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Abstract

Development of 5G technology and Internet of Things (IoT) devices has resulted in

higher bandwidth requirements leading to increased scarcity of wireless spectrum.

Cognitive Radio Networks (CRNs) provide an efficient solution to this problem. In

CRNs, multiple secondary users share the spectrum band that is allocated to a pri-

mary network. This spectrum sharing of the primary spectrum band is achieved in

this work by using an underlay scheme. In this scheme, the Signal to Interference plus

Noise Ratio (SINR) caused to the primary due to communication between secondary

users is kept below a threshold level.

In this work the CRNs perform cross-layer optimization by learning the parameters

from the physical and the network layer so as to improve the end-to-end quality of

experience for video traffic. The developed system meets the design goal by using a

Deep Q-Network (DQN) to choose the next hop for transmitting based on the delay

seen at each router, while maintaining SINR below threshold set by primary channel.

A fully connected feed-forward Multilayer Perceptron (MLP) is used by secondary

users to approximate the action value function. The action value comprises of SINR

to the primary user (at the physical layer) and next hop to the routers for each

packet (at the network layer). The reward to this neural network is Mean Opinion

Score (MOS) for video traffic which depends on the packet loss rate and the bitrate

used for transmission. As compared to the implementation of DQN learning at the

physical layer only, this system provides 30% increase in the video quality for routers

with small queue lengths and also achieves a balanced load on a network with routers

with unequal service rates.
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Chapter 1

Introduction

1.1 Motivation

With the increasing use of multimedia devices to transfer data, the wireless spectrum

assigned for different services is getting exhausted. As the 5G technology needs to

support much higher data rates, it requires more bandwidth. Also the development of

Internet of Things (IOT) applications have led to higher demand of spectrum. This

has lead to increased scarcity in the available wireless spectrum, [4].

A survey on spectrum occupancy measurements done in [5] has shown that most

of the licensed bands allocated for different services are underutilized by the primary

network incumbent to the spectrum band. Cognitive Radio Networks (CRNs) can

provide an efficient solution to this spectrum scarcity problem by utilizing unused

spectrum band and enabling dynamic sharing of underutilized portions of the spec-

trum.

CRNs is a technology that enables multiple users to share the same licensed wire-

less spectrum. In the CRN paradigm, the primary network is the owner of a licensed

spectrum band while the secondary users communicate among themselves by shar-

ing this primary channel in such a way that the primary user’s communication is

not disrupted. A cognitive radio is an intelligent radio that can monitor, sense and

detect the surrounding wireless network environment and dynamically alter its own

1



CHAPTER 1. INTRODUCTION

parameters in order to adapt. A CRN is a network of cognitive radios (secondary

users).

1.2 Background

The two primary functions of CRNs are efficient utilization of the spectrum and a

reliable communication over the secondary network [6].

Various spectrum sharing techniques have been studied in [7] to achieve efficient

utilization of the primary channel. The underlay approach is one of the Dynamic

Spectrum Access (DSA) techniques which enables co-existence of primary and sec-

ondary users on the same spectrum band. In this approach, the secondary users

transmit on the same channel that is being used by the primary network by main-

taining the Signal to Interference plus Noise Ratio (SINR) caused to the primary

users below a threshold limit. This limit on SINR is imposed by the primary users.

This enables a more efficient utilization of spectrum by both primary and secondary

users.

Traditionally, reliability of communication over the secondary network has been

measured using objective metrics of Quality of Service (QoS). These metrics are

system-centric where performance variables like Bit Error Rate (BER), delays, jitter

are used to calculate the quality of a service at the receiver end. Another approach

that is used for performance assessment is the subjective metric of Quality of Ex-

perience (QoE). These metrics keep the end user as the center of decision making

process in the system design. Mean Opinion Score (MOS) is a QoE metric that is

widely used for measuring the quality of video transmissions over a network. MOS

indicates the end-user perception of the video quality on the scale of 1(bad) to 5 (very

good). Traditionally, a group of end-users would rate the video quality based on their

perception and an average of all the ratings would be the MOS for transmitted video.

