
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-17-2018

Holographic Generative Memory: Neurally Inspired One-Shot Holographic Generative Memory: Neurally Inspired One-Shot

Learning with Memory Augmented Neural Networks Learning with Memory Augmented Neural Networks

Dillon R. Graham
drg7604@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Graham, Dillon R., "Holographic Generative Memory: Neurally Inspired One-Shot Learning with Memory
Augmented Neural Networks" (2018). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9866?utm_source=repository.rit.edu%2Ftheses%2F9866&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Holographic Generative Memory:
Neurally Inspired One-Shot Learning with

Memory Augmented Neural Networks

Dillon R. Graham

Holographic Generative Memory:
Neurally Inspired One-Shot Learning with

Memory Augmented Neural Networks
Dillon R. Graham

July 17th, 2018

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Department of Computer Engineering

Holographic Generative Memory:
Neurally Inspired One-Shot Learning with

Memory Augmented Neural Networks
Dillon R. Graham

Committee Approval:

Dr. Dhireesha Kudithipudi Advisor Date
Professor

Dr. Ray Ptucha Date
Assistant Professor

Dr. Christopher Kanan Date
Assistant Professor

i

Acknowledgments

Thank you to my advisor, Dr. Dhireesha Kudithipudi. You showed incredible pa-

tience and grace in supporting my sometimes unconventional ideas and thought pro-

cess. I am genuinely grateful for your guidance and the freedom you allowed me to

pursue my work. Many thanks to my committee members Dr. Christopher Kanan

and Dr. Ray Ptucha. Your suggestions on presenting my work were very constructive

and helped me consider it from an entirely new perspective. Thank you, Dr. Kanan,

for indulging my frequent conversations about AI.

I would also like to thank Sandia National Laboratories and the folks at the

Critical Skills Master’s Program for making my graduate education possible. Thank

you to John Mareda for providing me with this opportunity, enjoy your retirement!

Thank you to all my labmates in the Nu.AI Lab. I enjoyed our many conversations

and appreciated your tolerance of my lengthy monologues on chairs as compositional

semantic objects. To Dr. Ernest Fokoue, who helped me through my many mathe-

matical questions, thank you for graciously providing your time to assist me. Your

enthusiasm for statistics and compassion for students is much appreciated.

Thank you to Dr. Tom Caudell for teaching me both biological and artificial neural

networks. Without your instruction, I wouldn’t be working in this field. Thank you

to Dr. Rich Compeau for supporting a mediocre circuits student with some big ideas.

A special thank you to Dr. Murat Okandan for hosting a brown-bag lunch that got

me started on this path, and his ongoing efforts to support neural-inspired computing.

My wife, Jessica has been a constant source of encouragement and support. She

has been incredibly understanding while I’ve more or less lived in my office for the

last two years. Thank you for being awesome and reminding me to take care of the

little things like eating and sleeping. Lastly, thank you to my wonderful children

Leila and Brian. Thank you for understanding the many long days and nights I had

to spend studying. You are my constant source of hope and inspiration.

ii

I would like to dedicate this thesis to my Dad. He encouraged me to learn

everything, from art to engineering. Thank you, Dad. You are the best man I know.

iii

Abstract

Humans quickly parse and categorize stimuli by combining perceptual information

and previously learned knowledge. We are capable of learning new information quickly

with only a few observations, and sometimes even a single observation. This one-shot

learning (OSL) capability is still very difficult to realize in machine learning models.

Novelty is commonly thought to be the primary driver for OSL. However, neuroscience

literature shows that biological OSL mechanisms are guided by uncertainty, rather

than novelty, motivating us to explore this idea for machine learning.

In this work, we investigate OSL for neural networks using more robust composi-

tional knowledge representations and a biologically inspired uncertainty mechanism to

modulate the rate of learning. We introduce several new neural network models that

combine Holographic Reduced Representation (HRR) and Variational Autoencoders.

Extending these new models culminates in the Holographic Generative Memory (HG-

MEM) model.

HGMEM is a novel unsupervised memory augmented neural network. It offers

solutions to many of the practical drawbacks associated with HRRs while also provid-

ing storage, recall, and generation of latent compositional knowledge representations.

Uncertainty is measured as a native part of HGMEM operation by applying trained

probabilistic dropout to fully-connected layers. During training, the learning rate is

modulated using these uncertainty measurements in a manner inspired by our mo-

tivating neuroscience mechanism for OSL. Model performance is demonstrated on

several image datasets with experiments that reflect our theoretical approach.

iv

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables 1

1 Introduction 2

2 Background 9

2.1 Data Representations . 9

2.2 Holographic Reduced Representation (HRR) 13

2.2.1 HRR Encoding . 14

2.2.2 HRR Decoding . 15

2.2.3 HRR Distributions and Composition 16

2.2.4 Frequency Domain HRRs . 17

2.3 Variational AutoEncoders (VAEs) . 18

2.4 Neuroscience Perspective on One-Shot Learning (OSL) 22

2.5 Uncertainty in Neural Networks . 27

3 Autoencoding Cleanup Memory (AECM) 30

3.1 Autoencoding Cleanup Memory Overview 30

3.2 AECM Model . 32

3.3 Example Experiments . 33

3.3.1 Experiment Results . 35

3.4 Remarks on AECM . 36

4 Holographic Variational Autoencoder (HVAE) 39

4.1 Holographic Variational Autoencoder Overview 39

v

CONTENTS

4.2 Model Details . 45

4.2.1 Generative Model . 45

4.2.2 Recognition Model . 46

4.2.3 Training . 46

4.3 HVAE Experiments . 47

4.4 Remarks on HVAE . 48

5 Holographic Generative Memory (HGMEM) 50

5.1 Holographic Generative Memory Overview 50

5.1.1 Cues in HGMEM . 52

5.2 HGMEM Model . 53

5.2.1 Generative Model . 53

5.2.2 Recognition Model . 55

5.2.3 Training . 56

5.3 HGMEM Experiments . 57

5.3.1 Examining Latent Traces . 57

5.4 Remarks on HGMEM . 61

6 One-Shot Learning with HGMEM 62

6.1 Overview of OSL with HGMEM . 62

6.2 HGMEM OSL Variant Model . 65

6.2.1 Adding Uncertainty to HGMEM 65

6.2.2 Scaling Learning Rate for OSL via Uncertainty 67

6.2.3 Classification Sub-Network . 67

6.3 HGMEM-OSL Experiments . 69

6.3.1 Omniglot Dataset . 70

6.3.2 Omniglot Classification Results 71

6.4 Remarks on OSL with HGMEM . 73

7 Final Remarks 76

7.1 Summary of Work . 76

7.2 Future Work . 77

7.3 Notes on HRR Value . 78

Bibliography 80

vi

List of Figures

2.1 Graphical sketch of the reparameterization trick used in VAEs. Pro-

vides a differentiable sampling process usable in neural network archi-

tectures. Analogous to sampling from ”location-scale” distributions.

Shaded diamonds indicate deterministic nodes, and circles represent

random variables. 21

2.2 Familiarity and uncertainty in OSL. Figure adapted from [1]. 24

2.3 Correlation between vlPFC and Hippocampus activity. Figure adapted

from [1]. 25

3.1 Autoencoding Cleanup Memory (AECM) example network architec-

ture. x̂η indicates a noisy reconstruction of x produced by circular

correlation decoding, and x̂ indicates a cleaned reconstruction pro-

duced by the AECM network. 34

3.2 AECM results on Fashion-MNIST, with eight random samples from

test set shown. Original images x (top row), noisy images decoded

with circular correlation x̂η (second row), and AECM cleanup results

x̂ at epoch 7 and epoch 200 for comparison (last two rows). 35

3.3 AECM binary cross-entropy loss while training on Fashion-MNIST over

200 epochs. 36

3.4 AECM results on MNIST, with eight random samples from test set

shown. Original images x (top row), noisy images decoded with circu-

lar correlation x̂η (second row), and AECM cleanup results x̂ at epoch

7 and epoch 200 for comparison (last two rows). 37

3.5 AECM binary cross-entropy loss while training on MNIST over 200

epochs. 38

4.1 Graphical sketches of the HVAE model, decomposed for illustration.

Red dashed lines indicate approximate inference distributions q(·|·).
4.1a: Data flow for general deterministic encoding and decoding with

HRR operations. Orange lines represent binding cues and data into

traces. Blue lines, decoding with cues and traces into data reconstruc-

tions. 4.1b: Generative model parameterized by θ. 4.1c: Recogni-

tion model parameterized by φ. 4.1d: Overall HVAE graphical model

sketch. 42

vii

LIST OF FIGURES

4.2 Loss plots for training on MNIST over 50 epochs. 4.2a Negative log

likelihood reconstruction loss. 4.2b KL divergence for latent trace t. . 48

4.3 HVAE results on MNIST, with eight random samples from test set

shown. Original images x (top row), noisy images decoded with circu-

lar correlation x̂η (second row), and AECM cleanup results x̂ at epoch

7 and epoch 50 for comparison (last two rows). 48

5.1 Graphical sketch of HGMEM model. Red dashed lines indicate ap-

proximate inference distributions q(·|·) 53

5.2 Breakout diagrams for HGMEM sub-networks. 5.2a Variational trace

layer module used to sample pθ(t|M). 5.2b Full variational layer mod-

ule used for portions of the network optimized with KL divergence,

qφ(t|x,M) and qφ(c|x). 5.2c Addressing layer that transforms cues to

weighted memory content map. 55

5.3 Full HGMEM neural network architecture implementation. Layers

with dotted borders refer to a sub-network, copied here from Fig. 5.2.

Diagram represents flow during recognition/inference. 56

5.4 Example images showing generalization performance for trace decoding

(left) and cleanup memory with AECM (right) as training progresses.

These images were produced using randomly selected samples from the

evaluation set after various epochs. Since samples are not used during

training, these examples show reconstruction of in-class (alphabet),

but unseen data. 58

5.5 Visualizing generative latent trace composition structure. Sixty-four

random Gaussian noise vectors were created prior to training, then

fed as input to the network after various epochs to visualize content

stored in latent trace compositions. The space examined shows amor-

phous shape early in training and progressively learns structure compo-

nents. As training continues structures are observed to become denser

for each sample, and more evenly distributed across all 64 samples.

Many structures visually suggest superimposed portions of character

data. Toward the end of training structures become more concentrated

within individual cells, but sparser across the overall field. 60

6.1 Character samples from Omniglot dataset. Original figure from [2] . . 70

viii

LIST OF FIGURES

6.2 Omniglot OSL uncertainty and learning rate plots during training of 5-

way, 1-shot model. 6.2a: Epistemic (reducible) uncertainty decreases

as training progresses. 6.2b: Predictive uncertainty decreases as rec-

ognizable reconstructions are learned. 6.2c: Learning rate modulated

dynamically by uncertainty measurements. 71

6.3 Omniglot OSL loss and accuracy plots plots during training of 5-way,

1-shot model. 6.3a: Negative log likelihood as reconstruction error

loss. 6.3b: KL divergence for memory dependent latent traces. 6.3c:

Classification accuracy on Omniglot (5-way, 1-shot). 73

ix

List of Tables

6.1 Omniglot accuracy comparisons to those reported in literature. Re-

sults for 5-way 1-shot, 5-way 5-shot, 20-way 1-shot, and 20-way 5-shot

classification on Omniglot. Our reported average results are for 20 test

replications. 72

1

Chapter 1

Introduction

Humans are capable of quickly parsing and categorizing stimuli. We accomplish this

by combining perceptual information and knowledge previously internalized through

learning. In the vision domain alone, humans can easily distinguish between tens

of thousands of object classes, often with minimal attention. Our brains learn new

classes of objects with ease and are even capable of imagining new classes based on

existing knowledge.

We learn incrementally by default, where knowledge is gained slowly over time,

usually with trial and error acting as our instructor. However, in some circumstances,

we demonstrate a sudden ability to learn new information very quickly, even from a

single observation. This one-shot learning (OSL) capability present in humans is still

something we find very difficult to implement in machine learning.

Computer vision tasks like image classification or object detection have often been

used to study OSL. This is a natural choice since images offer a readily interpretable

source of data. Reducing training requirements is also attractive in a field where cur-

rent high-performing Machine Learning (ML) systems require thousands or millions

of training samples [3] to converge.

Minimal data tends to cause overfitting in ML models. Overfitting can sometimes

be alleviated by techniques like data augmentation and regularization, but learning

is still slow since numerous weight updates are required with gradient descent train-

2

CHAPTER 1. INTRODUCTION

ing. Additionally, neural networks often suffer from the classic catastrophic forgetting

problem due to parameters being shared for all tasks and data domains. Rapidly

learning from new data samples while retaining the ability to generalize from com-

mon samples (i.e., OSL) remains a difficult problem in ML, and it is the focus of an

expanding area of research.

Tasks with few labeled samples or imbalanced data have traditionally been diffi-

cult to approach with ML, but many valuable real-world tasks take this form. For

instance, in medical imaging there are often many samples from a large population,

but relatively few positive labeled examples available, leading to an imbalanced data

problem. Fraud detection or other financial applications offer similar challenges, a

large amount of samples, but very few examples of the target class. Aside from prac-

tical applications, OSL is likely to be a core capability for future advancements in

AI. It is difficult to imagine systems that can perform in areas like lifelong learning

or abstract reasoning without the ability to learn in this way. Future AI systems for

complex tasks like these will need a way to leverage past knowledge for rapid learning

without losing previously learned knowledge in the process.

Following the success of deep learning, much of the contemporary study on OSL

for ML has focused on vision tasks. Li et al. examined using probabilistic models to

learn object categories from a limited number of images by taking advantage of exist-

ing knowledge of similar objects [4]. Li further explores this topic in other works with

an additional focus on transfer learning by grouping existing techniques into trans-

fer through prior parameters, transfer through shared features or parts, and transfer

through contextual information [5]. Work on OSL limited only to visual information

is useful for understanding shared knowledge of visually perceived objects, but it does

not necessarily provide an exhaustive basis for approaching the OSL problem in gen-

eral. These earlier approaches also primarily rely on parametric models, which carry

the speed and knowledge retention drawbacks that come with shared parameters.

3

CHAPTER 1. INTRODUCTION

Non-parametric models offer a method to avoid catastrophic forgetting while also

rapidly making use of novel data. In some cases, only a metric is chosen, and training

is completely avoided [6]. An extension of this approach is using a learnable metric

[7], which provides some additional flexibility. More recently, models that combine

parametric and non-parametric techniques have emerged that make use of attention

mechanisms and memory augmentation [8, 9].

Neural networks augmented with memory components provide one potential path

toward effectively using previously learned knowledge, but the implementation of that

memory can vary between methods. Much of the recent interest in this area originates

from the Neural Turing Machine (NTM) [10], where explicit read and write operations

are defined in a manner inspired by standard computer memory. Subsequent models

building off NTMs focus on accessing memory via content rather than location [11]

or using Gaussian approaches for the memory component [12, 13].

