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Abstract

A proposed process flow for a complete FinFET etch module is presented as

well as experiments to ensure that the target films are etched uniformly with proper rate,

selectivity and anisotropy. The proposed process flow was developed at RIT, designed to

closely reproduce what the semiconductor industry uses for a Self-Aligned Double Pattern-

ing (SADP) process module while advancing RIT’s current cleanroom facility capabilities.

The etching experiment is proposed such that a sufficient degree of etch endpoint

control can be achieved without a spectrophotometer for endpoint detection using the

Magnetically Enhanced Reactive Ion Etching (MERIE) system at RIT. Without the proper

etch data a number of critical steps would be incredibly difficult to control. Prior to this

work across wafer etch non-uniformity was reported to be approximately 10% with a

regular rate of 1400-1500�A min−1. This was improved through various means to a non-

uniformity of < 1% and a rate of 2200�A min−1 on average. A way to achieve the mandrel

etch and strip using gas ratios of 4:2:1::CF4 :CHF3 :C2F6 and 4:1::CHF3 :C2F6 , was

derived, respectively.
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Motivation for a Patterning Etch Study

RIT has been teaching students about IC fabrication since the program’s in-

ception in 1982, the introduction of the masters program in 1987 and its student-run

factory in 1988 [1–3]. In 1992 RIT accomplished a longterm goal of producing CMOS

circuits for its factory class with a P-Well 9 photolithographic layer process and single level

metal [1, 4]. This process was refined not much later in 2000 into a sub-micron process

producing an Leff < 1.0µm process with 10 lithographic levels and the introduction of

a second metal layer [5, 6]. This process was then refined again to produce 250nm tran-

sistors in 2006 [7]. In 2014 this process was brought down to a 150nm advanced CMOS

with a 14 level lithographic process [8–10].

In recent years industry has moved away from a planar structure, as shown in

Figure 1.1a, that RIT has been using, and has moved to the FinFET device architecture

as shown in Figure 1.1b [11, 12]. This is largely in part due to Moore’s law moving the

industry to make smaller and smaller transistors improving packing density. With this new

development also comes larger control with the process, with planar devices the active

area is simply L ∗W , however the active area in a FinFET is L ∗ (t+ 2 ∗Hfin) this allows

for the transistor width to be dependent on height and minimally the width of the fin

itself.

1



CHAPTER 1. MOTIVATION FOR A PATTERNING ETCH STUDY

(a) (b)

Figure 1.1: Two types of MOSFET: Planar FET(a) and FinFET(b) [11].

With this recent development in industry RIT is looking to further develop its

CMOS process into a FinFET process. This has been attempted before at RIT using Low

Temperature Oxide (LTO) sidewall spacers with a pitch of 0.5-1µm between fins [13–15].

While the process is sound, it doesn’t have the appropriate packing density to call it a

FinFET process. In order to continue forward, sub-lithographic patterning techniques,

such as double patterning, need to be introduced.

There are multiple ways to go about sub-lithographic patterning primarily Litho-

Etch-Litho-Etch (LELE), Litho-Freeze-Litho-Etch (LFLE) and Self-Aligned Double Pat-

terning (SADP), these three techniques have been used at RIT with varying success

[16–19]. As opposed to LELE and LFLE this work will primarily focus on SADP as a

viable method for double patterning, primarily as it is likely to be the most expandable for

a quadruple or even octuple patterning process. In the SADP process one of the key chal-

lenges is having a appropriate etch and deposition control as opposed to the lithographic

concerns. A highly simplified SADP process is is depicted in 1.2 for the formation of a

fin.

Without adequate hardmask and spacer definition etch processes, SADP be-

comes orders of magnitude more difficult. Spacer definition is simply depicted in Figure

2



CHAPTER 1. MOTIVATION FOR A PATTERNING ETCH STUDY

1 2 3

Figure 1.2: Simplified FinFET formation through SADP.

1.2, steps 1 and 2, whereas the hardmask problem is depicted primarily in step 3. For the

fin-definition (step 3) a highly anisotropic etch must be performed to produce at least a

1:3 to 1:5 ratio for t : Hfin (fin aspect ratio, as defined in Figure 1.1b). This requires that

a highly selective and robust hardmask etch process be utilized. RIT has followed various

industry practices in developing our own process for using carbon as a hardmask, be-it

a-carbon/diamond-like carbon or Spin-On Carbon (SOC) [20, 21]. In order to further im-

prove the RIT capabilities through development of a SADP process, both deposition and

etching improvements must be accomplished to achieve a fin etch for FET construction.

On the etch side of the process development significant studies of the oxide, hardmask,

nitride and silicon etch capabilities all need to be carried out, each of which must address

target material etch rate, etch selectivity, etch anisotropy and uniformity. A particular fo-

cus of this work is the oxide etch issues which appear in multiple steps within the process,

namely in the mandrel etch and the mandrel removal explored in further detail in sections

3.1.6 and 3.1.9.

3



Lithography, Plasma Deposition and Etching Theory

2.1 Lithography

Semiconductor technology is driven by producing ever smaller features. Reduc-

ing the source wavelength is the easiest method of achiving smaller features. Originally

industry intended to switch to an Extreme Ultraviolet (EUV) source with a 13.5 nm wave-

length past the 193 nm node. Due to significant complications in the majority of steps in

implementation as well as cost EUV has however been in perpetual development. As such

to continue Moore’s Law steps needed to be taken to produce smaller features without

changing the source. Many ways have been developed such as Phase Shift Mask (PSM)

and Optical Proximity Correction (OPC) but they only went so far. Even those techniques

have stopped producing smaller features, new techniques needed to be developed. This

is where Multiple patterning strategies have been conceived. Of these, two have become

dominant to produce smaller features, LELE and SADP or variants thereof. The over-

all idea is to reduce the half-pitch(the length of line or space within a given pitch) to

sub-wavelength levels through means of further lithography deposition and etching pro-

cesses. SADP combines conventional optical lithography with deposition and etch steps

to determine final feature dimensions, whereas LELE is primarily a lithographic process.

4



CHAPTER 2. THEORY

2.1.1 Litho-Etch-Litho-Etch

LELE is a lithography process where a pattern is formed from multiple patterning

and direct etching steps. Both dense and isolated features can be formed from this tech-

nique. Generally metals with different etch properties such as aluminum and molybdenum

are used as a hardmask, but other materials can also be used [17]. Figure 2.1 depicts a

simplified process flow for LELE to produce dense 1:1 line:space features. As shown in

1 2 3

4 5 6

Figure 2.1: LELE Dense process flow(1:1) [17]

Figure 2.1, the general concept is to deposit the primary hardmask with a secondary hard-

mask above, depicted in Figure 2.1(1). Then photoresist is applied and patterned at a 1:3

line:space ratio to pattern the top hardmask as shown in Figure 2.1(2-3). Following this,

more photoresist is applied and patterned again at the same pitch but with the line placed

in the middle of the previous space as shown in Figure 2.1(4). This new photoresist layer

and the top hardmask then are used to pattern the primary bottom hardmask as shown in

Figure 2.1(5), where the top hardmask and photoresist are then removed leaving only the

bottom hardmask as shown in Figure 2.1(6) [17, 22–24]. While LELE can produce good

results, it can also introduce overlay issues as shown in Figure Figure 2.2 [24, 25]. Most

of the problems of LELE are solved by using a SADP patterning process.

5



CHAPTER 2. THEORY

Figure 2.2: LELE overlay issues for a 1:1 features, following step 3 in Figure 2.1

2.1.2 Self-Aligned Double Patterning

SADP is also a lithography based process by which a pattern is made over mul-

tiple steps that introduces new deposition and etch related issues affecting the line:space

ratio not found in LELE, but none of the overlay issues. SADP does require a second

cut or block mask to clean up the final image when the process is complete in most

circumstances. The SADP process starts by patterning a mandrel as depicted by the top

level of Figure 2.3 forming the primary pattern. The mandrel is then trimmed through

Primary PatternSecondary Pattern

Spacer

Mandrel

Figure 2.3: SADP simplified flow [26]

means of over-development or overetch and a different film is deposited over and etched

back forming spacers on the sidewalls of the mandrel. The mandrel then gets stripped

leaving the two sidewalls behind in ideally a 1:1 line:space ratio with the original spaces

6



CHAPTER 2. THEORY

being defined as the secondary pattern [26]. Then a cut or trim mask can be used to

clean up the features as depicted in Figure 2.4. This is a required step as the spacers are

formed around the mandrel and may produce some artifacts that need to be removed in

order for shorts or other defects to not occur [24, 26]. As features have gotten smaller

SADP has been used in conjunction with a-carbon or newer SOC materials to incorporate

etch stops as well as hardmask/BARC layers into the process. The incorporation of these

newer materials has also removed the majority of standing wave effects in resist as a

problem during subsequent etch processes [24,26–31]. Additionally the use of dry plasma

processing as opposed to wet chemical etching improved the resulting patterned profile.

(1) (2)

Figure 2.4: SADP cut mask before(1) and after(2) [26].