To avoid high cost and offline nature of such tests, objective quality models are devel-

2



CHAPTER 1. INTRODUCTION

oped to predict QoE based on objective QoS parameters [8]. This is an indirect way

of predicting QoE while the video is being transmitted. Since the cognitive radios

operate in a dynamic environment, such objective quality models to predict QoE are

useful to learn the effect of actions taken by secondary users on the transmitted video

quality.

1.2.1 Cognition in Secondary Users

Cognitive radios usually implement a cognition cycle for effectively sharing the pri-

mary spectrum for communication while maintaining the QoE for end user. This

cognitive cycle is an observe-learn-decide loop implemented in the secondary users as

shown in Fig. 1.1.

Figure 1.1: Cognitive cycle [1]

Secondary users sense the surrounding wireless environment. Parameters that are

observed in the sensed environment depend upon the DSA technique being used for

spectrum sharing. For underlay DSA, interference caused to the primary users is

observed on the primary channel. This considers the environmental parameter from

the physical layer of Open System Interconnection (OSI) model. Also in order to

3



CHAPTER 1. INTRODUCTION

ensure QoE for transmission over secondary network, parameters like delays, BER,

etc., affecting the communication for secondary users can be observed from other

layers of the OSI.

The secondary user needs to take actions to adjust their own parameters in or-

der to adapt. For underlay DSA, where interference to the primary users needs to

be maintained below the threshold level, secondary users take decisions of changing

their transmission rate (own parameter) as per the interference in surrounding envi-

ronment (observed environmental variable). Updating the transmission rate affects

transmission power, thereby changing the SINR. The secondary users learn from en-

vironmental observations and past decisions and observations. This then helps in

taking decision of updating their own parameters.

1.2.2 Artificial Neural Network

The secondary users implement cognitive cycle to update their parameters in order

to adapt as show in Fig. 1.1. This cycle can be implemented using a reinforcement

learning approach. Artificial neural networks have been useful in implementing the

reinforcement learning for environments having multiple learning agents [9].

An artificial neural network is characterized by input layer and the output layer.

The output is generated by the Neural Network (NN) by processing the input through

a number of hidden layers of neurons. A neuron is the basic building block of the NN

which performs weighted addition of the input and applies an activation function. A

typical NN is shown in Fig. 1.2. Each circle in neural network represents a single

neuron. These neurons are arranged in layers. First layer is the input layer which

receives input as the observations made in sensed environment and past observations

and decisions. The output of a layer in neural network is provided as input to the

following layers, thereby generating the output.

The implementation of a single neuron is shown in Fig. 1.3. This single neuron

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Deep neural network

is also called ’Perceptron’. As shown in Fig. 1.3, the neuron can have m inputs

{x1, x2,...xm}. A neuron is connected to the input layer with weights {w1, w2,...wm}.

The output of neuron ŷ is calculated by performing weighted addition of the inputs

and applying activation function φ on the sum. This is shown in equation 1.1

ŷ = φ

(
m∑
i=1

wixi

)
(1.1)

The activation function used for Multi Layer Perceptron (MLP) is a sigmoid function

given by equation 1.2

φ (z) =
1

1 + e−z
(1.2)

This optimal output value is obtained in the artificial neural network by back

propagation of the error. The error is calculated as the difference between expected

output and obtained output. The back propagation of error is done by gradient

descent algorithm. The weights are updated after back propagation as shown in

equation 1.3,

w(i)
m = w(i)

m − αdw(i)
m (1.3)

where α is the learning rate and dw
(i)
m = x

(i)
m ∗ dz(i) where x

(i)
m is the mth input and dz

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Single layer feed-forward neural network

is the derivative of the activation function of the neuron. For the sigmoid function

used in this system (equation 1.2), this derivative is,

dz = φ (z) (1− φ (z))

The output value is the optimal parameter value of the secondary user for the ob-

served environmental variables. For an underlay DSA technique for spectrum sharing,

this optimal parameter value is the transmit rate for corresponding target SINR for

secondary users.

