
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

4-2018

Adjustment of Parametric Dynamic Scheduling Heuristics for Adjustment of Parametric Dynamic Scheduling Heuristics for

Heterogeneous Systems to Account for Heterogeneity Heterogeneous Systems to Account for Heterogeneity

Thomas G. Guerin
tgg7337@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Guerin, Thomas G., "Adjustment of Parametric Dynamic Scheduling Heuristics for Heterogeneous
Systems to Account for Heterogeneity" (2018). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9864?utm_source=repository.rit.edu%2Ftheses%2F9864&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Adjustment of Parametric Dynamic Scheduling
Heuristics for Heterogeneous Systems to Account

for Heterogeneity

Thomas G. Guerin

Adjustment of Parametric Dynamic Scheduling
Heuristics for Heterogeneous Systems to Account

for Heterogeneity
Thomas G. Guerin

April 2018

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Department of Computer Engineering

Adjustment of Parametric Dynamic Scheduling
Heuristics for Heterogeneous Systems to Account

for Heterogeneity
Thomas G. Guerin

Committee Approval:

Dr. Sonia Lopez Alarcon Date
Thesis Advisor
Department of Computer Engineering
Rochester Institute of Technology

Dr. Amlan Ganguly Date
Department of Computer Engineering
Rochester Institute the Technology

Dr. Roy Melton Date
Department of Computer Engineering
Rochester Institute the Technology

i

Acknowledgments

First and foremost, I would like to express my gratitude to my advisor Dr. Sonia

Lopez Alarcon. Her patience and dedication to my success were necessary for me to

succeed in my research. I would not have been able to navigate this lengthy and open-

ended process without her guidance. I would also like to thank Dr. Marcin Lukowiak

not only for his advisement of my research, but for the challenges, opportunities, and

assistance he provided throughout my other academic pursuits. I also wish to thank

Dr. Amlan Ganguly and Dr. Roy Melton for challenging me to grow in their classes,

but also for serving on my thesis committee. Last, but not least, I must thank my

family — especially my parents — for their support and encouragement. I have been

able to rely on them from my youngest years to the day that I am writing these words.

ii

Dedicated to my parents William George Guerin and Susan Donnelly Guerin

iii

Abstract

Modern computing applications are becoming increasingly data-hungry and compu-

tationally expensive. This trend continues even as hardware performance constraints

loom with the impending death of Moore’s law. Hence, systems have become increas-

ingly heterogeneous in the pursuits of improving performance and reducing power

consumption. Such a heterogeneous system relies on a variety of different specialized

processors with differing architectures, rather than processing units of a single type.

Given their architectural differences, any given computation will not perform equally

on all processors. As such, efficient scheduling of computations to processors is an

essential design consideration.

In this thesis work, a simulation of an existing dynamic scheduling heuristic —

Alternative Processor within Threshold (APT) — was used to model the execution

of a variety of heterogeneous workloads and heterogeneous systems. An extended

version of this scheduler (APTX) was analyzed in a similar way, as was a simplified

version of the existing K-Percent Best (KPB) scheduler. Each of these schedulers

has a numeric “parameter” constraining its behavior. In existing analyses, these

scheduling heuristics were tested only with a small set of arbitrary values for these

parameters. The goal of this research was to use a stochastic method to optimize said

parameters for the minimum finishing time of any given set of computations on any

given heterogeneous system. An analytical expression to estimate the ideal parameter

of each scheduler was developed. Each was based on the statistical analysis of the

results of a set of randomly-generated simulations.

After these expressions were developed, these optimized APT, APTX, and KPB

schedulers were evaluated against three other dynamic schedulers — Minimum Exe-

cution Time (MET), Serial Scheduling (SS), and Shortest Process Next (SPN) — by

running the randomly-generated simulations on all six. For the most common type

of heterogeneous system, APT and APTX were found to have the earliest finish time

iv

on average, while MET and KPB generally performed poorly. Ultimately, this re-

search not only demonstrated the advantages of APT and APTX over other dynamic

schedulers in a fair comparison, but it also demonstrated a method by which any

parametric scheduler can be tuned.

v

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents vi

List of Figures viii

List of Tables 1

1 Introduction 2

1.1 Background & Motivation . 3

1.1.1 Limitations of Homogeneous Computing 3

1.1.2 Heterogeneous Computing . 4

1.1.3 Module Allocation (Mapping) 5

1.2 Proposed Solution . 6

1.3 Related Work . 8

1.3.1 Motivation . 9

2 Methodology 11

2.1 Simulation Model, Assumptions, and Definitions 11

2.2 Policies . 14

2.2.1 Minimum Execution Time (MET) 14

2.2.2 Serial Scheduling (SS) . 15

2.2.3 Shortest Process Next (SPN) 15

2.2.4 Alternative Processor within Treshold (APT) 16

2.2.5 Alternative Processor within Threshold Extended (APTX) . . 19

2.2.6 K-Percent Best (KPB) . 21

2.3 Random Experiment Generation . 22

vi

CONTENTS

3 Experimental Results & Analysis 24

3.1 Generation of Parameter Expressions 24

3.1.1 Search for Best APT Parameter 26

3.1.2 Search for Best APTX Parameter 33

3.1.3 Search for Best KPB Parameter 40

3.2 Evaluation of Parameter Expressions 46

4 Conclusions 51

4.1 Future Work . 53

Bibliography 55

vii

List of Figures

1.1 Block Diagram of a Generic Heterogeneous System 3

1.2 Example of Application with Multiple Types of Parallelism 4

1.3 Example Application Running on a Heterogeneous System 5

2.1 SPN Example Matrix . 16

2.2 Example Application Running on SPN 16

2.3 APT Example Matrix . 18

2.4 Example Application Running on APT 18

2.5 Example Application Running on APTX 20

2.6 Consistent LoLo ETC Matrix Example 23

2.7 Consistent HiHi ETC Matrix Example 23

3.1 Relationship of minTaskRatio to Best α for APT, Consistent Systems 28

3.2 Relationship of procMeanRatio to Best α for APT, Consistent Systems 28

3.3 Relationship of procCount to Best α for APT, Consistent Systems . . 29

3.4 Relationship of taskMeanExtremaRatio to Best α for APT 32

3.5 Relationship of procMeanRatio to Best α for APT 32

3.6 Relationship of minTaskRatio to Best α for APTX, Consistent Systems 35

3.7 Relationship of procMeanRatio to Best α for APTX, Consistent Systems 35

3.8 Relationship of procCount to Best α for APTX, Consistent Systems . 36

3.9 Relationship of taskMeanExtremaRatio to Best α for APTX 39

3.10 Relationship of procMeanRatio to Best α for APTX 39

3.11 Relationship of minTaskRatio to Best k for KPB, Consistent Systems 41

3.12 Relationship of procCount to Best k for KPB, Consistent Systems . . 42

3.13 Relationship of taskMeanExtremaRatio to Best k for KPB 45

3.14 Relationship of procCount to Best k for KPB 45

3.15 Number of Times Each Scheduler Finished Earliest in Consistent Ex-

periments . 47

3.16 Number of Times Each Scheduler Finished Earliest in Inconsistent Ex-

periments . 48

3.17 Speedup of Schedulers over MET for Consistent Systems 49

3.18 Speedup of Schedulers over MET for Inconsistent Systems 49

4.1 Summary of Characteristics that Predicted Best Parameter Values . . 52

viii

List of Tables

3.1 Features Measured from Each Experiment 25

3.2 Number of Times Each Scheduler Finished Earliest 47

1

Chapter 1

Introduction

Modern computing applications are increasingly data-hungry and consequently are

increasingly computationally expensive [1]. Over 20% of the server market is dedi-

cated to financial modeling, scientific computation, or data analytics. Additionally,

even with these large problem sizes, many applications come with high performance

requirements. As such, a naive solution is simply to add more machines to network

and distributed computing clusters [1, 2]. However, this is neither cost-effective nor

power-efficient, and it is therefore not a tenable long-term solution.

Conventionally-speaking, distributed computing systems have been considered to

contain a large number of general-purpose CPUs [2]. Such a configuration can be

appropriate for computations with a single data stream per processor. However,

it was not until the early 2000s that GPUs were used as coprocessors for general

purpose computing. This CPU-GPU configuration is known as General Purpose

Computing on Graphics Processing Unit (GPGPU). GPUs are particularly well-suited

to applications with a high degree of data parallelism, fitting the SIMD paradigm.

Field-Programmable Gate Arrays (FPGAs) also offer performance benefits for

certain applications. One inherent advantage is that they scale well with Moore’s

law. An increase in transistor count translates to an increase in logic and memory

resources. Hence, additional specialized computations can be performed in parallel

in the same hardware area. Application-Specific Integrated Circuits (ASICs) offer

2

CHAPTER 1. INTRODUCTION

better performance for the applications to which they are tailored.

A system which contains more than one processor architecture — including, but

not limited to CPU, GPU, FPGA, and ASIC — is known as a heterogeneous system.

Such a system aims to provide good performance for a wide variety of applications,

not just those which conform to a single architecture. A block diagram of a generic

heterogeneous system is shown in Figure 1.1.

Figure 1.1: Block Diagram of a Generic Heterogeneous System

1.1 Background & Motivation

1.1.1 Limitations of Homogeneous Computing

The limitations of homogeneous computing systems are numerous and well-

documented. These systems consist of one or more machines of the same type [2, 3].

While these systems have provided adequate performance for many applications in

the past, they have inherent performance limitations. Any given machine will be suit-

able only for computations which have the same type of embedded parallelism. As

a consequence, processors in a homogeneous system will spend a significant amount

of time executing code for which they are poorly-suited. Programmers spend a great

deal of time and effort in pursuit of making software run better on a homogeneous

architecture [4]. However, the hardware architecture on which software runs imposes

an inherent limit to the performance of that software.

