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Abstract

Tunnel field-effect transistors (TFETs) have long been considered as a replacement

technology for metal-oxide-semiconductor field-effect transistors (MOSFETs) in low-

power digital applications due to their low OFF-current (IOFF ) and small subthreshold

swing (SS ). These benefits are somewhat neutralized by the low ON-current (ION ) ex-

hibited by TFETs fabricated with large bandgap (Eg) semiconductors such as silicon.

To offset this drawback, different material systems can be used, with material opti-

mization required for the channel material, the gate stack, and their corresponding

geometries. This study considers the novel idea of using 2-dimensional (2D) semicon-

ductors for the channel material in TFETs, and the potential effects of such a channel

on the physics of the resulting device. After this theoretical discussion of TFETs, the

simulation requirements of such a device are introduced as well as the two quantum

simulation systems of choice, Vienna Ab initio Simulation Package (VASP 5.4) as

offered by Materials Design and NanoHUB's NEMO5. Topics examined with simula-

tion theory in mind include the density functional theorem (DFT) and convergence

criteria. Previously fabricated Esaki diodes from Pawlik et al . are simulated using

NEMO5 and the necessity of bowing application to the tight-binding parameters is

shown. Tables clarifying the tight-binding parameters of InGaAs from the NEMO5

all .mat file and their associated bowing parameters are included. The simulations

performed with the bowing parameters included are shown to match the experimental

data almost exactly. Initial VASP 5.4 simulations for GaAs and InAs are shown and

the practicality of DFT using the generalized gradient approximation (GGA), HSE06

with GGA, and Hartree-Fock methods is discussed; HSE06 with GGA is shown to

produce simulations closest to reality, though there is a significant computation time

trade-off. A designed experiment varying the lattice constants of MoS2 and WTe2 is

performed and included as an example of the simulation system's capabilities. A plot

of VASP 5.4 and NEMO5 MoS2 bandstructure results is also included.
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Chapter 1

Introduction and Motivations

The intention of research is to further the respective field’s knowledge in a specific

domain, but as it is easier to continue along the path of previous research than it is to

take up something entirely new, sometimes these spheres of expertise become either

irrelevant or so specific they lose meaning for anyone in the field. To avoid this, the

research proposed in this study is new and unfamiliar at the Rochester Institute of

Technology. To advance in a new field requires previous knowledge to build on. This

means that while the primary interest of this research is in developing two-dimensional

(2D) tunneling field-effect transistors (TFETs) through a quantum simulation study,

simpler devices with real data available for comparison such as III-V Esaki diodes

previously fabricated and tested by Dr. Sean Rommel’s research group in the past

must first be simulated. Once these simulations are performed and their results are

determined to match reality, 2D TFETs can then be similarly simulated and these

simulations can be considered valuable. This way, an understanding of future research

is intricately tied to the research of the past.

Academia is a potent breeding ground for ideas to feed industrial progress, espe-

cially in the semiconductor industry. As such, looking at the ideas currently being

funded by industry giants is one of the best ways to determine where to focus future

research and this was done prior to this study. The Center for Low Energy Sys-

tems Technology (LEAST) established in 2013 and led by Notre Dame University is

1



CHAPTER 1. INTRODUCTION AND MOTIVATIONS

composed of 12 university microelectronics research centers and funded by the Semi-

conductor Research Corporation (SRC) and the Defense Advanced Research Projects

Agency (DARPA). Each of these 12 centers receives approximately $6 million annu-

ally for their research. The research of interest at these centers is the development of

more energy-efficient integrated circuits with a focus on ultra-low voltage and steep

transistors. There is no mention on the LEAST website of III-V material devices, so

even though there’s an industrial market for III-V' s, there is not a lot of research po-

tential there because funding for such devices has been withdrawn. From this observed

shift in research areas in the industry towards non-III-V and non-CMOS devices, 2D

tunnel FETs are considered.

One of the main problems with transistor scaling and increased chip density is

that it leads to increased power density on the chip. This requires that the supply

voltage (VDD) be decreased to reduce power consumption which in turn results in an

exponential increase in the leakage current. In metal-oxide-semiconductor field-effect

transistors (MOSFETs) only the carriers with enough energy to exceed the source-

channel potential barrier, and thus enter the channel from the source, will contribute

to the ON-current (ION ) of the device. [2] The subthreshold swing (SS ) parameter

refers to the gate-to-source voltage needed to change the drain current by one order

of magnitude [4]. Eq. 1.1 can be used to calculate the ideal SS . [17, 18]

SS(T ) =
kT

q
ln(10) (1.1)

For the non-ideal SS , there is a dimensionless prefactor n which accounts for

non-idealities, so that the equation is:

SS(T ) =
kTn

q
ln(10) (1.2)
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CHAPTER 1. INTRODUCTION AND MOTIVATIONS

where the non-ideality factor is defined as:

n = 1 +
γ

2
√

Ψsa

(1.3)

Ψsa refers to the surface potential and γ is the body-effect coefficient.

A small SS value corresponds to a faster switching speed and allows operation

at lower supply voltages, and is thus desired [8]. The minimum subthreshold swing

(SSmin) in a MOSFET is limited to approximately 60 mV/decade at room tempera-

ture (300 K) because the carriers follow the Fermi-Dirac (FD) distribution and their

energy is bounded by the fixed slope kT where k is the Boltzmann constant and T

is the temperature [2].

Tunnel field-effect transistors (TFETs) differ from MOSFETs in that their ION is

facilitated through a process called band-to-band tunneling (BTBT) at the source-

channel potential barrier. In BTBT a considerable number of carriers with energy

lower than the potential barrier will make it into the channel region because BTBT

enables carriers to go through the potential barrier instead of limiting transport into

the channel to only those that are energetic enough to get over the barrier. This

results in the possibility of lowered SS values in TFETs; demonstrations have been

shown with SSmin values as low as 21 mV/decade for a vertical III-V silicon (Si)

nanowire with bias voltage (VDS ) of 0.1 V and 1 V. [2] A derivation of the SSmin

as shown by Wei et al . as relevant for TFETs is provided in this study. Note that

because the BTBT probability is often much smaller than 1, ION for TFETs is usually

smaller than for MOSFETs, and special considerations must be taken to change this

[8].

Owing to its tunneling-based current generation scheme, the structure of a TFET

is different than that of a MOSFET. Fig. 1.1 (a) and (b), taken from Datta et

al ., show a typical double-gated (DG) n-type TFET structure with asymmetrical

3



CHAPTER 1. INTRODUCTION AND MOTIVATIONS

source and drain doping and an intrinsic region. [2] Note that TFET structures do

not require two gates, and this device in particular is designed with two gates for

increased gate control.

Figure 1.1: (a) The DG n-type TFET structure shown with carriers as arrows. (b)
Transmission electron microscopy (TEM) micrograph of a fabricated TFET device. (c)
Homojunction vs. heterojunction TFET carrier tunneling.1[2]

For the transport cases shown in Fig. 1.1(c) to occur, a gate bias (VG) is applied to

either the top or bottom gate of the TFET which will cause the conduction band (EC )

of the intrinsic layer to lower. With enough voltage on the gate the EC of the intrinsic

layer can lower below the valence band (EV ) of the source, thus creating a window for

the electrons to go from the source into the intrinsic region and then into the drain.

As VG is decreased, the bands will go back to their regular configurations and the

tunneling window will close. Fig. 1.1(c) also shows that heterojunction TFETs can

allow for increased ION when compared to homojunction TFETs by decreasing the

1Reprinted from Tunnel FET technology: A reliability perspective, vol. 54, no. 5, S Datta and
H Lie and V Narayanan, pages 861-874, Copyright (2014), with permission from Elsevier.
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tunnel barrier (Ebeff ) [2].

The operation of TFETs is limited by two parameters: the SS and the ON-OFF

current ratio, sometimes referred to as the onset strength, both of which will be

discussed in detail [8, 9]. Optimal SS and onset strength can be achieved through the

selection of channel material, TFET gate stack, and the corresponding geometries [7].

The channel material and geometry in particular will be explored in depth.

Interfacial defects can increase SS considerably, thus negatively impacting device

performance and overcoming the primary benefit of TFET devices. This SS degra-

dation can be alleviated through the exploitation of dangling bond-free surfaces pro-

vided by two-dimensional (2D) materials. Transition metal dichalcogenides (TMDs)

are particularly promising 2D materials due to their tunable bandgap (Eg) size, abil-

ity to adjust the Fermi level through doping, and receptivity to layer stacking. [9]

The latter of these benefits will be considered.

Though the interest is clearly in fabricating TMD TFET devices, it would be irre-

sponsible to start by jumping headfirst into making such devices due to the prohibitive

cost of fabrication and materials. Instead, the research in this study is focused on

determining the best quantum simulation packages and obtaining an understanding

of how to use these systems most effectively.

First, the necessity of quantum simulations is deliberated. Quantum simulations

software packages such as the Vienna Ab initio Simulation package are generally

significantly more expensive than their TCAD counterparts. The Rochester Institute

of Technology owns a license to the TCAD system Silvaco Athena and Atlas at

the time of this research and corresponding publication, so this software package

would have been the optimal choice to use. However, it is determined that TCAD

simulations are not thorough enough to adequately capture tunneling effects and the

negative differential resistance which is the defining characteristic of the Esaki diode

and TFET, and this is discussed in detail.
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The goal of quantum simulations are E − k plots and I − V characteristics that

are similar to real data. Thus, the code must converge onto a single value. Each

iteration in a quantum simulation is composed of a guess, followed by a calculation

of the error (that is, the difference between two iterations), followed by an iteration

corrected using the error, etc., until the error is small enough, as set by the user. At

this point convergence is said to occur.

Once the two quantum simulation systems of choice are identified, previous Esaki

diode data is simulated in Purdue's NEMO5 package to determine how well the sim-

ulations corresponds to reality. The simulation model used originally is the virtual

crystal approximation (VCA); this corresponds to the tight-binding parameters used.

VCA assumes that the tight-binding parameters will vary linearly with the composi-

tion so that the two molecules of interest (in the case of this study, InAs and GaAs)

both contribute equally in the final composition, but this is not the case. Instead,

a correction factor called a bowing parameter must be applied. This bowing pa-

rameter is the empirical offset between the two molecules. Bowing parameters as

described in Luisier et al . are considered [15]. An overview of the NEMO5 tight-

binding parameters and what they correspond to in reality is included in this thesis.

The Esaki diode simulations are run using the regular VCA model and the model ad-

justed with the bowing parameters, and comparisons of the results are made. VASP

5.4 and NEMO5 results for MoS2 bandstructure simulations are plotted together in

this thesis, and this is the first step to calculating a set of bowing parameters for this

material system.

The density functional theory (DFT) is one solution to solving many-body Schrödinger

equations, and this is the fastest VASP 5.4 simulation method to run for bandstruc-

ture simulations. A comparison of this and two other available simulation methods

(DFT with GGA-PBE, HSE06 with GGA-PBE, and Hartree-Fock) is included in

this study. The simulation speed and accuracy are both considered. Lattice constant

6
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variation effects in VASP 5.4 are also considered for both standard III-V and MoS2

and WTe2 systems, as this sort of change corresponds to added strain or monolayer

directions, such as armchair or zigzag directions.
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Chapter 2

Diode and Tunnel FET Theory

2.1 Esaki Diode Introduction

Tunnel diodes were first discovered in 1957 by Leo Esaki when he noticed the

distinctive N-shaped transfer characteristic now called negative differential resistance

(NDR) that has come to define them. They are also called Esaki diodes for this

historical reason. [19, 20]

Tunneling occurs when a particle such as an electron actually penetrates the poten-

tial barrier if it is thin enough compared to the electron's Bloch wavelength. Seabaugh

and Lake refer to tunneling as a ghostlike passage which is a good way to think of it.

[20]

Tunnel diodes in particular are heavily doped on both p− and n−sides. They

exhibit both normal minority-carrier-based diffusion current and majority-carrier-

based tunneling current (the latter for low voltage conditions). Fig. 2.1 from Pawlik’s

doctoral thesis shows the transfer characteristics and band diagrams for the different

types of bias in a typical tunnel diode. [3]
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CHAPTER 2. DIODE AND TUNNEL FET THEORY

Figure 2.1: (a) I-V characteristic, and schematic band diagram for (b) reverse bias, (c)
equilibrium, (d) peak tunneling current, (e) minimum direct tunneling current, and (f)
diffusion current for a generic ETD. [3]

2.2 Subthreshold Swing Analysis for TFETs

Wei's group investigated the SS of TFETs by deriving a comprehensive analytical

model based on electrostatic and material effects. An analysis of their findings is used

to provide more understanding of TFET requirements from an operation stand-point.