1.2.3 Protocol Layers

Other layers that can be considered for communication over the secondary network

are represented by the OSI protocol. The OSI model is a conceptual model that

characterizes and standardizes the communication functions of a telecommunication

system without regard to its underlying internal structure and technology. Its goal is

the interoperability of diverse communication systems with standard protocols [10].

The model partitions a communication system into abstraction layers as shown in

6



CHAPTER 1. INTRODUCTION

Figure 1.4: OSI Layers

Fig. 1.4.

The data to be transmitted is composed as a message at the topmost layer (Ap-

plication layer). This message is then passed through the underlying layers to the

physical layer. This is done by encapsulation of information at each layer by adding

header information specific to that layer. At the physical layer bits in the information

are sent over the physical medium (wireless environment in the CRNs). The function

of each layer is explained in the Fig. 1.4.

For a communication system over a secondary network sharing the spectrum band

with primary user, spectrum sensing implemented over only the physical layer does

not consider other network protocol layer magnitudes that can introduce error in the

transmission and hence effect the video quality (QoE). A cross layer approach for

resource allocation can prove to be efficient in these case. In a cross layer approach,

secondary users observe environmental parameters from other layers of OSI model

and take decisions to adapt its own parameters across these observed OSI layers.

7



CHAPTER 1. INTRODUCTION

1.2.4 Queuing Theory

In this work, cross-layer resource allocation is performed over physical layer and

network layer. For underlay DSA scheme, SINR caused to the primary network

is kept below threshold by allocating optimal transmit rate for secondary users at

the physical layer. Optimal routing of packets is considered at the network layer.

The routers store and forward the packets received from the secondary user to the

destination node. Queues are used for storing the packets arriving at the router.

Model of a queue is described by Kendall’s notation as A/S/c/K where A is the

arrival process, S is the service time distribution, c is the number of servers and K

is the size of queue. We use M/M/1 queue model for the intermediate routers. In

the M/M/1 queue, arrival of packets follows Poisson process, service time follows an

exponential distribution and a single server serves packets in the queue. Fig. 1.5

shows a M/M/1 queue.

Figure 1.5: M/M/1/K queue

The queue utilization is given by ρ = λ
µ

where λ is the packet arrival rate and µ is

the service rate. If ρ > 1, then the arrival rate of packets is greater than the service

rate of queue indicating an over utilized queue. Such system is not stable as in this

case the queue continues to grow until the congestion point. For a stable system, the

queue utilization should satisfy ρ ≤ 1.

8



CHAPTER 1. INTRODUCTION

1.3 Thesis Contributions

The main contribution of this work is to research a cross-layer (physical and network

layers) scheme for resource allocation in underlay DSA with the goal to improve the

end-to-end quality of experience QoE for video traffic.

In this thesis we develop a system to use the knowledge obtained from the network

layer variables along with physical layer variables to perform resource allocation in

the transmission of video traffic over the secondary network. Multi-agent Deep Q-

networks (DQN) model uses the artificial neural network in secondary users to perform

reinforcement learning. The DQN based learning framework is used to implement

reinforcement learning in secondary users to consider routing delays at the network

layer in order to determine next hop of packets along with maintaining SINR caused

to the primary network below the threshold level. Our simulation results show that

the developed system outperforms the previous system that uses DQN to find the

optimal SINR by considering only physical layer variables.

9



Chapter 2

Related Work

Cognitive Radios being a promising technology, there is a significant volume of on-

going research in this field. Related work on CRNs is discussed in the following

sections.

2.1 Spectrum Sharing

The key aspect of CRNs is that the primary spectrum band needs to be shared

dynamically between multiple secondary users. DSA utilizes unused spectrum bands

in the spatial and/or temporal domain, called spectrum holes, for communication

over the secondary network. There are three DSA models : interweave, overlay and

underlay.

