
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

8-15-2018 

A Mathematical Model of Fluid Flow in Evaporating Droplets A Mathematical Model of Fluid Flow in Evaporating Droplets 

Using Wedge Geometry Using Wedge Geometry 

Jordana O'Brien 
jeo8857@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
O'Brien, Jordana, "A Mathematical Model of Fluid Flow in Evaporating Droplets Using Wedge Geometry" 
(2018). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9891?utm_source=repository.rit.edu%2Ftheses%2F9891&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


A Mathematical Model of Fluid Flow in Evaporating

Droplets Using Wedge Geometry

by

Jordana O’Brien

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Applied Mathematics

School of Mathematical Sciences, College of Science

Rochester Institute of Technology

Rochester, NY

August 15, 2018



Committee Approval:

Kara Maki, Ph.D.

School of Mathematical Sciences

Thesis Advisor

Date

Michael Schertzer, Ph.D.

Kate Gleason College of Engineering

Committee Member

Date

Steven Weinstein, Ph.D.

Kate Gleason College of Engineering

Committee Member

Date

Nathaniel Barlow, Ph.D.

School of Mathematical Sciences

Committee Member

Date

Matthew Hoffman, Ph.D.

School of Mathematical Sciences

Director of Graduate Programs

Date



Abstract

As a droplet of liquid evaporates, particles within the droplet are often pulled to the edge and deposited

in a ring-shaped pattern. This is known as the coffee-ring effect. The coffee-ring effect is largely due to

evaporation taking place at a pinned contact line. Since this formation is an adverse outcome in many

practical applications, methods to counteract the coffee-ring effect have become of interest, including the

application of an electric field. In this research project, we discuss the first stage in constructing a coupled

mathematical model of colloidal transport within an evaporating droplet under the influence of an electric

field. The first stage is to simply capture the fluid flow within a pinned evaporating droplet without any

consideration of particles or an electric field. We consider a thin axisymmetric droplet of a Newtonian

solvent in contact with ambient air that is undergoing diffusion-limited evaporation. Away from the

contact line, we model the droplet dynamics by applying the lubrication approximation to simplify the

Navier-Stokes equations. To characterize the flow near the contact line, we assume the droplet shape

is a wedge and derive analytical solutions of evaporative-driven Stokes flow near a pinned contact line.

We connect the lubrication model and the wedge model by specifying height and flux conditions at the

boundary between the two regions. We solve for the position of the droplet interface by implementing a

method of lines approach in MATLAB. We find that for our specified conditions, the two regions evaporate

on different time scales. However, if either the evaporation rate or the rate of contact angle decrease is

appropriately adjusted, the two regions evaporate simultaneously.
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I. Introduction

I.1 Motivation

Evaporation of colloidal droplets is a mechanism widely used for a variety of purposes. In this

process, microscopic, insoluable particles (between 1 nanometer and 1 micron) are dispersed

throughout a liquid medium deposited on a substrate. As a colloidal droplet evaporates, particles

are transported throughout the droplet by fluid motion and eventually stick to the substrate as

fluid is lost. The residual formation left behind by a completely evaporated droplet is known as

the deposition pattern. Particle deposition affects a variety of applications from inkjet printing

[3, 10, 25, 29, 30] to medical diagnostics [2, 11]. In the classic coffee-ring effect, particles are

deposited at the periphery of the droplet, leaving behind a dark ring. This is due to increased

evaporation taking place at a pinned contact line [8, 9]. Mass conservation requires that fluid

removed by evaporation from the contact line region be replenished by fluid from the center of the

drop. This drives an outward radial flow which pulls particles toward the pinned periphery. The

non-homogeneous pattern observed in the coffee-ring effect can be leveraged in certain contexts.

One such context is in the manufacturing of flexible electronic devices in which conductive material

is inkjet printed onto a flexible surface to create circuitry [3, 29, 30]. However, other applications

rely on uniform deposition patterns [10, 11, 25]. Hence, it would be advantageous to have a

method by which the desired deposition pattern can consistently be obtained. To this end, various

strategies have been proposed to suppress the coffee-ring effect. Some successful strategies for

coffee-ring suppression include the addition of surfactants, which involve surface tension gradients

that counteract the outward radial flow towards the contact line [16]; deformation of the interface

by use of non-spherical colloids [31]; and the application of an electric field [5, 12, 24, 19], which

has the potential to disrupt the dynamics of particle motion near the contact line by introducing

an electrowetting force at the contact line and an electrophoretic force on charged colloids in a

droplet.

Figure 1: Image of a colloidal droplet. Particle diameter ranges from 1 nanometer to 1 micron.
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In collaboration with the Discrete Micro-Fluidics Laboratory (DMFL) at the Rochester Institute of

Technology (RIT), we seek to develop a device that utilizes both ring-like and uniform deposition

patterns to detect the presence and concentration of target proteins. In our proposed method, an

electric field is applied to evaporating droplets that contain particles with antibodies for target

proteins. The resulting deposition patterns and the voltages required to achieve such patterns will

indicate whether or not a protein is present and in what amount. Manufacturing of such a device

relies on a firm understanding of colloidal transport in an evaporating droplet and the interplay

between the evaporative and electrowetting forces at the contact line, as well as the electrophoretic

force on charged colloids. To better analyze the interplay between forces and their effects on

colloidal transport, we supplement the experimental work of the DMFL with a mathematical

model. The model comprises three coupled pieces: droplet dynamics, particle dynamics, and

electrostatics. The first piece of the model will solve for the fluid velocity field in the absence of

particles and an electric field. The flow will be solved for both a pinned and moving contact line.

The second piece accounts for particle dynamics. The third piece accounts for the application of

an electric field. Model predictions will be compared to the experimental data collected by the

DMFL [4]. Explanation of experimental procedures and current findings can be found in [5] and

[6].

Figure 2: Breakdown of the three-stage coupled model. The first stage captures fluid dynamics. The second

stage captures particle dynamics. The third stage captures the effects of an electric field on both

fluid flow and particle transport.
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In this thesis, we lay the foundation for the three-part coupled model. We present a model for

the fluid flow (in the absence of particles and an electric field) inside an axisymmetric droplet

of Newtonian fluid with a pinned contact line. We assume the evaporation rate increases as the

contact line is approached. At this initial stage in the modeling process, we ignore temperature

changes and Marangoni flow, but would like to study Marangoni effects as our research progresses.

We further assume the droplet is small enough to neglect gravitational effects.

I.2 Literature Review and Research Goals

Several researchers have previously modeled evaporating droplets. For an extensive review of the

contributions to this field, we refer readers to [20] and [26]. In this section, we briefly review a

few of these research efforts most relevant to this work before discussing our particular modeling

approach.

The theory behind the coffee-ring effect was pioneered by Deegan and coworkers who considered

a pinned droplet of solute acting under diffusion-limited evaporation in ambient conditions. They

employed several simplifications to characterize the height-averaged velocity, v̄, the evaporative

flux, J(r, t), and the height of the droplet, h(r, t). They computed approximations for the mass

growth of the ring as well as the distribution of the solute. For early times, they predicted the

ring grows as a power law in time. The growth at later times is impacted by the assumption

of diffusion-limited evaporation. This assumption results in a diverging evaporation rate at

the contact line, which leads to both the velocity at the contact line and the growth of the ring

diverging. They conclude the divergent behavior at the end of the drying time is responsible for

the 100% transfer of solute to the periphery.

Hu and Larson solved for the full field flow inside of a pinned evaporating droplet, first neglecting

Marangoni flow [15], which results from surface tension gradients, and then later accounting for it

[16]. They developed a semi-analytical lubrication model for which they borrowed the evaporative

flux expression presented by Deegan et al. They compared their findings to numerical results

of a finite element method developed to solve simultaneously the vapor concentration and the

flow field. They concluded that the lubrication model yields a successful approximation of the

velocity field for contact angles up to 40◦. However, they accounted for the singularity at the

contact line by including higher order terms that would be neglected in a standard lubrication

approximation.

Masoud and Felske [22] found a full analytical solution for the flow inside a droplet by assuming
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Stokes flow in the entire spherical-cap shaped droplet. In order to do so, they modified the

evaporative flux expression proposed by Deegan et al. such that the expression is bounded at the

contact line.

Maki and Kumar used lubrication theory to model colloidal transport in an evaporating droplet

[21]. The research effort focused on identifying the mechanism causing larger-sized particles to

migrate to the top of the droplet and form a skin during evaporation. They considered a moving

contact line replaced by a thin precursor film, as lubrication theory breaks down in the contact

line region when the contact line is pinned and evaporating. In this project, we seek a method of

modeling the pinned contact line building off the work of Maki and Kumar.

Other research projects have focused specifically on contact line dynamics, using a wedge to

describe the region sufficiently close to the contact line [13, 17, 23]. In [23], Moffatt studied the

Stokes flow in a wedge region bounded by two planes, considering both rigid and free surfaces.

Their work largely focused on the formation of eddies for small enough contact angles. Gelderblom

et al. studied the Stokes flow in a pinned wedge region bounded by a rigid substrate and a free

liquid-air interface [13]. They found a full analytical solution for the stream function, assuming

evaporative-driven flow. For the evaporative flux, they used the expression given by Deegan et

al. Huh and Scriven studied the Stokes flow inside a wedge region with a moving contact line

[17].

In this thesis project, we seek to marry the models proposed in [21] and [13]. Maki and Kumar

were unable to use full lubrication theory to capture the dynamics of a pinned contact line. We

propose amending this issue by linking the analytical wedge model developed by Gelderblom et

al. to a modified version of the lubrication model proposed by Maki and Kumar.

We pose two research questions:

(i) Is it possible to describe the fluid dynamics of a pinned evaporating droplet in the lubrication

limit using a wedge in the vicinity of the contact line?

(ii) Is it sufficient to link the two models described in [13] and [21] by specifying height and flux

conditions at some boundary?

The first question is broad while the second one is the specific strategy we present in this project.

We will return to these questions in Section VII.
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I.3 Modeling Strategy

We consider an evaporating axisymmetric droplet of Newtonian fluid characterized by cylindrical

coordinates (r′, z′, ω). The droplet rests on a substrate, z′ = 0, and is centered at the origin,

r′ = 0. The interface, described by z′ = h′(r′, t′), is in contact with ambient air. The contact line

is pinned at r′ = R′, where R′ is the radius of the droplet. Note primes denote dimensional

values. We split the droplet into two regions by introducing a new boundary at r′ = R′ − R′w,

where R′w is a small distance from the contact line. The first region, referred to as the droplet

region, or full drop region, is characterized by Ω′d(t
′) = {(r′, z′, ω) : 0 ≤ r′ ≤ R′ − R′w, 0 ≤ z′ ≤

h′(r′, t′), 0 ≤ ω ≤ 2π}. To model this region, we apply lubrication theory to the full Navier-Stokes

equations to obtain a simplified interface evolution equation, as done by Maki and Kumar in [21].

The second region, referred to as the contact line region, or wedge region, is characterized by

Ω′c(t′) = {(r′, z′, ω) : R′ − R′w ≤ r′ ≤ R′ and 0 ≤ z′ ≤ h′(r′, t′), 0 ≤ ω ≤ 2π}. Here, we assume

Stokes flow, as was done by Gelderblom et al. in [13]. We choose the length R′w to be small enough

that the contact line region looks like a wedge with length R′w and height z′ = R′w tan θ(t′) at

r′ = R′ − R′w, where θ(t′) is the contact angle. We introduce a polar coordinate system (r̂′, φ)

to describe the location inside of the wedge, which we discuss in Section III. After modeling

each region separately, we connect them by assuming both the height and the volumetric flux

are continuous at the boundary r′ = R′ − R′w, where both the height and the volumetric flux are

determined by the wedge model.

