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Abstract

Incremental and Adaptive L1-Norm Principal Component Analysis: Novel
Algorithms and Applications

Mayur Dhanaraj

Supervising Professor: Dr. Panos P. Markopoulos

L1-norm Principal-Component Analysis (L1-PCA) is known to attain remarkable resis-

tance against faulty/corrupted points among the processed data. However, computing L1-

PCA of “big data” with large number of measurements and/or dimensions may be com-

putationally impractical. This work proposes new algorithmic solutions for incremental

and adaptive L1-PCA. The first algorithm computes L1-PCA incrementally, processing

one measurement at a time, with very low computational and memory requirements; thus,

it is appropriate for big data and big streaming data applications. The second algorithm

combines the merits of the first one with additional ability to track changes in the nominal

signal subspace by revising the computed L1-PCA as new measurements arrive, demon-

strating both robustness against outliers and adaptivity to signal-subspace changes. The

proposed algorithms are evaluated in an array of experimental studies on subspace esti-

mation, video surveillance (foreground/background separation), image conditioning, and

direction-of-arrival (DoA) estimation.
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Chapter 1

Introduction

1.1 Principal-Component Analysis

Principal-Component Analysis (PCA) [1–3] is a cornerstone of data analysis that strives to

extract the most important low-rank component of a multivariate dataset. Formally, PCA

seeks to maximize the total variance of the projection of all original data onto a small

number of orthogonal directions (principal components) that define a lower dimensional

subspace. Over the past decades, PCA has found numerous applications in, e.g., signal

processing [4, 5], wireless communications [6, 7], machine learning [8, 9], pattern recogni-

tion [10], video/image processing [11], and biomedical signal processing [12–15].

In its standard formulation, PCA approximates data matrix X = [x1, x2, . . . , xN ] ∈ R
D×N

by another low-rank matrix product QST , where Q ∈ RD×K , S ∈ RN×K and K < d =

rank(X), so that the squared L2-norm of the approximation error is minimized. That is,

standard PCA is formulated as [16]

(QL2, SL2) = argmin
Q∈RD×K, S∈RN×K

‖X −QST ‖2F, (1.1)

where the L2-norm (or Frobenius norm) ‖ · ‖2F returns the sum of squared entries of its

matrix argument. Observing that for any given Q, S = XT Q minimizes the error in (1.1),
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we obtain the following formulation

QL2 = argmin
Q∈RD×K
QTQ=IK

‖X −QQT X‖2F . (1.2)

(1.2) is known as the L2 error minimization problem and can be equivalently rewritten as

QL2 = argmin
Q∈RD×K
QTQ=IK

N∑
i=1

‖xi −QQT xi‖
2
F,

where xi = [X]:,i is the i-th sample of X ∈ RD×N . I.e., (1.2) aims at finding the Q that

minimizes sum of the squared Frobenius norm error of each entry of the data matrix X and

its projection onto Q where Q ∈ RD×K and QTQ = IK , depicted in Figure 1.1.

We know that the squared Frobenius norm of a matrix M is equal to the trace of the

product of the transposed matrix with itself, i.e., ‖M‖2F = tr(MT M), where tr(·) returns the

sum of diagonal entries of its matrix argument. Therefore, (1.2) can be expanded as

QL2 = argmin
Q∈RD×K
QTQ=IK

‖X −QQT X‖2F = argmin
Q∈RD×K
QTQ=IK

tr
[
(X −QQTX)T (X −QQTX)

]
= argmin

Q∈RD×K
QTQ=IK

[
‖X‖2F − ‖Q

T X‖2F
]

= argmax
Q∈RD×K
QTQ=IK

‖QT X‖2F

That is, QL2 can equivalently be found by the projection maximization

QL2 = argmax
Q∈RD×K
QTQ=IK

QT X
2

F (1.3)
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Figure 1.1: Projection error minimization PCA.

and, accordingly, SL2 = XT QL2. Again, (1.3) can be rewritten as

QL2 = argmax
Q∈RD×K
QTQ=IK

N∑
i=1

QT xi
2

F

. I.e., (1.3) aims at finding the Q that maximizes the sum of squared Frobenius norm of

projection magnitude of each entry of the data matrix X onto Q and is depicted in Figure

1.2.

The solution to (1.1), (1.2) and (1.3), QL2, contains the K-dominant left singular-vectors

of X, obtained through standard Singular-Value Decomposition (SVD) [17]. Therefore,

standard PCA is both conceptually simple and computationally efficient, with cost O(NDmin(N,D)).
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Figure 1.2: Projection variance maximization PCA.

1.2 Outliers

In the big data era, real-world datasets often contain irregular or corrupted measurements

that lie far from the nominal data. Such measurements are commonly referred to as “out-

liers” [18] and may appear due to various causes such as intermittent sensor malfunctions,

errors in data transcription, transmission or labeling, deliberate jamming, or sporadic en-

vironmental changes among others. A brief summary of few applications of PCA and

possible causes of outliers in various domains is provided in Table 1.1.

Regretfully, standard PCA is known to be very fragile in the presence of outliers, even if

they appear in a small fraction of the processed data. The reason is that the L2-norm objec-

tive of PCA in (1.3), ‖QT X‖2F =
∑N

i=1 ‖Q
T xi‖

2
2 , places squared emphasis on each data point,
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Domain Sub-domain Application Possible cause of outliers

Computer vision and
image processing

Image processing

Glare and/or shadow specu-
larity removal

Varying illumination

Face recognition Error in data labeling and occlu-
sions

Video processing

Background/foreground ex-
traction; used in security
surveillance, object recogni-
tion, event detection, etc.

Foreground movement, occlu-
sions and varying illumination

Visual tracking; used in tar-
get localization, eye tracking
for disease diagnosis, etc.

Occlusions and varying illumi-
nation

Signal processing RADAR signal
processing

Direction of arrival (DoA)
estimation and tracking;
used in tracking enemy
aircraft, estimating the di-
rection of signal of interest
in wireless communication,
etc.

Deliberate jamming and spo-
radic environmental changes

Data analysis

Web-data analysis

Recommender systems;
used by e-shopping sites and
online streaming services
like Amazon and Netflix to
recommend products

Malicious or deliberate tamper-
ing and data mislabeling

Bioinformatics

DNA sequence analysis and
genome annotation; used in
medicine to predict genetic
disease and in forensics for
forensic identification and
paternity testing

Intermittent sensor malfunction
and labelling/transcription error

Machine learning

Classification Disease diagnosis and im-
age/text classification

Error in data labeling and sensor
malfunction

Dimensionality
reduction

Data visualization and cure
to curse of dimensionality

Acquisition error, sensor
malfunction and transcrip-
tion/transmission error

Table 1.1: Possible causes of outliers in few applications of interest.

therefore benefiting peripheral, outlying points. A simple line-fitting experiment demon-

strates the outlier-sensitivity of L2-PCA in Figure 1.3 and Figure 1.4. In Figure 1.3, there

are no outliers and hence the L2 principal-component (L2-PC) is very close to the maxi-

mum variance line, however in Figure 1.4, there are 2 outliers among the processed data

and therefore the L2-PC deviates away from the maximum variance line (depicting clear

attraction towards outlying points). Therefore, the use of traditional PCA in real-world



6

-10 0 10 20 30

-80

-60

-40

-20

0

20 Nominal data

L2-PC via SVD

Maximum variance line

Figure 1.3: Line-fitting for nominal data.

Figure 1.4: Line-fitting for outlier-corrupted data.

and/or big-data setting where outliers are common leads to unreliable solutions, creating a

need for robust PCA.
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The contribution of this thesis are as follows:

• Novel Algorithm for Incremental L1-norm Principal-Component Analysis.

• Novel Algorithm for Adaptive L1-norm Principal-Component Analysis.

• Numerical Studies on Outlier-Resistant Signal Subspace Estimation and Tracking.