2.2 Plasma Processing

Plasma processing has had a long history within the semiconductor industry in

both coating and etching materials. In plasma processing whether depositing or etching

the primary mechanisms are the same. The various types of coating and etching that are

used within industry are depicted in Figure 2.5. What isn’t listed is that ion implantation

is a plasma process similar to Ion Beam Coating (IBC). The most common processes are

Plasma-Enhanced Chemical Vapor Deposition (PECVD) and sputtering for coating. The

primary focus here is on glow discharge plasmas, specifically for PECVD and Reactive Ion

Etch (RIE). A glow discharge plasma is created by inducing an electric field between an

anode and a cathode within a vacuum. This can be done with DC current or RF modulated

7



CHAPTER 2. THEORY

(a) (b)

Figure 2.5: Types of plasma coating(a) and etching(b) technology [32].

current also known as a Capacitively Coupled Plasma (CCP). All of this is done to achieve

the proper current density in the normal glow region of 10−5 → 10−3A/cm2 as shown

in Figure 2.6. To start the plasma, an electric field between an anode and cathode of

Figure 2.6: Current-Voltage relation for plasma activation [33]

distance d is induced in the chamber, where the field is measured simply as V/d. The

electrons present accelerate towards the anode ionizing a gaseous atom and producing

another electron in the process. This ion then accelerates towards the cathode due to

the induced electric field [33, 34]. If the ion strikes the cathode at sufficient energy a

secondary electron may be emitted(Figure 2.7(7)).
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Figure 2.7: Plasma reaction mechanisms [35]

It then follows that continued collisions produce further collisions eventually

resulting in a breakdown voltage, also shown as sheath voltage, as shown in Equation 2.1c,

where p is pressure in Torr, d is some distance in cm depicting the plasma sheath edge, γse

is the secondary electron emission coefficient, and A, B and C represent experimentally

derived constants for a particular gas. The current going to the anode is shown as Equation

2.1a, where α is taken to be the Townsend coefficient shown in Equation 2.1b, and λe

is the mean free path length for inelastic(ionization) electron-neutral collisions, E is the

induced electric field, and Vi is the ionization potential for the gas species. The breakdown

voltage shown in Equation 2.1c can be plotted as a function of the pressure and distance

to produce what is known as a Paschen curve(Vb(pd)) whose minima is Vmin as depicted

by Figure 2.8.

Ic exp(αx) = I (2.1a)

α =
1

λe
exp

(
Vi

eEλe

)
≡ pA exp

(
−Bp
E

)
(2.1b)

A(pd)

C + ln(pd)
u Vb =

Bpd

lnApd− ln[ln(1 + 1/γse)]
(2.1c)
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Figure 2.8: A example Paschen Curve depicting the breakdown voltage of a gas between two
electrodes separated by a distance d at a pressure p [33]

A Paschen curve exists for every different gas species and cross-section ioniza-

tion [33, 34]. Before the breakdown voltage is achieved the plasma is in the Townsend

region(below 8 ∗ 10−5A/cm2 = IA) once the breakdown voltage is reached a plasma is

said to have ignited and be in the normal glow discharge state, also resulting in a drop in

overall voltage as depicted by Figure 2.6. As the discharge increases there is a change from

the normal glow to abnormal glow used for processing within the cathode sheath [33,34].

After the plasma is ignited and stable it follows that there is a standard set of chemical

reactions that occur, these are shown by Reactions 2.2a through 2.2i, all of which depict

both the deposition and etching mechanisms, as shown in Figure 2.7 [34–36].

Electron− Ion Pair Production : e+ AB → AB+ + 2e (2.2a)

Radical Production : e+ AB → e+ A+B (2.2b)

Negitive Ion Production : e+ AB → A− +B (2.2c)

Electron Affinity : A(g) + e→ A−(g) (2.2d)

Gas− Phase Reaction : A+B → C +D (2.2e)
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Ion Transport flux to surface : Γi = −Da∇ni (2.2f)

Radical Transport flux to surface : ΓA = −DA∇nA (2.2g)

Surface Reaction : A(g) +B(s)→ C(g) (2.2h)

Ionization Reaction : A(g)→ A+(g) + e (2.2i)

Seeing as deposition and etching have their own quirks it is prudent to describe the

reactions that are common for both. As noted before electrons interact with the gases

within the chamber, this is shown in Reactions 2.2a through 2.2d, being electron-ion

pair, radical, negative ion productions and electron affinity respectively. These reactions

produce the ions and radicals that proceed towards the substrate, as depicted by the

Fluxes 2.2f and 2.2g. Once the atoms reach the surface the Reaction 2.2h occurs with

the creation of adsorption sites with the promotion of new gas species as depicted by

Figure 2.7(4). The adsorption site at (4) also alters the film sometimes detrimentally

inducing damage as shown in Figure 2.7(8). Both (4) and (8) do however promote film

adhesion and further reactions as well as desorption. Sputtering as shown in Figure 2.7(5)

can remove species that are trapped or have a low vapor pressure as well as smooth surface

topography. Ion implantation also occurs under this mechanism as referenced by Figure

2.7(6) which also creates defects such as trapped gas species as in Figure 2.7(9) [35]. All

of these reaction processes are manipulated later in this thesis through the use of Chemical

Vapor Deposition (CVD) and RIE to achieve the desired features.

2.2.1 Chemical Vapor Deposition

CVD is a process by which a material is deposited by introducing gases into a

chamber and producing a chemical reaction. This method of thin film deposition produces

a conformal coating as opposed to similar Physical Vapor Deposition (PVD) methods.

There are many different types of reactor chamber configurations, most prominent are
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the horizontal and single-wafer vertical or pancake reactors as depicted in Figure 2.9.

The reaction chamber dictates how uniform the gas flow and transport of reactants and

products to the substrate surface.

(a) (b) (c)

Figure 2.9: CVD horizontal(a), vertical(b), and pancake(c) reaction chambers [33]

All CVD reactions follow a fundamental transport mechanism as depicted in

Figure 2.7, replicated here in Figure 2.10, however a plasma is not necessarily required, as

higher temperatures are usually used to overcome the ∆U , ∆S and ∆H or internal energy,

entropy and enthalpy in the reaction, respectively. In CVD the reaction mechanism is most

Figure 2.10: Plasma reaction mechanisms, replicated here from Figure 2.7 [35]

commonly seen to be at the sites (1-5) as shown in Figure 2.7. The first step is depicted

in Figure 2.7(4) following standard plasma processes, then the atoms are diffused along

the surface(Figure 2.7(1)) improving step coverage and altering crystallinity and finding
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preferred orientations [33,35,36]. Following surface diffusion comes nucleation and growth

where the film densifies as well as rearranges bonds and modifies film stresses. This is best

depicted by Figure 2.11, which depicts island, layer and Stranski-Krastanov growth as the

primary growth mechanisms. A special note is made for sputtering of the surface(Figure

2.7(5)), for CVD this also improves step coverage and smooths out surface topography

in order to achieve a more uniform film. When a plasma is introduced the reaction can

proceed forward at lower temperatures than otherwise would be required. To determine

whether or not a reaction will proceed forward the Gibbs free energy function(Equation

2.3) is used [36].

Figure 2.11: Film growth mechanisms [36]

∆G = ∆H − T∆S (2.3)

The Gibbs energy can then be applied to a chemical reaction for each entity

within the reaction similar to Equation 2.4 for a simple 3-substance equilibrium reaction,

where a, b and c are stoichiometric coefficients. The individual Gibbs energies are depicted

by Equation 2.5, where R is the gas constant, G0
i is the free energy for a given material

in it’s normal state, T is the Temperature in K and ai is a thermodynamic concentration

reflecting the change in energy when the substance is not in its normal state. Combining
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both Equations 2.4 and 2.5 the Equation 2.6 is produced.

∆G = cGC − aGA − bGB (2.4)

Gi = G0
i +RT ln ai (2.5)

∆G = ∆G0 +RT ln
acC
aaAa

b
B

(2.6)

∆G = RT ln

[ (
aC/aC(eq)

)c(
aA/aA(eq)

)a (
aB/aB(eq)

)b
]

(2.7)

For the equilibrium state, Equation 2.7 is most useful and one of the most

frequently used equations for chemical thermodynamics [36]. The ratio
(
ai/ai(eq)

)
is a

measure of saturation of the species within the reaction, if it exceeds 1, it is supersaturated

otherwise under-saturated. This then allows the Gibbs energy to be used as a metric for

how the reaction will proceed, most notably in a Gibbs vs temperature curve. Many ∆G0

by T curves, similar to the example depicted in Figure 2.12, can be invaluable as to the

prediction of how a reaction will proceed.

Many other measures of merit exist for how the reaction will proceed, making

CVD a very complicated process involving chemistry, physics, gas transport phenomena,

as well as thermodynamics. Most notably the Knudsen, Reynolds and Grashof numbers

as depicted by Equations 2.8,2.9, and 2.10 are quite useful for determining the feasibility

of the reaction [33, 36].

Knudsen Number : Kn =
λ

L
(2.8)

Reynolds Number : Re =
ρvL

η
(2.9)

Grashof ′s Number : Grt =
gρ2L3∆T

η2Tt
(2.10)
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Figure 2.12: A Gibbs energy vs Temperature curve for the formation of various oxides [36].

The Knudsen number is of particular interest as it is the ratio of the mean free

path length(λ) and reactor dimension(L). This determines whether or not the majority

of the reaction will occur in the continuum or free molecular flow regimes where either

gas phase collisions dominate or wall collisions dominate respectively [33]. The Reynolds

number depicts the ratio of inertial forces to viscous forces, it is generally used as a

indicator of laminar or turbulent flow and has a large impact on temperature distribution

within the reaction chamber. The Grashof number gives a representation of the convection

within the system with it’s ratio of buoyant to viscous forces. The interaction between

the Reynolds and Grashof numbers is shown in Figure 2.13.Using these figures of merit a

rough idea of how the process will proceed can be obtained.
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Figure 2.13: Normalized Gas flow lines(left) over the range of 0-1 and isotherms in K(right)
for varying Reynolds and Grashof numbers for a vertical reactor design [36, 37].

