
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

10-29-2018

A Transparent Square Root Algorithm to Beat Brute Force for A Transparent Square Root Algorithm to Beat Brute Force for

Sufficiently Large Primes of the Form p = 4n + 1 Sufficiently Large Primes of the Form p = 4n + 1

Michael R. Spink

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Spink, Michael R., "A Transparent Square Root Algorithm to Beat Brute Force for Sufficiently Large Primes
of the Form p = 4n + 1" (2018). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9905?utm_source=repository.rit.edu%2Ftheses%2F9905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ROCHESTER INSTITUTE OF TECHNOLOGY
College of Science

School of Mathematical Sciences

A Transparent Square Root Algorithm to Beat Brute
Force for Sufficiently Large Primes of the Form

p = 4n + 1

by

Michael R. Spink

October 29, 2018

Thesis submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

in
APPLIED AND COMPUTATIONAL MATHEMATICS

1 Committee Signature Page

Dr. Manuel Lopez Date
School of Mathematical Sciences, Rochester Institute of Technology
Thesis Advisor

Dr. Anurag Agarwal Date
School of Mathematical Sciences, Rochester Institute of Technology
Committee Member

Dr. James Marengo Date
School of Mathematical Sciences, Rochester Institute of Technology
Committee Member

Dr. Matthew Hoffman Date
School of Mathematical Sciences, Rochester Institute of Technology
Director of the MS program

Michael R. Spink Page i of 60

2 Abstract

Finding square roots in the modular integers is a well known problem that is the basis for many

modern cryptosystems. For primes of the form p = 4n + 3, given C ∈ Z×p , finding solutions to

x2 ≡ C (mod p) is deterministic. For primes of the form p = 4n + 1, no known deterministic

computation exists for determining x given C. Tonelli (later improved by Shanks,) Cipolla, and

Pocklington, among others, found sophisticated algorithms to perform this task. Brute force is a

transparent approach, but offers no insights into the problem. In this thesis, we produce a trans-

parent approach to this problem, visualized using a model built on Symplectic Geometry. One of

the insights from viewing the problem in this way is a conjecture on the distribution of quadratic

residues, which we exploit in our algorithm. Even though the conjecture is not essential to the

workings of the algorithm, it gives it an edge over brute force for large enough primes. Finally, we

follow this with examples of the algorithm’s execution.

Michael R. Spink Page ii of 60

3 Acknowledgements

Firstly, I would like to thank my thesis advisor, Dr. Manuel Lopez for being by my side mathemat-

ically, time wise, and just being someone to talk to about PiRIT or whatever else is the topic of the

day. Without your help there is no way this thesis would be done. I would also like to thank Dr.

Anurag Agarwal and Dr. Jim Marengo for being co-advisers on this thesis and providing me with

an endless number of Putnam problems to whittle away at when wanting to get away from actual

coursework.

Secondly, I would also like to thank the Director of the MS program, Dr. Matthew Hoffman, the

heads of the School of Mathematical Sciences, Dr. Tamas Wiandt and Dr. Matthew Coppenbarger,

the Dean of the College of Science, Dr. Sophia Maggelakis, and the staff members of the School

of Mathematical Sciences, Tina Williams, Ginny Gross, Corinne Teravainen, and Anna Fiorucci

for their support while I was working on this thesis and my work as a whole at RIT. I would also

like to thank Dr. David Barth-Hart and Kesavan Kushalnagar for their support and comments that

helped direct my efforts in various ways.

Most importantly, I want to thank my parents, my siblings, and my family as a whole for always

being there for me. I would also like to thank my friends at home and at RIT, everyone in PiRIT,

and everyone I have forgotten or haven’t found a bucket to dump you in for your support and for

helping me even in the worst of my days.

Thank you.

Michael R. Spink Page iii of 60

Contents

1 Committee Signature Page i

2 Abstract ii

3 Acknowledgements iii

4 Introduction/Preliminaries 1

4.1 The square root problem and number theory . 1

4.2 Relevant Symplectic Geometry . 7

5 Previous Work 11

6 Geometrical solutions to the square root problem 15

6.1 Transforming the problem into symplectic geometry 15

6.2 Using Ω to solve for the square root . 19

6.3 The Front-Loading Conjecture . 23

7 An Algorithm to find the square root 27

7.1 The Preprocessing steps . 28

7.2 Crux of the Algorithm: The Repeated Multiplication 32

7.3 Comparing our algorithm to Brute Force . 35

7.4 Improving the Design of the Algorithm . 40

7.5 Simple working examples of repeated multiplication 44

8 Future work 48

9 Conclusion 49

10 Appendix 1: Code 50

11 References 59

Michael R. Spink Page iv of 60

List of Tables

1 Table of determinants using Ω mod 13 . 21

2 Table of determinants using Ω mod 17 . 21

3 How ρ and ξ is computed for small 4n+ 1 primes 24

4 How the cases of preprocessing partition Z×p . 29

5 Comparing runtimes for 1 (mod 8) primes . 36

6 Comparing runtimes of other primes . 36

7 Comparing iterations for various 4n+ 1 primes 38

8 The runtime effects of just using Euler’s Criterion 40

9 The runtime effects of just using a Collatz approach to preprocessing 41

List of Figures

1 Commutivity diagram for our manifold. 17

2 Illustration that
√

8 ≡ 5 (mod 17) . 20

3 A graph of QR101. 23

4 How ρ is affected as p increases . 25

5 How ξ is affected as p increases . 26

6 How ξ affects ρ . 26

7 The general flow of the algorithm . 28

8 Running 10,000 random trials for p = 73529 to see runtime 35

9 The most time consuming steps of the algorithm 37

10 Running 10,000 random trials for p = 73529 to see iteration count 38

11 Average number of iterations for brute force vs. repeated multiplication 39

Michael R. Spink Page v of 60

List of Symbols and Notation

p Prime number, usually of form p = 4n+ 1

Z×p The group of units mod p, i.e {1, 2, · · · , p− 2, p− 1}

C Potential Quadratic Residue to find the square root of

x Solution to the Square Root Problem, if it exists

λ Shifted Solution to the Square Root Problem, if it exists

QRp, NRp Sets of Quadratic Resides and Quadratic Nonresidues, respectively

|G| cardinality of set or group G.

ord(m) order of element m in Z×p
< α > subgroup generated by element α ∈ G

g Primitive Root for Z×p
a, b Integers in the decomposition of p = a2 + b2

V Vector space in which a symplectic manifold is set

Ω Two form for manifold

Ω̃ Dual mapping for Ω

π Symplectomorphism to create our symplectic manifold

R Table of Determinants for mod p.

“Quadrant” For p = 4n+ 1, each of the interval of integers [1, n][n+ 1, 2n][2n+ 1, 3n][3n+ 1, 4n]

ρ Ratio between Quadratic Residues in Quadrant II to those in Quadrant I

ξ Difference between Quadratic Residues in Quadrant II to those in Quadrant I

Q, s Coefficients in decomposition of p− 1 = Q ∗ 2s

A Set of integers α1 in Z×p such that αQ1 ≡ 1 (mod p)

B Set of integers α2 in Z×p such that αQ2 ≡ −1 (mod p)

yi Perfect integer squares to use in algorithm

χ Representation of the current value being looked at in the algorithm

Ψ Representation of the integer multiple to invert in the algorithm.

κ Boolean representation of the need to compute
√
−1 in the algorithm.

[x] x rounded to the nearest integer

Michael R. Spink Page vi of 60

4 Introduction/Preliminaries

For this thesis we assume a working knowledge of discrete math and basic matrix operations. The

rest of the groundwork for this thesis will be laid out in this section.

4.1 The square root problem and number theory

We begin by defining the problem that we are examining in this thesis.

Definition 1. Square root Problem [16]

Consider Z×p for an odd prime integer p. Solutions to the modular equation

x2 ≡ C (mod p) (1)

for x where x,C ∈ Z×p and C is known, solves the square root problem mod p.

We can equivalently write this as

x ≡
√
C (mod p) (2)

to emphasize the name of the problem.

We also now lay out some basic facts that we will be referencing throughout this thesis.

Definition 2. Quadratic Residue mod p [6, pp. 98]

The variable C in the square root problem is known as a quadratic residue mod p whenever a

solution exists.

We will sometimes call these QRs for short.

Definition 3. Quadratic Non Residues mod p.[6, pp. 98].

Values in Z×p that are not quadratic residues mod p are known as non-residues mod p.

We sometimes call these NRs for short. We can also use the following shorthand when referring

to these values as a set. As will be seen in Theorem 3, only the QR’s form a group, due to a lack

of closure in the NR’s.

Michael R. Spink Page 1 of 60

Definition 4. Sets of Reciprocity [1]

Let p be prime. Then we define the following sets:

QRp = {y ∈ Z×p |∃x ∈ Z×p , x2 ≡ y (mod p)} (3)

NRp = {y ∈ Z×p |∀x ∈ Z×p , x2 6≡ y (mod p)} (4)

We do know the cardinality of these sets.

Theorem 1. Cardinality of the sets of Reciprocity [5, pp 121].

Let p be prime. Then

|QRp| = |NRp| =
p− 1

2
(5)

Proof. The well-known Lagrange’s Theorem (see Theorem 2) implies x2 ≡ C (mod p) has at

most two solutions. If x0 ∈ Z×p is such that x20 ≡ C (mod p), then (−x0)2 ≡ C (mod p). Either

p = 2 and thus Z×2 = {1} or p is odd, thus x0 6= −x0, and it follows that if x2 ≡ C (mod p) has a

solution, then it has exactly two solutions.

Put another way, we can establish the function f : Z×p → Z×p such that f(x) ≡ x2 (mod p)

and note that f is a two-to-one function. The ending of this proof establishes the following result

Lemma 1. Number of solutions to the square root problem

Let p be prime and let x2 ≡ C (mod p) have a solution. Then x2 ≡ C (mod p) has exactly two

solutions.

From this, we know that the sets of Reciprocity partition Z×p .

Corollary 1. Partition of Z×p by sets of Reciprocity.

Let p be prime. Then NRp and QRp partition Z×p

Proof. Clearly by Definition 4 these two sets are disjoint and are subsets of Z×p . Now we note that

|Z×p | = φ(p) = p − 1. Consider NRp

⋃
QRp. Since these two sets have p−1

2
elements, the entire

union must have p− 1 elements. This proves the corollary.

We also can look at the elements of QRp individually in the group. In this discussion, we use

the language of groups without invoking group theory in its entirety. Let us first look at the order

of these elements themselves.

Michael R. Spink Page 2 of 60

Definition 5. Order of an element in a group [9, pp. 105]

Let G be a group and g ∈ G over multiplication with identity e. Then the order of g, denoted

ord(g), is the least integer k such that

gk = e. (6)

When k = |G| in the above definition, we have a special element of a group. We will be using

these quite a bit in this thesis.

Definition 6. Primitive root/Generator mod p [6, pp. 79].

Let p be prime, and G be a group. Then g ∈ G is a primitive root if powers of g generate every

element in G.

We denote by< b > the group of elements generated by b ∈ Z×p [6, pp. 79].We state Lagrange’s

Theorem here, bridging the gap between the order of an element and the order of a group.

Theorem 2. Lagrange’s Theorem [9, pp. 129]

Let G be a group, and g ∈ G. Then ord(g) | |G|

Proof. See [9, pp. 129]

Returning to the discussion of residues, a property of QR’s/NR’s that we will need is as follows:

Theorem 3. Product of Residues [5, pp 124]

Let p be prime and let w, x ∈ QRp and y, z ∈ NRp. Then:

wx ∈ QRp, wy ∈ NRp, yz ∈ QRp (7)

Proof. Let g be a primitive root mod p. Then C ∈ QRp iff C ≡ g2k (mod p) and C ∈ NRp iff

C ≡ g2l+1, with k, l ∈ N. Then the conclusion follows the parity properties of the addition of

natural numbers.

We can also now determine that the Quadratic residues form a group.

Corollary 2. Existence of the Group of Quadratic Residues

Let p be prime. Then QRp forms a subgroup of Z×p over standard multiplication.

Michael R. Spink Page 3 of 60

Proof. Theorem 3 gives us closure over multiplication. Due to the fact that this is over standard

multiplication, 1 will be the identity of the group. Trivially, 1 ∈ QRp. As 1 ∈ QRp and due to

Theorem 3, all QR’s m have inverses m−1 ∈ QRp. Lastly, we are granted associativity, as it is

inherited from the larger group, Z×p .

We can quickly determine if a is a quadratic residue by Euler’s Criterion.

Theorem 4. Euler’s Criterion [6, pp. 68-69]

Let p be a prime, and m ∈ Z×p . m ∈ QRp iff

m
p−1
2 ≡ 1 (mod p) (8)

From here, it is easy to find the quadratic character of specific elements in Z×p . For Example:

Corollary 3. Quadratic Character of −1 [5, pp. 126]

Let p be an odd prime. Then −1 ∈ QRp iff p = 4n+ 1

From this and the closure of QRs, we have the following result.

Corollary 4. Quadratic residue property of 4n+ 1 primes

Let p = 4n+ 1 be prime, and let a ∈ Z×p . a ∈ QRp iff −a ∈ QRp

Similarly, if p = 4n+ 3, a ∈ QRp iff −a ∈ NRp

Alternatively, one may use the Law of Quadratic Reciprocity, the properties of the Legendre

Symbol, and Gauss’ Lemma [6, pp. 68-69,101-103] to determine the quadratic character of an

integer m ∈ Z×p . Often, however, this involves knowing the prime factorization of m, which is a

challenging task. Further, finding the square root of m, if there is one, is more challenging. This is

what we set out to do.

Now, we discuss some known results for specific primes to aid in finding the square root. The set of

prime numbers P can be partitioned into three cases: p = 2, those that are of the form p = 4n+ 1,

and those of the form p = 4n+ 3. The case of p = 2 is uninteresting with regards to this problem.

As the following theorem shows, we will only need to concentrate on on those primes of the form

4n+ 1.

Michael R. Spink Page 4 of 60

Theorem 5. Finding the square root for 4n+ 3 primes [8].

