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Abstract

It is increasingly common to find real-life structures or behaviors represented as graphs in many areas of the computing

sciences. Comparing these graphs is a hard task, especially when we are interested in assigning a non-binary similarity

score between two large graphs based on some domain-specific context. In bioinformatics, social network analysis and

other areas is frequently necessary to compute graph similarities based on the local topological information of each

vertex of the given graphs. This is why graphlet degree vectors have become more and more popular in these areas.

They provide a simple yet detailed representation of a vertex’s topology by counting the number of times such vertex

touches a list of small predefined sub-structures called graphlets. In this thesis, we study the state-of-the-art algorithm

to compute graphlet degree vectors, the Orbit Counting Algorithm (ORCA). ORCA generates a triangular system of

linear equations that can be quickly solved to obtain the graphlet degree vector of a vertex. We make theoretical and

practical improvements to this algorithm and measure the difference in speed after these improvements. The theoretical

improvement consists of finding automorphisms of graphlets given a fixed vertex that is required to map to itself in

such automorphisms. We observe that one piece of the algorithm runs much faster than before with this improvement,

especially for larger graphlet orders. This helps the algorithm take less time in generating the linear system that we use

to find the desired graphlet degree vector. The practical improvement consists of making a flexible implementation of the

algorithm, which can take any graphlet size as input, any number of input graphs, and compute the graphlet degree

vector for every vertex in each one of those graphs.
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Chapter 1

Introduction

1.1. Overview

Computing and analyzing topological similarities between graphs is an important task in various

fields of the computing sciences, from machine learning to protein-protein interaction to social net-

work analysis and other areas [1] [2] [3]. Graph alignment, as it is called in some literature, is often

performed by comparing properties of each vertex in one graph against every vertex in a second

graph, then assigning a similarity score to each pair of vertices and finally finding a stable match-

ing between the two vertex sets. It is simple to show that two graphs are different by simply listing

a few properties in which they differ, but showing that they are similar can be difficult, especially

when they are non-isomorphic and/or when they are both very large, in which case it is required

to demonstrate their similarity in their numerous topological properties. Exact subgraph matching

techniques are not effective in this type of problem, since most of the time there is not an ex-

act match of one graph into the other, but some approximate matching techniques could do the job.

Pržulj [4] came up with the concept of graphlet degrees and graphlet degree vector, which

we explore in Section 1.2. The concept has been used in recent years in different algorithms for

computing graph similarity between biological networks [5] [6] [7]. Computing graphlet degree

vectors is an interesting theoretical problem in itself, and it is convenient to analyze it using some

combinatorial insights. In this thesis we focus on a particular approach of determining graphlet

degree vectors, called Orbit Counting Algorithm (ORCA) [8] [9], we make improvements to it

and run different experiments to compare results against the original algorithm. In this chapter
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Introduction

we cover the basic definitions and notations required to understand our work, Chapter 2 goes

over the different algorithms that we have re-used or modified, as well as some related work, and

Chapter 3 presents our contribution in detail. The final chapter discusses our conclusions and

future work.

1.2. Definitions

In this section we define some of the basic graph theory concepts used throughout this thesis. A

graph G is a set of vertices or nodes connected by links called edges. The vertex set of G is denoted

by V(G) and the edge set by E(G). The degree d(v) of a vertex v is the number of edges that are

incident to v in the graph. Two vertices are said to be adjacent if they have an edge connecting

them. The neighborhood of a vertex v, denoted N(v), is the set of vertices that are adjacent to v.

Given a set of vertices S ⊆ V(G), the common neighbors of S is the subset of vertices in V(G), not

contained in S, which are adjacent to every vertex in S. We define below some classic graph theory

problems that are also used throughout this thesis.

1.2.1 The graph isomorphism problem

Graph isomorphism is an equivalence relationship between two graphs. Two graphs G1 and G2 are

isomorphic (G1
∼= G2) if there exists a bijection f : V(G1)→ V(G2) such that (u, v) ∈ E(G1)⇐⇒

( f (u), f (v)) ∈ E(G2).

An automorphism of a graph G is a graph isomorphism with itself, that is, a bijection from

V(G) back to V(G) such that the resulting graph is isomorphic to G. The equivalence classes of

the vertices of a graph under the action of all possible automorphisms are called automorphism

orbits or just orbits, hence two vertices belong to the same orbit if they map to each other in some

automorphism.

A graph isomorphism problem is not as hard as NP-complete, but in general the problem

cannot be solved in polynomial time [10]. Some researchers have defined a separate complexity

class, GI-complete/GI-hard, to study this problem and other problems that can be reduced to

graph isomorphism in polynomial time.

The general case of the graph isomorphism problem, in theory, had been solved the fastest
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Introduction

Figure 1.1: Graphs (b) and (c) are both subgraphs of (a), but only (b) is also an induced subgraph

by the algorithm in Babai and Luks [11] for over three decades. Their paper presented an al-

gorithm to detect graph isomorphism with a time complexity bound of 2O(
√

n log n), where n is

the number of vertices in one of the given graphs (the largest graph, if they are different). A

recent improvement on this upper bound was recently published by Babai [12] who proposes an

algorithm that can solve the problem in quasi-polynomial time: 2O((log n)c) for some c > 0.

There are currently other practical approaches that generally perform better on random graphs,

such as the algorithm designed (and later improved) by McKay [13]. This algorithm is implemented

in the widely used Nauty tools [14] created by the same author.

