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ABSTRACT 

The human brain activity is a popular and important topic in the medical science field and academic 

studies. In recent years, scientists have been applying various statistical methods to analyze human 

brain activity. Correlation between brain regions is the most common and fundamental method 

used to perform this task. However, correlation describes only a two-way relationship. This work 

explores a new approach by analyzing multi-way relationships. Due to computational complexities, 

we concentrate on three-way relationships. In particular, we compare conventional two-way 

correlations and three-way regression models. Data transformed and processed from 3,280 MRI 

scans of the human brain are used in modeling and analysis. The results of this research show 

qualified three-way relationships which have a significant advantage relative to their 

corresponding two-way relationships. The algorithm proposed in this paper can potentially 

outperform the conventional two-way correlations in exploring the activity of human brain regions.    
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1 INTRODUCTION 

1.1 INSPIRATION  

How does the human brain work? This is a question for almost every scholar field. From 

philosophers to doctors, economists to scientists, even for the general public, it is one of the 

ultimate questions which humans are eager to understand.   

The activity of a human brain can be detected through magnetic resonance imaging (MRI) scans. 

Based on the knowledge of anatomy and imaging processing, scientists can obtain frequency data 

which represent the activity of different brain regions. With these frequency data, statistical and 

mathematical researchers can conduct further analysis.  

There is plenty of great scientific research regarding the relationship between two different brain 

regions. Each study has its own creative and unique approaches. In the field of statistics, the most 

mature method is based on “correlation”. Through this one number, it is possible to judge whether 

the activity of two brain regions is mutually promoted or restrained. Therefore, scientists have 

obtained some insights on how our brain is internally related. However, it is reasonable to think 

that there exist more complex or multi-dimensional internal relationships between human brain 

regions.  
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1.2 GOALS OF WORK 

In this thesis, a new way is proposed to explore the multi-way relationships, which involves 

multiple brain regions in one statistical model, instead of just two regions, as is done in the 

traditional approaches using correlations. Here we will concentrate on three-way relationships, but 

the same approach can be used for four and more-way relationships in the future work.  

The modeling chooses one brain region as the dependent variable, and two other brain regions as 

independent variables. By measuring how much advantage the three-way model has, compared to 

the corresponding two-way models (correlations), this measurement named “D value” calculated 

from subtracting maximum squared correlation of the two-way models from the R-square of the 

three-way model. Test on all possible 253,460 variable selection combinations, and recursively 

modeling on each scan by small pieces of frequency data. It is feasible to find out for each model, 

how constantly the D-values are high on one scan. This measurement is named “consistency”, and 

it is derived from calculating the percentage of the length of time points with high D-value over 

the total length of a scan.  

Except for horizontal modeling and calculation on each scan and each model, this thesis also 

provides variance analysis on consistency which is conducted vertically between scans and 

modeling on choosing “person” as a random factor.  

These methods provide an effective path to understand and evaluate the models as well as a new 

statistical perspective to analyze human brain activity.  
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1.3 DATA STRUCTURE AND VARIABLE COMBINATION  

The original experiment contains MRI scans from 820 people, each person was scanned four times. 

Then, the MRI images were converted into frequency data through complex imaging process. 

During this process, the original MRI images were separated and recognized as 116 brain regions. 

Each brain region contains 1,200 points of the frequency data.  

The data is stored into an array, whose dimensions are shown as follow:  

 

To start the three-way modeling, we build a model based on the data from the first scan of the first 

person.  

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑠𝑠𝑠𝑠𝑝𝑝: 

[1, 1, 1: 116, 1: 1200] 

For exploring purpose, fix the dependent variable (Z) as left precentral gyrus (region 1),  

𝑍𝑍: [1, 1, 1, 1: 1200] 

shown as the yellow part in the following graph:  
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Graph 1.3 

Battistella, G., Najdenovska, E., Maeder, P. et al. Brain Struct Funct (2017) 222: 2203. [1] 

The dependent variables (X and Y) will be randomly selected from the other brain regions except 

region 1. Mathematically, the total number of possible three-way models should be: 𝐶𝐶(116−1)
2 , 

which equals 6,555.  
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2 THE ADVANTAGE OF THREE-WAY RELATIONSHIPS 

There is a two-layer system to decide the quality of a model, the first layer is “D-value” and the 

second layer is “Consistency”. Consistency is calculated based on D-value.  

2.1 D-VALUE 

The D-value is the most basic and core concept for all the modeling process involved in this thesis. 

D-value is calculated by subtracting the maximum squared correlation of the two-way models from 

the R square of the three-way model. It represents the relative advantage of a three-way model 

over the corresponding two-way models. Since in the modeling process and comparison, we are 

basically adding an extra independent variable to a two-way model to form a three-way model, the 

three-way model must be more “accurate” than the two-way model, thus, R square will always be 

larger than the maximum squared correlation, so that the D-value will always be positive.  

Considering the meaning of D-value, the larger its value, the more advantage the three-way model 

has over the corresponding two-way models.  