In the 1990s and early 2000s several connectionist data representation architec-

tures were developed that offer alternative ways to represent learned knowledge. They

were intended to help model features of human cognition like composing complex rep-

resentations by combining simpler representations. For example, we create a sentence

by combining simpler items (words), which are in-turn composed of even simpler

items (letters). Each item is interpretable individually, but they also form a new

interpretable item in composition. Psychologist Ross W. Gayler [14] coined the term

Vector Symbolic Architecture (VSA) to describe this class of connectionist network.

Different VSA approaches offer various levels of compatibility with modern neural

networks. In VSAs, some variant of Smolensky’s Tensor Product (TP) [15] is typically

used for associating representations. Unfortunately, this can lead to a combinatorial

explosion problem, since binding two N -dimensional vectors with the TP results in

an N×N square matrix, with dimensionality continuing to increase as more bindings

are added. Many VSAs based on Kanerva’s sparse distributed memory work [16] use

4

CHAPTER 1. INTRODUCTION

binary valued vectors with various techniques to avoid this dimensionality problem.

However, binary vectors can limit neural network compatibility for these VSAs.

Holographic Reduced Representation (HRR) [17] is another type of VSA that

offers a framework for distributed representation using real-number valued vectors

rather than binary. In HRRs a lossy compression of the full TP is used to perform

association operations. This approach maintains fixed-width vector representations

at the expense of added noise. Since HRR vectors are real-valued and do not in-

crease in dimensionality they are directly compatible with modern neural network

architectures.

One of the recurring themes in OSL literature is learning about a new object class

by building on the knowledge of previously learned objects. With deep learning this

often takes the form of using pre-trained networks to extract features (e.g., transfer

learning). Using a network that was pre-trained on a large dataset allows us to gather

more useful features from a smaller but related dataset (e.g., both sets are natural

images). We are building on the pre-existing knowledge in the network to compose

representations of new objects, but only in a general sense. The network does not

make use of abstract reasoning, analogy, or any of the other tools typically associated

with human memory. It only has a set of parameters that have been successfully

biased toward a certain type of data via lengthy training.

When training via gradient descent, we are essentially storing knowledge in a

distributed manner across network parameters. While this type of representation is

obviously effective for many tasks, alternative forms of representation can provide

more explicit access to knowledge content. If we consider OSL as a knowledge-based

problem, looking at alternative ways to represent knowledge in ML systems is worth-

while. Interpretable and composable memories are a core feature of human knowledge

representation, but these features are simply difficult to implement with knowledge

distributed across network weights.

5

CHAPTER 1. INTRODUCTION

Framing the OSL problem as a knowledge-based one can also be illustrative. In a

very simplistic view, a learning system must have some way to represent knowledge

that distills and compresses useful features for re-application in other tasks. Transfer

learning does provide some capacity in this regard, but current techniques tend to

focus only on extracting better features rather than exploring how those features can

be built into more robust knowledge representations. Memory augmented networks

move us closer to better knowledge representations via trainable memory components,

but memory content is often uninterpretable outside of the network.

VSAs provide representational advantages that are difficult to reproduce with

standard neural networks, like encoding structure and information simultaneously in

a single vector, holistic processing, and concept encoding. Despite these advantages,

VSAs have remained a niche research topic. We suspect that this may be due to

their origin in more niche cognitive science style applications common in the 1990s,

but less common in the era of deep learning. Additionally, they can be difficult to

work with from a practical standpoint, sometimes requiring extensive programmatic

bookkeeping to track vectors and associations. Consequently, integrating VSAs with

modern neural network architectures has been an infrequently explored topic.

Aside from knowledge representation concerns for OSL, some attention should also

be paid to the mechanisms that assist with learning in a low data setting. Machine

learning research typically focuses on the idea that input novelty is the primary driver

for OSL. However, in the study of neurobiology and human behavior, [1] found that

causal uncertainty plays a more significant role in OSL. Specifically, when humans

observe a high degree of uncertainty present in cause and consequence relationships,

we switch from incremental learning mode to OSL mode to help resolve that uncer-

tainty. The authors make a critical observation in this study, that may prove useful

in machine learning. They show that novelty detection is not the primary driver for

this learning modulation mechanism, and even back this empirically using ablation

6

CHAPTER 1. INTRODUCTION

experiments that separate the impact of novelty and uncertainty. This observation

suggests that we may be overlooking a crucial OSL component by focusing on the

novelty-based mechanisms dominant in ML, and not considering uncertainty.

The mechanisms for OSL in our primary exemplary model (the brain) are still

only minimally understood, so it is not surprising that translating this capability into

machines is particularly tricky. One reasonable route for mitigating this difficulty is

using neuroscience as inspiration for improving our machine learning models. These

two fields rarely overlap outside of attempts to model brain function computationally,

but we believe that some cross-domain knowledge of this sort can provide benefits

when developing ML models. Using biology for inspiration allows us to leverage in-

sights from both fields, and potentially notice conceptual correspondences that would

have been missed otherwise.

Examining OSL from this perspective suggests that current ML approaches lack

some fundamental characteristics that contribute to this feature in biology. Develop-

ing a way to implement these characteristics for ML models provides an alternative

approach for OSL. Encoding learned knowledge with a representation that supports

intrepretability and compasability provides tools that a model may leverage when

exposed to new data. Using uncertainty measurements to modulate learning allows

a model to react quickly to data based on confidence in prediction, rather than just

novelty of an input. Implementing these traits in ML models increases their effec-

tiveness in low or imbalanced data settings. In this work, we introduce a neurally

inspired OSL mechanism for modulating learning rate in neural networks and a new

approach to knowledge representation using learned HRR components.

Our OSL mechanism is driven by predictive uncertainty measured as a normal

part of network operation using a trained probabilistic dropout technique known as

Concrete Dropout [18]. Uncertainty is used to scale learning rate in a manner inspired

by the neuroscience model of the problem, allowing the network to dynamically ramp

7

CHAPTER 1. INTRODUCTION

up learning rate when uncertainty is high and decrease it as uncertainty is resolved.

We develop new methods for neural network knowledge representation that im-

plement a trainable ”full-stack” HRR system. This Holographic Generative Memory

(HGMEM) model is capable of learning all necessary HRR components in an unsu-

pervised manner through a generative memory model designed to learn, store, and

recall data representations. Developing HGMEM required several novel components

that can be used as stand-alone models, which we also present here. We demon-

strate model performance on several image datasets with experiments that reflect our

theoretical approach.

8

Chapter 2

Background

2.1 Data Representations

Data representation has remained a subject of interest since the earliest days of

computational research. Symbolic representation was a natural choice for translat-

ing mathematical expressions into computer programs. Symbolic processing [19] re-

mained the dominant approach for AI until the 1980s when the rise of connectionist

neural networks became a source of contention in the research community.

Over time, advances in neural networks and ML shifted focus to vector or ten-

sor representations rather than symbols for many applications. Today, the use of

local representations and distributed representations are a central part of modern AI,

but the reason for their use is often overlooked. Examining the properties of data

representation helps inform us better understand how interpretable and composable

representations can be constructed. Ferrone et al. explore the differences between

symbolic, distributed, and distributional representations at length [20], and we adapt

some of their examples in this section to help explain representation properties of

interest.

Many problems we encounter in AI involve a set of entities to represent and a

network of simple computational elements (e.g., neurons). The most straight-forward

representation to use is a simple mapping of each entity to an element with a one-

9

CHAPTER 2. BACKGROUND

to-one relationship, otherwise known as a local representation. This is common in

one-hot binary vectors we often use in classification, where element position maps

directly to some concept (e.g. a class label, a word).

For an example of a local representation, consider a set of symbols D, where the

i-th unit vector represents the i-th symbol. In this example, D consists of:

man→ e1(1 0 0 0 0 0 0)T

woman→ e2(0 1 0 0 0 0 0)T

train→ e2(0 0 1 0 0 0 0)T

waits→ e3(0 0 0 1 0 0 0)T

for→ e4(0 0 0 0 1 0 0)T

a→ e5(0 0 0 0 0 1 0)T

Typically, in local representations a sequence of symbols, s is created using a sequence

of vectors, or a bag-of-symbols. Consider the sequence, ”a man waits for a train”.

Using a sequence of vectors to construct s from D can be done as follows:

a man waits for a train→ s =



0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0


Constructing the same sequence with a bag-of-symbols approach can be done using

the weighted sum of symbol vectors to create a single vector, as follows:

10

CHAPTER 2. BACKGROUND

a man waits for a train→ s =



1
0
1
1
1
2
0


Hinton et al. proposed the idea of distributed representations in 1986 [21], and

this idea helped fuel the success of modern neural networks and deep learning. In

distributed representations, a concept is represented using multiple units (e.g., neu-

rons), with the value and position of each unit contributing. Each unit can also

contribute to the representation of multiple concepts.

We use distributed representations often in neural networks and deep learning. In

these networks, we store learned information as a distributed representation within

vectors or tensors of real number values (e.g., weight parameters). While distributed

representations of this type are now conventional, they are only one way to approach

the problem. Other related, but less explored techniques provide more explicit control

in representation building (e.g., HRRs).

In a general sense, the goal is to represent a complex item using many other items

combined with some set of rules or operations. Plate [22] provided an analogy to help

explain this concept using grayscale images, which we paraphrase here as an example.

Consider a grayscale image, where each unit (i.e., pixel) is a scalar value from 0 to

255. All grayscale images use this same set of units, and each unit is interpretable as a

pixel with some shade of gray. Given this setup, knowing the value of individual pixels

provides little or no information about objects in an image. However, composing these

elements by distributing them in a specific way forms an image we can interpret. We

are using a set of simple, interpretable elements and some compositional rules (e.g.,

pixel index position) to build more complex representations.

11

CHAPTER 2. BACKGROUND

Definitions for composable and interpretable can vary depending on the type of

representation used, so it is worth commenting on these properties more directly.

These concepts have their roots in symbolic representation, which has a long history

in computer science. Symbols are also a crucial part of how human beings think and

communicate.

A composable representation is one that can be combined to form more complex

representations using a set of strong combinatory rules. Components in a compo-

sitional representation remain individually interpretable (e.g., pixels in an image).

Multiple compositions can also be combined to form new representations (e.g., two

images superimposed).

An interpretable representation is one that allows us to understand or read mean-

ing from it. Often this understanding is direct, like viewing an image or word. With

distributed representations, this property also refers to directly decoding meaning us-

ing the basic combinatory rules defined by the framework. Distributed representations

used in deep learning are generally considered uninterpretable from this standpoint.

This limitation leads to the familiar ”black-box” criticism since we cannot interpret

the representation in the hidden layers by definition.

These two properties are essential for human communication. We use many sym-

bols during a conversation. For example, sounds are composed into words, and words

into sentences, letting us effectively communicate complex ideas with a hierarchy of

compositional representations. Conversations only work because we compose sym-

bols using combinatory rules understood by both the speaker and listener [23]. This

strong relation between symbolic representation and language helps explain why re-

searchers in natural language processing (NLP) still often rely on this method while

it has become less prevalent in other domains.

Neural networks with composable and interpretable distributed representations

may lead to novel and substantially different deep learning models, but this potential

12

CHAPTER 2. BACKGROUND

has seldom been investigated. These representations were designed for cognitive style

tasks like context-based attention, associative memory, and concept encoding. Cog-

nitive tasks are also an area where traditional neural networks often don’t perform

well. Combining these ideas may add new avenues for learning.

2.2 Holographic Reduced Representation (HRR)

Holographic Reduced Representation (HRR) [17] is a form of distributed representa-

tion that uses fixed-length vectors with real number elements to represent data. HRRs

provide a framework to simultaneously encode structural relationships and data from

multiple n-dimensional vectors into a single n-dimensional vector. Encoding both

structure and data in a single representation allows HRRs to effectively support tasks

which require compositionality and a high degree of systematicity.

One interesting property of HRRs is the support for holistic transformation and

mapping operations that do not require any decomposition into member components.

Holistic processing is a useful property when building HRRs into more common neural

network architectures. Without the explicit need to decompose an HRR representa-

tion, we can maintain HRR properties by placing constraints on network components

during normal operations (e.g., normalizing vectors, HRR specific prior distributions).

Previous work has examined systematic transformations of HRRs using typical gradi-

ent descent methods [24, 25, 26]. These techniques help characterize how HRRs may

be used for commonplace neural network tasks.

HRRs offer many advantages for more complex cognitive style tasks, but in this

work, we are primarily concerned with three of the more fundamental properties,

encoding, decoding, and memory trace composition. Encoding consists of creating a

memory trace by systematically combining two vectors. Decoding retrieves a target

vector from a trace using a single vector associated with the target during encoding.

Trace composition adds multiple traces together, while still supporting decoding of

13

CHAPTER 2. BACKGROUND

components within.

Matrix-based associative memories often use some form of the outer product as

an encoding operation. One drawback to this approach is that dimensionality grows

as associations are added, quickly becoming unmanageable. Convolution (aperiodic

or periodic) is an alternative encoding operation that can be regarded as a compres-

sion of the outer product [17]. As a type of convolution memory model, HRR is

designed to make use of this compressed association for memory encoding, decoding,

and composition.

Using aperiodic convolution still increases vector dimensionality as more associ-

ations are encoded, but to a lesser degree than the outer product. This expanding

dimensionality problem can be entirely avoided using circular convolution, a con-

ventional operation in signal processing. Circular convolution maintains fixed-width

vector representations at the expense of compression noise in decoded reconstructions.

2.2.1 HRR Encoding

Encoding or associating two HRR vectors with circular convolution is central to much

of the work we present in later sections. Circular convolution creates an n dimensional

trace, t by binding an input vector, x to a cue vector, c with the circular convolution

operator ~, as follows:

14

CHAPTER 2. BACKGROUND

t = c ~ x→ tj =
n−1∑
k=0

cktj−k (2.1)

for j = 0 to n− 1 (subscripts are modulo-n)

example n = 3 :

t0 = c0x0 + c2x1 + c1x2

t1 = c1x0 + c0x1 + c2x2

t2 = c2x0 + c1x1 + c0x2

2.2.2 HRR Decoding

Circular correlation is regarded as an approximate inverse of circular convolution [22],

and it is used to reconstruct an n dimensional vector, x̃ which is a noisy reconstruction

of x. Reconstruction in this manner functions in a similar way to circular convolution,

but operating on t and c vectors with the circular correlation operator c#©, as follows:

x̃ = c#©t→ x̃j =
n−1∑
k=0

cktk+j (2.2)

for j = 0 to n− 1 (subscripts are modulo-n)

example n = 3 :

x̃0 = c0x0 + c1t1 + c2t2

x̃1 = c2x0 + c0t1 + c1t2

x̃2 = c1x0 + c2t1 + c0t2

15

CHAPTER 2. BACKGROUND

2.2.3 HRR Distributions and Composition

Successfully decoding traces with circular correlation requires some conditions on

the distribution of vectors used. In the base case, a sufficient condition is ensuring

elements of each n-dimensional vector are i.i.d. with a mean of 0 and a variance of

1/n. This is usually performed by creating HRR vectors (e.g., cues) by drawing from

a random normal distribution, N (0, 1/n).