The device and corresponding energy band diagram assumed in their derivation is seen

in Fig. 2.2. Relevant parameters in this figure as well as in the derivations to come

include: fs(E ), the FD distribution of electrons in the source region; fd(E ), the FD

distribution of electrons in the drain region; WT , the minimum tunnel width; Ecc, the

minima of the conduction band in the channel region; Evs , the maxima of the valence

band in the channel region; Evj , the maxima of the valence band at the source-to-

channel junction; Eg , the band gap; Efs , the source Fermi level; Efd , the drain Fermi

level; and ∆E , the allowed tunnel window contributing to tunneling transport. [4]

9
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Figure 2.2: (Top) The structure of a DG n-TFET device. (b) The band diagram of this
device.1[4]

The source-to-channel tunneling current (Ids) Wei et al . employed is derived from

making assumptions based on this device with respect to Eq. 2.1, the current for one

conduction mode in TFETs within the Landauer's formalism. [4]

Ids =
2q

h

∫ Evs

Ecc

T (E)[fs(E)− fd(E)]dE (2.1)

where q is the electron charge, h is Planck's constant, T (E ) is the BTBT probability,

and fs/d(E ) is the source-to-drain FD distribution. These assumptions include: (1)

the BTBT probability remains constant across the relevant tunnel window, which is

valid for a small (within a few kT) tunnel window, and (2) the FD distribution of

electrons in the drain region is small enough to ignore when compared to the FD

distribution of electrons in the source region, and (3) the Fermi function integral is

1Reprinted from (C. Wei, D. Sarkar, Y. Khatami, K. Jiahao, and K. Banerjee, Subthresholdswing
physics of tunnel field-effect transistors, AIP Advances, vol. 4, no. 6, June 2014) with the permission
of AIP Publishing.
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collected into a term FIntegral . The simplified tunneling current equation is then:

Ids =
2q

h
T (∆E)FIntegral (2.2)

where

FIntegral = kT ln
1 + exp (

Efs−Evs+∆E

kT
)

1 + exp (
Efs−Evs

kT
)

. (2.3)

The BTBT probability is found by solving the 2D Poisson equation for channel

potential. This is done by simplifying the Poisson equation into a 1D form through

a parabolic approximation, then using an analytic model cited by Zhang et al . that

defines the electrostatic potential profile around the tunnel junction in double-gated

(DG) TFETs. This is used to find the valence band maxima at the source-to-channel

junction, Evj :

Evj =
√

(Evs − Efs + δE)2 + γ2 + 2γ(∆Esc + Evs − Efs)− (∆Esc + Evs − Efs + γ)

(2.4)

where

∆Esc = Eg + δE + ∆E (2.5)

δE = (Ecc − Evs)
∣∣∣
Vgs=0

(2.6)

γ =
q2NA,effλ

2

εch
(2.7)

NA,eff = NA −
εox(∆Esc + Evs − Efs)

πq2ToxTch
(2.8)

λ =

√
εchToxTch

2εox
(2.9)

where NA is the source doping, εox is the permittivity of the gate dielectric material,

Tch is the corresponding thickness of the gate dielectric material, εch is the permit-

tivity of the channel material, and Tch is the corresponding thickness of the channel

11
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material.

Using Eqs. (2.4 - 2.9), the minimum tunnel width is defined as follows:

WT = L1 + L2 − λcosh−1(
∆E + δE − Efs + Ev,WT

Evs − Efs + δE
)−

√
2εch(Evs − Ev,WT − Eg)

q2NA,eff

(2.10)

where L1 and L2 are the depletion widths:

L1 =

√
2εch(Evs − Evj)

q2NA,eff

(2.11)

L2 = λcosh−1(
∆Esc + Evs − Efs − (Evs − Evj)

Evs − Efs + δE
) (2.12)

and

Ev,WT =
√

(Evs − Efs + δE)2 + γ2 + 2γ(∆E + δE + Evs − Efs)−(∆E+δE+Evs−Efs+γ)

(2.13)

Finally, the BTBT probability is found using the Wentzel-Kramers-Brillouin (WKB)

approximation and the two-band dispersion relation as established by Kane in his fa-

mous 1961 paper. [21, 4]

T (∆E) = exp(
−π
√

2mTE
3/2
g

4q( h
2π

)F̄
) (2.14)

where mT is the tunnel effective mass, and the junction electric field is given by

F̄ = Eg

WT
. As will be noted later in this thesis, full band structure consists of many

bands. In certain circumstances, Kane's 2-band model is adequate. Also, Kane

assumes a parabolic dispersion which is not always correct.

Equations (2.2 and 2.14) can be combined to define an equation for SS , which in

turn can be broken down into its contributions from the tunneling probability, SST ,

12
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and from the FD distribution, SSFD :

SS = (
dlog10(Ids)

d(∆E/q)
)−1 =

SSTSSFD
SST + SSFD

(2.15)

where

SST = (
dlog10(T (∆E))

d(∆E/q)
)−1 =

2
√

2ln(10)h/(2π)

−qπ
√
mTEg

dWT

d∆E

(2.16)

SSFD = (
dlog10(FIntegral)

d(∆E/q)
)−1 =

ln(10)kT

q
(1+exp(

Evs − Efs −∆E

kT
)ln(

(1 + exp(
Efs−Evs+∆E

kT
)

(1 + exp(
Efs−Evs

kT
)

)

(2.17)

Simulations using the preceding equations performed at room temperature for a

DG Si TFET with mT = 0.65m0 , NA = 3E20 cm−3, Tox = 1 nm, Tch = 10 nm, and

Eg = 1.12 eV resulted in Fig. 2.3. [4]

Figure 2.3: Simulated results of SS , SST , and SSFD as affected by change in the width of
the tunnel window ∆ E.2[4]

The ∆E axis of Fig. 2.3 is broken up into three regions corresponding to the

2Reprinted from (C. Wei, D. Sarkar, Y. Khatami, K. Jiahao, and K. Banerjee, Subthresholdswing
physics of tunnel field-effect transistors, AIP Advances, vol. 4, no. 6, June 2014), with the permission
of AIP Publishing.
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significant changes in SSFD . In region I, SSFD simplifies to [4]

SSFD,RegionI =
ln(10)kT

q
(1− exp(−∆E

kT
)) (2.18)

From this equation, as well as Fig. 2.3, it is observed that SSFD exponentially ap-

proaches zero as the tunneling window decreases in size. According to Wei et al . this

phenomenon is due to the FD distribution being truncated by the bandgap of the

source region. It is this region of operation, referred to as the onset stage, that Wei

et al . are most interested in because, as a result of the FD truncation phenomenon,

the onset stage will result in the SSmin for the system. To further highlight this focus,

recall that the first assumption made when deriving Eq. (2.2) is true for small ∆E

only; thus, the resultant equations, including those for the various SS values, are only

accurate for region I. Note that these equations, while not numerically accurate for

∆E > 2kT , still provide approximate qualitative models for SS in regions II and III.

[4]

It would follow from Eq. (2.15) and Eq. (2.18), as well as Fig. 2.3 that the SS at

the onset stage would result in a near-zero SS , but this is not the case. The reason

for this is that the OFF-current, (IOFF ) will dominate the low BTBT current, IBTBT .

An equation for OFF-current is as follows: [4]

IOFF =
2q

h̄

∫ +∞

Ecs

fs(E)dE =
2qkT

h̄
exp(

Eg + Evs − Efs
−kT

) (2.19)

This equation for IOFF does not include tunnel and gate leakage effects which would

result from factors such as interface states near the tunneling junction. The effects

of such interface states are a huge issue in TFETs, and this is discussed in depth in

later sections, but it is beyond the scope of Wei's group's research on SS physics in

Si and III-V TFETs. [4]

The hurdle posed by the OFF-current can be overcome and SS can be brought
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down if the BTBT current in the onset stage, ION , is larger than IOFF . The ratio

between ION and IOFF is called the onset strength of the device. Note that the

minimum SS , SSmin , occurs when the BTBT current is equal to the OFF-current;

that is,

SSmin = SS
∣∣∣
IOFF =IBTBT

(2.20)

To determine the optimal material and electrostatic parameter values for estab-

lishing a large onset strength, four main TFET parameters: source doping level (NA),

natural length (λ), bandgap (Eg), and tunnel effective mass (mT ) are changed and

their effects on ION and IOFF are simulated. Fig. 2.4 illustrates these findings. [4]

Figure 2.4: IBTBT in terms of ION (referred to as Ionset in the graphs) and IOFF for
homojunction and heterojunction TFETs as functions of NA, λ,Eg , and mT .3[4]

From Fig. 2.4 it can be seen that small λ and mT are always desired and there is

a simulated optimal NA value of approximately 3E20 cm−3 that corresponds to max-

imized ION ; for the latter, it is interesting to note that both lowering and increasing

the doping past this optimal value will correspond to lowered onset strength. Also, for

3Reprinted from (C. Wei, D. Sarkar, Y. Khatami, K. Jiahao, and K. Banerjee, Subthresholdswing
physics of tunnel field-effect transistors, AIP Advances, vol. 4, no. 6, June 2014), with the permission
of AIP Publishing.
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the case of heterojunction TFETs, small Eg is desired, while the relationship between

bandgap and onset strength in homojunctions is not clear-cut. [4]

The final element of the total SS left to consider in pursuit of SSmin are the

effects on SS of the tunneling probability, SST . Fig. 2.5 presents the effects of the

four critical TFET parameters previously examined in terms of onset strength (that

is: of NA, λ,Eg , and mT ) on SSmin and SST evaluated at ∆E = 2kT . [4]

Figure 2.5: SS and SST@2kT as functions of NA, λ,Eg , and mT .4[4]

The results of Fig. 2.5 at first seem contrary to logic: SST@2kT increases with

increased NA, and decreased λ,Eg , and mT , even though tunneling efficiency is known

to increase with these same changes in critical parameters. The reason for this is that

the increased NA, and/ or decreased λ correspond to a decrease in the depletion widths

L1 and/ or L2 , as seen in equations (2.11) and (2.12), respectively. These changes

in turn correspond to a decrease in the minimum tunnel width WT . TFETs with

small tunnel widths are affected more strongly by junction electrostatic effects, and

so the rate of change of WT with respect to ∆E , dWT

d∆E
.dWT

d∆E
will decrease accordingly

4Reprinted from (C. Wei, D. Sarkar, Y. Khatami, K. Jiahao, and K. Banerjee, Subthresholdswing
physics of tunnel field-effect transistors, AIP Advances, vol. 4, no. 6, June 2014), with the permission
of AIP Publishing.
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for devices with increased NA and/ or decreased λ. The effect this decrease in dWT

d∆E
, as

well as the decrease in either or both other two parameters Eg and mT , have on SST is

clear from Eq. (2.16) where these terms are in the denominator and thus correspond

to an increase in SST per their decrease. Wei et al . notes that this degradation in

total SS through the effects of intrinsic properties on SST is often wrongly overlooked

in the TFET community. [4]

Solutions to the problem of having both high ION and small SS suggested by

Wei et al . include the use of heterojunction materials to boost tunneling, as well as

using 2D semiconductors for the channel materials [4]. 2D semiconductors will be

considered next.

2.3 2D Semiconductors and their applications in conventional

FETs and TFETs

Atomic scale thickness is a huge benefit of using 2D semiconductors as channel

materials in ever-shrinking FETs. Conventional bulk semiconductors such as Si can

also be deposited at atomic thicknesses, but 2D semiconductors have multiple ad-

vantages over these bulk materials including dangling bond-free surfaces and fixed

thicknesses which can be reproduced consistently for the chosen number of layers,

resulting in minimal bandgap variation and carrier scattering. This is seen in Fig.

2.6 (a) and (b). [5]
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Figure 2.6: (a) and (b) demonstrate the advantages of using 2D materials over bulk
materials, (c) the degradation of carrier mobility with smaller layer thicknesses, and (d)
schematic of a DG 2D FET. IEEE c©2015.5[5]

The atomic thicknesses capability of the 2D channel devices results in devices with

superior electrostatics when compared to bulk channel devices; the fewer the number

of layers, the better the electrostatics [5]. This is in part because the 2D materials

provide increased gate control over the channel, resulting in higher electric fields at

the junction [6]. Eq. (2.21) from Ilatikhameneh et al . can be used to explain this

concept; note that the parameters for this equation are defined as part of the Wei et

al . SS derivation [6].

λ =

√
εch
2εox

(1 +
εoxTch
4εchTox

)TchTox) (2.21)

Scrutiny of Eq. (2.21) shows that the reduction of the channel thickness will also

result in a reduction of the device λ, and this is known to result in higher electric

5Reprinted from (C. Wei, K. Jiahao, D. Sarkar, L. Wei, and K. Banerjee, 2d semiconductor
fets-projections and design for sub-10 nm vlsi, IEEE Transactions on Electron Devices) with the
permission of IEEE c©2015.
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fields. The BTBT probability is exponentially dependent on the electric field, so

atomically thin devices also result in better tunneling, which means higher ION . [6]

Another benefit to 2D materials is that thinning 2D materials will increase the

bandgap significantly less than thinning a 3D material due to the weaker bonds be-

tween the layers of 2D materials. This is useful because increasing the bandgap

corresponds to a shortening of the tunneling window which means that the ION will

also be diminished. Besides this, monolayer 2D materials are known to have small

dielectric constants which also corresponds to increased ION . [6]

While carrier mobility decreases with decreasing layer thickness for all materials,

it is a slower decrease for molybdenum disulfide (MoS2) than for Si, which results in

MoS2 having a higher mobility than Si at the monolayer (1L) level. One demonstrated

hero device, as shown by Liu et al ., achieved a MoS2 1L mobility of 44 cm2/V · s,

significantly higher than the usual 13 cm2/V · s for the same material. This can be

seen in Fig. 2.6 (c). For comparison, consider that a 5 nm x 5 nm Si nanowire, given

that a Si unit cell is known to be 0.545 nm, is about 9-10 monolayers in height. [5]

According to Wei et al . most theoretical simulations of 2D semiconductor-on-

insulator (SOI) or DG FETs use inappropriate ballistic transport or poor back scat-

tering simulations instead of dissipative transport theory, as is required for accurate

predictions at and below the sub-10 nm node. Ballistic transport has been shown to

overestimate drain current for 8 nm channel lengths. [5]

A balance must be struck between the scattering events considered during simu-

lation and those ignored so that the simulations will be accurate but also computa-

tionally feasible. The approach taken by Wei et al . is summarized succinctly in Fig.