2.2.1.1 Plasma-Enhanced Chemical Vapor Deposition

PECVD processes follow from standard CVD processes, where additionally a

plasma is induced in generally a pancake style reactor(Figure 2.9c) in a cluster type tool

with flows similar to that of Figure 2.13. Any standard CVD process has the challenge

of conformality to face, whereby a film is placed uniformly from any given surface of

the substrate. Deposition tends to occur in a process similar to that depicted in Figure

2.14b, however voids can form as shown in Figure 2.14c. If the film is deposited in a

non-conformal matter, the surface of the film is usually has higher surface roughness.

Two things usually make a non-conformal surface, either the substrate was rough to

begin with or the deposition had incorrect parameters for the film. Generally a conformal

deposition is ideal, however many factors allow voids to form as in Figure 2.14. When

the precursor mean free path is significantly larger than w or d then ballistic transport

takes over producing the deposition shown in Figure 2.14b, which eventually progresses
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to Figure 2.14c forming a void or ”keyhole” [34]. This metric is distinctly different than

uniformity, conformality is important with regards to assuring that patterned features have

coverage, whereas uniformity deals with the coverage across the wafer.

One way oxide formation avoids this is not using SiH4 /O2 based precursors, and

instead using Tetraethyl orthosilicate (TEOS) bubbled through water with the addition of

O2 to the plasma. The reaction tends to follow two examples as depicted by equations

(a) (b) (c)

Figure 2.14: CVD formation of voids, w, d is the width and depth of a feature pre-deposition
with the incident flux, Γmat ∝ 1− cos θs. [34]

2.11a and 2.11b or that shown in section 2.3.1, Where Reaction 2.11a is defined as

electron impact dissociation and Reaction 2.11b is the reactions of the O-atom with the

material [34]. In highly dilute reactions 2.11b dominates, producing a more oxide-like film

as opposed to a organic-like film provided the TEOS ratio in the gas mixture is roughly

30% as compared to the O2 flows [34,38]. This organic-like nature is perceived to be why

TEOS films are usually annealed after deposition when the gas mixture is shifted past the

30% mark.

e+ Si(OC2H5)n(OH)4−n → Si(OC2H5)n−1(OH)4−n+1 + C2H4 + e (2.11a)

O + Si(OC2H5)n(OH)4−n → Si(OC2H5)n−1(OH)4−n+1 + C2H4O (2.11b)

From this the reaction is thought to proceed by having the TEOS precursors

connecting to the surface, whereby the number of O atoms(nOS) oxidize producing depo-

17



CHAPTER 2. THEORY

sition under the assumption that the reaction rate(DSiO2) is independent of the precursor

for surface coverage and depicted by Equation 2.12a, where the rate constant 0.9 is a

fitted parameter [34]. While this is occurring, the O ions also oxidize the TEOS pre-

cursor for a deposition rate as shown by Equation 2.12b where uB is the Bohm velocity

or velocity the O ion obtains from the pre-sheath region of the plasma. Some degree

of recombination occurs with the O atoms as shown by the recombination flux Equation

2.12c, with the average velocity of the O atom being v̄O, with the increase in temperature

producing a logarithmic increase in srec probability, which decreases nOS reducing overall

deposition rate as shown by equation 2.12a [34]. One of the main benefits of PECVD

TEOS is it’s low temperature process capability, where most depositions for PECVD take

place between 200 − 300°C, under Low-Pressure Chemical Vapor Deposition (LPCVD)

conditions for TEOS the temperature range is around 600−800°C [33,34]. Under LPCVD

the TEOS reaction undergoes pyrolysis(equation 2.13) as opposed to disassociation, at

low temperatures H2 forms instead of water.

D
(1)
SiO2
≈ 0.9nOS

nSiO2

cm s−1 (2.12a)

D
(2)
SiO2
≈
nO+

2
uB

nSiO2

cm s−1 (2.12b)

Γrec ≈ 2srec(T )
1

4
nOS v̄O (2.12c)

Si(OC2H5)4 → SiO2 + 4C2H4 + 2H2O (2.13)

For silicon nitride depositions silane is still used for PECVD, what changes in the source

of nitrogen as opposed to using SiH2Cl2 or some derivative as is usually used in LPCVD.

For a source of nitrogen, either NH3 or N2O are usually used, pure N2 could also be

used as a feedstock. Similarly to TEOS, PECVD silicon nitride depositions occur between

250 − 500°C and under LPCVD conditions for TEOS the temperature range is around

750 − 900°C [33, 34, 39]. The resulting film can have modified stresses by varying the
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electrical properties of the plasma, such as the rf frequency. Interestingly, the source of

hydrogen incorporation has been linked to the NH3 as opposed to the silane, which has

led to some use of N2 as feedstock but at a cost of film quality but does produce a

nitrogen-rich film.

2.2.2 Reactive Ion Etching

Similar to PECVD the majority of reactors for Reactive Ion Etch are of the

pancake variety(Figure 2.9c). The most common type of RIE reactor is Capacitively

Coupled Plasma (CCP) as depicted by Figure 2.15a. Other reactors such as Inductively

Coupled Plasma (ICP)(Figure 2.15b) and Electron-Cyclotron Resonance (ECR)(Figure

2.15c) are also becoming more frequently used as higher degrees of control and anisotropy,

a metric by which etch directionality is measured, are required. A more thorough treatment

of anisotropy is shown in the following section.

(a) (b) (c)

Figure 2.15: RIE Reaction chambers, CCP with low and high frequency RF(a),ICP(b) [40],
and ECR(c) [41].

RIE is commonly misused as a term, it is generally associated with the as-

sumption that by introducing the electric field and producing a plasma that the etch is

anisotropic, this is simply not the case. The process parameters determine the degree of

isotropy not the system itself. In addition the term is a misnomer as neutrals such as
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Figure 2.16: Ion bombardment energy by pressure [42].

Fluorine or Oxygen as opposed to ions are the highly reactive species within the plasma.

At lower pressures, below 0.01Torr, sputter etching occurs, from 0.01-0.1Torr a mix of

sputtering and etching with ions occurs, and above 0.1Torr is closer to chemical plasma

etching, this is depicted by Figure 2.16 [42].

In general, feed gases follow the Reactions 2.14a through 2.14g with some ex-

amples of gases are shown below [34]. Where, the standard reactions 2.14a to 2.14c

represent the majority of reactions, however some films prefer to be etched via unsatu-

rates as in 2.14d. At high pressures or surfaces the reaction depicted by 2.14e can become

important. The addition of oxygen or hydrogen as oxidants or reductants either increase

the concentration of etchant(2.14f) or remove etchant as volatile products(2.14g) [34].

� Saturates: CF4, CCl4, CF3Cl, COF2, SF6, ...

� Unsaturates: CF,CF2, CF3, CHF3, CCl3, ...
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� Etchants: F,Cl, Br,O(for organics), F2, Cl2, Br2, ...

� Oxidants: O,O2, ...

� Reductants: H,H2, ...

� Nonreactive Gasses: Ar,He, ...

e− + saturate→ unsaturate+ etchant+ e− (2.14a)

etchant+ substrate→ volitile products (2.14b)

unsaturate+ substrate→ films (2.14c)

unsaturate+ substrate→ volitile products (2.14d)

etchant+ unsaturate(+M)→ saturate(+M) (2.14e)

oxidant+ unsaturate→ etchant+ volitile product (2.14f)

reductant+ etchant→ volitile products (2.14g)

The ratio between etchant and unsaturate flux at the substrate balances the isotropy of

the etch with film deposition, the key is to form a film in the intermediary between the two

finely balanced process. Low F/C feedstock gases(e.g. C2F4, C4F8) can also be added

to reduce the etchant/unsaturate ratio improving sidewall protection while still removing

material from the trenches. Inert gases are also added to increase the plasma density,

directionality, control the electrical discharge, dilute etchants, substrate thermal properties

as well as alter the gas-phase chemistry [34]. For pure F atom etching, equations 2.15a

and 2.15b where the density of F -atoms near the surface is nFS, this results in a selectivity

of s ≈ 40 at room temperature(300K) [34]. This shows that under pure F atom chemistry,

silicon will tend to etch over oxide.

ESi(�A/min) = 2.86 ∗ 10−12nFST
1/2e−1248/T (2.15a)
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ESiO2(�A/min) = 0.61 ∗ 10−12nFST
1/2e−1892/T (2.15b)

s = 4.66e644/T (2.15c)

Generally pure F2 is not used as a feedstock however as it causes pitting, CF4 is usually

used, as shown to produce the equation 2.16, upon surface reaction.

4CF4 + Si→ 2C2F6 + SiF4 (2.16)

Various papers show characteristics of the CF4 plasma with respect to ox-

ide,nitride and silicon etching [34, 42–49]. Suffice to say that as a result of this re-

search, the most common etch chemistry used for silicon, oxide and nitride etching is

CHF3/CF4/O2/Ar as oxide tends to etch under unsaturate rich conditions, however a

more common gas for the etching of silicon and nitrides is SF6.

Another important metric to look at is the ratio of Power(W ) to total Flow(F ).

This is primarily important to control the deposition of polymer without needing to change

the flow ratios and/or their selectivity to materials. If the flow rate is low and the power

is high highly carbonated polymer deposits(High W/F ). In the opposite situation, high

flow and low power, produces a highly fluorinated polymer film, assuming polymer is being

deposited in the first place. It also controls the size of said polymer being larger or smaller

in particle size [50].