Compositionality with HRRs is also dependent on the distributional conditions

above, since trace composition is performed using element-wise vector addition. Mul-

tiple encoded associations (traces) are added together to produce a vector representing

all the individual associations in aggregate. For example, consider a compositional

trace created using two data vectors x1,x2 and two cue vectors c1, c2, as follows:

t1,2 = (c1 ~ x1) + (c2 ~ x2) (2.3)

= t1 + t2

This composition can subsequently be decoded to retrieve a specific vector using

circular correlation, for instance we can retrieve x̃1 using c1,

x̃1 = c1#©t1,2 (2.4)

= c1#©t1 + c1#©t2

= c1#©(c1 ~ x1) + c1#©(c2 ~ x2)

Decoding compositional traces in this way is possible due to the random nature of

component vectors. Given the distributional conditions, there is a high probability

that c1 has a low correlation with components in the second term c2,x2 c1, leaving

16

CHAPTER 2. BACKGROUND

them disregarded as irrelevant noise. The remaining term follows normal decoding

rules, resulting in a recognizable but distorted reconstruction x̃1.

Adding traces to a composition also increases reconstruction noise, so fidelity acts

as a practical limit to the number of stored traces in a single vector. The value

of n also directly impacts this behavior, with larger vectors increasing composition

capacity and reducing noise. Techniques like chunking were developed to specifically

address this limitation [22], but we do not detail them here since they were not

necessary in our work.

2.2.4 Frequency Domain HRRs

Convolution based memories offer an additional computational advantage, as they can

be computed using Fast Fourier Transforms (FFTs). Encoding with FFTs requires

O(n log n) time to compute, so they offer an attractive alternative to the base method

in Eqn. 2.1 which takes O(n2) time. Circular convolution can be computer with one

transform, an element-wise vector multiplication, and an inverse transform as follows,

a ~ b = F−1(F(a)�F(b)) (2.5)

where � is element-wise vector multiplication, F is a discrete Fourier transform, and

F−1 is its inverse transform.

Decoding with circular correlation in the frequency domain is similar to encoding,

a#©b = F−1(F(ā)�F(b)) (2.6)

where ā is the complex conjugate of a.

HRRs can be implemented entirely in the frequency domain using complex-valued

vectors exclusively. This approach is not common in practice since using real-valued

17

CHAPTER 2. BACKGROUND

vectors maintains compatibility with other ML techniques. Most often vectors are

initialized and manipulated in the spatial domain, but FFT operations are used for

encoding and decoding to speed up computation.

Computing HRRs in the frequency domain introduces some additional distribu-

tional considerations. In the frequency domain the exact inverse of a vector has

elements with magnitudes equal to the reciprocal of original elements. The approx-

imate inverse has the same magnitudes as the original. When the magnitude of all

frequency components is 1, the exact inverse is equal to the approximate inverse. This

class of vectors is referred to as unitary vectors [22].

Calculating the exact inverse for frequency-based HRRs can be computationally

unstable. Unitary vectors allow us to avoid this by using the approximate inverse

instead, which is still sufficient for decoding. Since we often start with spatial domain

vectors, understanding their relation to unitary vectors is helpful.

Using the standard N (0, 1/n) initialization keeps vectors close to unitary when

converted to a frequency representation, so it is a valid technique when using FFTs.

However, a unitary vector converted to the spatial domain will have elements dis-

tributed as N (1/n, 1/n). This distribution offers an alternative way to initialize spatial

vectors when compatibility with FFT operations is a prime concern.

2.3 Variational AutoEncoders (VAEs)

Variational Auto-Encoders (VAEs) are a family of models based on the Auto-Encoding

Variational Bayes (AEVB) algorithm originally proposed by Kingma, et al. [27].

Conceptually, VAEs can be considered as a marriage of neural networks and directed

probabilistic models derived from variational inference methods. Literature on VAEs

can often be challenging for many readers due to mixed nomenclature from neural

network and probabilistic model paradigms. We will attempt to distill and describe

the relevant VAE methods here, and focus more on the neural network perspective.

18

CHAPTER 2. BACKGROUND

For comparison purposes, consider a generic ”vanilla” autoencoder design pattern

with an encoder model and a decoder model. Both encoder and decoder are some

arbitrary neural network. The encoder transforms data samples x into a latent space

representation z. The decoder attempts to reconstruct x from z. We denote network

parameters (i.e. weights and biases) as φ for the encoder, and θ for the decoder.

Training is unsupervised, optimizing φ and θ through standard gradient descent

techniques based on reconstruction error. It’s important to note that with a large

enough latent space the model could potentially just memorize data samples, leading

to overfitting. This behavior is usually discouraged by making the dimension of

the latent space much smaller than the input dimension, leading to the common

”hourglass” shape seen in autoencoder block diagrams. Smaller latent dimensions

create an information ”bottleneck” that encourages efficient compression of useful

information. This compression helps improve the ability to generalize on unseen data

since useful features for reconstruction are prioritized over redundant or overly-specific

features.

In a very general sense, autoencoders can be described by simply defining an en-

coder, decoder, and a loss function. This simplified view is a good starting point

to understand VAEs from a neural network perspective, which is essential for un-

derstanding work presented in later sections. Consider a VAE encoder denoted as

qφ(z|x), with neural network parameters φ, as seen in our generic example. Simi-

larly, the decoder is pθ(x|z) with parameters θ. However, in a VAE the latent space

for z is stochastic, which is why the encoder and decoder are notated as probability

distributions.

Given that the objective of an autoencoder is usually to model that data x, we

want to find the probability distribution of the data p(x). Using standard probability

rules, we can try to find this using a joint variable z, and marginalizing it out of the

19

CHAPTER 2. BACKGROUND

joint distribution,

p(x) =

∫
p(x|z)p(z)dz (2.7)

Calculating this integral directly is typically intractable for real-world data, so

another technique is needed. The idea behind VAEs is to infer p(z) with observable

data using p(z|x). In other words, we want to find likely values for z given the data

available. Unfortunately, the true distribution p(z|x) is also not known by default

since z is a latent variable. Variational inference allows us to approach modeling p(z|x)

as an optimization problem using a simpler distribution (e.g., Gaussian). Most often

we assume p(z) to be a Gaussian prior, which allows drawing samples characterized by

only two parameters, mean µ and variance σ. For explanatory purposes, we assume

a Gaussian prior throughout the rest of this section.

In a VAE, we use this distributional assumption about p(z) in the encoder qφ(z|x).

Encoding can also be regarded as projecting x into the latent variable space z. The

encoder uses neural network layers to produce values for µ and σ. Location-scale

operations with these parameters are used to transform random samples from p(z)

into approximations of samples from the true distribution p(z|x).

The decoder pθ(x|z) consists of neural network layers that take z as an input, and

produces reconstructions of x as output. A VAE decoder is also commonly referred

to as a generator, because it generates an x from z. Aside from the probabilistic

elements, it is easy to see how a VAE fits into the autoencoder paradigm, leaving the

loss function as the last model component to review.

VAE loss usually consists of a reconstruction error term, and one or more regu-

larization terms. In the base case with one latent variable z, we can describe the loss

function as,

L = Eqφ(z|x) [pθ(x|z)]−DKL(qφ(z|x) ‖ pθ(z)) (2.8)

20

CHAPTER 2. BACKGROUND

where the first term is reconstruction loss in the form of expected negative log likeli-

hood, and the second term is a regularizer based on Kullback-Leibler (KL) divergence,

which plays a crucial role in VAE optimization.

KL divergence measures the information lost when the approximated distribution

qφ(z|x) is used to represent the assumed true distribution p(z). When the encoder

produces z samples with a distribution that diverges from p(z), a penalty is imposed

in the loss. Without this regularization, the model can just learn to place each sample

in a different region of the latent space, causing poor generalization.

Figure 2.1: Graphical sketch of the reparameterization trick used in VAEs. Provides a
differentiable sampling process usable in neural network architectures. Analogous to sam-
pling from ”location-scale” distributions. Shaded diamonds indicate deterministic nodes,
and circles represent random variables.

One final consideration for VAEs is the method used to make the model train-

ing with gradient descent. Classic statistical sampling is not differentiable, meaning

gradients cannot flow through this operation during backpropagation. VAEs are re-

liant on sampling, so an alternative sampling process was needed to make the model

trainable via standard methods. The reparameterization trick [27] was developed to

address this problem by modifying the sampling process to make it differentiable.

For example, let the prior distribution pθ(z) ∼ N (µx,Σx) be a normal Gaussian

21

CHAPTER 2. BACKGROUND

distribution. A neural network takes inputs x and produces µx,Σx values used to

parameterize pθ(z). Rather than sampling directly from pθ(z), we can sample in

a differentiable way by re-working the process to only use deterministic operations

within the network.

To make sampling differentiable, stochastic operations must be moved outside of

the network (i.e., gradient flow). We use a distribution ε = N (0,1) which generates

samples completely independent of network activity. Since samples from ε are Gaus-

sian, they can be transformed into the distribution parameterized by µx,Σx using

simple deterministic operations that are differentiable. This process is the reparam-

eterization trick illustrated in Fig. 2.1, and described mathematically as,

z = µx + Σ
1/2
x � ε (2.9)

2.4 Neuroscience Perspective on One-Shot Learning (OSL)

In their 2015 paper Lee et al. [1] explore the processes that govern OSL in biological

intelligence from a neuroscience perspective. This work was the primary inspiration

for our approach to developing a new OSL method for machine intelligence. While

our work is concerned with machine intelligence, biology provides a rich source of

inspiration. Describing some of the mechanisms that contribute to biological OSL

will be illustrative when discussing our OSL system in later chapters.

This section will provide a brief summary of key ideas from Lee’s work. From

a neuroscience perspective, our treatment of these ideas will be very shallow, as

they are only intended to provide a general conceptual framework. Any references

to biological mechanisms or experiments in this section are drawn from Lee’s paper

unless otherwise noted, and readers desiring a more in-depth biological analysis should

refer to that work.

In a general sense, there are at least two very distinct learning strategies employed

22

CHAPTER 2. BACKGROUND

in our brains. When presented with a stimulus, we attempt to identify and understand

the causal relationship between that stimulus and its consequence. The most common

way we acquire knowledge of this type is through trial and error or incremental

learning. However, in some cases we need to learn this relationship rapidly, perhaps

from a single example, and that is where OSL comes into play.

Given these two general learning modes, an obvious unknown is the mechanism

by which our brains switch between incremental and one-shot learning. Lee proposes

that the amount of causal uncertainty between cause and consequence facilitates this

switch. In a simplified view, when a stimulus invokes a high degree of uncertainty in

the causal relationship, a higher learning rate is applied.

Experimental evidence with human subjects showed that there are two regions

of the brain primarily contributing to switching between learning modes, the ven-

trolateral prefrontal cortex (vlPFC), and the hippocampus (HPC). It has often been

hypothesized that the vlPFC helps guide a control system the brain uses to determine

which items to remember or forget during learning. The hippocampus is a fascinating

and complex part of our brains with details and theoretical properties well beyond

the scope of this work. For our purposes, the hippocampus is of interest due to its

critical role in consolidating information and forming memories.

Lee performed behavioral experiments with human participants that involved col-

lecting fMRI data during a visual OSL task. Computational models and fMRI data

were compared to determine areas of the brain associated with OSL and the role of

factors like novelty and causal uncertainty in modulating learning.

Experimental results showed activity that was positively correlated with novelty

in brain areas like the dorsal parts of the prefrontal cortex, inferior parietal lobe,

middle temporal gyrus, and Caudate. A negative correlation for novelty was observed

with activity in the fusiform gyrus extending to the parahippocampal gyrus. Some

of these findings have been adapted from the original paper and provided in Fig.

23

CHAPTER 2. BACKGROUND

Figure 2.2: Familiarity and uncertainty in OSL. Figure adapted from [1].

2.2. Correlations were used to identify activity related to uncertainty processing,

beyond the effect of novelty. After accounting for novelty, activity in the vlPFC still

correlated with causal uncertainty, supporting the hypothesis that it plays an active

role in uncertainty processing.

During events where computational models predicted a high learning rate, par-

ticipants were expected to implement OSL. Analyzing brain activity during these

events showed an increased degree of functional coupling between the vlPFC and

hippocampus. The authors speculate that these two regions act in concert during

learning, with the vlPFC acting as the ”switch,” turning OSL on or off when needed

as seen in Fig. 2.3. Computational models produced evidence supporting this idea.

They showed learning rates that were modulated in a highly nonlinear way due to

the vlPFC encoding of causal uncertainty signals.

During incremental learning events coupled activity indicating hippocampus in-

volvement was not observed. Since this coupling behavior was only observed during

OSL, it follows that the hippocampus is selectively recruited in the presence of high

causal uncertainty. This recruitment is an indicator that OSL ”mode” is engaged.

When considering the effect of novelty alone, this indicator was not present. Over-

24

CHAPTER 2. BACKGROUND

Figure 2.3: Correlation between vlPFC and Hippocampus activity. Figure adapted from
[1].

all, there is substantial evidence that causal uncertainty rather than novelty is the

primary driver for OSL in humans.

In ML we tend to think of OSL as purely novelty-driven, but these experimental

results suggest that studying uncertainty-based OSL may be a productive area for

ML research. While the computational models used in neuroscience may not directly

translate to ML, we can still use them as a basis for developing new approaches.

From a modeling perspective Lee’s work offers some methods that are of interest to

the work we present in later chapters. The primary model components of interest are

25

CHAPTER 2. BACKGROUND

those used to implement uncertainty-based modulation of learning rate. The general

concept is that learning rate is not a constant, but a function of uncertainty in the

causal relationship between a stimulus and an outcome (causal uncertainty). Using a

Bayesian inference model provides a way to estimate causal uncertainty and strength

as the variance and mean of a posterior distribution respectively.

In the source work, there are only a small number of possible outcomes, and they

are known prior to the experiments. This motivates use of a finite mixture model

to infer latent classes. Many of the exact details on the specific model used are

less relevant to our work, since ML tasks often have an incompatible set up, but

examining their technique for controlling learning rate is informative. Their model

computes learning rate using the amount of causal uncertainty for each individual

stimulus with a softmax operation, as follows,

γi =
exp(τV ar(θi|D))

Σjexp(τV ar(θj|D))
(2.10)

where θ is a prior probability, θ|D) is a posterior conditioned on evidence D, and τ

is an inverse temperature parameter controlling the impact of high posterior variance

on the learning rate for a stimulus. This approach allows the model to converge as

uncertainty is resolved, rather than converging after the same types of events occur

repeatedly.

Values in the posterior distribution are denoted αi = λi + xi for the ith stimulus,

where λi is a value from the initial prior and xi is a salience value. Updating p(θ|D) is

performed using γi as the learning rate with ∆αi = ±γixi, where the sign determined

by a correct pairing with an expected outcome.

26

CHAPTER 2. BACKGROUND

2.5 Uncertainty in Neural Networks

Neural network models do not usually feature a way to capture model uncertainty.

There is often a tendency to erroneously interpret outputs as model confidence when

probabilistic values are involved. For example, with classification models we might be

tempted to interpret a probabilistic predictive output (e.g., softmax layer output) as

model confidence. This interpretation is faulty. A model can be uncertain about its

predictions even when a high softmax output is observed [28]. Flawed assumptions like

these can lead to misinformed design decisions and potentially catastrophic failures.