1.2.2 Subgraph matching

Graph isomorphism is a special case of the subgraph isomorphism problem. Given a graph

H, a subgraph H′ is composed by a subset of vertices V(H′) ⊆ V(H), and a subset of edges

E(H′) ⊆ E(H) ∩ (V(H′)×V(H′)). The subgraph isomorphism problem is a computational task

where, given two graphs G and H, one must determine whether there is a subgraph H′ in H,

such that H′ ∼= G. In other words, one must find an injective mapping m : V(G)→ V(H), such

that (u, v) ∈ E(G)⇒ (m(u), m(v)) ∈ E(H). As an example, if we look at graph (a) in Figure 1.1

(borrowed from [5]), we can find a subgraph that is isomorphic to graph (b), formed by vertices 0,

4, 5 and 6 along with the edges between them. We can also find several subgraphs isomorphic to

graph (c), which is a P5, the path on five vertices, for example: (2)− (1)− (0)− (6)− (5), and

(3)− (4)− (5)− (6)− (0). While subgraph isomorphism is a decision problem (with true/false

output), the name subgraph matching is commonly used when the task involves finding all or

some possible mappings m.
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A similar problem is induced subgraph matching, where we find one or more injective mappings

m : V(G) → V(H), such that (u, v) ∈ E(G) ⇐⇒ (m(u), m(v)) ∈ E(H). Notice there is a bicondi-

tional here, implying that if u and v are not adjacent in G, they must be non-adjacent in H. If a

mapping exists, G is said to be an induced subgraph of H, as opposed to a non-induced subgraph

like in the regular subgraph matching problem defined above. An induced subgraph is also a non-

induced subgraph, but not the other way around. Graph (b) in Figure 1.1 is both an induced and

non-induced subgraph of graph (a), using the same vertices and edges we found before. However,

we cannot find in (a) an induced subgraph isomorphic to (c). There are several P4’s induced in

graph (a), e.g. (5)− (6)− (0)− (2); (5)− (4)− (0)− (1). However, (3)− (4)− (0)− (1) is not an

induced P4 because there is an edge between vertex 0 and vertex 3.

In both induced and non-induced subgraph matching problems, the "smaller" graph G is some-

times called a query graph, while the "larger" graph H is called the host graph. The name graphlet

is sometimes used to refer to small connected simple query graphs with at least two vertices in

induced subgraph matching problems. We use Gk to denote the set of all non-isomorphic simple

connected graphs (graphlets) on k vertices and Gk to denote the set of all graphlets from 2 to k

vertices. Thus, Gk = G2 ∪ G3 ∪ ...∪ Gk.

Some of the most widely used algorithms for subgraph matching are VF2 [15], Turbo-ISO [16] and

the subgraph matching procedure presented in [17]. We use the latter in this thesis with slight

adaptations borrowed from Turbo-ISO (Section 3.3).

1.2.3 Orbit counts

Pržulj [4] presented an ordered list of all 30 possible graphlets of k ≤ 5 vertices (i.e. G5), and labeled

all 73 orbits in these graphlets as shown in Figure 1.2. The same paper introduced the concept of

graphlet degrees, also simply called orbit counts in other literature after it [18] [8] [9]. An orbit

count, under this context, does not refer to the number of orbits in a graph. Given a host graph H

and an orbit Oi in some orbit enumeration (like the enumeration in Figure 1.2), such that orbit Oi is

contained in some graphlet Ga, define orbit count oi(v) as the number of times a vertex v ∈ V(H)

appears in orbit Oi of an induced subgraph of H that is isomorphic to Ga. Kuchaiev points out in

[5] that it is topologically relevant to distinguish between, for example, vertices touching a graphlet

G10 at one end from vertices touching G10 in the middle, which is why we count each orbit of
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Figure 1.2: Graphlets of up to five nodes and their enumerated orbits (Figure adapted from [4])

Orbit index 0 1 2 3 4 5 6 7 8 9 10 11 12...20 21

Orbit count 5 2 8 2 0 5 0 4 1 0 1 6 0...0 2

Orbit index 22...25 26 27...29 30 31 32 33 34...37 38 39...43 44 45...52 53 54...72

Orbit count 0...0 2 0...0 2 0 0 4 0...0 2 0...0 1 0...0 1 0...0

Table 1.1: Signature vector of vertex 0 from Fig. 1.1

the same graphlet separately. Since there are 73 orbits in Pržulj’s enumeration, we can build a

73-component vector for each v, where each component of the vector is an orbit count for v. This is

called the graphlet degree vector, or the signature vector of the vertex. Note that the degree of a vertex

is the first element in this vector, since the number of times a vertex touches orbit 0 (from Figure

1.2) would be equivalent to the number of edges incident to that vertex. Table 1.1 illustrates the

graphlet degree vector, computed in [5], for vertex 0 in the sample graph from Figure 1.1. The 73-

component graphlet degree vector is a helpful tool in graph alignment algorithms [5] [7] [6], since

it tells a lot about a vertex’s local topological properties. These algorithms can compare vectors

from vertices in one graph against vectors from vertices in another graph to measure the similarity

between the two, either by computing a simple Euclidean distance or a weighted average of the

components or any other similarity function. It is assummed by the aforementioned literature that

vertices with similar graphlet degree vectors will be similar in other important observed properties.