Figure 3: Schematic of the droplet region, Ω′d(t
′), and the contact line region, Ω′c(t′).

In what follows, we explain how the droplet region is modeled in Section II; we explain how the

contact line region is modeled and discuss the wedge flow in Section III; we explain how the

two regions are connected in Section IV; and we discuss the results obtained by our numerical

simulations in Section VI. Though fluid flow has been modeled in both evaporating droplets and
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wedge regions prior to this work, to the best of our knowledge, the two types of models have

never been connected.

II. Model Formation: Full Drop Region

To model the full drop region, we apply lubrication theory to the Navier-Stokes equations, as

was done by Maki and Kumar in [21]. Lubrication theory is based on the assumption that the

contact angle is very small (typically, ≤ 15◦), resulting in a thin, pancake-like droplet in which the

height dimension, H′, is much smaller than the length dimension, R′, as depicted in Figure 4. The

disparity in length scales renders the radial derivatives in the Navier-Stokes equations negligible

relative to the vertical derivatives, which allows us to neglect them. This will be explained in

detail in Section II.2. Though lubrication theory is based on the assumption of a small contact

angle, it has been shown to yield a decent approximation to the solution of the Navier-Stokes

equations for larger angles. Hu and Larson successfully applied lubrication theory up to a contact

angle of θ = 40◦ [15]. Thus, we consider θ ≤ 40◦. Since we are considering an axisymmetric drop,

it is enough to model the profile of the droplet. We use cylindrical coordinates, (r′, z′), to describe

each position in the droplet profile, where z′ = h′(r′, t′) describes the interface with the air and

r′ = R′ − R′w is the location of the boundary between the full drop and the contact line region.

The velocity field is denoted by v′ = (v′r, v′z), where v′r is the radial velocity and v′z is the vertical

velocity. To simulate the droplet evaporating, we need to know the interface evolution equation,
∂h′
∂t′ , which describes how the interface changes over time. In this section, we discuss the governing

system of equations and scale factors by which we obtain the dimensionless interface evolution

equation.

Figure 4: Thin droplet in which there is a disparity between the height scale, H′, and the length scale R′.

II.1 Governing Equations and Boundary Conditions

In our system, both mass and momentum must be conserved. Conservation of mass is expressed

by the 2-D continuity equation in cylindrical coordinates:

6



∂ρ

∂t′
+∇′ · (ρv′) = 0. (II.1)

We assume the droplet fluid is incompressible; thus, the density, ρ, of the liquid is unaffected

by pressure and remains constant throughout the drop. The result is the simplified continuity

equation:

∇′ · v′ = 0. (II.2)

Momentum is conserved when the rate of change of the momentum of the fluid inside the droplet

balances the forces acting upon the droplet. In short, it is Newton’s second law, F = ma. There are

two flavors of forces that could act upon the droplet, (i) body forces, which act equally upon the

entire body of the droplet (gravity, for example), and (ii) surface forces, which act upon external

and internal surfaces and can vary throughtout the droplet (viscosity, for example). Conservation

of momementum is expressed by the 2-D Navier-Stokes equations in cylindrical coordinates:

ρ

(
∂v′

∂t′
+ (v′ · ∇′)v′

)
= −∇′p′ + µ∆′v′ + f ′, (II.3)

where ∇′ = 1
r′

∂
∂r′ (r

′) + ∂
∂z′ is the gradient, ∆′ = ∇′2 = 1

r′
∂

∂r′ (r
′ ∂

∂r′ ) +
∂2

∂z′2 is the Laplace operator,

p′ is the pressure, µ is the viscosity of the fluid, and f ′ represents body forces. The left side

of the equation represents the rate of change of the momentum while the right side describes

the total surface and body forces, where the terms −∇′p′ and µ∆′v′ capture the contributions

from pressure and viscosity. In our problem, we assume the droplet is thin enough to neglect

gravitational forces and we do not account for any other body forces. Thus, on the right-hand side

of equation II.3, we retain only the surface forces from pressure and viscosity.

At the substrate, z′ = 0, we impose no-slip and impermeability conditions. That is, the velocity of

the fluid along the substrate must match the velocity of the substrate and cannot pass through it.

Hence, our first two boundary conditions are given by

v′r(r
′, 0, t′) = 0, v′z(r

′, 0, t′) = 0. (II.4)

We discussed earlier that surface forces act upon different surfaces throughout the droplet. A

surface force can be applied in a direction normal to the surface or in a direction tangent to the

surface. At the interface, z′ = h′(r′, t′), we balance the normal and tangential stresses, but, before
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doing so, we define the unit vectors in both the normal and tangential directions. To define the

unit normal vector, n′, we let f ′(r′, z′, t′) = z′ − h′(r′, t′). Thus, the unit normal vector to the

interface is

n′ =
∇′ f ′
‖ f ′‖ =

(−∂h′/∂r′, 1)√
(∂h′/∂r′)2 + 1

. (II.5)

To define the unit tangent vector, t′, we use the knowledge that t′ · n′ = 0. Then,

t′ =
(1, ∂h′/∂r′)√
(∂h′/∂r′)2 + 1

. (II.6)

We also introduce the stress tensor,

T′ = −p′I + µ(∇′v′ +∇′v′T), (II.7)

which contains the stresses from pressure and viscosity, where I is the 2-D identity tensor and T

represents the transpose. The stress at the interface is obtained by performing the dot product

of the stress tensor and the unit normal, T′ · n′. The stress occurring in the normal direction is

then n′ · T′ · n′. The pressure difference along the droplet interface is related to its shape through

surface tension. Thus, the difference in pressure at any point along the interface is given by the

term κσ, where κ is the curvature and σ is the surface tension. Balancing the stress in the normal

direction with the pressure from curvature as well as the ambient air pressure, p′a, we get,

− p′a − n′ · T′ · n′ = −κσ, (II.8)

where the curvature is expressed as

κ = ∇′ · [(1 + |∇′h′|2)−1/2∇′h′]. (II.9)

The stress occurring tangent to the interface is obtained by dotting the stress at the interface with

the unit tangent vector. We assume the tangential stress, or shear stress, is zero because our

experiments are conducted in a lab where there is very little motion of the air surrounding the

droplet. Note we are also neglecting Marangoni effects. Thus,

t′ · T′ · n′ = 0. (II.10)
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We also specify a kinematic condition, which states that the vertical velocity at the interface,

v′z(r′, h′(r′, t′)), is determined by the rate at which mass is lost due to evaporation along the

surface and also by the rate at which the interface collapses, ∂h′
∂t′ . It is given by,

J′ = ρ(v′ − v′I) · n′, (II.11)

where v′I = (0, ∂h′/∂t′) is the velocity of the interface and the evaporative flux (defined as the

mass lost due to evaporation per unit area per unit time) is [9, 15, 27]

J′(r′, t′) = ρJ′0(θ)(R′ − (r′)2)λF(θ)−1, (II.12)

where [13]

λF(θ) =
π

2π − 2θ
(II.13)

and [14, 15]

J0(θ) =
Dcs(1− H)

R′
(0.27θ2 + 1.30)(0.6381− 0.2239(θ − π

4
)2), (II.14)

where D is the diffusion constant for water vapor in air, cs is the saturated vapor concentration

at the surface of the droplet, and H is the relative humidity. Values for these parameters can be

found in Table 2. Note that J′(r′, t′) is time dependent because of its dependence on the contact

angle, which changes as the drop evaporates over time.

The expression for the evaporative flux is based on the assumption that the vapor concentration, c,

in the air surrounding the droplet is diffusion-limited. Generally, an advection-diffusion equation

would be used to solve for the vapor concentration. However, we assume the air velocity is

negligible and that, far from the droplet interface, the concentration approaches a constant vapor

density, c∞. Along the droplet interface, assumed to be a spherical-cap shape, it is assumed that

the vapor concentration is at the saturation concentration, cs. Thus, the steady-state advection-

diffusion equation reduces to Laplace’s equation, ∆′c = 0. Knowing the concentration, one can

obtain an exact analytical form for the evaporative flux along the entire surface of the droplet

using the relation J′(r′, t′) = −D(n′ · ∇′c). This calculation has been done in prior work [9, 27].

The exact form for J′(r′, t′) obtained by solving Laplace’s equation contains special functions and
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is not user friendly, thus researchers typically use an approximate expression for the evaporative

flux. The form we use in equation II.12 is a simplification suggested by Deegan et al. in [8].

Before non-dimensionalizing, we summarize our system of governing equations and boundary

conditions:

∇′ · v′ = 0,

ρ

(
∂v′

∂t′
+ (v′ · ∇′)v′

)
= −∇′p′ + µ∆′v′ + f ′,

v′r(r
′, 0, t′) = 0, v′z(r

′, 0, t′) = 0,

−p′a − n′ · T′ · n′ = −κσ,

t′ · T′ · n′ = 0,

and

J′ = ρ(v′ − v′I) · n′.

II.2 Non-dimensionalization

To simplify the governing equations, we assume the droplet is thin such that ε = H′
R′ << 1,

allowing for the application of lubrication theory. Our choice for ε is based on the capillary

number,

Ca =
µV′

σ
, (II.15)

where V′ = Dcs(1−H)
ρR′ is the characteristic velocity. We base the velocity scale on the rate at which

vapor diffuses from the surface of the drop into air. The capillary number is the ratio of viscous

effects to surface tension effects. Thus, Ca << 1 indicates that surface tension effects dominate

and the droplet interface will maintain a spherical cap shape. The capillary number is usually
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on the order of 10−6 or smaller. Hence, a commonly used simplification of the droplet modeling

problem is to derive the interface evolution equation from the equation of a spherical cap, as was

done in [8, 9, 14, 15]. In [21], Maki and Kumar were interested in exploring results when surface

tension and viscosity effects are equally important, and according to Ajaev [1], this happens when

ε = H′
R′ = O(Ca1/3). Thus, as done by Maki and Kumar, we expand our system of equations in

powers of ε = Ca1/3.

We non-dimensionalize the governing system of equations with the following scales described in

Tables 1 and 2:

r′ = R′r, z′ = εR′z, h′ = εR′h,

v′r = V′vr, v′z = εV′vz, t′ =
R′

V′
t,

p′ =
µV′

ε2R′
p, J′ = ρV′εJ. (II.16)

Standard Parameter Values for Water

Description: Value: Related

Citation(s):

Dynamic viscosity µ = 9× 10−4 Pa s [21]

Density ρ = 997 kg/m3 [21]

Surface tension σ = 7.2× 10−2 N/m [21]

Diffusion coefficient for vapor in air D = 3× 10−5 m2/s [7]

Table 1: Standard values for water

Characteristic Scales

Description: Value: Related

Citation(s):

Saturated water vapor concentration cs = 0.0232 kg/m3 [14]

Relative humidity H = 0.4 kg/m3 [14]

Length of the droplet radius R′ = 1× 10−3 m DMFL, [13]

Characteristic velocity V′ = Dcs(1−H)
ρR′ = 4.19× 10−7 m/s [13, 14, 15]

Table 2: Values associated with characteristic scales
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Returning to the conservation of mass equation (II.2), we expand and substitute in the scales to

obtain,

V′

R′

[
∂vr

∂r
+

1
r

vr +
∂vz

∂z

]
= 0. (II.17)

Turning our attention to the conservation of momentum equation (II.3), we expand both the radial

and vertical components and substitute in the scales to obtain,

ε2ρR′V′

µ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ ε2

(
1
r

∂

∂r

(
r

∂vr

∂r

)
+

1
ε2

∂2vr

∂z2 −
vr

r2

)
(II.18)

and

ε4ρR′V′

µ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ ε4 1

r
∂

∂r

(
r

∂vz

∂r

)
+ ε

∂2vz

∂z2 . (II.19)

The left side of the Navier-Stokes equations is multiplied by the Reynolds number, Re = ρR′V′
µ ,

which is the ratio of inertial forces to viscous forces. In our problem, Re ≈ 4.6× 10−4 << 1. Thus,

viscosity dominates and the momentum in the drop is close to zero, resulting in a smooth, laminar

flow.