2.2 COEFFICIENTS AND D-VALUE 

During the process of exploring the potential relationship between D-value level and other critical 

parameters, like coefficients of the two independent variables in the three-way model, p-value, and 

constant item, we find out that where D-value appears to stay at a high level, the coefficients values 

are opposite in sign. Usually, the coefficient of the first independent variable is negative, and the 

coefficient of the second independent variable is positive, then the D-value at that point is high.  
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Graph 2.2 Zoom in range plot of coefficients and D-value 
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2.3 CONSISTENCY 

In addition to discovering the occurrence of extremely high D-value at each single time point, it is 

crucial to measure how often the D-value stays above an acceptable and relatively high level as 

well. Because the goal of this thesis and work is not to find models that provide good fit at only a 

few time points, but to find models that provide stable and accurate performance.  

Consistency is essentially a ratio that represents what is the portion of time points that return 

acceptable D-values vs. the total number of time points on a single scan. High consistency shows 

a model has stable performance for this scan.        

The conditions of consistency contain three relevant parameters: D-value, the coefficient of the 

first independent variable and the coefficient of the second independent variable. Also, all of the 

parameters involved have their own thresholds. The reason to choose these parameters and the 

reason to set the thresholds to a certain level will be explained in detail when the model selection 

is done in Section 4.  

2.4 STRENGTH 

Consistency measures the performance of a multi-way model over a scan based on an acceptable 

level of threshold. Strength, however, by setting a relatively higher threshold, is focused on 

measuring how frequently a multi-way model can produce high D-value over a scan. Strength 

helps us to have a more comprehensive understanding of the level and distribution of D-value. 

Since the structure and parameters for strength function are more restrictive but are set to be similar 

to consistency, the strength is mainly used to support and assist with the post-stage evaluation 

when qualified models are selected out.    
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3 THREE-WAY RELATIONSHIP MODELING 

3.1 WINDOW SIZE AND RECURSIVE FITTING 

Because the data have time series characteristic, to better represent the change of critical 

measurements over time, instead of fitting a model with the entire data from one scan, a window 

whose size equals 20 is selected to assist with the modeling process. On each scan, there are 

multiple models built, and this is a recursive process:   

 

   

Graph 3.1 Recursive fitting process 

Move the red window to the right, one position at a time, build a linear three-way model and two-

way models with the data in the window after each move. After finishing this recursive modeling 

process, there are 1,181 groups of three-way fits and corresponding two-way fits. But we only 

include 1180 groups of fits, the last group was excluded from further calculations in order to avoid 

the edging effect.  
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As explained at the end of section 1.3, with a fixed dependent variable, the total number of three-

way models is 6,555, and for each model, on the first scan, there are 1,180 group of fits, each group 

of fits has one D-value.  

 

3.2 D-VALUE CALCULATION  

As what was mentioned in the previous part, D-value is calculated by subtracting the maximum 

squared correlation of the two corresponding two-way models from the R square of the three-way 

model. See the following graph for a better understanding of the D-value calculation process:  

 

Graph 3.2 Calculate D-value 

The D-values are stored into a 1,180 by 6,555 matrix, each column represents the D-values from 

one model. Having a concept of how the calculated results are stored helps readers to obtain a 

better understanding of the upcoming analysis.   
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3.3 CONSISTENCY CALCULATION 

The process of consistency calculation contains two steps, the first step is based on logical 

judgments and counting, the second step is division. For the first step, we need an “acceptable 

threshold for D” (𝐹𝐹ℎ𝑎𝑎), two other thresholds for the coefficients beta1 and beta2 of the independent 

variables in the three-way model (𝐹𝐹ℎ𝑏𝑏1 𝑠𝑠𝑝𝑝𝑎𝑎 𝐹𝐹ℎ𝑏𝑏2). For each model, it has one consistency on every 

scan where it is applied on. The following equation shows how to calculate consistency column-

wise in the D matrix, where 𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝐹𝐹ℎ(𝐷𝐷) = 1180. This length is related with the window size.    

 

𝐶𝐶𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑠𝑠𝐶𝐶 =
𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝐹𝐹ℎ(𝐷𝐷 > 𝐹𝐹ℎ𝑎𝑎 &𝐵𝐵𝑝𝑝𝐹𝐹𝑠𝑠1 > 𝐹𝐹ℎ𝑏𝑏1 &𝐵𝐵𝑝𝑝𝐹𝐹𝑠𝑠2 < 𝐹𝐹ℎ𝑏𝑏2)

𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝐹𝐹ℎ(𝐷𝐷)
     (3.3.1) 

 

The consistency results are simply stored as a vector.    

 

3.4 AN EXAMPLE OF CALCULATIONS IN R 

To further demonstrate the actual practice of how to calculate D value and consistency, here is a 

step by step example with R code.  