Pržulj’s enumeration contains 73 orbits from 30 distinct graphlets. The total number of or-
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bits in an enumeration increases dramatically as k increases. There are 30 graphlets and 73 orbits

in G5, whereas in G6 we have 142 graphlets with 480 orbits. In G7 we have 995 graphlets with 4,787

orbits. Computing graphlet degree vectors for any k is a notoriously difficult task that requires the

search for new counting methods and graph theoretical insights.
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Chapter 2

Background and related work

2.1. Subgraph matching algorithm

Subgraph matching is an NP-complete problem and a very expensive operation in terms of time

complexity. The first step in many subgraph matching algorithms such as [17] is selecting and

pruning the set of feasible mates, also called the feasible set of every vertex of the query graph in the

host graph. When we are searching for subgraphs of a graph H that are isomorphic to some query

graph G, the feasible set Φ(u) ⊆ V(H) of every u ∈ V(G) is the set of vertices v ∈ V(H) that

"could be" mapped to u in some subgraph isomorphism. After that, we compute the search space,

which is defined as the product of feasible sets of the query graph: Φ(u1)× ...×Φ(uk), where k is

the number of vertices in such query graph. Not every feasible mate will result in or be part of a

valid mapping of G in H because we need to retrieve those feasible sets as quickly as possible

and let the rest of the algorithm discard some of the invalid vertex combinations in the search

space. As an example, let us assume our query graph is G6 from Figure 1.2 (sometimes called the

"paw" graph or the 3-pan) and we are doing subgraph matching on some large host graph H. The

feasible set of the orange vertex will contain all vertices of H with a degree that is greater than

or equal to 3. No vertex in H with a degree of 2 or less can possibly be mapped to this orange

vertex in a subgraph isomorphism. Using vertex degrees is a quick and simple way to obtain the

feasible set for each query graph vertex, but should not be the only one if we are dealing with

large and/or dense host graphs. The feasible set of the gray vertex, for instance, which has degree

of 1, would contain all vertices in H with this approach.
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input : Query graph G, Host graph H

output : All valid mappings m : V(G)→ V(H)

for u ∈ V(G) do

Φ(u)← {v ∈ V(H), v is feasible};

Local pruning of Φ(u);

end

Reduce Φ(u1)× ...×Φ(uk) globally;

Optimize search order of {u1, ..., uk};

Search(1);

void Search(i) begin

k← |V(G)|;

for v ∈ Φ(ui), v is free do

if i < k and CanBeMapped(ui, v) then

m(ui)← v;

Search(i + 1);

m(ui)← null;

end

if Size(m) = k then

Report mapping m;

end

end

end

boolean CanBeMapped(ui, v) begin

for edge (ui, uj) ∈ E(G) do

if edge (v, m(uj)) /∈ E(H) then

return false;

end

end

return true;

end
Algorithm 1: Subgraph Matching

The subgraph matching procedure from [17] is outlined in Algorithm 1 for reference. The original
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paper describes several techniques to trim the feasible sets as much as possible without sacrificing

much performance, but these techniques only apply to attributed graphs, where every vertex in

the query graph and the host graph has attributes or labels that must match in the subgraph

matching process.

After selecting the feasible set of each query graph vertex, the next step in the algorithm is

to reduce the overall search space Φ(u1)× ...×Φ(uk) by discarding combinations that are obvi-

ously invalid without much computational effort. This is a key concept we explore in Section 3.3.

The rest of the algorithm (the Search subroutine) basically tries all the combinations remain-

ing in the search space after pruning, looking for valid mappings of G onto H. The CanBeMapped

subroutine receives a query vertex ui and a host graph vertex v and checks whether every neighbor

of v that is already mapped is actually mapped to a neighbor of ui.

2.2. ORCA

The Orbit Counting Algorithm (ORCA) introduced in [8] and further detailed in [9] is the state-

of-the-art approach for computing graphlet degree vectors. The authors found that each orbit

count (i.e. each component of the vector) for a particular vertex in a host graph can be computed

from other orbit counts belonging to graphlets with more edges. They present an algorithm that

builds a triangular linear system relating nearly all of the orbit counts for any orbit enumeration, a

system that can quickly be solved by performing back substitution. Only those orbits that belong

to cliques must be counted explicitly. In order to fully understand the algorithm, one must become

familiar with the notation in table 2.1 and some of the concepts we explain below. Later in this

thesis we present some improvements on ORCA and its implementation. The goal of the algorithm

is to create a linear equation relating one orbit to other orbits in the same enumeration. Given an

orbit Oi, the algorithm will output a linear equation of the form

∑
p

fpop = r,

where each op is the yet unknown orbit count for orbit p, and fp is a coefficient that relates orbit Oi

to orbit Op. The number r on the right-hand side is computed by searching for induced subgraphs

in the host graph H; we will discuss how to calculate r further down this section. The algorithm

has to be run for every orbit in the enumeration to obtain a system of equations and, by solv-

ing this system we get the values of every orbit count and hence the desired graphlet degree vector.

10
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Notation Definition

H Host graph within which we count graphlets and orbits

N(v) Neighborhood of a vertex v

c(v1, v2, ..., vj) Number of common neighbors of vertices v1, v2, ..., vj

c(S) Number of common neighbors of a set of vertices S

Gk Set of all graphlets on k vertices

Gk Set of all graphlets on 2 to k vertices

Ga Graphlet a according to some enumeration.

Oi Orbit i according to some enumeration

O List of all orbits in a given enumeration

oi(v) Number of times vertex v appears in orbit i of an induced subgraph

GH An induced subgraph of H that is isomorphic to G

SH The set of vertices in V(H) that are mapped to S ⊆ V(G) in an induced

subgraph isomorphism

{v1, v2, ..., vj}H The set of vertices in V(H) that are mapped to v1, v2, ..., vj ∈ V(G) in an

induced subgraph isomorphism

Table 2.1: Notations used in [9] and more
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Figure 2.1: The number common neighbors of x1 and x3 has a relationship with the number of times x

appears in orbits 59, 65, 68 and 70. The same can be done with x2 and x3 because of symmetry.

As an example, the linear equation found by ORCA for orbit 59 (see Figure 2.1 (a)) is as fol-

lows:

o59 + 4o65 + 2o68 + 6o70 = ∑
GH

7 ,x∈O12

[(c(x1, x3)− 1) + (c(x2, x3)− 1)]. (2.2.1)

The general reasoning behind the algorithm is that, by finding occurrences of a given graphlet on

k− 1 vertices in the host graph, and by counting the number of common neighbors of specific

vertex sets in this graphlet, we obtain all the occurrences of other larger graphlets (on k vertices).

