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Abstract

Novel Detection and Analysis using Deep Variational Autoencoders

Tucker B. Graydon

Supervising Professor: Dr. Ferat Sahin

This paper presents a Novel Identification System which uses generative modeling tech-

niques and Gaussian Mixture Models (GMMs) to identify the main process variables in-

volved in a novel event from multivariate data. Features are generated and subsequently

dimensionally reduced by using a Variational Autoencoder (VAE) supplemented by a de-

noising criterion and a β disentangling method. The GMM parameters are learned using

the Expectation Maximization(EM) algorithm on features collected from only normal op-

erating conditions. A one-class classification is achieved by thresholding the likelihoods

by a statistically derived value. The Novel Identification method is verified as a detection

method on existing Radio Frequency (RF) Generators and standard classification datasets.

The RF dataset contains 2 different models of generators with almost 100 unique units

tested. Novel Detection on these generators achieved an average testing true positive rate

of 97.31% with an overall target class accuracy of 98.16%. A second application has the

network evaluate process variables of the RF generators when a novel event is detected.

This is achieved by using the VAE decoding layers to map the GMM parameters back to

a space equivalent to the original input, resulting in a way to directly estimate the process

variables fitness.
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Chapter 1

Introduction

Current systems in the Integrated Circuit (IC) manufacturing and fabrication industry de-

pend on the reliability and availability of the process equipment. Any failures of process

machinery mean down time, ruined products, resources lost, and an overall increase in the

cost of ownership for the company. Tools such as RF plasma generators are critical in the

IC fabrication process. In order to maximize production and minimize cost of ownership,

the reliability and operation of these components is critical. There are currently tools avail-

able to monitor system health, however the ability to analyze the symptoms of the failure

can dramatically shorten machine down time, keeping cost of ownership low.

Novel event detection, specifically fault detection and identification are a derivative of

statistical process control. In recent years it has been shown that the addition of machine

learning leads to better fault detection [3]. Current fault detection methods are based on

modeling a system and detecting deviations from a model of a normal system. Previous

work has been done with regard to modeling systems and classifying operations as nor-

mal or not-normal. Gaussian Mixture Models [4] [2] [5], Support Vector Machines (SVM)

[6], Radial Basis Function Networks (RBFN) [7][8], Deep Autoencoders [9] and Novelty

Detection have been explored by Bowen et al. and Chandreshekar et al. Their work on a
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modified Novelty Detection Framework (NDF) has been an inspiration for the work pre-

sented in this paper. The results of the NDF as well as Bowen’s embedded application

validate the additional need for an initial report analyzing the fault event at the input level.

This novelty analysis methodology will attempt to utilize previous one-class classifica-

tion methods along with generative neural network architectures in order to detect a novel

event as well as relate the learned one-class classifier parameters back to the original pro-

cess variables. By relating the classification model back to the input space the fitness of

each process variable can be estimated and can be used to reduce the down time of the

system.

This paper outlines the use of β-Disentangling, Denoising Variational Autoencoders (β-

DVAE) with a GMM one-class classifier as a fault detection and analysis system for RF

plasma generators. The remainder of this paper will follow this outline: Section II defines

β-DVAE and GMM, Section III explains the proposed method in detail, and Section IV

summarizes the experimental results.
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Chapter 2

Background Literature

One-Class Classification

The basis of machine learning is that a set of data which represents some parameters or

features of a system where all possible inputs and outputs are uniformly represented. This

is labeled as the training set of data. In the field of fault analysis and detection there is

no practical way of obtaining faulty data from all possible modes of fault or failure. It is

more common that there exists significant data of the desired mode of operation. Typically,

fault analysis methods utilize multi-class classifiers, in these multi-class situations machine

learning methods such as support vector machines, neural networks, radial basis functions

and Bayesian networks are used. Typical machine learning methods rely on the availability

of data for training the models. Therefore, the machine learning methods can only be as

successful as the data available during training. For multi-class methods both the target and

non-target class data must be available. There is a common difficulty in collecting data from

non-target classes, specifically non-normal operation modes. Since there is an immense

difficulty associated with collecting reliable data from every possible mode of failure there

has been a paradigm shift towards learning only the normal modes of operation for a system

rather than attempting to differentiate non-normal from the normal modes.
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The assumption of one-class classification is that information is only available from one

class, the target class. The problem one-class classification poses is defining a boundary

around the target class in order to maximize target acceptance and minimize non-target

acceptance. The two most popular one-class realizations are density based and boundary

based approaches. Density based methods estimate the densities of the training data and

determine threshold values. Estimating the densities can be accomplished using many dif-

ferent distributions such as Gaussian, Poisson, Bernoulli and mixtures of these. Density

based methods can be very effective as long as there is sufficiently large training data and a

proper model is applied. In the case of limited training samples, density based methods will

not generalize the data appropriately. It is therefore appropriate to solve the problem with

the available data and use boundary methods to separate the target data. The commonly

used boundary based methods include k-means, k nearest neighbor (KNN), and support

vector data description (SVDD). These boundary based methods are capable of working on

small dataset sizes but are heavily reliant on distance measures and very sensitive to feature

scaling.

Mixture Models

Mixtures of distributions are commonly used as mathematical methods for statistical mod-

eling of a set of data. Mixture models have been applied as clustering and latent class

analysis and are generally favored for their ability to provide descriptive models for a data

distribution. A typical mixture model with regards to clustering assumes a set of N × M
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dimensional data can be represented as a finite number of K components, with some un-

known proportions.