2.1.1 Interweave Dynamic Spectrum Access

In Interweave DSA, also called Opportunistic Spectrum Access (OSA), SUs are con-

strained to opportunistically utilize the spectrum holes or white spaces in the tem-

poral, spatial, and/or frequency domain [11]. The key components of this scheme

are spectrum sensing, spectrum access and spectrum handoff. The secondary user

senses the primary channel to determine unused spectrum (spectrum holes). When

an unused spectrum is sensed, the user dynamically accesses the primary channel.

If a primary signal appears on the channel, secondary user needs to wait until the

10



CHAPTER 2. RELATED WORK

Figure 2.1: Interweave Dynamic Spectrum Access

channel is free. In this case, the user can decide to transmit to another channel if it

is available. This is done by performing a spectrum handoff.

Fig. 2.1 shows an overlay scheme of spectrum access of the primary spectrum

band that has two channels for transmission (Channel 1 and Channel 2). At time

t1, the secondary user (SU) senses that the primary spectrum is not being used by

primary users (PU1 and PU2). This indicates a spectrum hole, so the SU starts

transmission on Channel 1. At time t2, PU1 starts using Channel 1, thus, forcing

SU to stop the transmission. Subsequently, the SU waits for PU1 to complete the

communication until time t3 at which point it senses that channel 2 is available for

transmission. The SU then performs spectrum handoff and starts communicating

over Channel 2. At t5, PU1 and PU2 are both communicating over both channels. So

the SUs communication gets interrupted as it cannot use any of the primary channels

at this time.

Spectrum sensing is an important function of secondary users for transmitting

by sensing spectrum holes (white spaces) in the primary channel. The IEEE 802.22

standard for cognitive wireless regional area networks (WRANs) enables broadband

wireless access using the cognitive radio technology and spectrum sharing in these

spectrum holes [12]. Reinforcement learning is used in [13] for the secondary users to

access primary channels based on probability that the channel is occupied by primary

11
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Figure 2.2: Overlay Dynamic Spectrum Access

user and mean vacant time on the channel. Work has been done in [14] to implement

these opportunistic sharing schemes to minimze the response time to variations of

network parameters when the primary user starts transmissions on the channel.

2.1.2 Overlay Dynamic Spectrum Access

In the interweave schemes of DSA, secondary users need to stop transmission as

soon as the primary user reappears on the primary spectrum band. This disrupts

the communication in the secondary network and also adds additional overhead for

spectrum sensing and handoff [11]. Also, the interweave DSA suffer from high false

alarm probability for spectrum hole detection. The false alarm probability is defined

as the probability that the secondary user detects that a primary channel is busy even

though it is idle [15]. A false alarm translates into a missed opportunity for spectrum

use.

The DSA overlay scheme overcomes these overheads by permitting co-existence of

primary and secondary users on the primary spectrum band. In the overlay approach

the secondary users are allowed to transmit simultaneously with primary users as long

as there is no performance degradation for the primary users. The overlay technique

of spectrum sharing is shown in Fig. 2.2. There are two approaches by which the

overlay approach can be implemented by the secondary users. One approach is to

use channel coding. In this approach, if the primary user is transmitting a packet

12
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known to the secondary user then the secondary user splits its transmit power into

two parts, one to transmit its own packet and the other to transmit the packet sent

by the primary user. This enhances the total power received at the primary receiver,

thus, improving the SINR at the primary user. The second approach is network

coding. In this approach, secondary users behave as relay nodes to transmit the

primary user’s information over the network. While relaying packets sent by primary

user, the secondary users may encode their own packets onto the primary user packet.

2.1.3 Underlay Dynamic Spectrum Access

In the overlay approach of DSA if the performance for primary users cannot be

guaranteed not to degrade, then the secondary users need to yield to the primary

users for spectrum access. This interrupts the communication for secondary users.

The underlay DSA scheme is similar to the overlay scheme since it also allows co-

existence of primary and secondary users on the same spectrum bands. However, the

transmission by secondary users is constrained by the condition that the accumulated

interference from all secondary users is tolerable by the primary users. This is the

approach taken by the ultra-wide band (UWB) technology. This approach is primarily

for short range communications [11].