Let p ≡ 3 (mod 4), be prime. The square root, x, of quadratic residue C is:

x ≡ ±C
p+1
4 (mod p) (9)

It is worth noting that either C or −C is a quadratic residue, but not both, in accordance with

Corollary 4

There are similar formulas for increasingly restrictive properties on primes of the form p = 4n+1,

but there is no similarly simple formula in general. Trivially, one could square every value of x

from 1 to p−1
2

, but this is inefficient for large primes. This is the brute-force method for finding the

solution to the square root problem.

Thus, to do better than brute force to solve square root problems, we exploit properties of primes

of the form p = 4n+1 . The two properties that we will be using of these often called Pythagorean

Primes are as follows:

Theorem 6. Pythagorean property of 4n+ 1 primes [14]

Let p = 4n+1 be prime. Then we can write p uniquely as the sum of two squares over the integers,

that is

p = a2 + b2 (10)

This is called the Pythagorean Property of 4n+ 1 primes because it resembles the Pythagorean

Theorem.Fermat was the first to conjecture about this, and Euler proved it.

Don Zagier came up with a method to find this decomposition of p, which we have implemented

in Section 10. We call this the Zagier Method henceforth. Shailesh A Shirali expanded on this

idea, and developed an algorithm to constructively find p = a2 + b2. Biman Bagchi proved that the

algorithm always terminates, yielding the answer. [14]

Corollary 4 indicates that −1 ∈ QRp for p = 4n + 1. Now, as a result of Theorem 6, we will

have concrete expressions for
√
−1 (mod p) if p = 4n + 1. The Zagier Method will provide the

integers a and b needed and the Extended Euclidean Algorithm will let us efficiently compute the

expression for
√
−1 given by the following Lemma.

Michael R. Spink Page 5 of 60

Lemma 2. Finding
√
−1 (mod p)

Given prime p and integers a, b such that p = a2 + b2. Then

√
−1 ≡ ab−1 (mod p) (11)

and
√
−1 ≡ a−1b (mod p) (12)

Proof. Modulo p, we have

a2 + b2 ≡ 0 → a2 ≡ −b2 (13)

Consider ab−1 When we square this, we get

(ab−1)2 ≡ a2(b2)−1 ≡ −b2(b2)−1 ≡ −1 (14)

The proof for a−1b is similar.

Ideally, the general solution the square root problem would come from a solution to the discrete

log problem. Since this is unlikely due to the “difficult” nature of the problem - it is in the com-

plexity class NP, among other classes, while the decision portion of the problem is indeed in class

P, due to the ease of using Euler’s Criterion [6, pp. 68-69]. We are left with a brute force approach

to find the numerical answer to the square root problem, or a less than transparent approach like

Tonelli-Shanks’, Cipolla’s, or Pocklington’s Algorithms. We say this as these methods rely on the

Discrete Logarithm (Tonelli-Shanks) or Quadratic extensions (the other two) [2]. We discuss these

three algorithms in more detail in Section 5.

We approach the problem using
√
−1 (mod p) determined above in addition to the distribution

of quadratic residues mod p. First, let’s examine this distribution in geometric terms, specifically,

on the surface of a torus.

Michael R. Spink Page 6 of 60

4.2 Relevant Symplectic Geometry

For our problem, we need to build a Symplectic Manifold. We pull everything in this section and

follow the conventions of Silva [3] unless otherwise stated. Our geometry will not be couched in

differential notation. Darboux’s Theorem will account for the difference in construction, avoiding

any discrepancy. To this end, we note only what we see as paramount in creating a symplectic

manifold.

We start with a given vector space V . In our case, V will be R2. A symplectic manifold is

based on a symplectic vector space, which is based on a skew symmetric bilinear map. We we call

this map Ω : V × V → R

Definition 7. Bilinear Map [3]

Consider map Γ : X×Y → Z, and let Γx0 = Γ(x0, y), where x0 is fixed and Γy0 = Γ(x, y0) where

y0 is fixed. Γ is bilinear if Γx0 is linear for every x0 ∈ X and Γy0 is linear for every y0 ∈ Y .

Definition 8. Skew Symmetric Map [3]

Map Γ : X ×X → Z is skew symmetric if

Γ(u, v) = −Γ(v, u) ∀u, v ∈ X ×X (15)

In our case, Ω will turn out to be

Ω(u, v) = det

−~u−
−~v−

 = ~uT

 0 1

−1 0

~v (16)

and we see that

Ω(

a
b

 ,

c
d

) =
(
a b

) 0 1

−1 0

c
d

 =
(
a b

) d

−c

 = ad− bc = det

a b

c d

 (17)

Further, note that this map is linear by the properties of determinant and matrices, so our Ω will be

bilinear. We will reference this later.

We also want Ω to be symplectic. To do so we need the concept of a Dual Map.

Michael R. Spink Page 7 of 60

Definition 9. Dual Map [3]

Let Ω : V ×V → R be a skew symmetric bilinear map. Then Ω̃, called a dual map, is the mapping

from V into its dual, denoted V ∗. Further, this map is

Ω̃(~u) = Ω(~u,) ∈ Hom(V,R) (18)

Since Ω’s co domain is R, the dual of V are the functionals that map into R. Following our

example, one could define Ω̃ as follows.

Ω̃(~u) = det

u1 u2

x y

 (19)

We now put this map into the vector space properly.

Definition 10. Symplectic Map/ Symplectic Linear Structure/Symplectic Vector Space [3]

Let Γ : V ×V → R be a skew symmetric bilinear map. Γ is symplectic, if Γ̃ : V → V ∗ is bijective.

We call (Ω, V) a symplectic vector space, and Ω a symplectic linear structure on V .

This does bring up a property of Symplectic Vector Spaces that will confirm our use of V = R2

Theorem 7. Even degree Manfolds in Symplectic Linear Structures [3]

Let Ω : V × V → R be a symplectic linear structure on V . Then dim(V) is even.

We can relate two symplectic vector spaces, or a symplectic vector space with itself with a

Symplectomorphism.

Definition 11. Symplectomorphism [3]

Let (V,Ω) and (V ′,Ω′) be symplectic vector spaces in vector spaces V, V ′. These two spaces are

symplectomorphic if there exists a linear mapping π : V → V ′, the symplectomorphism, such that

Ω′(π(x)) = Ω(x)∀x ∈ V (20)

Now that we can create these spaces to be symplectic, let us now put things in this space.

Michael R. Spink Page 8 of 60

Definition 12. Manifold [18]

A Manifold M is a topological space that is locally Euclidean at every point in the space.

This means that for manifold M and every x ∈ M there is an open neighborhood U and a

bijective homeomorphism h : U → V where V is a neighborhood of the origin in R

We want the manifold to maintain the properties of the original symplectic vector space . Rel-

evantly to us, we want to ensure that the manifold maintains the local topology of R2 as we are

using V = R2.

Definition 13. Symplectic Manifold [3]

A Manifold M in space V , symplectically paired with 2-form Ω is a Symplectic Manifold if at

every point p on the manifold, there corresponds a tangental plane, denoted TpM , and on this

tangental plane the map Ωp is a symplectic linear structure in V . We denote the manifold (M,Ω)

For our purposes, we want all of these Ωp = Ω to carry out the geometric interpretation of the

square root problem that we will create in Section 6.1. Darboux’s Theorem will allow us to view

the answer to one square root problem in relation to other square root problems for the same prime.

We present this theorem without differential notation.

Theorem 8. Darboux’s Theorem [3]

Let (M2n,Ω) be a symplectic manifold. For every point in the manifold, there is an open neigh-

borhood diffeomorphic to an open neighborhood of the origin in R2n and every pair of points on

the manifold have diffeomorphic open neighborhoods.

The standard differential 2-form on R2n is

Ω0 =
n∑
j=1

dxj ∧ dyj[12] (21)

and Darboux’s Theorem implies that for every point on the manifold (M2n,Ω), there exists a

coordinate chart φ such that

φ∗Ω0 = Ω. (22)

This φ helps M2n keep the smoothness of V . [12].

Michael R. Spink Page 9 of 60

This theorem implies that every point on the manifold behaves just like every other point on

the manifold. This gives validity to Brute Force being used as an approach to the answer the

square root problem. At some points, namely those corresponding to where C is a perfect integer

square, the answer to the square root problem is readily available by arithmetic. However, this is a

relatively few number of points compared to the entirety of the torus. Thus, our approach is to go

point to point to gather enough global information to be able to trace back from one of these points

to the solution of our given square root problem. As we will see, the important question is what

portion of this global information is valuable to obtain.

Michael R. Spink Page 10 of 60

5 Previous Work

In this section, we focus mainly on the history on the square root problem and relevant related

topics, instead of focusing on symplectic geometry. We used this geometry as it is common to

present the addition and multiplication tables for Zp as embedded in a torus. Further, the com-

panion matrix that we will use to translate the square root problem into this context requires us

to solve det(A − λI), and later det(A + λI), provides us with a natural skew symmetric 2-form,

which segues nicely into using this geometry. More knowledge about symplectic geometry can be

found in [3].

Let us return to the square root problem, which falls into a well developed area of number theory

known as quadratic reciprocity. Many of the results, however, strictly address whether of not C is

a quadratic residue mod p. This is how the Legendre and Jacobi symbols are defined [5, pp. 123].

For example:

Theorem 9. [5, pp. 128] Quadratic Character of 2

2 is a Quadratic residue mod p iff p = 8n+ 1 or p = 8n+ 7.

The Law of Quadratic Reciprocity is also extremely useful in this regard.

Theorem 10. The Law of Quadratic reciprocity [5, pp. 130-131].

Let p and q be distinct odd primes. Then

(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 (23)

where (
p

q

)
=

1, p ∈ QRq

−1, otherwise
(24)

A considerable amount of work deals with the distribution of the quadratic residues as a whole.

An example of this work is on consecutive values in Z×p . Walum cites M. Dunton for the following:

Michael R. Spink Page 11 of 60

Theorem 11. Small Consecutive QR result [17]

Let p ≥ 11 be prime. Then Z×p has a q ∈ QRp > 0 such that q + 1 ∈ QRp

Walum extends from just QR’s to kth power residues [17]. Further, for a prime p, there are

known formulas for the number of sequences of QR, followed by QR, sequences of QR, followed

by NR, sequences of NR followed by QR, and lastly, sequences of NR followed by NR, all ap-

proximately p
4

[7]. Note that these cover the entirety of Z×p . There are also upper bounds found

by Davenport for the number of sequences of QR,QR,QR and NR,NR,NR [7]. Finally, Per-

alta cites Hudson for showing that the sequences of QR,QR,NR,QR and QR,NR,QR,QR is

nonzero for large primes [7]. Peralta worked to try to generalize these results [7].

Another body of work is into finding the least NR mod p. Trivially the least QR mod p is 1. Gauss

in 1798 bounded the least NR by the following:

Theorem 12. Gauss’ upper bound for the least Nonresidue modulo p. [7]

Let p = 8n+ 1 be prime. Then the least nonresidue mod p is less than or equal to 2
√
p+ 1

However, this bound can be improved. Peralta cites Burgess for one such bound [7]. It is pos-

sible that the bound is 3(ln p)2

2
, however, this is dependent on the Generalized Reimann Hypothesis

[10].

There are three well publicized algorithms that aid us in solving the square root problem. The first

relies on the discrete log problem, known as the Tonelli-Shanks Algorithm [2], and the second two

rely on implicit quadratic extensions, known as Cipolla’s Algorithm and Pocklington’s Algorithm

[2]. We begin with the first of these, as it is the most well known. Tonelli-shanks relies on finding

an i such that for an integer t such that

t(2
i) ≡ 1 (mod p)[15] (25)

In trying to solve Equation 1, this t is initalized to xQ (mod p), if we decompose p-1 as such:

p− 1 = Q ∗ 2s (26)

Michael R. Spink Page 12 of 60

Often, however, this initialization is indeed 1, and we can easily find the square root. Indeed,

Turner proves that this initialization immediately works in 2
3

of cases [16]. This relies on a proof

that Q many elements satisfy

xQ ≡ 1 (mod p) (27)

for 4n+1 primes. Turner presents this proof in a probabilistic sense [16]. We will expand on this

with an alternative proof in Section 7.1. Further, [15] presents the runtime of this algorithm as an

argument in terms of the amount of multiplications. This will not be our way to assess runtime due

to the difficulty to arithmetically determine how long the algorithm will run. See Section 7.4 for

more information. Note however, the fact that finding this i can be difficult to compute by hand,

as well as computing large powers of x. Further, there are primes of specific forms that Tonelli-

Shanks can be considerably slower, This is where we want to improve on this approach.

Cipolla in our view further lessens this transparency. In his attempt to solve Equation 1 do so, it

finds a t such that

t2 − a ∈ NRp (28)

(or t2−a ≡ 0 (mod p)), and after doing so, performing arithmetic to find the square root [15]. This

approach loses a few things: the first is decidability. A precondition for Cipolla is that x ∈ QRp.

The second is that it appears that there is no good strategy to picking t other than brute force

and repeatedly computing the Legendre Symbol [15]. We hope to fix both of these things with

our algorithm in Section 7 Once again, [15] computes the runtime of this algorithm in terms of

modular multiplication.

Lastly, we touch on Pocklington’s algorithm. Pocklington focuses mainly on primes of the form

8n + 1, as they use the following result to make things easier in the event we have a prime of the

form 4n+ 1:

Michael R. Spink Page 13 of 60

Theorem 13. Solution to the square root problem for 8n+ 5 primes [8]

Let p = 8n+ 5 be prime. Then if C2n+1 ≡ 1 (mod p),

x ≡ ±Cn+1 (mod p) (29)

Otherwise

x ≡ (4C)n+1

2
or

p+ (4C)n+1

2
(30)

depending on the parity of (4C)n+1

If p = 4n + 3, Pocklington uses Theorem 9. So if p = 8n + 1, Pocklington finds constants

α1, β1 such that

α2
1 + Cβ2

1 ∈ NRp[8] (31)

From there, Pocklington iterates on a two recurrence relations for α, β:

αn =
(α1 + β1

√
−C)n + (α1 − β1

√
−C)n

2
(32)

βn =
(α1 + β1

√
−C)n − (α1 − β1

√
−C)n

2
√
−C

(33)

and performs some arithmetic once αk ≡ 0. We find that this is further removed from Cipolla

and has the same problems that Cipolla did: decidability and transparency. The recurrence relations

indeed look daunting at a glance. However, this does give us a simple way to handle some of the

4n+ 1 primes [8].