The possible effects of RIE are summarized in Figure 2.17, all of which are

dependent on many different aspects of the process and features. A large portion of effects

such as undercutting, faceting, bowing, sloped sidewalls, microtrenching and sidewall

roughness are primarily due to the effects of the plasma itself, whereas microloading and

Aspect Ratio Dependant Etching (ARDE) are mask/feature dependent side effects of RIE,

ARDE and microloading are given special attention in Appendix C [34, 42, 51–53].
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Figure 2.17: Possible effects of RIE [51, 52].

2.2.2.1 Anisotropy, Selectivity and Uniformity

Anisotropy is critical when talking about a RIE process, especially at small scales.

There are a large number of factors that affect anisotropy, the pitch, hardmask, hardmask

side angle and film selectivity to name a few. The simple equation for anisotropy is shown

in Equation 2.17 and its values depicted by Figure 2.18 [42]. The degree of anisotropy is

measured by A on a 0 to 1 scale, where 1 is anisotropic and 0 is isotropic in the ideal.

The primary component to observe is the etch bias, B, in a purely isotropic etch, the bias

will be twice the film thickness. Whereas a purely anisotropic etch will have no horizontal

etching, Rh.

1− |dm − df |
2yf

= 1− |B|
2yf

= A = 1− Rh

Rv

(2.17)

Following anisotropy, critical dimensions can then be analyzed as shown in Equa-

tion 2.18 [42]. The critical dimension is primarily a function of pitch(dPitch), final feature
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size(df ), film thickness(yf ) and degree of anisotropy. Through this equation it can be

derived that the minimum final feature size can only be twice the film thickness for a

given isotropic process for equal line:space pairs.

dc = dPitch − dm = dPitch − |B| − df = df

[
dPitch − df

df
− 2(1− A)

yf
df

]
(2.18)

Then things start to become complicated, as non-uniformities in the etch, film

thickness, and hardmask come into play. The time to clear a film is depicted by equation

2.19 [42]. This incorporates two non-uniformity factors, that of the film(α) and the etch

rate(β). This is then followed by the total etch time(2.20 [42]) with the non-uniformity

variation of overetching(δ). By contrast, the first time the etched film is broken through

is shown by equation 2.21 [42].

tc =
yf [1 + α]

Rf [1− β]
(2.19)

ttot = tc(1 + δ) (2.20)

tmin =
yf [1− α]

Rf [1 + β]
(2.21)

df df

dm dPitch

dc
yf

ys,max

Figure 2.18: Feature size specifications for etching as described by equation 2.18 [42].

All the while, the hardmask is eroding. This erosion is taken to be ∆/2 from
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each side of the feature, with an angle θ, where ∆ is described by equation 2.22 and

depicted by Figure 2.19 [42]. When the total time is expanded the true scope of the non-

uniformity factors starts to come to light. This erosion adds yet another non-uniformity

factor, ε, when selectivity starts to be considered as in equation 2.23 with the uniformity

factor being considered in equation 2.24 [42]. Where AM is the specific anisotropy for

the hardmask etch which overall contributes to how much ∆ and θ change over time,

ignoring the film etch entirely.

∆ = 2ttot(Rh +Rv cot θ) = 2
Rv

Rf

yf
[1 + α] [1 + δ]

[1− β]

[
cot θ +

Rh

Rv

]
(2.22)

Sm
f =

yf
∆
Um
f [cot θ + [1− Am]] (2.23)

Um
f =

[1 + α] [1 + δ] [1 + ε]

[1− β]
(2.24)

∆
2

Film

Mask

θ

Figure 2.19: Feature shrink due to mask erosion as depicted by equation 2.22 [42].

From all of this then comes the problem of ensuring that while the film clears,

there is a maximum depth into the substrate or underlying film(ys,max) that is allowed for

a given erosion rate(Rs) of that material. This is depicted by equation 2.25. Where the

corresponding selectivity and uniformity factors follow equations 2.26 and 2.27 respectively

[42].
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ys,max = Rs(ttot − tmin) = Rs
yf
Rf

[
[1 + α] [1 + δ]

[1− β]
− [1− α]

[1 + β]

]
(2.25)

Sf
s =

yf
ys,max

U f
s (2.26)

U f
s =

[
β(2 + δ + αδ) + α(2 + δ) + δ

[1− β2]

]
(2.27)

Using all of these factors any given etch, various thicknesses and selectivities can be

determined for any range of materials for a given desired feature size.

2.2.2.2 Magnetically Enhanced Reactive Ion Etching

MERIE is a special class of CCP etcher, whereby magnets are placed around

the chamber similar to a ECR reactor, here depicted by Figure 2.20. By introducing

the magnetic field parallel to the plane of the substrate the particles start to spiral as

shown in Figure 2.21.In a MERIE chamber, there are two pairs of magnets just outside

the chamber to introduce this field. The introduced field rotates clockwise between the

magnets producing a toroid of high-density plasma at the wafer surface. This increase in

plasma density helps stabilize and improve directionality and thus the anisotropy of the

reactor. It is this field addition that adds further tuning of feature profile to be possible,

which is critical for forming the mandrel in this process. [34, 42, 54]

26



CHAPTER 2. THEORY

Figure 2.20: MERIE reactor [54, 55]

Figure 2.21: The trajectory of electrons and ions in a constant magnetic field [34].

2.3 Spin-On Materials As an Alternative to CVD films

Many materials such as photoresist have been spin coated for a long time,

a somewhat newer technology incorporates the same principles and ideas learned from

resist to form other spin-on materials. Photoresist materials operate on simple polymer

chemistry and physics, other materials however use different mechanisms to achieve a

similar goal. In either instance, the materials have various requirements, operate on

the process of Chemical Solution Deposition (CSD) and are sensitive to many defects

when applied incorrectly. Spin coating has three stages independent of material concern,

dispense, flow dominated thinning, solvent evaporation and setting as shown in Figure

2.22. It is recommended that the wafer be spinning during the dispense step as to

better facilitate substrate wetting, this at times does require a hydrophobic or hydrophilic

surface depending on the material being dispensed, for example HMDS is usually used for
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Figure 2.22: The three stages of spin coating: 1:dispense, 2:flow dominated thinning, and
3:solvent evaporation and setting [56]

photoresist surface prep to change the surface from hydrophobic to hydrophilic. Following

the dispense of material provided there is good wetting, the material can start to spin out

to the desired thickness and undergoes flow dominated thinning as expressed by Figure

2.23. The ramp time for this is usually determined by the manufacturer to achieve the

appropriate crossover point at which solvent evaporation can start.It is during this thinning

step that a fair portion of the film is deposited around the edge of the substrate forming

what is known as the edge bead. Frequently an edge bead removal spin is added after

the solvent evaporation phase of deposition.

During the solvent evaporation stage the film starts to densify as a viscous col-

loidal suspension(sol), semisolid or pre-polymer solution. It is at this state that further

processing is performed to start to thermoset the material further driving off more sol-

vent. Spin defects generally arise from too low a dispense volume, too hot of a substrate,

inappropriate exhaust, inappropriate chuck material, to high a spin speed, spun material

temperature or old material. The two most common defects are comets and striations.

Comets arise from particulates in the dispensed liquid sticking to the substrate surface

and impeding flow generating an expanding cone of streaking towards the radial edge.

Striations are formed due to capillary action that becomes unbalanced due to surface

tension differences along the substrate, best described through Figure 2.24.
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Figure 2.23: Solvent thinning following the material dispense. At the ”cross-over” point the
material stops undergoing flow dominated thinning and enters the solvent evaporation

stage. [56]

Figure 2.24: The solvent evaporation stage with respect to surface morphology. [56]
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2.3.1 Spin-On Glass

SOG materials form on average from a sol-gel process. This process involves a

single-phase solution/sol that transitions from the liquid phase to the solid phase forming

a two-phase gel consisting of solid and solvent filled pores. The transition occurs via

destabilization, precipitation or supersaturation. The standard example follows the forma-

tion of silicon dioxide via the Stöber process for hydrolyzing TEOS, to which a simplified

diagram is shown in Figure 2.25. When TEOS(Si(OC2H5)4) is dissolved in ethanol or

other organic solvent it allows it to react with water in solution. The Process follows

Figure 2.25: Sol-Gel/Stöber Process for TEOS [57]

a couple different reactions, listed below(2.28) in order to form an oxide film. The first

two reactions 2.28a and 2.28b hydrolyze the TEOS forming a silanol product. The other

three reactions, 2.28c,2.28d and 2.28e all take the silanol product and start the process

of polymerization, where in the case of reactions 2.28c and 2.28e more water is produced

for further hydrolysis [33].

Si(OC2H5)4 +H2O → Si(OC2H5)3OH + C2H5OH (2.28a)

Si(OC2H5)4 + 2H2O → Si(OC2H5)2(OH)2 + (C2H5OH)2 (2.28b)

2Si(OC2H5)3OH → (C2H5O)3Si−O − Si(OC2H5O)3 +H2O (2.28c)
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Si(OC2H5)3OH + Si(OC2H5)4 →

(C2H5O)3Si−O − Si(OC2H5O)3 + C2H5OH

(2.28d)

Si(OC2H5)3OH + Si(OC2H5)2(OH)2 →

(C2H5O)3Si−O − Si((OC2H5O)3)2OH +H2O

(2.28e)

Figure 2.26: The TEOS-ethanol-water system for sol-gel depositions [33].

