
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-21-2018

Using Packet Timing Information in Website Fingerprinting Using Packet Timing Information in Website Fingerprinting

Mohammad Saidur Rahman

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Rahman, Mohammad Saidur, "Using Packet Timing Information in Website Fingerprinting" (2018). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9890?utm_source=repository.rit.edu%2Ftheses%2F9890&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Using Packet Timing Information in
Website Fingerprinting

by

Mohammad Saidur Rahman

Committe Members

Dr. Matthew Wright

Bill Stackpole

Dr. Leon Reznik

In partial fulfillment of the requirements for the degree of

Master of Science in Computing Security

Rochester Institute of Technology

B. Thomas Golisano College of Computing & Information Sciences

Department of Computing Security

August 21, 2018

Rochester Institute of Technology

B. Thomas Golisano College
of

Computing and Information Sciences

Master of Science in

Computing Security

Thesis Approval Form

Mohammad Saidur RahmanStudent Name:

Using Packet Timing Information in Website FingerprintingThesis Title:

Thesis Committee

Name Signature Date

Dr. Matthew Wright

Committee Chair

Bill Stackpole

Committee Member

Dr. Leon Reznik

Committee Member

To my Parents and All the Teachers Who

Made me Who I am Today!

Acknowledgments

I would like to express my gratitude to all the teachers in my life who have

taught, inspired, and supported me till now. I am and always will be grateful

to them. I owe all of my professional accomplishments to them.

Firstly, I owe my life time service to make my parents and teachers proud.

Only being thankful to my parents is not enough who taught me being a

better human being with value sense.

Secondly, I am profoundly grateful to my adviser Professor Dr. Matthew

Wright for his continuous inspiration, encouragement, feedback, and invaluable

advice throughout the course of my thesis work. He is one of the great examples

in my life as a great professor and as a great human being. I look forward to

learning more and more in the next phases of my life.

I would also like to express my gratitude to my committee members Professor

Bill Stackpole, and Professor Dr. Leon Reznik for their continuous feedback,

suggestions, and comments on my thesis work.

Next, I would like to express my heartiest thankfulness to those who taught,

inspired, encouraged, and supported me to pursue my higher education. The

whole list would be far too long. I include the few who are directly related to

this endeavor from the MIS department of University of Dhaka: Md. Ariful

Islam, Dr. Hasibur Rashid, Dr. K. M. Salah Uddin, and Dr. Md. Rakibul

Hoque.

The last but not the least, I want to express my thankfulness to my two great

mentors, and friends from the Center for Cybersecurity: Payap Sirinam and

Mohsen Imani for their continuous mentoring, support, care, and love. I would

also like to thank Kantha Girish Gangadhara for supporting me in my project

and being a great friend.

iv

Abstract

Using Packet Timing Information in
Website Fingerprinting

Mohammad Saidur Rahman

Rochester Institute of Technology

Supervisor: Dr. Matthew Wright

Website Fingerprinting (WF) enables an eavesdropper to discover what sites

the user is visiting despite the use of a VPN or even the Tor anonymity sys-

tem. Recent WF attacks on Tor have reached high enough accuracy (up to

98%) to prompt Tor to consider adopting defenses based on packet padding.

Defenses such as Walkie-Talkie mainly remove features related to bursts of

traffic without affecting packet timing. This was reasonable given that previ-

ous research on WF attacks ignored or deemphasized the use of packet timing

information. In this thesis, we examine the extent to which packet timing can

be used to facilitate WF attacks. In our experiment, we gained up to 61% ac-

curacy on our unprotected dataset, 54% on our WTF-PAD dataset, and 43%

on our Walkie-Talkie dataset using only timing-based features in an SVM clas-

sifier. Using a convolutional neural network (CNN), we got 88% accuracy on

our unprotected dataset, and 76% and 47% accuracy on our WTF-PAD and

Walkie-Talkie dataset respectively. We intend to investigate further to develop

an effective and robust WF attack using packet timing.

