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Chromatic Villainy

Abstract

Suppose the colors in a χ(G)-coloring of a graph G have been rearranged. We will call this rearrangement

c∗. The chromatic villainy of the c∗ is defined as the minimum number of vertices that need to be recolored

in order to return c∗ to a proper coloring in which each color appears the same number of times as

in the initial coloring. The maximum chromatic villainy when considering all rearrangements of all

χ(G)-coloring of G is the chromatic villainy of G. Here, the chromatic villainies of certain families of

graphs were investigated and the chromatic villainies of paths and certain classes of complete multipartite

graphs were found. Bounds were found for certain classes of odd cycles and complete multipartite graphs

as well.
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Chromatic Villainy

I. Introduction

I.1 Background

A graph G is defined as an ordered pair (V, E) where V(G) represents the vertex set of G and

E(G) represents the set of edges connecting the vertices of G. An edge between two vertices x and

y is notated as xy or yx. Two vertices of G are adjacent or neighbors if an edge exists between them.

The neighborhood of x, denoted N(x), is the set of vertices adjacent to a vertex x. A proper k-coloring

of G is a labeling of the vertices of G using k colors, usually represented by numbers 1 through k,

in such a way that adjacent vertices receive different colors. The chromatic number of a graph G,

denoted χ(G), is the smallest k such that a proper k-coloring of G exists. We define c(vj) as the

color of vertex vj under coloring c.

Many algorithms exist to produce proper colorings. These algorithms also give upper bounds

on the chromatic number of a given graph. However, these algorithms do not always result in

a χ(G)-coloring of G. One such algorithm is referred to as greedy coloring. In a greedy coloring,

the vertices of G are given an order v1, v2, . . . , v|V(G)|. Colors are assigned by going through the

vertices in order and assigning the color with the lowest number that is not given to a previously

colored adjacent vertex. The orders given to the vertices of G changes the upper bound on χ(G).

Note that there is an ordering for every graph that will use the chromatic number of colors when

fed through the greedy algorithm. However, there is a graph G (in fact there are many) with

chromatic number 2 that when put into the greedy coloring with the wrong ordering will have a

chromatic number that will grow with log2(|V(G)|).

For example, consider the graph given in Figure 1. It is properly colored with two colors. If we

were to implement a greedy coloring in which we colored the vertices in order from left to right,

we would achieve the coloring given in Figure 2. While this coloring is proper, it uses four colors.

Note that 4 = log2(8) + 1 and this graph has eight vertices.

2 1 1 2 1 2 2 1

Figure 1: A proper coloring with 2 colors.
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Chromatic Villainy

1 2 1 3 1 2 1 4

Figure 2: A proper coloring with 4 colors.

Let ∆(G) be the maximum degree of a vertex in G and δ(G) be the minimum degree of a vertex

in G. Given that a vertex in G has at most ∆(G) neighbors, a greedy coloring will use at most

∆(G) + 1 colors. Thus, χ(G) ≤ ∆(G) + 1 [6]. However, ∆(G) + 1 is rarely a strict upper bound. It

was proven by Brooks in [1] that if G is a connected graph other than a complete graph or an odd

cycle, then χ(G) ≤ ∆(G). A stricter bound on χ(G) was given by Welsh and Powell in [5]. Let di

be the degree of vertex i. Let the vertices in the greedy coloring be ordered in non-increasing order

of degree, such that d1 ≥ d2 ≥ . . . ≥ d|V(G)|. The color given to the vertex with degree di is at most

one greater than the number of neighbors of di that are already colored. This value is bounded

by di and i− 1. Thus, a stricter bound on χ(G) is given by χ(G) ≤ 1 + maxi(min(di, i− 1)). In

[4], Szekeres and Wilf found an upper bound on χ(G) using the degrees of the subgraphs of G to

order the vertices. This bound is given by χ(G) ≤ 1 + maxH⊆G δ(H). Subgraphs and complete

graphs are defined in section 1.2.

Clark et al. [2] introduced the concept of chromatic villainy. Let us assume that χ(G) = k and let c

be a proper k-coloring of G. Let c∗ be a coloring of G that is a rearrangement of the colors in c.

The weak chromatic villainy of c∗, denoted Bw (c∗), is the minimum number of vertices that must be

recolored with the same set of colors as c∗ in order to re-obtain a proper coloring. The villainy of

c∗, denoted B(c∗), is the minimum number of vertices that must be recolored with the same set of

colors as c∗ with the additional stipulation that each color must appear exactly as many times as it

does in c.

The weak villainy of the graph G is the the largest number of vertices that need to be recolored over

all rearrangements of all χ(G)-colorings of G. Let c be a proper χ(G)-coloring of G and let c∗ be a

rearrangement of c. The weak villainy of G is given by

Bw(G) = max
c

(
max

c∗
(Bw(c∗))

)
.

The villainy of the graph G is the largest number of vertices that need to be recolored over all

2
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rearrangements of all k-colorings of G where each color in the resulting proper coloring appears

exactly as many times as it does in c. Clark et al. [2] established that Bw(G) ≤ B(G) given that

any recoloring that follows the stipulations of villainy is also valid under the stipulations of weak

villainy. Let c be a proper χ(G)-coloring of G and let c∗ be a rearrangement of c. The villainy of G

is given by

B(G) = max
c

(
max

c∗
(B(c∗))

)
.

Consider the following example. Let G be a path on 7 vertices with optimal coloring c as shown

in Figure 3 and let c∗ be the rearrangement of c given by Figure 4.

2 1 2 1 2 1 2

Figure 3: A properly colored path on 7 vertices.

1 1 1 2 2 2 2

Figure 4: An improperly colored path on 7 vertices.

In order to properly color an odd path, the color that appears most often must be on the outermost

two vertices and the colors must alternate. In the case where the number of each color is

maintained, the outermost vertices of G must receive color 2. Therefore, to re-obtain a proper

coloring of G while maintaining the number of each color that appeared in c, the coloring must be

identical to c. This can be obtained by recoloring the first, third, fourth, and sixth vertices. It holds

that B(c∗) = 4.

In the weak case, recoloring the second, fifth, and seventh vertices restores G to a proper coloring.

However, this proper coloring is not equivalent to c. The color 1 appears four times in G while

2 appears three times. Therefore, the two outer-most vertices receive color 1. It holds that

Bw(c∗) = 3.

In [2], Clark et al. proved several results regarding both chromatic villainy and weak chromatic

villainy. It was determined that B(G) = Bw(G) = 0 if and only if G is a complete or empty graph.

Additionally, the class was determined for graphs with a weak chromatic villainy of 1. Additional
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results have been found regarding the villainies of uniquely colorable and pseudo-uniquely

colorable graphs, as well as other categories of graphs such as connected bipartite graphs, cycles,

disjoint unions of graphs, and certain classes of subgraphs. The authors also posed a number of

open questions that can be summarized as follows:

• What are the characteristics of graphs with a chromatic villainy of 2?

• Is it the case that the chromatic villainy of a cycle with 2k + 1 vertices is k when k ≥ 2?

• What are the chromatic villainies of complete multipartite graphs?

• What are the largest possible values of B(G) and Bw(G) when G has n vertices and χ(G) = k?

• Is the weak chromatic villainy of the disjoint union of two graphs greater than or equal to

the sum of the two graph’s respective weak villainies?

We will focus on the chromatic villainy of complete multipartite graphs, paths, and odd cy-

cles.

I.2 Terms

A graph H is a subgraph of G, denoted H ⊆ G, if V(H) ⊆ V(G) and E(H) ⊆ E(G). It holds that

G contains its subgraphs. A graph is complete if every pair of vertices are adjacent. Note that a

complete graph on n vertices is denoted Kn. A matching in G is a set of edges in which no two

edges share a vertex. Edges that do not share a vertex are also referred to as independent edges. The

matching covers the vertices in its edges. A matching is perfect if it covers every vertex in G.

A graph G is weighted if there are numerical values or weights assigned to its edges. G is unweighted

otherwise. Note that an independent set is a set of vertices in a graph in which none are adjacent. A

graph G is bipartite if V(G) consists of two independent sets. The maximum weighted matching in a

bipartite graph is a matching in which the sum of the edge weights has a maximal value. The

value is maximal if it cannot be made larger. Let G be a bipartite graph with independent sets X

and Y. By Hall’s Theorem, a matching exists that covers every vertex in X iff for every S where

S ⊆ X, |N(S)| ≥ |S| [3]. Any undefined terms can be found in [6].

Section II will focus on the chromatic villainy of complete multipartite graphs. A graph is k-partite
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if it is the union of k independent sets. These sets are referred to as partite sets. Note that a partite

set can be empty. Therefore, a k-partite graph is also j-partite for all j ≥ k . A k-partite graph

can also be referred to as multipartite. An example of an incomplete 5-partite graph is given in

Figure 5. Let Pi be a partite set in a k-partite graph for all i ∈ [k]. A k-partite graph with partite

Figure 5: An incomplete 5-partite graph

sets P1, P2,...,Pk is considered complete if for all i, j ∈ {1, 2, . . . , k}, every vertex in Pi is adjacent to

every vertex in Pj iff i 6= j. Such a graph will be notated Kn1,n2,...,nk where ni is the size of Pi for

i ∈ {1, 2, . . . , k}. Let ri be the number of partite sets of size ni. Without loss of generality, we will

notate a complete multipartite graph with ∑k
i=1 ri partite sets as Kn1, . . . , n1︸ ︷︷ ︸

r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

such that r1n1 ≥ r2n2 ≥ r3n3 ≥ . . . ≥ rknk > 0. In the event that rini = ri+1ni+1 for some

i ∈ {1, 2, . . . , k}, the set of larger partite sets will receive the lower index. That is, ni > ni+1 when

rini = ri+1ni+1. Note that in general, ni need not be greater than ni+1. Consider the example

given in Figure 6. The graph in Figure 6 is a complete 7-partite graph with five partite sets of size

2 and two partite sets of size 4. Therefore, the graph is denoted K2, 2, 2, 2, 2︸ ︷︷ ︸
5

, 4, 4︸︷︷︸
2

and n1 = 2 while

n2 = 4.

Figure 6: A complete 7-partite graph

A graph G is uniquely colorable if proper colorings of G using χ(G) colors differ only by the names

5



Chromatic Villainy

of the colors [2]. Note that a complete multipartite graph is uniquely colorable; there is only

one way to color a complete multipartite graph up to permutation of the colors. Given that

every vertex in a given partite set Pi is adjacent to every vertex in Pj for all i 6= j, each partite set

must be colored with a different color. Because each partite set is an independent set, a given

partite set can be colored with one color. Note that the chromatic number of a graph G where

G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

is ∑k
j=1 rj, the total number of partite sets. For example,

a proper coloring c of K3,3,2,1,1 is given by Figure 7 and K3,3,2,1,1 has a chromatic number of 5.

Consider a rearrangement of c. To return G to a proper coloring, every color that appears ni times

must be in a partite set of size ni for i ∈ [5]. Note that in the proper recoloring, the vertices in a

partite set might have a different color than they did in c. Let c∗ be the rearrangement of c shown

in Figure 8.

Under c∗, the partite sets of size 1 contain colors that appear twice, and the partite set of size 2

contains colors that appear once. Therefore, every vertex in these partite sets must be re-colored.

All of the vertices in the partite sets of size 3 appear three times. However, the color 2 appears

more often in the left partite set of size 3 and the color 1 appears more often in the right partite

set of size 3. Therefore, the resulting proper coloring when the smallest possible number of

recolorings are performed is given by Figure 9.