There have been other algorithms to find the square root. For example, in [13] uses ideas from

Elliptic curves to find an algorithm that runs inO(log9p), which is faster than brute force, and [11]

shows that methods can be derived from continued fractions. We do not emphasize Elliptic curves

here, which are outside the purview of knowledge that we view as “basic” relative to this problem,

furthering this issue of transparency.

We now begin deriving our algorithm from ideas that will help us understand the difficulty of

improving on the brute force approach.

Michael R. Spink Page 14 of 60

6 Geometrical solutions to the square root problem

In this section, we build a useful symplectic manifold that will allow us to look at the square root

problem in a non number theoretic way. The Ω in this manifold is then used to attempt to find

a robust solution to the square root problem. Our approach is to gather global information on

the manifold help solve Equation 1, rather than the indiscriminate approach to the manifold used

by brute force. Our algorithm, discussed in Section 7, will benefit if a conjecture we discover

from looking at the manifold in this manner is true. We call this conjecture the Front-Loading

Conjecture. As will be seen, our algorithm will terminate successfully regardless of truth of the

conjecture.

6.1 Transforming the problem into symplectic geometry

Let p be an odd prime and consider Equation 1: Consider shifting the problem by simply letting

x = λ− 1:

(λ− 1)2 ≡ C (mod p) (34)

This expands to

λ2 − 2λ− C + 1 = λ(λ− 2)− (C − 1) ≡ 0 (mod p) (35)

so a companion matrix A for this polynomial is

A =

2 C − 1

1 0

 (36)

Note however how the characteristic and minimal polynomials of this is the same as the expanded

form of the problem. Since we want to solve det(A − λI) ≡ 0 (mod p) for this matrix, we want

to create a symplectic manifold that uses the determinant as the skew symmetric 2-form.

Michael R. Spink Page 15 of 60

To build this manifold, we begin with a smooth vector space, V = R2. Note that dim(R2) = 2,

which satisfies Theorem 7. Keep in mind that we will be using the integer lattice over this space in

due time. Our basis sets will be as follows:

{ui} =


1

0

 ∈ V
 (37)

{vi} =


0

1

 ∈ V
 (38)

We now build our bilinear map as in Equation 16.

Ω(~u,~v) = det

−~u−
−~v−

 . (39)

As shown in Equation 17, this choice of Ω is skew symmetric. Based on the properties of the

determinant, this Ω is bilinear, or more simply, linear in R. Further, note how the output of Ω is

real valued by the definition of the matrix determinant. Now, fix

~u =

u1
u2

 (40)

Then to keep Ω̃ similar to that of Ω, we define

Ω̃(~u) = det

u1 u2

x y

 (41)

where x and y will be determined when something is plugged into this determinant function. Note

that is in the dual of R2, as u determines the top row of this array.

Michael R. Spink Page 16 of 60

For example, let ~u =

1

2

, then

Ω̃(~u) = det

1 2

x y

 (42)

and

Ω̃(~u)[

1

3

] = det

1 2

1 3

 = 1 ∈ R (43)

We denote the input of Ω̃ in square brackets. We know that this output is bijectively related to

the choice of x and y. This means that (V,Ω) is a symplectic vector space. Now, we just need a

manifold that has R2’s smoothness. To do this, we will use a symplectomorphism. Let V ′ = V.

Consider π : V × V → V ′ × V ′

π(a, b) = π(c, d) if p|(a− c) and p|(b− c) (44)

This creates an equivalence relation R on V × V . Let Ω′ = Ω on these equivalence classes. We

have gone from V ×V to V ′×V ′ to R.We can also illustrate this (and other symplectomorphisms)

by the commutivity diagram in Figure 1.

R
V × V

V ′ × V ′

Π
Ω′ on the equivalency

classes in V ′ × V ′

Ω

Figure 1: Commutivity diagram for our manifold.

Michael R. Spink Page 17 of 60

In essence, we are taking V and creating a cylinder out of it in “both” directions. Applied to a

specific prime, this will turn into a representation of R, or in terms of the integer lattice, Zp. This

torus will be the manifold that we will be working on. This is also the classical geometric picture

of the “donut” torus, yet made out of the real plane. This torus, combined with Ω, will be our

symplectic manifold. Since this manifold maintains the properties of its underlying vector space,

this torus remains smooth. Thus, tangential planes exist at all points on this plane. Thus, This

manifold is symplectic. Note that we only care about the integer lattice on the torus. If there exists

a tangental plane at all real points on the torus, then clearly there is a tangental plane at every point

on the integer lattice on the torus.

Now that we have our torus and have shifted our problem, we look at what steps to take in our

attempts to solve the square root problem. We can change the prime p to determine the specific

manifold (and the points that are in equivalence classes), the value of C (the specific problem to

solve), and the potential solution to the problem, λ. For us, fix p to fix the specific manifold to work

with. This leaves us with (C, λ) as points on our torus. Pick an arbitrary point on the torus, and

call it the origin. Let the C axis rotate counterclockwise around the torus from the origin. Since C

are the problem to solve, C will range from 1 to p− 1 Let the λ axis rotate around the “center” of

the torus. Since x and −x are both solutions if one is, λ will range from 1 to p−1
2
− 1. With this

in mind, we have all possibilities for all of the square root problems. Those that fit certain criteria

(to be discussed) are solutions to the square root problem. Since there are p−1
2

quadratic residues,

there will be this many points that fit this criteria.

Michael R. Spink Page 18 of 60

6.2 Using Ω to solve for the square root

We will be finding the square root through a few related ideas here. First, we will be using Ω

directly to find if a solution is correct. We then holistically look at the entire torus in this lens to

improve on the brute force method.

Let A =

2 C − 1

1 0

 as described above. If we fix C and let it be a quadratic resiude, we

want to find where det(A − λI) ≡ 0 (mod p). That is, this determinant is a multiple of p. For

example, mod 13, say we want to find the square root of 3. ThusA =

2 2

1 0

 Consider the matrix

A =

2− 5 2

1 0− 5

. The determinant of this matrix is 13, which is a multiple of 13. Since this

A− λI has been shifted at the outset of the problem (see equation 34), we have that x+ 1 = 5, so

x = 4. Indeed, 42 ≡ 3 (mod 13). Notice how this also works if you look for λ = 10, or x = 9.

To make this problem easy to compute by hand, we can convert the determinant into an similar

problem about finding the area of the parallelogram between the vectors of the columns of A. Begin

with A, so that the parallelogram in question is bounded between

2

1

 and

C − 1

0

 . Shift the

first of these vectors to the right by 1 at each iteration, and the second of these vectors up by 1 at

each iteration. We are now shifting the vectors in question up and to the right. Due to this shift,

we are looking at det(A + λI) ≡ 0 (mod p) instead of the traditional det(A − λI) ≡ 0. This is

valid to due the fact that we are working in the modular integers. We do this for the convenience

of arithmetic and to keep the picture in Quadrant I of our vector space, R2. Due to this shift, we

similarly shift our solution to x = λ+ 1 This may make the square root easy to identify, however,

this is still infeasible to use for large primes, as one would still have to scan though all possible

areas to find the one that works. Though, perhaps the use of Pick’s Theorem would make things

easier to compute by hand. We can animate this in Geogebra. Figure 2 illustrates that
√

8 = 5

(mod 17). We identify λ = 4, so x = 5. The figure also shows the original columns of A. See

https://youtu.be/61SjGAkMvKY for a sample run through of these areas. Notice how

λ = 3 corresponds to the mod 13 case we mentioned above.

Michael R. Spink Page 19 of 60

https://youtu.be/61SjGAkMvKY

Figure 2: Illustration that
√

8 ≡ 5 (mod 17)

While all of the points on the torus look locally identical via Theorem 8, we can solve a specific

square root problem this way. Thus we want to look at the torus as a whole, rather than around

one rotation about the torus. This is the benefit of hosting all possible problem and solution on the

torus. which says that every point on We show the table for all possible square root problems mod

13 and 17 below in Tables 1 and 2. Do note that this shows values of C, not C − 1.

From this table, we see a few trends. Firstly, we see that since these are 4n+1 primes, Theorem

4 holds. Thus we can restrict C to just run from 1 to p−1
2

Second, the top left of Table 2 is Table

1. In other words, as p → ∞, this table just builds on the largest prime not exceeding p, which

recursively builds on smaller primes all the way down to easily computable values.

We can represent these tables as a system of recurrence relations. Let the table be R and Ri,j is the

value in the ith row from the top and the jth column from the left. The top left entry of the table is

R11.


δ1 = 3, R1,1 = 0

R(i+1),j = Ri,j + δi, Ri,(j+1) = Ri,j − 1

δi = δi−1 + 2

(45)

Michael R. Spink Page 20 of 60

Values of λ
0 1 2 3 4 5

Values of C

1 0 3 8 15 24 35
2 -1 2 7 14 23 34
3 -2 1 6 13 22 33
4 -3 0 5 12 21 32
5 -4 -1 4 11 20 31
6 -5 -2 3 10 19 30
7 -6 -3 2 9 18 29
8 -7 -4 1 8 17 28
9 -8 -5 0 7 16 27

10 -9 -6 -1 6 15 26
11 -10 -7 -2 5 14 25
12 -11 -8 -3 4 13 24

Table 1: Table of determinants using Ω mod 13

Values of λ
0 1 2 3 4 5 6 7

Values of C

1 0 3 8 15 24 35 48 63
2 -1 2 7 14 23 34 47 62
3 -2 1 6 13 22 33 46 61
4 -3 0 5 12 21 32 45 60
5 -4 -1 4 11 20 31 44 59
6 -5 -2 3 10 19 30 43 58
7 -6 -3 2 9 18 29 42 57
8 -7 -4 1 8 17 28 41 56
9 -8 -5 0 7 16 27 40 55

10 -9 -6 -1 6 15 26 39 54
11 -10 -7 -2 5 14 25 38 53
12 -11 -8 -3 4 13 24 37 52
13 -12 -9 -4 3 12 23 36 51
14 -13 -10 -5 2 11 22 35 50
15 -14 -11 -6 1 10 21 34 49
16 -15 -12 -7 0 9 20 33 48

Table 2: Table of determinants using Ω mod 17

Michael R. Spink Page 21 of 60

We see from this that the entire table can be generated from the top left entry. Looking exclu-

sively at the top row, we can generate this top row more succinctly by combining these recurrences:

an = an−1 + (2(n− 1) + 3) = an−1 + (2n+ 1), a0 = 0 (46)

When we solve this recurrence, we get

an = n(n+ 2) = n2 + 2n. (47)

If we want to go down to row C to find a multiple of p, we see that

kp+ C − 1 = an. (48)

So

n2 + 2n− (kp+ C − 1) = 0 (49)

Taking modulo p, we have returned to the original problem of solving a quadratic quickly, now

specifically

n2 + 2n− (C − 1) ≡ 0 (mod p), (50)

which is what we were trying to avoid. Notice how this matches Equation 35. Thus, let’s

restrict this idea to the primes of the form p = 4n + 1 to try to take advantage of the symmetry

of Z×p . This will form the basis of the Front-Loading Conjecture and the Repeated Multiplication

portion of our algorithm.

Michael R. Spink Page 22 of 60

6.3 The Front-Loading Conjecture

Let us now focus on 4n + 1 primes and return to examining Figures 1 and 2. The other thing of

note is that the the bolded answers seem to be concentrated in the top and bottom of the chart.

Since the rows of the table are concerned with the quadratic residues, it appears that the quadratic

residues mod p are biased toward these ends of Zp.

We now make this more concrete and state this as a principal idea of this thesis:

Conjecture 1. The Front-Loading Conjecture.

Let p = 4n + 1 be prime. We partition Z×p into four distinct regions, from [1, n], [n + 1, 2n],

[2n + 1, 3n],[3n + 1, 4n], respectively called quadrants I,II,III, IV. Furthermore, we call the union

of quadrants I, IV the “RICH” regions, and the union of quadrants II and III the “POOR” regions.

Then there are more quadratic residues in the RICH regions than the POOR ones.

Note that this is conjecture. However, we strongly believe it to be true. We present a heuristic

argument below.

We illustrate this point with a few examples. Firstly, we show that this does not hold for primes

of the form p = 4n+3, even taking Corollary 4 into account. Take p = 19 = 4∗4+3 for example.

By Theorem 1, there are 9 QR’s. Creating a list of them yields 1, 4, 5, 6, 7, 9, 11, 16, 17. Put into

their quadrants, the respective counts is that are 2 QR’s in Quadrant I, 3 QR’s in Quadrant II, 2

QR’s in Quadrant III, and 2 QR’s in Quadrant 4, contradicting the claim.

Now we look at p = 17 = 4 ∗ 4 + 1, and create the same list. The QRs are 1,2,4,8,9,13,15,16.

Since n = 4, there are 3 QR’s in Quadrant I, 1 in Quadrant II, 1 in Quadrant 2, and 3 in Quadrant

IV. Graphically, we can illustrate this for p = 101 in Figure 3. The QR count is below the image.

Figure 3: A graph of QR101.

However, as p increases, it becomes difficult to see the individual Quadratic residues. This also

illustrates Corollary 4. So for this brief discussion, we ignore Quadrants III and IV. We now define

a constant to quantify the strength of this conjecture for a prime p.

Michael R. Spink Page 23 of 60

Definition 14. Degree of Front-Loading modulo p.

The constant

ρ :=
Number of QR’s in Quadrant II
Number of QR’s in Quadrant I

(51)

is the Degree of Front-Loading mod p. This tells us how biased the quadratic residues mod p are.

For ease of discussion, also define the difference between the numbers of QR’s as ξ Formally,

Definition 15. Difference between QR counts.

The constant

ξ = Number of QR’s in Quadrant I− Number of QR’s in Quadrant II (52)

difference in QR’s from Quadrant I to that of Quadrant II.

We directly compute ρ and ξ for a few small primes in Figure 3 and carry it to primes less than

10,000 in Figures 4 and 5.

