
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

10-2018 

Meta Learning for Graph Neural Networks Meta Learning for Graph Neural Networks 

Rohan N. Dhamdhere 
rnd7528@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Dhamdhere, Rohan N., "Meta Learning for Graph Neural Networks" (2018). Thesis. Rochester Institute of 
Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9917?utm_source=repository.rit.edu%2Ftheses%2F9917&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


1 | P a g e  

 

      Meta Learning for Graph Neural Networks 
 

By 
 

Rohan N. Dhamdhere 
  

October 2018 
 

 

 

 

A Thesis Submitted  
in Partial Fulfillment  

of the Requirements for the Degree of  
Master of Science  

in  
Computer Engineering 

 
 
 
 
 
 

Committee Approval:  
 
 

 
Dr. Raymond Ptucha, Advisor Date  
Assistant Professor  

 
 

 

Dr. Andres Kwasinski, Committee Member Date  
Professor  

 
 

 

Dr. Ifeoma Nwogu, Committee Member Date  
Assistant Professor  

 
 
 
 
 
 
 
 
 
 
 
 

Department of Computer Engineering  
 



2 | P a g e  

 

Acknowledgments 

 

 

This thesis work is the culmination of an important period of my life. I would like to 

take this opportunity to thank my advisor Dr. Raymond Ptucha for his continual 

support and guidance during my master’s degree. I am thankful for Dr. Kwasinski 

and Dr. Nwogu for being in my thesis committee. I would like to give a personal 

thank you to Miguel Dominguez for getting me involved in the fun research work 

that is Graph CNNs. I would also like to thank my family and my close friends, 

without their support this journey would not have been as easy as it was. My time 

here at RIT was one that I shall remember a long time and would like to thank 

everyone who made it special.



3 | P a g e  

 

 
 
 

I dedicate this work to my father, my mother and my sister. For they always supported me 

in my quest for excellence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Somewhere, something incredible is waiting to be known.” 

- Carl Sagan 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



4 | P a g e  

 

 

 

Abstract 
 
 

Deep learning has enabled incredible advances in pattern recognition such as the 

fields of computer vision and natural language processing. One of the most 

successful areas of deep learning is Convolutional Neural Networks (CNNs). 

CNNs have helped improve performance on many difficult video and image 

understanding tasks but are restricted to dense gridded structures. Further, 

designing their architectures can be challenging, even for image classification 

problems. The recently introduced graph CNNs can work on both dense gridded 

structures as well as generic graphs. Graph CNNs have been performing at par 

with traditional CNNs on tasks such as point cloud classification and segmentation, 

protein classification and image classification, while reducing the complexity of the 

network.  

Graph CNNs provide an extra challenge in designing architectures due to 

more complex weight and filter visualization of generic graphs. Designing neural 

network architectures, yielding optimal performance, is a laborious and rigorous 

process. Hyperparameter tuning is essential for achieving state of the art results 

using specific architectures. Using a rich suite of predefined mutations, 

evolutionary algorithms have had success in delivering a high-quality population 

from a low-quality starter population. This thesis research formulates the graph 

CNN architecture design as an evolutionary search problem to generate a high-

quality population of graph CNN model architectures for classification tasks on 

benchmark datasets. 
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Chapter 1 
 
 

Introduction 

 
 
 
 
 

  

1.1 Introduction 

 

 

Neural networks can successfully execute challenging tasks when provided with 

abundant data along with sizable computational resources. Convolutional Neural 

Networks (CNNs) have broken traditional computer vision barriers and achieved high 

quality results on image classification and segmentation tasks [7, 8, 19]. CNNs are 

helping deep learning get embedded into newer fields every day. CNNs have the 

ability to simultaneously automate the process of feature extraction and classification. 

This ability of CNNs is helping them beat other machine learning algorithms at several 

tasks. 

 CNNs are highly successful in tasks involving data represented in discrete 

gridded structures such as image, videos etc. Unstructured data (e.g.: 3D Point clouds 

or 3D meshes [26, 27]) or data that cannot be represented in such gridded structures 

(e.g.: Protein graphs [21, 24, 25]) cannot be filtered by conventional convolution 

operations, and therefore CNNs have enjoyed very little success in tasks involving 

such data. Most unstructured data can easily be processed into graphs. This has led 

to the development of different convolutional operators for graph data and has led to 

the research field of Graph CNNs [12, 14, 18, 22].  

 Graph CNNs have shown comparable to state-of-the-art performances on 

classification tasks of protein graphs, 3D point clouds and images [12, 14]. They have 

also performed well on image and 3D segmentation tasks [29] as well as classification 

of functional MRIs of brain [28]. With graph CNNs, Convolutional Neural Networks can 

now be applied to a wide range of data and applications. 
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 Although CNNs can automatically extract and perform classification of 

features, they need precise hyperparameters and optimal architectures to achieve 

high accuracy and precision. Solving for hyperparameters and designing architectures 

are typically done by a human expert. This is a laborious process and requires high 

amount of focus and experience. Designing CNN architectures is a tough task even 

for image data where visualization of weights and filters aid the process of design. 

Graph CNNs work on unstructured data which are converted to graphs. Visualizations 

of weights and filters of graph CNNs inform abstract knowledge about the data. Due 

to the difficulty of weight visualization, the process of designing graph CNNs is extra 

challenging compared to conventional CNNs. 

 Research to automate the process of neural network design has been going 

on for few decades with early work being related to automating Multi-Layer Perceptron 

(MLP) based neural network design [2, 3, 10, 13]. In recent years, many approaches 

like reinforcement learning [30, 31], genetic algorithms [6] and evolutionary algorithms 

[1,17] have been used to automate the process CNN architecture design and 

hyperparameter search. This process has had some success on standard image 

datasets like CIFAR [32]. This work attempts automate the process of graph CNN 

architecture design and hyperparameter search using evolutionary algorithms for the 

classification of protein graph structures.  

 

1.2 Motivation  

 

Designing of any neural network is laborious process. After designing, tuning of 

hyperparameters is another time-consuming task. This work is an extension of 

previous work which was done for classification of protein graphs by designing custom 

graph CNNs manually. The difficulty of the previous research motivated the 

automation of various parameters required for graph CNN design. Also, this work is a 

feasibility check on whether evolutionary algorithms are able to generalize over 

different datasets and find top performing architectures tailored for specific datasets.  

Many other works on automation of CNN architecture design use abundant 

computing resources. This work attempts to find out if evolutionary search for 

architecture design can be done in environments with limited computational resources 
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and what are the modifications required to make the algorithm more computationally 

efficient. Discovering tangible answers to the above mentioned problems related 

architecture design is the main motivation for this work. 

 

1.3 Contributions 

 

The main contributions of this thesis work can be summarized as: 

• An evolutionary algorithm for graph CNNs based on probabilistic mutation 

strategy. 

• Achieve better than human performance on benchmark protein datasets using 

same graph CNN method. 

• Parallel implementation of cross validation evaluation for evolution of models. 

• Selective loading of weights based on layers present in previous architectures. 