Fig. 2.3 shows the underlay scheme for sharing the primary channel with multiple

users. In this scheme, the secondary users transmit on the same frequency channel

and at the same time as the primary user by keeping the SINR level below a threshold

set by primary. This threshold is set by the primary user according to its minimum

acceptable interference.

Although limited in the transmit power, in underlay schemes, more spectrum

bandwidth is available for secondary users since they transmit along with the primary

user. For transmitting time sensitive data like live streaming video, the channel should

be available for transmission for the entire duration of communication. In this study,

13
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Figure 2.3: Underlay Dynamic Spectrum Access

underlay scheme of DSA is used for transmitting video over secondary network.

Underlay DSA allows the primary and secondary users on the same frequency

bands but it requires strict SINR threshold limits to be imposed on secondary user

communication. Resource allocation strategies in secondary users are therefore crucial

to achieve efficient communication on the secondary network along with maintaining

the SINR threshold limits.

2.2 Cognition in Secondary Users

Cognition in secondary users is to learn from the surrounding environment. This can

be divided into two parts - learning status awareness from the environment (spectrum

sensing and sharing) and learning to adapt for efficient communication over secondary

network. The information gained from the environment is used to implement effective

communication strategy. Two types of learning methods can be implemented for

cognition in secondary users - supervised and unsupervised. Unsupervised learning

algorithms, like model free reinforcement learning, have been effective in cognitive

radio. Model-free approach enables secondary users to adapt their behaviors based

on the reinforcement from their interaction with the environment and build their

understanding of the system from scratch through trial-and-error [16].

The resource allocation problem for model-free reinforcement learning in CRNs

is solved with the use of a discrete time Markovian Decision Process MDP shown in

Fig. 2.4. A MDP consists of three elements:

14
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Figure 2.4: Markov Decision Process (MDP) structure [2]

1. States S : The state space indicates the variables from the environment that

will be sensed by an agent to derive its states. In this work, the secondary users

are the decision-making agents.

2. Actions A : The set of possible actions that could be taken in order to improve

the performance of the agent in its environment is indicated by an action space.

The secondary user selects an action a from the action space by applying the

policy π.

3. Transition Probabilities T : Transition function specifies how likely it is to

end up at any state, given the current state and a specific action performed

by the agent. Transition probabilities are specified based on the Markovian

assumption. We focus on homogeneous processes in which the system dynamics

are independent of the time. Thus the transition function is stationary with

respect to time [17]:

T (s, a, s′)
def
= Pr (st+1 = s′|at = a, st = s) .

where Pr is the transition probability at time t for state st and action at.

15
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4. Rewards R : Reward is a measure of success or failure of the action selected by

the agent. This is measured by observing the environment for changes in the

states after the agent takes the action.

5. Discount factor γ : γ ∈ [0, 1) is the discount rate used to calculate the long-term

return.

The agent starts at state s0 ∈ S. At each time step t, the agent takes an action at

from the action space (A). The system then makes a transition to next state as per

the transition function T and the agent receives an immediate reward R. The goal

of the agent is to maximize the discounted sum of rewards over a long duration.

The agent’s action selection as per the changes in environment is defined as the

agent policy (π). The agent interacts with the environment and takes actions accord-

ing to the policy. The value function of the policy is defined to be the expectation

of the return given that the agent acts according to that policy. This value function

defined over the state-action pair is the Q-function or the Q-value of that pair.

It has been shown (Bellman, 1957) that for any MDP, there exists an optimal

deterministic policy that is no worse than any other policy for that MDP [17]. For

secondary users in CRNs sharing the spectrum using underlay DSA, the condition

of keeping SINR to the primary user needs to satisfied by all the secondary users.

According to the Bellman’s condition of optimality, this can be achieved by taking

the optimal action if all the strategies thereafter are optimal.