Values of interest
QR I QR II ρ ξ

Primes

5 1 0 N/A 1
13 2 1 .5000 1
17 3 1 .3333 2
29 5 2 .4000 3
37 5 4 .8000 1
41 7 3 .4286 4
53 8 5 .6250 3
61 9 6 .6667 3
73 10 8 .8000 2
89 14 8 .5714 6
97 13 11 .8462 2
...

...
...

...
...

233 32 26 .8125 6
617 80 74 .9250 6

73529 9275 9107 .9819 168

Table 3: How ρ and ξ is computed for small 4n+ 1 primes

Michael R. Spink Page 24 of 60

Figure 4: How ρ is affected as p increases

We see from Figure 4 that the values of ρ appear to be asymptotic to ρ = 1,yet lim
p→∞

ρ = 1

indicates that Front-Loading holds, however, ρ is not monotonically increasing, despite being well

above ρ = 0.8 for much of this figure. This means that the quadratic residues are relatively close in

number for large primes. Ther However, this asymptotic nature seems to indicate that techniques

from analytic number theory may be helpful in proving this conjecture. Further, there does not

seem to be any sharpness in the graph, thus it is difficult to compute ρ algebraically given p.

We also see from Figure 5 that less can be stated about the pure difference in QR’s other than

ξ appears to be increasing in a general sense. Importantly to the case of Front-Loading, ξ appears

to be nonegative for all primes, supplemented by the general linear increase of ξ as p increases.

However, ρ and ξ appear to be uncorrelated, as shown in Figure 6. Do note again that most of the

ρ coordinates are larger than 0.8.

These constants further the argument that the quadratic residues are not uniformly distributed

in Z×p , but this will aid us in selecting perfect integer squares quickly in our algorithm below. We

will see that we believe that a lower ρ, but larger ξ will help run the algorithm in fewer iterations.

Throughout Section 7, this discussion will continue relative to the algorithm.

Michael R. Spink Page 25 of 60

Figure 5: How ξ is affected as p increases

Figure 6: How ξ affects ρ

Michael R. Spink Page 26 of 60

7 An Algorithm to find the square root

We now will motivate and discuss the algorithm that we developed. The reader can find a working

MATLAB implementation in Appendix I of this thesis (Section 10). MATLAB has been used due

to its ease of use, portability, and easy to use tools to compute detailed runtime statistics to aid in

debugging/comparison. Let p be prime, and C ∈ Z×p . We want to determine whether or not C is

in QRp or in NRp. If it is in QRp, we want to find the two square roots of C. We will be heavily

using Theorem 3 and Corollary 4 from section 4.1 of this thesis.

Our algorithm is broken into two parts: Preprocessing and Perfect Square Multiplication. The

goal of preprocessing is to determine if a potential QR has an easy deterministic solution, or if it

is a NR. The remaining cases imply p = 8n + 1 and are difficult to assess. We will repeatedly

multiply by carefully selected perfect integer squares to determine the square root of these cases.

The Front-Loading Conjecture, if it is true, will aid in selecting these integer squares quickly. See

Figure 7 for a visual representation of this.

Our algorithm beats brute force for large enough primes. We will be examining this in terms of

runtime and iteration count. Further, it is more transparent than the algorithms presented in Section

5, as it uses neither quadratic extensions nor the discrete log problem. These benefits allow our

algorithm to stand out and be useful in solving the square root problem, and we discuss potential

improvements to the algorithm’s design. We also discuss a replacement to the Preprocessing step

that allows the algorithm to avoid overflow inaccuracies. Importantly, implementing the algorithm

in a lower level language such as Python or C will improve the effectiveness of the algorithm by

getting around the dictionary and conversion ineffectiveness of MATLAB.

Now, we discuss the two major components of our algorithm in more detail, beginning with Pre-

processing.

Michael R. Spink Page 27 of 60

CQ ≡ ±1 (mod p)

C is a NR (mod p)

p− 1 = Q ∗ 2s

y21y
2
2 · · · y2k ∗ C ≡ ±Y 2 (mod p)

√
C ≡ ±Ψ−1

√
κχ (mod p)

(CQ)2
s ≡ −1 (mod p)

PREPROCESSING
REPEATED
MULTIPLICATION

OBJECTIVE: FIND
x2 ≡ C (mod p)

INPUT p,C

Figure 7: The general flow of the algorithm

7.1 The Preprocessing steps

For preprocessing, we want to decide the quadratic character of potential quadratic residue C. As

we will see in the remainder of Section 7, finding an efficient decidability condition in the repeated

multiplication step of the algorithm proves difficult, so this preprocessing proves important. We

could simply just use Euler’s Criterion, but to lower the strain on our machine we do this in stages.

We find

p− 1 = Q ∗ 2s, where Q is odd (53)

Q is easy to find as we are dividing by 2 as many times as possible. We then examine CQ. If this

is ±1, we conclude that C is a quadratic residue. We can compute
√
C as follows

CQ ≡ C ∗ CQ−1 ≡ ±1 (mod p) (54)
√
CC

Q−1
2 = ±

√
±1 (mod p) (55)

√
C = ±(C

Q−1
2)−1

√
±1 (mod p) (56)

Michael R. Spink Page 28 of 60

We note that this is a deterministic method to find the square root in these cases. We now prove

that this correct. We need to confirm that no NR will fall into this case.

Lemma 3. Quadratic character of C if CQ ≡ ±1 (mod p)

Let p = 4n+ 1 = Q ∗ 2s + 1. Then if CQ ≡ ±1 (mod p), then C ∈ QRp

Proof. Let p = 4n+ 1 = Q ∗ 2s + 1, and C ∈ NRp. Then Q = p−1
2s

. Since p = 4n+ 1, s ≥ 2.

Assume that α = CQ ≡ ±1 (mod p). We can repeatedly square α s− 1 times. so we have

α(2s−1) ≡ (CQ)2
s−1 ≡ C(Q∗2s−1) ≡ C

p−1
2 ≡ 1 (57)

And now we apply Euler’s Criterion (Theorem 4) to get the desired result.

Now, if CQ ≡ 1 (mod p), then C(CQ−1) ≡ 1 (mod p), so
√
CC

p−1
2 ≡ ±1 (mod p).

On an implementation note, in the case where CQ ≡ −1, we use the method of Zagier [14] to

easily compute p = a2 + b2, and thus
√
−1 via the extended Euclidean Algorithm [1].

If CQ is not ±1, then we will repeatedly square (mod p) this value, up to s − 1 times. If we

get 1 at any point, say s = k, then we know that C is a QR by the same logic as in the proof to

Lemma 3. However, (CQ)2
k

= C(CQ∗2k−1). This exponent will be odd if 2 ≤ k ≤ s − 1, so we

cannot perform the same trick we did above to easily find the modular square root. From this, we

can easily find
√
−1 ≡ (CQ)2

k−2
(mod p) as a direct consequence to Lemma 1

This establishes four possible outcomes to this preprocessing. We state how this partitions Z×p in

Table 4

Case Number Qualifier Number of Instances

1 CQ ≡ 1 (mod p) Q
2 CQ ≡ −1 (mod p) Q
3 C

p−1
2 ≡ −1 (mod p) p−1

2

4 none of the above p−1
2
− 2Q

Table 4: How the cases of preprocessing partition Z×p

We now prove each of these instance numbers. Trivially, Case 3 follows Theorem 1. Cases 1

and 2 require some justification. We state this here.

Michael R. Spink Page 29 of 60

Theorem 14. 2Q many instances of C satisfy CQ ≡ ±1 (mod p)

Let p = 4n+ 1 = Q ∗ 2s + 1, and a ∈ Z×p . Define A as follows:

A = {C ∈ Z×p |CQ ≡ 1 (mod p)} (58)

Similarly, define

B = {C ∈ Z×p |CQ ≡ −1 (mod p)} (59)

Then |A| = |B| = Q

Proof. Let p = 4n+ 1 and p− 1 = Q ∗ 2s. Thus, |Z×p | = Q ∗ 2s Further, let g be a primitive root

mod p. Now let a = g2
s . By Theorem 2, ord(a) = Q, and thus, | < a > | = Q.

Let γ ∈ A. Thus, γQ ≡ 1 (mod p). Thus, γ belongs to the unique cyclic subgroup of order Q in

cyclic group Z×p . This unique subgroup of order Q is < a >. Further, consider ar for r ≥ 1. Then

consider

(ar)Q = (aQ)r = 1r = 1 (60)

due to Definition 5. Since the powers of a define < a > and ar ∈ A, we can say that < a >= A,

and thus |A| = Q.

Now, similarly define b = g2
s−1 . By Theorem 2, ord(b) = 2Q, and thus | < b > | = 2Q. Note that

since b2 ≡ a (mod p), A = {b2j|1 ≤ j ≤ Q}

((b2j−1)2) ≡ (a2j−1)Q (61)

We can thus see that every element that in < b > that is not in < a > is the square root of an

element in < a >. But since this element b̂ is not in A, and thus b̂Q ≡
√

1, but b̂Q 6≡ 1 or it would

be in < a >. Now that the square root problem has exactly two solutions if a solution exists by

Lemma 1, and (−1)2 = 1, so b̂Q ≡ −1 and thus b̂ ∈ B.

In terms of set notation, we say that B =< b > −A.

Since | < b > | = 2Q and |A| = Q, and now |B| = Q as expected.

Michael R. Spink Page 30 of 60

We further observe that since every other element of < b > goes to B and A, we see that A

and B are disjoint, as expected by their definitions. Do note that this is an expansion to Turner’s

probabilistic proof for |A| = Q [16].

Thus we see that we can find a deterministic solution for 2Q of the quadratic residues mod p.

Thus there are p−1
2
− 2Q quadratic residues unaccounted for. We can deduce when 2Q is maximal,

among primes of the form 4n+ 1.

Theorem 15. Size of 2Q for 5 (mod 8) primes

Let p = 8n+ 5 = Q ∗ 2s + 1. Then 2Q = p−1
2

Proof. Let p = 8n+ 5 = Q ∗ 2s + 1. Via Algebra, we have,

p− 1 = 22(2n+ 1) = 22(Q) (62)

and we are done

This means that all quadratic residues for p = 8n + 5 primes fall into these cases and have a

deterministic solution to the square root problem. See [8] or Section 5 for Pocklington’s determin-

istic algorithm for these primes.

Applying this line of thinking to primes of the form 4n+ 3 produces a deterministic algorithm

for finding the modular square root.

Corollary 5. Variation on the Cardinality of the sets of Reciprocity for p = 4n+ 3 primes

Let p = 4n+ 3 = Q ∗ 2,+1, where Q = p−1
2

. Then only cases 1 and 2 in Table 4

Proof. Q = 2n+ 1 = p−1
2

Thus, we can incorporate deterministic results for all primes of the form 8n + 1 This paints

a more complete a more complete picture of prime modular behavior than Turner’s Result, as

turner ignores the case of CQ ≡ −1 (mod p). Thanks to Zagier-Shirali’s algorithm we have a

methodology to hand the case of CQ ≡ −1 (mod p).

Michael R. Spink Page 31 of 60

7.2 Crux of the Algorithm: The Repeated Multiplication

We now come up with a generic, yet easy to follow by hand algorithm to compute the square root

of a quadratic residue. We do not care whether or not the specific case would have been absorbed

in preprocessing. We do however, for this section, make the following two preconditions:

1. Prime p is of the form p = 4n+ 1

2. Exclude case 3 in Table 4

Our goal is to repeatedly multiply C by perfect integer squares until we arrive at a perfect integer

square or its negative modulo p. We provide pseudocode here. We use phrasing from the Front-

Loading Conjecture (See Section 6.3)

1. INPUT: p = 4n+ 1, C ∈ QRp

2. Initialize χ = C,Ψ = 1, κ = 1,

3. While χ is not a perfect integer square and −χ (mod p) is not a perfect integer square:

(a) if χ is not in Quadrant I or II update χ ≡ −χ (mod p), κ = −κ

(b) Select perfect integer square y2i such that±χy2i (mod p) has yet to have been assigned

to χ and update χ ≡ χ ∗ y2i (mod p),Ψ ≡ Ψ ∗ yi (mod p)

4. if −χ (mod p) was the perfect integer square, update χ ≡ −χ (mod p), κ = −κ

5. Return
√
C ≡ ±Ψ−1

√
κχ (mod p) (63)

In full detail, we write the computation of
√
C as

(y21y
2
2 · · · y2k−1y2k)C ≡

√
χ2 (mod p) (64)

(y1y2 · · · yk−1yk)
√
C ≡ ±√χ

√
±1 (mod p) (65)

√
C ≡ ±(y1y2 · · · yk−1yk)−1

√
χ
√
±1 (66)

Thus, when this occurs, we can arithmetically find the square root. We now prove that this will

always occur given a Quadratic residue C.

Michael R. Spink Page 32 of 60

Theorem 16. Termination of repeated multiplication

Let p = 4n+ 1 and C ∈ QRp. Then there exist a finite sequence of integers yi such that

(y21y
2
2 · · · y2k−1y2k)C ≡

√
χ2 (mod p) (67)

We prove this in a few steps. We need a lemma first

Lemma 4. QR closure by integer squares.

Let p = 4n+ 1, C1, C2 ∈ QRp. Then there exists an integer yi such that

y2iC1 ≡ C2 (mod p) (68)

Proof. From Theorem 3, we know that QRp is closed. Thus there exists an x such that

xC1 ≡ C2 (mod p), x, C1, C2 ∈ QRp. (69)

Namely, x = C−11 C2. By Definition 4, since x ∈ QRp, there exists a y such that y2 ≡ x (mod p).

We substitute this into Equation 69 to get the desired result.

We now can prove that this overall process will terminate.

Proof. Let p = 4n+ 1 and C ∈ QRp. Note that 1 ∈ QRp. Via Lemma 4, one can pick any QR of

choice that has not been visited, and find a perfect integer square to visit that QR. Due to Theorems

1 and 3 (namely the fact that |QRp| is finite), one must visit χ = 1 at some point and the algorithm

will terminate.