• Saving and loading of best trained models using training loss for boosting 

performance. 
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Chapter 2 
 
 

Background 

 
 
 
 
 

2.1 Deep Learning 

 

Deep Learning has provided breakthrough research results in many fields. Deep 

learning network’s ability to extract its own features for classification has provided it 

an edge over other machine learning techniques. It has especially helped computer 

vision research by providing better feature descriptors than traditional computer vision 

features like HoG, SIFT etc. [46, 47]. Also, it has reduced the feature designer’s bias 

introduced in the extracted features. All these merits have resulted in deep neural 

networks being the method of choice for feature extraction along with MLP classifiers.  

 

2.2 Convolutional Neural Networks 

 

Much of the success achieved by deep learning can be attributed to CNNs. CNN 

architectures have performed exceptionally well on tasks related to image or video 

data classification and understanding [7, 8, 19]. CNNs extend the capabilities of MLPs 

while keeping a similar number of parameters. CNNs make use of localized 

information by using a common filter over the full input. Parameter sharing over 

different regions of the input results in sharing of localized features. A CNN layer can 

be defined as in (2.2.1), where  𝑉(𝑖,𝑗,𝑐)
𝑙

 contains pixel information for the layer l of the 

network, for pixel i, j at the cth channel, where channel is the third dimension of the 

image volume. Here, at any layer, image volume V is convolved with a convolutional 

filter volume W to get convolved image volume V. 

 

𝑉(𝑖,𝑗,𝑘)
𝑙 =  𝑊𝑎𝑏𝑐𝑉(i+a,j+b,c)

𝑙−1     (2.2.1) 
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Figure 2.2.1: A 2D convolution operation [33]. 

 

 Much power of CNNs is derived from the common set of parameters shared 

over different inputs. Their limitation is that the input needs to be gridded with fixed 

neighbors. Graph Convolutional Neural Networks (Graph CNNs) remove this limitation 

using Graph-based Convolution operation. 

 

2.3 Graph-Convolutional Neural Networks 

 

Research to broaden the extent of neural networks to graph structured data has had 

substantial success in recent times. A graph G is represented using a tuple (V, A) - 

vertices V and adjacency matrix A. The adjacency matrix entries can be defined as in 

(2.3.1). 

 

𝑎𝑖𝑗 = {
𝑤𝑖𝑗 ,   𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2.3.1) 

 

 The scalar 𝑤𝑖𝑗 is a weight that represents some measure of strength of the 

edge between vertex i and vertex j. The research of graph convolutional networks 

follows two broad general approaches to generalizing CNNs to graph data: spectral 

and spatial.  
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A. Spectral Approaches 

 

Spectral approaches use spectral graph theory. Spectral graph theory works in the 

spectral domain by constructing a filter based on the eigenvector decomposition of the 

Graph Laplacian L shown in (2.3.2). 

 

𝐿 = 𝐷 − 𝐴     (2.3.2) 

 

𝐿 = 𝐼 − 𝐷−1 2⁄ 𝐴𝐷−1 2⁄      (2.3.3) 

 

 L can be normalized as shown in (2.3.3), where A is the adjacency matrix of 

the graph, D is the diagonal degree matrix and I is the identity matrix. L can be used 

to compute an eigenbasis U. This eigenbasis U is similar to the Discrete Fourier 

Transform (DFT). A graph signal x can be transformed into spectral domain and 

multiplying each frequency by a filter h, to get its filtered output in spectral domain. 

This is illustrated in (2.3.4), where ⊙ is the elementwise product and ‘.’ represents the 

matrix multiplication. 

 

𝑥 ∗ ℎ =  𝑈𝑇  . (𝑈𝑥 ⊙ ℎ)     (2.3.4) 

 

 Thus, the filtering operation in the spectral domain is performed multiplying filter 

coefficients with spectrally transformed graph signals. Many works propose graph 

CNN models based on this method of filtering [34, 35, 37]. One of the major practical 

limitations of spectral domain-based learning of filters is the necessity of input graph 

samples to be homogenous for converting graphs to Laplacian matrix. This is 

necessary as the eigenbasis of the Graph Laplacian needs to be solved separately for 

every unique graph structure.  Most spectral works tend to focus on experiments 

where there is a single graph structure common across all samples, like a single large 

social network graph. Spatial approaches are advantaged over spectral methods in 

that they can filter graphs, without the graphs being homogenous.  
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B. Spatial Approaches 

 

To achieve better generalization across graphs, various works follow a local 

neighborhood graph filtering strategy. They generally require advanced data 

preprocessing techniques for learning to process neighborhoods that are different 

sizes and structures for each vertex. These methods differ in how they find a 

correspondence between filter weights and nodes in local graph neighborhoods.  

 Bruna et al. [38] assumed fixed graph structure and does not share weights 

among neighborhoods. Duvenaud et al. [39] sums the signal over neighboring vertices 

followed by a weight matrix multiplication, effectively sharing the same weights among 

all edges. Diffusion Convolutional Neural Networks (DCNNs) [40] arrange vertex 

features based on sequence of hops from different starting vertices to encode a graph 

into matrix layers. 

 Similar to Petroski Such et al. [5], DCNNs use polynomials of the adjacency 

matrix to define convolutional filters. They also use global vertex mean pooling to 

obtain a vector representation of the graph. The diffusion process of DCNNs is shown 

in (2.3.5), where Zt is the output feature vector for the vertices on the graph Gt , f is 

the activation function, Wc is a learnable weight-matrix, 𝑃𝑡
∗ is a degree-normalized 

polynomial of the adjacency matrix At , and Xt is the input feature vector for the vertices 

on the graph Gt. (⊙ is the elementwise product) 

 

𝑍𝑡 = 𝑓(𝑊𝑐  ⊙ 𝑃𝑡
∗𝑋𝑡)    (2.3.5) 

 

 Niepert et al. [18] rely on a heuristic ordering of the nodes, and then apply 1D 

CNNs. They linearize the graphs using a method called PATCHY-SAN. Using graph 

search algorithms, PATCHY-SAN attempts to obtain fixed size feature vector 

representation of the graph. An illustration of PATCHY-SAN is shown in Figure 2.3.1. 
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Figure 2.3.1: The PATCHY-SAN algorithm used to find fixed size vector representations of the 

graph. [18] 

 

 Simonovsky et al. [12] generate conditioned filter weights for edge labels. 

These weights are generated dynamically for every input to the graph. This edge 

conditioned convolution operation is given in (2.3.6), where 𝑋𝑙(𝑖) is the current layer 

signal to be computed, N(i) is the neighborhood of vertex i, 𝜃𝑗𝑖
𝑙  is the edge-weight 

matrix, 𝑋𝑙−1(𝑗) is the previous layer signal and 𝑏𝑙  is the learnable bias. The edge-

weights 𝜃𝑗𝑖
𝑙  are given as per (2.3.7), where L(j, i) is the given class label. 𝐹𝑙  is 

parameterized with learnable network weights 𝑤𝑙 . The model parameters 𝑤𝑙  and 𝑏𝑙 

update during training and dynamically generate 𝜃𝑗𝑖
𝑙  for an edge label in input graph. 

