good results and shows good diversity. 

2) Bad examples 

 
Figure 20 Sample STT output on FLICKR 30K dataset. 
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 Figure 20 shows the results of a failed retrieval on FLICKR 30K [27] dataset. The 

retrieved captions do not belong to set of groundtruth captions. However, the retrieved captions 

describe the image accurately. This ambiguity can be attributed to the positive and negative 

pairing in the dataset during training. Since there is a significant overlap between some samples 

in the training data, the strict definition of each sample being a negative to all other samples in 

the dataset results in such ambigious scenarios. 

4.5.3 Cross Domain Evaluation of STT model 

 

 In order to explore the generalization performance of STT model on other datasets, we 

perform cross-domain evaluation. We evaluate the STT model trained on MSCOCO [7], on 

FLICKR 30K [27] and vice-versa. 

Table 16 Transfer learning results of STT model on Sentence Retrieval. 

Variant Model Emb dim R@1 R@5 R@10 

STT MSCOCO-FLICKR 30K 1024 32.9 57.4 67.4 

STT FLICKR 30K-MSCOCO 1024 24.8 50.5 62.4 

 

Table 17 Transfer learning results of STT model on Image Retrieval. 

Variant Model Emb dim R@1 R@5 R@10 

STT MSCOCO-FLICKR 30K 1024 21.1 43.5 55.4 

STT FLICKR 30K-MSCOCO 1024 17 41.3 55.3 

 

Tables 16 and 17 show transfer learning results of STT model on sentence and image retrieval. 

The model configuration ‘MSCOCO-FLICKR 30K’ indicates that the model was trained on 

MSCOCO [7] and evaluated on FLICKR 30K [27] dataset. The model ‘MSCOCO-FLICKR 

30K’ performs well on FLICKR 30K [27] dataset compared to ‘FLICKR 30K-MSCOCO’ on 
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MSCOCO [7] dataset. This can be due to the fact that the MSCOCO [7] dataset is a much 

larger dataset as compared to FLICKR 30K [27] dataset. Since MSCOCO [7] and FLICKR 

30K [27] have similar type of objects and content in the images, transfer learning is a good 

mechanism to evaluate the overall performance of the model. 

4.6  Results of STT Model with Attention 
 

 

 4.6.1 MSCOCO 

 
 

Table 18 Results of Sentence Retrieval on MSCOCO dataset using STT with Attention. 

Variant Emb dim R@1 R@5 R@10 Med R Mean R 

STT-ATT 1024 64.9 91 96.8 1 2.5 

 
 

Table 19 Results of Image Retrieval on MSCOCO dataset using STT with Attention. 

Variant Emb dim R@1 R@5 R@10 Med R Mean R 

STT-ATT 1024 49.8 83 91.6 1 5.6 

 

 Tables 18 and 19 show the results of sentence and image retrieval on MSCOCO using 

STT model with attention (indicated by STT-ATT in the tables). As observed by [37],  the 

retrieval scores show a significant improvement with attention. This concludes that cross-

modal retrieval is a challenging task which requires fine-grained matching between images and 

captions. 

 

 Table 20 shows the results of  image captioning on MSCOCO using STT model with 

attention. The table clearly shows improvement in the captioning scores over the STT model. 

The main difference between STT and STT with attention is the use of region proposals which 
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have local information about the objects in the image.  The improvement in B@1 score with 

respect to STT model is 2.3%.  

 

Table 20 Image captioning results on MSCOCO 1K test set using STT with attention. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT-ATT 1024 0.706 0.530 0.385 0.279 0.246 0.908 

         

Table 21 Sentence paraphrasing results on MSCOCO 1K test set using STT with Attention. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT-ATT 1024 0.747 0.581 0.436 0.326 0.272 1.098 

 

 Table 21 shows the results of  sentence paraphrasing on MSCOCO 1K test set using 

STT model with attention. The results are also complementary to image captioning results and 

show improvement over the STT. 

Visualizations 

1) Good examples 

 

Figure 21 Sample output of STT-ATT model on MSCOCO. 
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Figure 22 Sample output of STT-ATT model on MSCOCO. 

 Figures 21 and 22 show good outputs of STT model with Attention on MSCOCO [7]. 

The retrieval results seem perfect and the outputs of captioning and paraphrasing captured 

the semantic content in the image. 

2) Bad examples 

 

Figure 23 Sample STT-ATT output on MSCOCO. 
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Figure 24 Sample STT-ATT output on MSCOCO. 

 

 Figures 23 and 24 show some failed retrievals of STT with Attention. In Figure 23, the 

model retrieves captions related to train and station. The image embeddings might not have 

been rich enough and the model confused the buildings with windows on a train. In Figure 24, 

the model is confused with the number of women in the picture. Although the retrieved 

captions reasonably describe the action of the woman, the groundtruth captions are different. 

These kind of examples are particularly challenging due to the high overlap between content 

in the data samples. 

4.6.2 FLICKR 30K                 
 

Table 22 Results of Sentence Retrieval on FLICKR 30K dataset using STT with Attention. 