First of all, the data is stored in a big array, and we need to extract data for one specific scan. To 

achieve this, two parameters p and s are defined. P represents the person who provides the scan, 

and for each person, there are four scans, so s is used to indicate which specific scan among the 

four we are going to extract. Then assign the extracted data to a data frame named “scan” for later 
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use. The scan data is a 1,200 by 116 array. 1,200 is the total moments in one scan and 116 is the 

total number of brain regions. 

 

p = 1 

s = 1 

scan <- Scans.arr[ , ,s,p] 

 

Now we have the data for one scan extracted and assigned to the data frame, the next step is to 

build a matrix to store D value. Here, the dependent variable Z is fixed to be brain region 1, for 

independent variables X and Y, there are 𝐶𝐶1152 = 6,555 models (k) we will fit. This number will 

be the vertical dimension, the row number of the matrix. As for the horizontal dimension, since 

we choose window size (m) as 20, for each model there will be 1,180 fits (m), this is the column 

number of the matrix.  

 

 

h=20  # window width 

k=(115*114)/2  # number of models/number of rows of D matrix 

m=1200-h  # number of fits of each model / number of columns of D matrix 

dmat <- matrix(data=NA, nrow = k, ncol=m) 

 

Then build a data frame for independent variables of different models, this data frame named “cb” 

and is build and looks like the following:  

cb <- t(combn(c(2:116),2)) 
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With all parameters set up, the final step is performing the recursive calculation by applying two 

layers nested for loop, the R code is shown below:  

  

for (l in 1:k){ 

  for (i in 1:m){ 

    z <- scan[i:(i+19), 1] 

    x <- scan[i:(i+19), cb[l,1]] 

    y <- scan[i:(i+19), cb[l,2]] 

    dmat[l,i] <- summary(lm(z~x+y))$r.squared-max((cor(z,x))^2,(cor(z,y))^2) 

  }  

}  

 

Pointers l and i are responsible to trace data piece by moment and by brain region index. After the 

program finished running, store the dmat into a Rdata file. Thus, we have a D value matrix for all 

models with fixed Z and designated window size on one specific scan.   
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4 MODEL SELECTION 

4.1 THRESHOLDS FOR D-VALUE 

To recognize the qualified models, one feasible method is setting a target D-value threshold (“th”), 

then count how many D-values along one scan for a specific model are exceeded the target 

threshold. It was mentioned above that D-value measures the advantage of the three-way model 

when compared to the best corresponding two-way models. The more the D-values exceeded the 

target, the better the three-way model’s performance.  

We can start from looking for a few good models and research on their characteristics, then use 

these characteristics to measure other models.    

In order to filter out “high-quality three-way model”, a high threshold is set for filter purpose:    

th = 0.5  

The next step is to count, for each model, how many D-value on the first scan exceeded the high 

threshold we set.  

After comparison and calculation, model 4413 returns the greatest number of D-value which 

exceeded the high threshold, the model (#4413) contains the following variables:  

Dependent variable (Z): left precentral gyrus  

        Independent variable (X): Left middle occipital gyrus  

                                                       (Y): Right Inferior occipital gyrus  
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It returns 36-time points on the first scan where D-value is greater than the target threshold, which 

is about 3.05% over the 1,180 D-values. This is the highest level among all models. Now, we start 

from this model and try to summarize some useful characteristics for further model D-value 

performance evaluation.  

From the following plot, it is clear to see that, D-value exceeds the current target threshold (red 

horizontal line) occasionally. But the movement of D-value seems to have some “wave” motion, 

this is because the original frequency data has time serials feature. It also suggests there should 

exist some factors which affect the three-way model advantage over two-way models.  

 

 

Graph 4.1.1 D-value of model 4413 for the first scan with threshold 0.5 mark 

Model 4413 is one of “extremely good cases” which shows the best three-way model performance.  



15 
 

Then we move to the histogram of the D-values of this model:  

  

Graph 4.1.2 D-value histogram of model 4413 with marks 

It is obvious to notice that in the D value distribution, most of the D values are below 0.1 (blue 

vertical dash line), and only a few of them are exceeded 0.5 (red vertical line).   

Since 0.5 is a high-level threshold, 0.1 may be a good choice for a more generalized relatively 

lower level threshold, which will be able to filter out most of the ordinary D-values and include 

the good D-values at a not too special or too rare level.  

To verify the characteristics on other models, here are several randomly selected models, check 

the following plots for three randomly selected models, which are model 1, model 2850, and model 

4412: 
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Graph 4.1.3 – 4.1.4 Histogram and Plot of D-value for model 1 
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Graph 4.1.5 - 4.1.6 Histogram and Plot of D-value for model 2850 
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Graph 4.1.7- 4.1.8 Histogram and Plot of D-value for model 4412 
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All of the above three randomly selected models have most D-values below 0.1, one of them has 

D-values occasionally across 0.5, but other models do not have D-values across 0.5. This is also 

true for many other models.  

The following code, table, and plot show that on the first scan for all of the 6,555 models, the 

percentage of each model’s D-value falls into the range of (0.1, 0.5).  