Following the TEOS example, when the water to TEOS and ethanol to TEOS ratios are

equal, as shown by the dotted line in Figure 2.26, the material can then be formed into

a coat-able thin film material. Once the deposited film undergoes the final cross-linking

completing the sol-gel transition, the solvent phase (ethanol in TEOS and stage 3 in a

spin coat process) is removed, and the material is then considered a gel. Often times

the gel still contains solvent that must be removed further to completely dry the coating

forming the true microporous oxide film [33, 58]. As films progressed SOG became a

spin on dopant material as well as a planarization material by varying what the feedstock

sol-gel precursor was, with it usually being some form of TEOS-derived material.
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2.3.2 Spin-On Carbon

Carbon has been used in industry as a hardmask for a while, especially at the

beginning of the start of double patterning. The first hardmasks were using a diamond-like

amorphous carbon, chosen due to its high selectivity to any number of standard CMOS

materials. [27, 29, 59–61] To call the material used diamond-like is a bit of a misnomer

as the material that was generated via a CVD process generally resided within the ta-

C:H and a-C:H regions of the ternary phase diagram as depicted by Figure 2.27. As

features got smaller the a-carbon materials became too thick and changes needed to be

made [62], so carbon based spin-on materials were developed. Initially there were some

troubles producing a comparable material to the a-carbon [63, 64], namely with concerns

to wiggling [65, 66]. These problems started to go away when the fullerene material

Figure 2.27: Carbon ternary phase diagram [67, 68].

was developed [66, 69, 70]. The fullerene based material ”IM-HM-140” from Irresistible

Materials(IM) [71] used here is similar to resist in that it had a Novalac based epoxy resin

for its crosslinking material as shown in Figure 2.28b, with the fullerene based monomer

being shown in Figure 2.28a. The material developed by IM [71], is different than some

of the initial fullerene based hardmasks [69,70] but shows good etching characteristics for

deep etching [66, 71, 72]. It has also been shown that multi-layer resist stacks perform

well for both a BARC as well as a hardmask for patterning [21, 27, 29, 59–61, 73].
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(a) (b)

Figure 2.28: Polymer precursors of the ”IM-HM-140” SOC material. A fullerene based
monomer(Phenyl C60 Butyric Acid Methyl Ester) is shown in (a), which is also used in organic

polymer based electronics as an acceptor [74], and standard Novolac crosslinking
material(Poly[(o-cresyl glycidyl ether)-coformaldehyde]) is shown in (b) [66].
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Process Flow and Experimental Investigation

The process flow developed at RIT was designed to closely reproduce what the

semiconductor industry uses for a SADP process module while advancing what RIT’s

current cleanroom facilities are capable of [24, 26–31]. This chapter is broken up into

two sections, the proposed process flow for a complete FinFET etch module as well as an

experiment to ensure that the films are etched with proper rate, selectivity and anisotropy.

The etching experiment is proposed such that a high degree of etch control can be achieved

with the MERIE system that RIT, which does not have an spectrophotometer for endpoint

detection. Without the proper etch data a number of critical steps, namely the etch

processes described within sections 3.1.6 and 3.1.9, would be incredibly difficult.

3.1 Process flow

The SADP process outlined here is a first step in FinFET fin formation and

is referred to in an idealized context throughout, predominantly perfect selectivity and

uniformity are assumed. This process could be expanded to quadruple patterning by

simply adding two additional layers, and will be noted when applicable for a conversion

of this process into a quadruple patterning process. All drawings are rough depictions to

illustrate the challenges posed, in each step any nuances not depicted are described. It is
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worth noting that this process has a significant throughput improvement over other RIT

SADP processes in that the entirety of the process can be contained within a cluster tool

consisting of a MERIE etcher, PECVD TEOS oxide and PECVD nitride chambers [19].

3.1.1 SOC Fin Hardmask Deposition

The selection of hardmask for etching silicon generally is not particularly impor-

tant as both common oxides and nitrides are fairly selective to silicon with oxide alone

having standard ratios of 4:1 to 25:1 depending on the reference. These etch rates are

generally quoted for wet chemical etching however as opposed to dry etching [42]. A very

high selectivity is required for a high aspect ratio etch of at least 1:3 hardmask:substrate

is required. This is where carbon hardmasks have come into play and why a fullerene

derived-SOC was chosen for this layer. In addition to its selectivity to SiO2, Si3N4, and

Si. Previous work at RIT has demonstrated the SOC to be a good hardmask material

with high-aspect ratio silicon etches [21].

Silicon
80nm SOC

Figure 3.1: Deposition of the first SOC layer

3.1.2 Oxide Mandrel Deposition

The next layer to be considered is the mandrel over which the spacers are formed.

This could be chosen to be a variety of things but is most commonly either a nitride or

oxide. Here a PECVD TEOS oxide was chosen to be the mandrel material. 120nm of oxide

is the chosen thickness for this process as 100nm is the designed critical dimension, the

20nm is intended for overetch as discussed in 3.1.6. If this process were to be expanded
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to be a quadruple patterning process, a PECVD nitride and SOC layer would be added

beneath these two layers in a similar fashion with the SOC on the bottom.

Silicon
80nm SOC

120nm Oxide

Figure 3.2: Deposition of what will be the mandrel layer out of PECVD TEOS oxide

3.1.3 BARC Deposition

With this process the goal is to achieve sub-lithographic features, as such a

Bottom Anti-Reflective Coating(BARC) should be deposited below the resist layer. Pre-

vious work has used a SOG over SOC in order to use the SOC as a hardmask for the

oxide etch [19, 21]. The SOG was investigated(see Section 4.1) and determined to be a

poor material for this project and with etch process improvements the SOC might not be

necessary. If the etch process is not as anisotropic with high enough selectivity, a layer of

SOC could be added prior to the BARC and very minor changes would be required. The

BARC thickness has previously been determined to be 65nm for good performance.

Silicon
80nm SOC

120nm Oxide
65nm BARC

Figure 3.3: Deposition of the BARC layer
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3.1.4 Resist Coat, Expose and Develop

Photoresist is then coated onto the film stack as shown in Figure 3.4a. The

photoresist is then exposed as depicted in Figure 3.4b and developed as shown in Figure

3.4c. If the photoresist is over-exposed or over-developed a thinner resist image is what

results. Maintaining good critical dimension over the whole wafer in this regime using the

chemical development process is tricky. As such going forward a trim etch was chosen

using higher image quality from normal exposure/develop steps.

Silicon
80nm SOC

120nm Oxide
65nm BARC

300nm Photoresist

(a)

Silicon
80nm SOC

120nm Oxide
65nm BARC

(b)

Silicon
80nm SOC

120nm Oxide
65nm BARC

(c)

Figure 3.4: Photoresist coat of the film stack(a) followed by the exposure of the mandrel
layer pattern(b) and the development of the Mandrel layer pattern(c)

3.1.5 BARC Open and Trim Etch

The BARC open etch is required as the BARC layer does not develop with the

resist. This is preformed with a O2 etch. Following the BARC etch/open as shown in

Figure 3.5a, the next step is to trim the pattern for the mandrel define etch that follows

as shown in Figure 3.5b. The trim etch is effectively a controlled overetch of the BARC

with a slow known rate for critical dimension definition.
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Silicon
80nm SOC

120nm Oxide

(a)

Silicon
80nm SOC

120nm Oxide

(b)

Figure 3.5: The BARC open etch opens up the BARC layer as shown in (a). Then the etch
continues producing a trimmed feature with the trim etch as depicted in (b)

3.1.6 Mandrel Etch

This step is absolutely critical while also complicated. The primary etch gasses

for a SiO2 etch are CF4 and CHF3 . The etch needs to be as perfectly anisotropic as

possible for critical dimension definition for the sidewall spacers that come next. What

makes it complicated is that the BARC must be removed prior to the deposition of the

sidewall spacers. The BARC strip cannot be performed after the mandrel etch completes

as the SOC fin hardmask is exposed and etches in the same strip chemistry(O2 plasma).

So, what needs to be done is to stop the mandrel etch short as shown in Figure 3.6a.

The top TEOS layer should also be deposited/etched sufficiently during previous process-

ing/trimming such that it is fully removed prior to stopping the mandrel etch short. Then

as depicted by Figure 3.6b the BARC layer can be stripped allowing for the completion of

the etch in Figure 3.6c.
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Silicon
80nm SOC

(a)

Silicon
80nm SOC

(b)

Silicon
80nm SOC

(c)

Figure 3.6: There are three steps to the mandrel etch. (a) shows the initial etch stopping
short, followed by a strip of the SOC hardmask in (b) and finally completing the etch in (c)

3.1.7 PECVD Nitride Deposition

The nitride deposition for this step has a fair number of factors involved as well.

PECVD was chosen over LPCVD for a number of reasons, one simply is convenience

and efficiency; the PECVD Nitride chamber that RIT possesses is housed within the same

cluster tool that the MERIE dry etch chamber is so the wafers need only to move from one

chamber to another. In addition, PECVD takes significantly less time(minutes as opposed

to hours) as opposed to LPCVD and is likely more conformal partly based on previous

work [19]. Also, due to the SOC the process cannot use the LPCVD as the temperatures

for deposition are around 800°C as opposed to PECVD which is around 400°C, at around

300 − 400°C the SOC starts to erode at 12nm min−1. This temperature constraint for

the SOC is a primary driving force for using PECVD as opposed to LPCVD as in the

LPCVD the SOC would erode completely before the deposition would even occur. The

amount deposited should match very closely to the total height of the mandrel for the

following spacer etch step as this deposition does come to define a good portion of the

critical dimension for the spacers.
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Silicon
80nm SOC

100nm Nitride

Figure 3.7: Deposition of the nitride spacer layer

3.1.8 Nitride Spacer Etch

For the spacer etch things become difficult, the nitride film when deposited at

the thickness of the mandrel has double the thickness where the spacer is to be. This

doubling of thickness allows for a bit of process variability, the etch should be performed

such that the etch is as uniform as possible under predominantly vertical etching.