Due to the fact that the algorithm only modular multiplication, this algorithm avoids all of the

advanced calculations and much of the trial and error that is present in Tonelli-Shanks, Cipolla,

and Pocklington’s algorithms [8, 15]. Further, the algorithm can be sped up since we are always

looking at the value of χ or it’s negative as allowed to us by Corollary 4. However, this is dependent

on the strategy that one uses to pick y2i . The strategy that we have implemented is predicated on

the fact that Quadrant I contains more perfect integer squares and the Front-Loading Conjecture.

We state at the outset of this discussion:

Michael R. Spink Page 33 of 60

Conjecture 2. Optimal selection of y2i

Select the least integer k such that

y2i =

[√
kp

χ

]2
, k ∈ N (70)

corresponds to a χy2i (mod p) has yet to be visited in the proceedings of the algorithm and this

χy2i is in Quadrants I or IV, where [x] in this case rounds x to the nearest integer.

It is important to note that this χy2i has yet to be visited. If this was not the case, the algorithm

would infinitely loop. To avoid this, k can increase as needed, creating a “moving goalposts”

approach to finding a perfect integer square that will work. Take p = 17, C = 8 for example. The

integer square that would be found is y1 = 1, which would obviously cause a loop as χ would

never leave 8. Other examples could create a loop that does not include C itself. Illustrating this

is a case when y2my
2
m+1 · · · y2n ≡ 1 (mod p) There are other strategies, but we will discuss them in

Section 7.4.

We want to maintain that we can pick y2i quickly. This is the place of Front-Loading. Because

there are more Quadratic residues in the ’RICH’ half of Z×p , if we pick a y2i randomly, we are more

likely to land in Quadrants I and IV. Further, this likelihood increases as ξ, ρ increase. Further,

This choice of y2i will help terminate the algorithm quickly, as this will put the corresponding±χy2i
(mod p) as close to 0 (mod p) as possible. As the perfect integer squares are concentrated about

0 (mod p), this choice of y2i will help facilitate that .

Lastly, we would like to address this constant shifting to quadrants I and II.The larger χ is, the

closer kp
χ

is to k ∀k. This will decrease the speed in which we can select y2i , as candidate values

of k will need to be larger than that of the same k, but with a smaller χ. This shifting is once again

allowed to us by Corollary 4 However, on the note of Quadrant II, by how we are choosing y2i ,

once we leave Quadrant II, we will never return. This implies that if we ever use Quadrants II or

III, then C is in one of these quadrants.

We noted that since the number of QR’s are finite, however this will form the basis of the argu-

ment that the number of iterations should be at most dn
2
e, allowing for the “moving goalposts” to

counterbalance the Front-Loading Conjecture.

Michael R. Spink Page 34 of 60

7.3 Comparing our algorithm to Brute Force

In this section, we discuss the overall effectiveness of our approach and compare it to brute force.

We will do this in two ways. In terms of sheer runtime, we will be using MATLAB’s profiling

tool, as using the tic/toc and cputime functions can be buggy or misleading in our experience. We

avoid measuring our algorithm in terms of Big-Oh notation, deferring to practical observables from

implemented computation. This is the major portion of the algorithm, as the Square and Multiply

algorithm and the Extended Euclidean Algorithm are sublinear in this respect. What you will see

in this analysis is a function that we have written called TestSuitev2. This function takes in a prime,

a number of random elements in Z×p to test against brute force, and a trigger quantifying if we only

want to test QRs (1), NRs(0), or a random mixture of the two (-1), in this order. We present sample

output in Figure 8.

Figure 8: Running 10,000 random trials for p = 73529 to see runtime

Due to the segmented nature of preprocessing, we break this into primes of the form p = 8n+1

and everything else. We now present p−1
2

mixed trials in Tables 5 and 6

This shows that it appears that our algorithm does not run well for small primes, but does well

for large primes. In the first case, it appears that our algorithm does better for primes larger than

approximately 3500, and approximately 1000 for the second case. If a more concrete number could

be found, we would be happy. We then have the following statement

Conjecture 3. Beating brute force with our algorithm.

Letw ≈ 3500. Our algorithm beats brute force in terms of runtime for a prime p if p = 4n+1 > w.

This is an empirical result.

Michael R. Spink Page 35 of 60

p AlgoRuntime Brute-force Runtime

17 .010s .001s
97 .016s .002s

617 .047s .018s
977 .081s .043s

1361 .115s .080s
2377 .260s .246s
3041 .378s .414s
3313 .484s .482s
4721 .594s 1.023s

Table 5: Comparing runtimes for 1 (mod 8) primes

p AlgoRuntime Brute-force Runtime

13 .009 .001s
101 .013s .002s
283 .017s .006s
503 .026s .013s

1061 .054s .050s
1999 .090s .175s
2029 .096s .184s
6053 .333s 1.646s

Table 6: Comparing runtimes of other primes

Thus, the sheer number of possibilities appear to hamper brute force compared to the algorithm

and this selection of y2i . This shows that the algorithm is not perfect for every 4n + 1 prime, but

does indeed beat brute force if p is large enough.

We believe that there are two major things that slow the algorithm down. These are the square

and multiply algorithm and dictionary use in MATLAB. Recall that the Square and Multiply algo-

rithm should be running sublinearly. If we return to examining Figure 8, let us look at the most

time consuming steps of the algorithm in Figure 9 (this was for p = 73529 ≡ 1 (mod 8)). Note

that we call our dictionary of previously visited values “prev”.

We see of the five most consuming steps are visiting a value χ, the Square And Multiply

Algorithm, checking if we have visited χ or its negative, and creating the dictionary itself. These

steps relating to the dictionary should run in constant time, which does not seem to happen here.

Thus, we think that implementing our algorithm in a lower level language such as Python, Java, or

C would alleviate these issues. We state this as a conjecture here

Michael R. Spink Page 36 of 60

Figure 9: The most time consuming steps of the algorithm

Conjecture 4. Lower level language implementation.

Implementing our algorithm in a lower level language will reduce the value of w in Conjecture 3

When it comes to the Square and Multiply algorithm, most of the runtime is spent converting a

number into binary. This is done via the str2double command (we have implemented str2doubleq

to make things a little better [4])

Supplementing this argument is an argument on the average number of iterations. This is a

rather nebulous term to define. We do this for brute force and our algorithm below. In general,

we are incrementing this iteration counter whenever a for/while loop, well, loops. We ignore

preprocessing for our algorithm because, again, it should run sublinearly due to the square and

Multiply Algorithm and repeated squaring. Recall that C is our candidate Quadratic residue. For

this discussion, we assume that C is indeed a quadratic residue.

Definition 16. Iteration for brute force

We define one iteration for brute force as every integer that we square and compare to C.

Definition 17. Iteration for our algorithm

We define one iteration for our algorithm as every instance we compute an invalid y2i , and every

time we update our bookkeeping for Ψ.

Note that we are not counting the bookkeeping if we need to flip κ and χ to −κ and −χ as an

iteration, as this is done in constant time. Further, we note that these iterations usually involve three

modular operations and two dictionary pulls (ideally in O(1) time) each, but this does not change

Michael R. Spink Page 37 of 60

the argument in the grand scheme of things. We are using our own built function to compute

this. We also have built our own function that performs just the repeated multiplication step of the

algorithm. As before, we show one sample output in Figure 10,

Figure 10: Running 10,000 random trials for p = 73529 to see iteration count

before extrapolating this and showing results for various primes in Table 7. We do not care of

the form of the prime other than it must be of the form 4n+ 1.

p Total Algo iters Average Algo iters Total Brute-force iters Total Brute-force iters

13 6 1 8 1.3333
17 6 0.75 35 4.375
97 184 3.8333 1200 25
101 275 5.5 1067 21.34
617 2581 8.3799 48927 158.8539
977 6240 12.7869 116519 238.7684

1999 44716 44.7608 505815 506.3213
1361 8061 11.8544 232521 341.9426
2377 38752 32.6195 693200 583.5017
3041 36637 24.1033 1168862 768.9882
4721 65538 27.7703 2784188 1179.7407
6053 128021 42.307 4691574 1550.421

Table 7: Comparing iterations for various 4n+ 1 primes

This shows a few things. Most importantly, the total number of iterations seems to be far less

than that of brute force. This forms our heuristic argument that if implemented in a lower level

language, our algorithm should be able to beat brute force for smaller primes, as well as larger

ones. We graph these average iteration count for brute force and repeated multiplication in Figure

11 to strengthen this. Notice how small the average number of iterations grows incredibly slowly

for repeated multiplication.

Further, we expected brute force to be average out to about p+1
4

iterations due to the definition

of expected value. If check for C = 1, this comes down to p−1
4

= n. This is heuristically confirmed

by Table 7. We hypothesized without proof that repeated multiplication would take about dn
2
−
√

n
2
e

Michael R. Spink Page 38 of 60

Figure 11: Average number of iterations for brute force vs. repeated multiplication

number of updates to Ψ. This was based on the number of non perfect integer square quadratic

residues, with the front loading conjecture allowing us to select y2i without much issue. However,

especially for large primes, our algorithm seems to perform much better than this.

Taking these two measurement methods into account, measuring by runtime shows that our

algorithm beats brute force in terms of runtime for large primes. Conjecture 4 will seem to be our

out to make our algorithm beat brute force in all cases. Measuring in terms of iterations seems

much more promising to showing that our algorithm is better than brute force.

The question now becomes if there are ways to improve the design itself of the algorithm. We will

see that we do not believe that there is a trivial way to do so, so our algorithm is ideal to find the

modular square root when it exists, and to decide upon the quadratic character of a number quickly

as well.

Michael R. Spink Page 39 of 60

7.4 Improving the Design of the Algorithm

Further, there are two ways to try improve the algorithm that we see from a design perspective.

The first way to improve the algorithm’s design is to attempt to better incorporate the preprocessing

steps into the design of the algorithm. Let us first try to fix preprocessing before trying to replace it.

As the iteration comparisons are related to repeated multiplication exclusively, we will use runtime

to make the assertions we will for this improvement.

Perhaps, it would be faster to just compute Euler’s Criterion and run repeated multiplication on the

QR’s. This however, is not shown by the empirical data. We show this in Table 8, which takes both

decidability and removing these easy cases by using a mixture of QR’s and NR’s.

p Algo Runtime Euler’s Criterion Runtime

17 .008 .009
97 .017 .014
101 .013 .014
617 .049 .059
977 .090 .104

1361 .119 .141
6053 .338 1.153

Table 8: The runtime effects of just using Euler’s Criterion

This gap seems small for small primes, but grows as p increases. We believe that ruling out

the easy cases of QR’s rather than making the effort of engaging repeated multiplication gives our

preprocessing the edge here.

A less trivial attempt that we have made is an approach inspired by the Collatz Conjecture. One

can find its implementation in Section 10 for those looking for details on how it works. Basically,

it is built on many subcases and driving C down to a perfect integer square. However, empirical

data is not on its side either. See Table 9.

For smaller primes, this approach seems close to/sometimes beating brute force. However, as

p increases, the regular version of preprocessing takes the lead. However, all is not lost for this

Collatz Preprocessing. One major advantage that it has to our preprocessing is that overflow is

less likely here. For extremely large primes, on the order of 1010, is some computations might be

rounded incorrectly, especially in computing CQ (mod p). To this end, this Collatz interpretation

can deal with larger primes easier, as it never allows values to leave Z×p . .

Michael R. Spink Page 40 of 60

p Algo Runtime Collatz Version Runtime

17 .012 .009
97 .017 .012

101 .012 .014
617 .050 .042
977 .092 .087
1361 .116 .120
6053 .343 .949

Table 9: The runtime effects of just using a Collatz approach to preprocessing

We also came up with a method that performs a depth first search between integers that have

the quadratic character, however, this renders the transparency argument moot, the runtime won’t

probably be improved much due to having to generate the graph and then perform depth first search

and we found it difficult to implement efficiently.

The reader may have noticed that the preprocessing appears to be independent of the repeated

multiplication.This is due to the fact that none of the decidability conditions we discovered for the

repeated multiplication itself are feasible at a fast runtime or number of iterations. The first of

these attempts is to find an upper bound for y2i . We note that

Theorem 17. Consecutive set of QRp

Let p = 4n+ 1 be prime. Then QRp = {12, 22, 32 · · · (2n− 1)2, (2n)2}

Proof. Let p = 4n+ 1 and 1 ≤ α, β ≤ 2n. Further, assume α2 ≡ β2 (mod p). Then

α2 − β2 = kp, k ∈ Z (71)

Thus,

p | (α− β)(α + β) (72)

By the prime property p | (α− β) or p | (α + β).

Assume p | (α + β). Due to the fact that α, β ≤ 2n means that this can be at most p − 1. By this

and the lower bounds of α, β, we can say that

1 + 1 ≤ |α + β| < p (73)

Michael R. Spink Page 41 of 60

And note that no multiple of p lies in this interval. This contradicts the fact that p | (α+ β). Let us

now consider the other possibility. By the same logic, we can say

0 ≤ |α− β| < p (74)

Thus, the only way for p to divide |α− β| if if

|α− β| = 0, → α = β (75)

this means that for all QR’s generated by α2 are uniquely defined for 1 ≤ α ≤ 2n. This provides

2n total QR’s in this interval. Theorem 1, also gives that there are 2n QR’s total. Thus, by the

pigeonhole principle, we have the expected result.

This means that the maximum y2i should be bounded above by (2n)2. However, in order to

effectively implement this, one would have to ensure that they check all possible y2i for validity.

Note how we have not done that in our strategy of picking y2i . Perhaps the algorithm just skips

over the squares it needs to find one that works, which could result in false negatives in terms of

decidability, and enforcing this would amount to brute force. Further, to get to get to this value of

yi, k will have to be quite large. In effect, the algorithm will have to bounce to most of the NR’s

to avoid hitting values in QRp that we can bounce to. In essence, why not just scan through the

set {12, 22 · · · (2n− 1)2, (2n)2} until one finds the multiplicative inverse? This results in the same

expected number of iterations as what we computed above. Thus, this condition is not feasible to

implement.