The general formulation of a mixture model is as follows: An observed random vari-

able is denoted as y1, ..., yN such that y j is a random vector with probability density func-

tion f (y j) ∈ RM and j = 1, ...,N. Therefore y j contains M measurements of the jth ob-

served sample of random variables and Y = (yT
1 , ...y

T
N)T contains all observed samples.

The probability density function of an observed random variable, in parametric form for a

K-component mixture is:

f (y j; Ψ) =

K∑
i=1

πi fi(y j; θi) (2.1)

The Ψ term here represents any unknown parameters of the mixture model and can be

expressed below, where a ξ term is used to represent all a priori parameters in θ.

Ψ = (π1, ..., πK , ξ
T )T (2.2)

Letting π = (π1, ..., π
T )T be a vector of mixing weights where

∑K
i=1 πi = 1. Equation 2.1

is the general form of a mixture model. For the complete realization, a distribution must be

assumed in place of f (×), the most frequently used being the Gaussian distribution.



6

Gaussian Mixture Models

The Gaussian Mixture model is a mixture model that assumes data is approximately Gaus-

sian distributed.

Figure 2.1: The selection of k centroids is key for fitting the data. A low k may cause an over-
generalized model and a high value will lead to overfitting.

A Gaussian Mixture Model is defined as a combination of k combinations of Gaussian

densities. A Gaussian density in d-dimensional space is characterized by a mean µ ∈ Rd

and a d× d covariance matrix Σ [10][11]. The Gaussian density function is then defined as:

g(x|µ,Σ) = (2π)−d/2|Σ|−1/2exp
(
−

1
2

(x − µ)T Σ−1(x − µ)
)

(2.3)
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A k component Gaussian mixture is defined by:

p(x) =

k∑
i=1

πig(x|µi,Σi) (2.4)

Where πi are weight values for each mixture and g(x|µi,Σi) is the ith mixture density.

The weighted densities are summed into a Gaussian mixture model. The target class and

outliers can then be identified by thresholding the calculated Gaussian likelihoods where µ

and σ are the mean and standard deviation of the training data’s log-likelihood values.

Lth = µL − λ
√
σL (2.5)

There are two popular methods for learning the parameters of the mixture models, Ex-

pectation Maximization (EM) and Variational Bayesian Inference. The EM algorithm is an

iterative process used to calculate the maximum likelihood estimation (MLE) with miss-

ing or unknown data. An iteration of EM is comprised of two steps, an expectation step

followed by a maximization step. In the expectation step, the unknown or missing data is

estimated with respect to the observed data and the current estimates of the model parame-

ters. Then the maximization step maximizes the likelihood of the data with the assumption

that the missing data is known. This process iterates until the model parameters converge.

Generative Modeling

The goals of generative modeling are two-fold: (1) Learn a latent representation of a com-

plex, high dimension dataset to encourage higher cluster/class separation and (2) Learn
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a model to generate accurate samples from the latent variables. When applied with one-

class classification the generative model encodes the data to latent representations for easier

classification [12] and can scale a model learned in the latent space to the input space. The

remainder of this section defines variational autoencoders, the denoising criterion, β-VAE

and GMMs for one-class classification.

The traditional autoencoder architecture has been utilized since the 1980’s as a method

for linear and non-linear dimension reduction. The fundamental principle of the autoen-

coder is the bottleneck design where an input is mapped down to a lower dimension and

then remapped to reconstruct the ordinal data. This mapped latent variable set is com-

monly used for training machine learning models in a less computationally intensive space.

However, the networks’s ability to apply non-linear mappings is limited to the non-linear

activation functions applied in the hidden layers. Utilizing activations such as sigmoid or

tanh allow for non-linearities in the mapping but significantly increase the risks of dimin-

ishing gradients in larger networks.

There have been attempts to increase the flexibility and strength of the autoencoders

latent variable mappings. Denoising criteria, sparsity and contractive penalties, as well as

stochastic parameterizations of layer weights have been applied to create more salient and

unique latent variables. This push for better encoding of high dimension data has also been

spurred on by growing interest in the field of generative models and deep learning. These

new methodologies learn to map the inputs to latent dimensions and then attempt to sample

the latent variables in order to generate artificial output images.
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Autoencoders

Some of the generative modeling architectures discussed above exploit a particular type of

neural network, an auto-associator, this is also called an autoencoder or a Diabolo network.

There are also connections between the autoencoder and Restricted Bolzman Machines

(RBM). Because of the simplicity of training a shallow autoencoder network they have long

been used to initialize larger networks or to aid in the training of much deeper networks

where each layer has an associated autoencoder that can be trained separately.

An autoencoder is trained to encode an input in some representation such that the input

can be reconstructed from that representation. Therefore the target is the input itself. If a

single hidden linear layer and a mean squared error is used as a criterion for training the

network, the k hidden units learn a projection of the data into the k principal components

of the data. This architecture converges to match principal component analysis (PCA) pro-

jections. Changing the hidden layer to a non-linear function causes the network to behave

very differently from standard PCA and kernel PCA with a non-linear kernel. This non-

linearity allows the network to capture multi-modal aspects of the input distribution. The

most common generalization of this design switches the mean squared error for minimizing

a negative log-likelihood of reconstructing the input:

LRE = − log P(x|c(x)) (2.6)

where c(x) is the encoding function of the network. The main goal is that c(x) is a
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distributed representation that captures the main factors of variation in the data.

Figure 2.2: A Standard Autoencoder Layout

There is a large risk in the design of these networks. Given there are no other con-

straints on the system, an n-dimensional input and a hidden layer with a size greater than n

has the potential to learn the input exactly, learning the identity function for the mapping.