1
1

1

2
2

2

3
3

4

5

Figure 7: A proper coloring c of K3,3,2,1,1

Note that Figure 9 is not the original proper coloring. To obtain the original proper coloring,

eight recolorings would be needed while this recoloring was obtained in six recolorings. However,

B(G) 6= 6. Let c∗ be the rearrangement of c given by Figure 10. In Figure 10, only two colors, 1

and 2, are in a partite set of the right size, size 3. They cannot both be correct in the same partite

set. Therefore, only one vertex is colored correctly in this rearrangement and the coloring has a
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2
2

1

1
1

2

4
5

3

3

Figure 8: An improper recoloring of c

2
2

2

1
1

1

3
3

4

5

Figure 9: A proper recoloring of K3,3,2,1,1

chromatic villainy of 9. Note that this is equivalent to ∑k
i=1 rini −

⌈
r1n1−∑k

j=2 rjnj
r1

⌉
. It holds that

there are only four vertices with colors that don’t appear in the graph three times and six vertices

with colors that appear three times. Therefore, under any recoloring of G, at least two of the

vertices in the partite sets of size 3 must have a color that appears in the graph three times. At

least one of these vertices will be colored correctly. Therefore, the villainy of the graph cannot be

greater than 9.

1
2

3

3
4

5

1
1

2

2

Figure 10: An improper recoloring of c
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II. Complete Multipartite Graphs

Let G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

be a complete multipartite graph with ri parts of size

ni for i ∈ [k], where r1n1 ≥ r2n2 ≥ . . . ≥ rknk > 0. Let Pi be a partite set in G for i ∈ [χ(G)]

and let P1, P2, . . . , Pr1 be the partite sets of size n1. The villainy of G is dependent on the number

of vertices in
⋃χ(G)

j=r1+1 Pj in relation to the number of vertices in
⋃r1

i=1 Pi. It holds that
⋃χ(G)

j=r1+1 Pj

contains ∑k
i=2 rini vertices. Multipartite graphs can be sorted into three cases:

1. r1n1 ≤ ∑k
j=2 rjnj,

2. r1n1 > ∑k
j=2 rjnj and ∑k

j=2 rjnj <
(

n1 −
⌊

n1
r1

⌋
r1

)
r1, and

3. r1n1 > ∑k
j=2 rjnj and ∑k

j=2 rjnj ≥
(

n1 −
⌊

n1
r1

⌋
r1

)
r1.

Consider case 1 where rini ≤ ∑j 6=i rjnj for all i and all j ∈ [k] where j 6= i. It holds that no set of

partite sets of the same size contains more than
⌊
|V(G)|

2

⌋
vertices. Consider a consecutive labeling

of the vertices where each vertex receives a label v` in G such that the vertices in the ri partite sets

of size ni receive labels that precede those in the ri+1 partite sets of size ni+1. For example, in

K4,4,3,3,2,2,

• P1 contains v1, v2, v3, and v4,

• P2 contains v5, v6, v7, and v8,

• P3 contains v9, v10, and v11,

• P4 contains v12, v13, and v14,

• P5 contains v15, and v16, and

• P6 contains v17, and v18.

Let Pi get color i under the proper χ(G)-coloring c. Since no set of partite sets of the same size

comprises more than half the graph, the color of vertex vi under c does not have the same color as

v
i+
⌊
|V(G)|

2

⌋
(mod |V(G)|) (note that if i +

⌊
|V(G)|

2

⌋
(mod |V(G)|) = 0, then v

i+
⌊
|V(G)|

2

⌋
(mod |V(G)|) =

v|V(G)|). Furthermore, c(vi) and c(v
i+
⌊
|V(G)|

2

⌋
(mod |V(G)|)) each appear a different number of times

in G. Therefore, if the colors of the vertices in G are redistributed such that v
i+
⌊
|V(G)|

2

⌋
(mod |V(G)|)

8
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receives color c(vi), no vertex in a set of size ni receives a color that appears ni times in G for all

i ∈ [k].

Consider G = K4,4,3,3,2,2. A labeling and a proper coloring of K4,4,3,3,2,2 are given in Figure 11. In

this case,
⌊
|V(G)|

2

⌋
= 9. The coloring achieved by recoloring every vertex vi with c(vi+9 (mod 18)) is

given in Figure 12. Note that in this coloring, no color that appears four times is in a partite set

of size 4, no color that appears three times is in a partite set of size 3, and no color that appears

twice is in a partite set of size 2. Therefore, every vertex in Figure 12 must be recolored to achieve

a proper coloring, and B(G) = 18.

v7
v6
v5

v8

v3

v2v1

v4

v18v17

v16

v15

v13

v14

v12 v11
v10

v9

2
2
2

2

111
166

5

5

444
333

Figure 11: A proper coloring of K4,4,3,3,2,2

5
5
4

6

433
432

2

2

112
116

Figure 12: An improper recoloring of K4,4,3,3,2,2 with a villainy of |V(G)|

Theorem 1. Let G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

be a complete multipartite graph with ri partite

sets of size ni for all i ∈ [k] where r1n1 ≥ r2n2 ≥ rknk > 0. If for all i ∈ [k] we have r1n1 ≤ ∑k
j=2 rjnj,

then

B(G) = |V(G)|.

9
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Proof. For j ∈ ∑k
i=1 ri, let Pj be a partite set in G. Note that χ(G) = ∑k

i=1 ri. Iterating through the

partite sets such that the ri sets of size ni precede the ri+1 sets of size ni+1 we label the vertices

v1, v2, . . . , v|V(G)|. That is,

P1 = {v1, v2 . . . vn1},

P2 = {vn1+1, vn1+2, . . . , v2n1},
...

Pχ(G) =
{

v∑k−1
d=1 rdnd+(rk−1)nk+1, v∑k−1

d=1 rdnd+(rk−1)nk+1, . . . , v∑k
d=1 rdnd

}
.

Let c be a proper coloring of V(G) that uses the smallest number of colors. Therefore all vertices

in each partite set get the same color under c. Let us define c such that the vertices in Pi receive

color i.

The graph G can be represented as a circle where the vertices are labeled consecutively. It

holds that rini ≤
⌊
|V(G)|

2

⌋
for all i ∈ [k]. Note that if a vertex has index 0 (mod |V(G)|), it

will recieve label v|V(G)|. Therefore, c
(

v
`+
⌊
|V(G)|

2

⌋
(mod |V(G)|)

)
6= c(v`). Furthermore, c(v`) and

c
(

v
`+
⌊
|V(G)|

2

⌋
(mod |V(G)|)

)
each appear a different number of times in G.

Let c∗ be a clockwise rotation of the colors of the vertices under c by
⌊
|V(G)|

2

⌋
units. We define c∗(v`)

to be the color of vertex ` under c∗. For all ` ∈ [|V(G)|], it holds that c∗
(

v
`+
⌊
|V(G)|

2

⌋
(mod |V(G)|)

)
=

c(v`). Since c(v`) and c
(

v
`+
⌊
|V(G)|

2

⌋
(mod |V(G)|)

)
each appear a different number of times in G,

v
`+
⌊
|V(G)|

2

⌋
(mod |V(G)|) must be recolored to return G to a proper coloring. This holds for all

` ∈ [|V(G)|]. Thus,

B(G) = |V(G)|.

Let G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

be a complete multipartite graph such that r1n1 >

∑k
j=2 rjnj. Let c be a proper χ(G)-coloring of G where the vertices in Pi receives color i. In both

case 2 and case 3, any rearrangement of c will have at least r1n1 −∑k
j=2 rjnj vertices in

⋃r1
i=1 Pi that

have a color in {1, 2, . . . , r1}.

If r1|n1, then
(

n1 −
⌊

n1
r1

⌋
r1

)
r1 will be equivalent to 0. The value ∑k

j=2 rjnj cannot be negative, and

10
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in case 2, ∑k
j=2 rjnj is strictly less than

(
n1 −

⌊
n1
r1

⌋
r1

)
r1. Therefore, if r1|n1 and

(
n1 −

⌊
n1
r1

⌋
r1

)
r1 =

0 where r1n1 ≥ ∑k
j=2 rjnj, the graph falls into case 3. Note that the value

⌊
n1
r1

⌋
represents how

many times one vertex of each color in {1, 2, . . . , r1} can be placed in each partite set of size n1. In

a given Pi where i ∈ [r1],
(

n1 −
⌊

n1
r1

⌋
r1

)
vertices remain uncolored after coloring

⌊
n1
r1

⌋
vertices in

Pi with each color in {1, 2, . . . , r1}. Thus, the value
(

n1 −
⌊

n1
r1

⌋
r1

)
r1 is equivalent to how many

vertices are left uncolored in G after
⌊

n1
r1

⌋
vertices of each color in {1, 2, . . . , r1} have been placed

in each partite set in {P1, P2, . . . , Pr1}. Note that
(

n1 −
⌊

n1
r1

⌋
r1

)
is equivalent to n1 (mod r1) and

is strictly less than r1. Therefore, if
⌊

n1
r1

⌋
vertices in each partite set in

⋃r1
i=1 are colored with each

color in {1, 2, . . . , r1}, any remaining uncolored vertices that need to be colored with colors in

{1, 2, . . . , r1} can no longer be colored such that each color in {1, 2, . . . , r1} is placed in a single

partite set.

In case 2 where r1n1 > ∑k
j=2 rjnj and ∑k

j=2 rjnj <
(

n1 −
⌊

n1
r1

⌋
r1

)
r1, we first color the vertices in⋃r1

i=1 Pi such that
⌊

n1
r1

⌋
vertices in each partite set get each color in {1, 2, . . . , r1}. This results in⌊

n1
r1

⌋
r2

1 recolored vertices in
⋃r1

i=1 Pi. Let us refer to the uncolored portion of Pi as Qi. Note that

each Qi contains n1 −
⌊

n1
r1

⌋
r1 vertices.

It holds that
(

n1 −
⌊

n1
r1

⌋
r1

)
r1 − ∑k

i=2 rini vertices in G still need to be colored with a color in

{1, 2, . . . , r1}. By our assumption, ∑k
j=2 rjnj <

(
n1 −

⌊
n1
r1

⌋
r1

)
r1. Therefore,

(
n1 −

⌊
n1
r1

⌋
r1

)
r1 −

∑k
i=2 rini > 0. These

(
n1 −

⌊
n1
r1

⌋
r1

)
r1 − ∑k

i=2 rini colored vertices cannot be distributed such

that one of each color in {1, 2, . . . , r1} is in each Qi. We will distribute these colors such that

n1 −
⌊

n1
r1

⌋
r1 vertices of each consecutive color are used and are distributed consecutively across

Qis. It holds that at least

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=1 rini

n1−
⌊

n1
r1

⌋
r1

⌉
total colors in {1, 2, . . . , r1} must be used in

⋃r1
i=1 Qi. Therefore,

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=1 rini

n1−
⌊

n1
r1

⌋
r1

⌉
partite sets contain

⌊
n1
r1

⌋
+ 1 vertices of a unique color.

Subsequently, r1 −
⌈

r1n1−
⌊

n1
r1

⌋
r2

1−∑k
i=1 rini

n1−
⌊

n1
r1

⌋
r1

⌉
partite sets must be colored with a color that appears

11
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⌊
n1
r1

⌋
times. It follows that at most

r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=1 rini

n1 −
⌊

n1
r1

⌋
r1


⌊n1

r1

⌋
+


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=1 rini

n1 −
⌊

n1
r1

⌋
r1


(⌊n1

r1

⌋
+ 1
)

= r1

⌊
n1

r1

⌋
+


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=1 rini

n1 −
⌊

n1
r1

⌋
r1


vertices do not need to be recolored.