v

Table of Contents

Acknowledgments iv

Abstract v

List of Figures viii

List of Tables x

Chapter 1. Introduction 1

1.1 Research Agenda . 3

1.2 Thesis Organization . 4

Chapter 2. Background 5

2.1 Tor Network . 5

2.2 WF Attack Model . 6

2.3 Machine Learning . 8

2.3.1 k-Nearest Neighbor (k-NN) 8

2.3.2 Support Vector Machines (SVM) 9

2.4 Deep Learning . 9

2.4.1 Convolutional Neural Network (CNN) 10

Chapter 3. Related Work 13

3.1 WF Attack using Traditional Machine Learning 14

3.1.1 WF Attack using k−NN 14

3.1.2 WF Attack using RDF 15

3.1.3 WF Attack using CUMUL 15

3.2 Deep Learning in WF Attack 16

3.2.1 WF Attack by SDAE 16

3.2.2 Automated WF 16

vi

3.2.3 Deep Fingerprinting Attack 16

3.3 WF Defenses . 17

3.3.1 WTF-PAD . 18

3.3.2 Walkie-Talkie . 18

Chapter 4. Packet Timing in Website Fingerprinting 19

4.1 Data Collection . 19

4.1.1 Data Collection Process 19

4.1.2 Datasets . 21

4.2 Experimental Design . 21

4.2.1 Feature Selection and Extraction 22

4.2.1.1 Tuning the Number of Bins 27

4.2.2 Hyperparameter Tuning in CNN 28

Chapter 5. Evaluation & Results 31

5.1 Experimental Environment 31

5.2 Results . 32

5.2.1 RQ1: Packet Timing Features 32

5.2.2 RQ2: Classification Value of Timing Features . . . 32

5.2.3 RQ3: WF Attack with Timing Features 34

5.2.3.1 WF Attack with Defended Tor Traffic . . 34

5.3 Discussion . 36

Chapter 6. Conclusion & Future Work 37

References 38

vii

List of Figures

2.1 Tor Network. 5

2.2 Website Fingerprinting Attack. 6

2.3 A Visualization of Bursts − five outgoing bursts interspersed

with five incoming bursts. 7

2.4 Architecture of CNN. 10

2.5 Operation of the convolution layer. 11

4.1 Median Packet Time (MED). 22

4.2 Variance of the Packet Times. 23

4.3 Time from the First Packet to the Last Packet (Interval). . . . 23

4.4 Interval between the medians of B1 and B2 (IMD). 24

4.5 Interval between the start of B1 and the start of B2. 24

4.6 Interval between the end of B1 and the start of B2 (IBD). . . 25

4.7 Interval between the start of B1 and the start of B2, where both

B1 and B2 are incoming (to the client). 26

4.8 Interval between the start of B1 and the start of B2, where both

B1 and B2 are outgoing (from the client). 26

4.9 Processing Features. 27

5.1 Undefended Tor Traffic: Attack Accuracy with CNN. 33

viii

5.2 Defended Tor Traffic with WTF-PAD Defense: Attack Accu-

racy with CNN. 35

5.3 Defended Tor Traffic with W-T Defense: Attack Accuracy with

CNN. 35

ix

List of Tables

4.1 Datasets. 21

4.2 Tuning Number of Bins. 28

4.3 Hyperparameters Tuning of CNN Model for Undefended and

WTF-PAD Dataset. 29

4.4 Hyperparameters Tuning of CNN Model for Walkie-Talkie Dataset. 30

5.1 Undefended Tor: Attack accuracy. 33

5.2 Undefended Tor: Attack accuracy in CNN. 33

5.3 Defended Tor: Attack accuracy. 34

x

Chapter 1

Introduction

We share a lot of our personal information either willingly or unwillingly on

the Internet. Since the United States Congress has upheld the rights to ISP

providers to sell our browsing history [8], concern for the privacy of this per-

sonal information is increasing day by day. Unfortunately, using a VPN or

other basic protections cannot effectively help Internet users to protect their

privacy [7]. For example,

Using an anonymity system such as Tor is a more effective solution to keep

users’ online activities anonymous while browsing the Internet. Tor is one of

the most popular privacy-enhancing technologies, with more than two million

users each day. Tor is, however, vulnerable to traffic analysis attacks. Traf-

fic analysis enables an attacker analyze the network traffic stream to deduce

information about the client’s activities and communication. Website finger-

printing (WF) is one such attack, and it has received significant attention by

both researchers [9, 19] and Tor developers [18].

In a WF attack, a passive local eavesdropper collects network traffic passing

1

between the client and entry node. From the collected traffic, the attacker

then extracts various features and feeds them into a machine learning classifier

trained to identify which website the client is visiting. Prior work has shown

that this kind of attack is very effective, reaching over 90% accuracy [9, 15,

23, 19, 21].

The Tor Project has given much attention to building defenses against WF

attacks [17]. The state-of-the-art attacks emphasize bursts, sequences of pack-

ets in a single direction. Because of this, defenses primarily seek to obscure

burst patterns. This still leaves the timing of packets as a largely untapped

and unprotected resource for features for WF attacks.

Prior work on WF attacks discounted timing information [9]. This is because

timing characteristics change on each visit to the site, which makes it hard to

extract consistent patterns. In this thesis, we investigate a novel WF attack

using packet timing information. Since individual packet times are generally

unreliable as features, we identify more robust timing-related features from

the data. We create new representations of timing information that capture

meaningful features in a reliable way.

We show the effectiveness of our features using traditional machine learning

and deep learning algorithms. Using our new timing features with k-nearest

neighbor (k-NN) and support vector machine (SVM) classifiers, we get 51%

and 61% attack accuracy, respectively. Using the CNN deep-learning clas-

sifier, we get 88% accuracy. These preliminary results indicate that timing

2

information is useful for WF attack, and it is possible to develop an effective

WF attack using timing information. Additionally, our timing features show

higher accuracy than that of using packet direction features against Walkie-

Talkie (W-T) defense as well.

1.1 Research Agenda

From our literature review, we find some limitations in the prior work on

WF. Prior work on attacks deemphasized or ignored the value of packet tim-

ing information. This is because timing information varies from instance to

instance, which makes it hard to find any consistent pattern to develop an

attack. In this thesis, we have used packet timing information for WF at-

tack development. As we cannot use raw timing information because of the

larger variability between instances, we need to find a new representation of

the timing information that we can feed into the machine learning classifier.

The research questions (RQ) we investigated in this research are as follows:

RQ1: How can we represent packet timing information in a way that robustly

reveals patterns over different instances of a site?

RQ2: How useful are those new representations for developing WF attack?

RQ3: Do the new representations also provide classification value when WF

defenses are in place?

3

1.2 Thesis Organization

This thesis is organized as follows: Chapter 2 provides background of Tor, web-

site fingerprinting, machine learning, and deep learning. Chapter 3 presents

related work of both website fingerprinting attacks and defenses. The moti-

vation for using packet timing information, the way we select timing features,

and the feature extraction process are discussed in Chapter 4. We explain our

evaluation of the experiments and the results in Chapter 5. We then conclude

this thesis and discuss future work in Chapter 6.

4

Chapter 2

Background

In this chapter, first we briefly describe the Tor network in Section 2.1. We

provide background on the website fingerprinting (WF) attack model in Sec-

tion 2.2. In Section 2.3 and Section 2.4, we provide background on machine

learning and deep learning respectively, as they are used in WF attacks.

2.1 Tor Network

Figure 2.1: Tor Network.

Tor keeps the user activities anonymous to ensure privacy of the Tor client.

At the time of browsing the Internet on Tor, the user can protect her privacy

5

by separating her online activities from her identity. Tor is one of the most

popular low-latency anonymity systems with more than two million users each

day. Tor ensures the anonymity of the users’ activities with the help of three

nodes that constitute a Tor circuit: entry or guard node, middle node, and

exit (see Figure 2.1). For example, the network traffic from the Tor client first

goes to the guard node, then guard node passes those traffic to the middle

node, then middle node to the exit node, and finally exit node to the web

server. Each node is only aware of the previous and next node in the circuit.

For example, the guard only knows about the identity of the client and the

middle, while the exit only knows about middle and the destination of the

client.

2.2 WF Attack Model

Figure 2.2: Website Fingerprinting Attack.

WF attack enables a local passive eavesdropper to identify the destination of a

Tor client’s connection by analyzing the network traffic passing from the client

to the guard (see Figure 2.2). The term local means that the attacker is sitting

6

locally between the client and the guard node, and thus he knows the identity

of the client. For example, the client and the attacker are in same wireless

network, and the attacker has the capacity to sniff the wireless traffic. The

term passive means that the attacker does not modify, insert, or delete any

packets’, rather, she just observes the traffic. In this threat model, we assume

that an attacker has the capacity to monitor the traffic between a client and

guard node, and/or she controls the guard node.