From the perspective of the median and mean, for all these models about 12% of their D-value 

falls into the range. For research purpose here, it is an acceptable level.  

 

R code to calculate in-range D-value percentage, summary table and plot 

rg<- function(x){ 

  ll=0.1 

  ul=0.5 

  sum(x > ll & x < ul)/length(x) 

} 

 

rg<- apply(dmat,1,rg) 

plot(rg) 

abline(h=0.12, col="green", lwd=4) 

summary(rg) 
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Summary Table 

 

 

 

Graph 4.1.9 D-value in-range percentage of all models on the first scan 

 

So, we will include 0.1 as the lower boundary for D-value in the following consistency calculation 

as one of the thresholds.  

Min 1st Qu. Median Mean 3rd Qu. Max 

0.005085 0.085593 0.121186 0.128409 0.164407 0.394915 
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4.2 THRESHOLDS FOR CONSISTENCY 

We are not only interested in the extremely good cases but are interested in when and how often 

the D values are high.  

 

Graph 4.2.1 Plot of D-value, coefficients and constant item of model 4413 on the first scan 

After observation on coefficients of variables in the above plot, it is not hard to see, when the 

coefficient of the first independent variable (Beta1, red points) is positive and the coefficient of 

the second independent variable (Beta2, green points) is negative, the D value at the same time 

point always tends to be high. In addition, when the difference between the two coefficients 

becomes larger, the D-value at that point tends to be even higher.  

Now we know how to distinguish when the D-value is high, to solve the second question: how 

often the D-value appears to be large, another concept named “consistency” is introduced. 
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Consistency is calculated by summing up the number of time points where the D value is high, 

and coefficients are in accordance with the above conditions, then divided the sum by the total 

number of time points on one scan, thus we get a number less than 1. Consistency can be 

interpreted as a percentage which perfectly answers the question of how often the large D value 

appears.    

As what was discussed in the previous part, setting the target threshold to 0.5 will only distinguish 

time points with an extreme situation happens occasionally. To represent a general situation, it is 

necessary to adjust the target threshold to a lower level. Threshold equals 0.1 is the middle point 

of mean value and medium, also it is the minimum requirement which is considered as qualified 

D value. With D-value less than 0.1, there is not a much significant improvement on a three-way  

 

Graph 4.2.2 Model 4413 summary and threshold selection 

The final condition for consistency is:  
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4.3 ALL MODELS TEST ON THE FIRST SCAN 

In the above process, for exploring and attempting purpose, the dependent variable is always set 

and fixed as a specific brain region. Based on all the works has been done so far, we established a 

system of calculation and judgment conditions. Now, it is feasible to start open restriction for the 

dependent variable and apply the system to all possible models and variables combinations.  

 

 

 

In practice, the calculation involved in this process for 1,500 models on one scan typically needs 

two hours to be finished. The number of all possible variable combination is 253,460, and the total 

number of scans is 3,280. To test all of them one by one, it will take a large amount of time. Instead 

of testing all models on all scans, which is more comprehensive, test all models on the first scan 

is applied in this research. The strategy here is using the test on the first scan as a filter to select 

qualified models, and then redo the process and calculate consistency only for qualified models on 

all scans.  
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4.3.1 Parallel computing 

Since the calculation is a time-consuming process, to improve time efficiency, parallel computing 

algorithm is implemented in R. This implementation calls all cores in CPU and instruct them to do 

the calculation simultaneously. For example, there are four cores available in one computer, the 

total time consumption will be decreased to ¼ of the original amount. As a result of parallel 

computing, it takes 85 hours in total to finish the consistency calculation for all of the 253,460 

models on the first scan.  

 

 

Note: the above calculation and time consuming is based on running R code on an ASUS N56 

laptop with windows 10 64x system installed, the laptop has 4 cores and 8GB RAM. The 

programming structure used here is nested for loop. 

Time efficiency may be improved by applying more efficiently language or code, and running on 

higher performance computer. Cloud computation where more cores are available for 

calculation may significantly reduce the time consuming as well.  
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4.3.2 Qualified consistency threshold 

The following are distribution summary and histogram which show details of the distribution of 

all models’ consistency on the first scan:  

 

 

 

 

 

Similar to the previous threshold selection principle for D-value, we first investigate extreme good 

models. Here, I choose 0.35 as the threshold.  
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Of course, a different threshold can be used and will certainly return different results. For example, 

if the threshold is set to 0.30, around two hundred models will fall into “the bucket”. With 0.35 as 

the threshold, only the top six models are selected, and it is relatively a tiny size group of models. 

Since I am only interested in top performance models here, 0.35 is good enough to be set as the 

qualified consistency threshold.  