Consider G = K3,3,3,2. A proper coloring of G is given in Figure 13 such that the vertices in Pi

receive color i. In this case,

(
n1 −

⌊
n1

r1

⌋
r1

)
r1 =

(
8−

⌊
8
3

⌋
3
)

3 = 6

while ∑k
i=2 rini = 2 and it holds that ∑k

i=2 rini <
(

n1 −
⌊

n1
r1

⌋
r1

)
r1. We first recolor

⌊ 8
3
⌋

vertices in

P1, P2, and P3 with each color in {1, 2, 3} as shown in Figure 14. It holds that
(
8−

⌊ 8
3
⌋)

= 2 and

|V(Qi)| = 2 for all i ∈ {1, 2, 3}. Note that at least


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=1 rini

n1 −
⌊

n1
r1

⌋
r1

 =

⌈
3(8)−

⌊ 8
3
⌋

32 − 2

8−
⌊ 8

3
⌋

3

⌉

=

⌈
4
2

⌉
= 2

total colors in {1, 2, . . . , r1} must be used in
⋃r1

i=1 Qi. Thus the remaining four vertices that must be

colored with a color in {1, 2, 3} will be colored such that Q1 and Q2 contain a vertex with color 1

and Q3 and Q4 contain a vertex of color 2. The additional two vertices in
⋃3

i=1 Pi will receive color

4 and the remaining unused colors are placed in P4. This recoloring is given in Figure 15.

In the coloring given in Figure 15, there are at most 3 vertices in a partite set that have the same

color. However, there are only two distinct colors that appear three times and the vertices in one

partite set must be colored with a color that only appears twice. Recoloring the vertices in P1 with

1 would require five recolorings. Likewise, recoloring the vertices in P2 with 2 would require five

12
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1
1
1
1
1
1
1
1

2 2 2 2 2 2 2 2

3
3
3
3
3
3
3
3

44

Figure 13: A proper coloring of K8,8,8,2

1
2
3
1
2
3

1 2 3 1 2 3

1
2
3
1
2
3

Figure 14: A partial recoloring of K8,8,8,2

recolorings. This leaves the vertices in P3 to be recolored with 3, requiring six recolorings. Thus,

to return the graph in Figure 15 to a proper coloring, 18 vertices need to be recolored and 8 are

already correctly colored. Note that

r1

⌊
n1

r1

⌋
+


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

 = 3
⌊

8
3

⌋
+

⌈
3(8)−

⌊ 8
3
⌋

32 − 2

8−
⌊ 8

3
⌋

3

⌉
= 8.

Theorem 2. Let G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

be a complete multipartite graph with rj partite

sets of size nj for all 1 ≤ j ≤ k. Note that r1n1 ≥ r2n2 ≥ . . . ≥ rknk > 0. If we have

r1n1 >
k

∑
j=2

rjnj and
k

∑
j=2

rjnj <

(
n1 −

⌊
n1

r1

⌋
r1

)
r1,

13
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1
2
3
1
2
3
1
2

1 2 3 1 2 3 1 4

1
2
3
1
2
3
2
4

33

Figure 15: An improper recoloring of K8,8,8,2

then

B(G) ≥
k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

n1 −
⌊

n1
r1

⌋
r1

 .

Proof. For j ∈
[
∑k

j=1 rj

]
, let Pj be a partite set in G. Let c be a proper coloring of V(G) that

uses χ(G) colors. Therefore all vertices in each partite set get the same color under c, and

χ(G) = ∑k
i=1 rk colors are used. We define c such that P1, P2, . . . , Pr1 are the r1 sets of size n1 and

each vertex in Pi where i ∈ [r1] has color i. Note that ∑k
j=2 rjnj is the total number of vertices in⋃χ(G)

i=r1+1 Pi.

To prove B(G) ≥ ∑k
j=1 rjnj −

⌊
n1
r1

⌋
r1 −

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

n1−
⌊

n1
r1

⌋
r1

⌉
, we define a coloring c∗ of G that is

a rearrangement of a χ(G)-coloring of G. For each i and j where i ∈ {1, . . . , r1} and j ∈ {1, . . . , r1}

we color
⌊

n1
r1

⌋
vertices in Pi with color j. This results in each Pi having n1 −

⌊
n1
r1

⌋
r1 vertices that

are not yet colored. It holds that r1n1 −
⌊

n1
r1

⌋
r2

1 −∑k
j=2 rjnj vertices in

⋃r1
i=1 Pi must still receive a

color in {1, 2, . . . , r1}. By our assumption, ∑k
j=2 rjnj <

(
n1 −

⌊
n1
r1

⌋
r1

)
r1. Thus, the total number

of vertices in
⋃r1

i=1 Pi that must receive a color in {1, 2, . . . , r1} is

r1n1 −
k

∑
j=2

rjnj > r1n1 −
(

n1 −
⌊

n1

r1

⌋
r1

)
r1

=

⌊
n1

r1

⌋
r2

1.

It follows that r1n1 −
⌊

n1
r1

⌋
r2

1 −∑k
j=2 rjnj is greater than 0.

14
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Let us refer to the uncolored vertices in Pi as Qi. We aim to color these remaining vertices such

that the fewest possible number of colors in {1, . . . , r1} is used and these colors are distributed

such that at most one of each color appears in each Qi. We will color the vertices in
⋃r1

i=1 Qi

such that ∑k
j=2 rjnj vertices receive colors from the set {r1 + 1, . . . , χ(G)} and the remaining

r1n1 −
⌊

n1
r1

⌋
r2

1 −∑k
j=2 rjnj vertices, those that are not yet colored, receive colors in {1, . . . , r1}.

So far, each color in {1, . . . , r1} has been used
⌊

n1
r1

⌋
r1 times in

⋃r1
i=1 Pi. Therefore, since each color

in {1, . . . , r1} appears at most n1 times in G, each color in {1, . . . , r1} can appear in
⋃r1

i=1 Qi at

most n1 −
⌊

n1
r1

⌋
r1 times. It follows that the minimum number of colors in {1, . . . , r1} that we need

to color the remaining vertices in
⋃r1

i=1 Qi is

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
; the total number of vertices in⋃r1

i=1 Qi that must be colored with a color in {1, . . . , r1} divided by how many times each color can

be used. Given that this expression simplifies to r1 +

⌈
−∑k

i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
and −∑k

i=2 rini is never positive,

this value will never be greater than r1. Note that by our assumption, ∑k
j=2 rjnj <

(
n1 −

⌊
n1
r1

⌋
r1

)
r1.

Since ∑k
j=2 rjnj cannot be negative, this implies

(
n1 −

⌊
n1
r1

⌋
r1

)
r1 is strictly greater than 0 and

likewise, n1 −
⌊

n1
r1

⌋
r1 is strictly greater than 0.

Let us distribute the colors in

{
1, . . . ,

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
− 1

}
such that each color appears

n1 −
⌊

n1
r1

⌋
r1 times in

⋃r1
i=1 Qi. We will distribute them such that we place one vertex of color 1

in each consecutive Qi beginning with Q1. When all n1 −
⌊

n1
r1

⌋
r1 vertices of a color are placed,

the color will be increased by 1 and placed in the next Qi, returning to Q1 after a color has been

placed in Qr1 . After placing these colors, there are

r1n1 −
⌊

n1

r1

⌋
r2

1 −
k

∑
i=2

rini −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

− 1

(n1 −
⌊

n1

r1

⌋
r1

)

15
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vertices uncolored in
⋃r1

i=1 Qi that still need to be colored with a color in {1, 2, . . . , r1}. Note that

r1n1 −
⌊

n1

r1

⌋
r2

1 −
k

∑
i=2

rini −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

− 1

(n1 −
⌊

n1

r1

⌋
r1

)

= r1n1 −
⌊

n1

r1

⌋
r2

1 −
k

∑
i=2

rini −

r1 +

 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

− 1

(n1 −
⌊

n1

r1

⌋
r1

)

= r1n1 −
⌊

n1

r1

⌋
r2

1 −
k

∑
i=2

rini − r1n1 +

⌊
n1

r1

⌋
r2

1

−

 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1


(

n1 −
⌊

n1

r1

⌋
r1

)
+

(
n1 −

⌊
n1

r1

⌋
r1

)

= −
k

∑
i=2

rini −

 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1


(

n1 −
⌊

n1

r1

⌋
r1

)
+

(
n1 −

⌊
n1

r1

⌋
r1

)

=

1−

 −∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1


(n1 −

⌊
n1

r1

⌋
r1

)
−

k

∑
i=2

rini

=

1 +

 ∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

(n1 −
⌊

n1

r1

⌋
r1

)
−

k

∑
i=2

rini.

The value of

⌊
∑k

i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌋
is strictly greater than ∑k

i=2 rini

n1−
⌊

n1
r1

⌋
r1
− 1 and less than or equal to ∑k

i=2 rini

n1−
⌊

n1
r1

⌋
r1

.

It holds that1 +

 ∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

(n1 −
⌊

n1

r1

⌋
r1

)
−

k

∑
i=2

rini >

1 +

 ∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

− 1

(n1 −
⌊

n1

r1

⌋
r1

)

−
k

∑
i=2

rini

=
k

∑
i=2

rini −
k

∑
i=2

rini

= 0,
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and1 +

 ∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

(n1 −
⌊

n1

r1

⌋
r1

)
−

k

∑
i=2

rini ≤

1 +

 ∑k
i=2 rini

n1 −
⌊

n1
r1

⌋
r1

(n1 −
⌊

n1

r1

⌋
r1

)

−
k

∑
i=2

rini

= n1 −
⌊

n1

r1

⌋
r1 +

k

∑
i=2

rini −
k

∑
i=2

rini

= n1 −
⌊

n1

r1

⌋
r1.

Therefore, the number of vertices that still need to be colored with a color in {1, 2, . . . , r1} is strictly

greater than 0 and less than or equal to n1 −
⌊

n1
r1

⌋
r1. Thus, these vertices can be colored with

one color. These vertices receive color

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
. We will place this color such that

the first vertex to receive color

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
is placed in the next Qi after the last vertex

of color

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
− 1. The rest of the vertices of color

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
will be

placed in consecutive Qi’s such that the color will be placed in Q1 after a color has been placed in

Qr1 . The remaining vertices in
⋃r1

i=1 Qi will be colored with a color in {r1 + 1, r1 + 2, . . . , χ(G)}.

Note that n1 −
⌊

n1
r1

⌋
r1 is equivalent to n1 (mod r1). Therefore, n1 −

⌊
n1
r1

⌋
r1 < r1. Since each color

in {1, . . . , r1} appears at most n1 (mod r1) times in
⋃r1

i=1 Qi and these colors are distributed across

partite sets as evenly as possible, the colors in this set are distributed in
⋃r1

i=1 Qi such that no color

appears more than once in a given Qi. Therefore, each Pi has at most
⌊

n1
r1

⌋
+ 1 vertices of each

color in {1, . . . , r1}.

Note that for all i and j where i, j ∈ {1, . . . , r1}, partite set Pi contains exactly
⌊

n1
r1

⌋
or
⌊

n1
r1

⌋
+ 1

vertices with color j. Moreover, at most

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
colors in {1, . . . r1} appear

⌊
n1
r1

⌋
+ 1

times in some partite set Pj. The vertices in partite sets {Pr+1, . . . , Pχ(G)} are colored with colors

in the set {1, . . . , r1}. Therefore, in reconstructing a proper coloring of G, there are at most
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r1

⌊
n1
r1

⌋
+

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
i=2 rini

n1−
⌊

n1
r1

⌋
r1

⌉
vertices that do not need to be recolored, and

B(G) ≥
k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

n1 −
⌊

n1
r1

⌋
r1

 .