• Experimental Studies on Image Conditioning, Specifically Glare/Shadow Artifacts

Removal from Face Images.

• Experimental Studies on Video Background/Foreground Extraction.

• Experimental Studies on Jammer-Resistant Direction-of-Arrival (DoA) Estimation

and Tracking.
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Chapter 2

Background Review

2.1 Robust Principal-Component Analysis

To counteract the impact of outliers in data analysis and processing, researchers have long

focused on developing “robust” subspace estimation alternatives. In the popular Robust

PCA (RPCA) line of research, the outlier-corrupted dataset is modeled as the summation

of a low-rank component that describes the nominal subspace and a sparse component that

captures the outliers [19–24]. At first, this RPCA problem formulation suggests a solution

where we seek to find the least-ranked low rank component (that best describes the nominal

subspace) and the most sparse component to model any outliers amongst processed data.

Mathematically, given X = L + S + n and λ, a constant, where L and S are unknowns,

L being the sought-after low rank component, S being the sparse component, and n – the

noise in the data matrix X, the RPCA optimization problem can be formulated as

(L, S) = argmin
L, S

L+S=X

rank(L) + λ | |S| |0, (2.1)

where the zero-norm | | · | |0 returns the number of non-zero entries in its matrix argument.

(2.1) is a non-convex problem that is NP-hard and no efficient solution exists in literature.
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However, (2.1) can be reformulated as a tractable convex optimization problem by replac-

ing the rank with nuclear norn | |L| |∗ and L0-norm by L1-norm, i.e.,

(L, S) = argmin
L, S

L+S=X

| |L| |∗ + λ | |S| |1, (2.2)

where nuclear-norm | | · | |∗ returns the sum of singular values of its matrix argument and

L1-norm | | · | |1 returns the sum of absolute entries of its matrix argument. It was shown

in [25] that (2.2) is indeed a convex optimization problem and provided enough conditions

to prove the same. Therefore, (2.2) can be solved using convex optimization techniques or

algorithms proposed in [19–24]. Once L and S are successfully extracted, what remains of

X is the noise n and can be neglected.

Another outlier-resistant minimum rank solution is proposed in [26] by solving a con-

vex optimization problem, namely nuclear-norm minimization. Authors in [27] propose

an efficient rotational invariant L1-norm PCA (R1-PCA) to perform robust PCA. Robust

subspace learning (RSL) in [28, 29] proposes algorithms that detect outliers and replace

them by neighboring nominal points, or places a weight on each data point to downgrade

outliers among the processed data. Fast and low complexity algorithms for robust PCA via

gradient descent are proposed in [30].

In another line of research, PCA is robustified by substituting the L2-norm in 1.1 by the

L1-norm [31–33]. To date, no exact solution exists for this L1-norm error-minimization

PCA, for general K ≥ 1. Another popular approach substitutes the L2-norm by the L1-

norm directly on (1.3), effectively removing the squared emphasis that standard PCA places

on each datum. This L1-projection-maximization approach is also known as L1-PCA, and
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is discussed in the next subsection.

2.2 L1-norm Principal-Component Analysis

L1-PCA [34–36] is another robust approach that performs outlier-resistant PCA and it is

mathematically formulated as

QL1 = argmax
Q∈RD×K
QTQ=IK

| |QT X| |1, (2.3)

where L1-norm ‖ · ‖1 returns the sum of absolute entries of its matrix argument. Contrary

to what is true for standard PCA in (1.1)-(1.3), L1-projection-maximization PCA and L1-

error-minimization PCA are not equivalent. Moreover, it has been shown [34] that the K

L1-PCs in (2.3) have to be jointly computed.

In [36], Kwak proposed an early approximate solver for (2.3) with complexity O(N2DK).

The solver of [36] first approximates the dominant L1-PC (K = 1) of X and then com-

putes the remaining K − 1 L1-PCs through a sequence of deflating null-space projections.

In [37], Nie et al. targeted the problem of computing jointly all K ≥ 1 L1-PCs of X and, for

this task, they proposed a “non-greedy” alternating-optimization algorithm of complexity

O(N2DK + NK3). A semi-definite programming (SDP) approach for (2.3) was proposed

by McCoy and Tropp in [38] with cost O(KN3.5log(1/ε) + KL(N2 + DN)) for desired

accuracy ε . Authors in [39] presented a low-cost/high-performance L1-PCA/SVD hybrid

model.

The exact solution to L1-PCA was delivered for the first time in [34] where authors

reformulated (2.3) as an equivalent combinatorial optimization problem over NK {±1}
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variables. The algorithms of [34] solve (2.3) exactly with complexity O(2NK), in general,

or O(NdK−K+1) when d = rank(X) is a constant with respect to N .

2.2.1 Exact Solution

The authors in [34] showed that if

Bopt = argmax
B∈{±1}N×K

| |XB| |∗, (2.4)

where nuclear norm ‖ · ‖∗ returns the sum of the singular values of its matrix argument,

then L1-PCA in (2.3) is solved by

QL1 = Φ(XBopt) (2.5)

where, for any tall matrix A ∈ Rm×n with SVD A SVD
= UΣn×nVT, Φ(A) = UVT . In addition,

[34] showed that | |XT QL1 | |1 = | |XBopt | |∗ and

Bopt = sgn
(
XT QL1

)
. (2.6)

Therefore L1-PCA in (2.3) can be cast as an equivalent combinatorial optimization prob-

lem over antipodal binary variables in {±1}. The first optimal algorithm in [34] performs

exhaustive search over the entire feasibility set of (2.4), {±1}N×K , to obtain a solution Bopt

with exponential complexity O(2NK). The second optimal algorithm in [34] first constructs

a polynomial-size subset of {±1}N×K , B, wherein a solution to (2.4) is proven to exist, then

it searches exhaustively among the elements B to obtain Bopt and, through an additional

SVD step in (2.5), returns the solution to L1-PCA in (2.3) with overall polynomial cost
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O(NdK−K+1). It is noticeable that the cost of both exact L1-PCA solvers may be imprac-

tical in big data applications (large N and/or d), and thus there was a need for algorithms

that perform L1-PCA efficiently at lower computation cost while retaining the robustness

of L1-norm against outliers.

To this end, Markopoulos et al. in [35] introduced a bit-flipping-based approximate

solver for (2.3), labeled L1-BF, with cost O(NDmin{N,D} + N2(K4 + DK2) + NDK3),

and showed that L1-BF attains very low (if any) performance degradation in the L1-PCA

metric, often outperforming its counterparts.

2.2.2 Efficient L1-PCA Through Bit-Flipping (L1-BF)

L1-BF is a state-of-the-art efficient algorithm for L1-PCA based on optimal single bit-

flipping iterations [35]. L1-BF has similar cost with standard PCA (i.e., SVD), it exhibits

sturdy outlier resistance, and it appears to outperform most of its counterparts in the L1-

PCA metric. The incremental and adaptive L1-PCA calculators presented in this work are

motivated by L1-BF, which is concisely presented below.