 

𝑋𝑙(𝑖) =  
1

|𝑁(𝑖)|
 ∑ 𝜃𝑗𝑖

𝑙  𝑋𝑙−1(𝑗)𝑗∈𝑁(𝑖) + 𝑏𝑙  (2.3.6) 

𝜃𝑗𝑖
𝑙 =  𝐹𝑙(𝐿(𝑗, 𝑖); 𝑤𝑙 )    (2.3.7) 

 

 The main challenge in the case of irregular data graphs is to define the 

correspondence between neighbors and weight matrices. FeaStNet [29] proposes to 

establish this correspondence in a data-driven manner, using a function over features 

computed in the preceding layer of the network, and learning the parameters of this 

function as a part of the network. They propose a similar approach to [12]. Instead of 

assigning each neighbor j of a node i to a single weight matrix, we use a soft-

assignment 𝑞𝑚(𝑥𝑖, 𝑥𝑗)  of the j-th neighbor across all the 𝑀  weight matrices. The 

activation 𝑦𝑖 ∈ ℝ𝐸 of pixel i in the output feature map using the soft assignments is 

defined as in (2.3.8), where b ∈ ℝ𝐸  is the vector of bias terms, 𝑞𝑚(𝑥𝑖, 𝑥𝑗)  is the 
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assignment of 𝑥𝑖 to the m-th weight matrix, and 𝒩𝑖 is the set of neighbors of i (including 

i), and |𝒩𝑖| its cardinal. 

 

𝑦𝑖 = 𝑏 + ∑
1

|𝒩𝑖|
∑ 𝑞𝑚(𝑥𝑖 , 𝑥𝑗)𝑊𝑚𝑥𝑗𝑗∈ 𝒩𝑖

𝑀
𝑚=1   (2.3.8) 

 

They use Mahalanolbis distance based soft assignment in feature space to determine 

local filters dynamically based on previous layers of the network. Their approach is 

illustrated in Figure 2.3.2. 

 

 

Figure.2.3.2: Graph CNN proposed by FeaStNet [29], where each node in the input patch is 
associated in a soft manner to each of the M weight matrices based on its features using the 

weight 𝑞𝑚(𝑥𝑖 , 𝑥𝑗). [29] 

 

Similar to earlier mentioned spatial methods, Such et. al. [22] use local edge features 

for graph convolution, done by convolving on adjacency matrix of the graph. They 

introduce vertex graph filters helping to learn on both graph vertex and edges 

simultaneously. Pooling in traditional CNNs helps to increase the receptive field of the 

filter and thereby helps to learn higher order features. They introduce pooling for 

graphs which is further explored by Dominguez et. al [14] to provide deep graph 

networks for 3D point cloud classification.  

 In this thesis work, graph convolution and pooling operations introduced in 

Such et. al. [22] and Dominguez et. al. [14] are used as the base operations for building 

neural network architectures in the process of architecture search for graph CNNs. 
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2.4 Meta Learning for Architecture search 

 

CNNs architectures have been able to achieve state-of-the-art performance on a 

variety of tasks. There are many popular architectures, each of which can be used on 

a broad variety of data. For example, AlexNet, VggNet, ResNet, DenseNet [7, 9, 41, 

42] are popular CNN architectures available for users to develop a neural network 

based prediction model for the user defined task. Each of these architectures were 

manually designed by expert humans. These designers leverage their in-depth 

knowledge about CNN training and optimization to define these architectures.  

 These popular architectures are flexible and generalize well to a variety of data 

but often need optimized hyperparameter tuning or custom architecture modifications 

for good performance. This process of designing neural network architectures is 

arduous and requires focused human attention. Also, hyperparameter tuning is time 

consuming and tedious.  

 Research to automate the design of neural networks has a long but sporadic 

history. Miller et al. [10] used genetic-search based methods to evolve MLP based 

neural networks to automate the task of network design. Initially, the evolution was 

only restricted to only evolving weights of static architectures. They were successful 

to solve the XOR problem, a big test at the time and Figure 2.3.1 shows some of the 

evolved architectures for the same. 

 

 

 
Figure 2.4.1: The XOR problem and solutions based on genetic search methods. [10] 
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 “Evolving Neural Networks through Augmenting Topologies” [13] did 

simultaneous adaption of weights and architectures. They defined basic mutations 

for evolution: 

i. Modify a weight. 

ii. Add a connection between existing nodes. 

iii. Insert node while splitting existing connection. 

  These evolutionary algorithms are not sufficient for deep neural networks. 

Current research directions focus on reinforcement learning and evolutionary 

strategies for the solving the neural architecture search problem. Both these directions 

have focused on allowing building of CNN architectures resembling those designed 

manually by humans.  

 Reinforcement learning based approaches have been able to achieve more 

success on real-world image data related classification tasks. Most reinforcement 

learning based approaches use indirect encoding schemes for network 

representation. Zoph et al. [31] used reinforcement learning on a deeper fixed-length 

architecture, adding one layer at a time. Their mutations included addition/removal of 

skip connections as well as tunable hyperparameters. Baker et al. [30] used Q-

learning to discover networks. They made architectures more flexible by allowing the 

algorithms to decide the number of layers in the network. This allows the network to 

adapt to the dataset at hand and construct shallow or deep solutions as necessary.  

 Progressing from earlier works, evolutionary approaches later combined with 

back-propagation [1, 17, 43] to evolve architectures and tune hyperparameters 

simultaneously. These approaches introduce architectural mutations and weight back-

propagation. More recent approaches [43] added weight inheritance for architectures. 

Suganuma et al. [1] use a direct encoding type approach using Cartesian Genetic 

Programming (CGP) [44] for their evolutionary process as shown in Figure 2.3.2. They 

define functional blocks such as ConvBlock, ResBlock etc. as functional blocks or 

nodes and do point mutation as in standard CGP.  
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Figure 2.4.2: Evolutionary algorithm proposed by Suganuma et al. [1] 

 

 This work is uses evolutionary approaches similar to Real et al. [17] and Graph 

CNN defined by Dominguez et. al. [14] as the base model and built an evolutionary 

algorithm based approach for architecture search for Graph CNNs.  
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Chapter 3 
 
 

Methodology 
 
 
 
 
 

3.1 Graph Convolutional Neural Networks 

 

A Graph can be decomposed into two main elements, the graph vertices vij and 

graph edges aij. A graph signal can be represented as a tuple described in (3.1.1) 

  

𝑮 = ( 𝑽, 𝑨)       (3.1.1) 

 

where  𝑽 𝜖 ℝ𝑁 × 𝑓 is the vertex signal matrix describing 𝑁 vertices with 𝑓 features 

each. 𝑨 𝜖 ℝ𝑁 × 𝑁 represents the adjacency matrix which encodes the edge 

information with its elements as defined Chapter 2. Each entry in 𝑨 is defined as per 

(3.1.2) previously defined in (2.3.1), 

 

𝑎𝑖𝑗 = {
𝑤𝑖𝑗 ,   𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3.1.2) 

 

An Illustration of the graph and its corresponding vertex matrix V and adjacency matrix 

A is shown in Figure 3.1.1.  
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Figure 3.1.1: An example graph and the corresponding vertex matrix and adjacency matrix. 