We believe B(G) ≤ ∑k
j=1 rjnj −

⌊
n1
r1

⌋
r1 −

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

n1−
⌊

n1
r1

⌋
r1

⌉
as well, but this has yet to be

shown. A less strict upper bound of B(G) ≤ ∑k
j=1 rjnj −

⌊
n1
r1

⌋
r1 −

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
has been

proven. Note that since n1 −
⌊

n1
r1

⌋
r1 is equivalent to n1 (mod r1), it holds that n1 −

⌊
n1
r1

⌋
r1 is

strictly less than r1. Thus,

k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

n1 −
⌊

n1
r1

⌋
r1

 ≤
k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1

−


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

r1

 .

Theorem 3. Let G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

be a complete multipartite graph with rj partite

sets of size nj for all 1 ≤ j ≤ k. Note that r1n1 ≥ r2n2 ≥ . . . ≥ rknk > 0. If we have

r1n1 >
k

∑
j=2

rjnj and
k

∑
j=2

rjnj <

(
n1 −

⌊
n1

r1

⌋
r1

)
r1,

then

B(G) ≤
k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

r1

 .

Proof. For j ∈
[
∑k

j=1 rj

]
, let Pj be a partite set in G. Let c be a proper coloring of V(G) that uses

χ(G) colors. Therefore all vertices in each partite set get the same color under c and χ(G) = ∑k
i=1 rk

colors are used. We define c such that P1, P2, . . . , Pr1 are the r1 sets of size n1 and each vertex in Pi

where i ∈ [r1] has color i. Note that ∑k
j=2 rjnj is the total number of vertices in

⋃χ(G)
i=r1+1 Pi.

Let c∗ be the rearrangement of c that has the highest villainy. It holds that under any recoloring,

at least r1n1 − ∑k
i=2 rini vertices in

⋃r1
i=1 Pi must have a color in {1, 2, . . . , r1}. Any vertex in
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⋃r1
i=1 Pi with a color in {r1 + 1, r1 + 2, . . . , χ(G)} is colored incorrectly. Likewise, any vertex in⋃χ(G)
j=r1+1 Pj with a color in {1, 2, . . . , r1} is colored incorrectly. Thus, in c∗, as many vertices as

possible in
⋃r1

i=1 Pi are recolored with a color in {r1 + 1, r1 + 2, . . . , χ(G)}. It follows that exactly

r1n1 −∑k
i=2 rini vertices in

⋃k
i=2 rini are colored with a color in {1, 2, . . . , r1} under c∗.

Let us represent the coloring under c∗ of
⋃r1

i=1 Pi as a weighted bipartite graph with partite sets

A and B where the vertices in A represent the set of colors in {1, 2, . . . , r1} and the vertices in B

represent the partite sets in {P1, . . . , Pr1}. An edge between a vertex f in A and g in B with weight

k indicates that there are k vertices with color f in Pg. Let the weight of such an edge be denoted

w f ,g. The sum of these weights is equivalent to r1n1 −∑k
j=2 rjnj, the total number of vertices in⋃r1

i=1 Pi with colors in {1, 2, . . . , r1}. Consider the maximum weighted matching between A and B.

Note that the bipartite graph is complete, thus the maximum weighted matching is also a perfect

matching. By choosing to recolor each partite set such that the vertices in Pi receive the color in A

that was matched with i in B, we choose the rearrangement of c∗ that achieves the proper coloring

of
⋃r1

i=1 Pi that requires the fewest number of recolorings.

Without loss of generality, let us assume that in each partite set Pi, the vertices of color i do not

need to be recolored when reconstructing the proper coloring of G that requires the minimum

number of recolorings. Therefore, the sum of the edges in the maximum weighted matching is

w1,1 + w2,2 + . . . + wr1,r1 . For each fixed integer s, with s ∈ {1, . . . , r1}, if we recolor the vertices in⋃r1
i=1 Pi in such a way that all vertices in Pi get final color i + s modulo r1 (note that if i + s ≡ 0

(mod r1), the vertices in Pi will receive color r1), then each element wi,j where i, j ∈ {1, . . . , r1} will

be included in a sum exactly once in the set {w1,1 + w2,2 + . . . + wr1,r1 , w1,2 + w2,3 + . . . + wr1,1,. . .,

w1,r1 + w2,1 + . . . + wr1,r1−1}. The sum of the elements in this set can be expressed as ∑r1
i=1 ∑r1

j=1 wi,j

and will be the sum of r2
1 different values of wi,j. Note that this value represents the sum of the

weights of all edges in the weighted bipartite graph between A and B. Therefore, this sum is the

total number of vertices with colors {1, . . . , r1} in
⋃r1

i=1 Pi.

Let us assume that an improper coloring of G exists such that the number of vertices that do not

need to be recolored is less than
⌊

n1
r1

⌋
r1 +

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
. This implies that the maximum

weighted matching between A and B is less than
⌊

n1
r1

⌋
r1 +

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
. If the sum of

the weights in the maximum weighted matching, w1,1 + w2,2 + . . . + wr1,r1 , is less than
⌊

n1
r1

⌋
r1 +
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⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
, then each element in the set {w1,1 + w2,2 + . . . + wr1,r1 , w1,2 + w2,3 + . . . +

wr1,1,. . ., w1,r1 +w2,1 + . . .+wr1,r1−1}must also be less than
⌊

n1
r1

⌋
r1 +

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
. Given

that there are r1 elements in this set, the maximum possible value of ∑r1
i=1 ∑r1

j=1 wi,j is given

by r1

(⌊
n1
r1

⌋
r1 +

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
− 1

)
. Note that if x or y is an integer, it holds that

dx + ye = dxe+ dye. It follows that:

r1

(⌊
n1
r1

⌋
r1 +

⌈
r1n1−

⌊ n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
− 1

)
= r1

(⌊
n1
r1

⌋
r1 +

⌈
n1 −

⌊
n1
r1

⌋
r1 +

−∑k
j=2 rjnj
r1

⌉
− 1
)

= r1

(⌊
n1
r1

⌋
r1 + n1 −

⌊
n1
r1

⌋
r1 +

⌈
−∑k

j=2 rjnj
r1

⌉
− 1
)

= r1

(
n1 +

⌈
−∑k

j=2 rjnj
r1

⌉
− 1
)

= r1n1 + r1

⌈
−∑k

j=2 rjnj
r1

⌉
− r1.

The value of
⌈
−∑k

j=2 rjnj
r1

⌉
is strictly less than

−∑k
j=2 rjnj
r1

+ 1 and greater than or equal to
−∑k

j=2 rjnj
r1

.

Therefore,

r1n1 + r1

⌈
−∑k

j=2 rjnj

r1

⌉
− r1 < r1n1 + r1

(
−∑k

j=2 rjnj

r1
+ 1

)
− r1

= r1n1 −
k

∑
j=2

rjnj + r1 − r1

= r1n1 −
k

∑
j=2

rjnj

and ∑r1
i=1 ∑r1

j=1 wi,j is strictly less than r1n1 −∑k
j=2 rjnj.

This is a contradiction given that the sum of weighted edges of the multipartite graph between A

and B must be equal to r1n1 −∑k
j=2 rjnj. Therefore, the number of vertices that do not need to be

recolored is at least
⌊

n1
r1

⌋
r1 +

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
. Note that all vertices in

⋃χ(G)
r1+1 Pi are colored

with a color in the set {1, 2, . . . , r1} and are thus colored incorrectly. Therefore,

B(G) ≤
k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

r1

 .
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Consider case 3 where r1n1 ≥ ∑k
j=2 rjnj and ∑k

j=2 rjnj ≥
(

n1 −
⌊

n1
r1

⌋
r1

)
r1. Let

G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

.

Let G be properly colored such that Pi receives color i and {P1, P2, . . . , Pr1} are the parts of size n1.

We aim to improperly recolor
⋃r1

i=1 Pi such that the colors in {1, 2, . . . , r1} are distributed as evenly

as possible. We first want to distribute as many of the r1n1 − ∑k
i=2 rini vertices with a color in

{1, 2, . . . , r1} such that each color is in a partite set the same number of times and there is the same

number of vertices with each color in each partite set. Thus, each color appears in each partite set⌊
r1n1−∑k

i=2 rini
r2

1

⌋
times. This leaves r1n1 −

⌊
r1n1−∑k

i=2 rini
r2

1

⌋
r2

1 −∑k
i=2 rini vertices in

⋃r1
i=1 Pi left to be

recolored with a color in {1, 2, . . . , r1}. Let Qi be the uncolored vertices in Pi for i ∈ [r1]. We aim

to recolor these vertices in
⋃r1

i=1 Qi such that at most one vertex of each color in {1, 2, . . . , r1} is

in a given Qi and the colors are distributed across as few partite sets as possible. The minimum

number of partite sets these colors can be distributed over is given by


r1n1 −

⌊
r1n1−∑k

i=2 rini
r2

1

⌋
r2

1 −∑k
i=2 rini

r1

 .

However, partite set


r1n1−

⌊
r1n1−∑k

i=2 rini
r2
1

⌋
r2

1−∑k
i=2 rini

r1

 may not contain r1 additional colors in

{1, 2, . . . , r1}. We color r1 uncolored vertices in the first


r1n1−

⌊
r1n1−∑k

i=2 rini
r2
1

⌋
r2

1−∑k
i=2 rini

r1

− 1 partite

sets with each color in {1, 2, . . . , r1}. This leaves

r1n1 −
⌊

r1n1 −∑k
i=2 rini

r2
1

⌋
r2

1 −
k

∑
i=2

rini −




r1n1 −
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
r2

1 −∑k
i=2 rini

r1

− 1

 r1
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vertices that need to be recolored with a color in {1, 2, . . . , r1}. We color

r1n1 −
⌊

r1n1 −∑k
i=2 rini

r2
1

⌋
r2

1 −
k

∑
i=2

rini −




r1n1 −
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
r2

1 −∑k
i=2 rini

r1

− 1

 r1

vertices in partite set


r1n1−

⌊
r1n1−∑k

i=2 rini
r2
1

⌋
r2

1−∑k
i=2 rini

r1

 such that there is a vertex of each color i

where

i ∈

r1n1 −
⌊

r1n1 −∑k
i=2 rini

r2
1

⌋
r2

1 −
k

∑
i=2

rini −




r1n1 −
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
r2

1 −∑k
i=2 rini

r1

− 1

 r1

 .