We will focus on deriving the example above and then generalize it while explaining the algorithm.

Let us take a look at the graph in Figure 2.1 (a). In this setup, the blue vertices and edges

form a G7, which is a graphlet on 4 vertices. We can also see several instances of G24, a graphlet

on 5 vertices, if we combine the G7 with vertex w0, w1, or w2. Vertex x appears in orbit 12 (from

G7), and appears in 59 three times in this graph. Notice the number of times x appears in orbit

59 is equal to the number of common neighbors of x1 and x3 minus 1 (because we do not want

to count x2), that is, the number of common neighbors outside the 4-vertex graphlet. Thus,

o59(x) = c(x1, x3)− c({x1, x3}G7) = c(x1, x3)− 1.

Now, let us assume this graph is actually a subgraph of a larger graph H, which may have more

edges with other vertices not shown here, as well as extra edges between the vertices shown.

In this scenario, some common neighbors of x1 and x3 may also be neighbors of x2, like shown

in Figure 2.1 (b), in which case vertex x would be touching orbit 65 (from G26) and not orbit

59. Some common neighbors of x1 and x3 could also be neighbors of x itself (Fig. 2.1 (c)), or
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they could be neighbors of both x and x2 (Fig. 2.1 (d)), making x appear in orbits 68 and 70

respectively. Therefore, in such graph H, taking all these combinations into account, we would

relate the orbit counts of x by saying that o59(x) + o65(x) + o68(x) + o70(x) = c(x1, x3)− 1. How-

ever, we would still be missing some counts. Notice that G7 has symmetry and we can switch

the roles of vertices x1 and x2 while keeping x in the same orbit. Thus, the counts we found

with the common neighbors of x1 and x3 can also be found with the common neighbors of x2

and x3. Each graphlet G26 (Fig. 2.1 (b)) appearing in the larger graph is counted 4 times with

roles of x1, x2, x3 and w3 swapped because of symmetry. When we consider the symmetries

that cause counting the same graphlet multiple times with different roles of its vertices, we get

o59(x) + 4o65(x) + 2o68(x) + 6o70(x) = [c(x1, x3)− 1] + [c(x2, x3)− 1].. Finally, we must sum this

over all occurrences of G7 touching vertex x in orbit 12, hence obtaining Equation 2.2.1.

This process can be done with other 4-vertex graphlets to obtain equations relating orbits on

5-vertex graphlets, or with 3-vertex graphlets to obtain equations on 4-vertex graphlets. The final

result is a triangular system of linear equations that must be solved to obtained the graphlet

degree vector of x.

In the algorithm, for each orbit Oi in some graphlet Ga, we pick a vertex x as a fixed point.

Having picked x, we select a vertex y 6= x such that G′ = Ga\y is still a connected graph. We call

G′ a mutilated graphlet. Vertex y may or may not be in the same orbit as x, but the authors impose

other constraints on y to achieve an efficient computation of the linear equation:

1. Vertex y is the lowest degree vertex at a longest distance Lx from x,

2. G′ = Ga\y is connected,

3. d(y) ≤ k− 2,

4. if d(y) = k− 2, the neighbors of y induce a connected graph,

5. if (2), (3) or (4) cannot be true for the lowest degree vertex at a distance Lx from x, pick

the lowest degree vertex at a distance Lx − 1 and ignore conditions (3) and (4). This only

happens in exceptional cases such as the cycle of four vertices.

Now that we know how to select our vertex y, we can find the extension sets, an important concept

in this algorithm and in our thesis:

Definition 1. Given an orbit Oi in a graphlet Ga, a vertex x in orbit Oi, a selected vertex y ∈ V(Ga), and

G′ = Ga\y, an extension set S ⊂ V(G′) is a set of vertices such that adding a new vertex connected to

13
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Figure 2.2: Extension sets for orbit 59: {x1, x3} (the neighborhood of y), and {x2, x3}

Figure 2.3: Extension sets for an orbit on a 6-vertex graphlet: {x1, x4}, {x2, x4}, and N(y) itself, {x1, x2}

all vertices in S yields Ga with x in orbit Oi [9].

The number of extension sets is then equivalent to the number of ways in which G′ can be extended

to Ga. The set of all such sets for a particular orbit is denoted by S . The example in Figure 2.2

illustrates this concept for orbit 59. After picking vertex y such that G′ is still a connected graph,

we find those sets that would give us back Ga (which is G24 in this example) by adding back y and

connecting it to such sets. Not only we need to get Ga back, but also we need vertex x to remain

in the same orbit, O59. The extension sets for this example are {x1, x3} (the original neighbors of

y), and {x2, x3}. Other sets like {x, x1} and {x, x2} would give us back Ga, but our vertex x would

end up in a different orbit, O60. Both papers [8] and [9] focus on this example to illustrate the

algorithm and all the concepts behind it. See Figure 2.3 for a different example, using a graphlet

on 6 vertices. In this second example, there are three extension sets for the selected vertex y: one

is the neighborhood of y itself, {x1, x2}, and the other two are {x1, x4} and {x2, x4}. It can be

manually verified that the two graphs on the right are isomorphic to Ga while maintaining x in

the same position.
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The right-hand side of each equation is calculated with a nested summation over all occurrences

of G′ in H as follows:

ri = ∑
G′H :xH∈Oi

{
∑

S∈S
(c(SH)− c(SG′))

}
. (2.2.2)

Recall from Table 2.1 that G′H represents an induced subgraph of H isomorphic to G′. It is

important to note that each one of these G′ induced in H must have different vertex sets. Under

this condition, if G′ were, for instance, a path on three vertices and H was the sample graph

in Figure 1.1 (a), the subgraph (3)− (4)− (5) would be the same as (5)− (4)− (3). Current

subgraph matching algorithms do not take this into account, so for every induced subgraph found,

we must check for potential duplicates or create a mechanism to avoid duplicates in the first place.