To this end, what if we put an upper bound on the number of updates to Ψ? We discussed above

how we expected the worst number of updates (iterations to account for Front-Loading and shifting

of k) was dn
2
−
√

n
2
e. If we have a non residue, the maximum amount of times the algorithm could

update was n
2

times. However, this does not account for Front-Loading, and even if we could, ρ

could vary widely enough with p that the adjustment we could make to this n
2

is not consistent

across all primes. The other problem with this approach is that getting to this bound is going to

become more and more difficult as the number of updates increases. Recall that Front-Loading

betters the quadratic residues after all. We run into the same problem bonding y2i , and thus this fix

Michael R. Spink Page 42 of 60

is not feasible to implement either.

The last obvious idea that could be implemented into the repeated multiplication is to find a

non residue, and if it is hit during the repeated multiplication step conclude that C is a non residue

mod p. There are two major problems with this. The first is that knowing just one nonresidue

that the algorithm is trying to hit is equivalent to the previous “solution” to the problem. The

second is that finding this nonresidue can be costly, and any hope of it not being so depends on the

Generalized Riemann Hypothesis [10]. Mixing expanding this search to more than one nonresidue

while running the algorithm is difficult to implement. Perhaps a better way to do this exists with

quantum computers. This method is also not feasible to implement.

Thus, we believe that our form of preprocessing is justified. Let us turn our attention to the last

thing that we can change: the strategy with which we select y2i . However, coming up with another

non trivial way to select this has proven to be difficult. Thus, we present a greedy strategy, and a

thorough one.

Let us discuss this thorough one first. We were discussion earlier the bound for y2i that we

would need to search all possible integer squares to ensure we haven’t missed one that could work.

Here we try the same thing in order to directly minimize the value of y2i . We search through all

possible QR’s that would put χy2i in Quadrants I and IV, starting from 0 (mod p) and working

outwards. We know that the multiplicative inverse of C is in this group, however this searching

procedure is comparable to brute force. We could also just use the least y2i that puts us in Quadrants

I or IV, but we run into the same searching problem that the above technique runs into, with added

problems due to having to check those that would not put us in the right quadrant. Thus, we believe

that our strategy for picking y2i is a valid one. This allows our algorithm to remain justified as is

from a design standpoint.

Michael R. Spink Page 43 of 60

7.5 Simple working examples of repeated multiplication

In this section we provide two examples of the execution of the repeated squares portion of our

algorithm. We leave many of the implementation details, namely, how we are computing integer

squares to multiply by, to be explored by the reader by looking at Section 7 and Section 10.

Importantly, we are ignoring preprocessing as this is rather self explanatory to trace other than

notes to which case these instances fall into. Recall from Section 7.2 the meanings of χ,Ψ, κ.

1. FIND THE SQUARE ROOTS OF 26 (mod 37)

• NOTE: if preprocessing applied, this would fall into case one, as

37− 1 = 9 ∗ 22 (76)

So Q=9. And we see that

269 ≡ 1 (mod 37) (77)

So
√

26 ≡ (264)−1 ≡ 10 (mod 37) (78)

We will be ignoring this and proceeding anyway into the repeated multiplication step

of the algorithm.

• Note that

37 = 12 + 62 = 4(9) + 1 (79)

It is easily verifiable that 37 is prime. If necessary, we also now know that

√
−1 ≡ 6 ∗ 1−1 ≡ 6 (mod 37) (80)

• This means that our four quadrants are [1,9],[10,18],[19,27][28,36]. So we will be

trying to force the current value between 28 and 9 (mod 37) each iteration

Michael R. Spink Page 44 of 60

• Begin with χ=26; Ψ=1; κ=1; . Note that 26, 11 are not perfect integer squares.

We see that 26 is in Quadrant III, so we look at −26 ≡ 11 (mod 37) and multiply sign

by -1.

We have: χ=11; Ψ=1; κ=-1;

• Observe that since

22 =

[√
2 ∗ 37

11

]2
(81)

we can write

22 ∗ 11 ≡ 44 ≡ 7 (mod 37) (82)

. This is in Quadrant I, so we do not have to look at −7 (mod 37) other than the fact

that 7 and 30 are not perfect integer squares. We multiply Ψ by 2.

We have: χ=7; Ψ=2; κ=-1;

• Observe that since

22 =

[√
37

7

]2
(83)

we can write

22 ∗ 7 = 28 (mod 37) (84)

. This is in Quadrant IV, so we look at−28 ≡ 9 (mod 47). 9 is indeed a perfect integer

square. We multiply Ψ by 2 and κ by -1.

We have χ=9; Ψ=4; κ=1;

• Our loop terminates, and our algorithm now computes the solution:

16 ∗ 26 ≡ 9 (mod 37) (85)

4
√

26 ≡ ±3 (mod 37) (86)
√

26 ≡ ±4−13 (mod 37) (87)
√

26 ≡ ±27 (mod 37) (88)

And indeed one can use the square and multiply algorithm to confirm that 102 ≡ 100 ≡ 26

(mod 37)

Michael R. Spink Page 45 of 60

2. FIND THE SQUARE ROOTS OF 5 (mod 73529).

• Note that if preprocessing applied, it would fall into case 2, as

73529− 1 = 9191 ∗ 23 (89)

So

59191 ≡ −1 (mod 73529) (90)

So Q=9191. And we see that

√
5 ≡ (54595)−1

√
−1 ≡ 4782 (mod 73529) (91)

We will be ignoring this and proceeding anyway into the repeated multiplication step

of the algorithm.

• Note that 73529 = 772 + 2602 = 4(18382) + 1. It can be verified that 73529 is prime.

If necessary, we also know that

√
−1 = 260 ∗ 77−1 ≡ 260 ∗ 12414 ≡ 65893 (92)

Note the use of the Extended Euclidean Algorithm.

• This means that our four quadrants are [1,18382],[18383,36764],[36765,55146],[55147,73528].

So we will be trying to force the current value to be between 55147 and 18382 each

iteration.

• Begin with χ=5; Ψ=1; κ=1. Note that 5 is clearly in Quadrant I, and neither 5 nor

73524 are perfect integer squares.

Michael R. Spink Page 46 of 60

• Observe that since

1212 =

[√
73529

5

]2
(93)

we can write

1212 ∗ 5 ≡ 73205 (mod 73529) (94)

This is in Quadrant IV, so we look at −73205 ≡ 182 (mod 73529). 324 is indeed a

perfect integer square. We multiply Ψ by 121 and κ by -1.

We have χ=324; Ψ=121; κ=-1;

• Our loop terminates, and our algorithm now computes the solution:

121
√

5 ≡ 18
√
−1 (mod 73529) (95)

√
5 ≡ 54691 ∗ 18 ∗ 65893 ≡ 68747 (mod 73529) (96)

And indeed one can use the square and multiply algorithm to confirm that 687472 ≡ 5

(mod 73529)

Michael R. Spink Page 47 of 60

8 Future work

Our work is not perfect, as simple running through the possible areas of our algorithm could still

be refactored to run faster. To this end, we present a few open questions that are relevant to our

algorithm presented here. We discuss most of these in Section 7.3 and Section 7.4

1. In the event that are multiple possible integer squares to multiply a current value by, is there

a better way to select one that will terminate the algorithm faster?

2. In the repeated multiplication step of the algorithm, is there a more feasibly implementable

NR decidability condition?

3. Will running our algorithm in a lower level language drastically decrease the runtime of the

algorithm with respect to brute force? Particularly, we contemplate this in regards to the

speed of MATLAB’s map.container class. Ideally, dictionaries should run in O(1) time

4. Do certain primes or values of C run the repeated multiplication section of the algorithm

faster? We think this may depend on ξ and ρ.

We now look at our work more globally. Similar to how we looked at the partition of QRp using

our algorithm, we are curious if repeatedly applying Ω to a given initial 2 × 1 vector will create

anything meaningful. That is, we want to look at the orbits of this repeated use of Ω. With respect

to this iteration, we are curious if a dynamic programming approach could be useful in the case

where multiple square roots need to be found. Lastly, could shifting the problem another way yield

better results?

Another idea for an algorithm that we had was just directly using the tables in Section 6.2 was to

see if we can get any entry in the table from just the top left entry, which is always 0. We wonder if

this is feasible at a runtime that beats brute force. Are there any other strategies about information

to grab as we move about the symplectic manifold?

Since we mentioned these throughout this thesis, could more results from Symplectic/differential

geometry, analytic number theory, or discrete math expand any results we have presented here?

Lastly, we present the obvious request of “prove the front loading conjecture please.” We strongly

believe it to be true, but have yet to complete a proof for it.

Michael R. Spink Page 48 of 60

9 Conclusion

In closing, we think that this interpretation of the square root problem will help make the problem

more tractable by the fact that it should now be much easier to compute by hand. This transparency

arises from transforming the problem into a geometric problem built upon a simple shifting of the

problem.

This approach pulls from so many areas of math rather than just number theory, making things

more usable to aid in solving the problem at hand, which could solve much harder problems such

as RSA Factoring. and many other applications of quadratic reciprocity.

While the algorithm not perfect, we hope that implementing the algorithm and all of its children

functions in a lower level language can bring the run time down to one comparable to that of

running brute force, as shown by the vast improvement in terms of iterations, as well as potentially

using dictionaries in this lower level language could make the algorithm better for smaller primes.

Formally proving the front loading conjecture would also open so many windows for the problem,

as it could make decidability conditions other than Euler’s Criterion viable in the algorithm or

increasing the number of usable primes before machine overflow.

All things considered, we are very proud of our approach and algorithm and hope to improve upon

it/see it improved upon to make a very difficult problem have the sense of purpose.

Michael R. Spink Page 49 of 60

10 Appendix 1: Code

This appendix gives the source code that we used for our MATLAB simulations. To keep this

appendix from being ridiculously long, we only include essentials. Go to my Github page for

this code and miscellaneous MATLAB testing files. In all of the following, the comment ‘EOF’

denotes the end of the file in question.

What follows is code for the algorithm described in Section 7. This is the version that utilizes

preprocessing to solve 2 easier QR cases and determine NR’s, and the repeated multiplication step

of the algorithm.

1
2 %%%
3 %% %%
4 %% F i l e : Algo .m %%
5 %% I n t e r n a l F i l ename : a lgov11 .m %%
6 %% %%
7 %% Author : Michae l R . Spink %%
8 %% Author : Manuel Lopez %%
9 %% %%

10 %% This f i l e r u n s t h e a l g o r i t h m we d e v e l o p e d %%
11 %% WITH c a r e f u l s q u a r e s e l e c t i o n %%
12 %% %%
13 %% i n p u t p , a pr ime t o work wi th (Z p) %%
14 %% i n p u t c , a v a l u e i n Z p f o r t h e program %%
15 %% t o f i n d i t s s q u a r e r o o t , %%
16 %% i f i t e x i s t s %%
17 %% %%
18 %% o u t p u t r o o t , one o f two s q u a r e r o o t s , %%
19 %% 0 i f NR %%
20 %% %%
21 %%%
22
23 f u n c t i o n r o o t =Algo (p , C)
24
25 %%%%%%%%%%%%%%%%% INITIALIZE VALUES %%%%%%%%%%%%%%%%
26 n =(p−1) / 4 ; % compute n , p=4n+1
27 c u r r =C ; %s e t c u r r e n t v a l u e
28 %%%%%%%%%%%%%%% PREPROCESSING %%%%%%%%%%%%%%%%%%%%%
29 %w r i t e p−1=Q∗2ˆ s
30 Q=p−1;
31 s =0 ;
32 w h i l e mod (Q, 2) = = 0
33 Q=Q/ 2 ;
34 s=s +1;
35 end
36 t e m p c u r r q = Squa reAndMul t i p ly (c u r r , (Q−1) /2 , p) ; %compute ans i f i n p a t h 1 / 2
37 c u r r q =mod (t e m p c u r r q ˆ2∗ c u r r , p) ;%% c u r r Curr ˆQ
38 twopow =1; % power o f two c u r r e n r t l y a t
39
40 %% COMPUTE IF LIFE IN THE FAST LANE
41 i f c u r r q ==1 % c u r r ˆ odd=1 / / PATH ONE
42 [r o o t , ˜ , ˜] = ExtendedGCD (tempcur rq , p) ; % compute r o o t
43 r o o t =mod (r o o t , p) ;
44 r e t u r n
45 e l s e i f c u r r q ==p−1 %c u r r ˆ odd =−1 / / PATH TWO
46 i f mod (p , 4) = = 3
47 r o o t =0 ;
48 r e t u r n
49 end

Michael R. Spink Page 50 of 60

https://github.com/michaelrspink/MichaelRSpinkPortfolio/tree/master/ThesisCode

50 [r o o t , ˜ , ˜] = ExtendedGCD (tempcur rq , p) ;
51 r o o t =mod (r o o t ∗SquareRootOfMinusOne (p) , p) ;
52 r e t u r n
53 e l s e %l i f e i s ha rd
54 i f mod (p , 8) = = 5
55 r o o t =0 ;
56 r e t u r n
57 end
58 r o o t m i n u s o n e = c u r r q ; %s q r t (−1) i s two i t e r a t i o n s back
59 p r e v i o u s = c u r r q ;
60 w h i l e (twopow<s)
61 c u r r q =mod (c u r r q ˆ 2 , p) ; %r e p e a t e d s q u a r i n g
62 i f c u r r q ==1 %i f QR
63 b r e a k ;
64 end
65 r o o t m i n u s o n e = p r e v i o u s ; %u p d a t e v a l u e s i f QR
66 p r e v i o u s = c u r r q ;
67 twopow=twopow +1;
68 end
69 i f c u r r q ==p−1 % IF NR, PRINT RESULTS
70 r o o t =0 ;
71 r e t u r n
72 end
73 end
74 %% END PREPROCESSING %%%%%%%%%%%%%
75
76 %%%%%%%% REPEATED MULTIPLICATION %%%%%%%%%%%%%%%%%%%%%%%%%%
77 %% INITALIZE VALUES FOR MULTIPLICATION
78 c h i =C ; %v a l u e t h a t we a r e c u r r e n t l y a t
79 kappa =1; %compute number o f s i g n s w i t c h e s
80 p s i =1 ; %compute m u l t i p l e
81 %c r e a t e p r e v i o u s v i s i t e d l i s t
82 p rev = c o n t a i n e r s . Map(’ KeyType ’ , ’ i n t 3 2 ’ , ’ ValueType ’ , ’ i n t 3 2 ’) ;
83 p rev (c h i) = 1 ; %% v i s i t c u r r
84 hashnum =2; %t o t r y t o speed up lookup
85 w h i l e t r u e % MAIN ALGO LOOP
86 i f f l o o r (s q r t (c h i))== s q r t (c h i) %check i f i n t e g e r s q u a r e
87 b r e a k ; %WE’RE DONE HERE
88 end
89 temp=p−c h i ;
90 i f f l o o r (s q r t (temp))== s q r t (temp) %check i f n e g a t i v e i s i n t e g e r s q u a r e
91 c h i =p−c h i ; %FLIP
92 kappa=kappa ∗−1; %UPDATE
93 b r e a k ; %WE’RE DONE HERE
94 end
95 i f ch i >2∗n % FLIP IF IN Q3 , Q4
96 c h i =p−c h i ;
97 kappa=kappa ∗−1;
98 end
99 %% DETERMINE VALUE TO MULTIPLY BY