Figure 2.3: A Visualization of Bursts − five outgoing bursts interspersed with
five incoming bursts.

A WF attacker can collect traffic traces from several websites of her interest

such as cnn.com, twitter.com, and so on. These websites are called moni-

tored websites. She can extract statistical data as features from the collected

network traffic, such as the total number of incoming packets, the total num-

ber of outgoing packets, the timing of each packet, and so on. A particularly

important class of features is related to bursts sequences of consecutive in-

coming and outgoing packets (see Figure 2.3). She can use the features to

train a machine learning classifier such as k-nearest neighbors (k-NN) and

7

support vector machines (SVM). Using the trained classifier, she can identify

the client’s destination websites.

2.3 Machine Learning

In our experiments, we employ two widely used machine learning (ML) tech-

niques: k-nearest neighbors (k-NN) and support vector machines (SVM). In

the following sections, we provide brief explanation of this two techniques.

2.3.1 k-Nearest Neighbor (k-NN)

The k-NN algorithm can be used for both classification and regression. In

website fingerprinting (WF), we use k-NN as a classifier. As k-NN is a super-

vised ML algorithm, we feed the data along with the associated label to train

the classifier. In our case, the instances of the websites are the data, and the

name of the websites are the labels.

We train the k-NN classifier with training examples (x, y) where x is the feature

and y is the target label or class. The objective is to learn the function

g : X → Y to find the relationship between x and y so that g(x) can predict

the correct label of an unseen x. For every data points, the algorithm measures

a similarity index between the k nearest neighbors and the data point x. A

popular similarity matrix among researchers is Euclidean distance.

8

2.3.2 Support Vector Machines (SVM)

Support vector machines (SVM) is one of the popular traditional machine

learning techniques for solving classification problems. The basic idea is to

plot the data points (features) in a n-dimensional space, where n is the number

of features. weight or value of each feature is the coordinate value in the space.

The Classification is done by separating the features by finding hyper-planes

that divide data points in each class [26].

We want our features to be as farther as possible from the hyper-planes. Hyper-

planes can easily be useful to classify the linear features. Classification becomes

challenging when the data points are non-linear. For example, network traffic

data used in WF attacks have non-linear features. To address this, we apply

a technique called kernel trick. The kernel trick transforms low-dimensional

data into high-dimensional data. In the higher dimension, the data points

become linearly separable [14].

2.4 Deep Learning

Deep learning is a type of machine learning that uses neural network method

to train the model to classify more accurately than the traditional machine

learning algorithm such as k-NN and SVM. There are different models of

deep learning such as stacked denoising autoencoder (SDAE), long short-term

memory (LSTM), and convolutional neural network (CNN), and so on. In our

experiment, we mainly use convolutional neural network (CNN) as it shows

9

better performance than SDAE and LSTM [3, 19, 21]. Hence, we are going to

give a brief explanation of CNN.

2.4.1 Convolutional Neural Network (CNN)

Figure 2.4: Architecture of CNN.

The convolutional neural network (ConvNet or CNN) has been proven to be

a very powerful deep learning model in the area of computer vision to classify

images. There are four major operations of a CNN model. We can see a

visualization of a CNN architecture 1 from Figure 2.4.

• Convolution

• Activation Function

• Sub-sampling or pooling

• Classification or fully connected

1Adapted from Saleh and Ausif [4].

10

Convolution Layer

Figure 2.5: Operation of the convolution layer.

We feed our data points or raw features into a matrix. We map features from

the original feature matrix by convolution. For example, as shown in Figure 2.5

the original input matrix is 5x5, we convolute by 3x3 matrix 2. This 3x3 matrix

is called the filter of the convolution. The convolution is performed by moving

the 3x3 matrix by 1 pixel over the 5x5 matrix and taking the multiplication

value of the 3x3 matrix. Moving by 1 pixel is called stride 1. If we move by 2

pixel, then the stride would be 2. We get the convolved features by scanning

the whole image by this 3x3 matrix.

Activation Function

Activation function is used to introduce non-linear property in a neural net-

work. This function converts the input values to the output values. For exam-

ple, before getting the final convolved features in a CNN, we apply activation

function to introduce non-linearity into the convolved features. It is a very im-

portant part of a CNN as a non-linear operation in a otherwise linear system.

2Adapted from [2]

11

The activation function should be selected based on the type of dataset− an

activation function that works for image classification may not be suitable for

WF attacks.

There are several widely used activation functions such as sigmoid, rectified

linear unit (ReLU), exponential linear unit (ELU), and hyperbolic tangent

(tanh). In our CNN models, we use the ReLU, ELU, and tanh activation

functions.

Sub-sampling or Pooling Layer

In this layer, we sub-sample or down-sample the convolved features. This

layer reduces the dimensions of each mapped feature. But it keeps the most

important features. There are some variations of pooling: max, average, sum,

and so on. In our model, we use max pooling. We do that by taking the

maximum of the convolved feature.

Fully Connected Layer

The classification of a CNN is done by the fully connected (FC) layer. Every

neuron is connected to each other in the fully connected layer. The convolu-

tional and pooling layers give us high-level features. FC layer does the actual

classification by softmax regression. Softmax is a regression model for multi-

class classification. The sum of the probabilities of this layer is one.

12

Chapter 3

Related Work

Tor is the most popular anonymity systems to protect user privacy online.

However, an attacker can deanonymize the activity of a Tor client by the

website fingerprinting (WF) attack. Indeed, to combat this attack, Tor has

deployed WF defenses [17], though these are not considered effective.

In prior works, WF attacks and defenses are investigated in two settings: close-

world (CW) and open-world (OW) [5, 6, 9, 10, 23, 24]. The assumption of the

close world is that the Tor client is visiting one or more websites from a small

set of websites. Only in OW setting, the attacker trains his classifier with only

these websites. On the other hand, in an OW setting, the client is assumed to

visit any website including the monitored websites. But it is not realistically

possible for an attacker to train his classifier with all the possible websites.