It has been disputed introducing constraints such as early stopping and L2 regularization

with stochastic gradient descent can allow an over-complete hidden layer to learn useful

representations, however this still introduces more constraints than just an over-complete

layer and is beyond the scope of this research. Instead, or in addition to adding regular-

ization to the network, one strategy is to incite marginal noise in the encodings which will

be discussed in later sections. Other methods used to force the autoencoder to learn useful

representations include imposing a sparsity constraint on the reconstruction/loss criterion,

as well as introducing stochastic layers rather than the typical hidden layers.
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Denoising Criterion

One of the central objectives of machine learning is the ability to generalize new config-

urations of observable variables from training data. In the most general sense this means

determining how to redistribute the probability density associated with each training exam-

ple from the empirical distribution. One approach to achieving this goal is through manifold

learning which is attempting to model an embedded lower dimensional manifold that the

high dimension data originates from. Parzan density estimation and principal component

analysis (PCA) have been used for this in the past, however they suffer from isotropic vari-

ances or are limited to only linear manifolds. In a majority of manifold learning methods,

the local shapes for the manifold are defined by a basis indicating the plausible directions

of variation, i.e. a tangent plane to the point on the manifold. Most methods then diverge

on how to combine these local tangential planes along the manifold in order to model the

global manifold structure or density. The focus on local generalizations for these methods

leads to issues with erratic manifolds that have many peaks and valleys. This correlates

with the curse of dimensionality where, in order to learn the global manifold, the required

training examples increases exponentially with manifold complexity. Recently non-linear,

non-locally generalizing manifold learning methods have been produced using deep learn-

ing methods such as autoencoders. Denoising and contractive autoencoders (DAE, CAE)

have great promise as manifold learning methods that can achieve local generalization with-

out being restricted to local learning.

The approach of both the denoising autoencoder and the contractive autoencoder relate
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Figure 2.3: The denoising criterion modifies a typical autoencoder by adding a stochastic mapping
layer to locally corrupt an input.

by either physically varying the training data locally with corruption, or by adding a pe-

nalizing term targeting local variances. The contractive autoencoder modifies the objective

function of traditional autoencoders by adding the Frobenius norm of the Jacobian of the

input and the latent encoding. This regularizing term penalizes the sensitivity of the input

features to local variances. The denoising approach corrupts an input random variable (x)

using a known conditional distribution C(x̃|x). The DAE is trained to estimate the reverse

conditional g( f (x̃)) or P(x|x̃) in order to determine a consistent estimator of P(X).

The typical autoencoder structure takes an input x ∈ [−1, 1]d, and maps it to a hidden,

latent representation z ∈ [−1, 1]d′ by a deterministic mapping z = fθ(x) = Wx + b, parame-

terized by θ = {W, b}. Here W is a d′ × d weight matrix and b is a bias vector. The z latent

representation is then mapped back to a “reconstructed” output vector y ∈ [−1, 1]d. This
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Figure 2.4: Corruption from a Manifold perspective. Assume data x is concentrated on a low
dimension manifold. Corrupted examples are created by applying a corrupting process C(x̃|x), these
will lie further from the manifold. g( f (x̃)) is then used to project them back onto the manifold [1].

mapping is defined by y = gθ′(z) = W′z + b′, with θ′ = {W′, b′} . The weight matrix W′

of the reverse mapping can have additional constraints imposed such as W′ = W, which

is termed tied-weights. Using this method each input variable x is mapped to to a latent

variable in z which is then reconstructed to y. The parameters of this model are optimized

to minimize the average reconstruction error between x and y as shown in Eq. 2.7.

θ∗, θ′∗ = arg min
θ∗,θ′∗

1
n

n∑
i=1

L
(
xi, zi

)
= arg min

θ∗,θ′∗

1
n

n∑
i=1

L
(
xi, gθ′

(
fθ(xi)

))
(2.7)

Here L is any loss function such as squared error L(x, y) = ‖x − y‖2 or if the data can be

considered analogous to bit vectors or probabilities, the cross-entropy loss (Eq. 2.8) may

be used.
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LH(x, y) = −

d∑
k=1

[
xk log yk + (1 − xk) log(1 − yk)

]
(2.8)

The denoising criterion modifies the original autoencoder by corrupting the input data

point and training the network to predict/reconstruct the original, uncorrupted input. The

corruption process, defined as C(x̃|x) represents the conditional distribution over the cor-

rupted samples (x̃), given the original input x. By training an autoencoder with this new

input the network is learning the reconstruction distribution, Preconstruct(x|x̃).

In traditional autoencoders the addition of corruption to the input layer is commonly

used to increase the encoding and decoding network’s resilience to noise in the input data.

VAEs with the denoising criterion can be trained similarly to the way denoising autoen-

coders are trained:

1. Sample an input with injected noise x̃ ∼ p(x̃|x)

2. Sample z ∼ q(z|x̃) and

3. Sample the reconstructed data from the decoder network pθ(x|z) [13][14].

Since the inference network has been modified by the injected noise the objective function

is modified from the traditional VAE:

Ddvae(θ, φ, x) = KL(q̃φ(z|x̃)||pθ(z)) (2.9)
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Variational Autoencoders

Autoencoding variational Bayes was proposed by Kingma and Welling as an approach to

efficiently estimate the posterior inference. The aim of this method of inference is to ap-

proximate a joint distribution Q(x; θ) over a latent variable space x in order to approximate

the true joint distribution P(x) using the Kullback-Liebler Divergence to define “closeness”.