Consider an autonomous vehicle with this type of confidence assumption built into

its safety system for instance, the result could be dangerous.

Alternatively, the ability to measure uncertainty in a more principled way adds

additional tools for designing and optimizing models. Model uncertainty is a common

part of Bayesian probability theory, but Bayesian techniques can be expensive com-

putationally, and therefore impractical for typical neural network applications. There

have been some developments bridging the gap to combine Bayesian theory and neural

networks, but this line of uncertainty research is still a relatively new. Useful methods

have already emerged though, with applications like agent exploration [29, 30] and

adversarial example detection [31].

One approach to neural network uncertainty hinges on interpreting dropout [32]

as a Bayesian approximation of the Gaussian Process [33]. A theoretical framework

to support this interpretation was introduced in the original work [28], and later

extended with several variants. This approach is especially advantageous for neural

network models in a practical way since dropout is already a common technique read-

ily supported by popular software frameworks and tools. Additionally, it is general

enough to apply for nearly any neural network model that can support dropout.

Standard dropout is typically implemented as a discrete mask with some fixed

27

CHAPTER 2. BACKGROUND

probability value that determines how the mask is applied to values. Concrete

Dropout (CD) [18] is an extension of the dropout-based uncertainty approach that

provides a continuous relaxation of the dropout mask. Rather than using a fixed prob-

ability value for dropout, CD optimizes this value as part of the usual gradient-based

neural network training process. Interpreting dropout from a variational perspective

provides the optimization objective from [18] as follows,

L̂MC(θ) = − 1

M

∑
i∈S

log p(yi|fω(xi)) +
1

N
DKL(qθ(ω) ‖ p(ω)) (2.11)

where θ as parameters to optimize, N the number of data points, S a random set

of M data points, fω(xi) the network’s output on input xi when evaluated with

weight matrices realization ω, and p(yi|fω(xi)) the model’s likelihood. The KL term

DKL(qθ(ω) ‖ p(ω)) adds regularization to ensure that the approximate posterior

qθ(ω) stays near the prior distribution p(ω).

Standard dropout masks use a discrete Bernoulli distribution which is not com-

patible with the optimization in Eqn.2.11, so the continuous Concrete distribution

is used to approximate these discrete random variables. In the one-dimensional case

of the Bernoulli random variable z, the Concrete relaxation z̃ reduces to a simple

sigmoid distribution that makes for easy parameterization,

z̃ = sigmoid

(
1

t
· (log p− log(1− p) + log u− log(1− u))

)
(2.12)

with some temperature value t and uniform u ∼ Unif(0, 1). This relaxation of dropout

masks is how CD is defined.

From an implementation standpoint, CD is advantageous because it provides a

way to measure uncertainty during normal neural network operation by making a few

simple modifications. This is accomplished by applying a layer wrapping function

that implements CD functionality and adds the loss from Eqn.2.11 to the network’s

28

CHAPTER 2. BACKGROUND

overall loss function.

29

Chapter 3

Autoencoding Cleanup Memory (AECM)

3.1 Autoencoding Cleanup Memory Overview

Data reconstructed from convolution memory (e.g., HRR) is inherently noisy due to

the compression that takes place during binding. When a task only requires recog-

nition, and not recall, this is not much of an issue. Similarity measures like the

vector dot product can be used holistically to test for recognition without actually

reconstructing encoded data. However, in tasks that require accurate reconstruction,

additional error-correcting auto-associative item memory is needed.

In HRR literature this item memory described as cleanup memory. The purpose

of cleanup memory is to produce a clean version of noisy reconstructed vectors it

receives as input. It compares inputs to stored items and outputs the best match

along with a scalar ”strength” value. The strength score measures how closely a

cleanup memory output matches the original noiseless data sample with a higher score

indicating a close match. The exact implementation of cleanup memory is generally

considered unimportant as long as it provides the necessary capabilities. In practice,

cleanup memory implementation can have a significant impact on computational cost,

especially if it does not scale well with the number of items stored.

In Plate’s initial HRR simulations [17] cleanup memory is kept very simple. His

basic implementation used a simple array for item storage, by adding a pristine copy

30

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

of every data vector observed in an experiment. Cleanup processing then consists of

calculating dot products between a noisy query vector and all vectors in item memory.

The item producing the highest dot product value (i.e., strength) is output as the

closest match.

Although a simple list-based implementation is embarrassingly parallel, it is not

practical for larger memories since the number of dot product operations needed for

a single recall grows for every vector stored. Note that Plate did not suggest this

simple system was a scalable solution in the original literature, only a simple way

to perform the small-scale simulations he presented. Using an array or other similar

data structure is undoubtedly a very straightforward type of cleanup memory though,

so it is useful to consider it as an example.

Hopfield networks can have potential as an auto-associative cleanup memory, but

their capacity related to vector size limits their usefulness. Other recurrent neural

networks (RNNs) like Long Short-Term Memory (LSTM) [34] would also likely be ap-

plicable for cleanup, but to our knowledge an in-depth study on using contemporary

RNNs for cleanup remains relatively unexplored. Stewart et al. [35] did investigate

cleanup memory for VSAs quite extensively, even focusing on HRRs. Their focus

was on spiking neural networks and those techniques are not readily adaptable to

the models we develop in this work. Overall, there has been limited research pro-

duced investigating cleanup memory for HRRs, especially from a machine learning

perspective.

We investigated potential HRR cleanup memory implementations that would be

compatible with contemporary neural network architectures. The purpose of this

search was to find a cleanup memory that does not require explicit bookkeeping (e.g.

lists, lookup-tables, etc.), scales well with larger datasets, and is capable of acting as

a plug-and-play component for models we describe in later chapters.

In this chapter we describe our approach to implementing an Autoencoding Cleanup

31

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

Memory (AECM) network that learns to remove HRR reconstruction noise with a

simple de-noising Autoencdoer (dAE) network. We found that a standard dAE model

essentially works off-the-shelf as a cleanup memory where items are stored in a dis-

tributed way across network parameters via unsupervised training. This approach

is advantageous since it readily adapts to remove noise without requiring explicit

storage and costly repeated similarity computations.

3.2 AECM Model

The AECM model is a stacked dAE neural network re-purposed to act as a proxy for

an explicit cleanup memory. Although dAEs were originally conceived as an interme-

diate component in deep learning models used to initialize weights with unsupervised

pre-training, we found that they are useful as a stand-alone network that makes data

representations robust to noise.

In our context, AECMs are used to cleanup the reconstruction noise η added when

decoding an HRR trace. The basic concept for AECMs can be characterized starting

with c, t, and x which represent cue, trace, and data vectors respectively. Encoding,

decoding, and cleanup can be outlined as,

t = c ~ x (3.1)

x̂η = c#©t = c∗ ~ t (3.2)

AECM(x̂η) = x̂ (3.3)

where 3.1 shows binding to produce traces, 3.2 is decoding traces into a noisy recon-

struction of the input x̂η, and 3.3 is the AECM network removing noise to produce

a cleaned up version of the input x̂. The model is unlikely to produce a completely

pristine version of x, so x̂ can be considered a very close approximation of the original.

32

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

The neural network architecture of the AECM model used in our experiments

was a very standard dAE design that contains fully-connected 2D convolutional neu-

ral network (CNN) layers for filtering, with a block diagram provided in 3.1. The

encoder uses 2D max pooling following each CNN layer to spatially aggregate filter

outputs. This aggregation progressively reduces dimensionality, bottlenecking the

representation produced at the encoder output layer (i.e. the latent space). Decoding

is performed in a similar manner with CNN layers. Dimensionality is progressively

expanded back to the original size using simple 2d upsampling that repeats data to

expand representation size at a given layer.

This architecture worked very well for our purposes, but it should be noted that

the specific architecture used for AECM is largely unimportant in a general sense.

Some other network or process could reasonably be substituted given that it follows

the same pattern of receiving corrupted input data and learning to produce cleaned

data via unsupervised learning. We envision the AECM as a drop-in component for

other models, so this flexibility in architecture definition is convenient. For instance,

CNN dAEs make sense for image processing tasks, but other types of data would

likely require different network architectures for the AECM to be effective.

3.3 Example Experiments

In this section we present some basic experiments with image data to demonstrate re-

construction noise removal capability with the AECM model. We performed cleanup

experiments on two datasets, MNIST [36] and Fashion-MNIST [37]. Both datasets

contain 60,000 training samples and 10,000 testing samples of grayscale 28x28 images,

with 10 object classes.

Experiments were performed using HRR reconstructions of every sample as in-

puts to the AECM model. As an initial step, all samples were pre-processed with l2

normalization to make them more compatible with HRR operations. Reconstructed

33

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

Figure 3.1: Autoencoding Cleanup Memory (AECM) example network architecture. x̂η
indicates a noisy reconstruction of x produced by circular correlation decoding, and x̂
indicates a cleaned reconstruction produced by the AECM network.

samples for model input were then prepared using the basic HRR encoding and de-

coding process. First, unique cue vectors were generated randomly for every sample

by drawing from the unitary HRR distribution N (1/n, 1/n). Next, all cue, data vector

pairs (c,x) were encoded into trace sets ttrain, ttest using circular convolution. Traces

were then decoded into the noisy reconstructions x̂ηtrain, x̂ηtest, and used to train the

AECM model.

Identical neural network architectures were used for both datasets and built using

the base architecture described in section 3.2. In these experimental models, hidden

CNN layers used 32 filters with 3 × 3 kernels and ReLu activation functions. The

output layer contained a single filter and used a sigmoid activation function to con-

strain the output values to (0, 1). Models were trained using standard mini-batch

style gradient descent methods, with a batch size of 32. Since the network output

was sigmoidal, gradients were determined using binary cross-entropy reconstruction

loss between pristine input x and AECM output x̂. All optimization was performed

34

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

using Adam [38] with a learning rate of 0.001. No additional effort was made to

optimize hyper-parameters, as these experiments are intended to demonstrate basic

capability not optimized performance.

3.3.1 Experiment Results

Figure 3.2: AECM results on Fashion-MNIST, with eight random samples from test set
shown. Original images x (top row), noisy images decoded with circular correlation x̂η
(second row), and AECM cleanup results x̂ at epoch 7 and epoch 200 for comparison (last
two rows).

Examining AECM reconstructed samples from the test set shows a notably re-

duced noise and sometimes blurry but recognizable high-level image features (e.g.

size, shape) on both datasets, even after the first epoch. On subsequent training

passes, blur was reduced and finer grain visual details started to become apparent.

Example AECM reconstructions at various training passes are provided in Fig. 3.2

for Fashion-MNIST and 3.4 for MNIST. Cleanup samples produced on MNIST are

nearly identical to the source data visually and examining samples over multiple

epochs shows very little variation as training progresses.

It is evident from the loss plot in Fig. 3.3 that given our experiment parameters,

35

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

Figure 3.3: AECM binary cross-entropy loss while training on Fashion-MNIST over 200
epochs.

the AECM model begins to converge around epoch 80, showing a test loss of ≈ 0.0912

on Fashion-MNIST. Training on MNIST converges immediately after one epoch, with

a test loss of ≈ 0.0484, and reducing to ≈ 0.0483 after 200 epochs as shown in Fig.

3.5. This quick convergence reinforces the visually observed result that suggested the

AECM learned to effectively cleanup noise on MNIST after only a single training

pass.

3.4 Remarks on AECM

Cleanup memory is a crucial component that must be considered when applying

HRRs. From an engineering standpoint, cleanup memory is one of the first real

computational obstacles encountered when actually using HRRs. Anything beyond

a toy dataset or data with carefully curated relationships can cause the comparison

dot products to quickly become impractical as vectors are added. So, the nature

of cleanup memory implementation can have a significant impact on computational

cost.

36

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

Figure 3.4: AECM results on MNIST, with eight random samples from test set shown.
Original images x (top row), noisy images decoded with circular correlation x̂η (second
row), and AECM cleanup results x̂ at epoch 7 and epoch 200 for comparison (last two
rows).

Unfortunately, this topic is often glossed over or ignored in all but a few previous

works. One of our primary research goals for work we present later was to create

HRR models that are practical and usable in contemporary applied machine learning

settings. To that end, we needed a solution for cleanup memory that was both flexible

and compatible with the larger neural network design paradigm.

Using a dAE neural network architecture in the cleanup memory role seems like

an obvious choice when HRR tasks do not require explicit item storage or indexing.

Conceptually, it also fits well with the idea of distributed representation since the

information needed to de-noise reconstructions is stored across network weights. De-

spite this seemingly straightforward connection, to our knowledge it’s not a technique

that has been previously applied to the problem.

Cleaning up noisy vectors with a dAE is obviously not a surprising idea, and we

don’t consider the AECM to be a new contribution in that sense. However, applying

this sort of architecture to the specific problem of cleanup memory does contribute

37

CHAPTER 3. AUTOENCODING CLEANUP MEMORY (AECM)

Figure 3.5: AECM binary cross-entropy loss while training on MNIST over 200 epochs.

a new and simple solution for an often overlooked problem. We elected to present

AECM here as a stand-alone model because it reflects how we use them in the more

complex models presented later on, as a drop-in component well-suited to fill the role

of cleanup memory.

38

Chapter 4

Holographic Variational Autoencoder (HVAE)

4.1 Holographic Variational Autoencoder Overview

HRRs offer some interesting capabilities like content-addressable memory and struc-

tural representation. In a broad sense, they are readily compatible with contemporary

machine learning since they can be implemented using standard mathematical opera-

tions and carry the added benefit of using only real-number valued vectors. Although

this compatibility is evident, machine learning research using HRRs is rare.

Research on using HRRs in machine learning is uncommon, but it is not completely

unexplored. Plate made an effort to investigate this topic during his original HRR

work and he devoted an entire chapter in his 2003 book [22] to using HRRs in systems

that learn. That work focused on using HRRs with RNN models available at the

time for sequence learning. This line of research was extended in recent years by

combining HRRs with more powerful RNN models like LSTM [39]. Applications of

learning with HRRs have been studied for knowledge graph embeddings [25] and deep

learning network feature representation [40]. More general studies on the subject have

focused on learning systematic HRR transformation [24], and extending the theory

behind HRRs to add utility [26]. These are all useful additions to HRR knowledge,

but in the applied works HRRs are often used in way that is very task specific, or

reliant on explicit user knowledge to hand-craft representations.

39

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

Developing methods to combine HRRs (or other VSAs) with present-day machine

learning techniques will lead to new families of models. Intuitively, adding capabilities

like content-addressable memory or compositional structure representation via HRR

should augment our machine learning models in interesting ways. Investigations of

this nature are very limited though, and therefore the potential value added by this

type of augmentation is still mostly unknown. The work presented in this chapter

was motivated by the desire to explore this combination in new and potentially useful

ways. We take some initial steps toward augmenting modern neural networks with

HRRs as a proof of concept while simultaneously mitigating some of the drawbacks

native to HRRs.

In the rest of this chapter we will detail a newly developed model, the Holographic

Variational Autoencoder (HVAE). HVAE is a novel type of conditional variational

autoencoder (CVAE)[41] that combines concepts from VAEs and HRRs. A standard

CVAE usually accepts pairs of data vectors and a conditioning variable as input.