So, the attacker trains the classifier with a set of sites only the monitored

website. The state-of-the-art WF attack reaches up to 98% accuracy in the

closed-world setting, and it achieves 95.7% true positive rate (TPR) with 0.7%

of false positive rate (FPR) in the open-world setting.

13

In this chapter, we discuss WF attacks using traditional machine learning and

using deep learning in more detail in Section 3.1 and Section 3.2, respectively.

We discuss WF defenses in Section 3.3.

3.1 WF Attack using Traditional Machine Learning

In 2009, Herrmann et al. [10] published a WF attack using IP packet size

for their classifier, but it does not work on Tor, which has fixed-sized packets.

Panchenko et al. designed a new attack adding more features: packet volume,

packet direction, and timing [16]. They used support vector machines (SVM)

for classification and achieved 55% accuracy. In 2012, SVM was again used by

Cai et al. who proposed a new attack based on a new representation of the

classification instances [5]. Their SVM was based on the Damerau-Levenshtein

edit distance and using SVM kernel trick to pre-compute distances between the

traces. This same attack was improved by Wang and Goldberg [24] achieving

91% accuracy. In the rest of the section, we are going to give a brief overview

of three more effective and efficient WF attacks.

3.1.1 WF Attack using k−NN

In 2014, Wang et al. proposed a new attack using a k-nearest neighbor (k-NN)

classifier on a large feature set with weight adjustment [23]. They modified

the typical k-NN classifier with a weighted distance function. In the general

k-NN, Euclidean distance is usually used. There are two phases of the attack:

the weight-learning phase and the classification phase. The weights that are

14

learned in the first phase are used for classification in the second phase. This

attack was the first to use a diverse set of features (bursts, packet ordering,

concentration of the packets, number of incoming and outgoing packets, and

so on) from the traffic information in a WF attack. In a closed-world setting

of 100 websites, they achieved over 90% accuracy.

3.1.2 WF Attack using RDF

Hayes et al. use a novel feature extraction and selection method: they use

random decision forests (RDF) to rank features [9]. The classification is per-

formed by the K-NN classifier using the ranked features of the RDF. This

attack also achieved over 90% accuracy in close-world scenario.

3.1.3 WF Attack using CUMUL

In 2016, Panchenko et al. proposed a new attack improving features based on

packet size, packet ordering, and packet direction [15]. Their attack uses SVM

to classify the websites. Their significant contribution is their new feature set.

In addition, they collected a new data set that is more realistic. Most work

collected the traffic of the 100 most popular websites listed by Alexa known as

the Alexa Top 100 [1]. Panchenko et al. collected their data based on trends

in Twitter, Google, and random Google search results of web pages. They also

collected data from websites censored in China.They were able to achieve 92%

accuracy in close-world scenario.

15

3.2 Deep Learning in WF Attack

3.2.1 WF Attack by SDAE

Abe and Goto is the first to explore the effectiveness of deep learning (DL)

effectiveness in traffic analysis [3]. They used a Stacked Denoising Autoen-

coder (SDAE) model as their deep learning model, with a simple input data

representation based on incoming and outgoing packet traces. They got 88%

accuracy using deep learning without any manual selection of packet features.

They used small datasets, which is a reason for their lower attack accuracy.

However, they only considered one type of data representation that completely

omit timing of the packets.

3.2.2 Automated WF

Rimmer et al. [19] investigated automated feature engineering in WF at-

tacks. They studied three deep learning models: Stacked Denoising Autoen-

coder (SDAE), Convolutional Neural Network (CNN), and Long-Short Term

Memory (LSTM). They also collected large datasets suitable for deep learning

models, with 900 websites and 2500 traces for each site. They achieved 96%

accuracy in a closed-world setting.

3.2.3 Deep Fingerprinting Attack

Sirinam et al. [21] extensively investigated the use of deep learning in website

fingerprinting. Their attack could outperform all the previous attack accu-

16

racy reaching over 98% attack accuracy. They evaluated their deep learning

model by 100 classes containing 1000 traces each. They developed a power-

ful convolutional neural network (CNN) model for their attack. Their attack

achieved up to 90% accuracy against WTF-PAD, one of the state-of-the-art

defenses. They showed the effectiveness of their attack even though the defense

is in place. Their attack also achieved 49.7% accuracy against Walkie-Talkie

defense.

3.3 WF Defenses

WF defenses aim to reduce the effectiveness of these attacks. For defenses

against WF attacks, we are interested in the state-of-the-art defenses that are

claimed to be highly efficient and have low overheads in latency and bandwidth

for users. Tor implemented a HTTP pipeline based defense [17] to combat WF

attacks. The purpose of this defense is to change the order of the requests when

the number of requests exceeds the depth of the pipeline. This objective is

achieved by randomizing the maximum number of requests in a pipeline. The

bandwidth overhead of this defense is zero. Recently, Tor has updated this

defense mechanism [18] because of the emergence of newly developed attacks.

However, neither version of Tor’s defenses could reduce the attack accuracy of

newly developed attacks [3, 5, 19, 21, 23, 24].

In the next section, we are going to discuss more about the two state-of-the-art

defenses, WTF-PAD [13] and Walkie-Talkie [25].

17

3.3.1 WTF-PAD

Website Traffic Fingerprinting Protection with Adaptive Defense (WTF-PAD)

[13] applies the adaptive padding technique to WF defense in Tor [20]. Adap-

tive padding works by sending data packets with padding of a certain distri-

bution and with no delay. By doing so, adaptive padding does not incur any

latency overhead. However, it does incur 54% bandwidth overhead.

3.3.2 Walkie-Talkie

Wang and Goldberg [25] developed Walkie-Talkie (W-T) defense. Their de-

fense is based on the concept of half-duplex communication and burst molding.

The default communication mechanism of Tor is full duplex. In full duplex

communication mode, we simultaneously send outgoing packets and receive

incoming packets. W-T defense requires the communication of Tor browser

to be half-duplex. In half-duplex communication, we send request of packets

and wait to receive all the requested packets, after receiving all the packets,

we send another request of packets. The client and the guard have to use

half-duplex communication mode to implement this defense. This half duplex

mode forms a sequence of outgoing and incoming bursts. The client molds the

bursts of the traces of sensitive website and non-sensitive websites together.

The idea is to make two websites look exactly the same to the attacker. Their

defense has 31% bandwidth overhead and 34% latency overhead.