L1-BF commences at some initialization B(0) ∈ {±1}N×K (arbitrary or better – a more

intelligent (sv-sign) initialization as shown in [35] for faster convergence) and executes a

sequence of optimal single-bit-flipping iterations across which the metric in (2.4) monoton-

ically increases. Specifically, at each iteration, L1-BF examines all bits and recognizes the

single bit which, when flipped, will offer the highest increase to the metric of (2.4). That

is, at the t-th iteration, L1-BF finds

(n, k) =argmax
(m,l)∈{1,2,...,N}
×{1,2,...,K}

XB(t)−2 [B(t)]m,l xmeT
l,K


∗
, (2.7)
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Algorithm L1-BF

Input: X ∈ RD×N , init. B ∈ {±1}N×K , K ≤ rank(X),
1: B← BF(X,B,K)
2: (U, ΣK×K, V) ← SVD(XB)
3: Q← UVT

Output: (B̂, Q̂) ← (B,Q)

Function: B← BF(XD×N ,B,K)

1: ω← K | |X[B]:,1 | |2
2: while true (or terminate at NK iterations)
3: for m ∈ {1, 2, . . . , N}, l ∈ {1, 2, . . . ,K}
4: am,l ← ||XB − 2[B]m,lxmeT

l,K
| |∗

5: (n, k) ← argmaxm,l am,l

6: if ω < an,k
7: [B]n,k ← −[B]n,k , ω← an,k
8: else, break
9: Return B

Figure 2.1: Pseudocode of L1-BF algorithm.

where el,K denotes the l-th column of the size-K identity matrix IK and xm is the m-th

column of data matrix X. Thereafter, L1-BF flips the (n, k)-th bit of B(t) setting

B(t + 1) = B(t) − 2[B(t)]n,ken,NeT
k,K . (2.8)

Bit-flipping terminates at iteration t if the nuclear norm in (2.4) cannot further increase

by any single-bit flip. Upon termination L1-BF returns B̂ = B(t) as an approximation to

Bopt in (2.4) and Q̂ = Φ(XB(t)) as an approximation to QL1 in (2.3), in accordance with

(2.5). It was shown in [35] that the bit-flipping iterations converge, since the metric of

(2.4) (i) is upper bounded by its exact solution and (ii) increases monotonically across the

iterations. Henceforth, for compactness in notation, the L1-BF procedure is summarized

as (Q̂, B̂) = L1BF(X; B(0); K). A pseudocode for L1-BF [35] (code available in [40]) is

provided in Figure 2.1.

A state-of-the-art algorithm for L1-PCA of complex-valued data was recently presented
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in [41]. L1-PCA was used for outlier identification and elimination in [42]. It was also used

for robust image-fusion, face recognition, and dynamic video foreground/background ex-

traction in [43–50]. In [51,52] L1-PCA was used for DoA estimation. Authors in [53] pro-

posed an L1-PCA-based nearest-subspace classifier for radar-based indoor motion recog-

nition. L1-PCA-informed reduced-rank filtering for robust interference suppression was

presented in [50]. A method for iterative re-weighted L1-PCA was most recently presented

in [54]. The exact solution to L1-norm TUCKER-2 decomposition was presented in [55],

and an algorithm robust decomposition of 3-way tensors based on L1-norm was proposed

in [56].

2.3 Incremental and Adaptive Principal-Component Analysis

Modern big datasets often contain a very large number of measurements (data points), N ,

of high dimensionality (number of features), D. In such cases, batch-processing all mea-

surements in X may be of prohibitively high computational cost. In some cases, the dataset

to be processed is initially unavailable and data points arrive in a streaming fashion and/or

the sought-after underlying signal subspace may change over time (e.g., in image/video

processing [19, 57–59], dynamic face-ID [60], and DoA estimation/tracking [52, 61]). In-

cremental algorithm is used when the underlying signal-subspace is static and an adaptive

algorithm is used when the sought after signal-subspace changes over time. Incremental

processing algorithms are a subset of adaptive processing algorithms. An adaptive algo-

rithm can also be successfully used (as an incremental algorithm) in a static subspace con-

dition, whereas an incremental algorithm can only be used (as an adaptive algorithm) when

the underlying subspace does not change. In streaming data and dynamic signal-subspace
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applications, it is clear that appending every new data point to the previously collected data

matrix as a new column and recalculating PCA on the augmented data matrix from scratch

leads to unsustainable, continuously increasing complexity. Thus, batch PCA is rather in-

appropriate for processing big and/or streaming data. Similarly, the computational cost of

batch L1-PCA also becomes prohibitive as N and/or D increase.

To process big and/or streaming data in an efficient way, researchers have long focused

on incremental PCA solutions [62–67]. Thorough revies of incremental PCA algorithms

are offered in [57, 68–70]. Similar to the batch solution, incremental PCA calculators per-

form well on clean or benign-noise-corrupted data (e.g., data corrupted by zero-mean, small

variance additive white Gaussian noise). Conversely, incremental PCA calculators expe-

rience significant performance degradation when the processed data include any number

of outliers. This observation has motivated extensive documented research on corruption-

resistant incremental PCA.

Incremental algorithms inspired by the RPCA [19, 22, 29] problem formulation were

proposed in [23, 70–80]. The work in [81] is an online version of robust subspace learn-

ing (RSL) in [28]. Online RPCA (OR-PCA) in [73] operates on data arriving sequentially

by either accepting or rejecting new data points based on a stochastic model. Grassman-

nian robust adaptive subspace tracking algorithm (GRASTA) [82] operates on randomly

under-sampled data matrices leading to computational improvements, while accurately

tracking the underlying subspace and staying robust against sparse corruptions. The works

in [47–49] offer the first incremental L1-PCA algorithms in literature, tailored to perform

compressed-sensed domain video surveillance and visual tracking in videos.
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This thesis work presents a complete algorithmic framework for both incremental and

adaptive L1-PCA. The first algorithm computes L1-PCA incrementally, processing one

measurement at a time, with low computational and memory requirements. The second al-

gorithm revises the computed L1-PCA as new measurements arrive, demonstrating both ro-

bustness against outliers and adaptivity to signal-subspace changes and thus is appropriate

for subspace-tracking applications. The proposed algorithms are evaluated in an array of

experimental studies on subspace estimation, video surveillance (foreground/background

separation), image conditioning, and direction-of-arrival (DoA) estimation. The sequel

provides a comprehensive explanation along with pseudocodes for the proposed incremen-

tal and adaptive L1-PCA algorithms.
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Chapter 3

Proposed Algorithms

3.1 Proposed Algorithm for Incremental L1-PCA (L1-IPCA)

The proposed algorithm calculates incrementally the K L1-PCs of data matrix X = [x1, x2, . . . , xN ] ∈

RD×N as its columns arrive in a streaming fashion. In the case that all columns of X are

available beforehand, the proposed algorithm processes them one-by-one for complexity

savings.

To initialize, we first collect a small batch of n data points from X, say Y0 = [X]:,1:n ∈

RD×n with rank(Y0) ≥ K . Then, we run L1-BF iterations on Y0, with some initialization

B ∈ {±1}n×K , to obtain the first approximate L1-PCA solution (Q̂0, B̂0) = L1BF (Y0; B; K).

When a new data point x(in)i = [X]:,n+i arrives, i = 1, 2, . . . , N −n, we first pass it through

an L1-PC-informed reliability check. Specifically, similarly to [43], the L1-reliability of

x(in)i is defined as its angular proximity to the previously calculated L1-PCs Q̂i−1,

r
(
x(in)i ; Q̂i−1

)
=

Q̂T
i−1x(in)

i

2

2x(in)
i

2

2

. (3.1)

Based on the outlier resistance of L1-PCA, (3.1) constitutes a measure for determining

weather x(in)i is clean (i.e., close to the nominal data subspace), or outlying/corrupted.

If r(x(in)i ; Q̂i−1) ≤ τ, for some predetermined reliability threshold τ ∈ [0, 1) (practically
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set close to 1), then x(in)i is disregarded as a possible outlier and we maintain the previous

L1-PCA solution (Q̂i, B̂i) = (Q̂i−1, B̂i−1) and the previous memory batch Yi = Yi−1. If, on

the other hand, r(x(in)i ; Q̂i−1) > τ, then x(in)
i passes the reliability check and it is admitted for

processing; the i-th L1-PCA update (Q̂i, B̂i) is computed as follows. First, x(in)
i is appended

to Yi−1, forming the augmented memory batch

Ỹi−1 =
[
Yi−1, x(in)

i

]
∈ RD×(n+1). (3.2)

Then, motivated by the optimality condition in (2.6), we compute

B̃i−1 = sgn
(
ỸT

i−1Q̂i−1

)
∈ {±1}(n+1)×K, (3.3)

and use it as initialization for L1-BF iterations on Ỹi−1. At the end of the L1-BF iterations,

we obtain (
B̂i, Q̂i

)
= L1BF

(
Ỹi−1; B̂i−1; K

)
. (3.4)

We notice that the number of data points in memory increased from n in Yi−1 to n+1 in Ỹi.