Silicon
80nm SOC

Figure 3.8: Etching of the nitride spacer layer

3.1.9 Mandrel Strip

The mandrel strip step is a key point in this process as a dry etch under the

conditions within RIT’s MERIE chamber. Both the mandrel and the spacer films need

to be carefully calibrated such that selectivity is high under the chemistry(CF4 /CHF3

/C2F6 ) in the MERIE chamber. Under these chemistries the selectivity is normally 1:1 or

predominantly etches the nitride faster, despite polymer film forming thicker on nitrides

as opposed to oxides during normal etching [34, 42, 75]. An improvement in selectivity
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has been found but requires more research by determining an optimal etch, modifying

the material chemistry, and/or performing a pseudo-Bosch etch. The Bosch etch would

consist of a step-wise process of depositing just enough polymer for the following etch

step to only break through the oxide polymer then repeat the process, until the oxide is

stripped. This is different from a standard Bosch etch in that it involves multiple materials

as well as a anisotropic etch is performed as opposed to an isotropic etch that does not

etch where the polymer was deposited [41, 76–78].

Silicon
80nm SOC

Figure 3.9: Removal of the oxide mandrel

3.1.10 SOC etch

After the mandrel is stripped the nitride spacer can be used as a hard mask to

etch the bottom SOC in final preparation for the fin etch. It is at this point that the

nitride spacer could also be stripped, however there is little need as the nitride layer will

likely erode during the fin etch.

Silicon

Figure 3.10: Etch of the SOC hardmask for the fin etch
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3.1.11 Silicon Fin Etch

With the final pattern established the fin etch can finally be performed. SOC

was chosen to be the final hard mask as a fair amount of etch chemistry that etches

silicon will also etch nitride, so a 1:3 horizontal:vertical etch profile would be very hard

due to mask erosion. A 1:3 profile is required to adequately call the feature a fin. From

this point, or during the etch itself, the fin can be tapered for better electrical properties.

Figure 3.11: Final fin etch into silicon substrate

3.2 Etch Rate, Anisotropy and Selectivity Study of Oxide Etching

In order to have a controllable etch that is precise there are five key components;

the etch rate, anisotropy and selectivity of the hardmask, the material to be patterned

as well as the underlying material beneath it. Uniformity is looked at after selectivity

is achieved. Without endpoint detection the mandrel etch(Section 3.1.6) and mandrel

strip(Section 3.1.9) are especially difficult. To begin to determine these response factors

a screening etch was developed as shown in Table 3.1.

RIT’s standard P5000 MERIE oxide etch recipe(B.1) has O2 as part of the

process introduced to quell polymer buildup. In this experiment O2 was not selected to

be used as O2 is more important once a it is determined how much polymer is formed and

whether or not it is excessive. The addition of O2 also changes selectivity to carbon-based

films as O2 is the primary etchant in that material system, which provides further reason

to not include it in testing as the materials for the test listed as follows: Si, Si3N4,
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SiO2, SiOxFy, photoresist, and SOC. BARC was not chosen as a material as in general

it has a similar rate to photoresist and since photoresist is already a film in the test it

would be redundant. The primary inputs are the three etch gases; CHF3 ,CF4 and

C2F6 , varied over five levels;0,15,30,45,and 60. Power, Pressure, Magnetic Field are held

constant throughout the test as they modify the rate and profile in more predictive ways

while not affecting the selectivity. Ar is also held constant as it provides directionality by

breaking through inhibitor formation in inhibitor-driven anisotropic ion enhanced etching,

even though it does change the partial pressures of the etches.

Through cross-sectional analysis, both vertical(Rv) and horizontal(Rh) etch

rates could be determined to show how anisotropic(A) the etch was and if the etch

would be within the acceptable tolerances for the given etch per Equation 2.17. Mask

erosion rates would be determined through Equation 2.22. For uniformity(Equations 2.24

and 2.27) the constants, α, ε, and δ are predominantly determined from how much the

film to be etched is uniform, erosion/how uniform the hardmask is and overetch is accept-

able/required for the process. β however will be determined through running the process

with blanket oxide over 6” wafers as the uniformity variance in the etch has more to do

with the conditions of the etch process as opposed to the film itself.
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Test CHF3 (SCCM) CF4 (SCCM) C2F6 (SCCM) Sample

1 0 0 45 a
2 0 30 30 b
3 0 60 60 c
4 15 15 30 d
5 15 30 15 e
6 15 45 45 f
7 30 0 60 g
8 30 30 0 h
9 30 45 15 i

10 45 0 30 j
11 45 15 0 k
12 45 60 45 m
13 60 15 60 n
14 60 45 0 p
15 60 60 15 q

Table 3.1: Enchant selectivity test
Power:500W, Pressure:250mTorr, Magnetic Field:60G, Ar :100 SCCM
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Film Uniformity and Etching

4.1 SOG and TEOS uniformity

For various stages in the process, uniform film deposition is important either for

better coverage or for reducing the time spent overetching to clear the entire wafer. Since

PECVD Nitride was unavailable at the time of this study a focus was placed on the use

of SOG and TEOS. There were numerous issues with the SOG that RIT has, one major

issue was that the material was quite old producing comets and streaking as shown in

Figure 4.1. The streaking was caused by having too high surface tension from having too

large a percentage of TEOS to carrier solvent, ethanol, not allowing the material to flow

properly. The SOG was re-diluted in an attempt to remove the streaking but the film

was still less uniform than preferred as shown in table 4.1. With 6% non-uniformity and

a 100nm range, that is well below the acceptable tolerance for a SADP process.

With the SOG not performing well enough to process with, TEOS provided a

good alternative. It can be deposited over the hardbaked SOC for the mandrel layer. RIT’s

TEOS performed fairly well. A uniformity test was conducted over 26 wafers. Standard

processing only permits 1µm of depositions between cleans, so as such, two 5k�A/500nm

depositions were performed and then a clean was run. Before all the depositions, a

minimum of 3 hours between the startup of the lamps and the actual deposition was
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maintained. This lag time is important as the lamps provide even uniform heating to

390°C throughout the chamber, RIT turns the lamps off at night to conserve power and

as a preventive maintenance measure to not replace the bulbs as often as the tool does

not see 24/7 use. A trend was shown that the first wafer after a clean was slightly less

uniform, on the order of 0.59% or 10nm across the wafer as shown in Table 4.2 through

a 81 point scan. With a range of around 20-30nm and non-uniformity from 0.8-1.3%,

TEOS produces a viable outlet for a mandrel material over SOC for the proposed process

sections 3.1.2-3.1.6. However, a different material may be required to be developed such

as a fluorine-doped TEOS better known as Fluorinated silica glass (FSG) or a more organic

TEOS film for the mandrel removal step(process section 3.1.9) as the SOC material could

be removed if exposed to water as would be the case in a rinse tank following a Buffered

Oxide Etch (BOE) [38, 79, 80]. It can be safely assumed that proceeding with the TEOS

as is is advised, and would produce a α value of around 0.01 for use in etch calculations.

Figure 4.1: SOG coating depicting streaks and comets

Before After

Mean(�A) 8008 4419
Non-uniformity % 15 6

Range(�A) 4857 1216

Table 4.1: Average uniformity of SOG before and after ethanol addition.
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Average 1st 2nd

Mean(�A) 5358 5314 5401
Std dev 55 68 42

% 1 1.3 0.79

Range(�A) 247 298 195

Table 4.2: Average uniformity for 5k�A depositions as well as the average data for first and
second wafer through after a clean.

4.2 TEOS Etching

In order for RIT to achieve small features for a SADP process, a significant

focus needs to be placed on etching. Currently RIT has two types of etchers, CCP and

a MERIE etcher, Uniformity control on standard CCP etchers is fairly poor so this work

focused on the MERIE etcher. However the MERIE etcher was in a bit of disarray, largely,

when the tool was donated it was not given a proper cleaning prior to its use at RIT.

An effort to improve the chamber was taken prior to extensive testing. Firstly, there was

a thick, 0.5-1mm polymer film along all the sidewalls and showerhead that was cracking

and introducing particulates into the chamber. This polymer film was cleaned from the

chamber.

Following the polymer removal, it was noticed that there was a Teflon screw

cap as opposed to a polycarbonate screw cap in the showerhead as depicted in point A

of Figure 4.2. Teflon under RF conditions has a significantly different inductance than

polycarbonate, this significantly contributed to etch non-uniformities that were reported

prior to this work. The chamber was then seasoned with an Applied Materials proprietary

recipe which due to copyright cannot be replicated here. The chamber seasoning is

important as it places polymer on the sidewalls, this polymer deposition does multiple

things [81, 82]. Firstly, during any standard etch polymer is going to be deposited on

the sidewalls of the chamber, however in a unseasoned situation the etch rate for a given

etch will drop as some gas flow is depleted to react with the surface of the chamber as
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A

B

Figure 4.2: MERIE showerhead. Point (A) is where the screwcap was replaced. Point(B)
roughly approximates the width of a ring formed around the showerhead pinholes that occurs

from proper seasoning.

opposed to the wafer. When the sidewalls of the chamber are passivated with polymer

then the gases tend to not interact with the sidewalls of the chamber providing more

available etchant for the wafers. Prior to cleaning the sidewall polymer with its cracking

and other non-uniformities likely provided a larger surface area for polymer to continue

to form as if the chamber had no polymer at all, that is however speculation. A rule of

thumb for seasoning RIT’s chamber was that the polymer should not be formed within

1cm of the pinholes in the showerhead as depicted by point B in Figure 4.2, this resulted in

a over-seasoned chamber and decreased rates. Following this, the clamping pressure was

adjusted and leveled. The clamp ring is depicted in Figure 4.3 in both the lifted(Figure

4.3a) and clamped(Figure 4.3b) positions, any irregular clamping pressure would produce

a left-right or right-left gradient on the wafer due to uneven helium cooling which was

producing non-uniformities in the past.
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(a) (b)

Figure 4.3: MERIE Chamber chuck in both the lifted(a) and clamped(b) positions.