Returning to the boundary conditions, we expand the normal and tangential stresses at the

interface and the kinematic condition (eqs II.8, II.10, II.11), and substitute in scales to get,

− pa−
1
`2

s

[(
ε

∂h
∂r

)2 (
−p + 2ε2 ∂vr

∂r

)
+ 2ε

∂h
∂r

(
ε

∂vr

∂z
+ ε3 ∂vz

∂r

)
− p− 2ε2 ∂vz

∂z

]
= − 1

`s

(
∂2h
∂r2 +

1
r

∂h
∂r

)
,

(II.20)

− 1
`2

s

[
ε

∂h
∂r

(
−p + 2ε2 ∂vr

∂r

)
−
(

∂vr

∂z
+ ε2 ∂vz

∂r

)
+ ε2

(
∂h
∂r

)2 (∂vr

∂z
+ ε2 ∂vz

∂r

)
− ε

∂h
∂r

(
−p + 2ε2 ∂vz

∂z

)]
= 0,

(II.21)

and

εV′ J = −εV′
vr

`s

∂h
∂r

+
1
`s

(
εV′vz − εV′

∂h
∂t

)
, (II.22)

where `s =

((
ε ∂h

∂r

)2
+ 1
)1/2

.
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We are interested in studying the limit of the scaled system of equations as ε → 0. Taking the

limit, we obtain the leading order equations, which lead to our boundary value problem in Section

II.3:

0 =
1
r

∂

∂r
(rvr) +

∂vz

∂z
(II.23)

0 = −∂p
∂r

+
∂2vr

∂z2 (II.24)

0 = −∂p
∂z

(II.25)

with

vr = 0, vz = 0 (II.26)

at z = 0, and

p = pa −
1
r

∂

∂r

(
r

∂h
∂r

)
, (II.27)

∂vr

∂z
= 0, (II.28)

J = −vr
∂h
∂r

+ vz −
∂h
∂t

(II.29)

at z = h(r, t).

II.3 Derivation of Evolution Equation

To obtain the radial velocity, we integrate the radial component of the momentum conservation

equation (II.24) twice, using the fact that ∂p
∂z = 0, and apply the tangential stress condition (II.27)

at the interface and the no-slip condition (II.26) at the substrate [21]:

vr =
∂p
∂r

∫ z

0
(z− h) dz =

∂p
∂r

(
z2

2
− hz

)
. (II.30)

13



To get the vertical velocity, we integrate the conservation of mass equation II.23:

vz = −
∫ z

0

1
r

∂

∂r
(rvr) dz. (II.31)

Applying the radial and vertical velocities to the kinematic equation (II.29), we obtain the interface

evolution equation:

∂h
∂t

= −1
r

∂

∂r
(rQ)− J (II.32)

where

Q =
∫ h

0
vrdz =

∫ h

0

[
∂p
∂r

∫ z

0
(z− h)

]
dz = −h3

3
∂p
∂r

(II.33)

is the volumetric flux and the pressure, p, is given by equation II.27.

It is the evolution equation, derived using the lubrication approximation, we wish to solve using

information from the separate model for the contact line region.

III. Model Formation: Contact Line Region

In the model of the contact line region, we consider the base of the wedge to be a small length,

R′w, which is loosely chosen such that the contact line region can be reasonable approximated

by a wedge. At this early stage of our research, we are not concerned with the precise location

of R′w, though it would be interesting to vary the length of the wedge and study its impact on

our solution. In the wedge coordinate system, the contact line is placed at the origin and each

position in the wedge is described by its polar coordinate (r̂′, φ). The contact angle is denoted

θ(t′) and decreases due to evaporation at the rate dθ
dt′ ; therefore, the domain characterizing the

wedge is given by 0 ≤ r̂′ ≤ R′w sec φ and 0 ≤ φ ≤ θ(t′), where θ(t′) ≤ 2π
9 . Note 2π

9 is equivalent to

40◦, which is the maximum angle we consider based on accuracy deduced from prior literature

[15]. The velocity field consists of a radial component and an angular component and is denoted

u’ = (u′r̂, u′φ).

14



III.1 Governing Equations

As in the full drop region, both mass and momentum must be conserved. Conservation of mass in

the contact line region is expressed as the 2-D continuity equation in polar coordinates:

1
r̂′

∂

∂r̂′
(r̂′u′r̂) +

1
r̂′

∂

∂φ
(u′φ) = 0. (III.1)

Since we assume laminar flow based on the Reynolds number, we can simplify the dimensional

Navier-Stokes to the Stokes equations:

0 = −∂ p̂′

∂r̂′
+ µ

(
∆′u′r̂ −

u′r̂
r̂′2
− 2

r̂′2
∂u′φ
∂φ

)
(III.2)

0 = − 1
r̂′

∂ p̂′

∂φ
+ µ

(
∆′u′φ −

u′φ
r̂′2

+
2

r̂′2
∂u′r̂
∂φ

)
(III.3)

Here we note some comparisons between the simplified Navier-Stokes equations used to model

the full drop region and the Stokes equations. The flow in the full drop is also laminar, which

was captured by the application of lubrication theory. Recall that the changes in momentum

were neglected (equations II.24, II.25). When we applied lubrication theory to the Navier-Stokes

equations, we lost the r derivatives in the viscosity term. In the assumption of a thin droplet, the

disparity between the height and length scales renders the r derivatives insignificant relative to

the z derivatives. However, close to the contact line, the disparity in scales is lost and all terms

become equally important. This is captured by equations III.2 and III.3.

To solve the Navier-Stokes equations, we introduce the stream function, ψ′(r̂′, φ, t′), which provides

the flow trajectories. The radial and angular velocities are defined in terms of the stream function

as

u′r̂ = −
1
r̂′

∂ψ′

∂φ
, u′φ =

∂ψ′

∂r̂′
, (III.4)

which are chosen to satisfy the continuity equation. Thus, once the stream function is known, the

velocity field can be obtained.

Substituting in equation III.4 into equations III.2 and III.3 and combining equations III.2 and III.3

such that the pressure terms are eliminated, the Stokes equations can be expressed in terms of the

stream function by the biharmonic equation,
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∇′4ψ′ = 0, (III.5)

which, when solved using separation of variables, yields the general form of the stream func-

tion:

ψ′(r̂′, φ, t′) = r̂′λ{A cos(λφ) + B sin(λφ) + C cos[(λ− 2)φ] + D sin[(λ− 2)φ]}, (III.6)

where A, B, C, and D are time-dependent constants found by applying the boundary conditions

discussed in Section III.2, and λ 6= 0, 1, 2 is a constant.

Values of λ = 0, 1, 2 give rise to the following degenerate solutions of the stream function

[23]:

ψ′(r̂′, φ, t′) = [A + Bφ + Cφ2 + Dφ3], if λ = 0, (III.7)

ψ′(r̂′, φ, t′) = r̂′[A cos φ + B sin φ + Cφcos φ + Dφsin φ], if λ = 1, (III.8)

ψ′(r̂′, φ, t′) = r̂′2[A cos(2φ) + B sin(2φ) + Cφ + D], if λ = 2. (III.9)

III.2 Boundary Conditions

At the substrate, we impose no-slip and impermeability conditions:

u′r̂(r̂
′, 0, t′) = − 1

r̂′
∂ψ′

∂φ

∣∣∣∣
φ=0

= 0, u′φ(r̂
′, 0, t′) =

∂ψ′

∂r̂′

∣∣∣∣
φ=0

= 0. (III.10)

At the liquid-air interface, we assume the shear stress is zero, as was done in the full drop. This

yields,

τ′r̂φ

∣∣∣∣
φ=θ

= µ

[
r̂′

∂

∂r̂′

(
1
r̂′

∂ψ′

∂r̂′

)
− 1

r̂′2
∂2ψ′

∂φ2

]
= 0. (III.11)

Lastly, we specify the kinematic condition:
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u′φ(r̂
′, θ, t′) =

Ĵ′(r̂′, t′)
ρ

+
dθ

dt′
r̂′, (III.12)

where the evaporative flux in the vicinity of the contact line is defined by

Ĵ′(r̂′, t′) = ρV′ J0(θ)

(
r̂′

R′

)λF(θ)−1

, (III.13)

with dimensionless J0(θ) = (0.27θ2 + 1.30)(0.6381− 0.2239(θ − π
4 )

2) and λF defined in equation

II.13.

The kinematic condition states that the angular velocity at the interface is determined both by the

rate at which mass is lost due to evaporation at the surface and also by the rate, dθ
dt′ , at which the

interface collapses. In order to determine an analytical expression for this rate, the volume of the

droplet must be known. In prior research efforts, the droplet interface was assumed to maintain

a spherical cap shape over the entire evaporation period and dθ
dt′ was determined by performing

a mass balance ([9, 13, 27]). Without making such an assumption, the interface position and the

angle would have to be solved for simultaneously. In this thesis project, we do not wish to assume

the interface maintains the shape of a spherical cap. However, at this early stage in our research,

we also do not wish to fully couple our models for the full drop and contact line regions. Instead,

we use an observational rate of change. In dimensional form,

dθ

dt′
= −β(θ)

V′

R′
(III.14)

where β is a constant determined by fitting a linear curve to data provided by the DMFL at RIT.

Note the rate at which the interface collapses sets the time scale for the entire droplet.

In the full drop region, we defined the evaporative flux by equation II.12, which is an approximation

of the full analytical expression found by solving the vapor density problem. Deegan and

coworkers claim that in the vicinity of the contact line, the evaporative flux becomes

J′ = ρV′ J0

(
1− r′

R′

)λF(θ)−1

. (III.15)

Notice equation III.13 is equivalent to expression III.15, but defined using our contact line region

coordinate system. In equation III.13, if the contact angle θ < π
2 radians, then λF(θ) < 1. This

means the exponent in equation III.13 will be negative, placing r̂′ in the denominator of the

expression. Because we placed the contact line of the wedge at the origin in our coordinate system,
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as the contact line is approached, r̂′ → 0. So, for θ < π
2 , as r̂′ → 0, the expression Ĵ′(r̂′, t′) blows

up. This captures the idea that as the contact line is approached, the evaporation rate increases,

though this is only true when the contact angle is less than π
2 radians. In order for Ĵ′(r̂′, t′) to be

functional, it must blow up slowly enough that we can still integrate the expression. We briefly

show this is the case by integrating Ĵ′(r̂′, t′) from a to R′w sec θ and taking the limit of the integral

as a approaches zero:

lim
a→0

∫ R′w sec θ

a

Ĵ′(r̂′, t′)
ρ

dr̂′ = lim
a→0

∫ R′w sec θ

a
V′ J0(θ)

(
r̂′

R′

)λF(θ)−1

dr̂′

= lim
a→0

[
V′ J0(θ)

R′λF(θ)−1
(R′w sec θ)λF(θ)

λF(θ)
− V′ J0(θ)

R′λF(θ)−1
aλF(θ)

λF(θ)

]

=
V′ J0(θ)

R′λF(θ)−1
(R′w sec θ)λF(θ)

λF(θ)
.