100 pmul t =1 ; %what t a r g e t a r e we a iming f o r ?
101 w h i l e (t r u e)
102 sq =(round (s q r t ((pmul t ∗p) / c h i))) ˆ 2 ; %compute p o s s i b l e s q u a r e
103 temp=mod (sq ∗ ch i , p) ; %compute temp
104 %check i f we ’ ve been h e r e b e f o r e
105 i f temp>3∗n | | temp<=n
106 i f i sKey (prev , temp)==0 && isKey (prev , p−temp)==0
107 b r e a k
108 end
109 end
110 % o t h e r wise u p d a t e t o n e x t t a r g e t and i n c r e m e n t
111 pmul t = pmul t +1 ;
112 end
113 c h i =temp ;% d e t e r m i n e n e x t v a l u e
114 i f (ch i >2∗n) %f l i p i f need be
115 c h i =p−c h i ;
116 kappa=kappa ∗−1;
117 end

Michael R. Spink Page 51 of 60

118 p s i =mod (p s i ∗ s q r t (sq) , p) ; %u p d a t e
119 p rev (c h i)= hashnum ; %u p d a t e p r e v i o u s l y v i s i t e d v a l u e s
120 hashnum=hashnum +1;
121 end
122 i f kappa ==1
123 r o o t m i n u s o n e =1;
124 end
125 [inv , ˜ , ˜] = ExtendedGCD (p s i , p) ; %compute m u l t i p l i c a t i v e i n v
126 i n v =mod (inv , p) ; %i n v e r t
127 r o o t =mod (i n v ∗ kappa ∗ s q r t (c h i)∗ roo tminusone , p) ; %compute r o o t
128 r e t u r n
129
130 %%% EOF

The algorithm relies on implementations for the Extended Euclidean Algorithm for quick mod-

ular inversion (we use a matrix method presented to me by Dr. Anurag Agarwal [1]), the square and

multiply algorithm in preprocessing and testing (we use [4] to speed up the algorithm on MATH-

LAB 2018a), and decomposing a 4n + 1 prime into the sum of two squares to find the square

root of -1 in the style of Zagier when path 2 is hit [14]. In testing variations of the algorithm that

do not use preprocessing, we compute the p = a2 + b2 decomposition, yet save inverting one of

these variables until we have to, combined with other parts of the problem. See Section 7 for more

information.

1
2 %%%
3 %% %%
4 %% F i l e : SquareRootOfMinusOne .m %%
5 %% %%
6 %% Author : Michae l R . Spink %%
7 %% %%
8 %% This f i l e computes t h e s q u a r e r o o t o f %%
9 %% −1 modulo a g i v e n 4n+1 pr ime %%

10 %% %%
11 %% INPUTS : %%
12 %% @input p %%
13 %% a i s any 4n+1 pr ime %%
14 %% %%
15 %% R e t u r n s : %%
16 %% @return r o o t %%
17 %% a= s q r t (−1) (mod p) %%
18 %% %%
19 %%%
20
21 f u n c t i o n r o o t =SquareRootOfMinusOne (p)
22
23 x =1;
24 y =1;
25 z =(p−1) / 4 ;
26 % X=[’ x = ’ , num2s t r (x) , ’ y = ’ , num2s t r (y) , ’ z = ’ , num2s t r (z)] ;
27 %d i s p (X)
28 w h i l e (t r u e)
29 i f z+x<y
30 %d i s p (’OPTION 1 ’)
31 tempx= x+2∗ z ;
32 tempy= y−z−x ;
33 tempz= z ;
34 e l s e
35 %d i s p (’OPTION 2 ’)
36 tempx= 2∗y−x ;
37 tempy= z+x−y ;

Michael R. Spink Page 52 of 60

38 tempz= y ;
39 end
40 x=tempx ;
41 y=tempy ;
42 z=tempz ;
43 %X=[’ x = ’ , num2s t r (x) , ’ y = ’ , num2s t r (y) , ’ z = ’ , num2s t r (z)] ;
44 %d i s p (X)
45 %pause (3)
46 i f y==z
47 b=2∗y ;
48 a=x ;
49 %X=[num2s t r (p) , ’ = ’ , num2s t r (a) , ’ ˆ 2 + ’ , num2s t r (b) , ’ ˆ 2 ’] ;
50 %d i s p (X)
51 b r e a k
52 end
53 end
54 [binv , ˜ , ˜] = ExtendedGCD (mod (b , p) , p) ;
55 r o o t =mod (a∗mod (binv , p) , p) ;
56 %X=[’ r o o t = ’ , num2s t r (r o o t)] ;
57 %d i s p (X)

1
2 %%
3 %% %%
4 %% F i l e : extendedGCD .m %%
5 %% %%
6 %% Author : Michae l R . Spink %%
7 %% %%
8 %% This f i l e computes t h e gcd of two %%
9 %% p o s i t i v e i n t e g e r s u s i n g a m a t r i x method %%

10 %% t o r e d u c e work load on m yse l f and %%
11 %% p o t e n t i a l l y r u n t i m e i f I have %%
12 %% implemented t h i s w e l l i n t h e t ime t h a t %%
13 %% I have . W r i t t e n f o r CS462 %%
14 %% %%
15 %% INPUTS : %%
16 %% @input a %%
17 %% a i s any p o s i t i v e i n t e g e r %%
18 %% @input b %%
19 %% b i s any p o s i t i v e i n t e g e r %%
20 %% %%
21 %% P r e c o n d i t i o n s : %%
22 %% i d e a l l y you want a>b , though %%
23 %% t h i s s h o u l d be f i n e o t h e r w i s e %%
24 %% I have n o t t e s t e d t h i s though %%
25 %% %%
26 %% R e t u r n s : %%
27 %% @return d %%
28 %% d=gcd (a , b)>0 by a s s u m p t i o n %%
29 %% @return s %%
30 %% s= i n t e g e r a s s o c i a t e d wi th a %%
31 %% @return t %%
32 %% t = i n t e g e r a s s o c i a t e d wi th b %%
33 %% NOTE: d= sa + t b %%
34 %% %%
35 %% %%
36 %%%
37
38
39
40 f u n c t i o n [s , t , d] = ExtendedGCD (a , b)
41 A= z e r o s (2 , 3) ; %% INITIALIZE MATRIX
42 %% SET INITIAL VALUES OF MATRIX
43 A(1 , 1) = a ;
44 A(2 , 1) = b ;
45 A(1 , 2) = 1 ;
46 A(2 , 3) = 1 ;
47 %%
48 w h i l e (A(2 , 1) ˜ = 0 &&A(1 , 1) ˜ = 0) %% MAIN LOOP; w h i l e r e c u r s i o n can o c c u r ;
49 %%% s a n i t y check t o r e d u c e r u n t i m e

Michael R. Spink Page 53 of 60

50 i f (A(2 , 1) = =A(1 , 1))
51 %%% SET APPROPRIATE VALUES
52 d=A(2 , 1) ;
53 s=A(2 , 2) ;
54 t =A(2 , 3) ;
55 r e t u r n ; %% RETURN TO BASE
56 end
57 i f (A(2 ,1) <A(1 , 1)) %% CHECK WHICH VALUE IN MATRIX IS BIGGER
58 q= f l o o r (A(1 , 1) /A(2 , 1)) ; %% COMPUTE q i n d i v i s i o n a l g o ; a=bq+ r
59 A(1 , 1) = mod (A(1 , 1) ,A(2 , 1)) ; %% ‘ ‘CHEAT’ ’ t o compute r ;
60 %%; t h i s i s i n pseudocode g i v e n
61 A(1 , 2) =A(1 ,2)− q∗A(2 , 2) ; %% u p d a t e s
62 A(1 , 3) =A(1 ,3)− q∗A(2 , 3) ; %% u p d a t e t
63 e l s e i f (A(2 ,1)==0&&A(1 , 1) = = 0) %% second s a n i t y check t o r e d u c e r u n t i m e
64 %%% b u t r e a l l y , more l i k e e r r o r c h e c k i n g
65
66 %% SET VALUES
67 d=A(2 , 1) ;
68 s=A(2 , 2) ;
69 t =A(2 , 3) ;
70 r e t u r n ; %% RETURN TO BASE
71 e l s e %%% (A(2 ,1) >A(1 , 1)
72 q= f l o o r (A(2 , 1) /A(1 , 1)) ; % compute q i n d i v i s i o n a l g o
73 A(2 , 1) = mod (A(2 , 1) ,A(1 , 1)) ; %% ‘ ‘ c h e a t t o f i n d r . I s i n code g i v e n
74 A(2 , 2) =A(2 ,2)− q∗A(1 , 2) ; %% u p d a t e s
75 A(2 , 3) =A(2 ,3)− q∗A(1 , 3) ; %% u p d a t e t
76 end
77 end
78
79 i f (A(1 , 1) = = 0) %% d e t e r m i n e which row t o use ; use row 2 h e r e
80 %% SET VALUES
81 d=A(2 , 1) ;
82 s=A(2 , 2) ;
83 t =A(2 , 3) ;
84 e l s e %% use row 1 r
85 %% SET VALUES
86 d=A(1 , 1) ;
87 s=A(1 , 2) ;
88
89 t =A(1 , 3) ;
90
91 end
92
93 %%%%% FOR TESTING PURPOSES
94
95 %%% EOF

1
2 %%%
3 %% %%
4 %% F i l e : Squa reAndMul t ip ly .m %%
5 %% %%
6 %% Author : Michae l R . Spink %%
7 %% %%
8 %% This f i l e r u n s t h e %%
9 %% s q u a r e and m u l t i p l y a l g o r i t h m (a ˆ b mod n)%%

10 %% %%
11 %% O r i g i n a l l y w r i t t e n f o r CS461 %%
12 %% %%
13 %% INPUTS : %%
14 %% @input a %%
15 %% a i s any p o s i t i v e i n t e g e r %%
16 %% @input b %%
17 %% b i s any p o s i t i v e i n t e g e r (exp) %%
18 %% @input n %%
19 %% n i s any p o s i t i v e i n t e g e r (mod) %%
20 %% %%
21 %% R e t u r n s : %%
22 %% @return a %%
23 %% a= r e s u l t o f a l g o %%
24 %% %%

Michael R. Spink Page 54 of 60

25 %%%
26
27 f u n c t i o n a = Squa reAndMul t i p ly (a , b , n)
28 b= d e c 2 b i n (b) ; %c o n v e r t t o b i n a r y
29 l e n = l e n g t h (b) ;
30 o r i g =a ;
31 i =2 ;
32 w h i l e (i<l e n +1)
33 a=mod ((a ˆ 2) , n) ;
34 c u r r b i t = s t r 2 d o u b l e (b (i)) ;
35 i f (c u r r b i t == 1)
36 a=mod ((a∗ o r i g) , n) ;
37 end
38 i = i +1 ;
39 end
40
41 %%%%%%%%%%%%% EOF

We also include the Collatz interpretation of preprocessing from Section 7.4 here.
1
2 %%%
3 %% %%
4 %% F i l e : Col la tz QR NR 02 .m %%
5 %% %%
6 %% Author : Manuel Lopez %%
7 %% Author : Michae l R . Spink %%
8 %% %%
9 %% This f i l e t r i e s t o d e t e r m i n e i f a v a l u e %%

10 %% i s a QR or NR mod p . B e t t e r t h a n E u l e r ? %%
11 %% %%
12 %% i n p u t p , a pr ime t o work wi th (Z p) %%
13 %% i n p u t C , a v a l u e i n Z p f o r t h e program %%
14 %% t o f i n d i t s s q u a r e r o o t , %%
15 %% i f i t e x i s t s %%
16 %% %%
17 %% o u t p u t t s t , 1 i f C i s a QR, %%
18 %% p−1 i f NR %%
19 %% %%
20 %%%
21
22 f u n c t i o n t s t = Col la tz QR NR 02 (p , C)
23 i f C > p / 2 && C < p %% IF IN Q3 , Q4
24 C = p−C ; %FLIP
25 end
26 d = C ;
27 t s t = p−1;
28 i f mod (p , 8) = = 1 % i f 1 mod 8
29 f o r i = 1 : (p−1)/4
30 i f f l o o r (d / 2) = = d / 2
31 d = d / 2 ;
32 e l s e
33 d = (p−d) / 2 ;
34 end
35 i f d == C
36 t s t = p−1;
37 b r e a k ;
38 e l s e i f f l o o r (s q r t (d))== s q r t (d)
39 t s t = 1 ;
40 b r e a k ;
41 end
42 end
43 e l s e i f mod (p , 8) = = 5
44 i f f l o o r (C/ 2) = =C/ 2
45 e = C / 2 ;
46 e l s e
47 e = (p−C) / 2 ;
48 end
49 i f f l o o r (s q r t (e))== s q r t (e)
50 t s t = p−1;