3

CHAPTER 1. INTRODUCTION

Usually, each machine uses only one mode of parallelism [2]. For instance, GPUs fit

the SIMD paradigm and perform well when executing programs with a large amount

of parallel data and few divergent branches [5]. If the data are not accessed in parallel,

the program executes sequentially. Divergent branches serialize execution. In either

case, the parallel advantages of the GPU architecture erode.

Consider the hypothetical situation illustrated in Figure 1.2. An application has

three parts each with different type of embedded parallelism: A, B, and C, respec-

tively. Each takes 40 units of time on a general-purpose CPU. However, if this appli-

cation were executed on a machine with architecture A, the first part could execute

in 10 time units, and the other parts could execute in 50 time units each. While this

still is an improvement overall, the processor still spends most of its time perform-

ing computations to which it is poorly-suited. In fact, two parts of the application

perform slower.

Figure 1.2: Example of Application with Multiple Types of Parallelism

1.1.2 Heterogeneous Computing

Heterogeneous computing (HC) has often been proposed as a solution to many of the

limitations of homogeneous computing. Such a system has a collection of different

high-performance machines connected by a high-speed network [2, 6]. Applications

employing more than one type of parallelism can then be broken into segments or

“tasks”. Heterogeneity exists in a number of difference configurations, ranging from

4

CHAPTER 1. INTRODUCTION

data center to system on a chip (SoC).

Once again, consider the application consisting of three tasks, each with a dif-

ferent mode of parallelism. On a heterogeneous system, each task could be run on

the machine for which it is best suited. Assuming that the communication delays

resulting from dependencies are negligible, the finish time of the application could be

minimized, as illustrated in Figure 1.3. Task A is still executed on its best machine,

taking only 10 units of time. However, tasks B and C also are run on their respec-

tive best machines, allowing them to execute in 15 and 20 time units. In total, this

application could complete in 45 time units — less than in either of the other two

scenarios.

Figure 1.3: Example Application Running on a Heterogeneous System

1.1.3 Module Allocation (Mapping)

While the examples above simply illustrate the potential of HC, there are many

challenges to be addressed in the development of such systems. One such challenge

lies in the mapping of tasks to machines in such a way that the finishing time of the

last task is minimized. This problem is sometimes known as the Module Allocation

problem [7]. This is typically handled in one of two ways: statically or dynamically.

5

CHAPTER 1. INTRODUCTION

These two types of scheduling occur at different times [8, 9, 10, 11]. A static

schedule is established before run-time. The mappings and order of the tasks are

set out front. Therefore, a static scheduler requires that the entire workload is also

known prior to run-time. In contrast, a dynamic scheduler maps tasks to machines

as they become available. These policies attempt to make the best assignment given

the current state of the system.

1.2 Proposed Solution

In this research, a simulator will be used to evaluate four different scheduling heuris-

tics and produce analytical expressions to estimate the best possible parameter for

each of them. Hypothetically, this number changes in accordance with the character-

istics of the system. Such characteristics include measurements of machine hetero-

geneity, measurements of task heterogeneity, and processor count. These “features”

will be used as dependent variables to the expressions for each parameter. Finally,

these schedulers, with their estimated parameters, are tested against three additional

scheduling heuristics.

Certain common assumptions will be carried forward from the comparison studies

performed by Braun et al. and Maheswaran et al.[12, 13, 14]. First, tasks are assumed

to be independent. Therefore, data transfer times are zero. Second, the running time

of the heuristic is considered to be negligibly small in comparison to those of the tasks

themselves. Third, estimates of the execution time of each task on each processor

are assumed to be accurate. Fourth, it is assumed that there are no priorities to

the tasks. Lastly, the simulation model will have only a single global task structure.

Tasks are pushed to an eligible processor only as one becomes available.

Given the assumption of a single global task structure, the K-Percent Best (KPB)

scheduler will be simplified somewhat for this research. The original implementation

determines eligible mappings based on the execution time of the task, selects the

6

CHAPTER 1. INTRODUCTION

mapping among those which would result in the earliest completion time for that

task, and then appends that task to the local task queue for the mapped processor.

Assuming a global task structure ensures that mappings can’t be made to a busy

processor, thereby making completion time for a task mapping negligible for our

purposes.

In addition, a new scheduling heuristic Alternative Processor within Threshold

Extended (APTX) will be proposed and analyzed. As the name suggests, it is derived

from the original APT proposal. The key difference will be the consideration of an

unlimited number of processors within the specified threshold, as opposed to just one

or two. The rationale is that if a threshold is suitable for the second-best processor,

it would also be acceptable for others within that same threshold. This could further

reduce the amount of time tasks spend waiting for assignment, by making more

mappings permissible.

In order to evaluate the performance of the four schedulers (MET, APT, KPB,

and APTX) in a fair manner, the simulator developed by Karia et al. will be adapted

to operate on the matrix model proposed by Braun et al. [10]. Braun’s methods

for randomly-generating heterogeneous systems and workloads will be employed with

various processor counts, task heterogeneities, machine heterogeneities, and workload

sizes. Each such “experiment” will be run on each of the four schedulers in the

comparison. In the case of parametric schedulers (APT, KPB, and APTX), many

simulations will be run in order to search for the parameter which provides the best

finish time for the workload. Next, a multivariate regression analysis will be run

to determine an equation for estimating the best parameter for each of those three

schedulers. Ultimately, the best scheduler and a corresponding analytical expression

will be found.

7

CHAPTER 1. INTRODUCTION

1.3 Related Work

The performance benefits of alternative architectures for certain types of tasks have

been demonstrated repeatedly. For instance, Fletcher et al. demonstrated the perfor-

mance advantage of FPGAs over (higher-clocked) GPUs for a Bayesian interference

algorithm [15]. Similarly, Hussain et al. demonstrated FPGA performance and power

advantages over a software implementation of K-means microarray clustering, a bi-

ology research application [16]. Chen et al. implemented an OpenCL document

filtering algorithm for an FPGA and found it to perform faster than CPU and GPU

implementations [17]. Binotto et al. developed a system containing an CPU, a GPU,

and an FPGA which outperformed a homogeneous CPU system for x-ray image pro-

cessing [18]. Skalicky et al. developed a system containing an CPU, a GPU, and an

FPGA which outperformed both a homogeneous CPU system and a homogeneous

GPU system when applied to linear various linear algebra computations [19].

As for scheduling, Fernandez-Baca proved that static module allocation for mini-

mum finishing time an NP-complete problem [7]. This necessitates the development

of scheduling heuristics [6]. Numerous such heuristics, both static and dynamic, have

been developed over the past several years [2, 11, 13, 20, 21, 22, 23, 24, 25]. A key

challenge in the comparison of heuristics from different papers is the fact that each

made different assumptions about the model of the distributed system and about the

workload. Subsequent studies have attempted to compare schedulers using common

sets of assumptions.

One such comparison study was performed by Braun et al., who established a

matrix model for tasks on a heterogeneous system [12]. This study compared a num-

ber of static scheduling heuristics, including Opportunistic Load Balancing (OLB),

static Minimum Execution Time (MET), static Minimum Completion Time (MCT),

Min-min, Max-min, Duplex, a Generic Algorithm (GA), Simulated Annealing (SA),

8

CHAPTER 1. INTRODUCTION

Genetic Simulated Annealing (GSA), Tabu search, and A*.

Maheswaran et al. performed a similar comparison study for a number of different

dynamic scheduling heuristics, including a dynamic variant of MET and K-Percent

Best (KPB) [13]. In the dynamic MET policy, an arbitrary task is selected and

assigned to the machine on which it would run the fastest if and only if that machine

is available. In the KPB policy, an arbitrary task is selected. The k-percent of

machines which would provide that fastest execution time for that task are considered

for assignment. Then from that set, the available machine with the earliest completion

time is selected for task assignment.

Karia et al. performed another dynamic scheduler comparison study and intro-

duced a new heuristic known as Alternative Processor within Threshold (APT) [10].

APT extends the number of machines which MET considers for task assignment. An

arbitrary task is considered for assignment. If available, the machine which would be

fastest for that task is selected. If not, the second best machine will be selected if

and only if the expected execution time is below some threshold of execution time.

This threshold is defined by the value α, which serves as a ratio of the maximum

permissible execution time to the best possible execution time for a task. One ap-

plication was simulated with each α ∈ {1.5, 2.0, 4.0, 8.0, 16.0}. From that set, it was

found that α = 4.0 produced the earliest finish time. Assuming one minimum on

1.0 < α <∞, this suggests that the best α for that application lies somewhere in the

range 2.0 < α < 8.0. However, this estimate is based on a limited set of workloads

and a single machine configuration. The research presented in this paper looks to

develop an equation for a more accurate estimation of α.

1.3.1 Motivation

The limitations of the α selection by Karia et al. form the primary motives for this

research. First, only one application (workload) was tested. The ideal α may vary

9

CHAPTER 1. INTRODUCTION

depending on workload. Second, the research was performed with a unique set of

assumptions, as tends to be the case with scheduler research. Third, simulations for

just five values of α were performed. Of course, this is very imprecise. Hence, this

research produces an equation for α based on the characteristics of the system on

which APT runs, particularly heterogeneity.

Two additional concerns motivate the research being presented. First, the re-

searched performed by Maheswaran et al. tested the KPB scheduler only with k = 20.

Therefore, not only is KPB similar to APT in that it has a parameter, but it also

has not been been tested across a wide range of k. The research presented in this

thesis develops an equation to compute k as well. Second, the APT algorithm raises

a question: Why only consider the best two machines for a task, when multiple may

provide an execution time within the same multiple α of the best execution time?

Hence, this research proposes and evaluates an extended version of APT with this

change made.