The first


r1n1−

⌊
r1n1−∑k

i=2 rini
r2
1

⌋
r2

1−∑k
i=2 rini

r1

 partite sets will contain
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
+ 1 of a distinct

color while the rest contain at most
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
vertices of the same color. If we recolor the

vertices in the first


r1n1−

⌊
r1n1−∑k

i=2 rini
r2
1

⌋
r2

1−∑k
i=2 rini

r1

 sets with a color that appears
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
+ 1

times and the rest of the partite sets with a color that appears
⌊

r1n1−∑k
i=2 rini

r2
1

⌋
times, at most

⌊
r1n1 −∑k

i=2 rini

r2
1

⌋
r1 +


r1n1 −

⌊
r1n1−∑k

i=2 rini
r2

1

⌋
r2

1 −∑k
i=2 rini

r1


=

⌊
r1n1 −∑k

i=2 rini

r2
1

⌋
r1 + n1 −

⌊
r1n1 −∑k

i=2 rini

r2
1

⌋
r1 +

⌈
−∑k

i=2 rini

r1

⌉

= n1 +

⌈
−∑k

i=2 rini

r1

⌉

=

⌈
r1n1 −∑k

i=2 rini

r1

⌉

vertices in G will not need to be recolored.
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Consider G = K8,8,8,10. A proper coloring of K8,8,8,10 is given in Figure 16. In this case,

(
n1 −

⌊
n1

r1

⌋
r1

)
r1 =

(
8−

⌊
8
3

⌋
3
)

3 = 6

while ∑k
i=2 rini = 10 and it holds that ∑k

i=2 rini ≥
(

n1 −
⌊

n1
r1

⌋
r1

)
r1. Let us define Pi as the partite

set that contains vertices with color i under the proper coloring given in Figure 16. We first recolor⌊
14
9

⌋
vertices in each partite set of size 8 with each color in {1, 2, 3} as shown in Figure 17. There

are five vertices left in
⋃3

i=1 Pi that need to be recolored with a color in {1, 2, 3} and these vertices

will be in P1 and P2. We will color an additional vertex in P1 with each color in {1, 2, 3} and

one vertex in P2 with each color in {1, 2}. The remaining vertices in
⋃3

i=1 Pi receive color 4. This

recoloring is given in Figure 18.

In the coloring given in Figure 18, there are at most two vertices in a partite set that appear in

G eight times and are the same color. However, only P1 and P2 contain a color that appears two

times. Recoloring the vertices in P2 with color 1 and the vertices in P1 with color 2 requires 12

recolorings. Recoloring P3 with color 3 requires 7 recolorings. Thus, to return the graph in Figure

18 to a proper coloring, 19 vertices need to be recolored and 5 vertices are already correctly colored.

Note that ⌈
r1n1 −∑k

i=2 rknk
r1

⌉
=

⌈
8(3)− 10

3

⌉
= 5.

1
1
1
1
1
1
1
1

2 2 2 2 2 2 2 2

3
3
3
3
3
3
3
3

4444444444

Figure 16: A proper coloring of K8,8,8,10
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1
2
3

1 2 3

1
2
3

Figure 17: A partial recoloring of K8,8,8,10

1
2
3
1
2
3
4
4

1 2 3 1 2 4 4 4

1
2
3
4
4
4
4
4

1231231233

Figure 18: An improper recoloring of K8,8,8,10

Theorem 4. Let G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

be a complete multipartite graph with rj partite

sets of size nj for all j ∈ [k], with r1n1 ≥ r2n2 ≥ . . . ≥ rknk > 0. If we have

r1n1 >
k

∑
j=2

rjnj and
k

∑
j=2

rjnj ≥
(

n1 −
⌊

n1

r1

⌋
r1

)
r1,

then

B(G) =
k

∑
j=1

rjnj −
⌈

r1n1 −∑k
j=2 rjnj

r1

⌉
.

Proof. For ` ∈
[
∑k

j=1 rj

]
, let P` be a partite set in G. Let c be a proper coloring of G that uses χ(G)

colors; we define c such that P1, P2, . . . , Pr1 are the r1 sets of size n1 and each vertex in P` has color

` under c. Note that χ(G) = ∑k
j=1 rj.
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Let c∗ be the rearrangement of c that has the highest villainy. It holds that under any recoloring,

at least r1n1 − ∑k
i=2 rini vertices in

⋃r1
i=1 Pi must have a color in {1, 2, . . . , r1}. Any vertex in⋃r1

i=1 Pi with a color in {r1 + 1, r1 + 2, . . . , χ(G)} is colored incorrectly. Likewise, any vertex in⋃χ(G)
j=r1+1 Pj with a color in {1, 2, . . . , r1} is colored incorrectly. Thus, in c∗, as many vertices as

possible in
⋃r1

i=1 Pi are recolored with a color in {r1 + 1, r1 + 2, . . . , χ(G)}. It follows that exactly

r1n1 −∑k
i=2 rini vertices in

⋃k
i=2 rini are colored with a color in {1, 2, . . . , r1} under c∗.

We need to recolor the vertices of G in such a way that a proper coloring of G using the same set

of colors is obtained. For integers a and b with a, b ∈ {1, . . . , r1}, let fa,b be the total number of

vertices in Pa having color b. Thus, ∑r1
a=1 ∑r1

b=1 fa,b = r1n1 −∑k
j=2 rjnj.

Note that for the vertices in partite sets P1, P2, . . . , Pr1 to be properly colored, the vertices in each

partite set must be colored with a unique color in the set {1, 2, . . . , r1}. Let cs be a proper coloring

of G where the vertices in Pi receive color i + s (mod r1) for all i ∈ [k] where s ∈ {0, 1, . . . , r1 − 1}.

If i + s (mod r1) is 0, the vertices in partite set i receive color r1. Note that there are r1 colorings

in the set {c0, c1, . . . , cr1−1}. Let us define Fs as the number of vertices in c∗ that do not need to be

recolored to achieve coloring cs. It holds that

Fs = f1,1+s ( mod r1)
+ f2,2+s ( mod r1)

+ . . . + fr1,r1+s ( mod r1)

for a given s. In c∗, it holds that

r1n1 −
k

∑
j=2

rjnj = ( f1,1 + f1,2 + . . . + f1,r1)︸ ︷︷ ︸
P1

+ ( f2,1 + f2,2 + . . . + f2,r1)︸ ︷︷ ︸
P2

+ . . . + ( fr1,1 + fr1,2 + . . . + fr1,r1)︸ ︷︷ ︸
Pr1

= ( f1,1 + f2,2 + . . . + fr1,r1) + ( f1,2 + f2,3 + . . . + fr1,1)

+ . . . + ( f1,r1 + f2,1 + . . . + fr1,r1−1)

= F0 + F1 + . . . + Fr1−1.

Therefore,

max
0≤s≤r1−1

(Fs) ≥
⌈

r1n1 −∑k
j=2 rjnj

r1

⌉
.
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Thus, the upper bound on the smallest number of recolorings needed to properly recolor the

vertices in
⋃r1

i=1 Pi is given by r1n1−
⌈

r1n1−∑k
j=2 rjnj

r1

⌉
. Since there are ∑k

j=2 rjnj vertices in
⋃χ(G)

i=r1+1 Pi

with a color in the set {1, 2, . . . , r1}, we have

B(G) ≤ r1n1 −
⌈

r1n1 −∑k
j=2 rjnj

r1

⌉
+

k

∑
j=2

rjnj

=
k

∑
i=1

rini −
⌈

r1n1 −∑k
j=2 rjnj

r1

⌉
.

Let c be a proper χ(G)-coloring of G. To prove B(G) ≥ ∑k
i=1 rini −

⌈
r1n1−∑k

j=2 rjnj
r1

⌉
, we define a

coloring c∗ on G that is a rearrangement of c. For each a ∈ {1, 2, . . . , r1} and b ∈ {1, 2, . . . , r1}

we color
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
vertices in Pa with color b. We will recolor an additional ∑r1

j=2 rjnj

vertices in
⋃r1

i=1 Pi with colors in {r1 + 1, r1 + 2, . . . , χ(G)}. This results in
⋃r1

j=1 Pj having r1n1 −⌊
r1n1−∑k

j=2 rjnj

r2
1

⌋
r2

1 − ∑k
j=2 rjnj vertices that are not yet colored. These vertices must be colored

with a color from the set {1, 2, . . . , r1}. We aim to color these remaining vertices in
⋃r1

i=1 Pi

such that they are placed in the fewest possible number of partite sets and there are no more

than
⌈

r1n1−∑
r1
j=2 rjnj

r1

⌉
of a color in a given partite set. It holds that the fewest number of partite

sets the remaining r1n1 −
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
r2

1 − ∑k
j=2 rjnj uncolored vertices can be placed in is

r1n1−
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
r2

1−∑k
j=2 rjnj

r1

. Let us color a vertex that has not yet been recolored in each

partite set Pj where j ∈

1, 2, . . . ,


r1n1−

 r1n1−∑k
j=2 rjnj

r2
1

r2
1−∑k

j=2 rjnj

r1

− 1

 with each color in the

set {1, 2, . . . , r1}. This leaves

r1n1 −
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
r2

1 −
k

∑
j=2

rjnj −




r1n1−

 n1r1−∑k
j=2 rjnj

r2
1

r2
1−∑k

j=2 rjnj

r1

− 1

 r1
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vertices uncolored in
⋃r1

j=1 Pj. Note that

r1n1 −
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
r2

1 −
k

∑
j=2

rjnj −




r1n1−

 r1n1−∑k
j=2 rjnj

r2
1

r2
1−∑k

j=2 rjnj

r1

− 1

 r1

= r1n1 −
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
r2

1 −
k

∑
j=2

rjnj −


r1n1−

 r1n1−∑k
j=2 rjnj

r2
1

r2
1−∑k

j=2 rjnj

r1

 r1 + r1

= r1n1 −
⌊

r1n1−∑k
j=2 rjnj

r2
1

⌋
r2

1 −
k

∑
j=2

rjnj − r1n1 +

⌊
r1n1 −∑k

j=2 rjnj

r2
1

⌋
r2

1

−
⌈
−∑k

j=2 rjnj

r1

⌉
r1 + r1

= r1 −
⌈
−∑k

j=2 rjnj

r1

⌉
r1 −

k

∑
j=2

rjnj

= r1 +

⌊
∑k

j=2 rjnj

r1

⌋
r1 −

k

∑
j=2

rjnj.

The value of
⌊

∑k
j=2 rjnj

r1

⌋
is less than or equal to

∑k
j=2 rjnj

r1
and strictly greater than

∑k
j=2 rjnj

r1
− 1. It

holds that

r1 +

⌊
∑k

j=2 rjnj

r1

⌋
r1 −

k

∑
j=2

rjnj ≤ r1 +

(
∑k

j=2 rjnj

r1

)
r1 −

k

∑
j=2

rjnj

= r1,

and

r1 +

⌊
∑k

j=2 rjnj

r1

⌋
r1 −

k

∑
j=2

rjnj > r1 +

(
∑k

j=2 rjnj

r1
− 1

)
r1 −

k

∑
j=2

rjnj

= r1 +
k

∑
j=2

rjnj − r1 −
k

∑
j=2

rjnj

= 0.

Therefore, the number of uncolored vertices in
⋃r1

j=1 Pj that need to receive a color in {1, 2, . . . , r1}
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is in {1, 2, . . . , r1}. We then color r1 +

⌊
∑k

j=2 rjnj
r1

⌋
r1 −∑k

j=2 rjnj vertices in partite set
r1n1−

 r1n1−∑k
j=2 rjnj

r2
1

−∑k
j=2 rjnj

r1

 with each color in the set

{
1, 2, . . . , r1 +

⌊
∑k

j=2 rjnj

r1

⌋
r1 −

k

∑
j=2

rjnj

}
.