2.7. [5]
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Figure 2.7: (a) EC of a n-MOSFET in the channel region (that is, from source to drain)
with Büttiker probes inserted at every mesh point along the channel. (b) A single Büttiker
probe. (c) The simulation design. IEEE c©2015.6[5]

For their simulations, Wei et al . use an approach adapted from Venugopal et al .

[22] and Anantram et al . [23] use of Büttiker probes [24]; these are shown in Fig.

2.7 (a) and (b). The probes are inserted at each mesh point along the channel; each

probe will take as its inputs the momentum and energy of the carriers at its location

in the mesh, and its outputs will be the momentum and energy as changed by the

predicted scattering events of the carriers at the probe's location. It is important to

note that the probe will only affect the momentum and energy of the carriers at the

6Reprinted from (C. Wei, K. Jiahao, D. Sarkar, L. Wei, and K. Banerjee, 2d semiconductor
fets-projections and design for sub-10 nm vlsi, IEEE Transactions on Electron Devices) with the
permission of IEEE c©2015.
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given point in the channel, and not the quantity of carriers passing through. The

function of the probe is as follows: [5, 22, 23, 24]

1. Take as inputs the momentum and energy of the carriers;

2. Solve Poisson equation for the relevant electrostatics;

3. Solve the effective mass transport equation with a nonequilibrium Green's func-

tion (NEGF) for charge distribution and transmission;

4. Adjust the Fermi levels so that the net current at each probe is maintained to

be zero;

5. Solve NEGF again, this time for carrier density and density of states (DOS);

6. Determine the appropriate scattering strength (UP) from the carrier density

and DOS;

7. Finally, output the momentum and energy of the carriers as affected by the

calculated scattering strength.

In comparison, Ilatikhameneh et al .'s simulations are based on tight-binding (TB)

with a Poisson-quantum transmitting boundary method (QTBM) methodology. This

is equivalent to a more efficient form of solving the NEGF without scattering and is

performed by the NEMO5 simulation tool available through the NanoHub at Purdue

University. Because such simulations do not consider the scattering they can be done

computationally faster than those performed by Wei et al . but are also less accurate.

The monolayer TMD TFET simulated by Ilatikhameneh et al . is seen in Fig. 2.8 and

has the following parameters: channel length= 15 nm, source/drain length = 10 nm,

Tox = 0.43 nm, and NA/ND= 1x1020 cm−3. [6]
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Figure 2.8: Monolayer TMD TFET structure. IEEE c©2015.7[6]

Short-channel effects caused by lateral electric fields (that is, strong electric fields

caused by the source/ drain depletion regions being too close together) diminish

control of the gate and are a widespread problem in short-channel bulk semiconductor

FETs. These short-channel effects do not occur to the same degree in FETs with 1L

to three-layer (3L) 2D semiconductor channels because such channels are too thin

to maintain the significant lateral electric field strength. Instead, most of the lateral

electric fields in FETs with 1L to 3L 2D semiconductor channels occur in the gate

dielectric and through the spacers. Low-k dielectric materials are effective in muzzling

the lateral electric fields, but high-k materials provide better gate control; thus, a

compromise is reached in device design by selecting gate materials with high-k and

spacer materials with low-k . [5]

1L to 3L SOI and DG FETs with MoS2 channel simulations consistently surpassed

the SS and ION values simulated for Si ultrathin-body DG FETs. The DG 2D-channel

devices outperformed the SOI 2D-channel devices for 2L and 3L due to the effects of

the added lateral electric field through the 50 nm bottom gate dielectric of the latter

device; for this reason, the DG 2D-channel device is considered superior to the SOI

2D-channel device. [5]

Low-standby-power (LSTP) applications require high threshold voltage (Vth),

which corresponds to lowered ION . In contrast, high performance (HP) applications

7Reprinted from H. Ilatikhameneh, T. Yaohua, B. Novakovic, G. Klimeck, R. Rahman, and J.
Appenzeller, Tunnel-field effect transistors in 2-d transition metal dichalcogenide materials, IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits) with the permission of
IEEE c© 2015.
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require high ION , which corresponds to lowered Vth , and high-standby-power con-

sumption. LSTP is a direct function of SS , and HP is instead a function of device

parameters such as carrier mobility and DOS. Simulations by Wei et al . show better

performance for MoS2 FETs than for Si FETs for both HP and LSTP; the best de-

vice for HP is 2L, and the best device for LSTP is 1L. Devices with channels thicker

than 3L will have significantly degraded electrostatics, outweighing the benefits of

the higher DOS and increased carrier mobility provided by the increased layer thick-

nesses; thus, such channels should not be used for sub-10 nm nodes. According to

the simulations, the LSTP requirement cannot be met with a MoS2 channel device

beyond the 7 nm node. [5]

High carrier mobility and relatively low effective mass m0 are desired for all appli-

cations; while high mobility is always desired, care must be taken to ensure that the

latter is not excessively small as this can result in increased source-to-drain tunnel-

ing leakage. Fig. 2.9 includes available data on material mobility and corresponding

effective mass of 2D TMD semiconductors based on experiments and calculations

performed by various groups as presented by Wei et al . [5]
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Figure 2.9: Mobility and effective mass data for various 2D semiconductors. The green
block corresponds to the ranges required for HP operation; the orange block corresponds
to the ranges required for LSTP operation. IEEE c©2015.8[5]

From Fig. 2.9, WSe2 is clearly the better material in terms of both effective mass

and mobility. In fact, WSe2 is capable of meeting all requirements down to the 5.9 nm

node without any advanced techniques such as strain engineering, which is required

of materials such as MoS2 beyond the 7 nm node. [5]

Workable solutions for the sub-5 nm nodes include the use of anisotropic 2D

materials and TFETs. An anisotropic material has different effective masses along

the x - and z - planes; it has been found that a large effective mass in the transport

or z -plane mz can increase the density of states and boost ION . As seen in Fig. 2.10,

this results in useable materials for HP applications beyond the 5 nm node, but is

not useful for LSTP applications. [5]

8Reprinted from (C. Wei, K. Jiahao, D. Sarkar, L. Wei, and K. Banerjee, 2d semiconductor
fets-projections and design for sub-10 nm vlsi, IEEE Transactions on Electron Devices) with the
permission of IEEE c©2015.
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Figure 2.10: ION , seen as a color contour, is plotted as a function of effective mass along
the x - and z - planes for HP (right) and LSTP (left) applications at the 5.9 nm node. The
dashed blue lines correspond to isotropic materials. IEEE c©2015.9[5]

Ilatikhameneh et al . simulated multiple TMD TFETs with fixed IOFF = 1 nA/µm

at VG= 0 V. The results are seen in Fig. 2.11.

Figure 2.11: The transfer characteristics of various simulated TMD TFETs by
Ilatikhameneh et al . IEEE c©2015.10[6]

9Reprinted from (C. Wei, K. Jiahao, D. Sarkar, L. Wei, and K. Banerjee, 2d semiconductor
fets-projections and design for sub-10 nm vlsi, IEEE Transactions on Electron Devices) with the
permission of IEEE c©2015.
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Fig. 2.11 shows that optimal TMD gate material is WTe2, both in terms of SS

and ION . This is due to factors such as its small bandgap and effective mass. These

and other material parameters as well as the simulated results are seen in Table 2.1.

[6]

Table 2.1: Data corresponding to the TMD TFET simulations seen in Fig.2.11. Note that
effective mass/m0 is referred to as the reduced effective mass, m∗r . IEEE c© 2015. 11[6]

Material ION (µA/µm) Eg (eV) m∗r λ (nm)
WTe2 127 0.75 0.17 0.45
WSe2 4.6 1.56 0.21 0.41
MoTe2 2.3 1.08 0.32 0.5
MoS2 0.3 1.68 0.29 0.38

From these results WTe2 would seem the clear winner for use as a channel material

with a simulated ION almost 28 times as large as that of WSe2 [6]. This conclusion

sadly cannot be compared to Wei et al .'s findings because that group did not simulate

WTe2. They can, however, be compared to Fei et al .'s simulated results for 6 different

TMD TFETs with channel lengths of 12 nm and VD= 0.5 V [8]. These results are

listed in Table 2.2.

Table 2.2: TMD TFET simulations by Fei et al . me/m0 is the reduced electron effective
mass, and mh/m0 is the reduced hole effective mass. IEEE c© 2016.12[8]

Material Eg (eV) me(m0 ) mh(m0 ) SSmin

MoS2 1.66 0.42 0.54 48.3
WS2 1.81 0.30 0.39 56.1

MoSe2 1.43 0.48 0.59 49.4
WSe2 1.54 0.32 0.41 58.6
MoTe2 1.07 0.39 0.54 58.6
WTe2 1.07 0.25 0.34 71.2

10Reprinted from (H. Ilatikhameneh, T. Yaohua, B. Novakovic, G. Klimeck, R. Rahman, and J.
Appenzeller, Tunnel-field effect transistors in 2-d transition metal dichalcogenide materials, IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits) with the permission of
IEEE c© 2015.

11Reprinted from (H. Ilatikhameneh, T. Yaohua, B. Novakovic, G. Klimeck, R. Rahman, and J.
Appenzeller, Tunnel-field effect transistors in 2-d transition metal dichalcogenide materials, IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits) with the permission of
IEEE c© 2015.
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Table 2.2 tells a different story in terms of the best TMD channel material because

it lists the SSmin values for each of the materials, and WTe2 is the highest and worst

of these. This is because smaller bandgap and effective mass, as is the case for the

monolayer WTe2, results in lower ION but smaller onset strength and thus higher

SSmin . According to this data, MoS2 would be the best TMD material to use, though

it has been shown that this is untrue from the Wei et al . paper. [8] The trade-off of

SS and onset strength must be considered when choosing the TMD channel material

and makes the choice more difficult than at first expected. It should be noted that

Seabaugh et al . mention that as of 2015 no fabricated TMD TFETs have shown

sub-60 mV/decade SS .

For LSTP applications, TFETs with TMD channels are a viable solution due to

the numerous established advantages of 2D semiconductors. These include restraint

on tunneling leakage and therefore improvement of SS due to the dangling bond-free

surface of a 2D semiconductor, as well as increased gate control and increased ION

caused by having an ultrathin body. [5] Next, focus will shift on the effects of having

an ultrathin body in TFETs, as seen through an analysis of channel geometry, namely

in terms of fin thickness and channel length.

2.4 The Effects of Channel Geometry on TMD TFETs

Electric fields responsible for tunneling of up to approximately 20 MV/cm have

been observed in DG p-gallium nitride/intrinsic-indium nitride/n-gallium nitride (p-

GaN/InN/n-GaN) fin TFET tunnel junctions; this is five times higher than the max-

imum electric fields observed in IV and III-V tunnel junctions. The reason for this is

that this stack uses the physics of the heterojunction to positively influence tunneling

capabilities: specifically, InN has a bandgap of 0.7 eV which is narrow compared to

12Reprinted from (L. Fei, W. Jian, and G. Hong, Atomistic simulations of device physics in
monolayer transition metal dichalcogenide tunneling transistors, IEEE Transactions on Electron
Devices) with the permission of IEEE c© 2016.
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the GaN bandgap of 3.2 eV. The narrow InN bandgap is responsible for increased

inter-band tunneling and the wide GaN bandgap suppresses the OFF-current of the

TFET device. Fig. 2.12 is the device and its corresponding band diagram. [7]

Figure 2.12: (a) The TFET structure used for simulations, and (b) the simulated energy
band diagram of this device. IEEE c© 2015.13[7]

Dependences on the fin thickness LD and the drain (that is, the n-GaN layer) dop-

ing ND are observed from simulated transfer characteristics for a DG p-GaN/InN/n-

GaN TFET device. The transfer characteristics, which can be seen in Fig. 2.13,

correspond to the drain current per unit width ID/W , a variable synonymous to the

tunnel current, as a function of changing VGS . [7]

13Reprinted from (A. Seabaugh, S. Fathipour, W. Li, H. Lu, J. H. Park, A. C. Kummel, D.
Jena, S. K. Fullerton-Shirey, and P. Fay, Steep subthreshold swing tunnel fets: Gan-inn-gan and
transition metal dichalcogenide channels, 61st IEEE International Electron Devices Meeting) with
the permission of IEEE c© 2015.
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Figure 2.13: Synopsis TCAD transfer characteristics of (a) drain doping, and (b) fin
thickness dependence, with the device parameters as follows: gate length LG = 20 nm,
thickness of the InN layer tInN = 1.7 nm, thickness of the GaN layers tp−GaN = tn−GaN =
25 nm, equivalent oxide thickness EOT = 0.43 nm, and VDS = 0.5V. IEEE c© 2015.14[7]