2.2.1 Reinforcement Learning

Reinforcement learning is an artificial intelligence approach which can be used to

determine the optimal policy for the MDP. The work in [18] provides a extensive

review on wide range of traditional and enhanced reinforcement learning algorithms

in the CRNs context. The review shows that performance enhancements have been

achieved with the use of reinforcement learning algorithms.
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Q-learning is one of the popular model-free reinforcement learning techniques. The

Q-learning algorithm was used in [19] to implement cross layer CRNs. In this work,

the cognitive cycle at the secondary users was used to adapt in an integrated manner

transmit bit rate and joint source-channel coding rate. The end-to-end distortion was

measured at the application layer in this work, thus, performing cross-layer resource

allocation for physical and application layer in OSI model. This algorithm was also

used in [20] for routing in a wireless sensor network. In this paper, a variant of Q-

learning algorithm, Q − RC was used to find the best routing strategy to compress

and aggregate packets resulting in increasing the energy efficiency. The Q-learning

algorithm works by taking intermediate reward from the environment which results in

gradual optimization of the transmit parameters. Hence, Q-learning algorithms suffer

from slow convergence for a large action space. This drawback can be compensated

by using artificial neural networks to approximate the optimal solution for actions of

secondary users.

DQN is a class of an emerging class of reinforcement learning algorithms combined

with neural networks. Google’s Deep Mind developed the artificial agent, DQN, us-

ing this type of neural network. This agent surpasses all previous neural network

algorithms for single learning agent playing Go and video games [9]. The work in [21]

extends this DQN agent to a multi agent environment where all the agents perform re-

inforcement learning through collaboration to play video games. This concept can be

extended to the CRNs architecture under consideration. All the secondary users can

implement DQN to collaborate and share information learnt about the environment.

This can lead to faster convergence and better adaptability to the dynamic nature

of wireless environment for CRNs. Also DQNs are used in [22] to develop power

allocation method for secondary users in CRNs. This work focuses on optimizing the

transmission from secondary users by considering physical layer parameter.

The neural network that is used in this work is a feed-forward MLP. A feed-forward
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neural network is a neural network that does not contain any signal cycles, i.e. the

output is not connected as a feedback to the neural network [23]. Reinforcement

learning is used in the MLP. In this type of learning, the neural network learns the

network parameters by choosing actions from the action space and observing the

effect on environment. The effect on environment is measured in terms of rewards -

positive actions result in increasing the rewards and negative actions cause reduction

of rewards. After performing iterations on the action value set, the neural network

converges to an optimal value.

The selection of optimal values is done by the DQN agent in a state from the state

space at time t by selecting an action from the action space. The effect of this action

on the environment is observed to get reward for the action.

2.3 Cross Layer Cognitive Radio Networks

The DQNs can work on a larger set of actions. Neural networks have been used

for many applications where they need to find optimal solutions from larger action

spaces. In [24], reinforcement learning is used to find solution over large discrete

action spaces. The cognitive cycle in secondary users can be used for cross layer

approach by increasing the set of actions and observations from the environment to

consider parameters from other OSI layer along with the physical layer. Traditionally

for underlay DSA techniques, CRNs have dealt with adjusting the power allocation

at the secondary users to reduce interference to the primary. The power allocation

is adjusted by adjusting the transmit bit rate of the secondary users. The function

of the physical layer of OSI model is transmission of the unstructured bit stream as

shown in Fig. 1.4. Thus, such systems target a single layer of OSI model which is

the physical layer for resource allocation by optimal policy selection.

The Cross Layer CRNs observes several parameters from the environment and

performs optimization across all the sensed and observed parameters. The learning
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from variables from different layers of the OSI model helps secondary users to decide

reduction of interference to the primary network along with increasing the efficiency

of communication on the secondary network.