When this method of inference is utilized with the architecture of neural networks, the sim-

ilarity to traditional autoencoders is the rough bottleneck design and the target class being

the input itself. The similarities to autoencoders end there. The loss function used by a

VAE includes the typical reconstruction loss such as mean squared error or smooth L1 loss

as well as a divergence term for the approximate posterior being estimated.

Variational Bayes

A core problem in modern statistics is the approximation of complex probability densities.

Bayesian statistics frame inferences as a calculation of the posterior. From the perspective

of the core problem, this leads to Bayesian models that have difficult posteriors which need

to be approximated.

One popular method of approximating the posterior is known as Markov Chain Monte

Carlo (MCMC) Sampling. This method relies on repeat sampling given the prior and a

likelihood function. Since this method inherently relies on the volume of samples for ac-

curacy, the accuracy of the estimated posterior increases the longer the methods runs. A

perfect MCMC model can be generated given infinite time which is not a viable solution
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given real world resource restrictions.

This is where Variational Inference methods can be a more viable option. Variational

Inference is a machine learning approach to solving these probability density approxima-

tions. When comparing Variational Inferencing (VI) to MCMC methods, it is noted that VI

is faster and better at scaling with larger data than MCMC.

Variational Inference aims to use a latent variable space for optimizing conditional den-

sities given a prior. Variational inference turns the approximation problem into an opti-

mization problem by optimizing the fit of “variational parameters” in the latent distribution

such that the KL divergence is minimized for the density of interest. The conditional den-

sity given an observed input variable x and the latent variable z is as follows:

p(z|x) =
p(z, x)
p(x)

(2.10)

p(x) =

∫
p(z, x)dz (2.11)

In order to calculate the p(x) term, known as the evidence, the latent variables are

reduced from the joint density shown in Eq. 2.11. This integral term is not always available

in a closed form or is an exponential amount of time necessary to solve it. VI does not

aim to solve this intractable solution but to find a lower bound to the term and optimize

around the lower bound. A family of densities D is specified over the latent variables with

each q(z) ∈ D being a candidate for approximating the conditional. The optimization is

to minimize the KL divergence of the candidate and exact conditional. This amounts to
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solving an optimization problem rather than an intractable integral.

q∗(z) = argminq(z)∈DKL(q(z)‖p(z|x)) (2.12)

Here q∗(·) is the optimum approximation of the conditional given the family of densities

D. This solution still has a dependence on log p(x) from the KL divergence calculation, as

shown below.

KL(q(z)‖p(z|x)) = E[log q(z)] − E[log p(z|x)] (2.13)

KL(q(z)‖p(z|x)) = E[log q(z)] − E[log p(z, x)] + log p(x) (2.14)

Decomposing the KL divergence reveals an existing dependency on the evidence. Since

this calculation is still intractable, optimization over a different objective that is equivalent

to the KL divergence is performed. Declaring the log p(x) equivalent to a constant in Eq.

2.14 the negative KL divergence can be used as a lower bound of the evidence, this is

dubbed the Evidence Lower Bound (ELBO).

ELBO(q) = E[log p(z, x)] − E[log q(z)] (2.15)

ELBO(q) = E[log p(x|z)] − KL(q(z)‖p(z)) (2.16)

Equation 2.16 shows that the ELBO can be described as the combination of an expected
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log likelihood and the KL divergence between the p(z) prior and the q(z) candidate. Dis-

secting the ELBO terms reveals how VI can optimize the placement of z values over this

objective. The first term is the log likelihood of q(z) mapping values to configurations

in the latent variables that explain the observable data. The second term is the negative

KL divergence of the candidate and the prior, this promotes densities that are similar to the

prior. In this way, the objective is attempting to find a balance between likelihood and prior.

Figure 2.5: Kingma and Wellings’ autoencoding variational Bayes method with the reconstruction
term ε for backpropagation.

It is also a interesting that the first term in the ELBO equation 2.16 is the expected

complete log likelihood which can be optimized by the Expectation Maximization (EM)

algorithm. EM uses the fact the ELBO equation is the log likelihood ( log p(x) ) when the

candidate is the joint conditional, q(z) = p(z|x). EM will be discussed in further detail in

later sections. While EM assumes the E[log p(z, x)] is tractable, a variational Bayes EM is

possible where the expectation calculation is replaced with a lower bound on the marginal

likelihood estimation over the latent variables and parameters.
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Autoencoded Variational Bayes

Kingma and Welling introduced a practical estimator for the lower bound and its derivatives

utilizing the neural network architecture of autoencoders. A approximate posterior in the

form of qφ(z|x) is assumed, though qφ(z) can also be used if the estimator is not conditioned

over x. Under certain conditions, for a chosen approximate posterior qφ(z|x), the random

variable z can be re-parameterized using the differential transformation gφ(ε, x) of auxiliary

noise ε ∼ N(0, I) :

z̃ = gφ(ε, x) with ε ∼ p(ε) (2.17)

The appropriate selection of a distribution for p(ε) and function qφ(ε, x) will be dis-

cussed in a later section. For now, form Monte Carlo estimates of expectations of some

function f (z) w.r.t. qφ(z|x):

Eqφ(z|xi)[ f (z)] = Ep(ε)

[
f (gφ(ε, xi))

]
'

1
L

L∑
l=1

f (gφ(ε l, xi)) where ε l ∼ p(ε) (2.18)

Applying this technique to the variational lower bound (Eq. 2.16) yields Kingma and

Welling’s Stochastic Gradient Variational Bayes (SGVB) estimator.