 

 

A. Graph Convolution 

 

Graph data can succinctly represent information in both vertices and edges. To 

process and learn the information, the convolution filtering technique for graphs must 

account for filtering both vertex information and edge information. This work uses the 

Graph convolution model proposed by Such et al. [22]. This is a spatial approach 

related graph convolution method following the local neighborhood graph filtering 

strategy. The graph convolution operation is based on the polynomials of the graph 

adjacency matrix and is similar to the convolution defined by Sandryhaila et al. [36] as 

in (3.1.3). 
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𝐻 =  ℎ0𝐼 + ℎ1𝐴1 + ℎ2𝐴2 + ℎ3𝐴3 + ⋯ + ℎ𝑘𝐴𝑘  (3.1.3) 

 

 The filter is defined as the kth-degree polynomial of the graph’s adjacency 

matrix. The exponent of polynomial encodes the number of hops from a given vertex 

that are being multiplied by the given filter tap. The scalar coefficients ℎ𝑖 control the 

contribution of the neighbors of a vertex during the convolution operation. The filter 

matrix thus obtained is 𝐻 ∈ ℝ𝑁 × 𝑁. To convolve the vertices 𝑉 with the filter 𝐻 is a 

matrix multiplication shown in (3.1.4), where  𝑉𝑜𝑢𝑡, 𝑉𝑖𝑛  ∈  ℝ𝑁. 

 

𝑉𝑜𝑢𝑡 =  𝐻𝑉𝑖𝑛    (3.1.4) 

 

 Such et al. [22] adjust this model in three ways. First, they avoid the 

exponentiated A and simplify the polynomial of adjacency in (3.1.3) to be linear as 

shown in (3.1.5). This is done because a cascade of filters can effectively approximate 

the receptive field of a single large filter as shown by VGGNet [41].  

 

𝐻 ≈  ℎ0𝐼 + ℎ1𝐴    (3.1.5) 

 

 Second, they construct an adjacency tensor 𝓐. This tensor contains multiple 

adjacency matrices  𝓐𝓵  as the slices of adjacency tensor. Each slice encodes a 

particular edge feature and thus the linear filter matrix from (3.1.5) is defined as a 

convex combination of each adjacency matrix as in (3.1.6) and concisely as in (3.1.7).  

 

𝐻 =  ℎ0𝐼 + ℎ1𝐴1 + ℎ2𝐴2 + ⋯ + ℎ𝐿𝐴𝐿−1  (3.1.6) 

 

𝐻 ≈  ∑ ℎℓ𝐴ℓ
𝐿
ℓ=0     (3.1.7) 

 

 Multiple adjacency matrices encode multiple edge features, each encoding a 

single feature. Also, partitioning the edges into multiple matrices conveys a sense of 

direction. This is illustrated in Figure 3.1.2. The Figure 3.1.2(a) is an illustration of the 
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default Graph CNN linear filter in an image application. A given filter tap is applied to 

all vertices of a given distance, isotropically (no sense of ‘direction’). In this case, ℎ0 

is applied to the 0-hop vertex and ℎ1 is applied to all adjacent vertices. If another 

border of pixels surrounded this figure, each pixel in that border would be multiplied 

by a filter tap ℎ2.  

 The Figure 3.1.2(c) shows that the adjacency matrix can be partitioned into 

nine adjacency matrices to form an adjacency tensor. Each partitioned adjacency 

matrix represents a different relative connection (edge feature) to a given vertex. Now 

a unique filter is applied to every adjacency matrix and aggregated to perform 

convolution. This induces a sense of direction into the Graph CNN filter making it 

anisotropic. This is equivalent to a 3 x 3 FIR filter in conventional CNN applications 

(Figure 3.1.2(b)). 

 

 

 

Figure 3.1.2: (a) Learnable parameters in 1-hop graph filters. (b) Classical 3×3 convolution filters. 
(c) Illustration of eight different edge connections combined to form a 3 × 3 filter. [22] 
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 All these filters are described for a single vertex feature. To extend to multiple 

vertex features, each ℎℓ needs to be in ℝ𝐶  making H of dimension ℝ𝑁×𝑁×𝐶 . Thus, 

every vertex feature has a N * N filter matrix H. So (3.1.7) can be modified as in (3.1.8) 

where 𝐻(𝑐) is an N * N slice of H and 𝒉(𝒄) ` is a scalar corresponding to a given input 

feature and a given slice of 𝐴ℓ. 

 

𝐻(𝑐) ≈  ∑ ℎℓ
(𝑐)

𝐴ℓ
𝐿
ℓ=0    (3.1.8) 

 

 The vertex signal is filtered using the 𝐻(𝑐) as described in (3.1.9) where 

𝑉𝑖𝑛
(𝑐)

 is the column of 𝑉𝑖𝑛 that only contains vertex feature c. We also add a bias b ∈ ℝ. 

This results in 𝑉𝑖𝑛 ∈ ℝ𝑁. 

 

𝑉𝑜𝑢𝑡 =  ∑ 𝐻(𝑐)𝑉𝑖𝑛
(𝑐)

+ 𝑏𝐶
𝑐=1   (3.1.9) 

 

This is how graph convolution is defined on a graph with multiple vertex features and 

edge features by Such et al. [22].  This approach is used for this thesis work. 

 

B. Graph Pooling 

 

The pooling operation can be dissected in two parts: the coarsening of structure and 

the reduction of signal on that structure. In grid structures such as images, the 

coarsening of structure is implicitly understood. But for graphs, such as protein 

structures, every sample can have a unique structure. Dominguez et al. [14] defined 

various pooling frameworks for graphs. These will be described here in succession.  

The first method they proposed is Lloyd Algebraic graph pooling on graphs that can 

do both signal reduction and graph coarsening.  

 

 

 

 



28 | P a g e  

 

a. Lloyd Algebraic graph pooling: 

 In this, a coarsening operator P is defined to reduce the Graph G = (V,A) with 

N1 vertices to Greduced = (Vreduced,Areduced) with N2 vertices. P is a N1 × N2 matrix 

with its elements defined as in (3.1.10). 

  

𝑷𝒊𝒋 = {

𝐶,   𝑖𝑓 𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑮 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 

𝑑𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑗𝑡ℎ𝑜𝑓 𝑮𝒓𝒆𝒅𝒖𝒄𝒆𝒅.
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (3.1.10) 

 

C is determined by mapping the graph clustering method used in mapping 

“fine” vertices to the “coarsen” vertices. Distances are calculated by finding the 

shortest path on a graph using the Bellman Ford algorithm. Using the 

coarsening operator P, Areduced is defined using (3.1.11) and Vreduced is defined 

using (3.1.12) through (3.1.14). Sum, average, and max pooling are defined 

using (3.1.12), (3.1.13), and (3.1.14) respectively. 

 

𝐴𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝑃𝑇𝐴𝑃     (3.1.11) 

 

𝑉𝑠𝑢𝑚
𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝑃𝑇(𝑉)    (3.1.12) 

 

𝑉𝑎𝑣𝑔
𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝑃ˆ𝑇(𝑉)    (3.1.13) 

 

𝑉𝑚𝑎𝑥
𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝜙𝑃(𝑉)    (3.1.14) 

 

 Element 𝑨𝒊,𝒋
𝒓𝒆𝒅𝒖𝒄𝒆𝒅 can be thought of as the aggregation of all the weights of 

edges while coarsening the graph G to Greduced. 𝑷ˆ𝑻 is the column-sum normalized 

version of P. Also, 𝜙𝑃 is a non-linear max pooling function. Here in this work we 

used only max pooling. Thus, the graph structure is reduced by (3.1.11) and the 

graph signal is reduced by (3.1.14). 
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b. Graph Embed Pooling: 

 Such et al. [5, 22] introduced graph embed pooling for graphs. It is a dense 

pooling method but fits the structure of Algebraic pooling. Graph embed pooling 

learns a fully connected layer whose output is treated as an embedding matrix that 

produces a fixed size output. To produce a pooled graph reduced to a fixed N’ 

vertices, the learned filter taps from this pooling layer produce an embedding 

matrix 𝑉𝑒𝑚𝑏  ∈  ℝ𝑁×𝑁′. Like in (3.1.9), a filter tensor 𝐻𝑒𝑚𝑏  ∈  ℝ𝑁×𝑁×𝐶×𝑁′ is learned 

and multiplied by the vertices to produce a filtered output as shown in (3.1.15). 