18

Chapter 4

Packet Timing in Website Fin-
gerprinting

In this chapter, we discuss the motivation for using packet timing informa-

tion, the way we select timing features, and the feature extraction process.

we discuss data collection process in Section 4.1.1 and our datasets in Sec-

tion 4.1.2. We discuss our experimental design in Section 4.2. The process

of feature selection and extraction is discussed in Section 4.2.1. We discuss

hyperparameters tuning of our CNN models in Section 4.2.2.

4.1 Data Collection

4.1.1 Data Collection Process

As we have used the datasets provided by [21], we are going to provide a brief

overview of the data collection process that Sirinam et al. used. Firstly, the

top Alexa 100 websites are selected as the monitored sites. Homepage of each

site is visited 1,250 times and the generated traffic of each visit is dumped in

terms of each visit using tcpdump. We call each visit of a site as an instance

19

of that site.

The data collection is done based on the batch method provided by Wang

and Goldberg. The batch method is useful for managing long and short term

time variance. A batch contains 25 visits of a site at a time. After that, the

crawler visits another site 25 times and this process continues. Batching helps

to collect the traffic over time that helps to avoid the IP to be banned. In

addition, it helps to capture traffic with variation.

The websites are visited using tor-browser-crawler [12]. This crawler is

more realistic in the sense that it helps to emulate the real behavior of a Tor

client. Hence, this crawler is more realistic to collect Tor traffic than the

traditional crawling tools such as wget or curl for our purpose as it has the

necessary settings for that.

At the end of crawling, the sanity check of the datasets is performed. At

first, the instances that do not have more than 50 packets and that do not

contain any incoming and outgoing packets are discarded because they do not

contain enough information for WF attack. After this, 95 valid sites and 1000

instances of each site are selected as the monitored undefended datasets. For

the WTF-PAD defense, the defense is applied to the datasets in simulator to

make defended monitored datasets.

20

4.1.2 Datasets

We use three datasets in our experiments, as shown in Table-4.1. These

datasets have been used for the previous work [21, 25] in WF research. We

use both defended and undefended Tor traffic. Defended Tor traffic means

that a defense mechanism such as WTF-PAD or Walkie-Talkie (W-T) is ap-

plied to those traffic. Undefended Tor traffic means the traffic with the default

settings of Tor. For undefended Tor traffic and Tor traffic defended with WTF-

PAD [13], we use the dataset generated by Sirinam et at. [21]. The Walkie-

Talkie defense requires changes to the underlying browser. At the time we

performed our experiments, the dataset from Sirinam et al. did not include

W-T data. We thus use the smaller dataset used by Wang et al. [25].

Table 4.1: Datasets.

Instances
in

Dataset Source Classes each class Total

Undefended Sirinam et al. 95 1000 95,000

WTF-PAD Sirinam et al. 95 1000 95,000

Walkie-Talkie Wang et al. 100 100 10,000

4.2 Experimental Design

In this section, we explain our process of selecting and extracting timing fea-

tures as well as the process of tuning hyper-parameters for our CNN mod-

els. We have used the K-NN model of Wang et al. [23] and SVM model of

21

Panchenko et al. [15] to best compare our results. Using non-timing based

features, they achieve over 90% accuracy. Our intuition was to compare the

results using only packet timing information.

4.2.1 Feature Selection and Extraction

We developed several timing-based features that would be more robust from

instance to instance of each website than relying on specific packet timings.

Since prior work on attacks relies heavily on bursts, we base our timing features

on burst-level characteristics. Three of our features are focused on the timing

of packets inside a single burst.

Median Packet Time (MED):

Figure 4.1: Median Packet Time (MED).

We can see the extraction process of median packet time within a burst from

Figure 4.1. For example, we take the time sequence of the first burst: [0.0,

0.10, 0.20], and take the median of these three values.

22

Variance of the Packet Times:

Figure 4.2: Variance of the Packet Times.

We can see the extraction process of variance packet time within a burst from

Figure 4.2. For example, we take the time sequence of the first burst: [0.0,

0.10, 0.20], and take the variance of these three values.

Time from the First Packet to the Last Packet (Interval):

Figure 4.3: Time from the First Packet to the Last Packet (Interval).

We can see the extraction process of interval of the packet times within a burst

from Figure 4.3. For example, we take the time sequence of the first burst:

[0.0, 0.20], and take the interval of these two values.

23

The other five features consider two consecutive bursts B1 and B2.

Interval between the medians of B1 and B2 (IMD):

Figure 4.4: Interval between the medians of B1 and B2 (IMD).

We can see the extraction process of the interval between the medians of B1

and B2 (IMD) from Figure 4.4. For example, we take the median of the burst

one and the burst two: [0.10, 0.50], and take the interval of these two values.

Interval between the Start of B1 and the Start of B2:

Figure 4.5: Interval between the start of B1 and the start of B2.

We can see the extraction process of the interval between the start of B1 and

24

the start of B2 from Figure 4.5. For example, we take the time of the first

packet of the burst one and the time of the first packet of burst two: [0.00,

0.40], and take the interval of these two values.

Interval between the End of B1 and the Start of B2 (IBD):

Figure 4.6: Interval between the end of B1 and the start of B2 (IBD).

We can see the extraction process of the interval between the end of B1 and

the start of B2 (IBD) from Figure 4.6. For example, we take the time of the

last packet of the burst one and the time of the second packet of burst two:

[0.20, 0.40], and take the interval of these two values.

Interval between the Start of B1 and the Start of B2, where both B1

and B2 are Incoming (to the client):

We can see the extraction process of the interval between the start of B1 and

the start of B2, where both B1 and B2 are incoming (to the client) from Figure

4.7. For example, we take the time of the first packet of the first incoming

25

Figure 4.7: Interval between the start of B1 and the start of B2, where both
B1 and B2 are incoming (to the client).

burst and the time of the first packet of the second incoming burst: [0.40,

0.75], and take the interval of these two values.

Interval between the Start of B1 and the Start of B2, where both B1

and B2 are Outgoing (from the client):

Figure 4.8: Interval between the start of B1 and the start of B2, where both
B1 and B2 are outgoing (from the client).