Given an observation x, the inferred posterior distribution of the latent variable z is

described by qφ(z|x). The prior p(z) is then assumed to be a isotropic unit Gaussian

p(z) ∼ N(0, I); a Bernoulli distribution is also commonly used [15]. The observational
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model is then defined by a parametric distribution pθ(x|z). This system is modeled us-

ing an autoencoder structure with the encoder/inference network learning φ and the de-

coder/generative network learning θ.

The objective of the VAE is to maximize the marginal likelihood of the observed x in

expectation over the whole distribution of z.

Dvae(θ, φ, x) = KL(qφ(z|x)||pθ(z)) (2.19)

L̃vae(θ, φ, x) = Eqφ(z|x)(log pθ(x|zi)) −Dvae (2.20)

The first term in Eq. 2.20 is the reconstruction accuracy of the network’s output to

the original input. The second term is the Kullback-Leibler divergence (KL), from Eq.

2.19, of the posterior to the prior, which acts as a regularizer. However, in order for back-

propagation to be used on the variational parameters φ, z needs to be re-parameterized as a

function of i.i.d noise (ε) and the output of the encoder network[15] shown in Eq. 2.21.

z = gφ(ε, x) (2.21)

ε ∼ N(0, I) (2.22)

β - Disentangled Representation

Research into disentanglement has become increasingly popular with the introduction of

powerful generative methods such as VAEs and Generative Adversarial Networks (GANs).
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The definition of disentanglement is closely related to the development of these methods,

it is the process by which key aspects of the input data are encoded into specific latent

dimensions. A simple example can be given where an input dataset consists of colorful

geometric shapes of multiple sizes. A perfectly disentangled latent variable space would

have a latent variable representing the color of the object, another variable would encode

the shape present and another may map to the size of the shapes. By having a perfectly dis-

entangled representation such as this, any possible color, shape and size combination could

be generated with just these three latent variables. This aspect of reducing and isolating

features to easily controlled variables drives current improvements in generative modeling.

The stronger the encoded features are the more likely a meaningful sample can be gener-

ated from the network.

β-VAE is a modified VAE method for learning disentangled latent representations of

data in an unsupervised manner [16]. The method introduces a hyperparameter β which

weights the KL divergence term of the standard VAE (β = 1) objective as defined in Eq.

2.23. A disentangled representation is defined as one where single latent units are sensitive

to changes in single generative factors, while being invariant to changes in others [17]. An

example being a 3D object dataset where the learned disentangled latent variables encode

the scale, orientation, color and object identity.

Dβ−vae(θ, φ, β, x) = β · KL(qφ(z|x)||pθ(z)) (2.23)

Varying β controls the regularization constraint on the network and can be viewed as
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pressure to learn the disentangled representations [16]. A β-VAE with β = 1 is equivalent

to the original VAE equation by Kingma and Welling [15]. Therefore, a β > 1 is key for

applying pressure on the network during training. There is a trade-off between reconstruc-

tion accuracy and the quality of the representations in z with higher β values and so β must

be optimized for the applied dataset and dimension of the z feature space.
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Chapter 3

Proposed Method

This chapter outlines the proposed method of detecting and analyzing novel events using a

β-VAE network with a GMM classifier. The chapter is organized as follows: first the data

set collection method and organization are discussed, and the preprocessing methods used.

The design of the β-VAE network is outlined and the GMM classifier is outlined as well.

This classifier is composed of two parts, the latent classifier model and the projection of the

model parameters to a different feature space for process variable processing. Finally, the

model parameter mappings are outlined with the use of Lediot-Wolf covariance estimation

in order to represent the GMM in the process variable space.

Figure 3.1: The System Overview for Novel Detection and Identification
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Dataset

Figure 3.2: Data Samples from the MNIST Dataset.

In order to demonstrate the β-VAE network can operate as a standard classification

method, as well as novel analysis, standard datasets were utilized to compare the β-VAE

method to state-of-the-art classifiers. The two most common multivariate two-class datasets

were selected from the UCI Machine Learning Repository [18], multi-class datasets can be

used as well with one class being chosen as the target one-class. The cancer evaluation

dataset, as well as the ionosphere testing datasets were chosen to compare classification

performance. The MNIST handwriting dataset was also used as validation the β-VAE net-

work was successful at encoding and reconstructing digits [19]. Table 3.1 outlines the
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Table 3.1: Dataset names, sample counts, and class descriptions.
Dataset # Attributes # Target # Non-Target Target Label Non-Target Label
Cancer 10 458 241 Benign Malignant
Ionosphere 34 225 126 Good Bad
MKS LVG3527A 35 279 899 Normal F1,F2,F3
MKS LVG3560A 35 328 428 Normal F1,F3

attributes, sample counts and target class for each dataset. In order to adhere to one-class

classification techniques the target class chosen was the class most likely to represent nor-

mal conditions. For the cancer dataset the benign class was considered the target class and

for the ionosphere data the “good” class was the target class. The state-of-the-art classifiers

used for comparison were: k-Nearest Neighbor (k-NN) [20], Support Vector Machine with

a radial basis kernel function (SVM-RBF) with Principal Component Analysis (PCA), and

GMM with PCA [2]. These methods were chosen in order to compare simple methods

such as k-NN, as well as methods similar to the proposed approach, such as SVM-RBF and

GMM with PCA.