In order to maintain limited storage and computational cost, we proceed with discarding

one of the points in Ỹi−1. Specifically, similar to [48], we discard the point with the mini-

mum L1-reliability (i.e., the least angular proximity to the newly updated L1-PC subspace)

as defined in (3.1). Formally, L1-IPCA identifies

jmin = argmin
j=1,2,...,n+1

r
( [

Ỹi−1
]

:, j ; Q̂i

)
, (3.5)
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Proposed Algorithm L1-IPCA

Input: Y, K , τ

1: B← arbitrary
2: (B,Q) ← L1BF(Y,B,K)
3: When x arrives,
4: (B,Q,Y) ← uL1BF(Y, x,Q,K, τ)

Output: (B̂, Q̂) ← (B,Q)

Function: (B,Q,Y, τ) ← uL1BF(Y, x,Q,K, τ)

1: r ← L1rel(x,Q)
2: if r > τ

3: Ỹ← [Y, x]
4: B← sgn(ỸTQ)
5: (B,Q) ← L1BF (Ỹ,B,K)
6: rj ← L1rel([Ỹ]:, j,Q), j = 1, . . . , n + 1
7: jmin ← argminj=1,...,n+1 rj
8: Y← [Ỹ]:, {1,...,n+1}\jmin

9: Return B, Q, Y

Function: r ← L1rel (x,Q)

1: r ←
| |QT x | |22
| |x | |22

2: Return r

Figure 3.1: Pseudocode of proposed L1-IPCA algorithm.

and discards the ( jmin)-th column of Ỹi−1, setting the i-th memory matrix

Yi =
[
Ỹi−1

]
:,{1,...,n+1}\ jmin

∈ RD×n. (3.6)

In view of the above, the proposed algorithm has multiple lines of defense against out-

liers. First, L1-IPCA starts with calculating the L1-PCs of a small original batch. These

L1-PCs, being robust against any outliers in the original batch, set a first measure of reli-

ability for future processed points. Then, the reliability of an incoming point is evaluated

by means of the previously computed L1-PCs, thus protecting the incremental L1-PCA

procedure against processing outliers. Finally, any point that passes the reliability check is

processed by the robust L1-BF procedure. A detailed description of the proposed L1-IPCA

is provided in Figure 3.1.
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Complexity. According to [35], L1-BF returns the K (approximate) L1-PCs of Ỹi ∈

RD×n with cost O(nD min{n,D} + n2K2(K2 + min{n,D})), for any i. Since i takes values

1, 2, . . . , N − n, the total cost of L1-IPCA is O(NnD min{n,D}+ Nn2K2(K2 + min{n,D})),

linear in N . That is, if n > D, then the cost is O(Nn2K2(K2 + D)); on the other hand, if

D ≥ n, the cost is O(Nn2(K4 + K2n + D)).

Comparison with [48]. At this point, it is worth noting that the pioneering work in [48]

also proposed L1-BF updates for incremental L1-PCA in compressed-sensed-domain video

surveillance. The proposed L1-IPCA algorithm differs from the one in [48] in three main

ways. First, instead of (3.3), the algorithm of [48] sets the L1-BF-initialization matrix to

B̃i =
[
B̂T

i−1, bexact
]T
, (3.7)

where

bexact = argmax
b∈{±1}K

Ỹi−1
[
B̂T

i−1, bexact
]T


∗
. (3.8)

To identify bexact, [48] first finds Ỹi−1B̂T
i−1 with cost O(KnD); then, for each of the 2K

candidate solutions in {±1}K , it performs an SVD of a D × K matrix. Thus, initializing

L1-BF as in [48] costs O(KnD + 2K DK2). The proposed initialization in (3.3) attains

similar performance and costs only O(KnD). Secondly, the memory-batch size-preserving

step removes the entry of the memory batch that lies farthest from the current L1-PCs by

identifying

jmin = argmin
1≤ j≤n

| |y j − Q̂Q̂T y j | |
2
F, (3.9)

where y j = [Yi−1]:, j and discards the ( jmin)-th column of Ỹi−1 to obtain Ỹi, by setting the



21

i-th memory matrix Yi =
[
Ỹi−1

]
:,{1,...,n}\ jmin

∈ RD×n before PC-update. However, L1-IPCA

discards the entry of Ỹi−1 with the least L1-reliability value to obtain Ỹi after PC-update.

A third important difference is that the proposed algorithm updates the L1-PCA solution

only on incoming points that pass the L1-PC-informed reliability check ( [48] processes

every incoming point). Thus, L1-IPCA has an additional line of defense against outliers in

the processed data.
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3.2 Proposed Algorithm for Adaptive L1-PCA (L1-APCA)

L1-IPCA presented above is tailored to cases that the sought-after signal subspace is con-

stant across all processed data. In many signal processing applications however it is desired

to track a dynamic signal subspace that changes across the collected data points (e.g., in

direction-of-arrival tracking). To this end, an algorithm for adaptive L1-PCA (L1-APCA),

derived by two main modifications of L1-IPCA is proposed as follows.

3.2.1 Modification 1: Reliability Threshold Adjustment

When the signal subspace changes significantly, new incoming points may fail the reliabil-

ity check and be inserted to the secondary memory or discarded. Assuming that outliers

appear rather sporadically, when multiple incoming points fail the reliability check one af-

ter the other, then this is a strong indication that the signal subspace has changed. Thus, in

L1-APCA we consider adjustable reliability threshold that decreases every time an incom-

ing point fails the reliability check and resets whenever an incoming point is admitted for

processing.

Specifically, let threshold τi denote the reliability threshold by which the i-th incoming

point x(in)
i is evaluated, with initialization τ1 = τ. If r

(
x(in)

i ; Q̂i−1

)
< τi and x(in)

i fails the

reliability check, then we reduce τi+1 = τiρ, for some predetermined decrease ratio ρ in

(0, 1]. Clearly, ρ = 1 corresponds to fixed threshold, as used in L1-IPCA. If x(in)
i passes the

reliability check, then τi+1 is reset to τ.
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3.2.2 Modification 2: Preserve Recent Measurements

Consider a significant change of the nominal signal subspace. Consider also that an in-

coming point x(in)
i from the new signal subspace passes the reliability check (possibly after

threshold reduction) and is inserted in Ỹi−1. x(in)
i will contribute to an update of the PCs

from Q̂i−1 to Q̂i. However, if most of the points in Ỹi−1 are drawn from the previous/old

signal subspace, then the new PCs in Q̂i may remain almost invariant. Thus, when the reli-

ability of points in memory Ỹi−1 is evaluated by means of Q̂i as in (3.5), x(in)
i may be found

to be the least coherent point and as such be discarded from Ỹi−1. Most certainly, such an

event would inhibit the subspace tracking process. Therefore, in L1-APCA, we revise steps

in (3.5)-(3.6) so that the q < n most recently added measurements are not dropped from

Ỹi−1. That is, the i-th memory matrix is defined as Yi =
[
Ỹi−1

]
:,{1,...,n+1}\ jmin

∈ RD×n where

jmin = argmin
j=1,2,...,n+1−q

r
( [

Ỹi−1
]

:, j ; Q̂i

)
. (3.10)

A detailed description of L1-APCA, including all above modifications, is provided in the

pseudocode of Figure 3.2.
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Proposed Algorithm L1-APCA

Input: Y, K , q, τmax, ρ

1: B← arbitrary, τ ← τmax
2: (B,Q) ← L1BF(Y,B,K)
3: When x arrives,
4: (B,Q,Y, τ) ← aL1BF(Y, x,Q,K, q, τmax, τ, ρ)