  

𝑉𝑒𝑚𝑏
(𝑛′)

=  ∑ 𝐻𝑒𝑚𝑏
(𝑐,𝑛′)

𝑉𝑖𝑛
(𝑐)

+ 𝑏𝐶
𝑐=1     (3.1.15) 

 

𝑉𝑒𝑚𝑏
(𝑛′)

 is column wise stacked up to form the matrix 𝑉𝑒𝑚𝑏. Softmax function is used 

for normalization of values of 𝑉𝑒𝑚𝑏 as in (3.1.16). Equations (3.1.17) and (3.1.18) 

show how 𝑉𝑒𝑚𝑏 pools the graph data. 

𝑉𝑒𝑚𝑏
∗ =  𝜎(𝑉𝑒𝑚𝑏)     (3.1.16) 

 

𝑉𝑜𝑢𝑡 =  𝑉𝑒𝑚𝑏
∗𝑇 𝑉𝑖𝑛     (3.1.17) 

 

𝐴𝑜𝑢𝑡 =  𝑉𝑒𝑚𝑏
∗𝑇 𝐴𝑖𝑛𝑉𝑒𝑚𝑏

∗     (3.1.18) 

  

The above equations represent the graph embed pooling defined by Such et al. 

[22] and Dominguez et al. [14]. Figure 3.1.3 illustrates both the graph pooling 

methods used as mutations in architecture selection task. 
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Figure 3.1.3: (a) and (c) show the original 3D mesh graph of chair. (b) shows the 3Dmesh graph 
after Lloyd pooling. (d) shows the 3D mesh graph after Graph embed pooling. It can be inferred 

that graph embed pooling is a dense pooling method. [14] 

 

 

3.2 Architecture Search using Evolutionary Algorithm 

 

This work uses evolutionary algorithms for searching architectures in graph 

convolution neural networks. A set of mutations are defined which the architectures 

can choose to improve their fitness scores and maximize the fitness function. Added 

features of the evolutionary algorithm help in speeding up the architecture search 

while achieving good fitness scores. This section explains in detail the evolutionary 

algorithm and the its features. 
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A. Mutations for Evolutionary Algorithm 

 

For architecture search using evolutionary methods, it is important to define mutations 

that can find improved architectures or hyperparameters that would raise the fitness 

score of the architecture. There are 3 types of mutations: 

 

a. Architectural change mutations: 

These mutations change the architecture of the network by adding or removing 

layers from the previous architecture. These mutations are as follows: 

 

i. Adding / Removing a graph convolution layer: 

 In this mutation a graph convolution layer is added to or removed from a 

randomly chosen position in the current network architecture. While adding, the 

number of output filters of the new convolution layer are randomly chosen from 

[128, 256, 512]. An example mutation is shown in Figure 3.2.1. 

 

 

Figure 3.2.1: Graph convolution layer mutation. 

 

ii. Adding / Removing a fully-connected layer: 

 In this mutation a fully-connected layer is added to or removed from a randomly 

chosen position in the current network architecture. While adding, the number of 

units of the new fully-connected layer is a randomly chosen value x, where x ∈ 

(output_classes,500]. This mutation is shown in Figure 3.2.2. 

 

 

Figure 3.2.2: Fully-connected layer mutation. 
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iii. Adding / Removing a one-by-one graph convolution layer: 

One-by-one convolution were proposed by Lin et al. [48]. These are used to 

alter the size of the channel dimension c of the convolution filters. They also 

require less parameters to change the channel size when compared to the 33 

filter. One-by-one graph convolution is same as the one-by-one normal 

convolution. In this mutation a one-by-one graph convolution layer is added to 

or removed from a randomly chosen position in the current network 

architecture. One-by-one convolution helps in reducing dimensionality in filter 

dimension. While adding, the number of output filters of the new one-by-one 

layer are randomly chosen from [128, 256, 512]. This mutation is shown in 

Figure 3.2.3. 

 

 

Figure 3.2.3: One-by-one graph convolution layer mutation. 

 

 

iv. Adding / Removing a graph attention layer: 

 In this mutation, a graph attention layer is added to or removed from a randomly 

chosen position in the current network architecture. This attention layer is a soft 

attention. It learns attention over the vertices by weighing the vertex features. The 

attention is given by (3.2.1) and applied on the vertices as given in (3.2.2), where 

𝑉is the vertex graph signal, 𝑤 is the vertex feature, 𝛼 is the attention vector and 

𝑉 ∈ ℝ𝐵×𝑁×𝐹 , 𝑤 ∈ ℝ𝐹 , 𝛼 ∈ ℝ𝑁 

 

𝛼 = softmax(𝑉𝑤)    (3.2.1) 

 

𝑉𝑜𝑢𝑡
(𝑛)

= 𝛼𝑛𝑉(𝑛)      (3.2.2) 

 
 While adding, the number of output filters of the new attention layer are 

randomly chosen from [128, 256, 512]. This mutation is shown in Figure 3.2.4. 
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Figure 3.2.4: Graph attention layer mutation. 

 

 

v. Adding / Removing a skip connection: 

 In this mutation, a skip connection path is added or removed between randomly 

chosen graph convolution layers in the current network architecture. This mutation 

is shown in Figure 3.2.5. 

 

 

 Figure 3.2.5: Skip connection mutation. 

 

 

 

b. Graph structure change mutation: 

These mutations are responsible for changing the graph structure to increase the 

receptive field of the filters applied on them. These help in understanding high 

level features in the graphs. These mutations are as follows: 

 

i. Pooling mutation: 

 In this mutation, the graph structure is changed using max pooling defined in 

(3.1.11) and (3.1.12). The pooling ratio is a randomly chosen value x where x ∈  

(0,1]. The pooling layer is added at a randomly chosen position in the current 

network. This mutation is shown in Figure 3.2.6. 

 

 

Figure 3.2.6: Lloyd pooling mutation. 
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ii. Graph embed pooling mutation: 

 In this mutation, the graph structure is changed using graph embed pooling 

defined in (3.1.15) and (3.1.16). The pooled number of vertices is randomly chosen 

from [16,32,64]. The pooling layer is added at a randomly chosen position in the 

current network. This mutation is shown in Figure 3.2.7. 

 

 

Figure 3.2.7: Graph embed pooling mutation. 

 

iii. Reduced max layer: 

Reduce max operation for a matrix/tensor reduces the matrix/tensor to a single 

dimension vector, where each element of the vector is maximum value along 

other dimensions of the matrix/tensor. The reduce max mutation changes the 

graph structure to a linear feature vector. The reduce max layer is added at the 

position before the first fully-connected layer in the current network. There can 

be at max. one reduced-max layer in the network. This mutation is shown in 

Figure 3.2.8. 