The primary dataset that was focused on in the experimental results was operational

data collected from the MKS LVG3527A 27MHz RF generator and the MKS LVG3560A

60MHz generator [4][2]. Multivariate, time-series data, or fingerprints, were collected and

provided by MKS ENI Products. These fingerprints were collected from generators during

normal operating conditions during three different load conditions. The load conditions

were Fifty Ohms, Short and Open. These conditions simulate full operational loads of the

RF generators. Along with the known normal operational data, additional fingerprints were

collected while generators were operating with 3 seeded faulty conditions; which are listed

below:
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1. Faulty Amplifier

2. Poor Solder Joints on Resistors

3. Poor Solder Joints on FETs

These non-normal conditions were chosen to closely mimic scenarios where the current

quality control measures experience difficulty identifying non-normal operations. In order

to evaluate the data, the fingerprints of each generator were partitioned into training, vali-

dation and testing. The normal fingerprints were split into 60% training and 20% validation

and 20% testing while the non-normal fingerprints were separated 40/60% for validation

and testing respectively.

Preprocessing

Before the data could go through the β-VAE network it needed to be processed in order to

learn faster and more accurately. First the training data is rescaled to a maximum of +1 and

a minimum of −1.

Xscaled = −2 ·
X − min(X)

max(X) − min(X)
+ 1 (3.1)

Then each variable has its mean subtracted in order to zero-mean the signals. All pa-

rameters of preprocessing are generated using the training data and are then used on the
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validation and testing data for consistency.

β-DVAE Network

The β-DVAE model is designed with traditional VAE architecture in mind. It is comprised

of a stochastic encoding network and a decoding network which maps inputs into a sub-

space z. The encoder has an initial denoising layer, this has intentionally been designed

to be overcomplete since this has shown to produce better manifold learning. The level of

noise injected can be controlled by a hyper parameter which modifies the magnitude and

standard deviation of the Gaussian distribution the noise is generated from. The output of

the denoising layer is the input to the stochastic encoding layer which produces a µ and Σ

matrices. The z data is generated from sampling a Gaussian distribution defined by these

µ and Σ terms. The dimension of these outputs is controlled by a hyper parameter, this

parameter defines the size of the z variable and the final compression size of the input data.

The z Term is then passed through two decoding layers which mirror the layer sizes of the

inputs, one maps z to the overcomplete space while the second maps it to the reconstructed

input space Y . Figure 3.3(a) shows the network topology and function mappings.

The network is trained using the DVAE objective function with the β parameter modi-

fying the KL-divergence term. The KL-divergence takes the µ and Σ generated every mini-

batch and calculates the derived Gaussian distribution’s divergence from a predetermined

distribution. For the purposes of this research, a zero mean and unit variance Gaussian has

been chosen. The β term is multiplied into the KL-divergence to encourage meaningful
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feature encoding in the z space. The reconstruction loss is also calculated then added to the

KL-divergence term, this loss is determined by the mean squared error of the reconstructed

Y and original input x. Figure 3.3(b) shows this loss calculation as a flow diagram.

Dβ−dvae(θ, φ, β, x) = β · KL(q̃φ(z|x̃)||pθ(z)) (3.2)

L̃β−dvae(θ, φ, β, x) = Ep(z|x̃)(log pθ(x|zi)) −Dβ−dvae (3.3)

The network can be trained using any standard optimization method such as Stochastic

Gradient Descent, Adadelta or ADAM [21] as well as any additional forms of regularizing

and batch control. All results reported will utilize minibatchs with ADAM optimization

and no additional regularization techniques.
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Figure 3.3: Proposed Method Process flow. The forward pass (a) and the loss calculation (b).
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GMM Classification

Once the β-DVAE model has been trained and the input data is represented as latent vari-

ables, GMM learning and validation is performed. This method uses a k-component mix-

ture of Gaussians to learn the model parameters. The model is built component-wise, ap-

plying expectation maximization (EM) until convergence [11]. The stopping criteria is a

predefined number of components determined through choice or through a search algo-

rithm for the k that maximizes the likelihood of the training data. From the training dataset

the model parameters are as follows:

• M(k × q) - mean vectors of mixture.

• C(q × q) - covariance matrix of mixture.

• W(k × 1) - mixing weights.

Where k is the number of mixtures, and q is the number of features per sample in the

dataset. The training data used to fit the mixtures contains only samples that have been

labeled as normal. This ensures the learned GMM encompasses only the expected modes

of operation and rejects all others.

The fitness of a sample with respect to the parameters of the model is quantified through

the calculation of the likelihood that it’s feature vector belongs to each component k. The

log of the likelihood values for each k component is weighted by W and summed to deter-

mine the log-likelihood of the sample belonging to the mixture.
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Classification using the learned model is achieved with one-class classification tech-

niques. Since this approach assumes information is only available for the target class, a

threshold is used to provide a binary decision [22]. This threshold is statistically deter-

mined after training. The threshold value is defined in Eq.2.5, where µL and σL are the

mean and variance of the log-likelihood of the training data. An additional parameter, λ, is

used to parameterize the threshold for optimization.

Classifier Estimation in n-Dimensions

A majority of novel detection methods use a reduced dimension classification approach.

However, while analyzing detected novel events in a latent data space is effective, most

feature reduction methods abstract the relationship of input variables to latent variables

making relating any analysis back to the original data space difficult. The learned map-

pings from the β-DVAE model can both embed inputs into a condensed feature space and

relate the learned low dimensional classifier parameters back to the input data space. This

allows a model trained in a low dimension to perform classification, then have its param-

eters related back to the original input space to provide per-variable likelihood analysis at

the observable input level.