Output: (B̂, Q̂) ← (B,Q)

Function: (B,Q,Y, S, τ) ← aL1BF(Y, x, S,Q,K,m, q, τmax, τ, ρ)

1: r ← L1rel(x,Q)
2: if r > τ

3: Ỹ← [Y, x], τ ← τmax
4: B← sgn(ỸTQ)
5: (B,Q) ← L1BF (Ỹ,B,K)
6: rj ← L1rel([Ỹ]:, j,Q), j = 1, . . . , n + 1
7: jmin ← argminj=1,...,n+1−q rj
8: Y← [Ỹ]:, {1,...,n+1}\jmin

9: else
10: τ ← τρ

11: Return B, Q, Y, τ

Function: r ← L1rel (x,Q)

1: r ←
| |QT x | |22
| |x | |22

2: Return r

Figure 3.2: Pseudocode of proposed L1-APCA algorithm.
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Chapter 4

Numerical and Experimental Studies

4.1 Synthetic Data Analysis

4.1.1 Toy Example – Line-Fitting

The performance of the proposed L1-IPCA algorithm is first evaluated with a line-fitting

experiment. Consider z ∈ R(D=2)×(K=1), with ‖z‖2 = 1 and α = 10. N = 100 data points

are drawn fromN(02, αzzT ) to form matrix X ∈ R2×100. Every entry of X is corrupted with

zero-mean additive white Gaussian noise (AWGN) of variance 1 from N(0, 1); this results

in rank(X) = D = 2. To approximate z, L1-IPCA is run on X for K = 1, setting memory

batch-size n = 10 and L1-reliability threshold τ = 0.85. In Figure 4.1(a), the nominal data

points (black asterisks) and the L1-PC obtained by L1-IPCA after processing all N points

are plotted. In the same figure, the lines obtained by SVD, incremental singular-value-

decomposition (ISVD) [62], and GRASTA [82] are plotted. It is observed that all methods

perform similarly, approximating well the line defined by z (maximum-variance line).

Then, columns 5, 57 and 74 of X are corrupted by adding to them corruption from

N(02, βppT ), where β = 40α and p ∈ R2×1 is such that | |p| |2 = 1 and arccos(pT z) = 78◦.

L1-IPCA is run again on X for K = 1, keeping n = 10 and τ = 0.85. In Figure 4.1(b), the

L1-PC obtained by L1-IPCA after processing all N data points is plotted. In addition, the
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Figure 4.1: Line-fitting experiment. PC calculation on (a) clean/nominal and (b) outlier-corrupted data;
N = 100, D = 2, K = 1, n = 10, and τ = 0.85.
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lines obtained by SVD, ISVD [62], and GRASTA [82] are also plotted. This time, the L2-

norm based methods (SVD, ISVD) are significantly misled by the corrupted/outlying data.

GRASTA [82] displays some deviation. Interestingly, the proposed L1-IPCA algorithm

remains almost unaffected by the outliers and very close to the maximum-variance line of

z.

4.1.2 Incremental subspapce estimation with L1-IPCA

Next, the performance of L1-IPCA in intermediate incremental updates is evaluated. Specif-

ically, the normalized subspace error of q̂i (i.e., the approximate L1-PC after x(in)
i is pro-

cessed) is measured as

ei =
1
2
| |zzT − q̂iq̂T

i | |
2 ∈ [0, 1]. (4.1)

In this experiment, D = 5 and N = 200 points are drawn from the nominal distribution

N(05, αzzT ), for α = 55, | |z| |2 = 1, to form data matrix X ∈ R5×200. All entries of X

are also corrupted by AWGN from N(0, 1). Columns 7, 60, 125 and 170 of X are also

corrupted additively by outliers from N(05, βppT ) where β = 30α, p ∈ R5×1, | |p| |2 = 1,

and arccos(pT z) = 74.33◦. Setting n = 20, K = 1, and τ = 0.66, the proposed L1-IPCA

algorithm is run while evaluating ei for every i. The average value of {ei}
N−n
i=1 over 2000

independent realizations of nominal data points, noise, and outlier corruption is calculated.

In Figure 4.2, ei vs. update index i is plotted. Together with the proposed algorithm, the

performance of standard PCA (SVD), batch-calculated jointly on [X]:,1:i+n (i.e., for index

i, we carry out SVD on entire [X]:,1:i+n), L1-BF [50], also batch-calculated on [X]:,1:i+n,

ISVD [62], GRASTA [82,83], OR-PCA [73,74], the method of [49] and the method of [47]
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Figure 4.2: Subspace estimation experiment. Average normalized subspace error versus update index i;
D = 5, N = 200, K = 1; n = 20, τ = 0.66.

are also plotted1.

Clearly ISVD [62] and SVD start at a relatively high normalized error due to the pres-

ence of one outlier-corrupted point in [X]:,1:(n=20) (point [X:,7]). These methods exhibit

improvement as they process nominal points. However, when they encounter another out-

lier [X:,60], [X:,125] and [X:,170] (dashed vertical line), they deviate again from the nominal

1Open access MATLAB codes were found in the GitHub library [84]; the MATLAB implementation of ReProCS [72] was available
in [85]; and the MATLAB implementation of GRASTA [82] is available in [86].
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subspace. GRASTA subspace error starts at 0.3 and drops to 0.035, quickly reaching lower

error and remains at this level throughout the remaining updates, almost unaffected by the

outliers. L1-BF, the method of [49] and the method of [47] start at an error of about 0.08

and OR-PCA starts at an error close to 0.12. The method of [47] quickly drops to a lower

error because it finds the exact bit-flipping vector, bexact, when a new point arrives, through

exhaustive search. L1-BF and OR-PCA drop towards lower error but show some respon-

siveness to outliers. The method of [49] and the method of [47] also respond to outliers.

The method of [49] drops to low error after processing n = 20 nominal points since it

encountered an outlier and the method of [47] drops to low error very quickly after pro-

cessing 1 nominal point since it encountered an outlier. It is observed that the average

error of the method of [47] monotonically increases throughout all updates, owing to the

memory-batch size-preserving step (3.9). The proposed L1-IPCA algorithm starts from an

error of 0.08 due its initialization to the L1-PC of [X]:,1:(n=20) (obtained by L1-BF). During

the incremental updates, the proposed algorithm converges fast to very low subspace error

(close to 0) and remains there throughout all the updates, staying practically unaffected by

the outlier-corrupted points in X, thus outperforming every counterpart throughout all up-

dates. With its L1-reliability check feature, L1-IPCA strives to avoid processing outliers.

For the same experiment described above, the frequency with which [X];,i, i = n +1, . . . , N ,

passes the reliability check is plotted in Figure 4.3. Noticeably, for τ = 0.66 all nominal

points pass the L1-reliability check more that 70% of the time and is admitted for process-

ing. On the other hand, L1-IPCA manages to detect and discard the outliers [X:,60], [X:,125]

and [X:,170] more than 90% of the time.
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Figure 4.3: Subspace estimation experiment. Frequency of success versus update index i.
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Next, for the same study and same algorithms, the average computation time a each up-

date step is plotted in Figure 4.4 2. Clearly L1-BF (batch processing) has a higher compu-

tational cost, expectedly increasing across i; interestingly, when L1-BF processes outliers,

its computation effort increases as more bit-flipping iterations are needed for convergence.

Batch SVD has lower cost, also monotonically increasing with i. All incremental methods

need very low average computation time below 155µs, for every i. Interestingly, the cost

of L1-IPCA drops to 10µs for i = 60 − n, i = 125 − n and i = 170 − n, since 90% of the

time [X]:,60, [X]:,125 and [X]:,170 are not admitted for processing.