It holds that for all a and b where a, b ∈ {1, 2, . . . , r1}, partite set Pa contains exactly

⌊
r1n1 −∑k

j=2 rjnj

r2
1

⌋
or

⌊
r1n1 −∑k

j=2 rjnj

r2
1

⌋
+ 1

vertices with color b. Moreover,


r1n1 −

⌊
n1r1−∑k

j=1 rjnj

r2
1

⌋
r2

1 −∑k
j=2 rjnj

r1


partite sets contain a color in {1, 2, . . . , r1} that appears

⌊
r1n1−∑k

j=2 rjnj

r2
1

⌋
+ 1 times. The vertices in

partite sets {Pr1+1, . . . , Pχ(G)} are colored with colors in the set {1, 2, . . . , r1}. It follows that, in

reconstructing a proper coloring of G, the number of vertices that do not need to be recolored is

⌊
r1n1−∑k

j=2 rjnj

r2
1

⌋
r1 +


r1n1−

 r1n1−∑k
j=2 rjnj

r2
1

r2
1−∑k

j=2 rjnj

r1


=

⌊
r1n1−∑k

j=2 rjnj

r2
1

⌋
r1 + n1 −

⌊
r1n1−∑k

j=2 rjnj

r2
1

⌋
r1 +

⌈
−∑k

j=2 rjnj
r1

⌉
= n1 +

⌈
−∑k

j=2 rjnj
r1

⌉
=

⌈
r1n1−∑k

j=2 rjnj
r1

⌉
.

Therefore,

B(G) ≥
k

∑
j=1

rjnj −
⌈

r1n1 −∑k
j=2 rjnj

r1

⌉
.
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Let G = Kn,...,n be a complete k-partite graph with k partite sets of size n. In this case, ∑k
i=2 rini = 0

and ∑k
i=2 rini will always be less than or equal to kn−

⌊ n
k
⌋

k2. When ∑k
i=2 rini < kn−

⌊ n
k
⌋

k2, G

is a subcase of case 2 and will be incorrectly colored using the same method. It follows that the

villainy of G is greater than or equal to ∑k
j=1 rjnj −

⌊
n1
r1

⌋
r1 −

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

n1−
⌊

n1
r1

⌋
r1

⌉
and less than

or equal to r1n1 −
⌊

n1
r1

⌋
r1 −

⌈
r1n1−

⌊
n1
r1

⌋
r2

1
r1

⌉
. However, given that ∑k

i=2 rini = 0, it holds that

r1n1 −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1

n1 −
⌊

n1
r1

⌋
r1

 = kn−
⌈n

k

⌉
k

and

r1n1 −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1

r1

 = kn− n.

Consider K8,8,8. Let c be a proper 3-coloring of K8,8,8 as shown in Figure 19.

11111111

2 2 2 2 2 2 2 2

33333333

Figure 19: A proper coloring of K8,8,8

12312313

1 2 3 1 2 3 1 2

12312323

Figure 20: An improper recoloring of K8,8,8

29



Chromatic Villainy

Let us define Pi as the partite set that receives color i under c. Following the recoloring procedure

given for case 2, K8,8,8 is improperly colored as shown in Figure 20. Every partite set contains

three vertices with a distinct color. If we recolor the vertices in P1 with 1, the vertices in P2 with 2

and the vertices in P3 with 3, 15 recolorings will be performed to achieve a proper coloring. Note

that

kn− k
⌈n

k

⌉
= 3(8)− 3

⌈
8
3

⌉
= 15

and

kn− n = 3(8)− 8 = 16.

Theorem 5. Let G = Kn,...,n be a k-partite graph with k partite sets of size n where k does not divide n. It

holds that

kn− n ≥ B(G) ≥ kn− k
⌈n

k

⌉
.

Proof. Let G = Kn,...,n and let P1, P2,...,Pk be the partite sets of G. By our assumption, k does not

divide n. Given that each partite set must receive a unique color, χ(G) = k. Let c be a proper

k-coloring of G in which the vertices in Pi receive color i and let c∗ be a rearrangement of c.

By Theorem 3, less than or equal to ∑k
j=1 rjnj −

⌊
n1
r1

⌋
r1−

⌈
r1n1−

⌊
n1
r1

⌋
r2

1−∑k
j=2 rjnj

r1

⌉
vertices in c∗ need

to be recolored to restore G to a proper coloring. However, given that ∑k
i=2 rini = 0, it holds that

r1n1 −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1

r1

 = kn−
⌊n

k

⌋
k−

⌈
n−

⌊n
k

k
⌋⌉

= kn−
⌊n

k

⌋
k− n +

⌊n
k

⌋
k

= kn− n

and

B(G) ≤ kn− n.

According to Theorem 2, it holds that B(G) ≥ r1n1 −
⌊

n1
r1

⌋
r1 −

⌈
r1n1−

⌊
n1
r1

⌋
r2

1

n1−
⌊

n1
r1

⌋
r1

⌉
. However, given
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that ∑k
i=2 rini = 0, it holds that

r1n1 −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1

n1 −
⌊

n1
r1

⌋
r1

 = kn−
⌊n

k

⌋
k−

⌈
kn−

⌊ n
k
⌋

k2

n−
⌊ n

k
⌋

k

⌉

= kn−
⌊n

k

⌋
k− k.

It holds that k - n in case 2. Therefore,
⌊ n

k
⌋
+ 1 =

⌈ n
k
⌉
. It follows that:

kn−
⌊n

k

⌋
k− k = kn−

(⌊n
k

⌋
+ 1
)

k

= kn−
⌈n

k

⌉
k.

Thus,

B(G) ≥ kn− k
⌈n

k

⌉
.

When ∑k
i=2 rini = kn−

⌊ n
k
⌋

k2 = 0, G is a subcase of case 3 and will be incorrectly colored using

the same method. Thus, G has a villainy of ∑k
j=1 rjnj −

⌈
r1n1−∑k

j=2 rjnj
r1

⌉
. However, given that

∑k
i=2 rini = 0, this can be simplified to

k

∑
j=1

rjnj −
⌈

r1n1

r1

⌉
= kn−

⌈
kn
k

⌉
= kn− n.

Given that k|n in this case,

kn− n = kn− k
⌈n

k

⌉
.

Consider G = K8,8,8,8. Let c be a proper 4-coloring of K8,8,8,8 as shown in Figure 21.

Let us define Pi as the partite set that receives color i under c. Following the recoloring procedure

given for case 3, K8,8,8,8 is improperly colored as shown in Figure 22. Every partite set contains

two vertices with a distinct color. If we recolor the vertices in P1 with 1, the vertices in P2 with 2

the vertices in P3 with 3, and the vertices in P4 with 4, 24 recolorings will be performed to acheive
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11111111

22222222

3333333344444444

Figure 21: A proper coloring of K8,8,8,8

12341234

12341234

1234123412341234

Figure 22: An improper coloring of K8,8,8,8

a proper coloring. Note that

kn− k
⌈n

k

⌉
= 4(8)− 4

⌈
8
4

⌉
= 24.

Theorem 6. Let G = Kn,...,n be a k-partite graph with k partite sets of size n where k divides n. It holds

that

B(G) = kn− k
⌈n

k

⌉
.

Proof. Let G = Kn,...,n and let P1, P2,...,Pk be the partite sets of G. Given that each partite set must

receive a unique color, χ(G) = k. Let c be a proper k-coloring of G in which the vertices in Pi
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receive color i and let c∗ be a rearrangement of c. Our aim is to recolor at most kn− k
⌈ n

k
⌉

vertices

of G in c∗ in order to obtain a proper coloring.

Let us represent the coloring under c∗ of
⋃k

i=1 Pi as a weighted bipartite graph with partite sets

A and B where the vertices in A represent the set of colors in {1, 2, . . . , k} and the vertices in B

represent the partite sets in {P1, . . . , Pk}. An edge between a vertex f in A and g in B with weight

h indicates that there are h vertices with color f in Pg. Let the weight of such an edge be denoted

w f ,g. The sum of these weights is equivalent to kn, the total number of vertices in
⋃k

i=1 Pi. Consider

the maximum weighted matching between A and B. Note that the bipartite graph is complete,

thus the maximum weighted matching is also a perfect matching. Without loss of generality, let

us assume the maximum weighted matching is given by w1,1 + w2,2 + . . . + wk,k By choosing to

recolor each partite set such that the vertices in Pi receive the color in A that was matched with i

in B, we choose the rearrangement of c∗ that achieves the proper coloring of
⋃k

i=1 Pi that requires

the fewest number of recolorings.

Let us assume that an improper coloring of G exists such that the number of vertices that do

not need to be recolored is less than n. This implies that the maximum weighted matching

between A and B is less than n. If the sum of the weights in the maximum weighted matching,

w1,1 + w2,2 + . . . + wk,k, is less than n, then each element in the set {w1,1 + w2,2 + . . . + wk,k,

w1,2 + w2,3 + . . . + wk,1,. . ., w1,k + w2,1 + . . . + wk,k−1} must also be less than n. Given that there

are k elements in this set, the maximum possible value of ∑r1
i=1 ∑k

j=1 wi,j is given by kn− k which is

strictly less than kn. This is a contradiction given that the sum of weighted edges of the multipartite

graph between A and B must be equal to kn. Therefore, the number of vertices that do not need

to be recolored is at least n. Therefore,B(G) ≤ kn− n. Given that k divides n, it holds that

B(G) ≤ kn− k
⌈n

k

⌉
.

To prove that B(G) ≥ kn − k
⌈ n

k
⌉
, we define a coloring c∗ on the vertices of G where c∗ is a

rearrangement of c. For each i ∈ [n] and j ∈ [k], we color
⌊ n

k
⌋

vertices in Pi with color j. This

results in each Pi having n− k
⌊ n

k
⌋

vertices that are not yet colored.

In the case where k divides n,
⌊ n

k
⌋
=
⌈ n

k
⌉

and each Pi has n− k
( n

k
)
= 0 vertices that are uncolored.

For each i ∈ [n] and j ∈ [k], each color j appears in Pi exactly
⌈ n

k
⌉

times and at most k
⌈ n

k
⌉

vertices
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are colored correctly.

In the case where, k does not divide n, it holds that
⌊ n

k
⌋
=
⌈ n

k
⌉
− 1. Let us refer to the uncolored

vertices in Pi as Qi. We aim to recolor
⋃k

i=1 Qi such that each color appears at most once in a

given Qi. So far each color has been used k
⌊ n

k
⌋

times and can therefore be used at most n− k
⌊ n

k
⌋

times in
⋃k

i=1 Qi. Note that n− k
⌊ n

k
⌋

is equivalent to n (mod k) and can never be greater than k.

Therefore, the colors can be distributed over
⋃k

i=1 Qi such that there is at most one vertex of each

color in a given Qi. Therefore, each partite set has at least one color that appears
⌈ n

k
⌉

times. Given

that maxi fi,j is
⌈ n

k
⌉

in each partite set,

B(G) ≥ kn− k
⌈n

k

⌉
.

We believe that the villainy of Kn,...,n is kn− k
⌈ n

k
⌉

for all values of n and k where k > 0, but a strict

upper bound has not yet been found in the case where k does not divide n. Clark et al. showed

that in a uniquely colorable graph G in which every color appears the same number of times in

its χ(G)-coloring, the villainy is equivalent to the weak villainy [2]. Therefore, it also holds that

Bw(Kn,...,n) = B(Kn,...,n).

In [2], Clark et al. gave results on the chromatic villainy of connected bipartite graphs and

the chromatic villainy of complete multipartite graphs in which every partite set is a different

size.

Let G = Kx,y. Without loss of generality, in a complete bipartite graph with two partite sets X and

Y where |X| = x and |Y| = y, either x = y or x > y. According to Proposition 3.3 in [2],

• if x = y, then B(G) = 2
⌊

x+y
4

⌋
and

• if x > y, then B(G) = 2y.