 

4.3.3 Qualified models 

The top six models fall into “the bucket”. They are:  

Model No. Dependent Variable (Z) Independent Variable (X) Independent Variable (Y) 

4412 Precentral_L 2001 Occipital_Mid_L 5201 Occipital_Inf_L 5301 

4413 Precentral_L 2001 Occipital_Mid_L 5201 Occipital_Inf_R 5302 

10853 Precentral_R 2002 Occipital_Mid_L 5201 Occipital_Inf_L 5301 

10854 Precentral_R 2002 Occipital_Mid_L 5201 Occipital_Inf_R 5302 

64519 Frontal_Inf_Oper_L 2301 Parietal_Inf_R 6202 Angular_R 6222 

230209 SupraMarginal_R 6212 Precuneus_R 6302 Cerebelum_Crus2_L 9011 
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4.3.4 Correlation review on pairwise brain regions 

If we investigate the qualified models’ variable combination in details, there are several brain 

regions appears repeatedly, dependent variable: region 1: Precentral_L, region 2: Precentral_R, 

and independent variable region 51: Occipital_Mid_L, region 53: Occipital_Inf_L, and region 

54: Occipital_Inf_R.  

As we all know, human brain regions have internal two-way relationships, correlation. The 

reason for these brain regions appears repeatedly could be an indicator of strong pairwise 

relationships.  

The correlation between region1 and region2 is 0.7985, which is a very strong positive 

relationship. This explains why with the same independent variables, both combinations, with 

region 1 and region 2 as the dependent variable, has significantly similar performance because 

their signals are mutually boosted.  

The same thing happens to region 53 and region 54, these two regions are assigned as 

independent variables in the different models, with other condition unchanged, no matter which 

of the two regions appear, the model is qualified. Like model 4412 and model 4413, model 

10853 and model 10854, the only difference is switching an independent variable. The 

correlation between region 53 and region 54 is 0.7827, which is also a very strong positive 

relationship.   

These pairwise relationships are existing when tested brain regions are located on the 

corresponding left and right side of the human brain. Although, we know that the left brain and 

right brain have their own different responsibility, in fact, the left brain is mainly responsible for 

logical thinking and the right brain is mainly responsible for feeling visualization, the above 
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correlation phenomenon could still be a clue which indicates there exist more complex 

relationships and corporations between left and right.     

 

4.4 SELECTED MODELS TEST ON ALL SCANS 

4.4.1Acceptable consistency threshold  

The acceptable consistency threshold is set to 0.04. Take the following summary table as an 

example:  

 

The 3rd quartile is 0.03475, which is close to 0.04. This is the true consistency distribution on 

many scans. Human brain activity is influenced by tons of external factors, even among four scans 

of one same person, it shows high volatility and difference in the original frequency data. A model 

who achieves consistency above 0.04 on thousands of scans stably cannot be coincident.  

 

4.4.2 Consistency percentage 

On all 3,280 scans, apply the same procedure to calculate D values and consistency for the six 

qualified models. Then compare the consistency of each model with an acceptable consistency 

threshold, add up the total number of scans where the consistency is greater than the acceptable 

consistency threshold, divide the sum by the total number of scans 3,280 to get a percentage. This 

percentage represents, on all scans, a model’s overall performance. The percentage is named 
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“consistency percentage”. A high consistency percentage shows a model is stable on most of the 

scans.   

 

4.4.3 The consistency percentage table 

Model No. Consistency percentage 

4412 68.72% 

4413 78.23% 

10853 71.07% 

10854 76.13% 

64519 97.23% 

230209 87.47% 

Table 4.4.3 Consistency percentage of the six qualified models 

All the six models return consistency percentage around or above 70%, this means these models 

have stable performance on at least 70% of the 3,280 scans.  
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Graph 4.4.1 – 4.4.6 Consistency plots for the six qualified models 
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4.5 Global signal and qualified models 

The global signal is widely used as a regressor or normalization factor for removing the 
effects of global variations in the analysis of functional magnetic resonance imaging 
(fMRI) studies. However, there is considerable controversy over its use because of the 
potential bias that can be introduced when it is applied to the analysis of both task-related 
and resting-state fMRI studies.  

In order to further explore qualified model’s sensitivity on the global signal, we control the 

global signal from the original data for regression and repeat the same calculations and analysis.   

Because in the original data array, there is no global signal detected specifically, so we applied a 

simulation method to generate global signal data. The original data has 116 brain regions and 

1,200 data points on each scan, for each data point, take the average for all the 116 brain regions, 

then subtract the average value from each of the original brain regions data to form a new data 

frame.  

The new data frame is then inputted into the testing process, where the six qualified models are 

tested on all the 3,280 scans. Thus, we get the global-signal-controlled consistency matrices.   

Apply the same general level standard of consistency on the global-signal-controlled matrices to 

evaluate the six models’ performance, we get a new consistency percentage table below. The 

second column labeled “GB” is based on new global-signal-controlled matrices, and the third 

column labeled as “OG” is the original consistency matrices consistency percentage.    
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Model No. Consistency Percentage (GB) Consistency Percentage (OG) 

4412 66.46% 68.72% 

4413 72.32% 78.23% 

10853 67.53% 71.07% 

10854 68.26% 76.13% 

64519 96.10% 97.23% 

230209 68.60% 87.47% 
Table 4.5.1 

Compare global-signal-controlled consistency percentage with the original consistency percentage of the six qualified models 

Comparing to the original consistency percentage, it is clear to observe that all the six models’ 

consistency percentage decreased when we controlled the global signal. But the decreased 

portions are different for each qualified model, which indicates the models have different levels 

of sensitivity toward the global-signal.   