The conditioning variable is often discrete (e.g., a class label). The encoder learns

a conditional latent variable representation from inputs, and that latent variable is

used by the decoder to reconstruct data samples in the usual VAE manner. Adding

a conditional variable has been used to provide interesting capabilities like producing

scaling and rotation transforms in the decoded value by altering the conditioning

variable.

The HVAE follows this general design, with some notable differences. It takes pairs

of data and HRR cue vectors as inputs and learns a conditional latent representation.

However, the latent variable produced by the HVAE is a memory trace in an HRR

sense, which we refer to as a latent trace. This is achieved by implementing the

decoder as a circular correlation HRR decoding operation rather than the traditional

MLP stack. The intuition here is that using an HRR decoding scheme introduces

strong constraints that force the model to learn valid HRR latent traces in order to

40

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

produce reconstructed outputs. In essence, the model learns to approximate HRR

encoding with a stochastic latent space in an unsupervised manner.

To describe how HVAE works, let us first consider model function at a very high

level. Our goal is to have a model that receives data x and cues c as inputs, learns a

representation for the trace t as a latent variable, and then outputs a reconstructed

version of the data, x̂η which approximates a reconstruction produced by HRR en-

coding and decoding. This can be described with the following relation,

HVAE(c,x) = x̂η (4.1)

' c#©(c ~ x) = c#©t (4.2)

In Fig. 4.1 we provide several graphical model sketches to help illustrate model

function, and we will refer to these in the following sections to describe various model

components like the generation or recognition systems.

4.1.0.1 Probability Distribution Assumptions

Using HRRs in HVAE necessitates selecting a slightly different form of assumed Gaus-

sian prior to keep representations valid as HRR vectors. Unless otherwise noted, we

use a normal Gaussian prior that is the spatial equivalent of the unitary HRR normal

distribution NHRR, defined using the HRR vector size n,

NHRR = N (1/n, 1/n) (4.3)

4.1.0.2 Encoding Structure as an Alternative Information Bottleneck

In general, autoencoders need some sort of constraint that forces the encoder model

to learn a more efficient compression of data. This is often described as creating a

41

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

(a) HRR Operations (b) Generation (c) Recognition (d) Overall Model

Figure 4.1: Graphical sketches of the HVAE model, decomposed for illustration. Red
dashed lines indicate approximate inference distributions q(·|·). 4.1a: Data flow for general
deterministic encoding and decoding with HRR operations. Orange lines represent binding
cues and data into traces. Blue lines, decoding with cues and traces into data reconstruc-
tions. 4.1b: Generative model parameterized by θ. 4.1c: Recognition model parameterized
by φ. 4.1d: Overall HVAE graphical model sketch.

compressed or reduced knowledge representation of the input. The idea behind this is

that encoding and decoding data with completely independent features is much more

difficult than doing so when the features have some type of structure, for instance

feature-wise correlation.

Autoencoders usually leverage this concept by keeping the size of the latent space

representation z much lower than the size of the input data, which is commonly

referred to as an information ”bottleneck” constraint. Since autoencoders are trained

using reconstruction error and the latent space has limited capacity, the network

must learn to ignore redundant features while becoming more sensitive to the features

that allow accurate reconstructions (ideally). Without this constraint the network is

unlikely to learn any feature correlations and just try to memorize every training

sample (i.e., overfitting).

42

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

Bottlenecks in VAEs take a slightly different form. They usually do include a di-

mensional constraint on the latent space, as with basic autoencoders. However, there

is an additional bottleneck due to the probabilistic nature of latent space represen-

tations. The loss function for VAEs contains a reconstruction error term and a KL

divergence term that keeps predicted and prior distributions similar. If we removed

the reconstruction error during training and only used KL divergence, the VAE would

just use the same unit Gaussian to represent every observed sample, overfitting in a

different way. Since we optimize these two terms together, the latent representation

can diverge from the prior when it helps describe useful features. Manipulating this

distributional bottleneck in the latent space is an interesting line of research explored

in models like beta-VAE [42, 43]. In beta-VAE a scalar value β is used to modulate

the latent information bottleneck by scaling KL divergence.

In the HVAE model we wanted a latent representation that approximates HRR

traces, which necessitates a latent dimension equal to the input dimension. Addi-

tionally, HRR information capacity is improved as vector size increases [22], so larger

vectors are desirable from an HRR viewpoint. Given these considerations, creat-

ing a bottleneck by reducing the size of latent representations didn’t make sense for

HVAEs. However, the need for a bottleneck beyond the distributional one provided

by the VAE loss function remained a problem.

Searching for a way to approach the bottleneck problem helped motivate our

choice to use HRR operations directly during decoding, so we will try to explain

the intuition behind this choice here. Loosely defining the bottleneck needed, let us

regard it as some mechanism for compressing information. Ideally, this compression

projects data into a space that facilitates learning latent structure and features more

efficiently.

HRRs actually provide this type of compression mechanism by default. They are a

lossy compression of a higher-dimensional representation by definition [22]. Expand-

43

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

ing on that a little further, when we bind HRR vectors using circular convolution it is

equivalent to creating a structural relationship between vectors in a high-dimensional

vector space using the tensor product [15], and then projecting that representation

back down to the original dimension at the expense of added compression noise. To

state this yet another way, structural patterns were added to the representation while

some of the source data was also removed via corruption.

Although HRR compression isn’t quite a direct equivalent to dimensional bottle-

necks, it does have similarities worth examining. Compression noise from binding

reduces the amount of information available to the network for learning, which is

the same general reason for reducing the latent dimension. Reducing dimension is

an architecture decision though, so it forces this behavior equally for all data. HRR

compression noise is deterministic, making information reduction specific to each data

sample. Basically, when data vectors are fixed, the noise produced will always be the

same. This is not quite what we needed for a bottleneck since it doesn’t help the

network generalize, it just partially occludes individual data samples in a fixed way.

Fortunately, using a VAE architecture provides us with a ready source of stochas-

ticity. Latent variables are produced by sampling from a distribution. Therefore,

if an input vector is observed by the model multiple times it will produce a similar

latent vector each time (ideally). However, it is very unlikely to produce the exact

same latent vector due to the stochastic nature of the latent space. Re-visiting HRR

compression noise as a type of bottleneck is now more reasonable in this context,

since reduced information is no longer completely deterministic.

Consider the HVAE model with input vectors x and c, along with latent vector

t which exists in a stochastic latent space. For each input pair seen we sample a t

vector based on what the network has learned. Then, we perform circular correlation

on c and t to reconstruct x. Every time a given x is reconstructed, the compression

noise will corrupt different parts of the data since t was produced via sampling.

44

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

The network is forced to learn more efficient representations, since it must learn

to compensate for missing data. This has some obvious relations to the training

improvement observed when dropout is used, but for our purposes we will consider it

as a replacement constraint for the traditional dimensional bottleneck.

With this alternative constraint in place we can justify trying a latent dimension

size equal to the input size, which was required to pursue the goal of generating

usable latent HRR traces. The most prominent danger when using a large latent

dimension is overfitting. The extra capacity may allow the model to memorize training

samples rather than generalizing. Empirical testing will easily demonstrate whether

our alternative bottleneck constraint performs as intended, since it will severely overfit

otherwise. We suspect that the structure added to representations by HRR operations

will actually provide additional data pattern features that the network can leverage

during training, but investigating this will be left for future work.

4.2 Model Details

4.2.1 Generative Model

We begin our more formal HVAE model description by first describing our generative

model, also referred to as the decoder. The generative model produces reconstructions

of source data x using a latent trace t and a conditional cue input c. Since all of

the variables are continuous, the generator can be described using the conditionally

independent probability distribution shown in Fig. 4.1b as follows,

pθ(x|c, t) =

∫
c,t

pθ(x|c, t)pθ(t|c)pθ(c)dcdt (4.4)

where θ represents the neural network parameters (e.g., weights and biases) for the

encoder. The prior pθ(c) is a NHRR distribution, pθ(t|c) is the conditional prior distri-

bution that will be refined by the recognition model, and pθ(x|c, t) is a deterministic

45

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

function of c and t which produces a reconstruction of x as follows,

pθ(x|c, t) = c#©t (4.5)

where pθ(x|c, t) is obtained through circular correlation of a cue and the latent

trace. This operation is one of the core elements that sets the HVAE apart from

other VAEs. We do not use any fully-connected layers to reconstruct x, which is

the common approach. Instead we use circular correlation to provide this capability

deterministically. The intuition here is that we wish to encourage t to act as a valid

trace, even outside of the HVAE model. Therefore, if we use HVAE to generate traces,

the goal is that they should still be valid in an HRR sense for use in other systems

or with manual HRR operations.

If we add fully connected layers to the decoder trace information is then distributed

across those layer parameters, and this is not desirable for our purposes. Without

those decoder neural network layers, all learning for trace information is forced into

the latent space. This encourages valid HRR traces, since loss is calculated directly

from the decoded representation.

4.2.2 Recognition Model

The recognition model, sometimes referred to as the inference model, or encoder model

is the parameterized conditional posterior distribution qφ(t|c,x) used to approximate

the true conditional posterior pθ(t|c,x). An MLP with parameters φ produces the µ

and Σ values needed to draw samples from the distribution via the reparameterization

trick described previously.

4.2.3 Training

Training the HVAE model amounts to parameter estimation of a directed graphi-

cal model using stochastic gradient variational Bayes (SGVB) [27]. The variational

46

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

evidence lower bound (ELBO) is characterized as,

log pθ(x|c, t) ≥ Eqφ(t|c,x) [log pθ(x, c, t)− log qφ(t|c,x)] (4.6)

which can be re-written as our overall loss function,

L = Eqφ(t|c,x) [log pθ(x|c, t)]−DKL(qφ(t|c,x) ‖ pθ(t|c)) (4.7)

This loss function is the combination of reconstruction error (first term) and a

regularizer value (second term), where reconstruction error is measured using neg-

ative log-likelihood and regularization is contributed by the Kullback-Leibler (KL)

divergence which penalizes approximate posterior distribution divergence from the

assumed prior. Since the entire network is differentiable, we can train it with stan-

dard gradient descent optimization techniques.

4.3 HVAE Experiments

The HVAE model was trained on MNIST to provide a basic demonstration of latent

trace learning and data reconstruction. General setup followed the same procedure

described in Sec. 3.3. Since HVAE takes cues as a conditional variable input, a cue

corresponding to each digit class was generated, so for MNIST ten unique cues were

generated and paired with data samples as model inputs. Model reconstructions were

also passed through an AECM components for cleanup.

Training was performed for 50 epochs total. Reconstruction loss and KL diver-

gence followed expected patterns demonstrating successful learning of latent traces,

as shown in in Fig. 4.2. Visually inspecting samples shows that reconstructions be-

came recognizable after only a few epochs. Samples of raw reconstructions and their

47

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

post-cleanup result are provided in Fig. 4.3.

(a) MNIST NLL Loss (b) MNIST KL Divergence (t)

Figure 4.2: Loss plots for training on MNIST over 50 epochs. 4.2a Negative log likelihood
reconstruction loss. 4.2b KL divergence for latent trace t.

Figure 4.3: HVAE results on MNIST, with eight random samples from test set shown.
Original images x (top row), noisy images decoded with circular correlation x̂η (second
row), and AECM cleanup results x̂ at epoch 7 and epoch 50 for comparison (last two rows).

4.4 Remarks on HVAE

Adding HRR capability is a natural fit for the VAE design pattern since they are both

heavily dependent on assumptions about prior distributions. This combination has

48

CHAPTER 4. HOLOGRAPHIC VARIATIONAL AUTOENCODER (HVAE)

not been explored previously, but we found that these two techniques work well to-

gether. Combining these techniques helps mitigate some of the drawbacks associated

with each.

One of the primary drawbacks when using VAEs is that the assumed prior distri-

bution used for approximation is often much simpler than the true prior distribution

of the data, leading to blurry or inaccurate reconstructions. Fortunately, HRRs pro-

vide predictable and well-behaved Gaussian distributions when encoding data into

a trace. Using HRR operations with VAEs effectively allows us to impose addi-

tional structural constraints on the latent space representation implicitly. Since VAE

optimization is dependent on reconstruction error and KL divergence from a prior

distribution, adding HRRs assists with both of these objectives.

The base HRR framework can be challenging to work with for practical ML tasks.

Management of cues, traces, and cleanup memory requires explicit record keeping,

a large number of dot product comparison calculations, or some additional learning

system in tasks beyond toy examples. The first two of these options are not scal-

able, and learning systems for HRRs have been rare historically. We suspect these

challenges have discouraged more extensive use of HRRs in the past.

HVAE demonstrates one approach to resolving some HRR implementation barriers

by providing a compatible learning system. With latent traces, we can produce HRR

components dynamically based on learned input-output relationships. Automating

HRR production in this way is much more scalable than the basic approaches. Adding

an AECM component described in 3 as a trainable follow-up network even provides

an unsupervised cleanup memory.

49

Chapter 5

Holographic Generative Memory (HGMEM)

5.1 Holographic Generative Memory Overview

Memory augmentation for neural networks has seen an uptick in interest for tasks

where flexible adaptation is critical. Standard gradient-based learning methods show

excellent performance when tasks are very specific and a large amount of training

data is available. This incremental approach to learning can prove less effective when

rapid inference from minimal data is needed, or a task is not narrowly defined.

Standard networks train by re-learning network parameters given whatever data is

currently observed. Although trained weight parameters can be considered a type of

distributed memory, a network can only use this memory in a limited way. It cannot

apply abstract reasoning or value judgments about what information is important

to keep and what can be ignored. The network only knows that it needs to adjust

weights to optimize for its current data. This limitation leads to classic AI obstacles

like abruptly forgetting previously learned information while learning from new data

(catastrophic forgetting). Providing neural networks with memory capacity beyond

traditional layer weights is one way to address this type of problem.

Interest in augmenting neural networks with memory has seen a notable increase

over recent years, but the motivation for using memory augmentation is deeply rooted

in the historical notions of what makes AI an interesting problem. The effectiveness

50

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

of gradient-based learning methods and the popularity of deep learning has pushed

many researchers to focus on incremental optimization for published methods, rather

than addressing the more complex but abstract AI problems like conditional behavior,

knowledge-based action, or elements of cognition.

Adding interpretable and composable knowledge representation to neural networks

moves toward architectures more suited to complex tasks like analogical reasoning or

cross-domain transfer learning. We investigate using HRRs for this purpose as a

proof of concept that this type of representation is learnable in a more standard

neural network architecture. Building a learning system that can generate base HRR

components is the first step toward future systems that can make use of the more

abstract cognitive capabilities HRRs possess.

The Holographic Generative Memory (HGMEM) model significantly extends the

HVAE design presented in Chapter 4. In HGMEM both traces and cues are learn-

able latent variables. Additionally, latent traces are produced using a new generative

memory component. We designed this generative memory component to learn an ap-

proximation of composing trace vectors via binding and superposition as a byproduct

of training. Notably, the HGMEM architecture provides a full-stack HRR system, in

the sense that all HRR components are produced by the trainable model.