Variant Emb dim R@1 R@5 R@10 Med R Mean R 

STT-ATT 1024 59.2 83.5 91 1 6.6 

 

Table 23 Results of Image Retrieval on FLICKR 30K dataset using STT with Attention. 

Variant Emb dim R@1 R@5 R@10 Med R Mean R 

STT-ATT 1024 40.7 69.7 79 2 18.3 
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 Tables 22 and 23 show the results of sentence and image retrieval on FLICKR 30K 

dataset using STT with Attention. The results show significant improvement compared to the 

STT model. This also shows the importance of attention in aligning modalities for datasets 

with fewer number of samples. 

 

Table 24 Results of Image Captioning on FLICKR 30K using STT with Attention. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT-ATT 1024 0.611 0.427 0.293 0.203 0.193 0.442 

 

 Table 24 shows the results of image captioning on FLICKR 30K dataset using STT 

with attention. The scores improved as compared to the STT model without attention.  

  Table 25 shows the results of sentence paraphrasing on FLICKR 30K dataset using 

STT with Attention. The results also improve by adding the attention mechanism. 

 

Table 25 Results of Sentence paraphrasing on FLICKR 30K using STT with Attention. 

Variant Emb dim B@1 B@2 B@3 B@4 METEOR CIDEr 

STT-ATT 1024 0.673 0.493 0.353 0.252 0.221 0.573 
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Visualizations 

1) Good examples 

 
Figure 25 Sample output of STT model with Attention on FLICKR 30K dataset. 

 

 

           
Figure 26 Sample output of STT model with Attention on FLICKR 30K dataset. 

 

 Figures 25 and 26 show the sample outputs of STT model with Attention on FLICKR 

30K dataset. The retrieval results are perfect for these samples. In Figure 26, the results of 

captioning and paraphrasing are not accurate as they exhibit syntactic errors. This is due to the 

fact that FLICKR 30K dataset has fewer samples which makes it challenging for the model to 

learn the semantics and syntax of sentences. 
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2) Bad examples 

 

Figure 27 Sample output of STT model with Attention on FLICKR 30K. 

 

 
Figure 28 Sample output of STT model with Attention on FLICKR 30K dataset. 

 

 Figures 27 and 28 show some failure cases of STT model with Attention on the 

FLICKR 30K dataset. In Figure 27, only the paraphrasing results capture the right information 

in the image. In Figure 28, the model failed on all three tasks, captioning, retrieval and 

paraphrasing. One possible reason might be the complexity of the image. These images have 

complicated content and the features might not be strong enough to produce good 

representations. 
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4.6.3 Cross Domain Evaluation of STT model with Attention 

 

 In order to explore the generalization performance of STT model with Attention on 

other datasets, we perform cross-domain evaluation. We evaluate the STT-ATT model trained 

on MSCOCO [7], on FLICKR 30K [27] and vice-versa. 

  

Table 26 Transfer learning results of STT model with Attention on Sentence Retrieval. 

Variant Model Emb dim R@1 R@5 R@10 

STT-ATT MSCOCO-FLICKR 30K 1024 43.2 73.2 82.8 

STT-ATT FLICKR 30K-MSCOCO 1024 31.7 58.2 70.5 

 

 

Table 27 Transfer learning results of STT model with Attention on Image Retrieval. 

Variant Model Emb dim R@1 R@5 R@10 

STT-ATT MSCOCO-FLICKR 30K 1024 35.1 61.3 72 

STT-ATT FLICKR 30K-MSCOCO 1024 22.5 50.2 64.1 

 

 Tables 26 and 27 show the transfer learning results of STT model with Attention. The 

results are consistent with observations of STT model without Attention. The model 

configuration ‘MSCOCO-FLICKR 30K’ indicates that the model is trained on MSCOCO [7] 

and evaluated on FLICKR 30K [27]. Tables 26 and 27 indicate that transfer learning from large 

scale datasets like MSCOCO [7] to small scale datasets like FLICKR 30K [27] performs better. 
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Chapter 5 
 
 

                                                                                      Conclusion and Future Work 

 

5.1 Conclusion 
 

 

 

 This thesis work presents a unified model which can generalize well on a diverse set of 

tasks namely image captioning, cross modal retrieval and sentence paraphrasing. This work 

shows that joint training of the models on various tasks enforces a tight interplay between 

vision and language. This model emulates the human brain which can perform multiple tasks 

simultaneously. In addition to the baseline STT model, attention mechanisms are introduced 

to align image regions and individual words in a sentence. The attention modules show a 

significant improvement in performance which indicates that the more complicated 

architectures learn better representations between different modalities.  

 

5.2  Future work 
 

 

 This thesis work presents a simple architecture for aligning and generating new 

captions from images. Some of the possible extensions for this work are: 

 Discovering new datapoints in this common vector space through sampling approaches 

and decoding them by using the sentence decoder. 

 Adding image as a supervision to the sentence encoder while encoding the input 

sentence by passing the input image features to the initial timestep of the GRU network. This 

can be considered as an early fusion of images and captions. 
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 Incorporating text-text attention on the sentence paraphrases which can help the model 

learn the semantics between paraphrases. 
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