Assuming a fixed drain doping ND of 1x1017 cm−3, an optimum fin thickness LD

is found to be between 10 to 20 nm; for LD < 10 nm, the ID/W will start to decrease

as the current cross section diminishes; similarly, for LD > 20 nm, the ID/W will

also decrease, though in this case as a result of lowered gate electrostatic control with

increased LD . Assuming a fixed fin thickness LD of 12 nm, increasing the drain doping

ND > 1x1018 cm−3 increases the density of carriers in the channel, thus reducing the

number of free states available for tunneling to occur; this directly correlates to a

decrease in tunnel current; contrarily, for changing ND < 1x1018 cm−3, the tunnel

current will remain unchanged. [7]

To supplement these findings, the behavior of a different device with changing

channel length is explored in the Fei et al . paper. The device is a DG TFET with

the monolayer MoTe2 used as the gate material. Unlike the device explored in the

14Reprinted from (A. Seabaugh, S. Fathipour, W. Li, H. Lu, J. H. Park, A. C. Kummel, D.
Jena, S. K. Fullerton-Shirey, and P. Fay, Steep subthreshold swing tunnel fets: Gan-inn-gan and
transition metal dichalcogenide channels, 61st IEEE International Electron Devices Meeting) with
the permission of IEEE c© 2015.
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Seabaugh et al . paper, this DG device, seen in Fig. 2.14 along with the atomistic

structures of the monolayer along the armchair (AD) and zigzag (ZD) directions, is

not a fin TFET, and so instead of the fin-thickness LD , the channel length LG is

varied and observed. [8]

Figure 2.14: (a) The DG monolayer TMD TFET device structure, (b) the atomistic
structure of the TMD monolayer along the ZD direction, and (c) the atomistic structure of
the TMD monolayer along the AD direction. IEEE c© 2016.15[8]

Fei et al . notes that the performance of the TMD TFET is orientation dependent;

for example, ZD can lead to higher ION , but no NDR, whereas AD has a very large

NDR. These differences are, however, beyond the scope of this study. [8]

In the corresponding simulation which uses the TMD material MoTe2, the channel

length LG is varied from 5 nm to 20 nm in increments of 5 nm with the drain voltage

VD = 0.5 V. The general transfer characteristics of the device with different gate

lengths are shown in Fig. 2.15. [8]

15Reprinted from (L. Fei, W. Jian, and G. Hong, Atomistic simulations of device physics in
monolayer transition metal dichalcogenide tunneling transistors, IEEE Transactions on Electron
Devices) with the permission of IEEE c© 2016.
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Figure 2.15: The simulated MoTe2 TFET transfer characteristics for different channel
lengths in the (a) AD, and (b) ZD directions. IEEE c© 2016.16[8]

Two conclusions can be drawn from Fig. 2.15: larger LG corresponds to smaller

OFF-current, and the ION is not a function of channel length. [8] From these two

papers, the impact of the channel geometry of different devices has been studied and

determined to be a significant source of variation in terms of device behavior.

2.5 TMD Coupling in TFETs

Heterogeneous TFETs can be made by stacking p-n junctions of different TMD

materials into what is known as couple configurations. To determine the most optimal

such couples, Gong et al . characterizes the individual TMD materials based on band

alignment. The results are seen in Fig. 2.16. [9]

16Reprinted from (L. Fei, W. Jian, and G. Hong, Atomistic simulations of device physics in
monolayer transition metal dichalcogenide tunneling transistors, IEEE Transactions on Electron
Devices) with the permission of IEEE c© 2016.
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Figure 2.16: Band alignment of various monolayer TMD materials. The grey columns
correspond to the conduction band minimum and valence band maximum and the green
columns are the corrected band edges. The Fermi level of each material is the blue line,
and the vacuum level is set at 0 eV.17[9]

According to Fig. 2.16, electrons at the EV of WTe2 and MoTe2 could easily tunnel

into the EC of ZrS2, ZrSe2, HfS2, and HfSe2. Gong et al . suggests the following

couplings: n-type source as WTe2, WSe2, MoTe2, or MoSe2 with p-type drain as

ZrS2, ZrSe2, HfS2, or HfSe2. [9] This is an interesting and note-worthy application

of TMDs in TFETs because it uses the TMD materials for what would typically be

the source/drain regions. When the two energy bands meet and open a tunneling

window, the channel is created out of these regions without the use of an intrinsic

layer.

17Reprinted from (C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, Band
alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect
transistors, Applied Physics Letters, vol. 103, no. 5, 2013) with the permission of AIP Publishing.
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Chapter 3

Quantum Simulation Theory

3.1 The Necessity of Quantum Simulations

Computer-aided design is the first step to reducing fabrication cost of new devices,

but determining the required software to use can be a challenge. This is considered.

Tunneling is calculated based on the assumption of straight-line tunneling paths

in the popular dynamic nonlocal band-to-band (DNL) simulation method, whereas

in the non-equilibrium Green’s function (NEGF) method, the electrostatic potentials

are obtained from self-consistent semiclassical Poisson calculations. Software packages

such as Silvaco primarily use DNL-type simulations, whereas VASP and nanoHub’s

NEMO are both quantum-based. Determining which type of simulation software

to use when simulating the desired devices is the necessary first step to conducting

novel research. The Rochester Institute of Technology’s Microelectronic Engineering

department has a license for Silvaco's Athena software at the time of this writing, so

this was the evident choice before massive drawbacks were recognized. The largest

of these is illustrated in the example by Jiang et al .; Fig. 3.2 compares simulation

results from DNL and NEGF results in a AlGaSb/InAs TFET (see Fig. 3.1 for

the simulated device geometry). The simulation results in this paper follow from

experimental results by Zhou et al. The parameters being varied in the simulations

are gate length (Lg) and undercut length (Luc). [25]
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Figure 3.1: (a) Device geometry of the simulated TFET design. (b) Band profile plotted
along dashed line in (a). IEEE c©2015.1[10]

Figure 3.2: Comparisons of dynamic nonlocal band-to-band (DNL) and non-equilibrium
Green's function (NEGF) simulation results. Note that the straight-lines correspond to the
DNL simulations and the lines with the bullets correspond to the NEGF simulations. IEEE
c©2015.2[10]

It is seen that the NEGF simulation results in a higher SS than the DNL method.

This observed difference is because the DNL model underestimates the contributions

from the direct source–drain tunneling in the simulated geometries. NEGF simula-

tions also take quantum-level scattering into consideration. Fig. 3.2 is an extreme

2Reprinted from (Z. Jiang, Y. Lu, Y. Tan, Y. He, M. Povolotskyi, T. Kubis, A. C. Seabaugh, P.
Fay, and G. Klimeck, Quantum transport in algasb-inas tfets with gate field in-line with tunneling
direction, IEEE Transactions on Electron Devices) with the permission of IEEE c© 2015.
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exaggeration of the required results because the experiment will look worse than the

TCAD simulation. Thus, the atomistic model produced via NEGF simulations is

required to show negative differential resistance (NDR) in the simulations. Deter-

mining NDR is pivotal to simulating both Esaki diodes and especially TFETs, so an

appropriate quantum simulator must be selected to continue with this research.

3.2 Choosing a Quantum Simulation Package

3.2.1 The Vienna Ab initio Software Package

The Vienna Ab initio Software Package (VASP) 5.4 is a simulation package capable

of computing an approximate solution to the many-body Schrödinger equation either

by solving the Kohn-Sham equations which will be discussed later in this chapter or by

other methods such as the Hartree-Fock solution. It has built-in Born-Oppenheimer

molecular dynamics, spin-orbit coupling, and strain application capabilities, among

many others. VASP is frequently used in the semiconductor industry for interface

studies and is one of few software packages capable of simulating non-standard in-

terfaces such as the 2D TMDs of interest in this study. The VASP 5.4 package was

commercially complied for RIT by Materials Design, Inc. as a part of their MedeA

software. Appendix B in this document offers a simple tutorial for using MedeA

2.22.2 for a general VASP 5.4 simulation.

3.2.2 NanoHUB’s NEMO

NEMO5 is offered and supported by the NanoHUB at Purdue University. There

are approximately 500 NEMO5 users, some industrial and most academic. NEMO5

can solve band structure or energy-momentum (E − k) problems directly through

user-selected solvers, the most common being the non-equilibrium Green's function

(NEGF). It is also capable of plotting I-V characteristics of devices built in the in-
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put deck of the file. In contrast with VASP, which is an Ab initio package, NEMO

uses empirical tight-binding which has been fit to VASP band structures. For fur-

ther reading, consider Yaohua Tan’s thesis from Purdue University. In this thesis, a

comparison is made as a sanity check. [26]

Fig. 3.3 shows the basic NEMO5 simulation flow.

Figure 3.3: NEMO5 Simulation flow.

As mentioned previously, simulations should have a fundamental basis on exper-

imental results. The simulation results must be compared to real data to determine

if they correspond to anything true. The best way to do this is to start with exist-

ing experimental data and try to recreate them using simulations. Such simulations

follow in the next chapter.

3.3 Quantum Simulation Theory

3.3.1 The Single-Body Problem

The energy-momentum (E − k) relationship of a crystalline solid is most of-

ten obtained by solving the Schrödinger equation for a one-electron problem. The

Schrödinger equation defines the total energy of a system and is as follows:

Ĥ(x)φ(x) =
−h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (3.1)

A hydrogen atom is composed of a single electron and a proton. In spherical
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coordinates, the Schrödinger equation for such a problem is shown in Eq. 3.2, with

Fig. 3.4 explaining the spherical coordinates.

Ĥ(r, θ, φ)ψ(r, θ, φ) = Eψ(r, θ, φ). (3.2)

Figure 3.4: The spherical coordinates of a hydrogen atom.

This single-electron problem can be solved explicitly. [27, 28, 29, 30]

3.3.2 Orbitals

The hydrogen atom wavefunctions, ψ(r, θ, φ), are the atomic orbitals. An atomic

orbital is a function that describes one electron in an atom. It is important to under-

stand the orientation and restrictions of each orbital when doing quantum simulations.

Fig. 3.5 shows the s , p and d orbitals and their various allowed states.
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Figure 3.5: Electron configuration in each orbital. [11, 12]

As shown by Vogl et al . and Jancu et al ., quantum models including an excited

s-like orbital, s∗, and excited d orbitals improve the simulation model fits of E − k

and effective mass plots. [31, 32, 33] This makes the relevant states for the type of

quantum simulations of interest s , p, and d . The s-sublevels have one orbital and can

hold two electrons. The s-orbital only forms sigma bonds. The p-sublevels have three

orbitals and can hold six electrons. The p-orbital forms both sigma and pi bonds.

The d -sublevels have five orbitals and can hold ten electrons. The d -orbital forms

sigma, pi, and delta bonds. [11, 12, 34]

3.3.3 Density Functional Theorem

In real world applications the systems of interest are extremely complicated; there

is no such thing as a “single-body” problem such as the solution for the hydrogen

atom expressed earlier outside an introductory course in quantum mechanics. The

systems of interest, at least in the semiconductor industry, are “many-body” solids.

The relevant interactions to consider when solving a many-body quantum system are
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the following:

• The nuclei kinetic energy,

• The electron kinetic energy,

• The nuclei Coulombic interactions,

• The electron Coulombic interactions,

• And the nuclei-electron Coulombic interactions.

The solid’s behavior can be described by the wavefunction ψ(r, θ, φ), which can

in turn be found by solving the Schrödinger equation. But of course, a Schrödinger

equation relating potentially millions of interactions as can be present at a transistor’s

interface is not the sort of problem that can be solved explicitly. Instead, the problem

must be significantly simplified by eliminating some of the interactions listed above.

[35, 36]

One specific solution to dealing with many-body Schrödinger equations is using

the density functional theory (DFT). This is based on multiple simplifications which

will be covered in the following cursory overview. [35, 36]

The first of these simplifications is the Born-Oppenheimer approximation. This

approximation states that the wavefunction depends primarily upon the nuclear part

of the atomic system. The nuclear motion is significantly slower than the electron

motion due to the former’s weight, and so it can be considered fixed. Therefore,

only the position of the nuclei and not their velocity needs to be considered when

performing calculations, reducing the required degrees of freedom drastically. [35, 36]

After the Born-Oppenheimer approximation is applied, the nuclei are now consid-

ered fixed in space, so they have no kinetic energy, and their Coulombic interaction

with each other is a fixed value so it doesn’t affect the solution. The only term where

the nuclei still have an effect is in the nuclei-electron Coulombic interactions, and
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this term comes to define which type of problem is being solved because it deter-

mines what molecule is being considered. In DFT context, this is often called the

external potential because the nuclei determine the Coulombic potential in which the

electrons move, and this defines the problem being solved. In summary, the relevant

interactions are now:

• The electron kinetic energy,

• The electron Coulombic interactions,

• And the nuclei-electron Coulombic interactions (also known as the external

potential).