In order to map the classification model parameters to the original input dimension (n)

using the β-DVAE transformations, any parameter that is defined as a point in the space can

be mapped using the decoding network. For GMMs this means each component’s means
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can be easily related back to the process variable level seen in Eq. 3.4 and the mixture

weights do not need mappings at all.

There can be a problem with mapping the covariance however, if the covariance is full,

one where each component has a variance with every other component, or tied. A tied co-

variance can have the diagonal easily mapped without any issue however tied covariances

are limiting and don’t allow whole modeling of the data. In order to relate a full covariance

to the process variable space the GMM must be sampled and the sample set remapped to

the input space. Here the new full covariance can be estimated and the GMM can be re-

constructed in the input space without having been learned there.

µ̂k = WDAE−decoder · (WVAE−decoder · µk + BVAE−decoder) + BDAE−decoder (3.4)

Generating samples from a GMM is similar to sampling from a normal Gaussian, how-

ever, the mean and covariance components will be weighted by the mixing terms. This

makes GMM a popular generative model for some tasks. A sample set must be large enough

to be a good representation of the GMM or the resulting mapped covariance will impact

classification performance. The sample set is mapped to the process variable space using

the decoding stages of the β-DVAE network[13]. The new covariance can be estimated

from these new samples in the input space. Classic empirical covariance calculations on

large datasets such as this one can be unstable and result in unconditioned and un-invertible
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matrix. Therefore, the Ledoit-Wolf covariance estimation is used in order to avoid any is-

sues ensures a well-conditioned and invertible covariance matrix [23] [24].

With the GMM components in the process variable space the model can be applied as a

classifier for novel detection as well as perform a per-component fitness estimation in order

to highlight any individual components that are not performing as per the learned model.
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Chapter 4

Results

Latent Model Results

The β-DVAE network was applied to the cancer, ionosphere, MNIST and MKS generator

datasets. The network was trained in PyTorch on a Nvidia GTX-980 using an ADAM

optimization on the gradients and Glorot-uniform initialization for all weights. Algo-

rithm parameter selection was necessary for latent dimension size (z), the disentangle-

ment term β, the number of mixtures (k) and the threshold term λ. A Grid search method

was used in order to determine the optimal parameter values such that z ∈ {1, 2, 3, ..., 33},

β ∈ {1, 2, 3, ..., 17}, k ∈ {1, 2, 3, ..., 25}, λ ∈ {0.5, 1.0, 1.5, ..., 5.0}. The network was trained

until the loss was stabilized to changes less than 1e−6.

An additional measure to verify the stability and consistency of the learned VAE map-

pings, the MNIS handwriting digit dataset was used to encode the 28x28 grayscale images

of the numbers 0 through 9. The training set was comprised of 60, 000 examples with all

classes, the test data was 10, 000 digits. An example of the training digits is shown in fig-

ure 3.2. The samples were reshaped to 1x784 vectors and were fed into the exact same

network setup as the MKS with the input size modified to accommodate the larger input
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vectors. The β parameter was then adjusted in order to show the effect that a higher value

would have on the embedding of the data. The latent space was grid sampled and the sam-

pled values were reconstructed into 28x28 images and displayed for visualization of how

the image aspects are varied over the latent space. Figure 4.1 displays the embedding plots

and reconstructions.

For the classification datasets, training data was mapped to the latent space, where the

GMM was trained with EM. Figure 4.2 displays an embedding of the MKS generator data

into 2 latent dimensions with classification labels discerned by color. Classification re-

sults are reported as classification accuracy (ACC), true positive rate (TPR), and specificity

(SPC) with standard deviations from 10 runs using the test data [25]. From Table 4.2,

the GMM one class classifier trained on data encoded by the β-DVAE is comparable in

performance to the state-of-the-art classifiers with classification accuracy within 2% on all

datasets. The β-DVAE is as good as the GMM that was trained on data reduced by PCA,

showing this is comparable to other one-class methods.

The two GMM approaches are compared using the true positive rates in Table 4.1. Since

the true positive rate is an indication of how well a classifier models the learned class, it

is a key criteria for evaluating one-class classifiers. By this criteria the β-DVAE is com-

parable to the GMM using PCA in both the latent dimension as well as the input dimension.

The size of the latent features was varied from 1 to the original input size 33 for both the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Latent 2D mapping of MNIST digits with reconstructed digits sampled from the latent
space. (a)(b) β = 1, (c)(d) β = 2, (e)(f) β = 7
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Figure 4.2: A 2D embedded view of MKS generator normal operation samples (green) and seeded
faults (purple).

Table 4.1: One-Class Classification comparison of True Positive Rate of normal class.
Generator β-DVAE-Latent β-DVAE-Decoded PCA GMM
LVG3527A 97.31 (0.04) 97.21 (0.04) 98.54 (1.72)
LVG3560A 99.29 (0.01) 99.27 (0.01) 99.87 (0.50)

PCA and β-DVAE feature extraction methods. The results of the trained GMMs were taken

over 10 trials for each feature size and displayed in Fig. 4.4 and 4.5. For both methods the

GMM parameters were set similarly; k = 3, β = 2 and λ = 2. The PCA result takes longer

to stabilize with smaller latent spaces and had a larger variance in performance at all levels

compared to the β-DVAE mappings.
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Figure 4.3: Network Loss during training over 1000 epochs. Mean squared error was used for the
reconstruction loss and a β weighted KL divergence was added to the MSE loss.

Table 4.2: β-DVAE-GMM comparison with state-of-the-art classification methods [2]. Results are
reported as mean per-class accuracy of 10 trials with standard deviation in parenthesis.