 

 

Figure 3.2.8: Reduced max pooling mutation. 

 

 

c. Hyperparameter mutations: 

These mutations change some of the different hyperparameters needed to tune 

the architecture. These mutations are as follows: 

 

i. Learning rate mutations: 

 These mutations change the learning rate parameter in different ways. There 

are three types of learning rate mutations. When the learning rate mutation is 

chosen, a random number of these mutations are chosen and applied to the 

current architecture. They are: 
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• Changing starter learning rate:  

Starter learning rate is the parameter which decides the learning rate of the 

model at the beginning of a model training cycle. In this mutation, the starter 

learning rate is changed from an old value to a value randomly chosen from 

[0.5×old value, 2×old value] 

• Changing learning rate step:  

Learning rate step is the parameter which decides the iteration steps of the 

model training cycle at which learning rate value is decreased. A model 

starts its training cycles with the starter learning rate and after every 

learning rate step cycles, the learning rate value is decreased. In this 

mutation, the learning rate step is changed from the old value old value to 

a value randomly chosen from [0.5×old value, 2×old value] 

• Changing learning rate exponential:  

Learning rate exponential decides the factor by which the learning rate 

value is decreased at the learning rate step in a model training cycle. In this 

mutation, the learning rate exponential is changed from the old value to a 

value randomly chosen from [0.5×old value, 2×old value] 

 

ii. Regularization mutations: 

 

 These mutations change the learning rate parameter in different ways. There 

are two types of regularization mutations. When the regularization mutation is 

chosen, a random number of these mutations are chosen and applied to the 

current architecture. They are: 

• L1 regularization: In this mutation, the L1 regularization is changed from the 

old value old value to a value randomly chosen from [0.5×old value, 2×old 

value] 

• L2 regularization: In this mutation, the L2 regularization is changed from the 

old value old value to a value randomly chosen from [0.5×old value, 2×old 

value] 
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B. Fitness Score 

 

For evaluating the success of a mutation, it is important to define a good metric as the 

fitness score. In the case of architecture search of graph CNNs for classification tasks, 

the accuracy of the network is a good measure to evaluate the performance of the 

architecture. But this accuracy score must be on unforeseen data. Hence, in this case, 

this work uses validation accuracy score as fitness score metric for architecture 

search. 

 

C. Evolutionary Algorithm for Architecture Search 

  

Architecture design is a laborious and resource intensive process. Evolutionary 

algorithms used for its automatic discovery must increase its efficiency of resource 

usage and improve the time taken for reaching optimal performance compared to 

manual architecture design. For this task, this research defines a baseline evolutionary 

algorithm model and then introduces an improved evolutionary algorithm model which 

reduces the training time and converges to better solutions faster.  

 

a. Test-and-Mutate Algorithm (Baseline): 

 

In this algorithm, all the N models in the pool are trained for the first cycle and for every 

next cycle two random models are chosen and compared based on their validation 

accuracy scores. The best model from the chosen two are mutated. Mutation is 

selected randomly from all the available mutations. Mutated model is trained, and its 

validation accuracy is compared with the two chosen models. If it is better than either 

of the two chosen models, the worst model is replaced with the mutated model in the 

pool of models. The flow of this algorithm is shown in the Figure 3.2.9. 
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Figure 3.2.9: The flow diagram of Test-and-Mutate algorithm. 

 

 

b. Test-and-Mutate-with-Probability Algorithm: 

 

This algorithm is an improvement over the baseline Test-and-Mutate baseline 

algorithm described above. The model training and selection process remains same 

as in the baseline algorithm. The mutation process is improved. In the First cycle, all 

mutations are assigned equal selection probabilities. Based on the helpfulness of the 

mutation a constant reward is added or subtracted from the mutation’s selection 

probability. The changed mutation selection probabilities are applied to the mutation 

selection process after every p cycles. The flow of this algorithm is shown in the Figure 

3.2.10. 
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Figure 3.2.10: The flow diagram of Test-and-Mutate-with-Probability algorithm. 

 

 

 

  

D. Features of Evolutionary Algorithm 

  

The improved evolutionary algorithm Test-and-Mutate-with-Probability has some 

salient features that helps the algorithm converge to better graph CNNs architectures. 

These salient features are as follows: 

 

a. Mutation probability:  

In this algorithm, every mutation is assigned a selection probability. All the 

mutations are assigned equal selection probabilities at the training cycle. This 

selection probability changes every cycle a model is replaced with a better model 

architecture.  

 

b. Mutation probability reward: 

Every mutation selection probability is changed by a factor of the mutation 

probability reward. The Mutation probability reward is set value between (0,1). If 

the mutation was successful in replacing an architecture, the mutation probability 
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is multiplied by a factor of (1.0 + reward). If the mutation is unsuccessful in 

replacing an architecture, the mutation probability is multiplied by a factor of (1.0 – 

reward). 

 

c. Mutation probability cycle: 

The mutation selection probability value is changed and stored after every cycle 

based on the replacement of the model architecture. The mutation probability cycle 

decides the update cycle, when the most current mutation selection probabilities 

are used for the process of model selection. The mutation probability cycle is a set 

number to update probabilities in recurring manner. This gives an account for 

history of mutations which have helped in replacing model architecture.  

 

d. Weights loading: 

Loading weights of a model from a similar model trained previously often aids in 

model convergence. It is particularly important in this evolutionary algorithm. In this 

algorithm, the difference between the previous model and mutated model 

architecture is no more than one layer different. Thus, loading the weights of all 

the unchanged layers would help the model in learning faster. The weights are 

loaded according to the type of mutation:  

 

i.  Architectural change mutations:  

 These mutations add or remove a layer in the architecture keeping the 

graph structure unchanged. In these types of mutations, all the layer weights 

except the added or mutated layer are loaded from the previous model 

architecture. In the case of layer removal, all the layer weights except the layer 

before and after removed layer are loaded. 

ii.  Graph structure change mutations: 

 These mutations are pooling type mutations. In these types of 

mutations, all the layer weights before the added pooling layer are loaded from 

the previous model architecture. 

iii.  Hyperparameter mutations: 
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 These mutations just change the hyperparameters without changing 

either the architecture or the graph structure. Hence all the weights from the 

previous model architecture are loaded. 

 

 

 

 

Chapter 4 
 
 

Implementation 
 

 

 

4.1 Datasets 

 

The Weisfeiler-Lehman Graph Kernel proteins datasets [25] are standard datasets for 

graph classification. These are small protein classification datasets that are useful 

testbeds for analysis and comparison of graph-based machine learning algorithms.  

 

A. Enzymes: 

 

ENZYMES is a data set of protein tertiary structures obtained from Borgwardt et 

al.  [21] consisting of 600 enzymes from the BRENDA enzyme database [15]. In this 

case the task is to correctly assign each enzyme to one of the six op-level classes. 

 

B. MUTAG: 

 

MUTAG [24] is a data set of 188 mutagenic aromatic and heteroaromatic nitro 

compounds labeled according to whether they have a mutagenic effect on the Gram-

negative bacterium Salmonella typhimurium. 
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Properties of these protein graph datasets are summarized in Table 1 below. 