The second simplification required for DFT is the Hohenburg-Kohn theorem. Note

that a proof of this theorem is included in Appendix A. This theorem states that

the electron density, ρ, of any system determines every ground-state property of the

system. That is, the total ground state energy of a many-electron system is a function

of the density, so therefore, if the electron density function is known, so too is the

total energy of the system. This means that using this electron density function, all

other ground state properties can be calculated. A simpler way to think of this is the

following: every external potential corresponds to one specific wavefunction which

corresponds to one specific density function. Thus, the wavefunction can be taken

out and the external potential can be connected directly to a specific density function,

with no information loss. [35, 36, 37]

In DFT the many-body Schrödinger equation is transformed into single-particle

Kohn-Sham equations, which are the types of equations that are solved through a

software like VASP. [35, 36] The Kohn-Sham equations are seen in equations 3.3 and

3.4:

Ĥks
ˆ(r) =

−1

2
∆2 + vks ˆ(r) (3.3)

vks ˆ(r) = vext ˆ(r) + vH ˆ(r) + vxc ˆ(r) (3.4)
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where Ĥks
ˆ(r) is the effective Hamiltonian, vks ˆ(r) is the effective Kohn-Sham potential,

vext ˆ(r) is the external potential, vH ˆ(r) is the Hartree potential, and vxc ˆ(r) is the

exchange-correlational potential. [35, 36, 37]

These equations operate by replacing the electrons in the crystal with non-interacting

quasi-electrons. These new electrons are now only interacting with nuclei and not

themselves. Next, an external field called the exchange-correlational field is applied to

correct for the omitted interaction. The field is derived from the exchange-correlation

potential, and if this functional is known the prediction that is made is without any

accuracy loss. [35, 36, 37]

The most important part of performing a DFT-type calculation is the choice of

the exchange-correlation functional. There is no rule for finding the best functional

and often the way to do this is to make an educated guess and go from there until

the functional begins predicting experimental values as closely as possible. [35, 36]

3.3.4 Jacob’s Ladder

Jacob's ladder is an idea developed by Perdew and Schmidt which considers the

efficiency and accuracy of using various methods for finding the external correlational

functional. Fig. 3.6 shows a graphical representation of this idea. It shows the

sacrifice in simulation simplicity that is often required to obtain accurate results.
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Figure 3.6: Jacob’s Ladder via Perdew and Schmidt's metaphor.3[13]

The general idea of Jacob's ladder is that things higher up the ladder are more

effective so will converge faster, but each run will take longer. The discussion of

convergence which follows in the next section should serve to clarify this idea.

The simulations performed in VASP that correspond to the rungs of this ladder

include the DFT simulation using the generalized gradient approximation (GGA), the

HSE06 simulation which is a hybrid-GGA, and the Hartree-Fock simulation which is

not a DFT simulation at all.

3.4 Convergence

The goal of quantum simulations are E − k plots and I − V characteristics that

match reality. To achieve this, the code must converge or focus onto a single value.

The error is the difference between two iterations. Each iteration is composed of a

guess, followed by a calculation of the error, followed by an iteration corrected using

3Reprinted from (John P. Perdew, Karla Schmidt, Jacob’s ladder of density functional approxi-
mations for the exchange-correlation energy, AIP Conference Proceedings, 2001) with the permission
of AIP Publishing.
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the error, etc., until the error falls within the convergence criteria (in other words,

until the error is small enough). At this point convergence is said to occur. The

convergence limit is set either by the user or the simulation software; the smaller

the error is required to be, the longer the simulation will take. It is possible that if

the convergence criterion is too small, the simulation may time out and never finish

running, so it is important to consider the limits of the simulation software and servers

when setting this criterion. In both VASP 5.4 and NEMO the starting convergence

criterion is a standard 1x10-5 (the units are determined by what the simulation is

aimed at doing, but one example is eV).

In both VASP 5.4 and NEMO, the simulated devices are composed of matrix

grids of points in the x , y , and z directions. These matrices of differential equations

are simplified into difference equations and can then be broken down into for loops

integrated over x , y , and z . The results of these simulations are likewise put into

matrices of energy vs. momentum and current density vs. location to be read out by

the user. Note that all simulation methods use matrices, and the more elements in a

matrix, the longer it will take to solve. The grid breakdown must be done as simply

as possible while also minimizing the error. An example of such a process is seen in

NEMO’s MetaPoissonQTBM5.py solver which has both fast and safe algorithms built

into it for breaking down the device grids and performing the required calculations.

The fast algorithm only checks against the most recent previously calculated term

to determine the error, while the safe algorithm uses the Newton approach, which

means it compares with both the most recent previously calculated term and the one

before that and computes the average error. The determined error is then used to

correct its next value and so on until convergence occurs. Thus, the safe algorithm,

though requiring more computation per term in reality might converge faster because

its error values are more significant.

NEMO uses the Jacobian iterative method as one of its solvers. A brief expla-
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nation of this method is shown below to further understanding of convergence. This

explanation and method are taken from An Introduction to Numerical Linear Algebra

by Cullen [38].

3.4.1 Jacobian Iterative Method

Start with the linear system A X = B where the diagonal entries of A 6= 0 . The

coefficient matrix A can then be broken up into three parts:

• A lower triangular matrix, L,

• An upper triangular matrix, R,

• And a nonsingular diagonal matrix, D .

Then,

A = D − L−R (3.5)

and

(D − L−R)X = B, (3.6)

DX = (L+R)X +B, (3.7)

so that

X = D−1(L+R)X +D−1B. (3.8)

To find X at convergence, the iteration is

Xk = D−1(L+R)Xk+1 +D−1B. (3.9)

An example of this method in use follows:
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

4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4


X =



9

12

0

−3



where the true solution is known to be

X =



3.5

4

1

0.5


.

Using the iterative method expressed above, the problem is solved for X .

A =



4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4


= D − L−R

Therefore,

A =



4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4


−



0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0


−



0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0


.
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The Jacobian iteration matrix, J , is then defined as:

J = D−1(L+R) = (1/4)



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


.

and

X = JX +D−1B = JX + (1/4)B. (3.10)

Then,

Xk+1 = JXk + (1/4)B (3.11)

where k is the iteration value, with k = 0 being the arbitrary first guess, say:

X0 =



1

1

1

1


.

Then

X1 = JX0 + (1/4)B =



2.75

3.50

0.50

−0.25


,

X2 = JX1 + (1/4)B =



3.25

3.625

0.625

0.250


,
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X3 =



3.3125

3.8750

0.8750

0.3125


, X4 =



3.4375

3.9063

0.9063

0.4375


, X5 =



3.4531

3.9688

0.9688

0.4531


, X6 =



3.4844

3.9766

0.9766

0.4844


...⇒ X =



3.5

4

1

0.5


.

Clearly, as seen above, this method will yield a convergent series after enough

iterations. If A was a full matrix each iteration would require approximately n2

multiplications, so this method is more time-consuming than Gaussian elimination if

more than n/3 iterations are required. Iterative methods are useful in solving systems

where A is large, sparse, and regularly structured. [38]
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NEMO5 Simulation Results: An InGaAs Bowing parameter
study

4.1 Introduction to Esaki diode data to be simulated

With the goal of benchmarking NEMO5 against previously fabricated homojunc-

tions, multiple systems were considered from Pawlik’s research [3]. These included

InAs, GaAs, and In0.53Ga0.47As Esaki diodes. Note that due to their small electron

and hole effective masses, p − i − n transistors made from InAs and GaAs materials

are viable devices for generating large BTBT [15]. The initial designs introduced

three regions: an intrinsic region sandwiched between a heavily-doped p-region and

a heavily-doped n-region, with doping levels chosen to match the IEDM paper pub-

lished by Pawlik and Rommel that were largely based on SIMS data [14].

The experimental data are seen in Fig. 4.1 - 4.6. The InGaAs devices are shown

schematically in Fig. 4.1. Note that the 3 nm intrinsic region was included to ensure

the n+ and p+ regions had minimal overlap due to diffusion or segregation during

growth.

Figure 4.1: InGaAs device structure with doping. [14]
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Figure 4.2: InGaAs devices experimental data. [14]

Fig. 4.3 illustrates the schematic diagram of the GaAs Esaki diodes. The accom-

panying experimental characteristics are shown in Fig. 4.4.

Figure 4.3: GaAs device structure with doping. [14]
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Figure 4.4: GaAs device structure with doping. [14]

Fig. 4.5 illustrates the schematic diagram of the InAs Esaki diodes. The accom-

panying experimental characteristics are shown in Fig. 4.6.

Figure 4.5: InAs device structure with doping. [14]
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Figure 4.6: InAs device structure with doping. [14]

4.2 First NEMO5 Attempts at Benchmarking Homojunc-

tions

The devices are designed as a ”quasi-1D” structure in NEMO5 so as to cut down

on simulation time. It is assumes that the structures are crystalline and repeat in the

x - and y directions. These initial designs introduced three regions (p+/intrinsic/n+),

though the the intrinsic region was treated as p+ in the case of the simulations. The

doping levels were chosen to match the IEDM paper (see Fig. 4.1, 4.3, and 4.5)

and were based on SIMS data. The homojunction device peak current densities were

accurately predicted by David Pawlik via E.O. Kane's tunneling model. [3, 21]

Appendix C contains the NEMO5 structure files used to simulate the InGaAs-

6 device. The NEMO5 simulation results are seen in Fig. 4.7 - 4.9 as well as the

accompanying tables.
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(a) Simulated vs. experimental transfer char-
acteristics. Simulated data is the bulleted
lines.

(b) Device structure.

Figure 4.7: NEMO5 simulations for the InGaAs-on-InP structure.[14]

An initial NEMO simulation was performed using NEMO's cirtual crystal ap-

proximation (VCA) method. VCA uses a straight Vegard's Law interpolation for all

tight-binding parameters. Table 4.1 shows how severely the simulated current density

is underestimated for the InGaAs devices. In the first two devices NDR is not even

seen.

Table 4.1: Device doping and output current density peak summary for InP/InGaAs
structure. [14]

Device ND x1E19 cm−3 NA x1E19 cm−3 Exp. JP /cm2 NEMO JP /cm2

InGaAs− 1 1.6 0.57 14 A No NDR in NEMO
InGaAs− 2 3 1 360 A No NDR in NEMO
InGaAs− 3 1.6 4.5 7 kA 0.997 kA
InGaAs− 4 3 5 56 kA 7 kA
InGaAs− 5 4.3 8 210 kA 41 kA
InGaAs− 6 7 9.6 975 kA 125 kA
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(a) Simulated vs. experimental transfer char-
acteristics. Simulated data is the bulleted
lines.

(b) Device structure.

Figure 4.8: NEMO5 simulations for the GaAs structure. [14]

As in the previous simulations, Table 4.2 shows how poorly the GaAs devices

simulations fared when compared to the experimental data. NDR is again not even

seen in the first two devices.

Table 4.2: Device doping and output current density peak summary for GaAs structure.
[14]

Device ND x1E19 cm−3 NA x1E19 cm−3 Exp. JP /cm2 NEMO JP /cm2

GaAs− 1 3 0.5 11 µA No NDR in NEMO
GaAs− 2 3 1 45 mA No NDR in NEMO
GaAs− 3 3 5 55 A 68 A

53



CHAPTER 4. NEMO5 SIMULATION RESULTS: AN INGAAS BOWING
PARAMETER STUDY

(a) Simulated vs. experimental transfer char-
acteristics. Simulated data is the bulleted
lines.

(b) Device structure.

Figure 4.9: NEMO5 simulations for the InAs structure. [14]

Table 4.3 shows that NEMO underestimated the current significantly. The pre-

dicted peak current is approximately 25% of the measured experimental peak current.

Table 4.3: Device doping and output current density peak summary for InAs structure.
[14]

Device ND x1E19 cm−3 NA x1E19 cm−3 Exp. JP /cm2 NEMO JP /cm2

InAs− 1 0.3 1.8 2 kA 0.575 kA
InAs− 2 1 1.8 37.6 kA 11.5 kA

The results shown above might seem encouraging at a glance because the I-V

characteristics follow generally similar trends to reality, but the severe current density

underestimation is a problem. The devices with low levels of degenerate doping

showed no NDR, likely due to being too narrow and the simulated contacts not being

wide enough to cover them.

To determine the cause of the current density overestimation in the NEMO5 sim-

ulations, band diagrams for the materials were simulated to see how they matched

published material data. Two of these are shown in Fig. 4.10.
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(a) NEMO5 GaAs E − k . (b) NEMO5 InGaAs E − k .

Figure 4.10: NEMO5 simulations of E-k for GaAs and InGaAs.

The band gap for GaAs shown in Fig. 4.10a and for InAs (not shown) are rea-

sonable calculations for bulk materials; these were performed using the VCA model

in NEMO. The band gap for bulk In0.53Ga0.47As (this concentration is fixed), on the

other hand, is shown to be 0.966 eV which is higher than the 0.74 eV expected from

literature. [16] It was hypothesized that if the band gap for In0.53Ga0.47As could

be brought closer to reality then the simulated current densities would be closer to

reality.

A conference call with the NEMO5 team at Purdue University suggested a look

at the material file and mentioned that the VCA model assumes an InGaAs concen-

tration of In0.53Ga0.47As, might be the culprit.

4.3 Proposed Solution: Change the Eg Calculation

The VCA model in the all .mat material file was considered the crux for solving the

problem of the incorrect InGaAs Eg value. The all .mat file contained the following
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equation:

Eg−Gamma = 1.424−1.110∗IN+0.45∗IN2+
300− Phys : Tkel

300− 77
∗(0.040∗IN+0.086∗GA)

(4.1)

where IN is the indium concentration and GA is the gallium concentration.