26

We can see the extraction process of the interval between the start of B1 and

the start of B2, where both B1 and B2 are outgoing (from the client) from

Figure 4.8. For example, we take the time of the first packet of the first

outgoing burst and the time of the first packet of the second outgoing burst:

[0.00, 0.65], and take the interval of these two values.

Figure 4.9: Processing Features.

To create features that would be robust to different instances, we further

process the extracted features (see Figure 4.9). Using the data from all the

instances over all websites, we create a histogram of b equal-sized bins for each

feature. Then, for each instance, we extract the features from raw data, put

them into their respective bins, and take the length of each bin. Finally, we

normalize the length of each bin and feed those normalized values into the

classifiers.

4.2.1.1 Tuning the Number of Bins

We tune the number of bins for each dataset. We started with b = 20. We

explore the variation in accuracy with the change of the bin sizes. We think

that number of features a bin can contain impact the classification accuracy.

27

For example, if we increase the number of bins, every bin will contain less

features but are more fine-grained. On the other hand, if we decrease the

number of bins, every bin will contain more features but are less fine-grained.

So we have to make a trade-off between the number of bins and the number of

features a bin contain. Taking that into account, we explore different number

of bins to find the best one based on the accuracy. We present our search

space of bin size in Table 4.2. We could not go beyond b = 25 for Walkie-

Talkie defense because the highest number of packets of that dataset is less

than 200. Hence, the more we increase bin size, the lesser information the bin

contain. We finally select b = 20 for undefended and WTF-PAD defense and

b = 10 for Walkie-Talkie defense.

Table 4.2: Tuning Number of Bins.

Dataset Number of Bins Search Final Bin Size

Undefended 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 20

WTF-PAD 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 20

Walkie-Talkie 5, 10, 15, 20, 25 10

4.2.2 Hyperparameter Tuning in CNN

Different types of datasets require different hyper-parameters in the CNN

model to make the model robust. Usually deep learning models require a

lot of data for training. We have sufficient data to use a deep CNN model in

the undefended and WTF-PAD datasets. However, for the Walkie-Talkie de-

28

fense we have a relatively small dataset. This means we need to use a shallow

CNN model to avoid overfitting. We provide an overview of the parameters of

our models in Table 4.3 and Table 4.4.

Table 4.3: Hyperparameters Tuning of CNN Model for Undefended and WTF-
PAD Dataset.

Final Parameters
Hyperparameters Search Range Undefended WTF-PAD

Input Dimension [15 ... 400] 160 160

Optimization Function
[Adam, Adamax,
SGD]

Adamax Adamax

Number of Filters
Layer 1 [Conv1, Conv2]
Layer 2 [Conv3, Conv4]
Layer 3 [Conv5, Conv6]
Layer 4 [Conv7, Conv8]

[8 ... 64]
[32 ... 128]
[64 ... 256]
[128 ... 512]

[32, 32]
[64, 64]
[128, 128]
[256, 256]

[32, 32]
[64, 64]
[128, 128]
[256, 256]

Filter Sizes [3 ... 10] [8, 8, 8, 8] [8, 8, 8, 8]
Pooling Max Max Max
Learning Rate [0.001 ... 0.05] 0.001 0.001
Training Epochs [30 ... 500] 50 100
Mini-batch Size [16 ... 256] 128 128

Activation Functions
[Sigmoid, Tanh,
ReLU, ELU]

ELU, ReLU ReLU, Tanh

Number of FC Layers [1 ... 4] 2 2
Hidden units (each FCs) [128 ... 512] [512, 512] [512, 512]
Dropout [Pooling, FC1, FC2] [0.1 .. 0.8] [0.1, 0.7, 0.5] [0.1, 0.5, 0.5]

To further avoid overfitting, we add a kernel regularizer, dropout [22], and

batch-normalization in our models. For the kernel regularizer, we adopt l2

regularization, also called weight decay. Kernel regularization is usually im-

plemented in each convolutional layer. Dropout is implemented in the fully

connected (FC) layers. Dropout randomly disconnects some of the units in the

29

Table 4.4: Hyperparameters Tuning of CNN Model for Walkie-Talkie Dataset.

Final Parameters
Hyperparameters Search Range Walkie-Talkie

Input Dimension [15 ... 200] 80

Optimization Function
[Adam, Adamax,
SGD]

Adamax

Number of Filters
Layer 1 [Conv1, Conv2]
Layer 2 [Conv3, Conv4]
Layer 3 [Conv5, Conv6]

[8 ... 64]
[32 ... 128]
[64 ... 256]

[16, 16]
[32, 32]
[64, 64]

Filter Sizes [3 ... 10] [8, 8, 5, 5]
Pooling Max Max
Learning Rate [0.001 ... 0.05] 0.001
Training Epochs [30 ... 500] 100
Mini-batch Size [16 ... 256] 64

Activation Functions
[Sigmoid, Tanh,
ReLU, ELU]

ReLU, Tanh

Number of FC Layers [1 ... 4] 1
Hidden units (each FCs) [128 ... 512] 512
Dropout [FC1] [0.1 .. 0.6] 0.5

FC layers and make the model more robust for testing. We add batch normal-

ization [11] in both the convolutional layer and the FC layer. We use dropout

in both of our CNN models. We use kernel regularizer in the CNN model for

the Walkie-Talkie dataset and batch normalization in the CNN model for the

undefended and WTD-PAD datasets.

30

Chapter 5

Evaluation & Results

In this chapter, we discuss the evaluation of our timing features and present

results based on the three research questions we investigated. First, we provide

a brief overview of our experimental environment in Section 5.1. Secondly, we

address our three research questions and the experimental results in Section

5.2. Then we discuss our results in Section 5.3.

5.1 Experimental Environment

We use a PC with a Core i7-6700 processor with 8 cores and 32GB RAM, plus

a NVIDIA Quadro K1200 GPU with 4GB GPU memory. For compiling deep

learning models to run on a GPU, we use Cuda Version 7.5. We develop our

model in Python using the Keras deep learning framework as the front end

and the Tensorflow deep learning framework as the back end.

31

5.2 Results

5.2.1 RQ1: Packet Timing Features

RQ1: How can we represent packet timing information in a way that
robustly reveals patterns over different instances of a site?