2Reported computation times are measured in MATLAB R2017a, run on a computer equipped with Intel(R) core(TM) i7-6700
processor 3.40GHz and 32GB RAM.
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4.1.3 Subspace tracking with L1-APCA

Next, we evaluate the performance of the proposed adaptive L1-PCA algorithm (L1-APCA)

for subspace tracking. We consider data matrix X ∈ R5×250, the first 130 columns of which

are drawn from N(05, αzzT ), where | |z| |2 = 1 and α is the same as in the study of Figure

4.2. The last 120 columns are drawn from N(05, αz′z′T ), where z′ ∈ R5×1, ‖z′‖2 = 1 and

arccos(z′T z) = 32.43◦. That is, the nominal subspace changes after the 130 first points

are processed. All entries of X are corrupted by AWGN from N(0, 1). Columns 7, 60

and 210 of X are once again corrupted additively by outliers from N(05, βppT ), where

| |p| |2 = 1 and β is the same as in the previous experiment. arccos(pT z) = 84.26◦ and

arccos(pT z′) = 77.53◦. We set L1-APCA parameters n = 20, τ = 0.8, threshold decrease

ratio ρ = 0.5, and number of maintained recent points q = 0.75n (i.e., at each adaptation

instance, we preserve in the memory matrix 75% of the points processed most recently).

In Figure 4.5 we plot the normalized subspace error calculated as ei = 1
2 | |zzT − q̂iq̂T

i | |
2 for

i ≤ 130 and ei = 1
2 | |z
′z′T − q̂iq̂T

i | |
2 for i > 130. Together with L1-APCA, we plot the per-

formance of SVD (batch), L1-BF (batch), ISVD, GRASTA, and OR-PCA. Noticeably the

L2-norm based methods deviate from the nominal subspace when they process outliers and

display slower response to subspace changes. GRASTA, OR-PCA and L1-BF are relatively

robust against outliers compared to the L2-norm based methods. L1-APCA outperforms

all counterparts, exhibiting fast convergence to the first nominal subspace (z), sturdy outlier

resistance, and fast adaptation to the second nominal subspace z′. GRASTA adapts slightly

faster than L1-APCA to the subspace change, converging though to higher subspace error.

In Figure 4.7, the frequency of success of [X]:,i, i = n + 1, . . . , N in the reliability check is
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plotted. This plot is best interpreted together with Figure 4.6, where the average value of

τi versus i is plotted. Clearly, for increased maximum threshold τmax = 0.8, most nomi-

nal points are tested with threshold close to 0.6 and exhibit frequency of success (i.e., any

point being able to participate in PC-adaptation) close to 0.65. Once again, both outliers

are identified and discarded more than 90% of the time. When an outlier is discarded, τi is

decreased to 35% of τmax . Expectedly, the first few points points from the new subspace

are often discarded; though, dropping the threshold with reduction factor ρ = 0.35 allows

for quick adaptation.

In Figure 4.8, the average update time for each algorithm versus i is plotted. Once

again, L1-BF is the most computationally expensive algorithm and its cost increases when

it processes outliers. On the other hand, all incremental methods update on average in less

than 0.2ms and again, L1-reliability success rates affect the execution time of the proposed

L1-APCA algorithm (similar to Figure 4.4).
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Figure 4.7: Subspace tracking experiment. Frequency of success versus adaptation index i.
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4.2 Image Conditioning

In this experiment, conditioning of face images is performed. An interesting proposition

was made by Barsi and Jacobs in [87] stating that images (convex-Lambertian) taken under

varying, distant illumination lie near an approximately nine-dimensional (low-dimensional)

subspace known as the harmonic-plane. This proposition motivates the glare/shadow ar-

tifacts removal experiment wherein we can approximate the image accurately by a low-

dimensional subspace. Specifically, we operate on images of a person’s face from the PICS

database [88] captured in varying illumination conditions that resulted in unwanted glare

and shadow artifacts. 14 images of a single individual captured under varying illumina-

tion are chosen and cropped to 200 × 200 pixels each. Each image is then vectorized and

stacked one next to the other as columns of data matrix X ∈ R40000×14. In this experiment,

the face characteristics form the sought-after static background whereas the illumination

variations (glare and shadow artifacts) constitute foreground outliers that we wish to elimi-

nate. We set n = 5 and τ = 0.95 and run the proposed L1-IPCA algorithm to obtain K = 5

approximate L1-PCs after processing all 14 images. We remove unwanted illumination

artifacts from each vectorized image xi = [X]:,i by projecting it on the span of calculated

L1-PCs, Q̂ as Q̂Q̂T xi. In Figure 4.9 we present (a) an original face instance with glare and

shadows, and the same image conditioned by (b) ISVD [62], (c) the method of [64], (d)

GRASTA [82], (e) PCP [19], (f) OR-PCA [73, 74], (g) the method of [49], (h) the method

of [47] and (i) L1-IPCA (proposed). We observe that ISVD [62] and the method of [64]

retain most glare. GRASTA [82], PCP [19], OR-PCA [73, 74], and the method of [49]

perform improved glare/shadow elimination. The proposed L1-IPCA algorithm and the
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(g) (h) (i)

Figure 4.9: Image conditioning experiment. (a) Original face image with glare and shadows. Image condi-
tioned with (b) ISVD [62], (c) the method of [64], (d) GRASTA [82], (e) PCP [19], (f) OR-PCA [73,74], (g)
the method of [49], (h) the method of [47] and (i) L1-IPCA (proposed).

method of [47] demonstrate superior image conditioning.

Next, the experiment is repeated on a different set of face images. 13 images of a differ-

ent face under varying illumination are obtained from the same PICS database. Each image

is cropped to 200 × 200 pixels and vectorized to form the data matrix X ∈ R40000×13. We
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Figure 4.10: Image conditioning experiment. (a) Original face image with glare and shadows. Image condi-
tioned with (b) ISVD [62], (c) the method of [64], (d) GRASTA [82], (e) PCP [19], (f) OR-PCA [73,74], (g)
the method of [49], (h) the method of [47] and (i) L1-IPCA (proposed).

re-run the experment by setting n = K = 4 and τ = 0.975. In Figure 4.10 we present (a)

an original face instance with glare and shadows, and the same image conditioned by (b)

ISVD [62], (c) the method of [64], (d) GRASTA [82], (e) PCP [19], (f) OR-PCA [73, 74],

(g) the method of [49], (h) the method of [47] and (i) L1-IPCA (proposed). We observe
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Figure 4.11: Time consumed for image conditioning

similar performance compared to the previous case, i.e, ISVD [62] and the method of [64]

retain most glare. PCP [19], OR-PCA [73, 74] perform improved glare/shadow elimina-

tion. GRASTA [82], the method of [49], the method of [47] and the proposed L1-IPCA

algorithm demonstrate superior image conditioning.

The time required by each method to compute the underlying subspace Q̂ (onto which

each image is projected for glare removal) is computed and plotted as a bar-graph in Figure

4.11. It is observed that, for processing the male face (K = 4; see blue bars), method

of [64], method of [47], method of [49], ISVD consume similarly higher time, followed by

PCP with lower time consumed. GRASTA and OR-PCA consume even lower time whereas

the proposed L1-IPCA algorithm consumes the least time. For processing the female face
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(K = 5; see yellow bars), each method consumes proportionally higher time. However

the proposed L1-IPCA algorithm displays strikingly fast performance across the board.

Therefore, the image conditioning experiment concludes that L1-IPCA performs superior

glare/shadow artifacts removal at strikingly fast speeds.
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4.3 Background/Foreground Separation in Video Sequences

Video foreground extraction is an important computer vision application used, e.g., in real-

time gesture/object identification, human-computer interaction, security surveillance, traf-

fic monitoring, and optical-motion capture [89, 90]. The background of each frame forms

the static nominal subspace while moving foreground components (e.g., people and vehi-

cles) constitute intermittent outliers. The foreground components of the video sequence

are typically extracted by first estimating the underlying background of the video and then

subtracting it from the original frame. For this experiment, we use a surveillance video

recorded at a shopping center in Portugal, available in the standard CAVIAR database [91].