10

Chapter 2

Methodology

In this chapter, the mathematical model of a heterogeneous system is described, along

with all assumptions. Next, each of the eight tested scheduling policies are described.

Next, the method for estimating the ideal parameter values of each scheduler is pre-

sented: α for APT, α for APTX, and k for KPB.

A stochastic method was necessary for the development of for the parameter

of each scheduler because. There is no way to construct a system of one or more

equations that can be mathematically solved for α or k.

2.1 Simulation Model, Assumptions, and Definitions

This research used the same model as [12, 13, 14]. A heterogeneous system consists

of a set of µ distinct machines M = {m1,m2, ...,mµ}. The workload of tasks to run

on the system consists of τ tasks T = {t1, t2, ..., tτ}. It is assumed that the execution

time of each task on each machine is known, such that ei,j represents the execution

time of task i on machine j. These values populate a matrix of size τ × µ known as

the Expected Time to Compute (ETC) matrix. As such, row i of the matrix contains

the estimated execution times of a given task ti, 1 < i < τ on each machine in M .

Similarly, column j of the matrix contains the estimated execution time of each task

in T on a given machine mj, 1 < j < µ. Additionally, let A ⊆ M be the available

(i.e., not busy) machines in the system.

11

CHAPTER 2. METHODOLOGY

An ETC matrix can be classified into one of three types of consistency [12, 14].

Braun et al. define each type of consistency as follows:

• An ETC matrix is said to be consistent if, in every possible pair of machines,

the execution times of one are all greater than or equal to those of the other.

• A partially-consistent ETC matrix contains a consistent submatrix.

• An inconsistent ETC matrix has no consistent submatrix. In other words, it is

any ETC matrix which is neither consistent nor partially-consistent.

Assumptions will be carried forward from the comparison studies performed in

[12, 13, 14]. First, tasks are assumed to be independent. Therefore, data transfer

times are zero. Second, the running time of the heuristic is considered to be negligibly

small in comparison to those of the tasks themselves. Third, estimates of the execution

time of each task on each processor are assumed to be accurate. Fourth, it is assumed

that there are neither priorities nor deadlines to the tasks. Lastly, the simulation

model will have only a single global task structure. Tasks are pushed to an eligible

processor only as one becomes available.

In this research, given the assumption of a single global task structure, the K-

Percent Best scheduler is simplified somewhat. In this policy, the “k percent” of

processors which would provide the best execution time for a task are considered for

mapping. Then, in the original implementation, the mapping among those which

would result in the earliest completion time for that task is selected. The task in

question is then appended to the local task queue of that processor. Assuming a global

task structure ensures that mappings can’t be made to a busy processor, thereby

making completion time for a task mapping meaningless.

With the help of the work by Karia et al., Java was used to develop a simulator

to model the execution of heterogeneous applications on heterogeneous systems [10].

Each simulation run requires four pieces of information. The first among those is

12

CHAPTER 2. METHODOLOGY

the ETC matrix. This defines both the machines comprising the system and the

workload of tasks to run. Second, the bandwidth for inter-machine communications

is required. Third, the structure of the data flow graph (DFG) of task dependencies

is required [26]. While it is true that this research does not consider transfer times

or dependencies, the simulator is able to handle them nonetheless. In this case,

independent tasks mean that the nodes of the DFG are not connected. Fourth, the

simulation requires a scheduling policy to be specified, including any parameters used

by that policy.

Naturally, the simulation time starts at 0.0 ms. The simulation procedure is

iterative. Iterations are performed until all tasks in the DFG are completed. In each

iteration, if there are any idle machines (those which do not have an assigned task

with time remaining), the scheduler attempts assign a task to a machine. The criteria

for a successful assignment vary with each scheduler. Next, the least amount of time

until a busy processor will finish a task is calculated. This “step time” is deducted

from the compute time remaining on each busy processor, and the simulation time is

incremented by the same amount. This procedure is summarized in Algorithm 1.

Algorithm 1 Simulation Procedure

1: function simulate(DFG, system)
2: simTime ← 0
3: while uncompleted tasks ∈ DFG do
4: if A 6= Ø then
5: AssignNext
6: timeStep ← time to next task completion
7: for Processor p ∈ system do
8: if p is running a task then
9: p.timeRemaining ← p.timeRemaining − timeStep
10: simTime← simTime+ timeStep

11: return simTime

13

CHAPTER 2. METHODOLOGY

2.2 Policies

In this research, six different dynamic scheduling policies are described, modeled,

and analyzed. The first — Minimum Execution Time (MET) — is the simplest and

serves as the basis of comparison for each of the other schedulers. Three policies each

take a numeric parameter before execution. This parameter imposes some constraint

on the machines which are considered for any given task. These three policies are

known as Alternative Processor within Threshold (APT), K-Percent best (KPB), and

Alternative Processor within Threshold Extended (APTX). Two additional dynamic

policies — Serial Scheduling and Shortest Process Next — are also considered.

2.2.1 Minimum Execution Time (MET)

Dynamic Minimum Execution Time, sometimes known as Best Only, is the simplest

scheduling heuristic in this research. This scheduler attempts to assign an arbitrary

uncompleted task to the machine on which it would execute in the least amount

of time [10, 13]. If that processor is busy, then the policy waits until it becomes

available to perform the mapping. This procedure, as implemented in the simulator,

is summarized in Algorithm 2.

Algorithm 2 MET Assignment Procedure

1: function AssignNext
2: for uncompleted unassigned task ti ∈ DFG do
3: Machine mbest ← mk ∈M : ETC(i, k) = Min{ETC(i)}
4: if mbest ⊆ A then
5: Assign ti to mbest

6: mbest.timeRemaining ← ETC(i, best)
7: return

The major downside to MET is the fact that it can lead to severe load imbalance

across the machines. A backlog of tasks may end up waiting for a small number of

machines to become available, especially if the ETC matrix is partially-consistent or

14

CHAPTER 2. METHODOLOGY

consistent. The major advantages are the simplicity (i.e., low cost) of the decision

and the fact that a task will never run on a machine to which it is poorly-suited.

2.2.2 Serial Scheduling (SS)

Serial Scheduling takes a statistical approach to the assignment problem [27]. This

policy considers the distribution of execution times among available processors for

each task. That is to say, every task is given consideration for assignment priority.

For each task, the mean and standard deviation of execution times on available pro-

cessors is computed. The scheduler chooses the task ti with the highest such standard

deviation and assigns it to machine mj ∈ A with the lowest execution time.

One advantage to SS is that tasks never wait for assignment as one or more ma-

chines sit idle. Load balancing is generally good as a consequence. Second, the tasks

with the highest heterogeneity (represented by the standard deviation) are priori-

tized, as it would have the relatively-highest penalty for poor assignment. However,

this does not ensure that poor assignments are impossible. Processors will always be

given a task, even if that assignment is poor.

2.2.3 Shortest Process Next (SPN)

The Shortest Process Next policy is also very simple. Among uncompleted tasks and

available processors, the task-machine mapping with the lowest overall execution time

is performed. To illustrate this, suppose a system represented by the ETC matrix

in Figure 2.1. Let execution begin at time = 0. First, task t2 would be mapped to

machine m2. Next, task t1 would be mapped to machine m1. Next, task t4 would be

mapped to the only remaining machine m3. At this point, no machines remain, so

task2 runs to completion at time = 10. At this point, only machine m2 is available,

and only task t3 is uncompleted, so t3 is mapped to m2. This entire flow is represented

visually in Figure 2.2.

15

CHAPTER 2. METHODOLOGY

10 15 25

25 5 30

20 15 55

30 35 45

Figure 2.1: SPN Example Matrix

Figure 2.2: Example Application Running on SPN

Two advantages of this policy are that machines are kept busy and load balancing

is good. A downside to this policy is that neither task nor machine heterogeneity is

considered.

2.2.4 Alternative Processor within Treshold (APT)

Alternative Processor within Threshold is a policy which adds flexibility to the MET

policy by considering more than one machine for each task in the event that the best

machine is busy [10]. This flexibility can even be tuned via a numeric parameter

α ≥ 1, which serves as a ratio of the maximum permissible execution time to the

best possible execution time for a task assignment. The effect is that α limits the

situations wherein a task is assigned to a machine other than its best. At the same

time, the option to assign to an alternate machine is open in certain situations where

the best machine is busy.

Processor selection in APT performs as follows. An arbitrary task is considered for

assignment. Let tmin be the lowest execution time possible for that task and mbest be

16

CHAPTER 2. METHODOLOGY

the processor that would provide it. In the ideal scenario, mbest is already available, so

APT maps the task to it. However, if that processor is busy, the second-best machine

malt for the task is considered. If the expected execution time for the second-best

machine talt ≤ α × tmin, then the task is instead mapped to that machine. By this

mechanism, tasks are kept from waiting too long for one machine, and load balancing

is improved, while poor alternative machines are also avoided. The idea is that the

hit to execution time can be acceptable if it is small relative to the waiting time.

The APT processor selection procedure, as implemented in the simulator, is sum-

marized in Algorithm 3.

Algorithm 3 APT Assignment Procedure

1: function AssignNext(α)
2: for uncompleted unassigned task ti ∈ DFG do
3: timebest ← Min{ETC(i)}
4: Machine mbest ← mk ∈M : ETC(i, k) = timebest
5: if mbest ⊆ A then
6: Assign ti to mbest

7: mbest.timeRemaining ← ETC(i, best)
8: return
9: else
10: timemax ← timebest × α
11: Machine malt ← machine with the second best execution time for ti.
12: if malt ∈ A then
13: Assign ti to malt

14: malt.timeRemaining ← ETC(i, alt)
15: return

To illustrate APT, consider the ETC matrix shown in Figure 2.3. Suppose that

tasks are mapped in order when possible. Let α = 2.0. Start at time = 0. First,

task t1 is mapped to machine m2. Task t2 is then skipped for the time being, as the

best machine m2 is already occupied and the second-best machine takes more than

α = 2.0 times that of the best. Task t3 is mapped to its best machine m1, which

is available. Task t4 is mapped to its best second-best machine m3. This is allowed

because 30 ≤ 20 × α. Task t5 is not mapped initially, as its two best machines are

17

CHAPTER 2. METHODOLOGY

busy. With no more mappings possible, time advances to time = 10, at which point

machine m2 finishes task t1. Task t2 is assigned to it, since it is the best machine for

that task. Finally, once machine m1 becomes available at time = 20, task t5 is to it.