If x = y, then ∑k
j=2 rjnj = 0 and the villainy of G is either bounded by Theorem 2 and Theorem

3 or is given by Theorem 4. When
(

n1 −
⌊

n1
r1

⌋
r1

)
r1 > 0, G falls under Theorems 2 and 3. Note

that since n1 −
⌊

n1
r1

⌋
r1 > 0, r1 does not divide n1. Given that r1 = 2, it holds that n1 must be odd.
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Without loss of generality, let n1 = 2`+ 1. Thus,

n1 −
⌊

n1

r1

⌋
r1 = 2`+ 1−

⌊
2`+ 1

2

⌋
2

= 2`+ 1− 2
(
`−

⌊
1
2

⌋)
= 2`+ 1− 2`− 2(0)

= 1,

and n1 −
⌊

n1
r1

⌋
r1 = 1. It follows that

B(G) ≥ r1n1 −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1

n1 −
⌊

n1
r1

⌋
r1


= 2n1 −

⌊n1

2

⌋
2−

⌈
2n1 −

⌊ n1
2
⌋

4
n1 −

⌊ n1
2
⌋

2

⌉

= 2n1 −
⌊n1

2

⌋
2− 2

= 2
(

n1 −
⌊n1

2

⌋
− 1
)

= 2
(

n1 −
(⌊n1

2

⌋
+ 1
))

= 2
(

n1 −
⌈n1

2

⌉)
= 2

⌊n1

2

⌋
= 2

⌊
2n1

4

⌋
,
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and

B(G) ≤ r1n1 −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1

r1


= 2n1 −

⌊n1

2

⌋
2−

⌈
2n1 −

⌊ n1
2
⌋

4
2

⌉

= 2n1 −
⌊n1

2

⌋
2−

⌈
n1 −

⌊n1

2

⌋
2
⌉

= 2n−
⌊n1

2

⌋
2− 1

= 2
(

n−
⌊n1

2

⌋)
− 1

= 2
⌈n1

2

⌉
− 1

= 2
⌈

2n1

4

⌉
− 1

= 2
(⌊

2n1

4

⌋
+ 1
)
− 1

= 2
⌊

2n1

4

⌋
+ 1.

Therefore, Theorems 2 and 3 give results that do not contradict those given in Proposition 3.3 in

[2]. If x = y and
(

n1 −
⌊

n1
r1

⌋
r1

)
r1 = 0, the villainy of G is given by Theorem 4. Therefore,

B(G) = 2n1 −
⌈

2n1

2

⌉
= n1

= 2
(

2n1

4

)
= 2

⌊
2n1

4

⌋

and Theorem 4 confirms the result given in Proposition 3.3 in [2]. Note that the villainy of G is

also given by Theorems 5 and 6 when x = y. When k does not divide n, G falls under Theorem 5.
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In this case, k = 2. It follows that

B(G) ≥ kn− k
⌈n

k

⌉
= 2n− 2

⌈n
2

⌉
= 2

(
n−

⌈n
2

⌉)
= 2

⌊n
2

⌋
= 2

⌊
2n
4

⌋
,

and

B(G) ≤ kn− n

= 2n− n

= n.

Therefore, Theorem 5 gives results that do not contradict those given in Proposition 3.3 in

[2].

When k divides n, G falls under Theorem 6. In this case, k = 2 and

B(G) = kn− k
⌈n

k

⌉
= 2n− 2

⌈n
2

⌉
= 2

(
n−

⌈n
2

⌉)
= 2

⌊n
2

⌋
= 2

⌊
2n
4

⌋
.

Therefore, Theorem 6 confirms the results given in Proposition 3.3 in [2].

If x > y, then r1 = 1. Thus, it holds that

(
n1 −

⌊
n1

r1

⌋
r1

)
r1 = (n1 − n1)r1 = 0
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and the villainy of G is given by Theorem 4. Therefore,

B(G) = n1 + n2 −
⌈

n1 − n2

1

⌉
= n1 + n2 − n1 + n2

= 2n2,

and Theorem 4 confirms the result given in Proposition 3.3 in [2].

Let G = Kn1,n2,...,nk where n1 > n2 > . . . > nk. According to Proposition 4.1 in [2],

• if n1 ≥ n2 + n3 + . . . + nk, then B(G) = 2 ∑k
i=2 ni, and

• B(G) = |V(G)| otherwise.

When n1 ≥ n2 + n3 + . . . + nk, it holds that r1 = 1 and
(

n1 −
⌊

n1
r1

⌋
r1

)
r1 = (n1 − n1) r1 = 0.

Assuming n2 > 0, the villainy of G is given by Theorem 4. Thus, the villainy of G is

k

∑
i=1

ni −
⌈

n1 −∑k
j=2 nj

1

⌉
=

k

∑
i=1

ni − n1 +
k

∑
j=2

nj

= 2
k

∑
j=2

nj

and Theorem 4 gives a result equivalent to that given in Proposition 4.1 in [2]. Theorem 1 proved

that B(G) = |V(G)| for all G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

where rini ≤ ∑j 6=i rjnj for all

i, j ∈ [k] where i 6= j. Therefore, our results do not contradict those given in by Clark et al. in

[2].
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III. Paths

A path on n vertices consists of a set of vertices notated v1, v2, . . . , vn, with the only edges being

vivi+1 for i ∈ [n − 1] [6]. A path consisting of the vertices v1, v2, . . . , vn can be referred to as

〈v1, v2, . . . , vn〉 or Pn. Paths have a chromatic number of 2; the vertices are colored such that the

colors alternate.

A path with an even length that is properly colored with two colors will have alternating vertices

of color 1 and 2. Therefore, in a path on 2k vertices, k vertices are colored 1, and k vertices are

colored 2. There are two ways to properly color the path with this set of colors. In one coloring,

the vertices with even indices will have color 1 while the vertices with odd indices have color 2.

In the other, the vertices with even indices will have color 2 while the vertices with odd indices

will have color 1. It holds that, in a path on 2k vertices, if it requires m recolorings to achieve

one proper coloring, it will require 2k−m recolorings to achieve the other proper coloring. It

was shown by Clark et al. in [2] that in an even path on 2k vertices, the villainy is equivalent to

2
⌊

k
2

⌋
.

Let P2k+1 = 〈v1, v2, . . . , v2k+1〉. A properly colored odd path on 2k + 1 vertices will have k + 1

vertices of one color and k vertices of the second color. Without loss of generality, let these colors

be 1 and 2 respectively. In order for P2k+1 to be properly colored, the colors must alternate. Given

that there are k + 1 vertices of color 1 and only k vertices with even indices, every vertex of an

odd index must receive color 1 in a proper coloring. Additionally, every vertex with an even

index must receive color 2. Therefore, there is only one proper 2-coloring of an odd path up to

permutation of the colors. In [2], Clark et al. proved that the villainy of an odd path on 2k + 1

vertices is given by 2k.

In an odd path, an improper coloring can only be recolored such that the odd indices receive

color 1 in the case where the number of each color needs to be maintained. However, if we are

considering the weak villainy of an odd path, there are two colorings to compare an improper

coloring to; one where the vertices with odd indices receive color 1 and one where the vertices

with odd indices receive color 2. In this case, if m vertices need to be recolored to return an

improper coloring to a proper coloring where the vertices with odd indices receive color 1, it will
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take 2k + 1−m recolorings to achieve a proper coloring in which the vertices with odd indices

receive color 2.
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IV. Odd Cycles

A cycle on n vertices is a path with an additional edge between vn and v1 and is denoted Cn. A

cycle on vertices v1, v2, . . . , vn is denoted [v1, v2, . . . , vn]. Clark et al. proved that the weak villainy

of odd cycle C2k+1 is k for all k ≥ 2 [2]. Thus, B(C2k+1) ≥ k. It was proposed but not proven that

if k ≥ 2, the villainy of C2k+1 is equivalent to k. To prove that B(C2k+1) = k, we must show that

B(C2k+1) ≤ k. We found results for odd cycles with one vertex of color 3 and two vertices of color

3, but we could not generalize the proof to show that B(C2k+1) ≤ k for all odd cycles.

An odd cycle C2k+1 has a chromatic number of 3. Let us define 1 as the color that appears most

often and 3 as the color that appears least often. Therefore, the number of vertices of color 3 is

between 1 and |V(C2k+1)|
3 . To find the chromatic villainy of an odd cycle, one must consider the

rearrangements of all proper colorings using all |V(C2k+1)|
3 possible numbers of vertices colored

with 3. Note that the vertices colored 3 partition the cycle into paths of vertices colored 1 and

2.

The number of vertices with color 3 determinines how many of these paths must be in the proper

coloring and whether they can be of odd or even length. For example, consider G = C2k+1 where

2k + 1 ≥ 11. Let G have three vertices of color 3 and 2k− 2 vertices of colors 1 and 2. Let c be a

proper coloring of G. No vertices of color 3 can be adjacent in c. Therefore, there must be a path

between each vertex of color 3. Given that 2k− 2 is even and must be split into three paths, these

2k− 2 vertices can be split amongst three even paths or one even path and two odd paths. For

example, two proper colorings of C11 are as follows:

3
1

2

3
1

2 1

3
1

2
1

3
1

2

1
2

3 1

2
3

1
2

.

Note that one graph contains five vertices with color 1 and three vertices of color 2 while the

other contains four vertices with color 1 and four vertices of color 2. It holds that every properly

colored even path contains the same number of vertices with color 1 as vertices of color 2. Thus,

for every extra 1 in G, there must be an odd path in the proper coloring. However, the converse
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does not necessarily hold. If there are multiple odd paths in a proper coloring of C2k+1, some may

be properly colored such that 2 appears more often than 1.

IV.1 Odd Cycles with one vertex of color 3

Let C2k+1 = [v1, v2, . . . , v2k+1] be an odd cycle with one vertex of color 3. Therefore, there must be

at least one vertex color 1 and one vertex colored 2 in C2k+1 and the minimum number of vertices

in an odd cycle with one vertex of color 3 is three. However, C3 = K3, a complete graph on 3

vertices, and B(C3) = 0. Since C2k+1 only has one vertex of color 3, any coloring of C2k+1 consists

of a path of length 2k. Since this path is of even length, color 1 and 2 both appear in C2k+1 k

times.

Theorem 7. Let C2k+1 be a cycle on 2k + 1 vertices where 2k + 1 ≥ 5 that has k vertices of color 1, k

vertices of color 2, and one vertex of color 3. It holds that B(C2k+1) ≤ k.

Proof. Let C2k+1 = [v1, v2, . . . , v2k+1]. Let c be a proper 3-coloring of C2k+1 such that one vertex

receives color 3, k vertices receive color 1, and k vertices receive color 2. Let c∗ be a rearrangement

of c. Without loss of generality, let us assume c∗(v1) = 3. Therefore, the path 〈v2, v3, . . . , v2k+1〉

consisting of vertices of colors 1 and 2 has length 2k. Clark et al. showed that at most 2
⌊

k
2

⌋
vertices

in 〈v2, v3, . . . , v2k+1〉 need to be recolored to return the path to a proper coloring [2]. It holds that

2
⌊

k
2

⌋
≤ k and B(C2k+1) ≤ k.

IV.2 Odd cycles with two vertices of color 3

Let C2k+1 = [v1, v2, . . . , v2k+1] be an odd cycle with two vertices of color 3. We define 3 as the color

that appears least often in the graph. Therefore, there must be at least two vertices colored 1 and

two vertices colored 2. Given that the cycle is odd, the minimum number of vertices an odd cycle

can have with two vertices of color 3 is 7.

Given that there are two vertices of color 3, any proper coloring of C2k+1 is partitioned into two

paths. It holds that (2k + 1)− 2 = 2k− 1 is odd. Therefore, one path is odd and one path is even.

Thus, there is one more vertex colored 1 in C2k+1 than is colored 2. Therefore, for an odd cycle on
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2k + 1 vertices where 2k + 1 ≥ 7 to have two vertices colored 3, it must also have k vertices colored

1 and k− 1 vertices colored 2.