Model No. Decreased Portion 

4412 3.28% 

4413 7.56% 

10853 4.98% 

10854 10.33% 

64519 1.16% 

230209 21.58% 

 

Model 230209 has the most sensitive reaction toward global signal control, and model 64519, 

who has the highest consistency percentage among all other qualified models, has the least 

sensitivity level.   
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5 VARIANCE ANALYSIS ON SELECTED MODELS 

Variance measures how far a set of numbers are spread out from their average value [2]. In this 

section, we will focus on discussion about consistency similarity for one model on the four scans 

of one person. Lower variance show that a group consistency is more concentrated, or in other 

words, closer to each other in terms of value. Higher variance represents the opposite situation 

which means the group consistency is more spread away from each other.  

From the previous calculation and work, the consistency data is stored in matrices, one matrix for 

each model. For illustration purpose, below is a data table showing how a consistency matrix look 

like:  

 

 

Graph 5.1 Appearance of a consistency matrix for one model 

Each blank in the above data table contains a consistency value for each scan and each person. If 

we do column-wise variance calculation, we will be able to get consistency variance for each 

person.   

5.1 OVERALL VARIANCE 

Now we have a variance for each person, how to describe and decide whether the variance is small 

or large? It is a good idea to compare the column-wise variance with overall variance.  
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Overall variance represents how far the whole matrix of consistency are spread from their mean. 

If a column-wise variance is lower than the overall variance, it means compared to the whole set, 

this one column of numbers is more concentrated than the average level.  

Overall variance is calculated by taking all consistency from the above matrix into consideration 

and using a simple function in R. The overall variance of consistency for each of the six qualified 

models we selected is shown in the following table:  

Model # Overall variance 

4412 0.002697087 

4413 0.003533631 

10853 0.002910637 

10854 0.003394082 

64519 0.005453598 

230209 0.003589780 

 

5.2 CONSISTENCY SIMILARITY OF THE SAME PERSON 

To determine how many people, have a similar consistency of their four scans, the variance of 

each person is compared to the overall variance of a model. If the personal variance is lower than 

the overall variance, the consistency of the four scans are similar, otherwise, they are not similar. 

Also, in order to clearly illustrate the level of similarity, a percentage is calculated by using the 

total number of people whose scans consistency are similar to divide the total number of people, 
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820, this percentage shows the portion of people who have similar consistency on one specific 

model.  

Model # Percentage 

4412 89.15% 

4413 86.10% 

10853 89.63% 

10854 86.95% 

64519 89.02% 

230209 87.56% 
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Graph 5.2.1-5.2.6 Personal consistency variance comparison with overall variance 

 

Note: X-axis is person index, the y-axis is variance, red horizontal straight line is the overall 

variance, blue points are personal variance. 
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6 RANDOM EFFECTS MODEL 

Human brain activity may be highly different from person to person. In the previous part, we 

looked into the consistency variance by person and found out that, for all of the six selected models, 

over 85% of people have similar or closed consistency in the four scans. To further analyze this 

phenomenon, a random effects model with a person as the only factor is established.  

Random effects model is also called a variance components model. [3] Just like its name, this step 

is aimed at finding out how does “person” influence the variance of consistency.    

Within-person variability is a measure of how much an individual tends to change in the sample. 

Specifically, within-person variability here measures the mean of the consistency change for the 

average individual change in the sample.  

Between person variability measures the difference of the mean of consistency between 

individuals.  

Total variability equals the sum of within-person variability and between-person variability.  

The random effects model is built by taking consistency data from each of the six qualified models 

as the dependent variable, and person code 1 to 820 as a factor as the only independent variable. 

Then use linear regression models to build the random effects model.  

To calculate within and between-person variability, ANOVA analysis is performed on this random 

effect model, the ANOVA table contains all results and numbers corresponding to the within and 

between-person variability.  

For demonstration purpose, an example ANOVA summary table is shown as the following:  
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Graph 6.1 Demonstration of within and between-person variability in ANOVA table 

 

Model No. Total variance Between Within Within/total ratio 

4412 0.0221 0.0194 0.0027 12.17% 

4413 0.0036 9.8745 × 10−5 0.0035 97.28% 

10853 0.0222 0.0194 0.0029 13.05% 

10854 0.0057 0.0023 0.0034 59.36% 

64519 0.0056 0.0001 0.0055 97.38% 

230209 0.0044 0.0009 0.0036 80.80% 

 

From the above data sheet, we can see that all six models have different level of variances, this 

makes it hard to compare one model with others. To better demonstrate the above results, we 

calculated within-person variability vs. total variability ratio. This clearly indicates for model 

#4413, #64519, #230209 and #10854 that they all have relatively high within/total ratio, which 

means in these models, person tends to change between scans over time. But for the other two 

models, #4412 and #10853, the variance does not heavily depend on the person, or in other words, 

individual tends not to change much over time.    
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7 RESULTS 

- After testing all models on the first scan, there are six qualified models, the following list 

shows the components of each qualified model:  

 

- All of the above six models reach around or above 70% consistency percentage. 