The entire application finishes at time = 40. This entire flow is represented visually

in Figure 2.4.

15 10 40 45

35 15 45 50

15 25 20 35

20 35 30 40

20 50 30 35

Figure 2.3: APT Example Matrix

Figure 2.4: Example Application Running on APT

A contribution of this work is to develop an analytical expression to estimate the

ideal value of α based on characteristics of the ETC matrix. Karia et al. did explore

this to a limited extent. However, only one workload was simulated. Moreover, it

was only simulated with each α ∈ {1.5, 2.0, 4.0, 8.0, 16.0}. The research presented in

18

CHAPTER 2. METHODOLOGY

this paper simulates a vastly larger set of applications, systems, and values of α in

order to determine how ETC matrix characteristics can be used to estimate the best

value of α for any ETC matrix.

The entirety of this analysis consists of three main steps: random experiment

generation, tests of many values of α with each experiment, and a statistical analy-

sis of the relationship of the system (experiment) characteristics to the values of α

which finished each experiment most quickly. This analysis produces an expression

to estimate the best α based on the aforementioned system characteristics.

Furthermore, the APT algorithm raises a question: Why consider only the best

two machines for a task, when multiple may provide an execution time within the

same threshold the best execution time? Another contribution of this research is

to determine whether or not allowing an unlimited number of processors within a

threshold produces better performance than with standard APT.

2.2.5 Alternative Processor within Threshold Extended (APTX)

APTX aims to address the aforementioned possible oversight of APT. It uses α in the

same way, but instead of limiting the machine selection to just the best two machines,

the entire subset of machines with execution times under the threshold are consid-

ered. For instance, consider a task ti with execution times ei = {10, 15, 25, 40, 50} on

machines M = {m1,m2, ...,m5}. Suppose that α = 3.0 and machines m1 and m2 are

busy. At this point, APT would wait to assign ti to a processor, in spite of the fact

that m3 would also execute within α× e1. APTX on the other hand, would assign ti

to m3. This added flexibility should serve to further reduce the time that tasks spend

waiting for assignment to a machine, without violating the threshold.

To illustrate APTX, again consider the ETC matrix shown in Figure 2.3. Suppose

that tasks are mapped in order when possible. Let α = 2.0. Start at time = 0. First,

task t1 is mapped to machine m2. Task t2 is then skipped for the time being, as the

19

CHAPTER 2. METHODOLOGY

best machine m2 is already occupied and the second-best machine takes more than

α = 2.0 times that of the best. Task t3 is not mapped to its best machine m1, which

is busy. Instead it is mapped to machine m3, which is the second-best machine and

is available. Task t4 is mapped to its best machine m1. The first and second-best

machines for t5 are busy, but the third-best machine is still under the threshold set by

α = 2, so it is also mapped initially. With no more mappings possible, time advances

to time = 10, at which point machine m2 finishes task t1 and becomes available for

task t2 to be mapped to it. The entire application finishes at time = 35, sooner than

the APT example did. This entire flow is represented visually in Figure 2.5.

Figure 2.5: Example Application Running on APTX

This work contributes the proposal and evaluation of this scheduler. Part of this

evaluation involves the determination of a good value of α, which can be tuned in

accordance with the characteristics of the system on which it runs. This research

attempts to develop an equation for α based on those characteristics. A stochas-

tic approach was taken to solve this. It consists of three steps: random experiment

generation, tests of many values of α with each experiment, and a statistical analy-

sis of the relationship of the system (experiment) characteristics to the values of α

20

CHAPTER 2. METHODOLOGY

which finished each experiment most quickly. This analysis produces an expression

to estimate the best α based on the aforementioned system characteristics.

2.2.6 K-Percent Best (KPB)

K-Percent Best, like APT, has behavior constrained by a numeric parameter (this

time k) [13]. Again, this parameter can be tuned in accordance with characteristics

of the heterogeneous system on which it runs. For each task, KPB considers a subset

of the machines in M . This subset consists of the k×|M |
100

fastest machines in the system

for that task. From that set, the machine with the lowest completion time is chosen.

As mentioned, the simulation model in this research does not include individual

task queues on each machine and therefore completion time is meaningless. However,

the original KPB heuristic was modified to fit the simulation model and work in a

fashion more similar to APT. The selection of the k×|M |
100

fastest machines remains

the same. In contrast, the available machine in that subset with the lowest execution

time is selected. If no machine in the subset is available, no assignment occurs at that

time. The task waits for one to become available. Note that k must be set sufficiently

high that k×|M |
100
≥ 1 and must not exceed 100.

One additional concern motivates the research being presented. The researched

performed by Maheswaran et al. tested only the KPB scheduler with k = 20. There-

fore, not only is KPB similar to APT and APTX in that it has a parameter, but it

also has not been been tested across a wide range of k. Hence, this research attempts

to develop an equation for k. A stochastic approach was taken to solve this problem.

It consists of three steps: random experiment generation, tests of many values of

k with each experiment, and a statistical analysis of the relationship of the system

(experiment) characteristics to the values of k which finished each experiment most

quickly. This analysis produces an expression to estimate the best k based on the

aforementioned system characteristics.

21

CHAPTER 2. METHODOLOGY

2.3 Random Experiment Generation

An “experiment” consists simply of an ETC matrix that defines the machines in a

system and the workload. In this research, it was performed in a way similar to [12].

Four numbers define the characteristics used to generate each matrix. First, let τ be

the number of tasks (i.e., the row count of the matrix). Second, let µ be the number

of machines in the system (i.e., the column count of the matrix). Third, let φb define

the task heterogeneity — the amount of variation among execution times for a task.

φb = 100 is considered low task heterogeneity while φb = 3000 is considered high.

Fourth, let φr define the machine heterogeneity — the amount of variation among

execution times for a processor. φr = 10 is considered low machine heterogeneity

while φr = 1000 is considered high.

To generate an ETC matrix (sized τ × µ), a τ × 1 baseline column vector B was

generated. It was then populated with floating-point values from a uniform random

variable Xb = U(1, φb). Next, the rows of the matrix were generated. Each element

ETC(i, j) of the matrix was set to the product of Bi and another uniform random

variable Xr = U(1, φr). Hence, Bi ≤ ETC(i, j) < Bi × φr∀i ∈ [1, τ] , j ∈ [1, µ]. After

generating each row, if the matrix was specified to be consistent, the values of that

row were sorted.

An example of a consistent ETC matrix with six tasks, six machines, low task

heterogeneity, and low machine heterogeneity (LoLo) is given in Figure 2.6. An

example of an inconsistent ETC matrix with six tasks, four machines, high task

heterogeneity and high machine heterogeneity (HiHi) is given in Figure 2.7.

22

CHAPTER 2. METHODOLOGY

56.3 66.8 82.6 99.9 112.2 123.4

36.2 100.3 103.2 153.2 155.2 165.8

100.8 288.0 293.9 356.2 391.3 418.0

48.8 62.9 155.0 189.1 207.8 226.6

212.3 291.9 404.8 455.3 516.2 600.6

162.1 163.9 171.5 225.0 291.6 365.5

Figure 2.6: Consistent LoLo ETC Matrix Example

344363.3 56304.0 373420.1 318912.4

1067733.3 1769877.1 79736.6 1243421.9

980118.2 1640319.5 705306.7 1410030.9

162484.9 1027283.3 853241.4 942676.9

96943.1 42296.2 80775.2 136384.5

1293686.8 1660723.6 1987079.0 2100383.4

Figure 2.7: Consistent HiHi ETC Matrix Example

For the purposes of this research, a consistent matrix and an inconsistent matrix

were generated for every combination of the following parameters:

τ = 256, 512, 1024, 2048

µ = 4, 8, 12, 16, 20

φb = 100, 150, 200, ..., 3000

φr = 10, 100, 1000

This resulted in a set of 3540 consistent experiments and 3540 inconsistent exper-

iments covering a wide variety of task counts, machine counts, task heterogeneities,

and machine heterogeneities. The purpose of having such a varied test set is to de-

termine which characteristics influence what an ideal parameter would be for APT,

KPB, and APTX.

23

Chapter 3

Experimental Results & Analysis

Two phases of simulations comprise the complete analysis performed in this research.

The first part involves simulating each experiment with a wide range of parameter

values for APT, APTX, and KPB. The values resulting in the lowest finish times are

recorded and used to develop equations for estimating each parameter. This leads

into the second phase of simulations, which is performed to evaluate the estimations

of each parameter and compare the six described schedulers.

Two separate simulations and equations were developed for each scheduler — one

for consistent ETC matrices and one for inconsistent ETC matrices. Recall that in a

consistent matrix, each machine is strictly better or worse than each other machine.

3.1 Generation of Parameter Expressions

Next, the problem of actually determining the best parameter for each experiment

was addressed. This was done by simulating each experiment with a wide range

of parameter values at high precision. Prior to the simulations of each experiment,

various measurements of task and machine heterogeneity, and the processor count

were recorded. The complete list of “features” is given in Table 3.1.