We discuss this further in Chapter 3.

Result: Equation for Oi

Ga ← Graphlet containing Oi;

x ∈ Oi;

y← SelectY(x);

G′ ← Ga\y;

S ← Extension sets for G′;

RHS← ri /* Equation 2.2.2 */;

for p ∈ O do

G∗ ← Graphlet containing Op;

fp ← 0;

for z ∈ G∗ : (G∗\z) ∼= G′ do
fp ← fp + |{S ∈ S : N(z) ⊇ S}|

end

end

LHS← ∑p fpop;

return LHS = RHS;
Algorithm 2: Orbit Counting Algorithm (ORCA) for deriving equation of orbit Oi

In Algorithm 2 there is a segregation of the computation of the left-hand side from the computation

of the right-hand side. The coefficients on the left-hand side reflect the relationships between

graphlet orbits and do not depend on the host graph, hence they can be derived in advance for the

whole matrix. The same matrix can be reused for analyzing multiple input host graphs, whereas

the right-hand side requires the search for induced subgraphs for all graphlets of up to k − 1

vertices (G′) in each host graph. It may seem like finding all the induced subgraphs of up to k− 1
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Set Graphlets Orbits

G4 (2 ≤ k ≤ 4) 9 15

G5 (k = 5) 21 58

G5 (2 ≤ k ≤ 5) 30 73

G6 (k = 6) 112 407

G6 (2 ≤ k ≤ 6) 142 480

G7 (k = 7) 853 4,306

Table 2.2: Total number of graphlets and orbits by graphlet order k

vertices is an expensive task, but in reality, there are many more graphlets of order k alone than

there are graphlets of order 2 to k− 1 put together (for any k), and therefore many many more

orbits for those k-order graphlets. See table 2.2 with some examples for reference.

2.3. Nauty

Nauty (no automorphism, yes?) is a set of procedures that, among other things, can quickly

compute the automorphism group of a vertex-labeled graph [14]. A vertex-labeled graph in this

context is a graph G together with a bijection l : V(G)→ M, where M is a set of numeric labels.

While Nauty computes the automorphism group of a graph, it also finds its orbits, a feature that

comes in handy for us.

In this thesis, Nauty’s libraries are used for two important purposes: (1) generating all graphlets of

a given order k, and (2) computing their orbits. For the former, we use the convenient geng utility

that can be run from a Unix command line, and for the latter we use the core nauty function that

computes automorphism groups and orbits. The tricky part of using these libraries and utilities

is that there is no way to fully predict how the graphlets and orbits will be generated, so the

resulting orbit enumeration will have a different order every time we run the application. We

explain why this is a disadvantage and how to handle it in Section 3.5.
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Chapter 3

Improvements on ORCA

In this thesis we make theoretical and practical optimizations to ORCA. The main theoretical

improvement is the computation of extension sets using fixed-point automorphisms, which we

describe in Section 3.1. This change helps speed up the computation of the matrix on the left-hand

side of the triangular linear system. In addition, from a practical standpoint, we have automated

the generation of the linear system for any graphlet size k, and compiled the implementation

in a single program that takes only two arguments: k, and the path to a directory containing

all the host graphs to be analyzed. The script will output several files showing all the graphlet

degree vectors for every vertex in every graph provided, one file per graph and one line per

vertex. This is a relevant practical improvement over the original implementation, for which the

authors manually computed the system of equations for k ≤ 5, which contains 73 orbits (hence,

73 equations), and proceeded to hard-code the coefficients directly into the code. Sections 3.2

and 3.3 describe two relevant optimizations we have made to the original subgraph matching

algorithm presented in [17]. The latter is based on the concept of candidate regions proposed in

[16]. The purpose of these two improvements is to quicken the search for graphlets in the host

graph, the most time consuming part of computing the right-hand side of the linear system. The

architectural details are described in Section 3.4.

This chapter and the ones that follow use the same notations and terms defined in Section

2.2.
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3.1. Combinatorial improvement

Hočevar and Demšar define an extension set S ⊂ V(G′) as stated in Definition 1. For a computer

program, finding all such sets implies testing all possible vertex subsets of a certain size in G′,

then adding one vertex to G′, connecting that vertex to all v ∈ S, and then testing for isomorphism

against Ga. This is a computationally heavy approach, especially because we must do it for every

orbit Oi and the number of orbits increases exponentially with k. Thus, we redefine extension sets

in this thesis as follows:

Definition 2. Let mx be an automorphism of G′ where vertex x maps to itself. Thus, an extension set

S ⊂ V(G′) is a set of vertices v ∈ V(G′) such that for every u ∈ N(y), mx(u) = v.

Essentially, for every such automorphism mx we would have a valid extension set S, which under

this definition is simply the mapping of N(y) under mx. One of such sets is N(y) itself (the

trivial automorphism case), which counts as one of the extension sets. We call mx a fixed-point

automorphism.

Looking at Figure 2.2, for instance, the possible automorphisms on G′ are:

1. (x, x), (x1, x1), (x2, x2), (x3, x3) - (the trivial case),

2. (x, x), (x1, x2), (x2, x1), (x3, x3),

3. (x, x3), (x1, x1), (x2, x2), (x3, x),

4. (x, x3), (x1, x2), (x2, x1), (x3, x).