 

Table 4.1: Summary of protein datasets to be used in this thesis. 

 ENZYMES MUTAG 

# Graphs 600 188 

Mean |V| 32.63 17.93 

Mean |E| 62.14 19.79 

# Classes 6 2 

# Vertex labels 3 7 

# Edge labels - 11 

 
 

 
 

4.2 Implementation 

 

Implementing an evolutionary search algorithm requires plentiful CPU and GPU 

resource time. Even for small classification tasks, training graph CNNs is a GPU-

intensive and time intensive task. Also, given the small size of these protein datasets, 

the reporting method followed is a standard 10-fold cross validation based aggregated 

accuracy score. The implementation details of the evolutionary algorithm are 

explained in this section. 

 

A. Basic Implementation: 

 

The basic implementation of evolutionary algorithm is simple. The experiment is 

started with set number of model architectures N and set number of total cycles C. N 

is kept constant for both MUTAG and Enzymes dataset to 10 models. C is 40 for 

MUTAG and is 250 for Enzymes. Other hyperparameters are also initialized to set 

values. For the first cycle, N new models of weak classifiers (weak architectures) are 

created similar to Real et al. [17]. In this case the weak classifiers are made up of two 

layers: random fully-connected layer and output classes based fully-connected layer. 

After creation, in the first cycle, the weak classifiers are trained.  
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 Model training is done using 10-fold cross-validation. The data is divided into a 

train: validation split of 90:10. Each model is trained for a set number of iterations and 

validation accuracy score is calculated after the iterations are finished. This is the 

validation accuracy for that fold. This is repeated for 10 independent folds and the 

mean validation accuracy is calculated. This mean validation accuracy is the assigned 

fitness score for the model.  

 

B. Parallel Implementation: 

 

The basic implementation is time consuming and GPU-intensive. To implement the 

evolutionary search algorithm in GPU-constrained environment, it was necessary to 

perform parallelization of the algorithm. All the experiments were performed using only 

2 Nvidia Tesla P100 GPUs with 12 GB capacity each. Initial architectures are very 

simple and do not require full capacity of the GPU. Also, given the small size of the 

datasets, complex architectures would also make optimal use of the GPU space while 

running a single fold at a time.  

 To avoid wastage of GPU space and to speed up the training process, this 

work implements a parallel version of 10-fold cross validation with specified number 

of folds running parallelly. This is possible as each fold is independent from any other 

fold and fold data indices can be precomputed easily. The python ‘multiprocessing’ 

library [45] helps in parallelization of the code. With this parallel implementation, the 

training time speed up achieved is directly proportional to the number of parallel folds 

running simultaneously. 

 

C. Saving and Loading Best model: 

 

With increase in complexity of the architectures, the models start fitting the data and 

that is reflected in lower loss values. All these models are trained for certain preset 

value of iterations and validated on validation set. With complex models, it is observed 

the loss value attains a low point at some iteration of the fold and then explodes to a 

very high value. This is called loss explosion. This happens because the learning rate 

is too high. 
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 But in our case of 10-fold cross validation, loss explosion iteration is different 

for every fold. For some folds, it may not occur at all. In others, it may occur twice. 

This problem is illustrated in Figure 4.2.1 which is a tensorboard snippet of 10 folds of 

a single model architecture.  

 

 

 

Figure 4.2.1: Loss explosion within training of a fold of an architecture. 

 

 

 In such a case, calculating validation score after a preset number of iterations 

seem counterintuitive as the models, even after fitting the data, may have their training 

loss explode and result into a poor validation accuracy score for that particular fold. 

Hence, instead of calculating the score based on the model of a preset iteration, this 

work incorporates a method of saving the best model based on its training loss value. 

After the completion of the preset iterations, this best model is loaded, and validation 

accuracy score is calculated for that particular fold’s model. This method may not 

always give the best validation score as the model is saved on basis of lower training 

loss value. Lower training loss value may result in overfitting and degrading the 
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performance on validation set. But this method reduces hyperparameters by removing 

the need to set the right number of training iterations.  
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Chapter 5 
 
 

Results and Analysis 
 

 

 

5.1 Results 

 

A. Comparisons with Other methods: 

 

In this work, experiments were done on the protein graph structure datasets of 

Enzymes and Mutag. The scores obtained after evolution were able to beat the state-

of-the-art accuracy score on Mutag dataset and got comparable to state of the art 

accuracy score on Enzymes dataset. Table 5.1.1 shows the accuracy scores of 

different methods on these two datasets. It must be noted that this work is based on 

Dominguez et. al. [14] and Such et. al. [5, 22]. And this work beats the accuracy scores 

posted by their methods on these two datasets.  
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Table 5.1.1: 10-fold cross validation accuracy score comparisons between different methods. 

 MUTAG ENZYMES 

   

PATCHY-SAN [18] 92.63% - 

Deep WL [4] 87.44% 53.43% 

Donini et al. [20] 93.00% - 

structure2vec [23] 88.28% 61.10% 

WL [25] 83.78% 59.05% 

WL-OA [20] 84.5% 59.90% 

Morris et al. [16] 87.2% 61.80% 

ECC [12] 89.44% 53.50% 

Manual method 98.42% 53.00% 

Test-and-Mutate (baseline) 100.00%1 48.33% 

Test-and-Mutate-with-Probability 100.00%1 55.50% 

 

 

 Figure 5.1.1 shows the evolution of models over cycles for both, Enzymes and 

Mutag dataset. The experiments shown in Figure 5.1.1 achieve best results using 

evolutionary approach for the respective datasets. 

                                                      
1 Skeptical to report 100% accuracy score. But given the automated evolutionary algorithm, issue seems to be with 

dataset. Hence evaluation and analysis done mostly on other comparatively difficult dataset. Other manual methods 

also getting close to 100 % accuracy. Also, note, this is maximum accuracy of N models, not mean accuracy.  
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(a) 

 
(b) 

Figure 5.1.1: Model evolution over cycles for (a) Mutag dataset and (b) Enzymes dataset. 
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B. Comparisons with Manual method: 

 

The experiments based on evolutionary algorithm clearly top the results to that of the 

manual experiments. Also, these experiments have significantly less running time than 

that taken by manual designers to design specific architectures and tune 

hyperparameters to achieve optimal performance. Both these results are summarized 

in Table 5.1.2. 

 

Table 5.1.2: Comparison of running times and best accuracy scores between manual and 
evolutionary approaches. 

Method 
MUTAG Enzymes 

Accuracy Time Accuracy Time 

Manual 98.42% 5 days 53.00% 18 days 

Evolutionary 100.00% 20 mins 55.50% 9 days 

 

 

C. Model Architectures: 

 

Evolutionary algorithms, unlike manual design methods, provide a pool of model 

architectures which have undergone various mutations and hyperparameter tunings 

to achieve close to optimal performance. This section provides certain model 

architectures found in the pool of models, after the experiment was finished for a 

dataset. 

a.  Mutag dataset: 

 For this dataset, the most surprising result was that none of the top models 

contained any type graph convolution layers. Most models had fully-connected 

layers and reduce-max pooling layers. Model architectures yielding top accuracy 

score are shown in Figure 5.1.2. The contrast between manual and evolutionary 

network design is aptly displayed in the figure.  
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Figure 5.1.2: (a) Best architecture designed manually. (b) Best architecture generated by 
evolution. 