The finishing time of each simulation, scheduler, and parameter value was

recorded. After running all simulations, the parameter which gave the earliest finish

time was identified. In the case of multiple values producing the earliest finish time,

24

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Table 3.1: Features Measured from Each Experiment

No. Name Description
Machine
Hetero-
geneity

1 minTaskRange least difference between greatest
and least execution time of any task

2 maxTaskRange greatest difference between greatest
and least execution time of any task

3 meanTaskRange mean difference between greatest
and least execution time of all tasks

4 minTaskRatio least ratio of greatest to least exe-
cution time of any task

5 maxTaskRatio greatest ratio of greatest to least ex-
ecution time of any task

6 meanTaskRatio mean ratio of greatest to least exe-
cution time of all tasks

7 minTaskStd least standard deviation of execu-
tion times of any task

8 maxTaskStd greatest standard deviation of exe-
cution times of any task

9 meanTaskStd mean standard deviation of execu-
tion times of all tasks

10 maxTaskBestRatio greatest ratio of second-least to
least execution time of any task

11 minTaskBestRatio least ratio of second-least to least
execution time of any task

12 meanTaskBestRatio mean ratio of second-least to least
execution time of all tasks

13 taskMeanExtremaRange range of the mean worst execution
time of each task to the mean best
execution time of each task

14 taskMeanExtremaRatio ratio of the mean worst execution
time of each task to the mean best
execution time of each task

15 taskMeanBestRatio ratio of the mean best execution
time to the mean second-best ex-
ecution time

Task Het-
erogeneity

16 procMeanRange difference between the greatest
mean execution time of any proces-
sor and the lowest

17 procMeanRatio ratio of the greatest mean execution
time of any processor and the lowest

18 procMeanStd standard deviation of processor
mean execution times

Processor
Count

19 procCount number of processors (i.e., ma-
chines) in the system

25

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

the lowest such value was used.

Next, relationships between the aforementioned features of each experiment and

the corresponding parameter value (α or k) were sought. The correlations of linear

relationships (x vs. y), exponential relationships (x vs. log(y)), logarithmic relation-

ships (log(x) vs. y), and power relationships (log(x) vs. log(y) were all tested for

each feature. The best relationship of each feature was then used to form a term of

an independent variable in a multivariate regression analysis if that relationship had

an r2 ≥ 0.25.

3.1.1 Search for Best APT Parameter

The 5430 consistent experiments were run first, with each α = 1.0, 1.1, 1.2, ..., 8.0,

based on the assumption that it would never be a good decision to assign a task to

a machine eight times slower than the fastest one. The simulated value of α which

resulted in the earliest finish time was recorded for each experiment. In the case of

a tie, the least α was used. Note that the best value of α was never observed to

be greater than 7.4, further reinforcing the assumption that α > 8.0 would never

be ideal. Next, Octave was used to compute the correlation between each feature

and α for potential linear, exponential, logarithmic, and power relationships. Those

with r2 >= 0.25 were recorded. Any smaller correlation was not considered to be

meaningful. Listing 3.1 shows the text output of the script performing this function.

26

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Listing 3.1: APT Consistent Correlations

f e a t 4 , l i n : r2 =0.777182

f e a t 4 , exp : r2 =0.765742

f e a t 4 , l og : r2 =0.819243

f e a t 4 ,pow : r2 =0.852641

f e a t 6 , l i n : r2 =0.421435

f e a t 6 , exp : r2 =0.378579

f e a t 6 , l og : r2 =0.403876

f e a t 6 ,pow : r2 =0.382522

feat14 , l i n : r2 =0.806543

feat14 , exp : r2 =0.747996

feat14 , l og : r2 =0.821915

feat14 , pow : r2 =0.829146

feat17 , l i n : r2 =0.806543

feat17 , exp : r2 =0.747996

feat17 , l og : r2 =0.821915

feat17 , pow : r2 =0.829146

feat19 , l i n : r2 =0.835311

feat19 , exp : r2 =0.861174

feat19 , l og : r2 =0.812226

feat19 , pow : r2 =0.897939

Each line of Listing 3.1 contains a feature number (corresponding to Table 3.1) fol-

lowed by the type of relationship of the data — (lin)ear, (exp)onential, (log)arithmic,

or (pow)er — followed by a coefficient of determination (the square of correlation r2).

This text was manually inspected as follows.

Only one of each type of measurement was kept. For instance, minTaskRatio,

meanTaskRatio, and taskMeanExtremaRatio are all fundamentally measurements of

machine heterogeneity. Since minTaskRatio gave the highest correlation of them all

in a power relationship, it was used as the sole measurement of machine heterogene-

27

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

ity. This relationship is plotted in Figure 3.1. Similarly, procMeanRatio was the

most useful measurement of task heterogeneity when in a power relationship. This is

plotted in Figure 3.2. Likewise, procCount best indicated the correct value of α in a

power relationship. This is plotted in Figure 3.3.

Figure 3.1: Relationship of minTaskRatio to Best α for APT, Consistent Systems

Figure 3.2: Relationship of procMeanRatio to Best α for APT, Consistent Systems

28

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.3: Relationship of procCount to Best α for APT, Consistent Systems

From these data, an equation to estimate α was developed. The equation was mod-

eled on the aforementioned predictor-α relationships. This model is shown in (3.1).

It consists of a constant and a sum of three powers. Let x4 represent minTaskRatio.

Let x17 represent procMeanRatio. Let x19 represent procCount).

α = b1 + b2x
b3
4 + b4x

b5
17 + b6x

b7
19 (3.1)

This model and the data were run through the Matlab fitnlm (fit non-linear model)

function in order to find good values for bi, i ∈ {1, 2, ..., 7}. The resulting regression

function is shown in (3.2). The coefficient of determination is r2 = 0.945, indicating

a very good fit between the equation and the observed data.

α = −0.46606 + 1.0713x0.00564334 + 0.17125x0.9033817 + 0.26261x0.7884619 (3.2)

This function was integrated into the simulator to provide an automatically com-

puted and precise value of α to use with APT and a consistent ETC matrix. However,

further analysis reveals the most significant predictors of α. For instance, the power of

29

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

x4 is very small (0.0056433). It essentially reduces to one (as a power zero does), even

with the largest possible value in this research φr = 1000. Hence, the entire x4 term

reduces to a constant. Performing this simplification and approximating the other

coefficients and powers results in the more simple equation given in (3.3). Again, let

x17 represent procMeanRatio and let x19 represent procCount).

α = 0.61 + 0.17x0.9017 + 0.26x0.7919 (3.3)

Hence, the most meaningful predictor of α for APT on a consistent system is

processor count, as evidenced by the high coefficient. This is as one would expect for

a consistent system. Each task “ranks” machines in the exact same way. Therefore,

in order to keep up load balancing, α needs to allow two machines for some of the

tasks and one machine for those which would take too severe of a performance hit.

Naturally, in order to choose such a value of α, the “typical difference” between

execution times of a task is also needed. Fundamentally, this is the meaning of

task heterogeneity. Hence, the second-best predictor of α is task heterogeneity. In

addition, each of these predictors diminishes in its returns as it increases. Adding one

more machine to a large consistent system will not offer much of a benefit. Similarly,

if task heterogeneity is high, adding just a bit more won’t drastically change the ideal

threshold.

Next, the 5430 inconsistent experiments were run. The same values of α were

used, and the same criteria for identifying the best value of α were used. Again,

Octave was used to compute the correlation between each feature and α for potential

linear, exponential, logarithmic, and power relationships. Those with r2 >= 0.25 were

recorded. Any smaller correlation was not considered to be meaningful. Listing 3.2

shows the text output of the script performing this function. This text was inspected

in the same way as for consistent APT experiments.

30

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Listing 3.2: APT Inconsistent Correlations

f e a t 4 , l i n : r2 =0.282954

f e a t 4 , exp : r2 =0.289308

f e a t 4 , l og : r2 =0.279616

f e a t 4 ,pow : r2 =0.291123

feat14 , l i n : r2 =0.275936

feat14 , exp : r2 =0.284325

feat14 , l og : r2 =0.283893

feat14 , pow : r2 =0.297031

feat17 , l i n : r2 =0.313336

feat17 , exp : r2 =0.312759

feat17 , l og : r2 =0.315290

feat17 , pow : r2 =0.315411

Only one of each type of measurement was kept. taskMeanExtremaRatio gave

the highest correlation between machine heterogeneity and α. This relationship is

plotted in Figure 3.4. Similarly, procMeanRatio was the most useful measurement of

task heterogeneity when in a power relationship. This is plotted in Figure 3.5. Task

heterogeneity was determined to be a poor indicator of the best α when running APT

on an inconsistent system.

31

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.4: Relationship of taskMeanExtremaRatio to Best α for APT

Figure 3.5: Relationship of procMeanRatio to Best α for APT

From these data, an equation to estimate α was developed. The equation was

modeled on the aforementioned predictor-α relationships. This model is shown in

(3.4). It is the sum of a constant and and two powers. Let x14 represent taskMeanEx-

tremaRatio and let x17 represent procMeanRatio.

α = b1 + b2x
b3
14 + b4x

b5
17 (3.4)

This model and the data were run through the Matlab fitnlm (fit non-linear model)

32

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

function in order to find good values for bi, i ∈ {1, 2, ..., 5}. The resulting regression

function is shown in (3.5). The coefficient of determination is r2 = 0.431, which is

much weaker than that for APT and consistent matrices.

α = −52.731 + 0.05632x0.5594514 + 53.694x0.03126917 (3.5)

This function was integrated into the simulator to provide an automatically com-

puted and precise value of α to use with APT and an inconsistent ETC matrix.

However, further analysis reveals the true predictors of α. For instance, the value

(typically not more than about 1.3) and power (0.031269) of x17 are both so small

that the whole term essentially reduces to a constant. Performing this simplifica-

tion and approximating the other coefficients and powers results in the more-simple

equation given in (3.6). Again, let x14 represent taskMeanExtremaRatio and let x17

represent procMeanRatio.