Of these, only the first two have x mapped to itself. Since x3 is the selected vertex y, we get

the sets which N(x3) maps to according to automorphism (1) and (2). Clearly, the trivial case

requires no computational effort. Also, the algorithm in [17] that we re-adapted to find these

automorphisms, allows us to "fix" a vertex before starting the mapping search, hence we can avoid

considering invalid mappings like (3) and (4) where x does not map to itself. The algorithm will

only search then for potential mappings of the remaining vertices, which means that if our G′ has

k− 1 vertices, we only search for mappings of k− 2 vertices, whereas in the original definition of

extension sets it is required to find an isomorphism against Ga (k vertices) for a graph composed

of G′ and an extra vertex. This is already a significant advantage, but in addition, let us remember

that there are many more graphlets on k vertices than there are graphlets on less than k vertices all

put together.
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3.2. Obtaining distinct subgraphs in induced subgraph matching

To the best of our knowledge, there is no standard algorithm that is able to find subgraphs

with different vertex sets in a given host graph without having to eliminate duplicate mappings

after they have already been found. Recall the example of finding a P3 in the host graph of

Figure 1.1 (a). Most subgraph matching algorithms, induced or non-induced, would include

(3)− (4)− (5) and (5)− (4)− (3) in their output as two distinct subgraphs (and they are distinct,

for some applications). However, in our case we need subgraphs with different vertex sets as

required by ORCA, even if these sets have some common vertices, so we will call distinct subgraphs

to those subgraphs that do not have identical vertex sets. We could simply filter non-distinct

subgraphs after the subgraph matching process is done, but a more efficient approach would

avoid considering non-distinct matches before they are even found. In this thesis, we accomplish

this by taking advantage of the orbit information we have on every graphlet, as well as the fact

that these graphlets are generated by Nauty with distinct numeric labels on their vertices. The

host graphs are also numerically labeled in our implementation.

Our technique is as follows: Let u and v be two vertices in a graphlet or a mutilated graphlet G′.

In the traditional definition of the problem, we are trying to find all induced subgraphs in H that

are isomorphic to G′, so (u, v) ∈ E(G′) ⇐⇒ (m(u), m(v)) ∈ E(H), where m : V(G′) → V(H) is

an injective mapping. Since we have numerically labeled graphlets and host graphs, as well as the

orbit information of the graphlets, we add one more condition to our induced subgraph matching

procedure: let l(w) denote the label of any vertex w; thus, if u and v are in the same orbit of G′

and l(u) > l(v), then l(m(u)) > l(m(v)). With this added condition, we make sure that when we

perform induced subgraph matching of G′ in H, we only get the mappings that have the same

label ordering as that of G′. The result of this is that no two matching subgraphs will have the

same set of vertices.

3.3. Using candidate regions to cut search spaces in fixed-point subgraph

matching

In Section 2.1, we explained how the first step in most subgraph matching algorithms, induced

or non-induced, is to select the feasible set in the host graph for each vertex in the query graph

(i.e. the graphlet). Since we do not have attributed vertices in our graphlets or in our host graphs
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Figure 3.1: Candidate Region CRg(x) contains only those vertices in H at a distance from g that is less than

or equal to the diameter of G7

with labels that could help us restrict our search, we can only select the feasible sets by looking at

the degree of all the vertices. For instance, take the graphlet in Figure 3.1 (which is a G7). The

feasible set for x1 would initially be all the vertices in H which degree is greater than or equal to 3,

whereas the feasible set for x3 would contain all the vertices in H with a degree that is greater

than or equal to 2. This is a quick approach, but it may result in very large feasible sets for both x1

and x3, hence a gigantic search space Φ(x)×Φ(x1)×Φ(x2)×Φ(x3). It is imperative to quickly

but significantly reduce this search space.

In TurboISO [16], the authors discuss the concept of candidate regions. The general idea is that, for

some query vertex u1 ∈ V(G′) and for each host graph vertex vj ∈ Φ(u1) ⊆ V(H), we can restrict

the number of combinations in the search space Φ(u1)× ...×Φ(uk) by finding candidate regions

CRvj(u2) ⊂ Φ(u2), CRvj(u3) ⊂ Φ(u3), ..., CRvj(uk) ⊂ Φ(uk), which contain only those vertices

close enough to vj to form a subgraph with the same diameter as G′. Let us look at the example in

Figure 3.1. Graphlet G7 has a diameter (a longest "shortest" path) of 2. The feasible sets of vertices

x and x3 contain potentially every vertex in H. The feasible sets for x1 and x2 contain less vertices

but are still quite large. Trying every combination of vertices in Φ(x)×Φ(x1)×Φ(x2)×Φ(x3)

will eventually give us all induced matches of G7, but it would take too much time. Vertex g is

in Φ(x) and is a good matching candidate for x, and vertex r is in Φ(x1) and a good matching
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candidate for x1, but we do not want to try those combinations where x maps to g and x1 maps to

r. Therefore, when we "fix" vertex x to g, we must cut the feasible sets of x1, x2 and x3 to consider

only the candidate region CRg(x) = {v ∈ V(H) : dist(g, v) ≤ diam(G7)}. This will immensely

reduce the number of checks we do in the search space.

We can optimize this approach even further. Note that vertex x in G7 is in orbit 12 from Pržulj’s

enumeration. The distance between x and any other vertex in G7 is at most 2, the same as the

diameter of G7. If we are computing o12(g), i.e. the number of times that vertex g touches

orbit 12, then it makes sense to select the candidate region as described above. However, if we

were computing o13(g) (vertex x1 is in orbit 13), then we can select an even more restrictive

candidate region. The distance between x1 and any other vertex of G7 is at most 1, so when

we fix x1 to g, we can cut the feasible set of x, x2 and x3 to consider only the candidate region

CRg(x1) = {v ∈ V(H) : dist(g, v) ≤ Lx1}, where Lx1 is the distance from x1 to its furthest vertex

within G7, which is 1. We generalize the definition as follows:

Definition 3. Given an orbit Oi in a graphlet G, some vertex x ∈ Oi, and a vertex w of a host graph H,

let Lx be the distance from x to its furthest vertex in G, and let dist(p, q) represent the distance between

any two vertices p and q of any graph. A candidate region CRw(x) = {v ∈ V(H) : dist(w, v) ≤ Lx}.