The video consists of N = 474 frames of size 202 by 269 pixels. Video processing is

carried out as follows. We cut the video so that last 3 frames in Y(0) contain foreground

movement (man), vectorize each video frame and arrange them as columns of data matrix

X ∈ R54338×474. We set n = 20 and τ = 0.9 and apply L1-IPCA to compute the K = 5

L1-PCs of the video sequence Q̂ ∈ R54338×5. The background of the i-th frame xi = [X]:,i is

obtained by projecting it onto the computed K L1-PCs as x(back)
i = Q̂Q̂T xi. Then, the fore-

ground frame is obtained through background subtraction; that is x(fore)
i = xi − x(back)

i . In

Figure4.12a, we present the 135-th frame of the processed video sequence. In addition, in

Figure 4.12 we present the background extracted by (b) ISVD [62], (c) GRASTA [82], (d)

PCP [19], (e) Online-RPCA via stochiastic optimization (OR-PCA) [74], (f) RPCA [29],

(g) ReProCS [72], and (h) L1-IPCA (proposed). Foreground extracted by (i) ISVD [62],

(j) GRASTA [82], (k) PCP [19], (l) OR-PCA [74], (m) RPCA [29], (n) ReProCS [72], and

(o) L1-IPCA (proposed). We observe that background computed by ISVD [62] exhibits a
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Figure 4.12: Video processing experiment – video 1. (a) Original frame. Background extracted by (b)
ISVD [62], (c) GRASTA [82], (d) PCP [19], (e) OR-PCA [74], (f) RPCA [29], (g) ReProCS [72], (h) method
of [47], and (i) L1-IPCA (proposed). Foreground extracted by (j) ISVD [62], (k) GRASTA [82], (l) PCP [19],
(m) OR-PCA [74], (n) RPCA [29], (o) ReProCS [72], (p) method of [47], and (q) L1-IPCA (proposed).
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non-negligible “ghostly” appearance of the walking man, whose blurred/inaccurate figure

also appears in the foreground. GRASTA [82], PCP [19], and RPCA [29] exhibit similar

performance with the smudged appearance of the man in the computed background. OR-

PCA [74] performs clearly better than the previous methods. The method of [47] extracts

a clean background but "ghostly" appearances of the ladies in the last frame are seen on

the extracted foreground. The proposed L1-IPCA algorithm, together with ReProCS [72],

demonstrate similarly high performance, obtaining the clean background and a foreground

with a well defined outline of the man, together with his shadow.

Next, we obtain a surveillance video of the entrance lobby at INRIA labs in France

from the same CAVIAR database [91]. We keep only the first N = 295 frames, vectorize

them, and arrange them as columns of data matrix X ∈ R54338×295. We set n = 14 and

τ = 0.9 and repeat the experiment to obtain the background and foreground of the 80-th

frame of the video using K = 3 PCs. In Figure 4.13, we plot the performance of ISVD [62],

GRASTA [82], PCP [19], OR-PCA [74], RPCA [29] and ReProCS [72] (background and

extracted foreground). We observe that ISVD [62], GRASTA [82], PCP [19], and RPCA

[29] demonstrate again similar performance as before –i.e., ghostly appearance of the man

in the extracted background and his blurred figure in the foreground. The method of [47]

extracts a clean background but "ghostly" appearances of the foreground movement in the

last frame is seen on the extracted foreground. On the other hand, OR-PCA [74], ReProCS

[72], and L1-IPCA obtain similarly clean background and well-defined foreground.

Finally, we operate on the “Curtain Video” [85]. We collect N = 103 frames of size 45

by 46 pixels, vectorize them, and arrange them as columns of data matrix X ∈ R2520×103.
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Figure 4.13: Video processing experiment – video 2. (a) Original frame. Background extracted by (b)
ISVD [62], (c) GRASTA [82], (d) PCP [19], (e) OR-PCA [74], (f) RPCA [29], (g) ReProCS [72], (h) method
of [47], and (i) L1-IPCA (proposed). Foreground extracted by (j) ISVD [62], (k) GRASTA [82], (l) PCP [19],
(m) OR-PCA [74], (n) RPCA [29], (o) ReProCS [72], (p) method of [47], and (q) L1-IPCA (proposed).
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We set n = 5 and τ = 0.999 and repeat the above experiment, for K = 2. In Figure 4.14,

we present the foreground and background of the 50-th frame as obtained by ISVD [62],

GRASTA [82], PCP [19], OR-PCA [74], RPCA [29], and ReProCS [72]. We notice that

this experiment poses some particular challenges: the man’s shirt matches the background

curtain color, the man (foreground) is stationary in many frames, and the curtain in the

background of this video moves continuously leading to slow background changes. In

Figure 4.14, we observe that the background frames obtained by ISVD [62], GRASTA [82],

PCP [19], OR-PCA [74], and RPCA [29] retain the majority of the foreground (man); at

the same time, the corresponding foreground frames do not capture the man clearly. the

method of [47] has slight reminiscence of the man in the foreground and traces of the

moving (background) curtain in its extracted foreground. On the other hand, ReProCS [72]

obtains a cleaner background with slight presence of the man, while the proposed L1-IPCA

algorithm obtains an entirely clean background. The foreground extracted by L1-IPCA

contains some traces of the moving (background) curtain, which are not present in the

foreground of ReProCS [72].

4.4 Direction-of-Arrival Estimation and Tracking

Going forward, an experiment on direction-of-arrival (DoA) estimation and tracking is

performed. We consider uniform linear antenna array (ULA) of D = 4 antenna elements

that capture N = 70 snapshots of an incoming signal of interest that arrives from angle

φ = −40◦ with respect to the broadside. The i-th down-converted and pulse-matched



46

snapshot takes the form

xi = bis(φ) + ni, i = 1, 2, . . . , 70 (4.2)

where s(φ) = [1, e− jπsin(φ), . . . , e− jπsin(φ)(D−1)]T is the array-response vector, bi is i-th sym-

bol (accounting for transmission energy and channel attenuation) with bi ∈ {±
√
α}, α =

10, and ni is complex AWGN from CN(04, I4). The 70 snapshots are stacked as the

columns of data matrix X = [x1, x2, . . . , xN ] ∈ C
4×70. We assume that snapshots 5 and

55 are unexpectedly corrupted by a jamming signal from DoA φo = 10◦, carrying a symbol

from {±
√
β}, β = 60.

To estimate φ, the receiver operates as follows. First, X is realified as X̃ = [<{X},={X}]T ∈

R8×, where <{·} and ={·} return the real and imaginary parts of their arguments respec-

tively. Next, we estimate the K = 1 PC of X by L1-IPCA with parameters n = 20, and

τ = 0.9. For approximate L1-PC q̂i, we compute the L1-PCA-based MUSIC-type [52]

spectrum

Pi(θ) =
1

‖ (I8 − q̂iq̂T
i )s̃(θ)‖2

, (4.3)

for θ in Θ = {−π2 ,
−π
2 + ∆, . . . , π2 − ∆}, for arbitrarily small step ∆ > 0, and s̃(θ) =

[<{s(θ)}T,={s(θ)}T ]T . Similar to [52], the i-th estimate of φ is given by

φ̂i = argmax
θ∈Θ

Pi(θ). (4.4)

We carry out DoA estimation using the PC obtained by batch SVD, ISVD, GRASTA,

and OR-PCA. In Figure 4.15, we plot an instance of P70(θ) for all 5 methods. We observe
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that the L2-based methods SVD and ISVD are misled by the jamming signal and point

towards φo = 10◦. On the other hand, the robust GRASTA, OR-PCA, and L1-APCA (most

emphatically) point towards the correct DoA φ = −40◦.