To respond this question, we selected and extracted eight timing features in

a five steps process (see Figure 4.9). We extracted our timing features from

the burst-level characteristics. Among the eight features, three features are

based on the timing of a single burst. The other five features are based on the

two consecutive bursts B1 and B2. Refer to Section 4.2.1 for the details of our

timing features selection and extraction process.

5.2.2 RQ2: Classification Value of Timing Features

RQ2: How useful are those new representations for developing WF
attack?

We explored the use of all eight features, both separately and together, in

both k-NN, and SVM for different settings of the number of bins b in each

histogram. Based on our initial findings, we found that the most effective

combination was the three features MED, IMD, and IBD with b = 20 bins, so

we present results with these features.

In our initial phase experiments, we investigated and experimented our timing

features with K−NN and SVM classifiers. As shown in Table-5.1, MED, IMD,

and IBD all provide some classification value on their own, where random

32

Table 5.1: Undefended Tor: Attack accuracy.

Features

Classifier MED IMD IBD Combined

k-NN 41% 20% 18% 51%

SVM 56% 24% 29% 61%

guessing would only reach 1% accuracy in this multi-class scenario. Together,

these three features can get 61% accuracy with SVM on undefended Tor traffic.

Based on the findings of the initial experiments, we extended our experiments

on timing features to the deep learning model. We adopted one of the most

powerful deep learning classifiers: Convolutional Neural Network (CNN).

Table 5.2: Undefended Tor: Attack accuracy in CNN.

Classifier Combined Features

CNN 88%

0 10 20 30 40 50
epoch

0.2

0.4

0.6

0.8

ac
cu

ra
cy

model accuracy
train
validation

(a) Model Accuracy

0 10 20 30 40 50
epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
ss

model loss
train
validation

(b) Model Loss

Figure 5.1: Undefended Tor Traffic: Attack Accuracy with CNN.

Using the CNN classifier, we attain 88% testing accuracy (see Table- 5.2) with

33

undefended Tor traffic. We attain up to 98% of training accuracy and up to

92% of validation accuracy at the 50th epoch (see Figure-5.1). We performed

our experiments with different structures of CNN model to understand the

variation of our results. Finally, we selected the model that gave us the best

accuracy. Refer to Table 4.3 for an overview of the search space of our model.

While our results are not as good as the state-of-the-art classifiers, it is an

encouraging result given that we are not using any of the features about bursts

cited in prior work as being important for effective classification.

5.2.3 RQ3: WF Attack with Timing Features

RQ3: Do the new representations also provide classification value when
WF defenses are in place?

5.2.3.1 WF Attack with Defended Tor Traffic

Table 5.3: Defended Tor: Attack accuracy.

Classifier WTF-PAD W-T

SVM 54% 43%

CNN 76% 47%

We experimented with the combined feature set against the two defended

datasets, using WTF-PAD and Walkie-Talkie (W-T), as reported in Table-

5.3.

Against WTF-PAD, we attain 54% accuracy using SVM and 76% accuracy

34

(a) Model Accuracy (b) Model Loss

Figure 5.2: Defended Tor Traffic with WTF-PAD Defense: Attack Accuracy
with CNN.

using CNN. Our CNN model gave us up to 96% of training accuracy and 78%

of validation accuracy (see Figure- 5.2).

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

ac
cu

ra
cy

model accuracy
train
validation

(a) Model Accuracy

0 20 40 60 80 100
epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

lo
ss

model loss
train
validation

(b) Model Loss

Figure 5.3: Defended Tor Traffic with W-T Defense: Attack Accuracy with
CNN.

Against W-T, we get 43% accuracy using SVM and 47% accuracy using CNN.

Note that 47% is higher than any accuracy results reported on W-T to date

35

and approaching the 50% theoretical maximum accuracy claimed for W-T [25].

That maximum accuracy depends on not using timing data, so our approach

might exceed 50% accuracy when both timing and burst data are considered.

5.3 Discussion

Our findings show that packet timing information can be an important candi-

date for feature for the WF attack. Using timing features provides reasonable

attack accuracy against the state-of-the-art defenses as well. However, pro-

cessing the timing features is a cumbersome task. First, it involves multiple

steps to extract the fine-grained timing features. Secondly, tuning the number

of bins is also challenging because it requires a trail and error process. No

one specific number of bins can work for every dataset. The whole process re-

quires multiple iterations from the start to the end. Another challenging task

is hyperparameter tuning to find the best CNN model for our datasets. Fi-

nally, we have two datasets that are large enough for our deep learning models,

but Walkie-Talkie (W-T) dataset is not large enough. A larger W-T dataset

could give us better understanding of the accuracy using our timing features.

However, we still get higher accuracy than the accuracies for the other attacks

shown in the W-T paper [25] using only timing features.

36

Chapter 6

Conclusion & Future Work

In this thesis, we propose a novel WF attack based on extracting features from

packet timing information. The main purpose of our research is to find useful

timing features that can be used in WF attacks. We selected and extracted

eight new timing features from packet timestamps in a five-step process. We

show the effectiveness of our features in both traditional ML and deep learning

models. We find that our features are robust over multiple noisy instances and

provide useful classification value against both undefended and defended Tor

traffic. Using timing features in our CNN model, we achieve 88% accuracy.

We achieve 47% accuracy against W-T defense as well. In future work, we will

investigate more to improve this attack and improve our model as well. We

will investigate the performance of timing and direction features together. We

plan to collect a larger W-T dataset to evaluate further the effectiveness of

our timing features. We will also expand our evaluation to Onion Services and

the open-world setting. In the future, our goal is to build a defense against

this attack, as state-of-the-art defenses do not focus on obscuring the pattern

of timing information.

37

References

[1] “Alexa,” http://www.alexa.com.

[2] “Feature extraction using convolution,” http://deeplearning.stanford.

edu/wiki/index.php/Feature extraction using convolution.

[3] K. Abe and S. Goto, “Fingerprinting attack on Tor anonymity using deep

learning,” Proceedings of the Asia-Pacific Advanced Network, vol. 42, pp.

15–20, 2016.

[4] S. Albelwi and A. Mahmood, “A framework for designing the architec-

tures of deep convolutional neural networks,” Entropy, vol. 19, no. 6,

2017.

[5] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance:

Website fingerprinting attacks and defenses,” in Proceedings of the 2012

ACM Conference on Computer and Communications Security. ACM,

2012.