According to Bhattacharya, Eq. 4.1 assumes a strained GaAs substrate with a low

indium concentration. This is known to not be the case, as seen from Fig. 4.7b which

shows that the devices being simulated were grown on InP. Bhattacharya provides a

different model to use that assumes a InP unstrained substrate for an In0.53Ga0.47As

material. [39] This is Eq. 4.2 which follows:

Eg = 0.75− 1.05 ∗ IN + 0.45 ∗ IN2 (4.2)

Another similar model was found on the Ioffe website and follows as Eq. 4.3 [16]

Eg = 0.36 + 0.63 ∗ IN + 0.43 ∗ IN2 (4.3)

The all .mat file was edited first with Eq. 4.2 and then Eq. 4.3 with no visible

changes in the results seen in the simulated band gaps with either of the changes.

On a whim, the Eg − Gamma variable was changed to a ridiculous number that

had no basis in reality, to see if this would have any effect and, again, no effect was

observed. Thus, this attempt was determined to have been futile and a new approach

was considered.
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4.4 Proposed Solution: Consider the NEMO5 Tight-binding

Parameters

VCA assumes that the parameters vary linearly with the composition. That is,

VCA can be considered as a weighted average between the relevant (in this case, InAs

and GaAs) molecules. Luisier et al . shows the necessity of using a correction factor

referred to as a bowing parameter. The bowing parameter refers to the empirical

offset determined from the linear interpolation used in the VCA. It is called a bowing

factor because the parameters seem to bow with the composition, as seen in Fig. 4.11,

depending on what it is. Fig. 4.11 shows Luisier et al .'s fix with the applied bowing

parameters.

Figure 4.11: Electron band gap of Inx Ga1−xAs at room temperature as a function of
the In concentration x . Note that the paper had it wrong; the bottom axis should be the
Ga concentration. This was corrected in this thesis. The solid line corresponds to the Ioffe
data, the dotted line is the data with added bowing effects, and the dashed line is the data
with no bowing effects. IEEE c© 2009.1[15, 16]

The parameters found in Luisier et al . and Boykin et al . were applied to the

1Reprinted from (M. Luisier and G. Klimeck, Investigation of inxga1−xas ultra-thin-body tun-
neling fets using a full-band and atomistic approach, 2009 International Conference on Simulation
of Semiconductor Processes and Devices) with the permission of IEEE c© 2009.
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all .mat file tight-binding parameters using the parameterization equation which fol-

lows:

PInxGa(1−x)As = x ∗ PInAs + (1− x) ∗ PGaAs + x(1− x) ∗BInAs GaAs (4.4)

where P is the relevant parameter, x is the indium concentration, and B is the

bowing parameter used.

A new InGaAs material file was created with the applied bowing parameters. This

comprises the next section.

Luisier et al . also notes that in their NEMO simulations the band gap and effective

masses of InAs and GaAs could not be reproduced without spin-orbit coupling being

included in the calculations. If this effect was not included the band gap and effective

mass were both predicted larger than reality which caused an underestimation of

BTBT. The spin-orbit parameters were kept as they were previously and not edited

with an added bowing effect in the simulations which follow. Based on the results

which follow, this is assumed to have been a reasonable assumption. [15]

4.5 The Rosetta Stone of NEMO5 Tight-binding Parameters

for InGaAs

The results of this examination of the application of the bowing parameter are

listed in the tables which follow. The anion is defined as arsenic in both GaAs and

InAs. Thus, because there is no change in the anion composition between the two

when combined to create InGaAs, the bowing parameter for all of the energies in this

first table, Table 4.4, is 0. Esa refers to the energy of the anion’s s-orbital, Epa to the

energy of the anion’s p-orbital, etc. Recall from the discussion of orbitals that the

s∗-orbital is an s-like orbital often used to increase simulation accuracy.
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Table 4.4: Bowing effects for the anion (As) band energies.

GaAs all.mat InAs all.mat InGaAs all.mat
Parameters Name Value Name Value Bowing Name Value

Esa E s As -5.5004 E s As -5.5004 0 E s As -5.5004
Epa E Px As 4.151 E Px As 4.1511 E Px As 4.1511

E Py As E Py As E Py As
E Pz As E Pz As E Pz As

Eda E Dxy As 4.151 E Dxy As 4.1511 E Dxy As 4.1511
E Dyz As E Dyz As E Dyz As
E Dz2 As E Dz2 As E Dz2 As
E Dxz As E Dxz As E Dxz As

E Dx2 y2 As E Dx2 y2 As E Dx2 y2 As
Es∗a E Star As 19.7106 E Star As 19.7106 E Star As 19.7106

The cation is different for the two materials (either indium or gallium), so all these

following tables show the bowing parameter changes to note.

Table 4.5: Bowing effects for the cation (In or Ga) band energies.

GaAs all.mat InAs all.mat InGaAs all.mat
Parameters Name Value Name Value Bowing Name Value

Esc E s Ga -0.2412 E s In -0.5819 -0.204 E s Galn -0.4726
Epc E Px Ga 6.7078 E Px In 6.9716 0.2621 E Px Galn 6.9129

E Py Ga E Py In E Py Galn
E Pz Ga E Pz In E Pz Galn

Edc E Dxy Ga 12.7485 E Dxy In 13.3071 0.3427 E Dxy Galn 13.1299
E Dyz Ga E Dyz In E Dyz Galn
E Dz2 Ga E S1dz2 In E Dz2 Galn
E Dxz Ga E Dxz In E Dxz Galn

E Dx2 ˜y2 Ga E Dx2 ˜y2 In E Dx2 ˜y2 Galn
Es∗c E Sstar Ga 22.6635 E Sstar In 19.9414 -1.4772 E Sstar Galn 20.8528

Table 4.6 shows parameters applied to the s − to − s orbital interactions. Recall

that the s-orbital only forms sigma bonds.
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Table 4.6: Bowing effects for the s − to − s-orbital interactions.

GaAs all.mat InAs all.mat InGaAs all.mat
Param Name Value Name Value Bowing Name Value

ssσ V S S Sigma As Ga -1.6451 V S S Sigma As In -1.6944 -0.0262 V S S Sigma As Galn -1.6777
V S S Sigma Ga As V S S Sigma In As V S S Sigma Galn As

s∗s∗σ V S∗ S Sigma As Ga -3.6772 V S∗ S Sigma As In-4.2105 -0.2850 V S∗ S Sigma As Galn -40308
V S∗ S Sigma Ga As V S∗ S Sigma In As V S∗ S Sigma Galn As

sas
∗
cσ V S∗ S Sigma As Ga -2.2078 V S∗ S Sigma As In-2.2467 -0.0545 V S∗ S Sigma As Galn-2.3374

V S∗ S Sigma Ga As V S∗ S Sigma In As V S∗ S Sigma Galn As
sas
∗
cσ V S∗ S Sigma As Ga-1.13149V S∗ S Sigma As In-1.1599 -0.1022 V S∗ S Sigma As Galn-1.2582

V S∗ S Sigma Ga As V S∗ S Sigma In As V S∗ S Sigma Galn As

Table 4.7 shows parameters applied to the s − to − p and s − to − d orbital

interactions. Again, the s-orbital can only form sigma bonds. Also note that s−to−d

and p − to − d are the same.

Table 4.7: Bowing effects for the s − to − p and s − to − d orbital interactions.

GaAs all.mat InAs all.mat InGaAs all.mat
Param Name Value Name Value Bowing Name Value

sapcσ V S P Sigma As Ga 2.6649 V S P Sigma As In 2.5982 -0.0667 V S P Sigma As Galn 2.6130
scpaσ V S∗ P Sigma Ga AS 2.9603 V S∗ P Sigma In As 2.8094 0.1488 V S∗ P Sigma Galn As 2.8432
s∗apcσ V S∗ P Sigma As Ga 1.9765 V S∗ P Sigma As In 2.8094 -0.1488 V S∗ P Sigma As Galn 2.0475
s∗cpaσ V S∗ P Sigma Ga As 1.0276 V S∗ P Sigma In As 0.9373 -0.0902 V S∗ P Sigma Galn As 0.9573
Sadcσ V S D Sigma As Ga -2.5836 V S D Sigma As In -2.2684 0.3152 V S D Sigma As Galn -2.3380
Scdaσ V S D Sigma Ga As -2.2306 V S D Sigma In As -2.2931 -0.0131 V S D Sigma Galn As -2.3093
s∗adcσ V S∗ D Sigma As Ga-0.6282V S∗ D Sigma As In -0.8994 0.2711 V S∗ D Sigma As Galn-0.8395
s∗cdaσ V S∗ D Sigma Ga As-0.1332V S∗ D Sigma In As-0.48899 -0.3556 V S∗ D Sigma Galn As-0.2332

Table 4.8 shows parameters applied to the p − to − p and p − to − d orbital

interactions. The s − to − p orbital interactions were shown in the previous tables.

The p-orbital forms both sigma and pi bonds so both of these are listed.
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Table 4.8: Bowing effects for the p − to − p and p − to − d orbital interactions.

GaAs all.mat InAs all.mat InGaAs all.mat
Param Name Value Name Value Bowing Name Value

ppσ V P P Sigma As Ga 4.1508 V P P Sigma As In 4.3106 -0.1355 V P P Sigma As Galn 4.2018
V P P Sigma Ga As V P P Sigma In As V P P Sigma Galn As

ppπ V P P Pi As Ga -1.14274 V P P Pi As In -1.2890 0.1185 V P P Pi As Galn -1.3245
V P D Pi Ga As V P D Pi In As V P D Pi Galn As

padcσ V P D Sigma As Ga -1.8743 V P D Sigma As In-1.7314 0.1210 V P D Sigma As Galn-1.7684
pcdaσ V P D Pi As Ga -1.8896 V P D Pi As In -1.9784 0.0876 V P D Sigma As Galn-1.9149
padcπ V P P Pi As Ga 2.5293 V P P Pi As In 2.1889 -0.0979 V P P Pi As Galn 2.3245
pcdaπ V P P Pi As Ga 2.5491 V P P Pi As In 2.4560 -0.0931 V P P Pi As Galn 2.4766

The final bowing interactions in Table 4.9 shows parameters applied to the d −

to − d orbital interactions. The s − to − d and p − to − d orbital interactions were

shown in the previous tables. The d -orbital forms sigma, pi, and delta bonds so all

of these are listed.

Table 4.9: Bowing effects for the d − to − d orbital interactions.

GaAs all.mat InAs all.mat InGaAs all.mat
Param Name Value Name Value Bowing Name Value

ddσ V D D Sigma As Ga-1.2700V D D Sigma As In-1.5846 0.0327 V D D Sigma As Galn-1.4286
V D D Sigma Ga As V D D Sigma In As V D D Sigma Galn As

ddπ V D D Pi As Ga 2.5054 V D D Pi As In 2.71799 0.2117 V D D Sigma As Galn 2.6708
V D D Pi Ga As V D D Pi In As V D D Sigma Galn As

ddδ V D D Sigma As Ga-0.8517V D D Sigma As In-0.5051 0.3464 V D D Sigma As Galn-0.5817
V D D Sigma Ga As V D D Sigma In As V D D Sigma Galn As

4.6 Bowing results

New all .mat files were generated for varying compositions of In and GaAs, from

5% to 95% in steps of 5% of each and these were used to simulate new E − k plots.

A few of these are included in Figs. 4.12 - 4.15. Note from Fig. 4.12 that the band-

diagram generated from the all .mat file with the added bowing parameter effects
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shows a notably smaller band gap. Recall that this was the goal, as the InGaAs band

gap from the first simulations was too large to be real.

(a) Simulation using only the VCA model.
Eg= 1.3764 eV.

(b) Simulation with bowing effects included.
Eg= 1.3491 eV.

Figure 4.12: NEMO5 bandstructure results for In=0.05 GaAs=0.95 composition with and
without bowing effects included.

Fig. 4.13 has compositions similar to the standard indium 53% concentration and

shows a band gap a lot closer to the 0.74 eV expected when the bowing effects are

included in the simulation.

62



CHAPTER 4. NEMO5 SIMULATION RESULTS: AN INGAAS BOWING
PARAMETER STUDY

(a) Simulation using only the VCA model.
Eg= 0.9260 eV.

(b) Simulation with bowing effects included.
Eg= 0.7816 eV.

Figure 4.13: NEMO5 bandstructure results for In=0.50 GaAs=0.50 composition with and
without bowing effects included.

Fig. 4.14 corresponds to the indium 53%, gallium 47% concentration and shows

a band gap even closer to the 0.74 eV expected with the bowing effects included in

the simulation as the band gap is measured to be Eg= 0.7662 eV in this case.
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Figure 4.14: NEMO5 bandstructure results for In=0.53 GaAs=0.47 composition with
bowing effects included. Eg= 0.7662 eV.

Fig. 4.15 shows the same trends as the previous two figures.

(a) Simulation using only the VCA model.
Eg= 0.4290 eV.

(b) Simulation with bowing effects included.
Eg= 0.4002 eV.

Figure 4.15: NEMO5 bandstructure results for In=0.95 GaAs=0.05 composition with and
without bowing effects included.
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Next, the composition was plotted against the band gap for a plot similar to the

one made by Luisier et al . (Fig. 4.11). Note that Luisier et al . actually plotted the

x -axis incorrectly.