- All of the above six models show consistency similarity within the four scans from the 

same person, and over 85% of the participated people display this kind of similarity.  

- The random effect model with person as the only factor shows that: in model 4412 and 

model 10853, one person’s brain activity of certain regions does not tend to have much 

change over time; in models 4413, model 64513, model 230209, and model 10854, one 

person’s brain activity of specific regions tends to change much over time.  

  

Model No. Dependent Variable (Z) Independent Variable (X) Independent Variable (Y) 

4412 Precentral_L 2001 Occipital_Mid_L 5201 Occipital_Inf_L 5301 

4413 Precentral_L 2001 Occipital_Mid_L 5201 Occipital_Inf_R 5302 

10853 Precentral_R 2002 Occipital_Mid_L 5201 Occipital_Inf_L 5301 

10854 Precentral_R 2002 Occipital_Mid_L 5201 Occipital_Inf_R 5302 

64519 Frontal_Inf_Oper_L 2301 Parietal_Inf_R 6202 Angular_R 6222 

230209 SupraMarginal_R 6212 Precuneus_R 6302 Cerebelum_Crus2_L 9011 
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8 CONCLUSIONS 

- The three-way model will always return more precise fit than the corresponding two-way 

models, however, the relative advantage of three-way models may not be stable during one 

scan, for one person. When chose qualified models to test on more scans, it is necessary to 

consider the overall performance, consistency instead of several extremely good cases.  

- When evaluating a three-way model’s performance, set an “acceptable threshold” for 

consistency and calculate consistency percentage. This indicates the overall performance 

of a tested three-way-model on all scans. 

- Human brain activity highly depends on the individual. 

- Some brain regions activity tends to change over time, other regions activity tends to be 

relatively stable or possible have certain frequency pattern.  
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9 LIMITATION AND FUTURE WORKS 

The approach taken in this research is very computationally intensive. Hence, only some choices 

for various parameters were explored. The specific choices of those parameters were based on 

preliminary exploratory data analysis of time series data.  

One of the future work directions is to calculate all models’ consistency on each scan and 

summarize all the consistency values as well as classify models into different tiers by their overall 

level of consistency and other relevant model performance measurement.  

The aim of this thesis is to propose a new perspective on the statistical research on human brain 

activity. The author believes there is tremendous space for new study and creativity in this field.     
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APPENDIX 

Appendix A: Calculate D-value for one specific scan 

# Calculate D-value for one specific scan 

 

# Setup independent variable index combination 

# with fixed response Z as region 1, we only need to generate for predictors 

X and Y 

cb_1 <- t(combn(c(2:116),2)) 

 

# Setup D-value matrix to store calculation results 

h=20  # window width 

m=1200-h # number of  

k=(115*114)/2  # number of models/number of rows of D matrix 

dmat1_1 <- matrix(data=NA, nrow = k, ncol=m) 

 

# pull out data of the first scan first person from the array 

p = 1 

s = 1 

scan <- Subset.Scans.arr[ , ,s,p] 

 

# Calculate D-value and store into matrix using nested for loop 

 

for (l in 1:k){ 

  for (i in 1:m){ 

    z <- scan[i:(i+19), 1] 

    x <- scan[i:(i+19), cb_1[l,1]] 
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    y <- scan[i:(i+19), cb_1[l,2]] 

    dmat1_1[l,i] <- summary(lm(z~x+y))$r.squared-

max((cor(z,x))^2,(cor(z,y))^2) 

  }  

} 

 

# save the d value matrix as Rdata file 

save(dmat1_4, file = "D:/data/dmatori4.Rdata") 

  



45 
 

Appendix B: Calculation and plotting of consistency and strength 

####Consistency and strength### 

consistency <- function(s,p,mi,rr,th,thd){ 

  scan <- Subset.Scans.arr[,,s,p] 

  b0 <- vector() 

  b1 <- vector() 

  b2 <- vector() 

  dv <- vector() 

   

  betadmat <- matrix(data = NA, nrow = length(rr), ncol = 4) 

  sa <- vector() 

   

  for (i in (rr)){ 

    z <- scan[i:(i+19), 1] 

    x <- scan[i:(i+19), cb_1[mi,1]] 

    y <- scan[i:(i+19), cb_1[mi,2]] 

     

    b0[i] <- summary(lm(z~x+y))$coefficients[1] 

    b1[i] <- summary(lm(z~x+y))$coefficients[2] 

    b2[i] <- summary(lm(z~x+y))$coefficients[3] 

    dv[i] <- summary(lm(z~x+y))$r.squared-max((cor(z,x))^2,(cor(z,y))^2) 