The computation of oi(w) must always involve an induced subgraph matching search that is restricted to

the candidate region CRw(x).

Besides significantly pruning search spaces, this definition offers another advantage. Recall from

Section 2.2 that for every orbit Oi in the enumeration, we must select a vertex y 6= x with certain

conditions. The first condition requires us to find "the lowest degree vertex at a longest distance Lx

from x", where x is a vertex in Oi. This means that for every orbit, we are already pre-computing

Lx. In the implementation of this thesis we save these values and re-use them to select the

corresponding candidate regions in every vertex of every host graph being analyzed.

3.4. Architectural improvements and implementation

The original implementation of ORCA is able to compute graphlet degree vectors up to k = 4 or

k = 5. The user must pick one of the two and run the application to get an output. Their code is

highly optimized for these specific values of k, and it contains all the coefficients from the 73 linear

equations manually written there. This is a useful implementation for most practical purposes,

but the design lacks flexibility, one of our concerns in this thesis.
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In order to achieve higher flexibility, there are a few considerations to make. First, each in-

put k value will give a different collection of graphlets and orbits, but for a particular enumerated

collection, the matrix on the left-hand side will be the same for every host graph, hence this matrix

can be computed in advance and reutilized. Secondly, and more importantly, the matrix is not

the only object that can be reutilized for all host graphs. The mutilated graphlets, G′ = Ga\y,

corresponding to each orbit Oi, have been obtained after carefully selecting a vertex y for Oi, and

have to be used in the calculation of the right-hand side of each equation. Thus, it is worth using

memory space to save a mapping from each orbit index i to its corresponding G′. This is helpful

since, for every orbit, the algorithm piece for the right-hand side must search for subgraphs

isomorphic to G′ in H, so it is good to have quick access to the G′ corresponding to Oi. Better yet,

instead of keeping a mapping from every orbit index i to G′, we could keep a mapping from i to

orbit index j, where Oj is an orbit in graphlet Gb
∼= G′ from the same graphlet enumeration as

Ga. More specifically, Oj would be the orbit in Gb such that vertex x ∈ Oi maps to a vertex in Oj

for the isomorphism Gb
∼= G′. For instance, orbits 59, 65, 68 and 70, correspond to graphlets G24,

G26, G27, and G28 respectively. These graphlets, after getting a vertex y removed, they all result

in a G′ that is isomorphic to G7, as pointed out by [8] (see Figure 3.2). Vertex x in orbits 59, 65,

68 and 70, ends up in orbit 12 (from G7) after removing y from those graphlets. Therefore, we

can save the following mappings in a hash table: {(59, 12), (65, 12), (68, 12), (70, 12)}. There is a

significant advantage in this approach: as we compute the right-hand side of the linear equation

for O59, the algorithm finds all subgraphs isomorphic to its G′ in H, that is, all G7’s. Then, when

we are computing the right-hand side of O65, O68 and O70, we do not need to search again in H

for subgraphs isomorphic to their respective G′, because we already found those subgraphs in a

previous iteration. Finally, if we look at Equation 2.2.2, the term c(EG′) is the number of common

neighbors for a particular extension set in G′. These values are also independent of the host graph,

so they can be computed in advance and re-utilized.

For a better illustration of our implementation of a flexible ORCA, see the high-level design of the

application in Figure 3.3. The components shown in the diagram are:

1. geng wrapper. This is the entry point of the application. It receives k as an argument and

uses Nauty’s geng utility to compute all non-isomorphic, connected graphs (graphlets) from

2 to k vertices. The generated graphlets are in G6 format [14].

2. Orbit calculator. This is a C program that internally calls the main nauty function to compute

the orbits of each graphlet received by the geng wrapper.
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Figure 3.2: Several graphlets result in the same G′ = Ga\y with x in the same orbit, e.g. G24, G26, G27 and

G28 all become G7 after removing y, with x in O12

Figure 3.3: High-level architecture of our flexible ORCA implementation. Each box represents an application

component, whereas each arrow represents data going in or out of each component. Orange

boxes enclose the core functionalities of the orbit counting algorithm.
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3. G6 Converter + Orbit Parser. This module processes the output from the orbit calculator,

converting all graphlets from G6 format to JGraphT SimpleGraph objects [19]. JGraphT is a

widely used Java library to handle graphs. Our converter module also saves all the orbits in

plain old Java arrays.

4. Matrix Generator. This module takes all the graphlets and their orbits and computes the

left-hand side of the linear system. It contains all the logic in Algorithm 2 that is related to

the left-hand side, and it can use either one of the definitions of extension sets to do so.

5. Triangular Matrix Sorter. This module is necessary to arrange the rows and columns of the

linear system and make it triangular. Read section 3.5 for more details on this module.

6. R.H.S. Calculator. This module computes the right hand side of the system for each input

host graph. It reuses some information that is determined in advance by the matrix generator,

such as the extension sets for each orbit Oi.

7. Triangular System Solver. Simple solver for triangular linear systems. The output of this

module is written into one file per input graph. Each file contains the graphlet degree vector

for every vertex in the input host graph.