α = 0.96 + 0.06x0.5614 (3.6)

Hence, the only significant predictor of α for APT on an inconsistent system is

machine heterogeneity. Unlike in a consistent system, the same machines are not

the best for every task. Hence, the purpose of α has less to do with setting the

number of eligible machines, so the processor count and task heterogeneity become

poor predictors.

3.1.2 Search for Best APTX Parameter

The same 5430 consistent experiments from earlier were run again, this time with

APTX instead of APT. Again, each experiment was simulated with each value α ∈

{1.0, 1.1, 1.2, ..., 8.0}. The assumption was upheld that it would never be a good

decision to assign a task to a machine eight times slower than the fastest one for that

33

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

task. The same criteria for selecting the “best” value of α for an experiment were

used. The lowest value of α to result in the earliest finish time of each experiment

was used. Again, Octave was used to compute the correlation between each feature

and α for potential linear, exponential, logarithmic, and power relationships. Those

with r2 >= 0.25 were recorded. Any smaller correlation was not considered to be

meaningful. Listing 3.3 shows the text output of the script performing this function.

This text was inspected in the same way as for APT experiments.

Listing 3.3: APTX Consistent Correlations

f e a t 4 , l i n : r2 =0.776732

f e a t 4 , exp : r2 =0.765430

f e a t 4 , l og : r2 =0.818943

f e a t 4 ,pow : r2 =0.852392

f e a t 6 , l i n : r2 =0.422933

f e a t 6 , exp : r2 =0.379691

f e a t 6 , l og : r2 =0.404624

f e a t 6 ,pow : r2 =0.383108

feat14 , l i n : r2 =0.807905

feat14 , exp : r2 =0.749044

feat14 , l og : r2 =0.822695

feat14 , pow : r2 =0.829768

feat17 , l i n : r2 =0.807905

feat17 , exp : r2 =0.749044

feat17 , l og : r2 =0.822695

feat17 , pow : r2 =0.829768

feat19 , l i n : r2 =0.835763

feat19 , exp : r2 =0.861510

feat19 , l og : r2 =0.812433

feat19 , pow : r2 =0.898070

Only one of each type of measurement was kept. In the case of consistent sys-

34

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

tems running APTX, the measurements were the same as those of consistent systems

running APT. For machine heterogeneity, minTaskRatio gave the highest correla-

tion in a power relationship. This relationship is plotted in Figure 3.6. Similarly,

procMeanRatio was the most useful measurement of task heterogeneity when in a

power relationship. This is plotted in Figure 3.7. Likewise, procCount best indicated

the correct value of α in a power relationship. This is plotted in Figure 3.8.

Figure 3.6: Relationship of minTaskRatio to Best α for APTX, Consistent Systems

Figure 3.7: Relationship of procMeanRatio to Best α for APTX, Consistent Systems

35

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.8: Relationship of procCount to Best α for APTX, Consistent Systems

From these data, an equation to estimate α was developed. The equation was mod-

eled on the aforementioned predictor-α relationships. This model is shown in (3.7).

It consists of the sum of a constant and three powers. Let x4 represent minTaskRatio.

Let x17 represent procMeanRatio. Let x19 represent procCount).

α = b1 + b2x
b3
4 + b4x

b5
17 + b6x

b7
19 (3.7)

This model and the data were run through the Matlab fitnlm (fit non-linear model)

function in order to find good values for bi, i ∈ {1, 2, ..., 7}. The resulting regression

function is shown in (3.8). The coefficient of determination is r2 = 0.946, indicating

a very good fit between the equation and the observed data.

α = −1.9302 + 2.5357x−0.00302924 + 0.1609x0.9227617 + 0.27342x0.7789719 (3.8)

This function was integrated into the simulator to provide an automatically com-

puted and precise value of α to use with APTX and a consistent ETC matrix. How-

ever, further analysis reveals the true predictors of α. For instance, the x4 term can

be reduced to a constant, just as it was for APT and consistent matrices. Performing

36

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

this simplification and approximating the other coefficients and powers results in the

more simple equation given in (3.9). Again, let x17 represent procMeanRatio and let

x19 represent procCount).

α = 0.61 + 0.16x0.9217 + 0.27x0.7819 (3.9)

Hence, the most meaningful predictor of α for APTX on a consistent system is

processor count, as evidenced by the high coefficient. This is as one would expect for

a consistent system. Each task “ranks” machines in the exact same way. Therefore,

in order to keep load balance, α needs to allow several machines for several tasks.

The exact number of these “several” machines is of course a function of the number

of machines in the system. Naturally, in order to choose a value of α, the “typical

difference” between execution times of a task is also needed. Fundamentally, this

is the meaning of task heterogeneity. Hence, the second-best predictor of α is task

heterogeneity. In addition, each of these predictors diminishes in its returns as it

increases. Adding one more machine to a large consistent system will not offer much

of a benefit. Similarly, if task heterogeneity is high, adding just a bit more won’t

drastically change the ideal threshold.

Note that the constants bi used for APTX in (3.9) nearly match those used in

(3.3) for APT. The independent predictors xi match exactly. This is expected as the

schedulers function in nearly-identical ways. The only difference is that each task is

eligible to be mapped to an unlimited number of machines, as opposed to just one or

two.

Next, the same 5430 inconsistent experiments from earlier were run again. The

same values of α were used, and the same criteria for identifying the best value of α

were used, this time with APTX instead of APT. Again, each experiment was sim-

ulated with each value α ∈ {1.0, 1.1, 1.2, ..., 8.0}. The assumption was again upheld

that it would never be a good decision to assign a task to a machine eight times

37

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

slower than the fastest one for that task. The same criteria for selecting the “best”

value of α for an experiment were used. Again, Octave was used to compute the

correlation between each feature and α for potential linear, exponential, logarithmic,

and power relationships. Those with r2 >= 0.25 were recorded. Any smaller corre-

lation was not considered to be meaningful. Listing 3.4 shows the text output of the

script performing this function. This text was inspected in the same way as for APT

experiments.

Listing 3.4: APTX Inconsistent Correlations

f e a t 4 , l i n : r2 =0.284109

f e a t 4 , exp : r2 =0.290550

f e a t 4 , l og : r2 =0.280873

f e a t 4 ,pow : r2 =0.292474

feat14 , l i n : r2 =0.277161

feat14 , exp : r2 =0.285678

feat14 , l og : r2 =0.285545

feat14 , pow : r2 =0.298884

feat17 , l i n : r2 =0.313092

feat17 , exp : r2 =0.312466

feat17 , l og : r2 =0.315031

feat17 , pow : r2 =0.315100

Only one of each type of measurement was kept. In the case of inconsistent

systems running APTX, the measurements were the same as those of inconsistent

systems running APT. taskMeanExtremaRatio gave the highest correlation between

machine heterogeneity and α. This relationship is plotted in Figure 3.9. Similarly,

procMeanRatio was the most useful measurement of task heterogeneity when in a

power relationship. This is plotted in Figure 3.10. Task heterogeneity was determined

to be a poor indicator of the best α when running APT on an inconsistent system.

38

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.9: Relationship of taskMeanExtremaRatio to Best α for APTX

Figure 3.10: Relationship of procMeanRatio to Best α for APTX

From these data, an equation to estimate α was developed. The equation was

modeled on the aforementioned predictor-α relationships. This model is shown in

(3.10). It consists of a constant and and a sum of two powers. Let x14 represent

taskMeanExtremaRatio and let x17 represent procMeanRatio.

α = b1 + b2x
b3
14 + b4x

b5
17 (3.10)

This model and the data were run through the Matlab fitnlm (fit non-linear model)

39

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

function in order to find good values for bi, i ∈ {1, 2, ..., 5}. The resulting regression

function is shown in (3.11). The coefficient of determination is r2 = 0.431, which is

much weaker than that for APTX and consistent matrices, but similar to that for

APT and inconsistent matrices.

α = −51.652 + 0.060482x0.5428814 + 52.609x0.03183417 (3.11)

This function was integrated into the simulator to provide an automaticallycom-

puted and precise value of α to use with APTX and an inconsistent ETC matrix.

However, further analysis reveals the true predictors of α. For instance, the x17 can

be approximated to a constant just as it was for APT and inconsistent matrices. As

for the x14 term, x14 does have enough of a range (from about 2.7 to 21.8 in this

research) that it should still be considered in spite of its small power. Performing

these simplifications results in (3.12).

α = 0.92 + 0.06x0.5414 (3.12)

Hence, the only significant predictor of α for APTX on an inconsistent system

is machine heterogeneity. Unlike in a consistent system, the same machines are not

the best for every task. Hence, the purpose of α has less to do with setting the

number of eligible machines, so the processor count and task heterogeneity become

poor predictors.

3.1.3 Search for Best KPB Parameter

The same 5430 consistent experiments from earlier were run this time using KPB

as the scheduler. Each k = 100
µ

+ 5n, n ∈ N, k ≤ 100 was simulated with each

experiment. The value of k which resulted in the earliest finish time was recorded for

each experiment. In the case of a tie, the least value of k was used. Next, Octave

40

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

was used to compute the correlation between each feature and k for potential linear,

exponential, logarithmic, and power relationships. Those with r2 >= 0.25 were

recorded. Any smaller correlation was not considered to be meaningful. Listing 3.5

shows the text output of the script performing this function. This text was inspected

in the same way as for APT and APTX experiments.

Listing 3.5: KPB Consistent Correlations

f e a t 4 , l og : r2 =0.280017

f e a t 4 ,pow : r2 =0.266484

feat19 , l i n : r2 =0.360149

feat19 , exp : r2 =0.342118

feat19 , l og : r2 =0.468687

feat19 , pow : r2 =0.451783

Only one of each type of measurement was kept. For machine heterogeneity,

minTaskRatio was determined to be the best predictor of k when in a logarithmic

relationship. This relationship is plotted in Figure 3.11. Similarly, procCount was

the best indicator of k when in a power relationship. This is plotted in Figure 3.12.