We denote the HGMEM encoder (recognition model) as qφ, where any neural

network parameters involved are contained in φ. Similarly, the decoder or generative

model is pθ with parameters θ. Model inputs are data samples, and model outputs

are reconstructions of data samples produced via circular correlation with cues and

traces. As with HVAE, no additional neural network layers alter the reconstruction

output prior to a separately trained AECM module. Finally, loss is calculated using

negative log-likelihood as a reconstruction error term, and KL divergence terms for

each latent variable to act as regularization. As in previous models, variables are

data vectors x, cue vectors c, and trace vectors t, with
{
x, c, t ∈ RN×1}. Thus far,

51

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

this description matches designs we have previously discussed.

Let us examine the first significant place where HGMEM deviates from the previ-

ous models. In HVAE, c is an explicit input used for conditioning while learning the

latent traces t. In HGMEM, cues are not an input, but an additional latent variable

learned by the network. We still use c to perform any HRR encoding and decoding

needed. However, in HGMEM c serves a dual purpose. It also acts as an addressing

variable used to access content in a memory matrix.

5.1.1 Cues in HGMEM

The idea of using an addressing variable to access memory is common in several

memory augmented neural network models [9, 13], but the concept lends itself well

to HRR operations. In HRRs, cue vectors act as a unique identifier for types of items

(e.g., entity, role, concept frame), or a specific instance of a type (e.g., rolegradstudent).

If we regard the idea of an address generically as a reference to some specific resource,

it follows that cues and addresses are very similar in purpose. They both provide a

mapping helpful in identifying and accessing specific resources.

This functional similarity to addresses motivated us to use cues for both HRR op-

erations and controlling memory access in our model. This decision carries additional

training benefits, since we are forcing the model to optimize for cues that can perform

both tasks. Cues must access memory in a useful way, while also correctly decoding

traces into data reconstructions. The intuition being that a weighted mapping of

content in M is learned based on the value of c. When x is fed into the network, c

maps to memory content that has previously been useful for reconstructing similar

samples.

52

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

Figure 5.1: Graphical sketch of HGMEM model. Red dashed lines indicate approximate
inference distributions q(·|·)

.

5.2 HGMEM Model

5.2.1 Generative Model

As with HVAE, the HGMEM model is used to reconstruct x from latent represen-

tations. Since HGEM uses latent representation for both cues and traces, c and t

are both learned with variational methods. An overall graphical model sketch of HG-

MEM is shown in Fig.5.1 for reference. First, we define the generative model using

joint distribution,

pθ(x, c, t|M) =

∫
c,t

p(x|c, t)p(t|M)p(c)dcdt (5.1)

where M is a K × N matrix with each row initialized randomly using the unitary

53

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

HRR normal distribution N (1/n, 1/n). We do not use an explicit write operation for

M, rather it is implemented as a learned memory component used to store latent

trace information.

During generation c is sampled from the prior pθ(c) ∼ NHRR, which controls

access to M by acting as an addressing variable. Cue-based addressing transforms

c into the vector w ∈ RK×1, which is a weighted mapping of content present in the

rows of M. This transformation is implemented using a small sub-network hA(c) as

follows,

hl1(c) = fl1(c
T ·Wl1 + βl1) = b ∈ R1×S (5.2)

hl2(b) = fl2(b ·A) = w ∈ R1×K (5.3)

and,

hA(c) = hl2(hl1(c)) = w (5.4)

where these equations describe the two layer addressing sub-network MLP shown in

Fig. 5.2c. Subscript li indicates layer index, and layer specific activation functions are

fli(·). In l2, the layer weights are defined as the addressing weight matrix A ∈ RS×K ,

where rows are initialized using NHRR(1/K, 1/K). Note that l2 does not contain a bias

term, so this layer is equivalent to a dot product followed by an activation function.

Latent traces are generated using similar variational methods to HVAE. However,

we use a memory dependent prior rather than using a NHRR distribution. Using this

alternate prior to generate t samples is then,

pθ(t|M) = N (t|wT ·M, 1/n) (5.5)

which indicates that generated samples are parameterized using weighted memory

content as the mean, and a fixed unitary HRR variance 1/n.

54

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

Reconstruction of x with pθ(x|c, t) consists of circular correlation using c and t,

as seen in the HVAE model Eqn.4.5.

5.2.2 Recognition Model

(a) Variational Trace (b) Full Variational (c) Addressing

Figure 5.2: Breakout diagrams for HGMEM sub-networks. 5.2a Variational trace layer
module used to sample pθ(t|M). 5.2b Full variational layer module used for portions of
the network optimized with KL divergence, qφ(t|x,M) and qφ(c|x). 5.2c Addressing layer
that transforms cues to weighted memory content map.

The HGMEM recognition model uses the factorized approximate posterior distribu-

tion,

qφ(c, t|x,M) =

∫
x,M

qφ(t|x,M)qφ(c|x)dxdM (5.6)

where qφ(c|x) is the parameterized approximate posterior distribution used to learn

cues, and qφ(t|x,M) refines the prior distribution pθ(t|M). The overall neural net-

work architecture used to implement HGMEM is illustrated in Fig. 5.3, where this

figure demonstrates flow during inference. When generating instead, c is provided as

input to the addressing layer directly, and the variational trace layer output tθ is the

generative trace. Decoding proceeds normally using circular correlation with the cue

input and generated trace.

55

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

Figure 5.3: Full HGMEM neural network architecture implementation. Layers with dotted
borders refer to a sub-network, copied here from Fig. 5.2. Diagram represents flow during
recognition/inference.

5.2.3 Training

The loss function for HGMEM is similar to that used in Eqn. 4.7 for HVAE. Since

we use two latent variables, we have a KL divergence term for both. The overall

HGMEM loss is as follows,

56

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

L = Eqφ(c,t|x,M) [log pθ(x, c, t|M)] (5.7)

−DKL(qφ(c|x) ‖ pθ(c))

−DKL(qφ(t|x,M) ‖ pθ(t|M))

5.3 HGMEM Experiments

We performed successful preliminary MNIST experiments to test reconstruction with

HGMEM, as seen in the previous sections on AECM and HVAE. Decoding results

were nearly visually identical to the previously presented examples, so we will omit

those here in favor of a more detailed look at components specific to HGMEM. The

generative memory component in HGMEM offers some interesting insights into latent

trace representation.

5.3.1 Examining Latent Traces

In VAEs the latent space is typically some abstract space where information is com-

pressed into more efficient representations. In HGMEM we assume the latent space

for t will take a specific type of representation in the form of traces. Both approaches

serve a similar purpose, encoding information into a compressed representation. How-

ever, ours imposes some structure in this process via training through circular convo-

lution decoding. Therefore, a visual examination of the latent space was performed

to examine if the latent space is actually structured in a manner that we expect, or

if it is more akin to traditional VAEs.

We hypothesized that the HGMEM model should learn to use the latent trace

memory as an approximation of HRR traces built via superposition. Since we decode

only using circular correlation, all trace information is forced into the latent trace

57

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

Figure 5.4: Example images showing generalization performance for trace decoding (left)
and cleanup memory with AECM (right) as training progresses. These images were pro-
duced using randomly selected samples from the evaluation set after various epochs. Since
samples are not used during training, these examples show reconstruction of in-class (al-
phabet), but unseen data.

memory representation via training. Our assumption was the visualized random

traces should demonstrate structure that indicates superposition of various character

components, a sort of multiplexing in the latent space. Circular correlation essentially

acts as a selector to retrieve associated data from a trace [25], more specifically, it is

designed to perform this function even with traces composed of multiple vectors added

together with superposition. With this in mind, it follows that a trace may contain

several superimposed character elements but still be decoded successfully with a cue

that discriminates well enough.

In a learned memory matrix like that used in HGMEM, we don’t have explicit

control over how content is store or retrieved. Instead, we guide memory access via

training. The training process assists in optimizing efficient storage of information.

This is further constrained by decoding only using circular correlation to retrieve

58

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

data from memory representations. We also constrain the distribution of the trace

representation via KL divergence, encouraging storage in the same basic space, but

allowing divergence when necessary. Recall that we uses cues to help address where in

memory data is stored, and training refines that process to help similar data samples

generate similar cues, leading to similar storage locations. Thus, there are multiple

constraints in place which encourage similar data to be stored in a similar location

(in a distributional sense).

The intuition here is that constraints encourage memory storage in the same

basic space by default, but that space can vary when it is needed to capture data

for decoding (e.g., reconstruction loss overcomes the KL penalty). Without some

other mechanism, data would likely just be stored in the same space much of the

time, leading to highly entangled representations. However, our decoding scheme

can actually use cues to access different information stored in the same trace space.

When this layered (superimposed) storage still supports decoding, there is no training

pressure to move storage elsewhere. Alternatively, when a location does not help

with decoding a given sample, training prods the distribution to shift somewhat. We

speculate that this leads to a training regime that naturally encourages superposition

storage for trace information.

To examine the latent space in this way, we captured visualizations of generated

trace decodes using random noise vectors while training progressed. First, we gener-

ated 64 random unitary HRR vectors to act as cues, and 64 samples from N (0, 1/n)

as a proxy for data, prior to training. After every epoch, we fed the noise vectors

into the generator model and then ran the resulting reconstructions into AECM for

cleanup. The goal here was to get some insight into how data is structured in latent

trace memory by selecting random elements from it with noise vectors.

Visual examination of our generated samples supported our hypothesis that la-

tent trace memory at least contains an imposed structure from our training method

59

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

least from a visual examination. There is obvious structure present, with many sub-

structures that may be reasonably interpreted as superimposed parts of the character

data. Additionally, near the beginning of training structures are much more dispersed

over the field of 64 samples, which follows since the system has not learned to make

use of data for determining storage location yet.

Later in training, we observed structures starting to become more dense within

each cell, suggesting further layering of data in that space. Near the end of training

the overall field becomes much more sparse, but some individual cells are highly struc-

tured. This supports our intuition that training encourages more efficient overlapping

storage and that structures tend to cluster together as a result. Fig. 5.5 shows this

behavior using some of the sample images produced during our examination.

Figure 5.5: Visualizing generative latent trace composition structure. Sixty-four random
Gaussian noise vectors were created prior to training, then fed as input to the network after
various epochs to visualize content stored in latent trace compositions. The space examined
shows amorphous shape early in training and progressively learns structure components.
As training continues structures are observed to become denser for each sample, and more
evenly distributed across all 64 samples. Many structures visually suggest superimposed
portions of character data. Toward the end of training structures become more concentrated
within individual cells, but sparser across the overall field.

60

CHAPTER 5. HOLOGRAPHIC GENERATIVE MEMORY (HGMEM)

5.4 Remarks on HGMEM

Although HGMEM produces reconstructions similar to the HVAE model, the nature

of latent trace learning is very different. Using a trainable memory matrix to store

information is a familiar approach for memory augmented networks. However, in HG-

MEM we use this memory component to define the prior distribution when learning

latent traces.

Using a memory-dependent prior is key to model function since the KL divergence

term for t penalizes sample divergence from the distribution of memory samples,

rather than an arbitrary Gaussian prior. This behavior is observed directly during

training, where KL divergence decreases as learned memory content becomes more

useful. Essentially, if the memory content does not support reconstruction well, the

KL penalty is higher. This value then decreases as the system learns to make better

use of memory.

Making latent trace generation dependent on memory encourages richer latent

spaces. Enforcing this dependency causes the system to intrinsically optimize for a

balance between learned information stored in memory and generative information

inferred from variational methods. When building reconstructions the model draws

on both sources of information as needed.

HGMEM also represents the first full-stack trainable HRR system, in the sense

that it learns to produce cues, traces, and reconstructions all as a product of unsuper-

vised training. This capability is desirable from an HRR practitioner viewpoint since

it avoids all of the manual encoding, decoding, and relation logic that we must typ-

ically implement explicitly. This model represents a significant step toward bridging

the gap between HRRs and modern neural networks.

61

Chapter 6

One-Shot Learning with HGMEM

6.1 Overview of OSL with HGMEM

In this section we introduce a neurally inspired OSL mechanism for neural networks

that uses uncertainty to modulate learning rate during training. This approach fol-

lows some themes from neuroscience source material [1], which shows that causal

uncertainty drives OSL in humans. Adapting these ideas to neural networks required

a method for obtaining uncertainty measurements during network operation and a

strategy for applying those measurements to modulate learning.

In our OSL mechanism we do not use causal uncertainty in the strict sense, but

rather an overall predictive uncertainty measurement as a proxy. This is accomplished

using Concrete Dropout, which is well-suited to the task since it was specifically

designed to provide uncertainty values. This approach was also advantageous because

it necessitates variational layers, which we already make extensive use of in HVAE

and HGMEM models.

The objective function for CD (Eqn.2.11) is designed to optimize for obtaining a

good estimation of epistemic uncertainty via training rather than expensive techniques

like a grid-search. Trainable dropout that is part of the network optimization process

is also attractive since it allows us to get usable uncertainty measures directly within

the network without using an auxiliary training regime to implement learning rate

62

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

modulation for OSL.

We use uncertainty measurements to scale a base learning rate dynamically during

training. When uncertainty is high the network scales learning rate up in response,

but as uncertainty is resolved the rate converges back down toward a natural state

determined by network operation. This is advantageous compared to techniques

like learning rate scheduling, since the rate is completely adaptive instead of being

arbitrarily determined beforehand.

6.1.0.1 Measures for Uncertainty in Neural Networks

When considering uncertainty in the context of neural networks, it is important to

first identify what types of uncertainty may be applicable. The value in using two

major types of uncertainty has been addressed in the context of deep learning for

computer vision [44], where the authors provide a thorough overview of the topic.

We will present the relevant ideas here, as they apply to our approach for OSL.

Quantifying uncertainty for neural networks can be considered using two types

of uncertainty, epistemic and aleatoric. Epistemic uncertainty refers to the system-

atic uncertainty present due to factors that are knowable (in principle), but may be

unknown in practice due to things like deficient modeling, inaccurate measurements,

and obfuscated data. Aleatoric uncertainty is representative of unknowns that can

differ every time an experiment is run, like environmental noise independent of the

data.

For neural networks epistempic uncertainty amounts to model uncertainty cap-

turing our ignorance about which model (i.e., parameter configuration) is best suited

for explaining the data. This is also known as reducible uncertainty because it can

typically be reduced by providing more data (e.g., via training). This type of uncer-

tainty becomes less useful when a large amount of training data is available, since

it is often resolved or explained away in that case. However, for applications where

63

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

little training data is available like those used in OSL, this measure can be valuable

for recognizing unseen data (e.g., out-of-data examples).

Aleatoric uncertainty relates the uncertainty present due to information not ex-

plained directly by the data. It can be further divided into two sub-categories, het-

eroscedastic which is dependent on data, and homoscedastic which is task dependant,

but not data dependant. Heteroscedastic uncertainty is data dependent because it

relates to model inputs, where some may be produce noisier outputs than others.

This can be useful for many neural network applications like computer vision. For

example, an image of a relatively featureless surface like a wall with little texture

would be expected to have a much higher uncertainty than an image of a street scene

with a strong depth of field. Homoscedastic uncertainty has less direct application for

single-task neural networks since it measures uncertainty we typically cannot reduce

in that setting. However, it is useful for multi-task learning problems as measure of

task-dependant uncertainty.