(III.16)

For θ > π
2 radians, λF(θ) > 1 meaning r̂′ remains in the numerator of equation III.13. This

indicates that when the contact angle of the droplet is above 90◦, the evaporation rate actually

decreases. This captures the idea that, for large contact angles, as the contact line is approached,

there is less ambient air between the droplet interface and the substrate for vapor molecules at

the surface of the drop to diffuse into. Recall we only consider contact angles at or below 40◦, or
2π
9 radians, since Hu and Larson showed in [15] that the lubrication approximation handles well

within this range of contact angles.

In [13], Gelderblom et al. solve for the flow inside of the wedge by considering separately the

evaporative contribution, the collapsing interface contribution, and the homogeneous contribution.

This can be done because the PDE given in equation III.5 is linear. Splitting up the kinematic

condition into these three "sub" boundary conditions and applying each of them to the stream

function leads to three different types of solutions: (i) the velocity field due to the evaporative flux,

found by applying the condition,

u′φ(r̂
′, θ, t′) =

Ĵ′(r̂′, t′)
ρ

; (III.17)

(ii) the velocity field due the collapsing interface, found by applying the condition,

u′φ(r̂
′, θ, t′) =

dθ

dt′
r̂′; (III.18)
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and (iii) the velocity field that results when there is no evaporation at all, found by applying the

homogeneous condition,

u′φ(r̂
′, θ, t′) = 0. (III.19)

As was done in [13], we henceforth refer to equations III.17, III.18, and III.19 as the flux condition,

the hinge condition, and the eigenmode, respectively. Splitting the kinematic condition in this

way simplifies analytical calculations while also allowing us to see the effects of the different

contributions. The full solution is simply obtained by superposition of the flux, hinge, and

eigenmode solutions.

Note that each of these "sub" boundary conditions scale with a different power of r̂′. Therefore,

each one will give rise to a different power of r̂′ in the final solution. Recall the expression for

the evaporative flux given in equation III.15 scales as r̂′λF(θ)−1. Thus, the flux condition scales as

r̂′λF(θ)−1. The hinge condition clearly scales as r̂′. The eigenmode solution scales with an exponent

denoted λE. This exponent depends on the contact angle θ, and is a root of the eigenvalue

equation

M(λ, θ) = sin[2(λ− 1)θ]− (λ− 1) sin(2θ). (III.20)

It is not clear why the eigenmode scales the way it does simply by looking at the condition

stated in equation III.19. We justify this later in the document when showing how to obtain the

eigenmode solution.

III.3 Non-dimensionalization

We non-dimensionalize the governing system of equations and boundary conditions using the

following scales:

r̂′ = R′ r̂, u′r̂ = V′ur̂, u′φ = V′uφ, ψ′ = R′V′ψ

p̂′ =
µV′

R′
p̂, t′ =

R′

V′
t, Ĵ′ = ρV′ Ĵ.

(III.21)
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Substituting the appropriate scales into the velocity, continuity, and Stokes equations (equations

III.1, III.2, III.3, III.4), we find their dimensionless forms:

ur̂ = −
1
r̂

∂ψ

∂φ
, uφ =

∂ψ

∂r̂
, (III.22)

1
r̂

∂

∂r̂
(r̂ur̂) +

1
r̂

∂

∂φ
(uφ) = 0, (III.23)

and

0 = −∂ p̂
∂r̂

+ ∆ûr̂ (III.24)

0 = −1
r̂

∂ p̂
∂φ

+ ∆ûφ̂. (III.25)

Substituting the appropriate scales into the boundary conditions (equations III.10, III.11, and

III.12), we find their dimensionless forms:

ur̂(r̂, 0, t) = −1
r̂

∂ψ

∂φ

∣∣∣∣
φ=0

= 0, uφ(r̂′, 0, t) =
∂ψ

∂r̂

∣∣∣∣
φ=0

= 0, (III.26)

[
r̂

∂

∂r̂

(
1
r̂

∂ψ

∂r̂

)
− 1

r̂2
∂2ψ

∂φ2

]∣∣∣∣
φ=θ

= 0, (III.27)

and

uφ(r̂, θ, t) = Ĵ(r̂, t) +
dθ

dt
r̂. (III.28)

III.4 Solutions

In [13], Gelderblom and collaborators simply state the solutions they obtained from the flux

condition, hinge condition, and the eigenmode. Since we utilize their wedge model, we explain

in this section the steps to reproduce their solutions. Recall each condition scales as a different

power of r̂. Thus, in equation III.6, λ(θ) has a different value when each condition is applied. Each

condition is a stipulation on uφ(r̂, θ, t) = ∂ψ
∂r . Therefore, for the flux and hinge boundary conditions

to hold for all values of r̂, ψ(r̂, t) must be the same power function. With this information, we can
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determine the value of λ(θ) for the flux and hinge. For the flux, λ(θ) = λF(θ), given by equation

II.13, and for the hinge, λ(θ) = 2. For the eigenmode, the value of λ(θ) = λE(θ), which, as stated

earlier, is a value that satisfies M(λ, θ) = 0. For the flux and eigenmode, we use the general form

of the stream function (equation III.6), but for the hinge, we must use the degenerate form given

in equation III.9.

III.4.1 Flux solution

To obtain the flux solution, we apply the three boundary conditions stated in equations III.10 and

III.11 as well as the flux condition given in equation III.17. Applying the first boundary condition

yields,

ur̂(r̂, 0, t) = −1
r̂

∂ψ

∂φ

∣∣∣∣
φ=0

= −r̂λF−1{BFλF + DF(λF − 2)} = 0, (III.29)

where AF, BF, CF, and DF are the coefficients of the flux stream function.

For r̂ = 0, equation III.29 is true for all values of the coefficients. For r̂ > 0, the expression inside

of the curly braces must be zero. Then we find BF in terms of DF must be

BF = −DF(λF − 2)
λF

. (III.30)

Applying the second boundary condition, we get

uφ(r̂, 0, t) =
∂ψ

∂r̂

∣∣∣∣
φ=0

= λF r̂λF−1{AF + CF} = 0. (III.31)

Then AF in terms of CF is given by

AF = −CF. (III.32)

Applying the third boundary condition, we get
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τr̂φ =

[
r̂

∂

∂r̂

(
1
r̂

∂ψ

∂r̂

)
− 1

r̂2
∂2ψ

∂φ2

]∣∣∣∣
φ=θ

= 2(λF − 1)r̂λF−2{AFλFcos(λFθ) + BFλFsin(λFθ) + CF(λF − 2)cos[(λF − 2)θ] + DF(λF − 2)sin[(λF − 2)θ]}

= 0.

(III.33)

For r̂ = 0, equation III.33 is true for all values of the coefficients. For r̂ > 0, the expression inside

the curly braces must be zero because we know λF 6= 1. Setting the expression equal to zero, we

get

AFλFcos(λFθ) + BFλFsin(λFθ) + CF(λF − 2)cos[(λF − 2)θ] + DF(λF − 2)sin[(λF − 2)θ] = 0.

(III.34)

Applying the flux condition (III.17),

uφ(r̂, θ, t) =
∂ψ

∂r̂

∣∣∣∣
φ=θ

= λF r̂λF−1{AF cos(λFθ) + BF sin(λFθ) + CF cos[(λF − 2)θ] + DF sin[(λF − 2)θ]}

=
Ĵ(r̂, t)

ρ
,

(III.35)

which we write as

AFλF cos(λFθ) + BFλF sin(λFθ) + CFλF cos[(λF − 2)θ] + DFλF sin[(λF − 2)θ] =
Ĵ(r̂, t)

ρr̂λF−1 . (III.36)

Notice the first two terms of equations III.34 and III.36 are the same. We can eliminate coefficients

AF and BF by subtracting equation III.34 from III.36. Doing so yields,

CF cos[(λF − 2)θ] + DF sin[(λF − 2)θ] =
Ĵ(r̂, t)

2ρr̂λF−1 , (III.37)

which we rewrite as CF in terms of DF:
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CF =
Ĵ(r̂, t)

2ρr̂λF−1 cos[(λF − 2)θ]
− DF tan[(λF − 2)θ]. (III.38)

Recall from equation III.32 that AF is related to CF. If we replace CF using equation III.38, the

result is

AF = DF tan[(λF − 2)θ]− Ĵ(r̂, t)
2ρr̂λF−1 cos[(λF − 2)θ]

, (III.39)

and now all coefficients are in terms of DF. To find an expression for DF, we substitute equations

III.30, III.38, and III.39 into equation III.34:

{
DF tan[(λF − 2)θ]− Ĵ(r̂, t)

2ρr̂λF−1 cos[(λF − 2)θ]

}
λF cos(λFθ)− DF(λF − 2) sin(λFθ)

+

{
Ĵ(r̂, t)

2ρr̂λF−1 cos[(λF − 2)θ]
− DF tan[(λF − 2)θ]

}
(λF − 2) cos[(λF − 2)θ]

+DF(λF − 2) sin[(λF − 2)θ] = 0,

(III.40)

and solve for DF to obtain,

DF =
Ĵ(r̂, t)P(θ)
2ρr̂λF−1 , (III.41)

where

P(θ) =
2− λF + λF cos(λFθ) sec[(λF − 2)θ]

−(λF − 2) sin(λFθ) + λF cos(λFθ) tan[(λF − 2)θ]
. (III.42)

Now that we’ve obtained an explicit expression for DF, we can do the same for AF, BF, and CF.

Back-substituting equation III.41 into equations III.30, III.38, and III.39, we find,

AF =
Ĵ(r̂, t)P(θ)
2ρr̂λF−1 tan[(λF − 2)θ]− Ĵ(r̂, t)

2ρr̂λF−1 cos[(λF − 2)θ]
, (III.43)

BF = − Ĵ(r̂, t)P(θ)
2ρr̂λF−1

(λF − 2)
λF

, (III.44)

and
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CF = − Ĵ(r̂, t)P(θ)
2ρr̂λF−1 tan[(λF − 2)θ] +

Ĵ(r̂, t)
2ρr̂λF−1 cos[(λF − 2)θ]

. (III.45)

To obtain the flux solution, we substitute the coefficients into the general stream function (equation

III.6):

ψF(r̂, φ, t) =
Ĵ(r̂, t)

2ρr̂λF−1 r̂λ
F{(P(θ) tan[(λF − 2)θ]− sec[(λF − 2)θ]) cos(λFφ)− P(θ)(λF − 2)

λF
sin[(λF − 2)φ]

+ (−P(θ) tan[(λF − 2)θ] + sec[(λF − 2)θ]) cos[(λF − 2)φ] + P(θ) sin[(λF − 2)φ]}.

(III.46)

To write equation III.46 in the form given in [13] requires strategic simplification of the expression

inside the curly braces. Showing this rather laborious process is not essential to understanding the

flux solution, so we do not show it. We do note that the common denominator of equation III.46 is

the eigenmode equation stated in equation III.20.

In simplified form, the flux stream function is

ψF(r̂, φ, t) =
J0(θ)

M(λF, θ)
r̂λF(θ) f (φ, θ), (III.47)

where

f (φ, θ) =
1
2
[(λF − 2){sin(λFθ)− sin[(λF − 2)θ]}{cos(λFφ)− cos[(λF − 2)φ]}

+ {λFcos(λFθ)− (λF − 2) cos[(λF − 2)θ]}
{

sin[(λF − 2)φ]− λF − 2
λF

sin λFφ

}
].