[6] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, I

still see you: Why efficient traffic analysis countermeasures fail,” in 2012

IEEE Symposium on Security and Privacy. IEEE, 2012.

[7] L. Finley, “VPNs won’t save you from congress’ Inter-

net privacy giveaway,” https://www.wired.com/2017/03/

38

http://www.alexa.com.
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
https://www.wired.com/2017/03/vpns-wont- save-congress-internet-privacy-giveaway/
https://www.wired.com/2017/03/vpns-wont- save-congress-internet-privacy-giveaway/

vpns-wont-save-congress-internet-privacy-giveaway/, 2017, accessed:

2017-11-30.

[8] B. Fung, “What to expect now that Internet providers can collect

and sell your Web browser history,” https://www.washingtonpost.com/

news/the-switch/wp/2017/03/29/what-to-expect-now-that-internet\

-providers-can-collect-and-sell-your-web-browser-history/?utm term=

.5c52ff09c2be, 2017, accessed: 2017-11-30.

[9] J. Hayes and G. Danezis, “k-Fingerprinting: A robust scalable website fin-

gerprinting technique,” in USENIX Security Symposium, 2016, pp. 1187–

1203.

[10] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprint-

ing: Attacking popular privacy enhancing technologies with the multino-

mial näıve-bayes classifier,” in Proceedings of the 2009 ACM Workshop

on Cloud Computing Security. ACM, 2009.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference

on Machine Learning, 2015, pp. 448–456.

[12] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical

evaluation of website fingerprinting attacks,” in Proceedings of the 2014

ACM Conference on Computer and Communications Security. ACM,

2014.

39

https://www.wired.com/2017/03/vpns-wont- save-congress-internet-privacy-giveaway/
https://www.wired.com/2017/03/vpns-wont- save-congress-internet-privacy-giveaway/
https://www.washingtonpost.com/news/the- switch/wp/2017/03/29/what-to-expect-now-that-internet \ -providers-can-collect-and-sell-your-web-browser- history/?utm_term=.5c52ff09c2be
https://www.washingtonpost.com/news/the- switch/wp/2017/03/29/what-to-expect-now-that-internet \ -providers-can-collect-and-sell-your-web-browser- history/?utm_term=.5c52ff09c2be
https://www.washingtonpost.com/news/the- switch/wp/2017/03/29/what-to-expect-now-that-internet \ -providers-can-collect-and-sell-your-web-browser- history/?utm_term=.5c52ff09c2be
https://www.washingtonpost.com/news/the- switch/wp/2017/03/29/what-to-expect-now-that-internet \ -providers-can-collect-and-sell-your-web-browser- history/?utm_term=.5c52ff09c2be

[13] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an effi-

cient website fingerprinting defense,” in European Symposium on Research

in Computer Security. Springer, 2016, pp. 27–46.

[14] A. Ng, “CS229 lecture notes,” http://cs229.stanford.edu/notes/

cs229-notes3.pdf.

[15] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,

and K. Wehrle, “Website fingerprinting at Internet scale,” in The Network

and Distributed System Security Symposium (NDSS), 2016.

[16] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fingerprint-

ing in onion routing based anonymization networks,” in Proceedings of the

10th annual ACM Workshop on Privacy in the Electronic Society. ACM,

2011, pp. 103–114.

[17] M. Perry, “Experimental defense for website traffic fingerprint-

ing,” Tor project blog., 2011, https://blog.torproject.org/blog/

experimental-defense-website-traffic-fingerprinting.

[18] ——, “A critique of website traffic fingerprinting attacks,” Tor project

blog., 2013, https://blog.torproject.org.

[19] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,

“Automated website fingerprinting through deep learning,” in Proceedings

of the 25th Network and Distributed System Security Symposium. Inter-

net Society, 2018.

40

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
https://blog. torproject. org/blog /experimental-defense-website-traffic- fingerprinting
https://blog. torproject. org/blog /experimental-defense-website-traffic- fingerprinting
 https://blog. torproject. org

[20] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix net-

works: Attacks and defenses,” European Symposium on Research in Com-

puter Security, pp. 18–33, 2006.

[21] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:

Undermining website fingerprinting defenses with deep learning,” arXiv

preprint arXiv:1801.02265, 2018.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-

fitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,

2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[23] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effec-

tive attacks and provable defenses for website fingerprinting,” in USENIX

Security Symposium, 2014, pp. 143–157.

[24] T. Wang and I. Goldberg, “Improved website fingerprinting on Tor,” in

Proceedings of the 12th ACM Workshop on Workshop on Privacy in the

Electronic Society. ACM, 2013.

[25] ——, “Walkie-Talkie: An efficient defense against passive website finger-

printing attacks,” in USENIX Security Symposium, 2017, pp. 1375–1390.

[26] R. Zemel, R. Urtasun, and S. Fidler, “CSC 411: Lecture 05: near-

est neighbors,” https://www.cs.toronto.edu/∼urtasun/courses/CSC411

Fall16/05 nn.pdf.

41

http://jmlr.org/papers/v15/srivastava14a.html
https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/05_nn.pdf
https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/05_nn.pdf

	Using Packet Timing Information in Website Fingerprinting
	Recommended Citation

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Research Agenda
	Thesis Organization

	Chapter 2. Background
	Tor Network
	WF Attack Model
	Machine Learning
	k-Nearest Neighbor (k-NN)
	Support Vector Machines (SVM)

	Deep Learning
	Convolutional Neural Network (CNN)

	Chapter 3. Related Work
	WF Attack using Traditional Machine Learning
	WF Attack using k-NN
	WF Attack using RDF
	WF Attack using CUMUL

	Deep Learning in WF Attack
	WF Attack by SDAE
	Automated WF
	Deep Fingerprinting Attack

	WF Defenses
	WTF-PAD
	Walkie-Talkie

	Chapter 4. Packet Timing in Website Fingerprinting
	Data Collection
	Data Collection Process
	Datasets

	Experimental Design
	Feature Selection and Extraction
	Hyperparameter Tuning in CNN

	Chapter 5. Evaluation & Results
	Experimental Environment
	Results
	RQ1: Packet Timing Features
	RQ2: Classification Value of Timing Features
	RQ3: WF Attack with Timing Features

	Discussion

	Chapter 6. Conclusion & Future Work
	References