Dataset k-NN SVM-RBF PCA-GMM β-DVAE-GMM-Latent β-DVAE-GMM-Decoded
Cancer 95.86 (1.11) 95.32 (1.94) 95.57 (1.26) 95.98 (1.21) 93.38 (2.63)
Ionosphere 85.88 (3.18) 87.52 (2.32) 88.51 (2.59) 90.99 (1.70) 87.44 (1.7)

Table 4.3: Number of mixtures, Accuracy, True Positive Rate and Specificity of Transformed
GMMs. Results are reported as mean of 10 trials with standard deviation in parenthesis.

Dataset Dim. ACC TPR SPC K λ

Cancer 4 95.98 (1.21) 97.87 (1.01) 98.38 (0.38) 4 3
Cancer 8 93.38 (2.63) 92.86 (3.67) 92.63 (4.12) 4 3
Ionosphere 10 90.99 (1.41) 88.75 (0.59) 88.09 (0.93) 2 5
Ionosphere 34 87.44 (1.7) 82.29 (3.02) 78.02 (4.09) 2 5
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Figure 4.4: Performance Metrics accuracy and true positive rate of the GMM classification with
PCA as the feature extractor. Results are reported as the mean of 10 trials while varying the number
of PCA components used for features.

Figure 4.5: Performance Metrics accuracy and true positive rate of the GMM classification with
β-DVAE Encoder network as the feature extractor. Results are reported as mean of 10 trials while
varying the size of the encoded feature vectors.
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Decoded Model Results

The trained GMM was then used to generate a new distribution at the input level by sam-

pling points from the mixtures and applying the decoder network [13]. Distribution pa-

rameters were recalculated and a decision threshold was determined in the new space. The

GMM in the latent space and the input space are compared across all performance measure-

ments in Table 4.3. The transformed GMM has accuracy, true positive rates and specificity

comparable to the GMM in the latent space. The transformed GMM is as effective as the

latent GMM in classification.

Figure 4.6: Per-variable likelihood analysis by the β-DVAE-Decoded model (k = 3) of three types
of non-normal generator data. The log-likelihoods have been normalized by the threshold value
indicated in order to emphasize variables that are non-normal.

The transformed mixture model allows for the log-likelihood calculation per-variable

in order to analyze the fitness of that variable to a normal operation state. The system vari-

ables are listed in table 4.4. This analysis was applied to the three non-normal operational

modes of the MKS LVG3527A generator. The log-likelihoods of each variable is shown

in Figure 4.6 for each non-normal mode. From the analysis, it is easy to see how each
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Figure 4.7: Per-variable likelihood analysis by the β-DVAE-Decoded model (k = 8) of three types
of non-normal generator data. The log-likelihoods have been normalized by the threshold value
indicated in order to emphasize variables that are non-normal.

fault responds across system inputs and which variables are most affected. A per-variable

report such as this gives engineers and technicians who are repairing the generator an ini-

tial estimate of system variables affected and which was the most severe. This can prevent

unnecessary part replacement and can provide a health-monitoring service for aging gen-

erators.
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Table 4.4: MKS Generator System Variables, Environmental Variables, and Lifetime indicators for
fault analysis.
Variable # System Variable Name Variable # System Variable Name Variable # System Variable Name
1 Forward 13 PA02Current 25 PA Flange Temp
2 Reverse 14 PA03Current 26 Frequency
3 Dissipated 15 PA04Current 27 AC On Time
4 Drive Setpoint 16 PA05Current 28 AC Cycles
5 Rail Setpoint 17 PA06Current 29 RF On Time
6 GammaMagnitude 18 PA07Current 30 RF Cycles
7 GammaPhase 19 PA08Current 31 Contactor Closes
8 LifetimeForward 20 Fan Current 32 Fault Clears
9 LifetimeReverse 21 PA Voltage 33 Solenoid Cycles
10 LifetimeDissipated 22 Driver Current
11 LifetimeDelivered 23 Ambient Air Temp
12 PA01Current 24 Total PA Current

Figure 4.8: Decoded GMM model performance over varying sizes of the latent feature vector.
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Figure 4.9: Decoded GMM model performance over varying values of K
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Chapter 5

Conclusions

In this study, fault detection and identification were explored with the goal of utilizing

the latent detection classifier in higher dimensions as a fault identification model. The

dataset was collected from MKS Solutions from radio frequency plasma generators. It

contained labeled samples that were representative of normal systems operation and three

simulated faults. A β disentangled, denoising variational autoencoding neural network was

created to encode the data to a latent feature space, as well as to decode the data back to a

reconstructed input.

A one class classification method was implemented and trained on only data from the

target class. Gaussian mixture models were selected due to their historical success as a fault

detection approach. The performance of the feature extraction and classifier was compared

to other state-of-the-art methods on standard datasets such as the cancer and ionosphere

classification sets. The MKS data was then modeled and the classification results achieved

a average accuracy of 97.31%.

The GMM parameters were decoded using the decoding network of the β-DVAE model

and re-parameterized GMM performance was then compared to the state-of-the-art clas-

sifiers’ performance. The decoded model was able to achieve an average accuracy of



45

97.21%. Finally, the fitness of the generator data was measured and evaluated against

the fault events.
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Chapter 6

Future Work

In this study, β disentanglement methods were used to increase feature encoding efficiency.

There are many other methods of feature disentanglement including generative adversarial

networks (GANs) and deep convolution inverse graphics networks (DC-IGN).

Testing other parametric classification methods such as k-means and Linear Discrimi-

nant Analysis with the presented reconstruction method can help to validate this research

further.
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