Task heterogeneity was determined to be a poor predictor of k.

Figure 3.11: Relationship of minTaskRatio to Best k for KPB, Consistent Systems

41

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.12: Relationship of procCount to Best k for KPB, Consistent Systems

From these data, an equation to estimate k was developed. The equation was

modeled on the aforementioned predictor-k relationships. This model is shown in

(3.13). It consists of a constant, and a sum of two logarithms. Let x4 be minTaskRatio

and let x19 be procCount).

k = b1 + b2log(x4) + b3log(x19) (3.13)

This model and the data were run through the Matlab fitnlm (fit non-linear model)

function in order to find good values for bi, i ∈ {1, 2, 3}. The resulting regression

function is shown in (3.14). The coefficient of determination is r2 = 0.54, indicating

a somewhat-good fit between the equation and the observed data.

k = 54.291− 14.248log(x4) + 18.306log(x19) (3.14)

Each term of this equation is significant, meaning that both machine heterogeneity

and machine count significantly impact the ideal k for a consistent system. First,

note that the machine count has a negative impact on the calculation of k. This

makes sense in KPB, as the number of machines eligible for each task mapping are

42

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

a function of machine count µ and k itself. Recall that the size of that subset of

machines is k×|M |
100

. There is an absolute number of machines that are desirable, so

as the number of machines increases, the fraction of machines which are eligible falls

relatively. Machine heterogeneity determines what this number of machines should

be, as it measures how much worse each machine is than the previous one. Hence,

this has a positive impact on the ideal value of k.

Next, the same 5430 inconsistent experiments from earlier were run again. The

same values of k were used, and the same criteria for identifying the best value of k

were used. Again, Octave was used to compute the correlation between each feature

and k for potential linear, exponential, logarithmic, and power relationships. Those

with r2 >= 0.25 were recorded. Any smaller correlation was not considered to be

meaningful. Listing 3.6 shows the text output of the script performing this function.

This text was inspected in the same way as for APT and APTX experiments.

43

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Listing 3.6: KPB Inconsistent Correlations

f e a t 4 , l i n : r2 =0.667669

f e a t 4 , exp : r2 =0.720044

f e a t 4 , l og : r2 =0.765847

f e a t 4 ,pow : r2 =0.776132

f e a t 6 , l i n : r2 =0.325544

f e a t 6 , exp : r2 =0.383362

f e a t 6 , l og : r2 =0.337016

f e a t 6 ,pow : r2 =0.372322

feat14 , l i n : r2 =0.632856

feat14 , exp : r2 =0.715737

feat14 , l og : r2 =0.739522

feat14 , pow : r2 =0.763029

feat19 , l i n : r2 =0.780071

feat19 , exp : r2 =0.799213

feat19 , l og : r2 =0.843128

feat19 , pow : r2 =0.799745

Only one of each type of measurement was kept. For instance, as was the case with

APT minTaskRatio, meanTaskRatio, and taskMeanExtremaRatio are all fundamen-

tally measurements of machine heterogeneity. While it is the case that minTaskRatio

gave the highest correlation of them all in a power relationship, it was actually dis-

carded. Instead, taskMeanExtremaRatio was used, as it had nearly as high of a corre-

lation and was used also with APT and APTX. This relationship is plotted in Figure

3.13. procMeanRatio was determined to correlate well with k in a power relationship.

This is plotted in Figure 3.14.

From these data, an equation to estimate k was developed. The equation was mod-

eled on the aforementioned predictor-k relationships. This model is shown in (3.15).

It consists of a constant, a power, and a logarithm. Let x14 be taskMeanExtremaRatio

44

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.13: Relationship of taskMeanExtremaRatio to Best k for KPB

Figure 3.14: Relationship of procCount to Best k for KPB

and let x19 be procCount.

k = b1 + b2x
b3
14 + b4log(x19) (3.15)

This model and the data were run through the Matlab fitnlm (fit non-linear model)

function in order to find good values for bi, i ∈ {1, 2, 3, 4}. The resulting regression

function is shown in (3.14). The coefficient of determination is r2 = 0.89, indicating

45

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

a very good fit between the equation and the observed data.

k = 45.605− 45.706x−0.473564 +−13.686log(x19) (3.16)

Each term of this equation is significant, meaning that both machine heterogeneity

and machine count significantly impact the ideal k for an inconsistent system, just

like in a consistent system. The explanation for this is the same. There is an absolute

number of machines that are desirable for each task, so as the number of machines

increases, the fraction of machines which are eligible falls relatively. Hence, this has

a negative impact on the ideal value of k. Machine heterogeneity determines what

this number of machines should be, as it measures how much worse each machine is

than the previous one. Hence, this has a substantial impact on the ideal value of k.

3.2 Evaluation of Parameter Expressions

Equations (3.2), (3.5), (3.8), (3.11), (3.14), and (3.16) were added to the simulator

such that it was then capable of estimating the ideal parameter of each scheduler for

each type of matrix. Next, the efficacy of each equation was evaluated. The 5430

consistent experiments and the 5430 inconsistent experiments were run once with

each of the six dynamic schedulers — MET, SS, SPN, APT, APTX, and KPB. In the

case of the latter three, values of α and k were computed based on the corresponding

aforementioned equation. The finish time of each simulation was normalized relative

to that of MET (the baseline). Two measures were used to evaluate the efficacy of

each scheduler. First is the number of times that scheduler performed the best for

an experiment. Second is the average normalized finish time. This says how much

better (or worse) each scheduler is than MET (i.e., speedup).

The number of times each scheduler performed the best was recorded separately

for consistent and inconsistent systems. These results are summarized in Table 3.2.

46

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Table 3.2: Number of Times Each Scheduler Finished Earliest

Consistent Inconsistent Total
MET 0 26 26

SS 1359 714 2073
SPN 1990 808 2798
APT 174 1444 1618

APTX 167 1568 1735
KPB 0 0 0

Bar graphs of the data for consistent and inconsistent systems are shown in Figures

3.15 and 3.16 respectively. Note that while only 3540 experiments were run for each

type of system, more than one scheduler tied for some experiments. Hence, column

totals may exceed the number of experiments of the corresponding type.

Figure 3.15: Number of Times Each Scheduler Finished Earliest in Consistent Experi-
ments

47

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.16: Number of Times Each Scheduler Finished Earliest in Inconsistent Experi-
ments

It is clear at this point that KPB and MET are very poor scheduling policies for

the types of workloads simulated in this research. Beyond that, the best scheduler

depends on whether the system is consistent or inconsistent. For a consistent system,

SPN performed the best most often, followed by SS. APT and APTX rarely performed

the best on consistent systems. However, for inconsistent systems (more realistic in

heterogeneous computing), APT and APTX performed better than all other sched-

ulers by a wide margin. Consider the fact that APT and APTX are similar. The two

combined cover almost half of the test cases.

The average speedup metric accounts for the result of every experiment and sched-

uler, and quantifies how much better each scheduler is in comparison to MET (and

each other). Figure 3.17 shows the speedup of each scheduler relative to MET for

consistent systems. Figure 3.18 shows the speedup of each scheduler relative to MET

for inconsistent systems.

48

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

Figure 3.17: Speedup of Schedulers over MET for Consistent Systems

Figure 3.18: Speedup of Schedulers over MET for Inconsistent Systems

As these figures show, SPN provided the greatest average speedup for consistent

systems, at 4.51 times faster than MET. This was followed by SS at 4.48. APTX,

APT, and KPB (each using the estimated parameters) followed with speedups of

4.19, 4.19, and 2.88 respectively. Overall, MET was by far the worst scheduler for

consistent systems, and all of the other schedulers offered drastic improvements.

On the other hand, APTX and APT were the best and second-best schedulers,

respectively, for inconsistent systems — the type of configuration that is most common

49

CHAPTER 3. EXPERIMENTAL RESULTS & ANALYSIS

in heterogeneous computing. APTX had an average speedup of 1.15 over MET. APT

had an average speedup of 1.14. This does suggest that APTX may be a slightly

better scheduling heuristic, but at the cost of more complexity (i.e., computations)

with each mapping considered.

50

Chapter 4

Conclusions

The key conclusions made from this research are the following:

• For each scheduler, the features of an ETC matrix which best predict an ap-

propriate parameter value were determined.

• SS and SPN were identified as the best schedulers for consistent systems.

• APT and APTX were identified as the the best schedulers for inconsistent

systems.

• A methodology for tuning parametric schedulers was demonstrated.

This research explored which characteristics of consistent and inconsistent hetero-

geneous systems best predict a proper value of α for the APT scheduler, α for the

APTX scheduler, and k for the KPB scheduler. Machine heterogeneity correlated

well with the ideal parameter of all schedulers on all types of systems, but only on

consistent systems and those running KPB did it have a large impact. Task hetero-

geneity correlated well with α in APT and APTX, but had a strong influence on the

ideal value only if the system was consistent. Machine heterogeneity was a strong

indicator of the ideal value of k in KPB and α on consistent systems running APT

and APTX. A visual summary of these findings is shown in Figure 4.1

51

CHAPTER 4. CONCLUSIONS

Figure 4.1: Summary of Characteristics that Predicted Best Parameter Values

Furthermore, SS and SPN were identified as good dynamic scheduling heuristics

for consistent distributed systems. APT and APTX performed nearly as well on

consistent systems and performed the best out of any examined schedulers on in-

consistent systems. Given that heterogeneous systems are usually not consistent —

due to different hardware architectures matching different types of software paral-

lelism — APT and APTX can reasonably be considered to be the best choices in

general. APTX performed slightly better than APT on average, but with more com-

plexity (i.e., overhead). In some applications, this criterion may sway a developer or

administrator to one or the other.