As seen from Fig. 4.16, band gap increases with decreased indium concentration.

There is a slight bow to this data as a result of the bowing parameter application, and

it matches up almost perfectly with data from both Luisier et al . and Ioffe. [15, 16]

Figure 4.16: Electron band gap of Inx Ga1−xAs at room temperature as a function of
the In concentration x as plotted after applying the bowing effects and comparing to the
Ioffe and Luisier data. [15, 16]
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4.7 Second NEMO5 Attempts at Benchmarking Homojunc-

tions

The next step after creating this new all .mat file with the edited tight-binding

parameters was to run the simulations again. The InGaAs results are included in Fig.

4.18. The new simulated data is seen to be an extremely close fit to the experimental

data which makes this exercise a success. Note that the device labeled ”low-doped,

too thin” had contact regions of 16 unit cells which was determined to be not wide

enough for the simulation to produce NDR. The contact regions were extended to

20 unit cells; subsequently NDR with a peak current density comparable with the

experiment was observed.

Figure 4.17: InGaAs device structure with doping. [14]
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Figure 4.18: InGaAs devices simulated with the new all.mat file and plotted against real
data from Pawlik et al .. [14]

Table 4.10 shows the new simulated data for the InGaAs structures. As stated

above and now seen in this table, an extremely tight fit to the tunneling current is

seen for the simulations, especially for the highly-doped devices. This validates the

revised NEMO models wholly.

Table 4.10: Device doping and output current density peak summary for InGaAs structure
as simulated with the new all.mat file. [14]

Device ND x1E19 cm−3 NA x1E19 cm−3 Exp. JP /cm2 NEMO JP /cm2

InGaAs− 1 1.6 0.57 14 A 20.4 kA
InGaAs− 2 3 1 360 A 483
InGaAs− 3 1.6 4.5 7 kA 8.8 kA
InGaAs− 4 3 5 56 kA 61.3 kA
InGaAs− 5 4.3 8 210 kA 207 kA
InGaAs− 6 7 9.6 975 kA 686 kA

Following this data match, a second experiment was run to simulate an exper-
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imental device that had initially been meant to be an InGaAs TFET (ND x1E19

cm−3, NA x1E19 cm−3) with a 100 nm intrinsic region. Due to miscommunication

with the grower, the intrinsic region was instead grown to 10 nm, so when the device

was tested it showed NDR. A NEMO5 simulation was performed varying the intrin-

sic region thicknesses. The simulated results are plotted along with the experimental

results in Fig.4.20. Not surprisingly the 10 nm intrinsic region is the tightest match.

Figure 4.19: InGaAs device structure with doping. [14]
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Figure 4.20: InGaAs devices with varying intrinsic (referred to as ”i”) region thicknesses
plotted against experimental data from Pawlik et al .. [14]
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VASP Benchmarking Results

A number of VASP tests were run with the primary goal of determining the

software's limitations. Note that Appendix B shows the methodology for performing

a simple VASP run using MedeA.

5.1 Lattice Constant Variations

One of the first experiments run in VASP 5.4 was to vary the lattice constant input

for GaAs and InAs and observe the results in terms of the band diagrams. Note that

all VASP simulations were performed in the Materials Design MedeA environment.

A screening DFT simulation was performed. The k-point spacing was 0.5/Å in

a Γ-centered Monkhorst-Pack mesh. This resulted in a 4x4x4 grid. The planewave

cutoff was 280 eV and a GGA-PBE exchange correlation was used. Fig. 5.1 shows the

results for the GaAs simulations. The primary take-away is that the band gap grows

larger as the lattice constant is increased. Fig. 5.1(a) is no longer a semiconductor

and Fig. 5.1(c) shows an indirect band gap not consonant with GaAs as it is generally

known.
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Figure 5.1: VASP simulations of GaAs lattice constant variation screen.

This same experiment was conducted using InAs as the material and parallel

observations can be made about the effects of increasing the lattice constant on the

band gap from Fig. 5.2.

Figure 5.2: VASP simulations of InAs lattice constant variation screen.

5.2 The Effects of Varying the Functional: Part 1

The simulation functionals refers to the simulation calculation methods used. Sim-

ulations were performed for GaAs and InAs using different functionals to determine
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which corresponded the closest to reality. The functionals of interest were: DFT with

GGA-PBE, HSE06 with GGA-PBE, and Hartree-Fock.

Recall that Luisier et al . mentioned that in their NEMO simulations the band

gap and effective masses of InAs and GaAs could not be reproduced without spin-

orbit coupling being included in the calculations. If this effect was not included the

band gap and effective mass were both predicted larger than reality. For this reason,

spin-orbit was turned on for the following simulations to increase accuracy, though

the trade-off is an increase in computation time. The settings described in Section

5.1 for k-point spacing and planewave cutoff were used again. The change was the

functional, which is accordingly noted.

5.2.1 GaAs VASP Simulation Results

Note that the expected band gap, Eg , for GaAs is approximately 1.424 eV at

300 K. Fig. 5.3 - 5.5 are all DFT simulations. Fig. 5.3 is the simple DFT with

GGA-PBE and added spin orbit and predicts a band gap of 0.3804 eV. Fig. 5.4 is

the DFT calculated during the HSE06 simulation and predicts a band gap of 0.5467

eV. Fig. 5.5 is the DFT calculated during the Hartree-Fock simulation and predicts

a band gap of 0.1531 eV. They all significantly underestimate the band gap. These

simulations were extremely quick to compute, taking approximately one minute each,

but are not accurate enough to be useful.
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(a) Energy band diagram. (b) Density of States.

Figure 5.3: VASP simulation of GaAs using DFT with GGA-PBE with spin-orbit.

(a) Energy band diagram. (b) Density of States.

Figure 5.4: VASP simulation of GaAs DFT as an artifact of the HSE06 simulation. Again
with spin-orbit included.
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(a) Energy band diagram. (b) Density of States.

Figure 5.5: VASP simulation of GaAs DFT as an artifact of the Hartree-Fock simulation.
Again with spin-orbit included.

Next, Fig. 5.6 represents the GaAs E − k as simulated using the HSE06 meta-

GGA method with spin orbit coupling turned on. The band gap predicted with this

method is 1.5029 eV which is very close to the 1.424 eV expected. This simulation

took approximately two days to complete on a two-core four-thread machine, so it is

significantly more cumbersome computationally.

(a) Energy band diagram. (b) Density of States.

Figure 5.6: VASP simulation of GaAs using HSE06 with spin-orbit.
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Finally, Fig. 5.7 contains the GaAs band diagram as simulated using the Hartree-

Fock method. This also took approximately two days to complete, but with a pre-

dicted band gap of 4.582 eV that is substantially larger than the 1.44 eV predicted

theoretically. The fact that the peak is extremely sharp is a simulation artifact.

(a) Energy band diagram. (b) Density of States.

Figure 5.7: VASP simulation of GaAs using Hartree-Fock with spin-orbit.

5.2.2 InAs VASP Simulation Results

The same simulations as done for GaAs in section 5.1.1 were repeated for an InAs

unit cell. Note that the expected band gap in this case is approximately 0.354 eV.

[16]

Fig. 5.8 shows a band diagram generated using DFT with GGA-PBE and spin

orbit. There is no discernible band gap in this E − k plot. Clearly this is not real as

InAs is a known semiconductor.
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(a) Energy band diagram. (b) Density of States.

Figure 5.8: VASP simulation of InAs using DFT with spin-orbit coupling included.

Fig. 5.9 includes the band diagram from the HSE06 with spin orbit simulation.

The band gap extracted from the E − k plot is 0.4816 eV which is not far off from

the expected band gap 0.354 eV.

(a) Energy band diagram. (b) Density of States.

Figure 5.9: VASP simulation of InAs using HSE06 with spin-orbit.

Fig. 5.10 shows a band diagram generated using the Hartree-Fock method with

spin orbit. Not only is this band gap extremely large (>5 eV), but it also simulated
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InAs as an indirect band gap material, which is not true.

(a) Energy band diagram. (b) Density of States.

Figure 5.10: VASP simulation of InAs using Hartree-Fock with spin-orbit.

5.2.3 Reflections on Varying the Functional

From the data seen in Sections 5.2.1 and 5.2.2 it is clear that the HSE06 with GGA

simulation method (a type of meta-GGA) was the most promising, while the Hartree-

Fock the least useful (as well as time-consuming). In conclusion, the Hartree-Fock

method is not a viable method of predicting material characteristics such as energy

band gap, possibly because it requires more computational power or the simulation

was not set up correctly.

5.3 The Effects of Varying the Functional: Part 2

More materials were simulated using both HSE06 with GGA and DFT with GGA

with spin orbit turned on for all simulations. These results are included in Table 5.1.
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Table 5.1: Materials simulated in VASP using HSE06 with GGA and DFT with GGA
with spin orbit turned on. Note that the PWC is the plane-wave cutoff which refers to
the distance the energy is simulated away from atom. The farther or larger this is, the
more likely the simulation will converge to reality due to an increase in resolution, but also
the longer the computation time. Note that the k-point spacing was 0.5/Å in a Γ-centered
Monkhorst-Pack mesh, resulting in a 4x4x4 grid.

MaterialLattice (Å)Calc Eg (ev) Real Eg (ev) Gap TypePWC (eV) Functional

GaAs 5.6339 0.4104 1.424 direct 0.0327 DFT GGA−BE
1.3601 direct HSE06 GGA−BE

InAs 6.048 0 0.354 direct 239.21 DFT GGA−PBE
0.3523 direct HSE06 GGA−PBE

GaSb 6.118 0 0.726 direct 282.69 DFT GGA−PBE
0.6077 direct HSE06 GGA−PBE

InP 5.8687 0.5411 1.344 direct 255.04 DFT GGA−PBE
1.3723 direct HSE06 GGA−PBE

AIAs 5.62 1.147 2.153 indirect 240.3 DFT GGA−PBE
1.8871 indirect HSE06 GGA−PBE

Ge 5.65 0.0001 0.661 direct 310.29 DFT GGA−PBE
1.7291 indirect HSE06 GGA−PBE

AISb 6.1347 0.8767 1.615 indirect 240.3 DFT GGA−PBE
1.5577 indirect HSE06 GGA−PBE

GaP 5.4505 1.4581 2.26 indirect 286.69 DDFT GGA−PBE
2.1886 indirect HSE06 GGA−PBE

AIP 5.451 1.3775 2.45 indirect 255.04 DFT GGA−PBE
2.1624 indirect HSE06 GGA−PBE

Si 5.431 0.41418 1.12 indirect 255.04 DFT GGA−PBE
1.0845 indirect HSE06 GGA−PBE

From Table 5.1, as well as the results of the previous section, HSE06 is decidedly

worth the extra simulation time as its results are significantly more likely to simulate

reality. The boldface entries in Table 5.1 highlight the best fits, which in the case of

these simulations were always found using the HSE06 GGA−PBE method.

5.4 Some Effects of Changing the Lattice Constant

The ultimate goal of this research is to lay the foundations for simulating TMD

material interfaces. A few designed experiments using these materials were run to

begin setting up VASP functionality in this regard. DFT with GGA with spin-orbit
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turned on was the primary simulation method, chosen for its computation speed.

Fig. 5.11 shows 16 E − k curves for MoS2 where the lattice constant was varied

in steps of 1% up to 15%. This type of variation would happen in reality through

the addition of strain to the material system. The top (solid black) line in this plot

corresponds to the generic lattice constant of MoS2, 3.16 Å. The shift in minimum

energy to different Brillouin zones is noteworthy for further analysis beyond the scope

of this report.

Figure 5.11: VASP DFT with GGA simulation of MoS2 band diagrams varying with
lattice constant. The top (solid black) line corresponds to the original lattice constant.

Fig. 5.12 plots the data from Fig. 5.11, as well as from the same designed

experiment run for WTe2.
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Figure 5.12: VASP DFT GGA simulation data of the MoS2 and WTe2 lattice constant
variation designed experiment explained above. vdW corresponds to a setting in the simu-
lation where van der Waals forces are applied.

The final plot, seen in Fig. 5.13 shows the MoS2 bandstructures as simulated in

NEMO5 and VASP 5.4 plotted together. The reason for the discrepancies in the data

lines is that the tight-binding parameters used for generating the data set in NEMO5

do not correspond exactly to the VASP 5.4 simulation results. The relevance of these

results is that the difference between the two data sets can be calculated to generate

a new set of bowing parameters.
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Figure 5.13: VASP 5.4 van der Waals DFT GGA simulation data of MoS2 plotted against
NEMO5 MoS2 simulations. Spin-orbit is applied during both simulations.

81



Chapter 6

Conclusions

6.1 Summary of Work

This thesis has set the groundwork necessary for successful fabrication of TFETs

with TMD channels at RIT. For such work to become a reality, simulations have

to first be performed so as to reduce fabrication cost and increase the likeliness of

generating functioning devices. Quantum simulations were identified as a necessity

over TCAD simulations through a thorough study of simulation results performed by

other groups. The study discussed in this paper is by Jiang et al . [10].

The goal of quantum simulations are E − k plots and I − V characteristics that

correspond to ”real” or experimental data. This means that the simulated data must

converge onto reality; the Jacobian iterative method was considered as an example

algorithm used by the NEMO5 simulation package to achieve convergence. NEMO5

and VASP 5.4 were both considered and used for the first time at RIT in device design

capacity in this thesis. The understanding developed of both is crucial for further

work in designing TFET devices.