Preliminary etching was then performed based on literature as shown in table

4.3 [34, 42–44, 47, 48, 50, 83–85]. The Literature suggested that the conditions of etch

number 3 would be the most anisotropic but with low resist selectivity and etch number 2

would be isotropic but have high resist selectivity. As expected etch number 2 had the a

high oxide etch rate with a low resist etch rate. The degree of anisotropy was not directly

measured, but as stated previously the literature indicates that the etch should be more

isotropic. Also as expected etch number 3 had a lower oxide etch rate and higher resist

etch rate. We can conclude that etch number 3 is likely a better candidate for long term

use as a new standard recipe in place of RIT’s current standard MERIE oxide etch recipe.

With the chamber now having a better and more stable process the proposed

screening experiment could proceed forward. This process was to be performed over a

number of different films in the proposed process flow namely; Si, Si3N4, SiO2, SiOxFy,

photoresist, and SOC. The experiment was to follow the industry technique known as

couponing whereby a sample of each film was placed on a carrier wafer and all exposed

to the plasma at the same time such that they were all under the same conditions for a

given run [86]. This however required further process improvements to the etch chamber.
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Etch 1 2 3 4 5 RIT STD

Power(W) 500 500 500 500 400 500
Pressure(mTorr) 250 250 250 250 200 250

Mag(G) 50 60 60 60 30 40
CHF3 36 30 15 25 75 100
CF4 18 15 30 50 15 50
Ar 120 100 100 100 125 0
O2 0 0 0 0 0 10

Oxide Rate(�A min−1) 1458 2076 2215 2786 1256 1529
Oxide % 0.1 0.35 0.23 0.9 0.6 0.63

Oxide Range(�A min−1) 67 157 116 284 165 53

Resist Rate(�A min−1) 480 495 896 965 53 –
Resist % 3 0.61 1.49 2.3 1.2 –

Resist Range(�A min−1) 412 130 234 535 835 –
Selectivity(Resist:Oxide) 1:3 1:4 9:22 5:14 1:26 –

Table 4.3: Extrapolated data for preliminary screening etch

A process to assure that pieces could be used in the chamber on a carrier wafer

was needed. All prior work had been done using full wafers. This posed interesting

problems, as patterned pieces were showing thermal instabilities as a result of not being in

direct contact with the helium intended to cool the wafer. Figure 4.4 illustrates the thermal

problems created in resist features. Both Figures 4.4a and 4.4b are near a patterned resist

edge. Figure 4.4a shows early stages of reticulation(burning resist) and Figure 4.4b shows

the near final progression of this degradation.

(a) (b)

Figure 4.4: SEM images of reticulated resist. Image (a) shows early stages of reticulation
whereas image (b) shows later stages of reticulation and/or higher temperature exposure
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This reticulation proved to be a significant problem in the striping of the resist

once the wafer was removed from the chamber; this is largely also why the helium cooling

chuck was adjusted. The clamping pressure/differential cooling caused reports of burning

resist prior to this work which is why aluminum hardmasks were recommended and used

in prior work [19]. It is believed that the photoresist started to react with the polymer

being deposited along with the outgassing of solvent at higher temperatures producing a

hard to remove film. As such a polymer removal/descum recipe was developed as shown

in table 4.4, this is intended to be run prior to samples leaving the chamber such that the

polymer surface does not become hydrogen-terminated. To resolve the heating issue, the

carrier wafer should be coated with a layer of photoresist and hardbaked. This photoresist

layer allows for better sample adhesion to the surface as opposed to a Si-Si surface with

native air-gaps. The clamp and helium also create some bow in the wafer, if the pieces

are too large to lay flat on the surface of the bowed carrier wafer the helium pressure can

be turned down a little bit which would decrease the bow angle.

Power(W) 300
Pressure(mTorr) 300

Mag(G) 50
Ar 12
O2 59

Table 4.4: Polymer descum recipe

After the cooling issues were resolved the blanket oxide etch for uniformity as

described in section 3.2 and outlined in table 3.1 was performed on 15, 6” wafers, the

data is represented in Figures 4.5 and 4.6. The data was normalized for concentration of

gas flows within the test. The data was then evaluated for high etch rate and uniformity

where points e,i,m and q (circled) were determined to be the best given both factors from

both figures. This roughly produces a ideal etching conditions to be a ratio of 2 CF4 :

2 CHF3 : 1 C2F6 as depicted by a triangle on both graphs. Previous data from etches

numbered 2 and 3 (from table 4.3) and literature suggested that a 2:1 ratio of CF4 to
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CHF3 is good and likely anisotropic. If we rework this into the ratio, we achieve a new

ratio of 4 CF4 : 2 CHF3 : 1 C2F6 . These two ratios are the best candidates going

forward for further testing for high anisotropic etching at a reasonable rate with good

uniformity.

Similarly, points a,g and j show that an ok etch rate can be achieved without

CF4 with good uniformity. With CF4 being the primary etchant for Si3N4 removing it is

a good idea for the mandrel strip etch (section 3.1.9). CF4 and C2F6 are both unsaturate

etchants which also preferentially etch SiO2 over Si3N4. Normally in a standard CHF3

/CF4 mixture designed for etching SiO2 a polymer film would preferentially grows on Si

then Si3N4 followed by SiO2 [34,42,75,87–90]. This usually would mean that there isnt

a problem with striping the SiO2 over Si3N4 but there is generally very low selectivity

between the two in this chemistry. As such, a etch should be designed with only unsaturate

etchants to improve selectivity to nitride. Based on the data, provided in the figures, a 1:4

and 1:2 ratio should be investigated for both CHF3 and C2F6 being the primary/larger

etchant concentration for uniformity and selectivity to Si3N4 and SOC. Following this

there were plans to move to the couponing process however due to time and funding

constraints this was not performed.
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Conclusions

A path forward for achieving a mandrel etch and strip(Sections 3.1.6 and 3.1.9)

with gas flow ratios of 4 CF4 : 2 CHF3 : 1 C2F6 and 4 C2F6 : 1 CHF3 was derived. In

achieving these new gas flow ratios many improvements to RIT’s MERIE dry etcher were

performed to improve uniformity developing a new standard process for oxide etching. By

not including CF4 in the mandrel strip etch it is highly probable that a mandrel could

be stripped without etching the Si3N4 spacers present. If this is not the case, further

developments need to be made to have a higher etch rate SiO2 film such as SiOxFy as

with the process developed through this work does not allow for a BOE strip of the SiO2

for fear of a liftoff removal of the SOC fin hardmask during either the etch or rinse steps.

With RIT continuing to improve its CMOS process to produce FinFETs it will

be able to educate the next generation of process engineers with up-to-date processes for

a brighter future. This work provides a good starting point to further that goal. The

problems with achieving SADP at RIT have been outlined in a stepwise fashion, with key

points highlighted and concerns addressed. A MERIE etcher was brought back into proper

specifications such that the process can proceed with highly uniform etches to improve

die yield for the process and future unknown steps that require it.
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Looking towards the future, RIT’s PECVD nitride on the P5000 is getting an

upgrade to a number of its systems allowing it to be uniform again. With this, the process

outlined in this work can be fully realized. One of the major benefits of this process is

that once refined the process can be preformed without breaking vacuum to atmosphere.

This process can further be expanded to a SAQP process with a little extra prep-work. If

a SOC/nitride layer were deposited first prior to the SOC/oxide then continue the process

till the nitride layer is reached, the process can be repeated in a similar fashion as depicted

by Figure 5.1. This would produce even smaller features that could be used for introducing

the next generation of students to FinFET technology.
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Figure 5.1: Process flow for changing SADP into SAQP after mandrel removal(a). The
nitride is trimmed and etched into the SOC(b). The pattern is then used to form a new
mandrel in the bottom nitride(c) preformed similarly to the mandrel etch(Section 3.1.6).

Oxide is then deposited as a spacer material(d), and spacer etched(e). The nitride mandrel is
then stripped(f) preformed similarly to the mandrel strip(Section 3.1.9). The pattern is then

imparted into the SOC(g) and then further imparted into the silicon to form fins(h).
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[58] Toàn, “Spin-on glass materials and applications in advanced ic technologies,” Ph.D.
dissertation, University of Twente, 1999.