(III.48)

III.4.2 Hinge solution

To obtain the hinge solution, we apply the three boundary conditions stated in equations III.10

and III.11 as well as the hinge condition given in equation III.18. Applying the first boundary

condition to equation III.9, we get,

ur̂(r̂, 0, t) = −r̂(−2AH sin 0 + 2BH cos 0 + CH) = 0. (III.49)

Then,
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BH = −CH
2

. (III.50)

Applying the second boundary condition, we get

uφ(r̂, 0, t) = 2r̂(AH cos 0 + BH sin 0 + CH(0) + DH) = 0. (III.51)

Then,

AH = −DH . (III.52)

Applying the third boundary condition, we get

τrφ

∣∣∣∣
φ=θ

= [4(AH cos(2θ) + BH sin(2θ))] = 0, (III.53)

hence,

AH cos(2θ) + BH sin(2θ) = 0. (III.54)

Applying the hinge condition stated in equation III.18, we get

AH cos(2θ) + BH sin(2θ) + CHθ + DH =
1
2

dθ

dt
. (III.55)

Note the first two terms of equations III.54 and III.55 are the same. Subtracting equation III.54

from equation III.55, we obtain an expression for DH in terms of CH :

DH =
1
2

dθ

dt
− CHθ. (III.56)

From equation III.52, we know AH in terms of DH . Using equation III.56, we obtain AH in terms

of CH :

AH = CHθ − 1
2

dθ

dt
. (III.57)

Now that we have all coefficients in terms of CH , we apply the expressions for AH and BH to

equation III.54, which yields
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(
CHθ − 1

2
dθ

dt

)
cos(2θ)− CH

2
sin(2θ) = 0. (III.58)

Solving for CH , we obtain the expression

CH =
1

2θ − tan(2θ)

dθ

dt
. (III.59)

Now that we know CH , we back-substitute to determine AH , BH , and DH :

AH =

(
θ

2θ − tan(2θ)
− 1

2

)
dθ

dt
, (III.60)

BH = − 1
2(2θ − tan(2θ))

dθ

dt
, (III.61)

and

DH =

(
1
2
− θ

2θ − tan(2θ)

)
dθ

dt
. (III.62)

To obtain the hinge solution, we substitute equations III.59, III.60, III.61, and III.62 into equation

III.9. Then,

ψH(r̂, φ, t) = r̂2 dθ

dt

[
tan(2θ) cos(2φ)

2(2θ − tan(2θ))
− sin(2φ)

2(2θ − tan(2θ))
+

2φ− tan(2θ)

2(2θ − tan(2θ))

]
= −r̂2 dθ

dt
1

2(2θ − tan(2θ))
[sin(2φ)− tan(2θ)cos(2φ)− 2φ + tan(2θ)] .

(III.63)

We can write this in condensed form as

ψH(r̂, φ, t) =
β(θ)

N(θ)
r̂2g(φ, θ), (III.64)

where

N(θ) = 2(2θ − tan(2θ)), (III.65)

g(φ, θ) = sin(2φ)− tan(2θ)cos(2φ)− 2φ + tan(2θ), (III.66)
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and β(θ) = − dθ
dt .

III.4.3 Eigenmode solution

To determine the eigenmode solution, we apply the three boundary conditions given in equations

III.10, III.11, and the eigenmode condition (III.19) to the general form of the stream function. We

do not show the application of the first three boundary conditions since this was done for the

flux. We will obtain the same expressions stated in equations III.30, III.32, and III.34, but we

change the notation to indicate we are referring to values associated with the eigenmode solution.

Thus,

BE = −DE(λE − 2)
λE

, (III.67)

AE = −CE, (III.68)

and

AEλEcos(λEθ) + BEλEsin(λEθ) + CE(λE − 2)cos[(λE − 2)θ] + DE(λE − 2)sin[(λE − 2)θ] = 0.

(III.69)

Applying the eigenmode condition, we get

uφ(r̂, θ, t) = λE r̂λE−1{AE cos(λEθ) + BE sin(λEθ) + CE cos[(λE − 2)θ] + DE sin[(λE − 2)θ]} = 0.

(III.70)

When r̂ = 0, the condition is satisfied for all values of the coefficients, so we equate the expression

inside the curly braces with zero and obtain

AE cos(λEθ) + BE sin(λEθ) + CE cos[(λE − 2)θ] + DE sin[(λE − 2)θ] = 0. (III.71)

Note that the first two terms of equation III.69 and the first two terms of equation III.71 differ

by a factor of λE. If we multiply both sides of equation III.71 by λE and subtract the result from
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equation III.69, we can eliminate two of the unknown coefficients. Doing so allows us to obtain an

expression for CE in terms of DE:

CE = −DE sin[(λE − 2)θ]
cos[(λE − 2)θ]

. (III.72)

We now can write all coefficients in terms of DE by applying equation III.72 to III.68, which

yields

AE =
DE sin[(λE − 2)θ]

cos[(λE − 2)θ]
. (III.73)

Now that we have all coefficients written in terms of DE, we substitute equations III.67, III.72, and

III.73 into equation III.71 to solve for DE:

DE

[
sin[(λE − 2)θ]cos(λEθ)

cos[(λE − 2)θ]
− (λE − 2)

λE
sin(λEθ)

]
= 0. (III.74)

From equation III.74, we see it is impossible to determine a non-trivial value for DE. However, if

we assume DE 6= 0, then the expression inside the bracket of equation III.74 must be zero. Setting

this expression to zero and using trig identities to simplify, we obtain

sin[2(λE − 1)θ]− (λE − 1) sin(2θ) = 0. (III.75)

Note this is the eigenvalue equation stated in equation III.20. From this calculation, we can see why,

for the eigenmode, we must choose λ in the stream function to be a value that satisfies M(λ, θ) = 0.

Otherwise, the eigenmode condition could not be satisfied with a non-zero coefficient, DE.

Since we have not yet obtained a value for DE, we write the eigenmode solution in terms of the

unknown coefficient by plugging equations III.67, III.72, and III.73 into the stream function. We

obtain

ψE(r̂, φ, t) = DE(θ)r̂λE [
sin[(λE − 2)θ]
cos[(λE − 2)θ]

cos(λEφ)− (λE − 2)
λE

sin(λEφ)− sin[(λE − 2)θ]
cos[(λE − 2)θ]

cos[(λE − 2)φ]

+ sin[(λE − 2)φ]],

(III.76)

which simplifies to the equation,
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ψE(r̂, φ, t) = DE(θ)r̂λE h(φ, θ) (III.77)

where

h(φ, θ) = sin[(λE − 2)(θ − φ)]− sin[(λE − 2)θ]
sin(λEθ)

sin[λE(θ − φ)]. (III.78)

III.5 Results

III.5.1 Dominant Contribution

As stated earlier, due to the linearity of the partial differential equation, the full solution to the flow

in the wedge is obtained by superposition of the flux, hinge, and eigenmode solutions. Which of

these pieces dominates near the contact line depends on the scaling with r̂. Recall the flux, hinge,

and eigenmode scale with r̂λF , r̂2, and r̂λE , respectively. Figure 5 shows the powers of r̂ plotted as

a function of the contact angle, θ for 0◦ ≤ θ ≤ 180◦. The smallest exponent determines which of

the flux, hinge, or eigenmode provides the leading order term. Figure 5 shows the flux dominating

for θ < 133.4◦, which is well above the maximum contact angle we consider in this project. For

θ < 79.6◦, the only solutions to equation M(λ, θ) are λE = 0, 1, 2, which all lead to degenerate

forms of the stream function (equations III.7, III.8, and III.9). Hence, we ignore these values in

Figure 5. This also indicates that the eigenmode solution is not relevant for the range of angles

we consider. So, for 0 ≤ θ ≤ 40◦, the flux term dominates and the hinge yields a subdominant

contribution. This is consistent with our assumption that evaporation drives the fluid flow in the

droplet.
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Figure 5: Exponents of the flux, hinge, and eigenmode are plotted in solid, dashed, and dotted lines,

respectively. The red vertical line is positioned at θ = 79.6◦, below which, the eigenmode solution is

not relevant. The dominant contribution is indicated by the smallest exponent. The flux dominates

for θ < 133.4◦.

In the next three sections, we show plots of the flux, hinge, and eigenmode solutions. We briefly

discuss their individual contributions as relevant to this thesis. For further details, we refer

interested readers to [13]. The velocities shown in the plots were calculated at polar locations

(r̂, φ), but plotted at the corresponding cartesian coordinates. The x-axis in the plots represents

the dimensionless length of the wedge, Rw. Velocity vectors are normalized so they only indicate

direction of flow. The velocity is given by the colorbar. All values are dimensionless. We chose

Rw = 1× 10−5, small enough that the dynamics near the contact line can be seen clearly in the

plots.

III.5.2 Flux Streamlines

Figure 6 shows the flux solution plotted for θ = 15◦, 30◦, and 40◦. As anticipated, increased

evaporation pulls fluid towards the interface and we see an increase in velocity as the contact line

is approached. As discussed earlier, the evaporative flux, equation I I I.15, diverges as r̂ → 0 for

θ < 90◦. Since the velocity yielded by the flux solution is dependent on the evaporative flux, the

velocity also diverges for this range of angles as the contact line is approached. We also see the

strength of the flow increase as the angle decreases.
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(a) (b) (c)

Figure 6: Streamline plots of the flux solution for contact angles (a) θ = 40◦, (b) θ = 30◦, and (c) θ =

15◦. Velocity vectors are normalized and the velocity is given by the colorbar. All values are

dimensionless. The length of the wedge is Rw = 10−5.

III.5.3 Hinge Streamlines

Figure 7 shows the streamlines for the hinge solution for contact angles θ = 15◦, 30◦, and 40◦.

The collapsing interface induces a flow away from the contact line, driving fluid towards the

center of the drop. There is a competition between the flux and the hinge, which drive fluid in

opposite directions. However, the dimensionless velocities in the flux results are on the order of

103, while the the fastest dimensionless hinge velocities are on the order of 10−4. Thus, the hinge

contribution is negligible compared to the flux contribution for θ ≤ 40◦. However, in future work,

we will consider higher initial contact angles for which the hinge may have a greater contribution

to the fluid velocity.

(a) (b) (c)

Figure 7: Streamline plots of the hinge solution for contact angles (a) θ = 40◦, (b) θ = 30◦, and (c) θ = 15◦.

Velocity vectors are normalized so that they indicate direction only. The velocities are given by the

colorbar. All values are dimensionless. The length of the wedge is Rw = 10−5.
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III.5.4 Eigenmode Streamlines

Recall the eigenmode solution was found up to an unknown constant. Gelderblom et al. claim this

constant to be order one, hence, as was done in [13], we let DE(θ) = 1 to study the contribution

of the eigenmode solution. Figure 8 shows plots of the eigenmode streamlines and velocity field

for angles θ = 15◦, 30◦, and 40◦. In Section III.5.1, we mathematically argued that the eigenmode

is irrelevant for our range of angles. The plots provide a physical argument for neglecting the

eigenmode. We see in Figure 8 that eddies appear in the flow, circulating fluid in and out of the

wedge. This behavior is seen for all angles less than 79.6◦ [23]. Thus, the net flow into the wedge

is zero for this range of angles.

(a) (b) (c)

Figure 8: Streamlines from the eigenmode solution for contact angles (a) θ = 40◦, (b) θ = 30◦, and (c) θ = 15◦.

Velocity vectors are normalized so that they indicate direction only. The velocities are given by the

colorbar. All values are dimensionless. The length of the wedge is Rw = 10−5.

III.5.5 Full Solution

The full solution to the stream function is obtained by superposition of equations III.47, III.64, and

III.77. Thus, the flow inside of the wedge is characterized by the equation,

ψ(r̂, φ, t) =
J0(θ)

M(λF, θ)
r̂λF f (φ, θ) +

β(θ)

N(θ)
r̂2g(φ, θ) + DE(θ)r̂λE h(φ, θ) (III.79)

However, since the eigenmode contributes nothing to the net flow into the wedge for our range of

angles, we let DE(θ) = 0. Figure 9 shows the velocity field and streamlines for the full solution.