While KPB performed better than MET on consistent systems, it was still the

second worst for such systems. Furthermore, it was by far the slowest scheduling

heuristic to be simulated on inconsistent systems — the more typical type of hetero-

geneous system. Given these facts, KBP is not recommended.

From a more general standpoint, this research demonstrated a methodology for

“tuning” parametric schedulers. It could be performed in the same way for any

scheduler that requires a numeric parameter prior to execution. The result of this

procedure would be some different equation for that parameter, once again based

on machine heterogeneity, task heterogeneity, and machine count. This does not

guarantee that the scheduler will be better than existing ones on average, but it

does make it more likely that the parameter being chosen for any ETC matrix is

appropriate and will lead to best- or near best-case performance.

52

CHAPTER 4. CONCLUSIONS

One key feature of this research is that it applied the simulation model and as-

sumptions from the [12] and [13] scheduler comparison studies to a selection of ad-

ditional dynamic scheduling heuristics. This places them on a more even ground for

comparison. Now APT, APTX, KPB, MET, SS, and SPN can be fairly compared

to other scheduling heuristics from the original comparison studies. That being said,

there are limitations to the simulation model. The use of uniform random distribu-

tions for the generation of ETC matrices may not match the distributions of execution

times of actual tasks (kernels) on actual commercially-available machines. If one were

to deploy APT (or APTX) to a heterogeneous system in production, one would have

to profile the performance of each task on each machine in advance of deployment

just to generate the ETC matrices. For best results, one may want to repeat the

procedure of this research in order to develop a new equation for α, better suited for

the tasks and machines being used.

4.1 Future Work

There are many opportunities for future research based on the findings of this thesis.

Three such possibilities are identified here.

• Simulation of realistic workloads based on mappings of actual tasks to actual

processors

• Hardware implementation of APT or APTX

• Cybersecurity: Identifying anomalies by monitoring α

This research demonstrated the viability of parameterized schedulers — especially

APT and APTX — for scheduling tasks on heterogeneous systems in a simulation

model. This opens up a number of interesting research opportunities. One variation

of this work would include the simulation of realistic workloads. This would involve

53

CHAPTER 4. CONCLUSIONS

profiling the performance of various tasks on various machines (as was done in [19])

and updating ETC matrices to reflect them.

Another possibility would be to proceed to a hardware implementation of one of

these schedulers — possibly APT or APTX. A natural first attempt for any sort of

hardware implementation of a logical design is on an FPGA. Furthermore, hardware

industry leaders have introduced SoCs with different CPUs, GPUs, and FPGA fab-

ric, such as Xilinx’s Zynq [28, 29]. It would make sense to implement and test the

scheduler on the FPGA fabric of such a device.

This research also presents opportunities for cyber-security research. In particular,

scheduler behavior could be used to detect anomalous behavior (i.e., malware) on a

heterogeneous system. For instance, suppose the ETC matrix is updated dynamically

in accordance with the current (backlog) of a workload. The contents of the ETC

matrix inform the value of α being used. If α were to stray outside of some expected

range, that could indicate an anomalous workload (i.e., unexpected tasks are present).

54

Bibliography

[1] S. Mittal, “Power management techniques for data centers: A survey,” 04 2014.

[2] A. Khokhar, V. Prasanna, M. E. Shaaban, and C.-L. Wang, “Heterogeneous
computing: Challenges and opportunities,” vol. 26, pp. 18 – 27, 07 1993.

[3] M. Maheswaran, T. Braun, and H. Siegel, “Heterogeneous Distributed Comput-
ing,” Encyclopedia of Electrical and Electronics Engineering, vol. 8, pp. 679–690,
1999.

[4] R. Freund and H. Siegel, “Heterogeneous Processing,” IEEE Computer, vol. 26,
no. 6, pp. 13–17, 1993.

[5] Z. Cui, Y. Liang, K. Rupnow, and D. Chen, “An accurate gpu performance
model for effective control flow divergence optimization,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, May 2012, pp. 83–
94.

[6] T. Braun, H. Siegel, N. Beck, L. Blni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, and B. Yao, “A Taxonomy for Describing Matching and Scheduling
Heuristics for Mixed-Machine Heterogeneous Computing Systems,” IEEE Work-
shop on Advances in Parallel and Distributed Systems, pp. 330–335, 1998.

[7] D. Fernndez-Baca, “Allocating Modules to Processors in a Distributed System,”
IEEE Transactions on Software Engineering, vol. 15, no. 11, 1989.

[8] U. M. Mirza, M. Arslan, G. Cedersj, S. Sulaman, and J. Janneck, “Mapping and
scheduling of dataflow graphs - a systematic map,” vol. 2015, 11 2014.

[9] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Transactions on Computers, vol.
C-36, no. 1, pp. 24–35, Jan 1987.

[10] S. Karia, “Alternative Processor within Threshold: Flexible Scheduling on Het-
erogeneous Systems,” Master’s thesis, Rochester Institute of Technology, March
2017.

[11] M. Maheswaran, T. D. Braun, and H. J. Siegel, “High-performance mixed-
machine heterogeneous computing,” in Parallel and Distributed Processing, 1998.
PDP ’98. Proceedings of the Sixth Euromicro Workshop on, Jan 1998, pp. 3–9.

[12] T. Braun, H. Siegel, N. Beck, L. Blni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, and R. Freund, “A Comparison Study of Eleven
Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems,” 2000.

55

BIBLIOGRAPHY

[13] M. Maheswaran, A. S., H. Siegel, , D. Hensgen, and R. Freund, “Dynamic
Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous
Computing Systems,” in Heterogeneous Computing Workshop, 1999. (HCW ’99)
Proceedings. Eighth, 1999, pp. 30–34.

[14] T. D. Braun, H. J. Siegel, N. Beck, L. L. Blni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A compar-
ison of eleven static heuristics for mapping a class of independent tasks onto het-
erogeneous distributed computing systems,” Journal of Parallel and Distributed
Computing, vol. 61, no. 6, pp. 810 – 837, 2001.

[15] C. W. Fletcher, I. A. Lebedev, N. B. Asadi, D. R. Burke, and J. Wawrzynek,
“Bridging the gpgpu-fpga efficiency gap,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
2011, pp. 119–122.

[16] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, “Fpga implementation
of k-means algorithm for bioinformatics application: An accelerated approach
to clustering microarray data,” in 2011 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), June, pp. 248–255.

[17] D. Chen and D. Singh, “Invited paper: Using opencl to evaluate the efficiency of
cpus, gpus and fpgas for information filtering,” in 22nd International Conference
on Field Programmable Logic and Applications (FPL), Aug 2012, pp. 5–12.

[18] A. P. D. Binotto, D. Doering, T. Stetzelberger, P. McVittie, S. Zimmermann,
and C. E. Pereira, “A cpu, gpu, fpga system for x-ray image processing using
high-speed scientific cameras,” pp. 113–119, 2013.

[19] S. Skalicky, S. Lopez, and M. Lukowiak, “Distributed execution of transmural
electrophysiological imaging with cpu, gpu, and fpga,” in 2013 International
Conference on Reconfigurable Computing and FPGAs (ReConFig), Dec 2013,
pp. 1–7.

[20] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance of various
mapping algorithms is independent of sizable variances in run-time predictions,”
in Heterogeneous Computing Workshop, 1998. (HCW 98) Proceedings. 1998 Sev-
enth, Mar 1998, pp. 79–87.

[21] M. M. Eshaghian and Y. C. Wu, “Mapping heterogeneous task graphs onto
heterogeneous system graphs,” in Heterogeneous Computing Workshop, 1997.
(HCW ’97) Proceedings., Sixth, Apr 1997, pp. 147–160.

[22] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hens-
gen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust,
and H. J. Siegel, “Scheduling resources in multi-user, heterogeneous, comput-
ing environments with smartnet,” in Heterogeneous Computing Workshop, 1998.
(HCW 98) Proceedings. 1998 Seventh, Mar 1998, pp. 184–199.

56

BIBLIOGRAPHY

[23] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping,” in Proceedings of the 42Nd An-
nual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
42. ACM, 2009, pp. 45–55.

[24] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous
systems by an optimistic cost table,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 3, pp. 682–694, March 2014.

[25] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–274, Mar 2002.

[26] S. Skalicky, S. Lopez, M. Lukowiak, and C. A. Wood, “Graph-based design
methodology for pipelined architectures,” July 2016.

[27] C. Liu and S. Yang, “A heuristic serial schedule algorithm for unrelated parallel
machine scheduling with precedence constraints,” vol. 6, pp. 1146–1153, 06 2011.

[28] [Online]. Available: https://www.xilinx.com/products/silicon-devices/soc.html

[29] [Online]. Available: https://www.altera.com/products/soc/overview.html

57

https://www.xilinx.com/products/silicon-devices/soc.html
https://www.altera.com/products/soc/overview.html

	Adjustment of Parametric Dynamic Scheduling Heuristics for Heterogeneous Systems to Account for Heterogeneity
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	Limitations of Homogeneous Computing
	Heterogeneous Computing
	Module Allocation (Mapping)

	Proposed Solution
	Related Work
	Motivation

	Methodology
	Simulation Model, Assumptions, and Definitions
	Policies
	Minimum Execution Time (MET)
	Serial Scheduling (SS)
	Shortest Process Next (SPN)
	Alternative Processor within Treshold (APT)
	Alternative Processor within Threshold Extended (APTX)
	K-Percent Best (KPB)

	Random Experiment Generation

	Experimental Results & Analysis
	Generation of Parameter Expressions
	Search for Best APT Parameter
	Search for Best APTX Parameter
	Search for Best KPB Parameter

	Evaluation of Parameter Expressions

	Conclusions
	Future Work

	Bibliography