Combining both epistemic and aleatoric uncertainty provides a predictive uncer-

tainty value which measures the model’s confidence in predicted values, while also

accounting for noise it can explain and noise it cannot. When using stochastic reg-

ularization techniques like dropout in a network we can allow the model to decrease

uncertainty if the dropout probability is not fixed. When a model is able to alter

the dropout probability for instance, it can reduce epistemic uncertainty by selecting

smaller drop probability values when necessary. This is the general idea behind Con-

crete Dropout discussed in section 2.5, where drop probability is optimized as part of

the standard gradient-based neural network training process.

64

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

6.2 HGMEM OSL Variant Model

6.2.1 Adding Uncertainty to HGMEM

We use Concrete Dropout (CD) as described in section 2.5 to add an uncertainty

measurement capability to HGMEM. This is implemented by first wrapping every

fully-connected layer with CD functionality, as suggested by the original authors [18].

This alters the overall loss function to include the CD loss term from Eqn. 2.11,

L = LHGMEM + L̂MC(θ) (6.1)

= Eqφ(c,t|x,M) [log pθ(x, c, t|M)]

−DKL(qφ(c|x) ‖ pθ(c))

−DKL(qφ(t|x,M) ‖ pθ(t|M))

− 1

M

∑
i∈S

log p(ti|fω(xi))

+
1

N
DKL(qθ(ω) ‖ p(ω)) (6.2)

Actual uncertainty measurements are calculated using the neural network layers

in qφ(t|x,M) that produce µtφ and σtφ parameters used when sampling latent traces.

This can be approached in several ways depending on design objectives.

Uncertainty can be calculated in a batch-wise manner if sample specific granular-

ity isn’t desired, which amounts to calculating the average variance of µtφ and σtφ

network outputs across all batch samples, as follows,

65

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

ue =
1

K

∑
k∈K

V ar(µk) (6.3)

ua =
1

K

∑
k∈K

V ar(σk)

u = ψ[ue + ua]

where K is the batch size, ue is epistemic uncertainty, ua is aleatoric uncertainty, u is

predictive uncertainty, which includes an importance scalar value ψ. In our model, ψ

plays a similar role to saliency in [1]. Since the dot product is the most common way

to evaluate HRR similarity, we use this to compare original inputs and reconstructions

as our importance value,

ψi = xTi · x̂ηi (6.4)

(6.5)

When sample-specific uncertainty is desired, Monte Carlo (MC) style sampling

can be used to obtain variance over multiple predictions on the same input and using

the average variance for those samples in Eqn. 6.3. This is easily achieved by just

repeatedly computing qφ(t|x,M) for the same x, since the dropout mechanism and

stochastic sampling in the network will produce some degree of variance in predic-

tions. When the network is more confident in its prediction for a given input, the

sample-specific variance will be lower, leading to decreased uncertainty. This method

does provide much more dynamic learning rate adaptation, since uncertainty is deter-

mined for every sample before being aggregated for the batch, but it does introduce

additional computational costs.

66

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

6.2.2 Scaling Learning Rate for OSL via Uncertainty

Following the concept presented in [1], our OSL mechanism consists of scaling the

learning rate used during training dynamically based on uncertainty observed. This

scaling term is denoted γ, as follows,

γ = max(
exp(τV ar(u|x))

Σjexp(τV ar(u|x))
) (6.6)

where u is the predictive uncertainty from Eqn. 6.4, and τ is a temperature parameter

scaling the impact of the importance value ψ.

Prior to calculating network updates in each training batch, we calculate the

current learning rate α by scaling the base learning rate α0 with γ,

α = α0 exp(βγ) (6.7)

where β is an optional hyper-parameter used to tune the learning rate scaling level.

6.2.3 Classification Sub-Network

Our OSL mechanism is mostly agnostic to the classification method used, since it

modulates overall learning rate and is not tied to a specific classifier implementation.

For experiments in this work, we adapt a matching model [8] for classification since

it can be added as a sub-network without altering the HGMEM-OSL architecture.

This matching model has the general form,

ŷ =
k∑
i=1

a(x̂, xi)yi (6.8)

where xi, yi are samples and one-hot labels generated from a support set S = (xi, yi)
k
i=1,

and a is an attention mechanism. We us simple softmax over cosine distance function

67

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

for a,

a(x̂, xi) =
exp [c(f(x̂), g(xi))]∑k
j=1 exp [c(f(x̂), g(xj))]

(6.9)

where c is the cosine distance, and f, g are functions used to create embeddings from

x̂, xi.

With this general approach, we must choose an embedding strategy that provides

useful features for classification. We perform matching classification on cue and data

vectors reconstructed from traces. Since cues are used to address learned memory

in HGMEM, training encourages generation of similar cues for similar inputs. This

native similarity is helpful for classification when features are extracted from cue

vectors during embedding. Creating embeddings from cues generated directly by

qφ(c|x) is one option, but HRRs offer an additional way to use obtain cues in this

context.

We can reconstruct cues from latent traces generated by the model. We haven’t

previously discussed reconstructing cues, so some explanation is needed. When traces

are created using two vectors (e.g., c, x), circular correlation can reconstruct either

vector from that trace. We use this property to obtain ∼ c, a cue vector reconstructed

from x and t as follows,

∼ c = x#©t (6.10)

Embedding a reconstructed cue provides additional discriminative information for

classification since memory and latent trace layers contribute information through the

trace used.

We concatenate reconstructed cues and decoded trace vectors when obtaining

embeddings from the functions f, g. This combination provides an embedding with

features from a direct sample reconstruction ∼ xθ, and added features from the cue

reconstruction ∼ cφ to assist with classification. The HGMEM architecture provides

68

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

all the necessary components for reconstructing cues and data vectors, so we ob-

tain embeddings using existing HGMEM layers and a small CNN sub-network that

extracts features as follows,

f(x) = CNN(concat(∼ xθ,∼ cφ)) (6.11)

where,

∼ xθ = pθ(x|c, t)

∼ cφ = x#©qφ(t|x,M)

and,

f(x) = g(x)

where CNN is a convolutional neural network with a stack of four modules, with each

module consisting of a 3x3 convolutional layer with 64 filters and 2x2 max pooling.

The same CNN sub-network is used for both f and g.

During training, embeddings for x̂ and xi are created via f and the matching

model is used to predict labels. A categorical cross-entropy loss term is added to the

overall loss function to enable training of the embedding sub-network during normal

network optimization.

6.3 HGMEM-OSL Experiments

We performed OSL classification experiments to evaluate whether our HGMEM-OSL

model is capable of learning in this setting. These experiments were intended to

demonstrate the baseline capability of our approach, so no hyper-parameter tuning

or additional algorithmic tricks were used beyond what the base model configuration

employs.

69

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

6.3.1 Omniglot Dataset

The Omniglot dataset [45] is very common in OSL literature. It consists of 1623

handwritten characters from 50 different alphabets, for examples see Fig. 6.1. Only

20 samples for each character type are provided, a relatively small amount compared

to the number of characters (i.e., classes). This ratio of samples to classes has led to

Omniglot often being referred to as the ”transpose” of MNIST, since MNIST contains

many samples for only a few classes. Omniglot also serves a similar functional purpose

to MNIST for OSL research since it is used as a baseline benchmark set for nearly all

OSL techniques.

Figure 6.1: Character samples from Omniglot dataset. Original figure from [2]

.

Experimental setup for Omniglot varies somewhat in the literature. However,

the general form used is N -way, K-shot tasks. In these tasks we choose N unseen

character classes, independent of alphabet. A support set S is generated by choosing

K disjoint samples for each of the N classes. The goal is to classify a query sample

x 6∈ S, chosen from one of the N classes. Classification is performed by comparing

model features produced for x with those produced by samples in S using some

similarity metric (e.g., dot product, cosine distance). The class of the support sample

70

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

scoring the highest similarity is returned as the predicted class for x.

6.3.2 Omniglot Classification Results

HGMEM-OSL was evaluated on standard Omniglot classification tasks with two mod-

els, one trained and configured for 5-way and another for 20-way. Models were eval-

uated with 1-shot and 5-shot tests on unseen samples. Some preliminary testing

with the OSL mechanism helped select hyper-parameter values that offered consis-

tent learning rate modulation during training, motivating us to use τ = 2048.0 and

β = 4.0 for experiments. No data augmentation was used in any experiments.

(a) Epistemic uncertainty. (b) Predictive uncertainty.

(c) Modulated learning rate.

Figure 6.2: Omniglot OSL uncertainty and learning rate plots during training of 5-way,
1-shot model. 6.2a: Epistemic (reducible) uncertainty decreases as training progresses.
6.2b: Predictive uncertainty decreases as recognizable reconstructions are learned. 6.2c:
Learning rate modulated dynamically by uncertainty measurements.

71

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

We observed the learning rate modulation to behave as expected, as shown in

Figs. 6.2. Epsitemic uncertainty decreased as training progressed, and aleatoric un-

certainty settled near 1 after the network learned to account for it. During early

training epochs reconstructions are less recognizable, causing high uncertainty. Dur-

ing training uncertainty reduces quickly until reconstructions are more accurate, at

that point uncertainty increases slightly as the network attempts to refine predictions.

This was a general pattern we observed in all configurations tested during preliminary

tests and this experiment.

Reconstruction loss and KL divergence for traces behaved as expected, as shown

in Fig. 6.3. KL was higher during early training passes, and then decreased as the

system learned to make better use of memory. Accuracy results were lower than

expected, when compared to other methods in literature, shown in Table 6.1. This

result is not ideal, but it does show our baseline approach is functional for OSL, even

without hyper-parameter optimization.

Classification Accuracy

Model Aug Tuned 5w-1s 5w-5s 20w-1s 20w-5s

Pixel Distance [8] Y N 41.70% 63.20% 26.70% 42.60%

MoVAE [46] Y N 90.90% ± 5.4 96.70% ± 2.8 - -

Convolutional Siamese Net [47] Y N - - 92.00% -

MANN-GE [12] Y N 97.40% 98.90% 92.30% 98.40%

Matching Networks [8] Y Y 97.90% 98.70% 93.50% 98.70%

Matching Networks [8] Y N 98.10% 98.90% 93.80% 98.50%

Prototypical Networks [48] Y N 98.80% 99.70% 96.00% 98.90%

HGMEM-OSL (Ours), Max N N 97.33% 99.31% 91.85% 97.00%

HGMEM-OSL (Ours), Average N N 97.00% ± 0.19 99.08% ± .09 91.07% ± .32% 96.74% ± .18%

Table 6.1: Omniglot accuracy comparisons to those reported in literature. Results for
5-way 1-shot, 5-way 5-shot, 20-way 1-shot, and 20-way 5-shot classification on Omniglot.
Our reported average results are for 20 test replications.

72

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

(a) Negative log likelihood. (b) KL divergence (traces).

(c) Classification Accuracy

Figure 6.3: Omniglot OSL loss and accuracy plots plots during training of 5-way, 1-shot
model. 6.3a: Negative log likelihood as reconstruction error loss. 6.3b: KL divergence
for memory dependent latent traces. 6.3c: Classification accuracy on Omniglot (5-way,
1-shot).

6.4 Remarks on OSL with HGMEM

Classification accuracy results did not beat SOTA in our experiments. However, our

primary goal in this work was to develop these new techniques and demonstrate some

baseline performance as a proof of concept. The accuracy we did achieve during

testing is significantly higher than random guessing or simpler systems like pixel

distance. Additionally, the learning rate modulation approach worked exactly as

designed, which is promising. Overall, these results demonstrate that this approach

is capable of OSL, but the specific implementation needs to be optimized in future

work.

We suspect that performance was limited by a few factors in the experiments

73

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

here. The first is design choice when adding a classification component. HGMEM

offers several potential ways to extract features for classification. Reconstructed vec-

tors, cues, memory content, latent traces, and other intermediary activations are all

potential candidates to focus on for feature extraction.

After some preliminary testing, we chose to use the reconstructed cue and data

vector approach. The reasoning was that cues generated for similar data samples will

also be similar since they are trained to access memory in a data dependent way. It

seemed reasonable that using cues as a lift for decoded data samples would assist

with classification due to implicit cue similarity. Preliminary tests showed recon-

structed cues or data vectors alone produced reasonable classification performance,

but combining them via concatenation yielded better results.

Using a matching model classification approach was effective, but an alternate

classification method is worth investigating. While the HGMEM architecture learned

to reconstruct samples very quickly (e.g. 50 to 100 epochs), the matching model

sub-network added extensive additional training and testing time since all support

samples required reconstruction. This added time limited our reported results in

6.1 somewhat. At reporting time performance increase was small between epochs,

but training and testing loss values were still decreasing. With additional training

time accuracy could likely have been increased further, but scheduling and resource

limitations necessitated an earlier stop for reporting. Exploring alternative ways to

leverage the features provided by HGMEM in future work may provide a more efficient

classification sub-network.

Extended training and testing time also limited tuning of hyper-parameter values,

preventing a thorough exploration of the parameter space via grid search or similar

methods. Our OSL mechanism did perform exactly as expected using our chosen

hyper-parameter values, with τ values showing a notable impact on scaling for learn-

ing rate. Overall, we found that networks showed higher accuracy values and more

74

CHAPTER 6. ONE-SHOT LEARNING WITH HGMEM

rapid learning with larger τ values. Since τ helps to amplify the impact of network

uncertainty and reconstruction importance values (i.e., ψ), this behavior is expected.

We suspect that further experiments on hyper-parameter tuning for our mechanism

with a more exhaustive tuning technique may significantly increase performance.

We find these initial OSL outcomes very encouraging, given the performance

achieved with minimal tuning and no data augmentation.

75

Chapter 7

Final Remarks

7.1 Summary of Work

In this work we demonstrated that neurally inspired techniques for knowledge repre-

sentation and one-shot learning can be applied to contemporary neural network ar-

chitectures successfully. The AECM, HVAE, and HGMEM models we’ve introduced

show a path toward interpretable and composable learned knowledge representations

that don’t require the cumbersome manipulation and indexing associated with histor-

ical methods for VSAs. Our OSL mechanism provides a new approach to the problem

with uncertainty-based learning rate modulation rather than novelty driven OSL.

Experimental results for autoencoding show that our models learn valid HRR

representations in an unsupervised manner while also providing a solution to the

cleanup memory problem, reducing practical obstacles that hinder more complex

work with HRRs. We demonstrated that using latent HRR representations in a VAE

model is also a beneficial combination since the strengths of each technique helps

mitigate traditional drawbacks in the other.

OSL experiments demonstrate initial accuracy results approaching, but not ex-

ceeding SOTA methods in literature. These results were obtained using very little

hyper-parameter tuning or optimization due to computational and time constraints,

and given additional time and resources for tuning these results can likely be im-

76

CHAPTER 7. FINAL REMARKS

proved further. We have shown that uncertainty-based OSL is a valid approach with

neural networks, and one that offers significant potential for further exploration.

In a more general sense, the work presented here supports the idea that using

neuroscience for inspiration in ML research can lead to unexpected insights. We were

primarily motivated to pursue the initial exploration of two neurally inspired ideas,

uncertainty-based OSL and compositional knowledge representation. In this work we

have demonstrated that both of these ideas can be readily adapted to contemporary

neural network architectures, and we look forward to expanding on these ideas in

future work.