 

 

b.  Enzymes dataset:  

 For this dataset, the pool of models had less diversity. Top model architectures 

were tuned for hyperparameters to get comparable accuracy score. This being a 

more complex dataset with more output classes and more input samples, most 

architecture elements are found in these architectures. Graph embed pooling, the 

dense pooling method, is helpful for this dataset and is thus present in one of the 

top architectures. Model architectures yielding top accuracy score are shown in 

Figure 5.1.3. 
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Figure 5.1.3: (a)Best architecture designed manually. (b) Top architectures generated by 
evolution. 

 

 

5.2 Analysis 

 

A. Mutation Probability Analysis: 

 

Mutation probability was an important parameter boosting the performance of the 

evolutionary algorithm. It helped the algorithm converge faster to better model 

architectures with higher validation scores. The variance between validation scores in 

the pool of models reduces with probability. Also, the variance between different 

experiments decreases after introduction of mutation probability.  

 This can be observed in the Figure 5.2.1. It can be seen that high variance 

between scores is present between the experiments with no mutation probabilities (top 

row in Figure 5.2.1). Also, experiments with mutation probabilities (bottom row in 

Figure 5.2.1) achieve higher max and mean scores over time, but they are also running 

for a greater number of cycles. So, for a fair comparison, we compare it with the 
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convergence rate. If we observe the max. and mean accuracy value at 100 cycles, it 

can be easily seen that experiments with mutation probabilities converge to higher 

mean and max. accuracy values. 

 

 

 

Figure 5.2.1: Top row (Fig. (a), (b)) are experiments with no probability associated with mutations 
(baseline algorithm). Bottom row (Fig. (c), (d)) are experiments with probabilities associated with 

mutations. 

 

B. Weight Loading Analysis: 

 

Mutation probability was an important parameter for the evolutionary algorithm. To 

further reduce the converging time, weights of selected layers were loaded from the 

previous architecture, based on the mutation. This helps the current architecture by 

having better initial conditions. This can be observed in the Figures 5.2.2 (a) and (b).  
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 The radical time reduction in achieving top score is easily spotted on comparing 

the two results. Also, weight loading reduces the variance in accuracy scores among 

the pool of models. Thus, weight loading along with mutation probability, is able to 

generate quickly a pool of high performing model architectures with very close 

accuracy scores. 

 

 
(a) 
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(b) 

Figure 5.2.2: This figure emphasizes the importance of weight loading. Fig. (a) is based 
on experiment which involved no weight loading, Fig (b) is based on experiment with weight 

loading. 

 

C. Mutation analysis: 

 

Different mutations play an important role in converging to pool of better model 

architectures. The importance of a mutation changes over time. Adding a fully 

connected layer may be helpful at the start, but over time adding a fully-connected 

layer may prove counter-productive to the manual designer. The same can be said 

with other feature extraction mutations. Figure 5.2.3 shows the change in mutation 

probability over cycles for every mutation in the Enzymes experiment with top results. 

It can be observed that ‘add’ mutations are prominent at the start and ‘remove’ 

mutations are prominent at the end. 

 Pooling gains importance only when the model is complex and has been 

saturated after learning low level features. Pooling helps in reducing the graph 

structure and increases the receptive field helping the model learn higher order 

features. Learning rate and regularization factors are tuned almost all through the 
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training cycles. This shows that this evolutionary process is attaining to a better model 

in a way similar to that of a manual designer. 

 

(a) 

 

(b) 
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(c) 

 

Figure 5.2.3: Evolution of different mutations’ probability over cycles. (a) shows the ‘add’ mutations and 
their probability change over cycles. (b) shows the ‘remove’ mutations and their probability change over 
cycles. (c) shows the pooling and parameter mutations and their change over cycles. All these figures 

show the importance of a mutation within the cycle period. 

 

D. Hyperparameter reduction: 

 

Evolutionary algorithms are more efficient in terms of hyperparameters. The main 

hyperparameters to set for the evolutionary algorithm are:  

i. Total Cycles 

ii. Number of models 

iii. Iterations per fold of training 

iv. Probability reward 

v. Probability cycle 

 

 Other parameters like learning rate and regularization parameters can 

optionally be initialized. While manually designing a model architecture, the 

hyperparameters needed to be considered are: 
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i. Learning rate parameters (starter learning rate, learning rate step, learning 

rate decay) 

ii. Regularization parameters (L1 and L2 regularizations) 

iii. Depth of the architecture (Total number of layers in an architecture) 

iv. Type of layers in the architecture. (convolutional, fully-connected etc.) 

v. Iterations per fold of training 

vi. Layer units for every layer (Size of individual output units in each layer) 

vii. Batch size parameters 

viii. Pooling parameters (pool ratio, pool size, type of pooling) 

 

 It can easily be seen that the evolutionary algorithm drastically reduces the 

number of hyperparameters. This gives two-fold benefits. The evolutionary algorithm 

tunes all the hyperparameter it introduces. The manual effort of choosing as well as 

tuning the hyperparameter is decreased. This gives designers more time to improve 

the underlying theory behind their algorithms whilst being less anxious about 

optimizing the model architectures. 
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Chapter 6 
 
 

Conclusions and Discussions 
 
 
 

6.1 Conclusions 

 

This thesis work shows the feasibility of evolutionary algorithms for graph CNN 

architecture search. This thesis work researches on various evolutionary algorithms 

and provides a suitable and simple evolutionary algorithm to design graph CNN 

architectures. The algorithms described for evolving graph CNN architectures can be 

applied to different datasets and can generate dataset-specific graph CNN 

architectures. It achieves comparable to state-of-the-art accuracy on classification of 

protein graph structures using graph CNN model provided by Petroski Such et al. [22] 

and Dominguez et al. [14].  

 A way to simultaneously tune hyperparameters while performing architecture 

search is presented by the evolutionary algorithm. It easily tops the manually designed 

architectures for protein graph classification using this model of graph CNNs.  

 

6.2 Discussions 

 

Architecture design is a tedious task, one that requires focus and attention to models. 

This algorithm has shown that not only can it build better model architectures, but it 

also can do so in drastically less time. From the architecture search done by the 

algorithm as observed from plot depicting individual mutation probabilities, it can be 

seen that the evolution process is similar to that of a manual designer: ‘add’ mutations 

at the beginning, ‘remove’ mutations at the end, ‘pool’ mutations introduced after 

building complex architectures and tuning learning rate parameter throughout is 

similar to the changes that a human designer would follow.  
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 This algorithm gets rid of inherent biases seen in section 5c for architectures 

generated for Mutag.  Special features like layer specific weight loading and saving 

best model help in faster convergence of the experiment to generate a pool of highly 

skilled architectures. This work provides an efficient solution to automate the task 

architecture design of graph CNNs.  

 

6.3 Future works 

 

This evolutionary algorithm provided in this thesis work is an apt choice for architecture 

search on small datasets in a limited resource environment. This work can be 

extended further. Some possible extensions are: 

• Apply the evolutionary algorithm for CNN architecture search on benchmark 

image datasets. 

• Scale parallel implementation into a full-fledged distributed implementation 

over multiple GPUs to decrease training time and increase speed up. 

• Generate new algorithm that generates architectures by combination of more 

than one architecture. 
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