[59] N. Marins, R. Mota, R. Honda, P. Nascente, M. Kayama, K. Kostov,
M. Algatti, N. Cruz, and E. Rangel, “Properties of hydrogenated amorphous
carbon films deposited by {PECVD} and modified by {SF6} plasma,” Surface
and Coatings Technology, vol. 206, no. 4, pp. 640 – 645, 2011, carbon-
Based Nanostructured Coatings and Composite Films. [Online]. Available:
//www.sciencedirect.com/science/article/pii/S0257897211006803

[60] P. G. M. B. S. W. I. G. Y. T. J. B. Jean-Damien Chapon, Catherine Chaton,
“Comparison between organic spin-on barc and carbon-containing cvd stack for
65-nm gate patterning,” pp. 5753 – 5753 – 12, 2005. [Online]. Available:
http://dx.doi.org/10.1117/12.601742

[61] S. Pauliac-Vaujour, P. Brianceau, C. Comboroure, and O. Faynot, “Improvement
of high resolution lithography by using amorphous carbon hard mask,”
Microelectronic Engineering, vol. 85, no. 5, pp. 800 – 804, 2008, proceedings
of the Micro- and Nano-Engineering 2007 Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167931708001263

[62] K.-l. L. K.-D. B. C.-K. B. C.-M. L. H.-S. K. S.-C. M. Young-Sun Hwang,
Eung-kil Kang, “Improvement of alignment and overlay accuracy on amor-
phous carbon layers,” pp. 6152 – 6152 – 8, 2006. [Online]. Available:
http://dx.doi.org/10.1117/12.656416

[63] M.-S. K. S. B. O. J.-Y. S. N. T. J.-S. K. T. C. Hwan-Sung Cheon, Kyong-Ho Yoon,
“Development of spin-on carbon hardmasks with comparable etch resistance to
amorphous carbon layer (acl),” pp. 7140 – 7140 – 8, 2008. [Online]. Available:
http://dx.doi.org/10.1117/12.804635

[64] V. C. C. L. S. W. M. B. C.-C. C. W. W. P. B. M. L. J. M. J. L. P. T. K. O. C.
b. X. Shintaro Yamada, Deyan Wang, “Development of spin-on metal hardmask
(somhm) for advanced node,” pp. 9425 – 9425 – 11, 2015. [Online]. Available:
http://dx.doi.org/10.1117/12.2086005

62



REFERENCES

[65] M. Weigand, V. Krishnamurthy, Y. Wang, Q. Lin, D. Guerrero, S. Simmons, and
B. Carr, “Evaluating spin-on carbon materials at low temperatures for high wiggling
resistance,” in Advanced Etch Technology for Nanopatterning II, vol. 8685, Mar.
2013, p. 86850R.

[66] R. E. P. T. L. A. P. R. Andreas Frommhold, Alan G. Brown, “Organic hard masks
utilizing fullerene derivatives,” pp. 9425 – 9425 – 8, 2015. [Online]. Available:
http://dx.doi.org/10.1117/12.2085675

[67] J. Robertson, “Diamond-like amorphous carbon,” Materials Science and
Engineering: R: Reports, vol. 37, no. 4, pp. 129 – 281, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0927796X02000050

[68] C. Donnet, A. Erdemir, and J. Robertson, Tribology of diamond-like carbon films
fundamentals and applications. Springer, 2010.

[69] F. P. Gibbons, A. P. G. Robinson, R. E. Palmer, S. Diegoli, M. Manickam, and
J. A. Preece, “Fullerene resist materials for the 32nm node and beyond,” Advanced
Functional Materials, vol. 18, no. 13, pp. 1977–1982, 2008. [Online]. Available:
http://dx.doi.org/10.1002/adfm.200701155

[70] J. A. P. R. E. P. A. P. G. R. J. Manyam, M. Manickam, “Plasma etching of
high-resolution features in a fullerene molecular resist,” pp. 7972 – 7972 – 12, 2011.
[Online]. Available: http://dx.doi.org/10.1117/12.879469

[71] I. Materials, “Novel spin-on carbon hardmasks,” 2017. [Online]. Available:
http://www.microchem.com/pdf/IM-HM-140.pdf

[72] R. E. P. A. P. G. R. A. Frommhold, J. Manyam, “High aspect ratio etching using
a fullerene derivative spin-on-carbon hardmask,” pp. 8328 – 8328 – 11, 2012.
[Online]. Available: http://dx.doi.org/10.1117/12.916426

[73] N. S. N.-a. Y. M. T. H. E. K. K. M. S. H. S. J. T. T. S. Isao Nishimura,
Hiroyuki Ishii, “Comparison of single-, bi-, and tri-layer resist process,” pp. 5753 –
5753 – 8, 2005. [Online]. Available: http://dx.doi.org/10.1117/12.598367

[74] A. Ravve, Principles of polymer chemistry, 3rd ed. Springer, 2012.

[75] H. K. Lee, K. S. Chung, and J. S. Yu, “Selective etching of thick si3n4, sio2 and si
by using cf4/o2 and c2f6 gases with or without o2 or ar addition,” Journal of the
Korean Physical Society, vol. 54, no. 5(1), p. 1816–1823, 2009.

[76] J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio
in deep reactive ion etching of silicon due to aspect ratio dependent transport and the
microloading effect,” Journal of Vacuum Science & Technology B: Microelectronics
and Nanometer Structures, vol. 23, no. 6, p. 2319, 2005.

63



REFERENCES

[77] Y. Tan, R. Zhou, H. Zhang, G. Lu, and Z. Li, “Modeling and simulation of the
lag effect in a deep reactive ion etching process,” Journal of Micromechanics and
Microengineering, vol. 16, no. 12, p. 2570–2575, 2006.
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Appendix A: RIT Standard Deposition Recipes

Delay Deposit Pump out

Time Max(s) 15 40(for 4000�A) 10
Pressure(Torr) 9 9 Full Open

Temp 390 390 390
RF1(W) 0 205 50

Spacing(mils) 220 220 999
TEOS(sccm) 400 400 0
O2 (sccm) 285 285 285

Table A.1: PECVD TEOS [91]
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Appendix B: RIT Etch Recipes

RF(W) 500
Pressure(mTorr) 250

Magnetic Field (Gauss) 40
CHF3 (sccm) 100
CF4 (sccm) 50
O2 (sccm) 10
Ar (sccm) 0

Table B.1: Old RIT Standard/Baseline Anisotropic Oxide Etch [91]

RF(W) 500
Pressure(mTorr) 250

Magnetic Field (Gauss) 60
CHF3 (sccm) 15
CF4 (sccm) 30
O2 (sccm) 0
Ar (sccm) 100

Table B.2: New RIT Standard/Baseline Anisotropic Oxide Etch

RF(W) 500
Pressure(mTorr) 250

Magnetic Field (Gauss) 60
CHF3 (sccm) 30
CF4 (sccm) 60
C2F6 (sccm) 15
O2 (sccm) 0
Ar (sccm) 100

Table B.3: Mandrel Etch
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APPENDIX B. RIT ETCH RECIPES

RF(W) 500
Pressure(mTorr) 250

Magnetic Field (Gauss) 60
CHF3 (sccm) 30
CF4 (sccm) 0
C2F6 (sccm) 15
O2 (sccm) 0
Ar (sccm) 100

Table B.4: Mandrel Strip
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Appendix C: Etch Test Photomask details

A single layer photomask was designed for two purposes. The first purpose was

for the etch test outlined in Section 3.2, and the second was to test the process in Section

3.1. The die size was set to approximately 4.5 by 2.75mm, with 2.1-2.5mm long features

for cross-sectional SEM analysis. The set of patterns for process flow analysis contains

patterns that vary pitch keeping line size at 250nm, 300nm, and 500nm. For the 250nm

and 300nm lines other patterns are also present such as a contact cut pattern, a inverse

contact cut pattern, back-end metal or gate, that all vary with pitch as well. The etch test

design/pattern addresses additional issues, predominantly microloading and Aspect Ratio

Dependant Etching (ARDE), while also having some patterns included for erosion and

shape. The ARDE patterns use the same 250nm, 300nm, and 500nm values as constants

for varying line/space sizes. The microloading features are 6 line/space pairs of same-pitch

varying from 250nm to 10µm in 50nm increments. It is worth noting that both ARDE

and microloading are predominantly effects seen in a Deep Reactive Ion Etch (DRIE) etch

process, on a small scale they are what determine how much overetch is required to clear

a film without endpoint detection.
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APPENDIX C. ETCH TEST PHOTOMASK DETAILS

C.1 Aspect Ratio Dependant Etching

ARDE occurs whenever there is more than one pitch on a mask. As such it is

very important to take into account when designing a mask. ARDE is predominantly the

depletion of etchant to clear-field areas by size or opening [51, 76, 92]. This means that

any large clear-field area will clear first before the designed features are etched. Because

of this property, if the user does not have a proper idea of how features will etch, the

range of conditions for producing a over-etch will be to large and likely result in degraded

features. The designed mask pattern is shown in Figure C.1, the effect is shown through

Figure C.2. While Figure C.2 shows the ARDE effect with a BOSCH etch, the principle

is the same with thinner films and film clearing with over etch.

Figure C.1: Positive and Negative ARDE for 500nm features. On the left the space is held
constant to 500nm, on the right the line is held constant to 500nm with both varying the

other from small to large.

Figure C.2: Positive ARDE from a BOSCH etch [93].
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APPENDIX C. ETCH TEST PHOTOMASK DETAILS

C.2 Microloading

Microloading is another effect that is based on the mask pattern, the mask

design for this project is depicted in Figure C.3. The effect is similar to ARDE in that

larger clear field(spaces) features deplete etchant more readily than smaller features. In

addition features with the same pitch produce a localized concentration gradient as the

features that are near the edge of all similar pitch density consume etchant at a higher

rate than the center point of the same pitch pattern density. This is best depicted by

Figure C.4, the left pattern has a higher density of pattern than the pattern on the right,

this produces a large difference in high density patterns as opposed to the low density

pattern on the left. [41, 42, 51, 76, 77, 94–97]

Figure C.3: Sets of 6 bars equal pitch ranging from 250nm through 10µm in steps of 50nm

Figure C.4: Affect of microloading for two same-pitch patterns both with the same space
size. [97]
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