As anticipated, the flux dominates. In fact, the velocity field produced by the full solution appears

essentially the same as that produced by just the flux solution. We see fluid pulled towards the

contact line at increasing velocity, which is of the same order as the flux velocity.
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(a) (b) (c)

Figure 9: Streamline plots of the full wedge solution for contact angles (a) θ = 40◦, (b) θ = 30◦, and (c)

θ = 15◦. Velocity vectors are normalized and the velocity is given by the colorbar. All values are

dimensionless. The length of the wedge is Rw = 10−5. The unknown constant is DE = 0.

IV. Connecting the Full Drop and Contact Line Regions

IV.1 Boundary Conditions Between Full Drop and Contact Line Regions

To connect the full drop region to the contact line region, we specify a height condition and

a volumetric flux condition at the boundary between the two regions. Because we assume the

behavior in the vicinity of the contact line drives the flow in the droplet, these conditions are

imposed by the wedge. Note all quantities in the following discussion are dimensionless. We

introduce the notation ĥ to describe the dimensionless height of the interface in the contact line

region. Since we model the contact line region as a wedge, the position of the interface can be

described in cylindrical coordinates by the equation

ĥ(r, t) = (1− r) tan θ(t), (IV.1)

where 1− Rw ≤ r ≤ 1.

To obtain our first boundary condition, we match the dimensional droplet height, h′(r′, t′) =

εR′h(r, t), to the dimensional wedge height, h′w(r′w, t′) = R′ ĥ(rw, t), at the boundary. That is,

h(1− Rw, t) = ĥ(1−Rw ,t)
ε . It follows that ∂h

∂t (1− Rw, t) = 1
ε

∂ĥ
∂t (1− Rw, t). Thus,

∂h
∂t

(1− Rw, t) =
Rw sec2 θ

ε

∂θ

∂t
. (IV.2)
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This condition states that the interface evolution equation at the boundary must match the interface

evolution of the wedge.

The second boundary condition states that the volumetric flux across the boundary, Q(r, t), is

determined by the volumetric flux in the wedge, Q̂(r̂, t). Thus,

Q(1− Rw, t) = − Q̂(Rw sec φ, t)
ε

. (IV.3)

Note the scaling with 1
ε is a result of the vertical scaling in the lubrication approximation,

z′ = εR′z.

IV.2 Initial Condition

To solve the evolution equation, we must provide an initial condition. Since we applied lubrication

theory in the full drop region, we use an initial condition with constant curvature given by,

h(r, 0) = a(1− r2) + b, (IV.4)

where a and b are constants. To determine the coefficients of the initial condition, we use the fact

that the full drop and wedge heights match at the boundary. Thus,

a[1− (1− Rw)
2] + b =

Rw tan θ

ε
. (IV.5)

We also enforce that the slope of the initial condition at the boundary match the wedge slope. That

is, ∂h
∂r = 1

ε
∂ĥ
∂r , which yields the expression

− 2a(1− Rw) = −
tan θ

ε
, (IV.6)

from which it follows that

a =
tan θ

2ε(1− Rw)
. (IV.7)

Plugging this value for a into equation IV.5, we get,

34



tan θ

2ε(1− Rw)
[1− (1− Rw)

2] + b =
Rw tan θ

ε
, (IV.8)

and solving for b yields,

b =
tan θ

2ε

(
Rw −

1
1− Rw

+ 1
)

. (IV.9)

V. Numerical Methods

We implemented a method of lines to solve the interface evolution equation (II.32) and boundary

conditions. All spatial derivatives were approximated using second-order central finite differences.

The resulting system of ODEs was solved using ode15s in MATLAB, yielding the height of the

interface at each time. We solved over the dimensionless domain 0 ≤ r ≤ 1− Rw using an equally

spaced grid with grid spacing ∆r.

At each spatial location in our solving scheme, we must know the heights two steps ahead and two

steps behind since we are approximating a fourth-order PDE using second-order finite difference

approximations. Thus, at r = 0, r = ∆r, r = 1− Rw − ∆r, and r = 1− Rw, we must apply

boundary conditions to obtain the information we need. At r = 0 and r = ∆r, we take advantage

of the symmetry of the droplet. At r = 1− Rw − ∆r, instead of expanding the interface evolution

equation and discretizing the spatial derivatives, we discretized the volumetric flux term using a

second-order central finite difference, and implemented boundary condition IV.3. At r = 1− Rw,

we implemented boundary condition IV.2.

We verified our code using the Method of Manufactured Solutions (MMS), developed by Roache

[28], in which we evaluate the error of our numerical solution from a known solution of our

choosing. This simply determines whether or not our code produces an expected result, giving no

concern for physical reality.

To implement MMS, we neglect the wedge and assume the solution is given by the equation of a

spherical cap,

hE(r, t) =

√
1

sin2 θ(t)
− r2 − cot θ(t) (V.1)

where we refer to the exact height as hE.
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We want our numerical height to equal the exact height. That is, we want h(r, t) = hE(r, t), or,

equivalently, ∂h
∂t = ∂hE

∂t . The idea behind MMS is to utilize a forcing function such that the time

derivatives match. Thus, the new interface evolution equation becomes,

∂h
∂t

(r, t) = −1
r

∂

∂r
(rQ(r, t)) +

∂hE
∂t

+
1
r

∂

∂r
(rQE(r, t)), (V.2)

where QE(r, t) is the volumetric flux in the spherical cap. The last two terms on the right side of

equation V.2 make up the forcing function. If the code works properly, then the solution should be

an approximation of hE(t).

We solve over the domain 0 ≤ r ≤ 1− Rw for an initial contact angle θ = 30◦. At the boundary,

r = 1− Rw, we let Q(1− Rw, t) = QE(1− Rw, t). We let ∆r = 0.01 and dθ
dt = −π

6 so that the

droplet would evaporate in a dimensionless time of one.

Figure 10 shows the absolute error plotted as a function of the radius for several times. The error

is small, on the order of 10−5, which is consistent with a second-order accurate scheme, for which

we anticipate the error to be no larger than (∆r)2.

Figure 10: Absolute error plotted as a function of the radius for three different times: at the beginning of the

simulation, part way into the simulation, and at the end of the simulation.
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VI. Results

Our method for connecting the two regions, outlined in Section IV, relies on the rate at which the

wedge interface decreases, ∂ĥ
∂t , and the volumetric flow into the wedge, Q̂. In turn, each of these

depend on the rate at which the angle decreases, dθ
dt , and the evaporative flux in the wedge, Ĵ. Thus,

implicitly, the two key parameters upon which our scheme hinges are dθ
dt and Ĵ. In this section, we

study the impact these two factors have on the evolution of the droplet interface. All simulations

were run with Rw = 0.005, which corresponds to a dimensional value of R′w = 5× 10−6 meters,

for initial contact angles θ = 15◦, 30◦, 40◦. Note that all plots in this section contain dimensionless

values. However, we discuss dimensional results.

Before discussing simulations of the evaporating droplet, we first analyze the evaporative flux

and volumetric flux at the boundary. The evaporative flux was calculated using the dimensionless

form of equation III.13 and evaluated at r̂ = Rw sec θ, which is the position of the boundary

at the interface stated in polar coordinates. To calculate Q̂ at the boundary, we integrate the

radial velocity, vr, across the vertical boundary between the full drop and the wedge. We write

vr(1− Rw, t) in terms of the polar velocities by rotating ur(Rw sec φ, t) and uφ(Rw sec φ, t). Then

the volumetric flux across the boundary is given by,

Q̂(Rw sec φ, t) =
∫ h

0
vr(1−Rw, t) dz =

∫ θ

0
[ur(Rw sec φ, t) cos φ−uφ(Rw sec φ, t) sin φ]Rw sec2 φ dφ.

(VI.1)

To calculate both Ĵ and Q̂, we used a constant expression for dθ
dt obtained by fitting a line to data.

This is shown in Figure 11. The expression for the rate of contact angle decrease is given by the

slope of the dashed line. Thus, dimensionally, dθ
dt′ = −0.11 degrees/s. This determines the time is

takes for the wedge to evaporate, which we assume sets the time scale for the entire droplet. We

note here that the rate of contact angle decrease is not truly linear, as is seen by the solid curve

in Figure 11. However, at this stage in our research, we desire simplicity over a rigorous fit. We

also recognize that using an expression for dθ
dt based on particular experiments is not sufficient for

linking our two models, as we discuss in more detail later.
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Figure 11: The blue, solid curve shows the angle at each time for a particular experiment performed by

the DMFL. The dashed red line shows a linear fit between the first and last data points. In the

experiment, the initial contact angle was θ = 89◦ and the drying time was approximately 11.52

minutes.

Figure 12 shows both Ĵ(Rw sec θ, t) and Q̂(Rw sec φ, t) plotted against time for initial contact angles

of θ = 15◦, 30◦, and 40◦. The arrows indicate direction of decreasing contact angle. For θ = 15◦,

ode15s has difficulty integrating the interface evolution equation (eq. II.32) forward in time beyond

the dimensionless time of t = 0.024. Thus, the evaporative and volumetric fluxes are plotted only

up to t = 0.024. In Figure 12a, we see the evaporative flux increases over time for all angles,

as expected. Over the entire drying time, Ĵ is order unity, which is consistent with prior work

[9, 13, 14, 27]. In Figure 12b, we see the volumetric flux increases in magnitude over time. Thus,

as the evaporation rate increases, more fluid is sucked out of the full drop, driving a stronger

radial flow into the wedge. We also note the volumetric flux has the appropriate sign. Because

the contact line region is modeled with the contact line at the origin, negative Q̂ indicates flow

towards the contact line. We continue with our analysis confident that both the evaporative flux

and the volumetric flux are at least exhibiting anticipated behavior.
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(a) (b)

Figure 12: Plots of (a) the evaporative flux at the boundary as a function of time and (b) the volumetric flux

at the boundary as a function of time. Both are plotted for contact angles θ = 40◦, 30◦, and 15◦.

The black arrows indicate the direction of contact angle decrease. All values are dimensionless.

VI.1 Comparison of the Interface Evolution With and Without Evaporation

To begin our analysis of the interface evolution, we shut off evaporation (J0 = 0) and set the

volumetric flux at the boundary equal to zero for all time, Q̂(Rw sec θ, t) = 0. Theoretically, nothing

should happen. However, recall we determined dθ
dt from data; thus, it is decoupled from the

evaporative flux expression, and the wedge still evaporates in our simulation since dθ
dt 6= 0. In other

words, our expression for dθ
dt does not know that evaporation has been shut off. Since the wedge

interface still comes down and we turned off both methods by which fluid is transferred out of

the full drop, we observe a slight increase of the interface towards the center of the drop as fluid is

pushed towards the droplet center (Figures 13a, 13c, 13e). This first simulation indicates not much

happens without evaporation, which gives us some confidence that our code properly captures

the assumption that evaporation in the contact line region drives the motion of the interface. We

then turned on evaporation and set the volumetric flux at the boundary equal to the volumetric

flux in the wedge (Figures 13b, 13d, 13f). Figure 13 shows results of our first two simulations. The

dimensionless height of the interface is plotted in each figure over the domain 0 ≤ r ≤ 1− Rw,

which corresponds to a dimensional domain of 0 ≤ r′ ≤ 9.95× 10−4 meters. Arrows indicate

direction of interface movement over time. Clearly, turning on evaporation drives the interface

down. In fact, the full drop fully evaporates before the wedge does, indicating that the two models

do not evaporate on the same time scale. We can correct this by either scaling back evaporation or

adjusting the time scale of the wedge. We consider both these scenarios in the next two sections,

but before doing so, we discuss some dimensional results.
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In Figure 13b, θ = 40◦ is the initial contact angle, h(0, 0) = 243.25 is the initial center height, and

t f ≈ 0.15. To obtain the dimensional center height, h′(0, 0), we multiplied h(0, 0) by εR′ and to

obtain the dimensional time, t′f , we multiplied t f by our time scale R′
V′ , which was chosen based

on the vapor diffusion. The dimensional center height is h′(0, 0) ≈ 4.22× 10−4 meters, which is

comparable to the observed height of h′(0, 0) ≈ 2.6× 10−4 meters. It takes the wedge t′f ≈ 5.85

minutes to evaporate with curves plotted at intervals of 1.17 minutes. This is slightly faster than the

observed drying time for θ = 40◦, t′f ≈ 6.08 minutes. Recall the evaporative flux and volumetric

flux from Figure 12. To obtain these values in dimensions, we multiplied Ĵ by the density of water,

ρ, and the velocity scale, V′, and Q̂ by V′R′. The evaporative flux varies approximately over time

from 2.3× 10−3 kg
m2s to 3.8× 10−3 kg

m2s while volumetric flux varies approximately over time from

−2.23× 10−11 m3

s to −3.84× 10−11 m3

s .