  }  

   

  betadmat <- na.omit(cbind(b0,b1,b2,dv)) 

  sa <<- which(betadmat[,2]>0.1 & betadmat[,3]< (-0.1) & betadmat[,4]>thd, 

arr.ind = TRUE) 

   

  matplot(rr,betadmat,type = "b") 
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  print(paste("Consistency: ", (length(which(betadmat[,2]>0.1 & betadmat[,3]< 

(-0.1) & betadmat[,4]>thd))/length(rr)))) 

   

  print(paste("Strength: " ,(length(which(abs(betadmat[,2])>th | 

abs(betadmat[,3])>th))/length(rr)))) 

} 

 

 

## Parameters: 

# s <- 1 #Scan 

# p <- 1 #Person 

# mi <- 4413 model index, which model to plot 

# rr <- c(1:1180) range 

# th <- threshold to measure strength  

# thd <- threshold to measure D values 

 

# consistency(s=1,p=1,mi=4413,rr=c(1:1180),th=0.5,thd=0.1) 

## if you want to check where in the scan is consistent 

# abline(v=sa, col="purple") 
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Appendix C: Parallel Computing (R code) 

# Function: Test all models on the first scan 

test.fun <- function(mrange=1:100){ 

  load("cb.Rdata") 

  load("scanmat.Rdata") 

  con <- vector() 

  for (m in mrange) { 

    cnt = 0 

    cb.mat<- cb[m,] 

    for (i in 1:1180){ 

      mat <- scanmat[i:(i+19),] 

       

      z <- mat[,cb.mat [1]] 

      x <- mat[,cb.mat [2]] 

      y <- mat[,cb.mat [3]] 

       

      sum.obj<- summary(lm(z~x+y)) 

      v <- sum.obj$coefficients 

       

      b1 <- v[2] 

      b2 <- v[3] 

      dv <- sum.obj$r.squared-max((cor(z,x))^2,(cor(z,y))^2) 

       

      if (b1>0.1 & b2<(-0.1) & dv>0.1){ 

        cnt <-  cnt + 1 

      } 

    }  

    con<-append(con, cnt/1180)  
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  } 

  return(con) 

} 

 

 

 

#### Execution #### 

 

setwd("D:/data/") 

load("cb.Rdata") 

load("scanmat.Rdata") 

 

library("parallel") 

source("potato3.R") 

system.time({ 

  no_cores <- detectCores() - 1 

  cl <- makeCluster(no_cores) 

  con<- parSapply(cl,1:253460, test.fun ) 

  stopCluster(cl) 

}) 

save(con,file = "models_consistency.Rdata") 
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Appendix D: Random Effects Model 

# Random Effects model 

factor <- as.factor(rep(1:820, each=4)) 

wtbt <- function(md=md4412){ 

  value <- as.vector(md[[1]]) 

  md <- as.data.frame(cbind(factor, value)) 

  obj <- lm(value~factor, data = md) 

  av <- anova(obj) 

  within <- av$`Mean Sq`[2] 

  between <- av$`Mean Sq`[1] 

  total <- within + between 

  percentage <- within/total 

  va <- cbind(within,between,total,percentage) 

  print(paste("within person variance:", within)) 

  print(paste("between person variance:", between)) 

  print(paste("total variance:", total)) 

  print(paste("within/total percentage:", percentage)) 

  return(va) 

} 
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Appendix E: Method to draw a 3-D interactive plot for model consistency (R code) 

# How to draw the 3-D interactive plot for model consistency?  

# load and attach an add-on package "plotly" 

library("plotly") 

 

# load the consistency and strength data stored in lists  

# for the specific model which you want to draw a 3-D interactive plot  

load("md230209_2.Rdata") 

# Transform and reorgnize the dataframe 

df<- t(as.data.frame(md230209[[1]])) 

df.v <- as.vector(df) 

person <- rep(c(1:820),4) 

scan <- rep(c(1:4),each=820) 

df1 <- as.data.frame(cbind(person,scan,df.v)) 

 

# plot using plot_ly function 

plot_ly(df1,x=person,y=scan,z=df.v, 

  marker = list(color = ~df.v, colorscale = c('#FFE1A1', '#683531'), 

showscale = TRUE)) %>% 

  add_markers() %>% 

  layout(scene = list(xaxis = list(title = 'person'), 

                      yaxis = list(title = 'scan'), 

                      zaxis = list(title = 'consistency')) 

         ) 
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Appendix F: The 3-D plot for model 4412 consistency  

The following plot is shown as an example for interpretation purpose, because the documentation 

file does not allow insert of interactive dynamic plots, for all the six actual interactive 3-D plots, 

please check the attached HTML file named “qualified models 3d plots”. Click on each static graph 

in the page, it will automatically direct to the corresponding interactive 3D plot. 
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