Previous Esaki diode data was simulated in NEMO5 and the match to reality

was poor. To determine why this was so, the band gaps for the material systems

were simulated: for GaAs and InAs as simulated by NEMO5, reasonable results were

seen, but the band gap for InGaAs was significantly higher than the reality. This
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was fixed by developing an understanding of the virtual crystal approximation model

used as the tight-binding parameters in NEMO5, and then editing these parameters to

contain the effects of bowing parameters as described in Luisier et al . [15]. The Esaki

diode data was simulated using the newly generated model containing the bowing

effects and the results were seen to match reality closely. Thus, the understanding

of the bowing effects and how they can be applied to create a calibrated simulation

model in NEMO5 is considered a huge find in this study.

Preliminary VASP 5.4 band gap calculations were performed for various III-Vs

and other common semiconductors. An experiment was run to determine the most

accurate simulation method and the HSE06 with GGA simulation method (a type

of meta-GGA) was determined to be the most promising, while the Hartree-Fock

the least useful (as well as time-consuming). The Hartree-Fock method is not a

viable method of predicting material characteristics such as energy band gap, possibly

because it requires more computational power.

Lattice constant variation effects in VASP 5.4 were considered for both standard

III-V and MoS2 and WTe2 systems. More work should be done in this regard if there

is any interest in the effects of strain on 2D materials. Finally, VASP 5.4 and NEMO5

results for MoS2 bandstructure simulations were plotted together, which is the first

step to calculating a set of bowing parameters for this material system.

6.2 Future Work

As this thesis has been merely a first look at using NEMO5 and VASP 5.4 for

quantum simulations at the Rochester Institute of Technology, there is substantially

more work to do in terms of benchmarking both software packages before actual TMD

TFETs can be simulated meaningfully. The ultimate goal is, of course, fabrication of

such devices.

Some suggestions for more immediate work include a study of bowing parameters
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for other material systems, specifically TMDs. Sharma et al ., Mourada and Czycholl,

Zhao et al ., and Kang et al . are all suggested as good starting materials in this regard

[40, 41, 42, 43]. Another item is to edit the newly created all .mat InGaAs file to

remove the d -orbital effects and analyze the results to determine the necessity of the

d -orbital for a true simulation. This is especially useful as the matrix corresponding

to the new file would be smaller and thus take less time to simulate, but the accuracy

difference between the two simulations must be considered.

Further necessary VASP benchmarking includes developing an understanding of

the basic TMD Brillouin zones and the way VASP goes about traversing these, as well

as running more standard simulations for TMD energy band diagrams. Also necessary

is the further development of a super-cell structure in VASP as this is necessary to

simulate compounds such as InGaAs.
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Appendix A: Hohenburg-Kohn Theorem Proof

[1]

Proof: if Ψ 6= Ψ'then ρ 6= ρ'.

Assume Ψ 6= Ψ'and ρ = ρ', and prove that this is untrue.

Ψ is the ground state of Ĥ with ground energy Egs,

and Ψ'is the ground state of Ĥ' with ground energy E'gs.

Assuming the same number of electrons:

Ĥ = T +W + V (A.1)

and

Ĥ' = T +W + V ' (A.2)

so

Ĥ = Ĥ'− V ' + V. (A.3)

Applying the variational principle:

Egs = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ'|Ĥ|Ψ'〉 = 〈Ψ'|Ĥ'−V '+V |Ψ'〉 = E'gs+

∫
ρ'(r̄)[v(r̄)−v'(r̄)]dr̄.

(A.4)

Now repeat the argument, starting with Ψ':

E'gs < Egs +

∫
ρ(r̄)[v'(r̄)− v(r̄)]dr̄. (A.5)

Assuming ρ = ρ', add the previous statements:

E'gs + Egs < E'gs + Egs (A.6)

This is clearly a contradiction. Therefore, ρ 6= ρ'has been proven.
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Appendix B: Brief Guide to Using MedeA 2.22.2

for VASP 5.4 Simulations

B.1 Part 1: MedeA Set-Up

Begin by opening runJobServer and runTaskServer from the Materials Design

folder. Once these are loaded, open MedeA 2 .22 .2 . These options can be seen in Fig.

B.1.

Figure B.1: Materials Design folder as seen running Windows 10 Pro.

Next, click on Tools and load InfoMaticA and VASP 5 .4 from the drop-down

menu. These two tools will appear up top as extra drop-down menus.

Now click Job Control and Select Server to select the relevant server. The default

in this example scenario is the local server which refers to the laptop MedeA is installed

on, but other servers can be called as well, and these will appear here. Note that it

is also possible to point to a remote machine for execution, but this is beyond the

scope of this example.

90



APPENDIX B. BRIEF GUIDE TO USING MEDEA 2.22.2 FOR VASP 5.4
SIMULATIONS

B.2 Part 2: Cell Set-Up

Select InfoMaticA and load the Search function. The InfoMaticA Search menu

will appear. Click Add New Criterion from the bottom half of this menu and select

Formula from the drop-down menu. Type the molecule of interest into the box which

appears. In this example case this is indium arsenide (InAs). The relevant existing

structures in the library will appear in the top half of the search menu, as seen in

Fig. B.2. If there are multiple results, as is the case in this example, click Edit and

Find Median Structures to narrow it down to one selection.

Figure B.2: InfoMaticA Search menu as seen after selecting InAs for this example.

Next, right click on the molecule that is left and select View . A figure will appear
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SIMULATIONS

in MedeA which can be rotated by clicking the molecule and dragging the cursor; this

is the molecule in question. The molecule in its initial state, as seen in Fig. B.3(a),

is bond-less; to add bonds right-click on it and select Edit bonds . Click OK if the

bond parameters correspond to what is known about the molecule; this will result in

Fig. B.3(b).

Figure B.3: (a) The InAs molecule chosen as seen without bonds applied. (b) The InAs
molecule chosen as seen with bonds applied.

To edit things such as the lattice constant (A= 6.048 Å for InAs remains un-

changed in this example case) or to add, move, or remove atoms, right click the cell

in question again and click Edit Cell . After this, the cell has been set up and VASP

is ready to be run.

B.3 Part 3: Structural Optimization using VASP 5.4

The cell must now be minimized, and this is done with VASP 5.4. Click VASP

5 .4 from the menu bar and select Run. The menu which will appear is seen in

Fig. B.4. All the settings in Fig. B.4 correspond to the standard for Standard

Optimization. Specifically, these include turning on Relax atom positions , Allow cell
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volumes to change, and Allow cell shape to change; the functional can be changed

to any functional of interest, though the Density functional with the GGA−PBEsol

exchange correlation selected is one of the fastest to run; Spin − orbit magnetic can

be turned on or off from the Magnetism option (note that turning it on will increase

simulation time substantially); Standard 500 is the simplest Precision to run. The

Spacing of k − points can be edited under the SCF menu (0.5 1/Å is standard for

InAs). Do not forget to edit the Title to something meaningful before running the

simulation by clicking Run.

Figure B.4: General setup for Structural Optimization of the chosen InAs molecule.

A Submit VASP Job menu will appear where the server Queue may be chosen,

as well as the Number of processors and Priority of the job at hand. This can be

seen in Fig. B.5. The Number of processors is dependent on the machine the chosen

server is running on (in the case of this example “minint-3famcrr” has an Intel Core

i5-5200U Processor, which corresponds to two cores and four threads, so two is the

maximum number of Processors available). The greatest Priority is 1 and the lowest

is 10. Do not forget to add a relevant comment describing the job about to be run.
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Figure B.5: The pre-run menu.

B.4 Part 4: Viewing and Controlling the Job requested

To view the job, open an Internet browser and type 127.0.0.1:32000/index.html

into the search bar. The resulting page is seen in Fig. B.6.

Figure B.6: The Materials Design JobServer menu.

94
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To see the status of the current job, click Jobs . After the job in question is shown

as Finished , load it into MedeA by clicking File and selecting Open structure from

job.

B.5 Part 5: Band Structure and Density of States using

VASP 5.4

To acquire meaningful data such as Band structure or Density of states information

using VASP, start by clicking on VASP 5 .4 from the menu again. Next, select

Single − point , followed by whichever Properties are of interest. In this case, Band

structure and Density of states are both selected. As before, select the Functional

of interest as well as the Precision. Fig. B.7 shows a sample set-up.

Figure B.7: Sample set-up of band structure and density of states run for the InAs model
chosen.

Proceed to Run, view and control the job as before.
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B.6 Part 6: Analysis

Click Analysis from the top menu, followed by the property of interest (in this

case Band structure or Density of States), and choose the relevant job. These files

can be exported for further analysis by clicking Analysis , Export , and finally File

Select and selecting the relevant file.
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Appendix C: NEMO5 Sample Device Simulation

Files

The following files correspond to InGaAs-6 which was simulated in this study.

C.1 Typical Material and Structure definition

Material { crystal_structure = zincblende

doping_density = 7E19

doping_type = N

name = GaInAs

x=0.47

regions = (3)

tag = InGaAs_highDoping }

Material { crystal_structure = zincblende

doping_density = 7E19

doping_type = N

name = GaInAs

x=0.47

regions = (2)

tag = InGaAs_lowDoping }

Material { crystal_structure = zincblende

doping_density = 9.6E19

doping_type = P

name = GaInAs

x=0.47

regions = (1)

tag = GaSb_high_doping }
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C.2 Domain definition

Domain { base_material = InGaAs_lowDoping

crystal_direction1 = (1,0,0)

crystal_direction2 = (0,1,0)

crystal_direction3 = (0,0,1)

dimension = (48,1,1)

leads = (source_contact,drain_contact)

name = device

output = (xyz,coupling)

periodic = (false,true,true)

regions = (1,2,3)

space_orientation_dir1 = (1,0,0)

space_orientation_dir2 = (0,1,0)

starting_cell_coordinate = (0,0,0)

type = pseudomorphic }

C.3 Contact definitions

source contact,source source contact,source source source contact

source mode contact,source source mode contact

drain contact,drain drain contact,drain drain drain contact

drain mode contact

C.4 Mesh Domain definition

Domain{

mesh_from_domain = device
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name = fem_device

number_of_refinement_steps = 1

refinement_regions = (1,2,3)

type = finite_elements

periodic = (false,true,true)}

Domain{

mesh_from_domain = drain_contact

name = fem_drain_contact

number_of_refinement_steps = 1

periodic = (false,false,false)

refinement_regions = (2,3)

type = finite_elements}

Domain{

mesh_from_domain = drain_drain_contact

name = fem_drain_drain_contact

number_of_refinement_steps = 1

periodic = (false,false,false)

refinement_regions = (2,3)

type = finite_elements}

C.5 Region definition

Geometry{Region{

max = (9.38992,2,2)//represents 16 UC of InGaAs per div, a=0.58687 nm

min = (-20,0,0) //Hopefully I don’t need to change this #.

priority = 1

region_number = 1

shape = cuboid}
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Region{

max = (18.77984,2,2) //represents 16 UC of InGaAs per div, a=0.58687 nm

min = (9.38992,0,0)

priority = 1

region_number = 2

shape = cuboid}

Region{

max = (40,2,2)

min = (18.77984,0,0)//represents 16 UC of InGaAs per div, a=0.58687 nm

priority = 2

region_number = 3

shape = cuboid}}}

C.6 QTBM Solver definition

solver{

type = MetaPoissonQTBM5

name = QTBM

active_regions = (1,2,3)

clean_all_in_reinit = true

contact_domains = (source_contact,drain_contact)

contact_aux = (source_source_mode_contact)

output = (JE,NE,current,ldosn1d,ldosp1d)

tb_basis = sp3d5sstar

energy_grid_constructor = QTBM:adaptive_grid_generator

number_of_MPI_ranks_in_real_space = 1

density_solver = QTBM:Transformation1

derivative_of_density_solver = QTBM:Transformation1
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solve_on_single_replica = true

solver_type = compression

with_poisson = true

no_file_output = true

debug_output_job_list = false

regions_adjacent_to_source_electrode = 1

regions_adjacent_to_drain_electrode = 3

source_voltage = 0.0

drain_voltage = 0.0

ramper_voltage (-0.65,-0.6,-0.55,-0.5,-0.45,-0.4,-0.35,-0.3,-0.25,-0.2,-0.15,-0.1,-0.05,0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85)

ramper_contact = source

no_integration_for_transmission = true

system_type = quasi_1D

kxmax = 0.5

kxmin = 0

kymax = 0.5

kymin = 0

number_of_k_points = 14

degeneracy_factor = 4

non_rectangular_energy = true

laplacian = (x)

bands_number_of_nodes = (100)

number_of_eigenvalues = 80

number_of_eigenvalues_to_use = 16

output_line_corners = [(0, 0.2, 0.2), (40, 0.2, 0.2)]

number_1D_output_points = 100

homogeneous_initial_potential = 0.3
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selfconsistent_algorithm = fast

electron_hole_model = true

electron_hole_heuristics = omen_smooth

particle_source = hole

particle_drain = electron

iteration_output = false

poisson_max_iterations = 24

bandstructure_smart_parallelization = true

parallelize_adaptive_grid_construction = true

residual_criterion = 1.e-5}
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