Theorem 8. Let k be an integer such that k ≥ 3. If C2k+1 is a cycle on 2k + 1 vertices that is colored with

k vertices of color 1, k− 1 vertices of color 2, and two vertices of color 3, then it holds that

B(C2k+1) ≤ k.

Proof. Let C2k+1 = [v1, . . . , v2k+1]. Let c be a proper 3-coloring of C2k+1 such that two vertices

receive color 3 and let c∗ be a rearrangement of c. Assume without loss of generality that c∗(v1) = 3

and c∗(vi) = 3 where i ∈ {2, 3, . . . , 2k + 1}. Given that 2k + 1− 2 = 2k− 1 is odd, either the set

{v2, . . . , vi−1} or {vi+1, . . . , v2k+1} must have an odd number of vertices and the other must be

even. Without loss of generality, let {v2, . . . , vi−1} contain 2`+ 1 vertices. It follows that vi has an

odd index. Let us define c∗∗ as the proper coloring that results from recoloring c∗. There are three

cases:

Case 1: `+ 1 < k and at most ` vertices need to be recolored to properly color 〈v2, . . . , vi−1〉 such

that c∗∗(v2) = c∗∗(vi−1) = 1,

Case 2: `+ 1 < k and at least `+ 1 vertices need to be recolored to properly color 〈v2, . . . , vi−1〉

such that c∗∗(v2) = c∗∗(vi−1) = 1, and

Case 3: `+ 1 = k.

Note that if `+ 1 = k, then 2`+ 1 = 2k− 1 which is the maximum possible length of 〈v2, . . . , vi−1〉.

Thus, the three cases are exhaustive.

Case 1: Let 〈v2, . . . , vi−1〉 contain at most ` vertices that need to be recolored in order to obtain a

proper coloring in which c∗∗(v2) = c∗∗(vi−1) = 1. The path 〈vi+1, . . . , v2k+1〉 contains 2(k− `− 1)

vertices. At most 2
⌊

k−`−1
2

⌋
vertices in 〈vi+1, . . . , v2k+1〉 need to be recolored to return this path

to a proper coloring. It holds that 2
⌊

k−`−1
2

⌋
≤ k− `− 1. Therefore, the villainy of the cycle is at

most (k− `− 1) + (`) = k− 1.

Case 2: Let 〈v2, . . . , vi−1〉 contain at least `+ 1 vertices that need to be recolored in order to obtain

a proper coloring of 〈v2, . . . , vi−1〉 in which c∗∗(v2) = c∗∗(vi−1) = 1. It follows that at most `

vertices would need to be recolored in order to obtain a proper coloring of 〈v2, . . . , vi−1〉 in which

43



Chromatic Villainy

c∗∗(v2) = c∗∗(vi−1) = 2.

Let us first properly recolor 〈v2, v3, . . . , vi−1〉 such that c∗∗(v2) = c∗∗(vi−1) = 2; requiring at most `

recolorings. Then, let us recolor 〈vi+1, . . . , v2k+1〉 so that at most k− `− 1 colorings are performed.

This requires at most k− 1 recolorings. The resulting coloring has k vertices with color 2 and k− 1

vertices with color 1. Thus, this recoloring has not yet met the stipulation that each color must

appear as often in c∗∗ as in c and additional recolorings are required.

In order for the number of vertices of color 2 to become k, one more vertex with color 1 under c∗

receives color 2 under c∗∗ than vertices with color 2 under c∗ receive color 1 under c∗∗. Otherwise,

for every vertex that is recolored with 2, a vertex is recolored with 1. Therefore, in order to achieve

this coloring, an odd number of recolorings must be performed. It holds that one vertex with

color 3 is adjacent to two vertices of color 2 while the other is adjacent to a vertex of color 1 and a

vertex of color 2. Let them be denoted u1 and ui respectively.

Consider the case where fewer than k− 1 vertices have been recolored. Given that k ≥ 3 and k

vertices have color 2, at least one vertex of color 2 that is adjacent to u1 is not adjacent to ui. Let u2

be a vertex with color 2 under c∗∗ that is adjacent to u1 and not adjacent to ui. Recoloring u1 and

u2 such that c∗∗(u1) = 1 and c∗∗(u2) = 3 results in a proper coloring with k vertices of color 1 and

k− 1 vertices of color 2. This requires at most 2 additional recolorings and at most k recolorings

have been performed. Therefore, the villainy of the cycle is at most k.

Consider the case where k− 1 vertices have been recolored. The number of vertices that has been

recolored is odd. Thus, k must be even. Given that k ≥ 3 and k is even, k− 1 is at least 3 and at

least two vertices with color 1 under c∗ received color 2 under c∗∗. Thus, at least one vertex vj

where c∗(vj) = 1 and c∗∗(vj) = 2 is not adjacent to ui. Recoloring vj and u1 such that c∗∗(u1) = 1

and c∗∗(vj) = 3, results in a proper recoloring with k− 1 vertices with color 2 and k vertices with

color 1. This requires one additional recoloring. Therefore, the villainy of the cycle is at most k.

Case 3: Let ` = k− 1. Therefore, c∗(v2k+1) = 3. The set {v2, . . . , v2k} contains (2k+ 1)− 2 = 2k− 1

vertices where k− 1 vertices have color 2 and k vertices have color 1. The path 〈v2, v3, . . . , v2k+1〉

has length 2k and one vertex of color 3.

Given that 〈v2, v3, . . . , v2k〉 has an odd number of vertices, c∗∗(v2) = c∗∗(v2k) when properly col-

ored with colors 1 and 2. It will require at most k− 1 recolorings to properly recolor 〈v2, v3, . . . , v2k〉.
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Consider the case where at most k− 2 recolorings were required to properly color 〈v2, v3, . . . , v2k〉

such that c∗∗(v2) = c∗∗(v2k) = 1. After recoloring 〈v2, v3, . . . , v2k〉 such that c∗∗(v2) = c∗∗(v2k) = 1,

it holds that no vertices with color 2 are adjacent to a vertex of color 3. By recoloring v2k+1 with 1

and v2k with 3 results in a proper coloring. This requires at most k recolorings.

Consider the case where k− 1 recolorings were required to properly color 〈v2, v3, . . . , v2k〉 such

that c∗∗(v2) = c∗∗(v2k) = 1. Given that k ≥ 3, at least 2 recolorings were performed. At least one

vertex vj where j ∈ {3, 4, . . . , 2k} with color 1 under c∗ was recolored with color 2 under c∗∗. This

vertex is not adjacent to a vertex with color 3. Recoloring v1 with 2 and vj with 3 requires one

additional recoloring and at most k recolorings are performed.

Consider the case where k recolorings were required to properly color 〈v2, v3, . . . , v2k〉 such that

c∗∗(v2) = c∗∗(v2k) = 1. Note that k must be even. It follows that k− 1 recolorings were required

to properly color 〈v2, v3, . . . , v2k〉 such that c∗∗(v2) = c∗∗(v2k) = 2. One more vertex with color 1

under c∗ received color 2 under c∗∗. The resulting coloring has k vertices with color 2 and k− 1

vertices with color 1. Given that k ≥ 3 and k− 1 must be odd, at least three recolorings were

performed and at least two vertices with color 1 under c∗ were given color 2 under c∗∗. Without

loss of generality let vj be a vertex such that c∗(vj) = 1 and c∗∗(vj) = 2. If j = 2, recoloring v1

with 1 and v2 with 3 results in a proper coloring with k− 1 vertices with color 2 and k vertices

with color 1. Similarly, if j = 2k, recoloring v2k with 3 and v2k+1 with 1 results in a proper coloring

with k− 1 vertices with color 2 and k vertices with color 1. In both cases, at most k recolorings are

performed. If j is not 2 or 2k, either v1 or v2k+1 can be recolored 1 while vj is recolored with 3,

resulting in a proper coloring with k− 1 vertices with color 2 and k vertices with color 1. Thus,

the villainy of this cycle is at most k.

Consider the case where at least k + 1 recolorings were required to properly color 〈v2, v3, . . . , v2k〉

such that c∗∗(v2) = c∗∗(v2k) = 1. It follows that at most k − 2 recolorings were required to

properly color 〈v2, v3, . . . , v2k〉 such that c∗∗(v2) = c∗∗(v2k) = 2. If fewer than k− 1 recolorings

were required to properly color 〈v2, v3, . . . , v2k〉 such that c∗∗(v2) = c∗∗(v2k) = 2, then v1 can be

recolored with 1 and v2 can be recolored with 3 resulting in a proper coloring with k− 1 vertices

with color 2 and k vertices with color 1. Thus, the villainy of this cycle is at most k.

Therefore, odd cycles with two vertices of color 3 have a villainy that is less than or equal to k.
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V. Conclusions and Open Questions

In a complete multipartite graph G = Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

where r1n1 ≥ r2n2 ≥ . . . ≥

rknk > 0, the relationship between r1n1 and ∑k
i=2 rini gives bounds on the minimum number

of vertices that can be colored correctly in c∗. The villainy was found for the case where the

r1nl ≤ ∑k
i=2 rini as well as the case where r1nl > ∑k

i=2 rini and ∑k
i=2 rini ≥ (n1 −

⌊
n1
r1

⌋
r1)r1.

An upper and lower bound was found for the villainy of the case where r1nl > ∑k
i=2 rini and

∑k
i=2 rini < (n1 −

⌊
n1
r1

⌋
r1)r1. However, the upper bound is not strict. It has yet to be proven

that the strict upper bound is equivalent to the lower bound. Thus, we leave the following open

question.

Question 1: Is the villainy of Kn1, . . . , n1︸ ︷︷ ︸
r1

,n2, . . . , n2︸ ︷︷ ︸
r2

,...,nk, . . . , nk︸ ︷︷ ︸
rk

equivalent to

k

∑
j=1

rjnj −
⌊

n1

r1

⌋
r1 −


r1n1 −

⌊
n1
r1

⌋
r2

1 −∑k
j=2 rjnj

n1 −
⌊

n1
r1

⌋
r1


when r1nl > ∑k

i=2 rini and ∑k
i=2 rini < (n1 −

⌊
n1
r1

⌋
r1)r1?

In the case where ∑k
i=2 rini = 0, G can be expressed as Kn,...,n where G has k parts of size n. The

villainy was found to be kn−
⌈ n

k
⌉

k when k divides n. When k does not divide n, the villainy was

found to be greater than or equal to kn−
⌈ n

k
⌉

k and less than or equal to kn− n. We propose that

the villainy of Kn,...,n is equivalent to kn−
⌈ n

k
⌉

k for all values of n and k.

Question 2: Is the villainy of G = Kn,...,n, where G has k partite sets of size n, equivalent to

kn−
⌈ n

k
⌉

k for all values of n and k where k is not 0?

In [2], Clark et al. found the villainy of paths. The villainy of paths was in turn used to find an

upper bound on certain classes of odd cycles. A cycle C2k+1 colored with three colors where 3

is the color that appears least often can have up to
⌊
|V(C2k+1)|

3

⌋
vertices of color 3. The vertices

of color 3 partition the cycle into paths of vertices with colors 1 and 2. Clark et al. gave a lower

bound of k for the villainy of odd cycles in [2]. An upper bound of k was found for the villainy of

odd cycles with one vertex of color 3 and two vertices of color 3. However, it has not yet been
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proven for the general case. Thus, we propose the same question as Clark et al. under Corollary

3.6 in [2].

Question 3 from [2]: Is the villainy of C2k+1 equivalent to k when k > 1?
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