7.2 Future Work

The first follow-up to this initial proof of concept work should be a more detailed

investigation into optimizing the OSL mechanism for tasks like Omniglot classification

(e.g., hyper-parameter tuning). While we were able to show reasonable results, they

weren’t SOTA. Making these new models and mechanisms functional was a long

process, leaving little time for exploring optimization. Further work on optimization

should provide a more comprehensive view of how our OSL mechanism compares to

others in literature.

Our OSL mechanism was originally designed to work with the HGMEM architec-

ture, but the final technique we developed is actually fairly agnostic to the underlying

neural network architecture used. Most architectures capable of supporting concrete

dropout that also contain a variational layer should be compatible with our OSL ap-

proach. Applying our OSL mechanism to other models from literature and comparing

results would provide a good indicator of how generally applicable it is.

Combining HRRs and VAEs is representative of a new family of models with

potential for much deeper exploration. In our work we focused on proving models

capable of performing the core HRR operations (e.g., encoding, decoding, composi-

77

CHAPTER 7. FINAL REMARKS

tion). HRRs offer many other complex features well beyond these fundamental ones

though. Plate’s work provides extensive examples using them to represent complex

structures like hierarchies or sequences. Additionally, they support representation of

more abstract representations like subject-predicate relationships, analogies, concept

frames, and more. Our trainable full-stack HRR model provides the groundwork

needed to explore implementing these ideas in areas like reinforcement learning or

meta-learning.

We only experimented with grayscale images to simplify trace representation dur-

ing this initial work. Adapting our models to support multi-channel images poses an

interesting challenge, since multiple vectors (e.g., channels) are used in a single data

sample. Learning a latent trace that encodes information from all channels is a good

introductory problem for exploring more advanced HRR structural encoding. Some

potential strategies are encoding channel vectors as a sequence structured HRRs,

chunking, or using unique channel id cues. Similarly, the same HRR structural en-

coding techniques can be used to apply our models in other domains like NLP. There

are several ways to approach these tasks that are worth investigating in an effort to

expand model capability.

7.3 Notes on HRR Value

The value added by a full-stack HRR system like we developed with HGMEM may

not be readily apparent to readers without practical experience using HRRs. Recall

that the HRR framework offers a set of tools to systematically represent structure

and data in an interpretable and composable way. This capability is very interesting

from an AI standpoint, since compositional knowledge is a cornerstone of human

intelligence that we find difficult to replicate in machines.

Providing some context, HRRs were originally developed in an era before deep

learning. During this time much of the dialogue in AI was centered on whether

78

CHAPTER 7. FINAL REMARKS

connectionist systems could actually do anything useful, and useful was largely defined

by the dominant AI research focus on symbolic processing or cognitive tasks. This

environment shaped much of the work done with HRRs, since they were partially

developed in response to the criticisms of connectionist systems at the time. This

caused HRR applications in literature to often take the form of symbolic or cognitive

tasks, which are unfamiliar to many modern ML researchers.

Providing a full-stack HRR model like we do in this work helps showcase the

framework in a more modern context that is more compatible with current research

trends. Hopefully, this will motivate further work in this direction. An eventual goal

might be bringing research back around to the original HRR cognitive task ideas, but

with architectures that take full advantage of advances in ML.

From an engineering standpoint, a full-stack HRR model is simply more usable

than the basic HRR approach. Nearly all previous HRR works focus on learning a

single HRR component in a supervised setting, or they require hand-crafted com-

ponents relying heavily on a-priori user knowledge (e.g., manually partitioning and

combining datasets by class before encoding). A model that automates many of the

HRR operations helps make them more generally applicable to a wider range of tasks.

79

Bibliography

[1] S. W. Lee, J. P. O’Doherty, and S. Shimojo, “Neural Computations Mediating
One-Shot Learning in the Human Brain,” PLoS Biology, vol. 13, no. 4, pp. 1–36,
2015.

[2] B. M. Lake, R. R. Salakhutdinov, J. Gross, and J. B. Tenenbaum, “One shot
learning of simple visual concepts,” Proceedings of the 33rd Annual Conference
of the Cognitive Science Society (CogSci 2011), vol. 172, pp. 2568–2573,
2011. [Online]. Available: http://palm.mindmodeling.org/cogsci2011/papers/
0601/paper0601.pdf

[3] R. C. O’Reilly, D. Wyatte, S. Herd, B. Mingus, and D. J. Jilk, “Recurrent
processing during object recognition,” Frontiers in Psychology, vol. 4, no. APR,
pp. 171–180, 2013.

[4] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4,
pp. 594–611, 2006.

[5] L. Fei-Fei, “Knowledge transfer in learning to recognize visual objects
classes,” Proceedings of the Fifth International Conference . . . , 2006.
[Online]. Available: http://www-cs.stanford.edu/groups/vision/documents/
Fei-Fei{ }ICDL2006.pdf

[6] C. G. Atkeson, A. W. Moorey, S. Schaalz, A. W. Moore, and S. Schaal, “Locally
Weighted Learning,” Artificial Intelligence, vol. 11, pp. 11–73, 1997. [Online].
Available: http://www.springerlink.com/index/G8280541763Q0223.pdf

[7] J. Goldberger, S. T. Roweis, G. E. Hinton, R. Salakhutdinov, S. T.
Roweis, and R. Salakhutdinov, “Neighbourhood Components Analysis,”
Advances in Neural Information Processing Systems, pp. 513–520, 2004.
[Online]. Available: http://www.cs.toronto.edu/{∼}fritz/absps/nca.pdfhttp:
//eprints.pascal-network.org/archive/00001570/

[8] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching Networks for One Shot Learning,” arXiv, pp. 1–12, 2016. [Online].
Available: http://arxiv.org/abs/1606.04080

[9] J. Bornschein, A. Mnih, D. Zoran, and D. J. Rezende, “Variational
Memory Addressing in Generative Models,” 2017. [Online]. Available:
http://arxiv.org/abs/1709.07116

[10] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” pp. 1–26,
2014. [Online]. Available: http://arxiv.org/abs/1410.5401

80

http://palm.mindmodeling.org/cogsci2011/papers/0601/paper0601.pdf
http://palm.mindmodeling.org/cogsci2011/papers/0601/paper0601.pdf
http://www-cs.stanford.edu/groups/vision/documents/Fei-Fei{_}ICDL2006.pdf
http://www-cs.stanford.edu/groups/vision/documents/Fei-Fei{_}ICDL2006.pdf
http://www.springerlink.com/index/G8280541763Q0223.pdf
http://www.cs.toronto.edu/{~}fritz/absps/nca.pdf http://eprints.pascal-network.org/archive/00001570/
http://www.cs.toronto.edu/{~}fritz/absps/nca.pdf http://eprints.pascal-network.org/archive/00001570/
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1709.07116
http://arxiv.org/abs/1410.5401

BIBLIOGRAPHY

[11] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “One-shot
Learning with Memory-Augmented Neural Networks,” 2016.

[12] H. Tseran and T. Harada, “Memory Augmented Neural Network with Gaussian
Embeddings for One-Shot Learning,” no. Nips, pp. 1–5, 2017.

[13] Y. Wu, G. Wayne, A. Graves, and T. Lillicrap, “The Kanerva Machine:
A Generative Distributed Memory,” in ICLR, apr 2018, pp. 1–16. [Online].
Available: http://arxiv.org/abs/1804.01756

[14] R. W. Gayler, “Holographic networks are hiking the foothills of analogy,” Neural
Computing Surveys, vol. 2, no. 1, pp. 6–7, 1999.

[15] P. Smolensky, “Tensor product variable binding and the representation of sym-
bolic structures in connectionist systems,” Artificial Intelligence, vol. 46, no. 1-2,
pp. 159–216, 1990.

[16] P. Kanerva, Sparse Distributed Memory. MIT Press, 1988.

[17] T. A. Plate, “Holographic Reduced Representations,” IEEE Transactions on
Neural Networks, vol. 6, no. 3, pp. 623–641, 1995.

[18] Y. Gal, J. Hron, and A. Kendall, “Concrete Dropout,” 2017. [Online]. Available:
http://arxiv.org/abs/1705.07832

[19] A. Newell, J. C. Shaw, and H. A. Simon, “Report on a general problem-solving
program,” IFIP Congress, vol. 256, p. 64, 1959.

[20] L. Ferrone and F. M. Zanzotto, “Symbolic, Distributed and Distributional
Representations for Natural Language Processing in the Era of Deep Learning:
a Survey,” 2017. [Online]. Available: http://arxiv.org/abs/1702.00764

[21] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, “Distributed representa-
tions,” Parallel Distributed Processing, pp. 77–109, 1986.

[22] T. Plate, Holographic Reduced Representations: Distributed Representations for
Cognitive Structures. Center for the Study of Language and Inf, 2003.

[23] N. Chomsky, “Aspects of the Theory of Syntax,” 1967.

[24] J. Neumann, “Learning the systematic transformation of holographic reduced
representations,” Cognitive Systems Research, vol. 3, no. 2, pp. 227–235, 2002.

[25] M. Nickel, L. Rosasco, and T. Poggio, “Holographic Embeddings of
Knowledge Graphs,” pp. 1955–1961, 2015. [Online]. Available: http:
//arxiv.org/abs/1510.04935

[26] M. Kelly, “Advancing the Theory and Utility of Holographic Reduced Repre-
sentations,” Queen’s University, Canada - ProQuest Dissertations and Theses,
2014.

81

http://arxiv.org/abs/1804.01756
http://arxiv.org/abs/1705.07832
http://arxiv.org/abs/1702.00764
http://arxiv.org/abs/1510.04935
http://arxiv.org/abs/1510.04935

BIBLIOGRAPHY

[27] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” no. Ml, pp.
1–14, 2013. [Online]. Available: http://arxiv.org/abs/1312.6114

[28] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” 2015. [Online]. Available:
http://arxiv.org/abs/1506.02142

[29] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-Aware
Reinforcement Learning for Collision Avoidance,” 2017. [Online]. Available:
http://arxiv.org/abs/1702.01182

[30] Y. Gal, R. T. Mcallister, and C. E. Rasmussen, “Improving PILCO
with Bayesian Neural Network Dynamics Models,” Data-Efficient Machine
Learning Workshop, ICML, pp. 1–7, 2016. [Online]. Available: http:
//mlg.eng.cam.ac.uk/yarin/PDFs/DeepPILCO.pdf

[31] Y. Li and Y. Gal, “Dropout Inference in Bayesian Neural Networks with
Alpha-divergences,” in International Conference on Machine Learning, 2017,
pp. 2052–2061. [Online]. Available: http://arxiv.org/abs/1703.02914

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online].
Available: https://www.cs.toronto.edu/{∼}hinton/absps/JMLRdropout.pdf

[33] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[34] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[35] T. C. Stewart, Y. Tang, and C. Eliasmith, “A biologically realistic
cleanup memory: Autoassociation in spiking neurons,” Cognitive Systems
Research, vol. 12, no. 2, pp. 84–92, 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.cogsys.2010.06.006

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2323, 1998.

[37] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms,” pp. 1–6, 2017. [Online].
Available: http://arxiv.org/abs/1708.07747

[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” pp.
1–15, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

82

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1702.01182
http://mlg.eng.cam.ac.uk/yarin/PDFs/DeepPILCO.pdf
http://mlg.eng.cam.ac.uk/yarin/PDFs/DeepPILCO.pdf
http://arxiv.org/abs/1703.02914
https://www.cs.toronto.edu/{~}hinton/absps/JMLRdropout.pdf
http://dx.doi.org/10.1016/j.cogsys.2010.06.006
http://dx.doi.org/10.1016/j.cogsys.2010.06.006
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[39] I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves,
“Associative Long Short-Term Memory,” 2016. [Online]. Available: http:
//arxiv.org/abs/1602.03032

[40] M. A. Zinkevich and A. Davies, “Holographic Feature Representations of Deep
Networks,” Proceedings of UAI, p. 267, 2017.

[41] K. Sohn, H. Lee, and X. Yan, “Learning structured output repre-
sentation using deep conditional generative models,” in Advances in
Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,
Inc., 2015, pp. 3483–3491. [Online]. Available: http://papers.nips.cc/paper/
5775-learning-structured-output-representation-using-deep-conditional-generative-models.
pdf

[42] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained
variational framework,” 2016.

[43] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in beta-VAE,” no. Nips, 2018.
[Online]. Available: http://arxiv.org/abs/1804.03599

[44] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” mar 2017. [Online]. Available:
http://arxiv.org/abs/1703.04977

[45] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept
learning through probabilistic program induction,” Science, vol. 350, no. 6266,
pp. 1332–1338, 2015.

[46] D. C. Mocanu and E. Mocanu, “One-Shot Learning using Mixture of Variational
Autoencoders: a Generalization Learning approach,” no. July, pp. 10–15, 2018.
[Online]. Available: http://arxiv.org/abs/1804.07645

[47] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese Neural Networks for
One-shot Image Recognition.” [Online]. Available: http://www.cs.toronto.edu/
{∼}rsalakhu/papers/oneshot1.pdf

[48] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical Networks for Few-shot
Learning,” 2017. [Online]. Available: http://arxiv.org/abs/1703.05175

83

http://arxiv.org/abs/1602.03032
http://arxiv.org/abs/1602.03032
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1804.07645
http://www.cs.toronto.edu/{~}rsalakhu/papers/oneshot1.pdf
http://www.cs.toronto.edu/{~}rsalakhu/papers/oneshot1.pdf
http://arxiv.org/abs/1703.05175

	Holographic Generative Memory: Neurally Inspired One-Shot Learning with Memory Augmented Neural Networks
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Data Representations
	Holographic Reduced Representation (HRR)
	HRR Encoding
	HRR Decoding
	HRR Distributions and Composition
	Frequency Domain HRRs

	Variational AutoEncoders (VAEs)
	Neuroscience Perspective on One-Shot Learning (OSL)
	Uncertainty in Neural Networks

	Autoencoding Cleanup Memory (AECM)
	Autoencoding Cleanup Memory Overview
	AECM Model
	Example Experiments
	Experiment Results

	Remarks on AECM

	Holographic Variational Autoencoder (HVAE)
	Holographic Variational Autoencoder Overview
	Model Details
	Generative Model
	Recognition Model
	Training

	HVAE Experiments
	Remarks on HVAE

	Holographic Generative Memory (HGMEM)
	Holographic Generative Memory Overview
	Cues in HGMEM

	HGMEM Model
	Generative Model
	Recognition Model
	Training

	HGMEM Experiments
	Examining Latent Traces

	Remarks on HGMEM

	One-Shot Learning with HGMEM
	Overview of OSL with HGMEM
	HGMEM OSL Variant Model
	Adding Uncertainty to HGMEM
	Scaling Learning Rate for OSL via Uncertainty
	Classification Sub-Network

	HGMEM-OSL Experiments
	Omniglot Dataset
	Omniglot Classification Results

	Remarks on OSL with HGMEM

	Final Remarks
	Summary of Work
	Future Work
	Notes on HRR Value

	Bibliography