Next, by keeping all the parameters the same, we set α = 1 and β = 33 (leading to SNR

(source) = 0 dB and SNR (jammer) = 15dB) and re-run the DoA estimation experiment to

plot in Figure 4.16 an instance of P70(θ) for all 5 methods. Again, we observe that SVD

and ISVD are misled by the jammer. (they have two peaks, one at the DoA of source and

the other at DoA of jammer, however the peak at jammer is higher and hence considered

more important). GRASTA, OR-PCA and L1-IPCA point correctly at the source DoA.

In the sequel, we increase N = 200 and steer our focus towards DoA tracking. We

consider that in the first 90 snapshots the signal of interest arrives from DoA φ1 = −40◦. In

the latter 110 snapshots, the signal of interest arrives from DoA φ2 = −35◦ (signal subspace

change). We consider a jammer at φo = −60◦ corrupting snapshots 5, 55, and 135. We run

L1-APCA with parameters n = 20, τ = 0.9, ρ = 0.8, and q = 0.9n to track the DoA of the

signal of interest. In Figure 4.17, we plot the root-mean-squared-error (RMSE) (average

over 2000 independent realizations) versus adaptation index i, calculated as

RMSEi =

√√√
1

2000

2000∑
m=1

|φ̂
(m)
i − φ|

2, (4.5)

where φ̂(m)i is the DoA estimation at the i-th adaptation of the m-th realization. In (4.5),

φ = φ1 for i ≤ 90 and φ = φ2 for i > 90. We observe that SVD and ISVD are mislead by

the jammers and attain high RMSE for every i. GRASTA, OR-PCA, and the proposed L1-

APCA exhibit both robustness against jamming and the ability to adapt quickly to changes
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of the signal DoA. L1-APCA attains consistently superior RMSE performance.
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Figure 4.14: Video processing experiment – video 3. (a) Original frame. Background extracted by (b)
ISVD [62], (c) GRASTA [82], (d) PCP [19], (e) OR-PCA [74], (f) RPCA [29], (g) ReProCS [72], (h) method
of [47], and (i) L1-IPCA (proposed). Foreground extracted by (j) ISVD [62], (k) GRASTA [82], (l) PCP [19],
(m) OR-PCA [74], (n) RPCA [29], (o) ReProCS [72], (p) method of [47], and (q) L1-IPCA (proposed).
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Figure 4.15: DoA estimation experiment. DoA estimation spectrum P70(θ). N = 70, D = 4, K = 1.
φ = −40◦, φo = 10◦, α = 10, β = 60. n = 20, τ = 0.9. Jamming at x5 and x55.
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Chapter 5

Quality of Initialization and Parameter Tuning

The quality of initialization memory batch Y0 is important as the reliability of incoming

data points is evaluated based on the PCs obtained from Y0. If Y0 is sufficiently outlier-

corrupted, the the PCs obtained Q̂0 might be incorrect and thus new nominal data points

will be discarded due to their low reliability with respect to such a Q̂0. In L1-APCA,

because of the threshold decrease ratio ρ and q most recent measurements preserved in

memory batch, the algorithm recovers from an incorrect Q̂0 as it processes new nominal

data points. L1-IPCA however, does now have such a mechanism and thus a sufficiently

clean memory batch initialization is required.

In the sequel we say a few things about tuning important parameters of our algorithms.

In L1-IPCA: the memory batch size n could be chosen to be sufficiently large such that the

ratio of number of nominal points to number of outlier-corrupted points is high (ideally,

close to 1). Threshold τ could be chosen close to 1. E.g., in video/image processing

experiments we set τ to a value close to 1 and obtain good performance. However, if the

initial memory batch is not sufficiently clean and/or the noise in the data measurements is

high, then a high τ would lead to incorrect solutions. If the confidence of the initial solution

Q̂0 is less or the noise is high, then a low τ would be a correct initialization.
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In L1-APCA: n is chosen as in L1-IPCA. τmax could be set close to 1. If Y0 contains

many corrupted measurements, the threshold drops due to the use of threshold degradation.

The threshold decrease ration ρ could be set to a lower value if the expected change in sub-

space is drastic and/or if faster adaptation is required during subspace change. However,

if ρ is set too small, then when an outlier occurs, the threshold value used for reliability

check will be lowered enough for any successive outliers that occur in sequence to enter the

memory batch and thus lead to incorrect solutions. E.g., in our synthetic data experiments,

we set ρ = 0.35 (low value) as the angle of subspace change is 32.43◦ and because suc-

cessive outliers do not occur. Number of recent points protected, q could generally be set

to about 25% - 75% of n for good performance. Greater q means more number of recent

points preserved in memory batch, leading to faster adaptation during subspace change.

However, if a burst of outliers (multiple outliers in sequence) occur, then a large q will lead

to incorrect solutions and in such environments, we could use a mid-range/low q.
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Chapter 6

Conclusions

The use of traditional batch L1-PCA algorithms may be prohibitive in big-data (large N) or

heavy-data (large D) applications due to their high computational costs, although they are

robust against outliers. Moreover, in streaming/tracking applications, computing L1-PCs

from scratch at the arrival of every new data-point is unfeasible, again due to increasing

cost. The algorithms presented in this thesis aim at performing L1-PCA in such scenarios

and thus may connect the dots between fast, low complexity and outlier-resistant L1-PCA

in “big-data” or “big streaming-data” applications.

An algorithmic framework for incremental and adaptive L1-PCA is proposed. The first

algorithm (L1-IPCA) updates L1-PCA incrementally with low computational cost (linear

in the number of data points), maintaining sturdy resistance against outliers. Its efficacy is

verified by experimental studies on subspace estimation on synthetic data, image condition-

ing, video processing, and DoA estimation. The second algorithm (L1-APCA), deriving by

L1-IPCA after two modifications, is capable of adapting the L1-PCA solution to changes in

the nominal signal subspace, while remaining robust against outliers. Its potency is verified

by experimental studies on dynamic subspace tracking on synthetic data, image condition-

ing, video processing, and DoA tracking. Additionally, our experimental studies verify
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the computational efficiency, outlier resistance, and updation/adaptation capabilities of the

proposed algorithms compared to state-of-the-art alternatives.
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Chapter 7

Future Work

The proposed algorithms operate on a constant-size memory batch of n columns. This leads

to lower computational cost as only n points are processed at any i-th iteration, no matter

how big i might be. Going further, PC adaptation/update could be performed using only

the incoming entry x(in) and the previous solution Q̂i−1.

The second algorithm, i.e., L1-APCA can benefit from the following feature – Use of

secondary memory: As explained earlier, the proposed algorithms evaluate the reliability

of each incoming point by measuring its angular proximity to the currently computed L1-

PCs. If this proximity is below a threshold τ, then the incoming point is disregarded as a

possible outlier. In the case of dynamically changing signal subspace, a data point from

the new/changed signal subspace may seem as an outlier when evaluated by the L1-PCs

computed on data from the old signal subspace. The proposed algorithms would likely

disregard such a point as outlier (although threshold degradation/adjustment is used in L1-

APCA would eventually allow data points from the new signal-subspace into the memory

batch for PC-adaptation, the first few points from a new signal subspace are discarded most

of the time), missing the opportunity of using it to track the subspace change. A new

version L1-APCA algorithm may keep a secondary memory of limited size m > 0 where
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it stores incoming points that fail the L1-reliability check and use it again for processing

when the threshold value is suitable degraded. The use of secondary memory in L1-APCA

would certainly speed up the subspace adaptation whenever the signal-subspace changes.

In both L1-IPCA and L1-APCA, a forgetting factor could be used to forget older mea-

surements in the memory batch. Such a forgetting factor could save our algorithms from

incorrect solutions due to a bad initial memory batch (that may contain many outliers). A

weighting factor could be used to weight the measurements in memory batch so that the

contribution of each measurement for PC-update/adaptation depends on its weight. Older

measurements could be weighted less (i.e., forgotten by some forgetting factor) compared

to newer ones.
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