3.5. Triangular matrix sorter

With or without our new definition of extension sets, ORCA will create a triangular matrix for

several linear systems that need to be solved. However, the order in which Nauty generates graphs

and helps us find orbits is somewhat unpredictable. Therefore, the orbit enumeration generated

by geng and our Orbit Calculator will not have a specific order, causing the rows and columns

of the resulting triangular matrix to be shuffled. The matrix will not look triangular, making it

difficult to do back substitution and solve the system quickly. Since the same matrix will be used

to solve one linear system for each vertex in every host graph, it would certainly be valuable to

sort this matrix before completing and solving the systems for all the vertices.

Sorting a shuffled triangular matrix is generally a simple task (we could try sorting by the

number of non-zero entries), but in this scenario, our matrix is large and highly sparse. Many

rows and columns have the same number of non-zero entries. For this reason, we have included a

special matrix sorting procedure for large sparse matrices.
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Order E orig. timing E new. timing Matrix orig. timing Matrix new timing

k ≤ 5 63.49 33.72 1196.62 1209.44

k ≤ 6 331.91 198.46 14570.76 14106.49

k ≤ 7 4028.81 680.65 1329381.00 1307006.25

Table 3.1: Elapsed time for ORCA using original definition of extension sets vs. using fixed-point automor-

phisms. All times are in milliseconds.

3.6. Experiments

Our first set of experiments are focused on measuring the impact of the combinatorial improve-

ments described in Section 3.1. We look at the elapsed time required for computing all extension

sets using fixed-point automorphisms and compare that to the time it takes when we use the

original definition in [9]. We also observe how this improvement in computing extension sets

affects the total elapsed time of generating the matrix. Our tests were ran using different values of

k in a 4-thread AMD Opteron 4226 CPU, with 8 GB of RAM on Linux. Table 3.1 summarizes the

final results.

As we can see in Table 3.1, the improvement of computing extension sets using fixed-point

automorphisms is significant, and even more so for larger graphlet orders. However, the influence

of this improvement on the total time it takes to generate the matrix does not seem as large, even

though it also grows with higher values of k. We think this is because most of the computa-

tion effort in the algorithm is spent after the extension sets have been determined and we start

comparing all orbits against each other (see the for loop in Algorithm 2).
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Host Graph No. of Vertices Flexible ORCA Iterative Orbit Count

backbones_1DS3.grf 733 55661.64 49391.62

backbones_1BDV.grf 878 65952.61 64025.71

backbones_1D7E.grf 1673 135150.80 201278.45

backbones_140L.grf 2609 213529.37 511534.59

backbones_1AUJ.grf 3254 280887.00 784767.57

backbones_1AF7.grf 4445 367612.13 1459601.30

backbones_1BES.grf 4581 379104.79 1582779.36

backbones_1APM.grf 5607 450131.45 2368644.35

backbones_1DLO.grf 9113 856498.67 6387231.02

Table 3.2: Elapsed time for computation of graphlet degree vectors on different protein graphs. All times are

in milliseconds.

Result: Graphlet degree vector of every v ∈ V(H)

oi(v)← 0 (for all Oi ∈ O and for all v ∈ V(H));

Gk ← List of graphlets;

for Ga ∈ Gk do

for All distinct GH
a do

for v ∈ GH
a do

i← Index of orbit of v in GH
a ;

oi(v)← oi(v) + 1;

end

end

end

return {oi(v)|Oi ∈ O, v ∈ V(H)};
Algorithm 3: Simple iterative orbit counter

Our second set of experiments consists of comparing the computation of graphlet degree vectors

using our improved ORCA versus a simple iterative orbit counter like the one shown in Algorithm

3. For the input host graphs we have used a subset of the proteins dataset. The graphlet order we

used for this test was k ≤ 6 and both algorithms printed out exactly the same graphlet degree

vectors for the given host graphs. The performance results can be found in table 3.2. We can see

that for smaller host graphs, the iterative orbit counter seems to do slightly better, but for the

larger graphs, ORCA performs better by an order of magnitude.
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Conclusions

In this thesis we have studied graphlet degree vectors, which are composed of orbit counts of

a vertex given a particular orbit enumeration. We focused on improving the state-of-the-art

algorithm for computing graphlet degree vectors, the Orbit Counting Algorithm (ORCA). This

algorithm creates a triangular linear system for each vertex in a host graph, and the system

can be easily solved to obtain the desired graphlet degree vector. Both theoretical and practical

improvements have been made to the original implementation presented by authors Hočevar

and Demšar, by (1) re-defining the concept of extension sets by orbit and (2) providing a flexible

architecture able to compute graphlet degree vectors for any given graphlet order and any number

of input host graphs. The re-definition of extension sets helps us speed up the generation of the

matrix for the aforementioned linear system. We observed a significant improvement in the time

it takes to compute extension sets using our new definition, but the impact on the total time to

generate the matrix was not as high as expected. We do see that for graphlets of higher order, the

computation of extension sets has more influence on the total matrix generation time, so in those

cases our new definition has more relevance.

We tested our program on a set of protein graphs and compared its performance against a

simple iterative algorithm. We observed that our version of ORCA runs faster on larger graphs,

demonstrating scalability.
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Future work

As future work, we aim to improve memory usage of the application to be able to process

larger matrices. For graphlets in G8, the application would need to handle 77,275 orbits from

12,112 graphlets, which implies having to solve systems of 77,275 equations and unknowns, and

managing all the objects that we save in memory for re-use and better speed (G′, mappings of G′

onto H, common neighbor counts, etc.). We also want to study the nested loop in ORCA in order

to further optimize the algorithm. We already know that any orbit Oi is only related to an orbit

Op if the graphlet containing Op has at least as many edges as the graphlet containing Oi. This is

the reason why the resulting linear system is triangular. In this loop we skip those orbits from

graphlets of lesser edges, but we suspect that there are other iterations that can be skipped, given

the very high sparsity of the resulting matrix (most of its entries are zero).
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