In Figure 13d, θ = 30◦ is the initial contact angle with h(0, 0) = 167.08 and t f ≈ 0.11, corresponding

to dimensional values h′(0, 0) = 2.90× 10−4 meters and t′f = 4.38 minutes with curves plotted at

intervals of 0.88 minutes. The evaporative flux varies approximately over time from 2.8× 10−3 kg
m2s

to 3.8× 10−3 kg
m2s while the volumetric flux varies approximately over time from −2.64× 10−11 m3

s

to −3.85× 10−11 m3

s .

In Figure 13f, θ = 15◦ is the initial contact angle with h(0, 0) = 77.54 and t f ≈ 0.055, corresponding

to dimensional values h′(0, 0) = 1.35× 10−4 meters and t′f ≈ 2.19 minutes. However, as previously

mentioned, we were unable to run our code for the entire evaporation time. The initial evaporative

flux is approximately 3.5× 10−3 kg
m2s while the initial volumetric flux is approximately −3.29×

10−11 m3

s .

To give a better idea of what’s happening at the boundary, Figure 14b shows a blown-up image of

the boxed region in Figure 14a, in which the initial contact angle is θ = 30◦. The dashed vertical

line indicates the boundary between the droplet region and the contact line region. For almost

half the drying time, the slope of the droplet actually matches the slope of the wedge reasonably

well, but then we begin to see the droplet flattening more quickly than the wedge.
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Plot (a) θ = 40◦ with no evaporation; (b) θ = 40◦ with evaporation; (c) θ = 30◦ with no evaporation;

(d) θ = 30◦ with evaporation; (e) θ = 15◦ with no evaporation; (f) θ = 15◦ with evaporation run

to dimensionless time of t = 0.024. Both axes contain dimensionless values. The black arrows

indicate the direction of interface movement over time.
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(a) (b)

Figure 14: Zoomed in view of the contact line region (boxed area) when the interface evolution is simulated

with evaporation on for an initial contact angle of θ = 30◦. The dashed vertical line indicates the

location of the boundary between the full drop region and the contact line region. Axes values are

dimensionless.

VI.2 Effects of Adjusting Evaporative Flux

Clearly, the full drop and the wedge do not evaporate within the same time frame. In this section,

we keep the time scale the same as in our previous simulations and adjust the coefficient of the

evaporative flux expression until the full drop and the wedge evaporate within the same time

frame. Figure 15 shows results of this scenario. The interface is plotted as a function of the

radius for several times. The evaporative and volumetric fluxes are plotted over the evaporation

time.

Figures 15a, 15b, and 15c show the interface evolution, the evaporative flux, and the volumetric flux,

respectively, for an initial contact angle of 40◦. In order for the full drop interface to decrease on

the wedge time scale, the evaporative flux was scaled by a factor of 0.82, resulting in approximate

dimensional values of 1.9× 10−3 kg
m2s to 3.2× 10−3 kg

m2s for the evaporative flux and −1.83× 10−11 m3

s

to −3.16× 10−11 m3

s for the volumetric flux.

Figures 15d, 15e, and 15f show the interface evolution, the evaporative flux, and the volumetric flux,

respectively, for an initial contact angle of 30◦. In order for the full drop interface to decrease on

the wedge time scale, the evaporative flux was scaled by a factor of 0.74, resulting in approximate

dimensional values of 2.1× 10−3 kg
m2s to 2.8× 10−3 kg

m2s for the evaporative flux and −1.94× 10−11 m3

s

to −2.85× 10−11 m3

s for the volumetric flux.
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Figures 15g, 15h, and 15i show the interface evolution, the evaporative flux, and the volumetric

flux, respectively, for an initial contact angle of 15◦. We scaled the evaporative flux expression by a

factor of 0.54, which was the largest value we could scale by and still be able to run the code for

the entire evaporation time. However, the evaporation was not large enough for the full drop to

evaporate with the wedge. Though we show the simulated fluxes, note they are inaccurate and we

cannot determine how large the evaporative flux needs to be for the droplet to evaporate.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15: Results of scaling down the evaporative flux. Plots (a), (b), and (c) show the interface evolution,

evaporative flux, and volumetric flux for θ = 40◦. Plots (d), (e), and (f) show the interface evolution,

evaporative flux, and volumetric flux for θ = 30◦. Plots (g), (h), and (i) show the interface evolution,

evaporative flux, and volumetric flux for θ = 15◦. Axes values are dimensionless and are the same

for corresponding plots for easier comparison. The black arrows indicate direction of interface

movement over time.
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In Figure 16b, the boxed region in Figure 16a is blown up to give a better idea of what’s happening

at the boundary. The dashed vertical line indicates the location of the boundary. The slopes at the

boundary now match. Note that we extended the wedge interface into the full drop to show that

for some distance beyond the boundary, the slopes still match reasonably well.

(a) (b)

Figure 16: Zoomed in view of the contact line region (boxed area) when the interface evolution is simulated

with reduced evaporation for an initial contact angle of θ = 30◦. The dashed vertical line indicates

the location of the boundary between the full drop region and the contact line region. Axes values

are dimensionless. The black arrows indicate direction of interface movement over time.

VI.3 Effects of Adjusting Rate of Contact Angle Decrease

Another means by which we could get the full drop to evaporate within the same time frame

as the wedge is to change the wedge time scale. To explore different time scales, we left the

evaporative flux alone (the values are the same as reported in Section VI.1) and adjusted the scale

of dθ
dt such that the wedge evaporated faster than in our previous simulations. Figure 17 shows

the interface evolution, evaporative flux, and volumetric flux on adjusted time scales for initial

contact angles of θ = 40◦, 30◦, and 15◦. The interface curves are plotted against the radius for

several times. The fluxes are plotted against time. For corresponding plots, the axis limits are the

same for easier comparison.

Figures 17a, 17b, 17c show the interface evolution, evaporative flux, and volumetric flux, respec-

tively, for θ = 40◦. We sped up the rate of angle decrease by scaling dθ
dt by a factor of 1.22, which

yielded dθ
dt ≈ −5.77. The final time was t f ≈ 0.12, which translates to an evaporation time of

t′f ≈ 4.81 minutes, which is about a minute faster than in earlier simulations. Because the volumet-
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ric flux depends on dθ
dt as well as on Ĵ, it changes due to the increased scale on dθ

dt . The dimensional

volumetric flux ranges from approximately −2.22× 10−11 m3

s to −3.85× 10−11 m3

s .

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17: Results of scaling up the rate of angle decrease, which shortens the drying time of the wedge.

Plots (a), (b), and (c) show the interface evolution, evaporative flux, and volumetric flux for

θ = 40◦. Plots (d), (e), and (f) show the interface evolution, evaporative flux, and volumetric flux

for θ = 30◦. Plots (g), (h), and (i) show the interface evolution, evaporative flux, and volumetric

flux for θ = 15◦. Axes values are dimensionless and are the same for corresponding plots for

easier comparison. The black arrows indicate direction of interface movement over time.

Figures 17d, 17e, 17f show the interface evolution, evaporative flux, and volumetric flux, respec-

tively, for θ = 30◦. The rate of angle decrease was scaled by a factor of 1.34, yielding dθ
dt ≈ −6.33,

and making the final time t f ≈ 0.08, or t′f ≈ 3.26 minutes. The dimensional volumetric flux ranges

from approximately −3.30× 10−11 m3

s to −3.87× 10−11 m3

s .
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Figures 17g, 17h, 17i show the interface evolution, evaporative flux, and volumetric flux, respec-

tively, for θ = 15◦. Results for this angle are again questionable since the code has a hard time

solving beyond t f = 0.024. We pushed it as far we could, scaling dθ
dt by 1.9 so that dθ

dt ≈ −8.98.

The code ran until t f ≈ 0.029, or t′f ≈ 1.15 minutes. However, this was not long enough for the

droplet to evaporate. The resulting volumetric flux ranges from approximately −2.61× 10−11 m3

s

to −3.85× 10−11 m3

s .

Figure 18b shows the blown-up boxed region of Figure 18a. The contact angle is θ = 30◦. The

dashed vertical line indicates the location of the boundary. As in Figure 16b, the slopes match

nicely at the boundary and reasonably well for a distance into the full drop.

(a) (b)

Figure 18: Zoomed in view of the contact line region (boxed area) when the interface evolution is simulated

for faster evaporation times in the wedge. The initial contact angle is θ = 30◦. The dashed vertical

line indicates the location of the boundary between the full drop region and the contact line region.

Axes values are dimensionless.

VII. Discussion

VII.1 Discussion and Conclusion

The broad goal of this project was to explore a possible method for capturing the fluid dynamics

of an evaporating droplet with a pinned contact line using lubrication theory. We demonstrated

the use of a wedge to model the contact line region, building off the work done by Gelderblom

and coworkers in [13]. Our more specific research goal was to explore the sufficiency of specifying

height and flux conditions at the boundary between the full drop region and the contact line
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region. We approximated the rate at which the angle decreases (which sets the time scale for our

problem) as a constant value based on data from the DMFL at RIT.

Though our method for connecting the two models appears to be crude, we were still able to

show the two pieces can communicate and that connecting a wedge to a lubrication model seems

a plausible means of avoiding the breakdown of lubrication theory at a pinned contact line as

discussed by Maki and Kumar [21]. Thus, our work at this initial stage gives us reason to pursue

further research in this area. Though we do believe it possible for the wedge and lubrication

model to communicate, our first attempt at connecting the two pieces by specifying height and

flux conditions at the boundary does not appear to be robust enough. We believe it is necessary to

explore other means of connecting the droplet region and the contact line region, for reasons we

discuss below.

We demonstrated that for an evaporative flux expression as suggested by [9, 13, 14, 15, 27] and

a constant dθ
dt as approximated using data from the DMFL, the droplet interface and the wedge

interface do not decrease on the same time scale. We further demonstrated that it is possible for

the two interfaces to evaporate simultaneously if we adjust either the evaporative flux or the rate of

contact angle decrease. Because several other researchers have successfully used expression III.13,

we are inclined to believe this expression should not be adjusted, which brings us to dθ
dt . For much

of this project, we were using the expression for dθ
dt based on the spherical cap assumption, which

Gelderblom and coworkers used in [13]. There were two drawbacks to using this expression: (i) we

did not necessarily want to assume a spherical cap for all time and (ii) it involves special functions.