Michael R. Spink Page 55 of 60

51 end
52 f o r i = 1 : (p−1)/4
53 i f f l o o r (e / 2) = = e / 2
54 d = e / 2 ;
55 e l s e
56 d = (p−e) / 2 ;
57 end
58 i f f l o o r (s q r t (d))== s q r t (d)
59 t s t = 1 ;
60 b r e a k ;
61 end
62 i f f l o o r (d / 2) = = d / 2
63 e = d / 2 ;
64 e l s e
65 e = (p−d) / 2 ;
66 end
67 i f f l o o r (s q r t (e))== s q r t (e)
68 t s t = p−1;
69 b r e a k ;
70 end
71 end
72 end

The following code is the brute force algorithm that we compared to in Section 7.3

1 %%%
2 %% %%
3 %% F i l e : B r u t e F o r c e .m %%
4 %% I n t e r n a l F i l ename : B r u t e F o r c e v 2 .m %%
5 %% %%
6 %% Author : Michae l R . Spink %%
7 %% Author : Manuel Lopez %%
8 %% %%
9 %% This f i l e b r u t e f o r c e s t h e s q u a r e r o o t %%

10 %% problem f o r g i v e n v a l u e s %%
11 %% %%
12 %% i n p u t p , a pr ime t o work wi th (Z p) %%
13 %% i n p u t c , a v a l u e i n Z p f o r t h e program %%
14 %% t o f i n d i t s s q u a r e r o o t , %%
15 %% i f i t e x i s t s %%
16 %% %%
17 %% o u t p u t r o o t , one o f two s q u a r e r o o t s , %%
18 %% 0 i f NR %%
19 %% %%
20 %%%
21
22 f u n c t i o n r o o t = B r u t e F o r c e v 2 (p , c)
23 %Was go ing t o e x c l u d e c =1 , r o o t =1 , b u t i t ’ s f a s t e r t h i s way somehow
24 A= randperm ((p−1) / 2 , (p−1) / 2) ; %randomize e l e m e n t s i n Z p
25 f o r r o o t =A %p i c k e l e m e n t
26 temp= r o o t ; %c r e a t e t e m p o r a r y
27 temp=mod (temp ˆ 2 , p) ; %s q u a r e and mod
28 i f temp==c %check i f winner
29 r e t u r n
30 end
31 end
32 r o o t =0 ; %i s NR, r e p o r t a s such
33 r e t u r n
34
35 %%%% EOF

Lastly, here is one of the functions that we used to get the results seen in Section 7.3. This file

tested total runtime. The function that tested for iterations requires slight changes to this file, the

algorithm, and the brute force file. Note the use of internal filenames for my files.

Michael R. Spink Page 56 of 60

1 %%%
2 %% %%
3 %% F i l e : T e s t S u i t e .m %%
4 %% I n t e r n a l F i l ename : T e s t S u i t e v 2 .m %%
5 %% %%
6 %% Author : Michae l R . Spink %%
7 %% Author : Manuel Lopez %%
8 %% %%
9 %% This f i l e t e s t s b r u t e f o r c e and our %%

10 %% a l g o r i t h m t o compare i t e r a t i o n c o u n t s %%
11 %% and t h e t ime i t t a k e s t h e s e %%
12 %% f i l e s t o run %%
13 %% %%
14 %% i n p u t p , a 4n+1 pr ime t o t e s t %%
15 %% i n p u t number , t h e number o f %%
16 %% t r i a l s t o run %%
17 %% i n p u t QROnlyTrigger , k ind of t e s t t o run %%
18 %% 0− NR’ s on ly %%
19 %% 1− QR’ s on ly %%
20 %% e l s e− random m i x t u r e %%
21 %% %%
22 %%%
23
24 f u n c t i o n [] = T e s t S u i t e v 2 (p , number , QROnlyTrigger)
25 c l c
26 X=[’RUNNING: T e s t S u i t e v 2 (’ , num2s t r (p) , ’ , ’ , num2s t r (number) , ’ , ’ . . .
27 , num2s t r (QROnlyTrigger) , ’) ’] ;
28 d i s p (X) %d i s p l a y what u s e r i n p u t t e d .
29 d i s p (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)
30 wrong =0; %number o f wrong answer s
31 answer s = [] ; %a r r a y o f answer s t o be compared a g a i n s t
32 wrongseeds = [] ; %wrong answer s
33 t r i a l s =0 ; %number o f t r i a l s .
34 a r = randperm (p−1, number) ; %choose number random i n t e g e r s on [1 , p−1]
35 d i s p (’BRUTE FORCE ’) %run b r u t e f o r c e
36 f o r i =1 : numel (a r)
37 C= a r (i) ;
38 i f QROnlyTrigger ==0 %e n s u r e NR
39 w h i l e Squa reAndMul t ip ly (C , (p−1) /2 , p)==1
40 C=mod (C+1 , p) ;
41 end
42 end %e n s u r e QR
43 i f QROnlyTrigger ==1
44 C=mod (Cˆ 2 , p) ;
45 end
46 elm= B r u t e F o r c e v 2 (p , C) ;
47 i f elm==0
48 W=[num2s t r (C) , ’ i s an NR (mod ’ , num2s t r (p) , ’) . ’] ;
49 d i s p (W)
50 e l s e
51 W=[num2s t r (elm) , ’ ˆ2= ’ , num2s t r (C) , ’ (mod ’ , num2s t r (p) , ’) . ’] ;
52 d i s p (W)
53 end
54 answer s =[answers , elm] ;
55 end
56 d i s p (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)
57 d i s p (’ALGORITHM RESULTS ’)
58 f o r i =1 : numel (a r)
59 C= a r (i) ;
60 i f QROnlyTrigger ==0
61 w h i l e Squa reAndMul t ip ly (C , (p−1) /2 , p)==1
62 C=C+1;
63 end
64 end
65 i f QROnlyTrigger ==1
66 C=mod (Cˆ 2 , p) ;
67 e l s e i f QROnlyTrigger ==0
68 i f answer s (i) ˜ = 0

Michael R. Spink Page 57 of 60

69 c o n t i n u e
70 end
71 end
72 elm= a lgov11 (p , C) ;
73 %elm= J u s t A l g o v 2 (p , C) ;
74 i f elm==0
75 W=[num2s t r (C) , ’ i s an NR (mod ’ , num2s t r (p) , ’) . ’] ;
76 d i s p (W)
77 e l s e
78 W=[num2s t r (elm) , ’ ˆ2= ’ , num2s t r (C) , ’ (mod ’ , num2s t r (p) , ’) . ’] ;
79 d i s p (W)
80 end
81 i f elm ˜= answer s (i) && p−elm ˜= answer s (i)
82 wrong=wrong +1;
83 wrongseeds =[wrongseeds , a r (i) , p−a r (i)] ;
84 end
85 t r i a l s = t r i a l s +1 ;
86 end
87 %Re po r t r e s u l t s
88 d i s p (’ ’)
89 d i s p (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)
90 d i s p (’ ’)
91 i f QROnlyTrigger ==1
92 X=[’QR ONLY TEST MOD ’ , num2s t r (p)] ;
93 d i s p (X)
94 e l s e i f QROnlyTrigger ==0
95 X=[’NR ONLY TEST MOD ’ , num2s t r (p)] ;
96 d i s p (X)
97 e l s e
98 X=[’RANDOM TEST MOD ’ , num2s t r (p) , ’ , QR/NR AREs MIXED ’] ;
99 d i s p (X)

100 end
101 W=[’NUMBER OF TRIALS : ’ , num2s t r (t r i a l s)] ;
102 d i s p (W)
103 Z=[’NUMBER OF WRONG ANSWERS: ’ , num2s t r (wrong) , ’ . THEY ARE: ’] ;
104 d i s p (Z)
105 d i s p (wrongseeds)
106 d i s p (’SEE MATLAB’ ’S RUN AND TIME FUNCTION FOR RUNTIME STATS ’)
107 %%%% EOF

Michael R. Spink Page 58 of 60

11 References

[1] Agarwal, A. [Lecture notes] (Fall 2017). MATH 771: Mathematics of Cryptography Lectures.

Lectures presented at Rochester Institute of Technology, Rochester NY.

[2] Bernstein, D. (2001). Faster Square Roots in Annoying Finite Fields; Draft.

Retrieved from https://www.researchgate.net/publication/2381439_

Faster_Square_Roots_in_Annoying_Finite_Fields

[3] Cannas da Silva, A. (2006). Lectures on Symplectic Geometry. Retrieved from https:

//people.math.ethz.ch/˜acannas/Papers/lsg.pdf

[4] Guy, Q. (2012, October 10). Fast String to Double Conversion. Re-

trieved August 16, 2018, from Mathworks: File Exchange website:

https://www.mathworks.com/matlabcentral/fileexchange/

28893-fast-string-to-double-conversion?s_tid=mwa_osa_a

[5] Jones, G. A., & Jones, J. M. (2005). Springer Undergraduate Mathematics Series: Elementary

Number Theory (8th ed.). Springer.

[6] LeVeque, W. J. (1977). Fundamentals of Number Theory (2015 ed.). New York, NY: Dover

Publications.

[7] Peralta, R. (1992). On the Distribution of Quadratic Residues and Nonresidues Modulo a

Prime Number. Mathematics of Computation, 58(197), 433-440. https://doi.org/

10.1090/S0025-5718-1992-1106978-9

[8] Pocklington, H.C. (1917). The Direct Solution of the Quadratic and Cu-

bic Binomial Congruences with Prime Moduli. Proceedings of the Cam-

bridge Philosophical Society, XIX, 57-59. Retrieved from https:

//archive.org/stream/proceedingsofcam1920191721camb/

proceedingsofcam1920191721camb_djvu.txt

[9] Printer, C. C. (1990). A Book of Abstract Algebra (2nd ed.). New York, NY: Dover.

Michael R. Spink Page 59 of 60

https://www.researchgate.net/publication/2381439_Faster_Square_Roots_in_Annoying_Finite_Fields
https://www.researchgate.net/publication/2381439_Faster_Square_Roots_in_Annoying_Finite_Fields
https://people.math.ethz.ch/~acannas/Papers/lsg.pdf
https://people.math.ethz.ch/~acannas/Papers/lsg.pdf
https://www.mathworks.com/matlabcentral/fileexchange/28893-fast-string-to-double-conversion?s_tid=mwa_osa_a
https://www.mathworks.com/matlabcentral/fileexchange/28893-fast-string-to-double-conversion?s_tid=mwa_osa_a
https://doi.org/10.1090/S0025-5718-1992-1106978-9
https://doi.org/10.1090/S0025-5718-1992-1106978-9
https://archive.org/stream/proceedingsofcam1920191721camb/proceedingsofcam1920191721camb_djvu.txt
https://archive.org/stream/proceedingsofcam1920191721camb/proceedingsofcam1920191721camb_djvu.txt
https://archive.org/stream/proceedingsofcam1920191721camb/proceedingsofcam1920191721camb_djvu.txt

[10] Quadratic Nonresidue. (n.d.). Retrieved August 26, 2018, from Wolfram Mathworld website:

http://mathworld.wolfram.com/QuadraticNonresidue.html

[11] Quadratic Residue. (n.d.). Retrieved August 16, 2018, from Wolfram Mathworld website:

http://mathworld.wolfram.com/QuadraticResidue.html

[12] Schlenk, F. (2018), Symplectic Embedding Problems, Old and New, Bulletin of the AMS,

55(2), p.139-182 https://doi.org/10.1090/bull/1587

[13] Schoof, R. (1985). Elliptic Curves Over Finite Fields and the Computation of Square Roots

mod p. Mathematics of Computation, 44(170), 483-494. https://doi.org/10.2307/

2007968

[14] Shirali, S. A. (2003). 6: On Fermat’s Two Squares Theorem. In S. A. Shirali

(Author) & C. S. Yogananda (Ed.), Number Theory (pp. 30-33). Retrieved from

https://books.google.com/books?id=BkBSfFjT1BgC&pg=PA30&lpg=

PA30&dq#v=onepage&q&f=false

[15] Tornarı́a, G. (2002). Square Roots Modulo p. Latin American Symposium on Theoretical

Informatics, 430-434. https://doi.org/10.1007/3-540-45995-2_38

[16] Turner, S. M. (1994). Square Roots mod p. The American Mathematical Monthly, 101(5),

443-449. https://doi.org/10.2307/2974905

[17] Walum, H. (1982). On the distribution of quadratic residues modulo a prime. Journal

of Number Theory, 15(2), 248-251. https://doi.org/10.1016/0022-314X(82)

90029-4

[18] Wilson, J. (2012). [Manifolds] [Lecture notes]. Retrieved August 19, 2018, from http:

//www.math.lsa.umich.edu/˜jchw/WOMPtalk-Manifolds.pdf

Michael R. Spink Page 60 of 60

http://mathworld.wolfram.com/QuadraticNonresidue.html
http://mathworld.wolfram.com/QuadraticResidue.html
https://doi.org/10.1090/bull/1587
https://doi.org/10.2307/2007968
https://doi.org/10.2307/2007968
https://books.google.com/books?id=BkBSfFjT1BgC&pg=PA30&lpg=PA30&dq#v=onepage&q&f=false
https://books.google.com/books?id=BkBSfFjT1BgC&pg=PA30&lpg=PA30&dq#v=onepage&q&f=false
https://doi.org/10.1007/3-540-45995-2_38
https://doi.org/10.2307/2974905
https://doi.org/10.1016/0022-314X(82)90029-4
https://doi.org/10.1016/0022-314X(82)90029-4
http://www.math.lsa.umich.edu/~jchw/WOMPtalk-Manifolds.pdf
http://www.math.lsa.umich.edu/~jchw/WOMPtalk-Manifolds.pdf

	A Transparent Square Root Algorithm to Beat Brute Force for Sufficiently Large Primes of the Form p = 4n + 1
	Recommended Citation

	Committee Signature Page
	Abstract
	Acknowledgements
	Introduction/Preliminaries
	The square root problem and number theory
	Relevant Symplectic Geometry

	Previous Work
	Geometrical solutions to the square root problem
	Transforming the problem into symplectic geometry
	Using to solve for the square root
	The Front-Loading Conjecture

	An Algorithm to find the square root
	The Preprocessing steps
	Crux of the Algorithm: The Repeated Multiplication
	Comparing our algorithm to Brute Force
	Improving the Design of the Algorithm
	Simple working examples of repeated multiplication

	Future work
	Conclusion
	Appendix 1: Code
	References