Earlier in our research progress, we faced difficulty in getting the interface to collapse. We were

uncertain how much the complexity of dθ
dt contributed to our problems. We also attempted to

derive our own expression for dθ
dt following a similar process as outlined by Popov in [27]. In our

derivation, we incorporated the wedge geometry and accounted for lubrication theory in the full

drop. Our derivation yielded an equation in the form F1(φ)
dθ
dt = F2(φ), where F1(φ) and F2(φ)

were both very close to zero. Thus, our derivation provided no new information. We show our

derivation in the appendix. After our unsuccessful attempt to find our own expression for the

rate of angle decrease, we determined it was best to use the simplest possible dθ
dt for now. Thus,

we used data from the DMFL to approximate a constant rate of decrease. However, the results

we showed earlier of scaling dθ
dt reveal faster rates of increase for smaller contact angles, which

fits with the stronger evaporation we observe for smaller angles. This indicates that fitting the

data with a nonlinear curve may produce better results. That being said, it is concerning that we

had to manually adjust factors for different contact angles. The droplet interface did not appear
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to automatically adjust to the wedge dynamics. The numerical issues that arise for small contact

angles are also of concern.

VII.2 Future Work

We desire to produce a model in which, once the initial angle is set, the full drop automatically

adjusts to the behavior of the wedge. We believe a stronger link between the two is necessary to

accomplish this. With our current boundary conditions, the wedge dynamics only impact the full

drop right at the boundary. In future research, we will investigate adding an additional boundary

condition in which we specify the slope, forcing the full drop to match the slant of the wedge

interface for all times.

At this initial stage of our research, assuming a known dθ
dt based on data was sufficient enough to

answer our first research question. However, using an expression based on a specific data set limits

certain parameters. For example, if we wanted to run simulations for different size droplets, we

would likely have to manually adjust dθ
dt as well. In order to make our model more accurate and

versatile, it is of interest to explore use of an implicit relationship between the full drop interface

height and the contact angle. This would result in a coupled model in which the full drop piece

and the wedge piece feed each other information to simultaneously solve for the interface height

and the contact angle. Our proposed additional boundary condition where we specify the slope at

the boundary will provide the additional condition to fully couple the models.

The method explored in this project posed significant numerical issues. In each scenario explored

in Section VI, our code had difficulty for initial contact angle θ = 15◦. We believe this was due, in

part, to error build-up in the calculation of ∂h
∂t . Recall we applied lubrication theory to our system

of equations to obtain the interface evolution equation. Thus, to match the heights at the boundary,

we had to scale the wedge height by 1
ε , which resulted in a dimensionless initial condition much

greater than order one. This lead to an amplified error associated with our spatial discretizations.

To reduce error build-up in future work, we will use a spectral method to approximate the spatial

derivatives of the height rather than a finite difference method.
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IX. Appendix

IX.1 Rate of Contact Angle Decrease Over Time

An expression for dθ
dt was derived by Popov in [27] by equating two different arguments for the

change in volume. The first argument is based on the fact that volume is lost through evaporation

at the surface of the drop, which is represented as the integral of the evaporative flux times the

arclength rotated about the center of the drop:

dV′

dt′
= −

∫ R′

0

J′(r′, t′)
ρ

√
1 +

(
∂h′

∂r′

)2
2πr′ dr′. (IX.1)

The second argument comes from the knowledge that the volume inside the drop can be found by

integrating the height rotated about the center of the drop:

V′ =
∫ R′

0
h′(r′, t′)2πr′ dr′ (IX.2)

.

Taking the time derivative of equation IX.2 yields an expression for the change in volume that

contains dθ
dt′ . Setting this expression equal to equation IX.1, one can solve for dθ

dt′ . Instead of

utilizing the derivation in [27], we used a similar approach to derive our own expression for the

differential equation of the angle. We chose to do this because, in his derivation, Popov assumes

J′(r′, t′) to be the exact equation found by solving for the vapor concentration. We argue the

approximate evaporative flux should be used for consistency. He also assumes h′(r′, t′) to be a

spherical cap for all time. Though we assume the height of our drop to initially be a spherical

cap, we do not wish to assume it will remain so. The last reason we derive our own expression is

because we approximate the contact line region as a wedge. Our derivation is as follows:

We know the volume in the full drop is given by 2π
∫ R′−R′w

0 h′(r′, t′)r′ dr′ in cylindrical coordinates

(r′, z′) and the volume in the wedge is given by πR′w
2(R′ − R′w) tan θ(t′) in polar coordinates

(r̂′, φ). Therefore, the change in volume over time in the entire droplet is,

dV′

dt′
= 2π

∫ R′−R′w

0

∂h′(r′, t′)
∂t′

r′ dr′ + πR′w
2
(R′ − R′w) sec2 θ(t′)

dθ

dt′
(IX.3)

We know the time derivative in the full drop is given by,
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∂h′

∂t′
= − 1

r′
∂

∂r′
(r′Q′)− J′(r′, t′)

ρ
(IX.4)

Plugging equation IX.4 into equation IX.3, we obtain,

dV′

dt′
= 2π

∫ R′−R′w

0
−
(

1
r′

∂

∂r′
(r′Q′)− J′(r′, t′)

ρ

)
r′ dr′ + πR′w

2
(R′ − R′w) sec2 θ(t′)

dθ

dt′
(IX.5)

Note the integral in equation IX.5 can be split and rewritten as

2π

(
−r′Q′

∣∣∣∣R′−R′w

0
−
∫ R′−R′w

0

J′(r′, t′)
ρ

dr′
)

= −2π(R′−R′w)Q
′(R′−R′w, t′)− 2π

∫ R′−R′w

0

J′(r′, t′)
ρ

r′ dr′

(IX.6)

Further note that Q′(R′ − R′w, t′) is the volumetric flux at the boundary between the full drop and

the wedge. Then Q′(R′ − R′w, t′) = Q̂′(R′w sec φ, t′), where Q̂′ is the volumetric flux in the wedge

and r̂′(φ) = R′w sec φ is the polar radius as a function of the angle. Then equation IX.5 can be

expressed as,

dV′

dt′
= −2π(R′ − R′w)Q̂

′(R′w sec φ, t′)− 2π
∫ R′−R′w

0

J′(r′, t′)
ρ

r′ dr′ + πR′w
2
(R′ − R′w) sec2 θ(t′)

dθ

dt′
.

(IX.7)

To get a second expression for the change in volume, we modify equation IX.1 to incorporate the

wedge:

dV′

dt′
= −2π

∫ R′−R′w

0

J′(r′, t′)
ρ

r′ dr′ − 2π(R′ − R′w)
∫ R′wsecθ

0

J′(r̂′, t′)
ρ

dr̂′ (IX.8)

The first integral in equation IX.8 describes the change in volume in the full drop, which was

simplified by noting

√
1 +

(
∂h′
∂r′

)2
≈ 1 in lubrication theory. The second integral describes the

change in volume in the wedge and is written in polar coordinates, (r̂′, φ).

We now have arrived at two different expressions for dV′
dt′ . Setting equation IX.7 equal to IX.8 and

simplifying, we get,

Q̂′(R′w sec φ, t′)− R′w
2 sec2 θ(t′)

2
dθ

dt′
=
∫ R′w sec θ

0

J′(r̂′, t′)
ρ

dr̂′. (IX.9)
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The volumetric flux in the wedge depends on the rate at which the contact angle decreases. Hence,

to isolate dθ
dt′ , we must first rewrite Q̂′ in terms of dθ

dt′ . To obtain Q̂′, we integrate the velocity of

the horizontal flow, v′r(r′, t′), across the boundary between the full drop and the wedge. Since

the horizontal velocity is in cylindrical coordinates, we rotate the polar velocities u′r̂′(r̂
′, t′) and

u′φ(r̂
′, t′). Then the volumetric flow across the boundary is given by,

Q̂′(R′w sec φ, t′) =
∫ R′w tan θ

0
v′r(R′−R′w, t′) dy′ =

∫ θ

0
[u′r̂′(R′w sec φ, t′) cos φ−u′φ(R′w sec φ, t′) sin φ](R′w sec2 φ) dφ

(IX.10)

The velocities are comprised of a contribution from the flux solution and one from the hinge

solution. So we can rewrite equation IX.10 as,

Q̂′(R′w sec φ, t′) =
∫ θ

0
[(u′Fr̂ + u′Hr̂′ ) cos φ− (u′Fφ + u′Hφ ) sin φ](R′w sec2 φ) dφ, (IX.11)

where the velocities are evaluated at r̂′ = R′w sec φ. Splitting up the integral, we get,

Q̂′(R′w sec φ, t′) = R′w
∫ θ

0
u′Fr̂′ sec φ dφ + R′w

∫ θ

0
u′Hr̂′ sec φ dφ

− R′w
∫ θ

0
u′Fφ sin φ sec2 φ dφ− R′w

∫ θ

0
u′Hφ sin φ sec2 φ dφ.

(IX.12)

Substituting equation IX.12 into equation IX.9 and dividing by Rw yields,

∫ θ

0
u′Fr̂′ sec φ dφ +

∫ θ

0
u′Hr̂′ sec φ dφ−

∫ θ

0
u′Fφ sin φ sec2 φ dφ−

∫ θ

0
u′Hφ sin φ sec2 φ dφ− R′w sec2 θ(t′)

2
dθ

dt′
=

1
R′w

∫ R′w sec θ

0

J′(r̂′, t′)
ρ

dr̂′.

(IX.13)

Recall we wish to isolate dθ
dt′ , which is contained in the hinge pieces. Hence, we move the flux

integrals to the other side of equation IX.13:

∫ θ

0
u′Hr̂′ sec φ dφ−

∫ θ

0
u′Hφ sin φ sec2 φ dφ− R′w sec2 θ(t′)

2
dθ

dt′
=

−
∫ θ

0
u′Fr̂′ sec φ dφ +

∫ θ

0
u′Fφ sin φ sec2 φ dφ +

1
R′w

∫ R′w sec θ

0

J′(r̂′, t′)
ρ

dr̂′.
(IX.14)
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Recall the velocities, u′ r̂′ and u′φ, in equation III.4 and the hinge solution, ψH , in equation III.64.

Substituting equation III.64 into the velocity expressions in equation III.4, we find,

u′Hr̂′ (R′w sec φ, t′) =
R′w sec φ

N(θ)

dθ

dt′
K(φ, θ) (IX.15)

where

K(φ, θ) = 2 cos(2φ) + 2 tan(2θ) sin(2φ)− 2 (IX.16)

and

u′Hφ (R′w sec φ, t′) = −2(R′w sec φ)

N(θ)

dθ

dt′
k(φ, θ) (IX.17)

where

k(φ, θ) = sin(2φ)− tan(2θ) cos(2φ)− 2φ + tan(2θ). (IX.18)

We can rewrite equation IX.14 as,

R′w
N(θ)

dθ

dt′

∫ θ

0
K(φ, θ) sec2 φ dφ +

2R′w
N(θ)

dθ

dt′

∫ θ

0
k(φ, θ) sin φ sec3 φ dφ− R′w sec2 θ(t′)

2
dθ

dt′

= −
∫ θ

0
u′Fr̂′ sec φ dφ +

∫ θ

0
u′Fφ sin φ sec2 φ dφ +

1
R′w

∫ R′w sec θ

0

J′(r̂′, t′)
ρ

dr̂′.
(IX.19)

Solving for dθ
dt′ ,

dθ

dt′
=

−
∫ θ

0 u′Fr̂′ sec φ dφ +
∫ θ

0 u′Fφ sin φ sec2 φ dφ + 1
R′w

∫ R′w sec θ
0

J′(r̂′ ,t′)
ρ dr̂′

R′w
N(θ)

∫ θ
0 K(φ, θ) sec2 φ dφ + 2R′w

N(θ)

∫ θ
0 k(φ, θ) sin φ sec3 φ dφ− R′w sec2 θ(t′)

2

. (IX.20)
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