In [25], the secondary users learn the best routing path along with the dynamic

spectrum allocation. This being an overlay DSA scheme, the secondary users rec-

ognize the free spectrum sub-bands. The secondary users transmit data on these

frequencies while determining the best routing path. Thus, the parameters from

physical layer (unused frequency) and network layer (routing) are used together to

adapt by the secondary. The work in [26], proposes a cross-layer opportunistic spec-

trum access and dynamic routing algorithm for CRNs, called ROSA (ROuting and

Spectrum Allocation algorithm). This algorithm jointly considers routing, spectrum

assignment, power allocation, and (potentially) congestion control in a distributed

way. In [27], decentralized and localized algorithms for joint dynamic routing, relay

assignment, and spectrum allocation under a distributed and dynamic environment

are studied for co-operative CRNs. This work shows that these algorithms lead to

increased throughput with respect to non-cooperative strategies. In [28], CRNs are

studied to develop analytical framework model to perform congestion control over the

transport layer. This framework is also designed for an overlay approach where the

operation on cognitive radios will be stopped when the primary user starts using the

channel for its communication.

All the previous work discussed above is done for CRNs implementing the overlay

technique of DSA for spectrum sharing. In this work we study and develop a cross

layer resource allocation for the underlay DSA approach. The novel contribution of

this work is to develop a cross-layer resource allocation scheme using a multi-agent

DQN learning framework for multiple secondary users in a CRNs.
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Chapter 3

System Setup and Problem Description

3.1 Problem Setup

In this work we study the system implementing underlay scheme for cross-layer re-

source allocation in CRNs for reinforcement learning approach using a DQN [22].

The system comprises of a primary user that can transmit exclusively on the primary

channel at any time instant. This primary channel is shared with N secondary net-

work transmissions in a way as to keep the SINR to the primary network below a set

threshold level. It is assumed that both primary and secondary users use Adaptive

Modulation and Coding (AMC), where the modulation scheme and the coding rate

can be adapted as per the SINR on the transmission link. This helps the secondary

users to change the transmit rate in order to keep the SINR in the primary network

below the threshold limit. The communication channel is assumed to be a quasi-static

channel with Additive White Gaussian Noise (AWGN).

3.1.1 Primary and Secondary Networks at the Physical Layer

The underlay DSA technique used in this system requires knowledge of SINR. It is

measured at the primary base station and at secondary base stations for primary link

SINR(P ) and secondary link SINR(S), respectively as shown in equations (3.1) and
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(3.2)

SINR(p) =
G

(p)
0 P0

σ2 +
∑N

j=1G
(s)
j Pj

(3.1)

SINR
(s)
i =

G
(s)
i Pi

σ2 +G
(s)
0 P0 +

∑
j 6=iG

(s)
j Pj

(3.2)

where P0 is the transmit power of primary user, Pj is the transmit power of the

jth secondary user (SUj). G
(p)
0 and G

(p)
j are the channel gains of primary user and

secondary user to the primary base station respectively, G
(s)
0 is the channel gains

between primary user and the jth link receiver (j), G
(s)
j is channel gain on the jth

secondary link and σ2 is the background noise power.

We denote the SINR threshold requirements as β0 for the primary link SINR and

βi for the ith secondary link SINR. This is shown in equation (3.3)

SINR(p) ≥ β0

SINR
(s)
i ≥ βi, i = 1, ..., N (3.3)

The digital modulation scheme used is Orthogonal frequency-division multiple access

(OFDMA). The power settings for transmission on secondary links using OFDMA is

(3.4)

Pi =
Ψi

(
σ2 +G

(s)
0 P0

)
G

(s)
i

(
1−

∑N
j=1Ψi

) , i = 1, ..., N

Ψi =

(
1 +

1

βi

)−1
(3.4)

For the power allocation to be valid, the condition 1 −
∑N

i=1 Ψi > 0 needs to be

satisfied. After replacing secondary user powers in (3.1) with the results of (3.4),
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primary users’ SINR constraints in (3.3) can be written as [22]:

∑N

j=1
αjΨj ≤ 1, (3.5)

where

αj =
G

(P )
j

(
σ2 +G

(s)
0 P0

)
G

(s)
j

(
G

(p)
0 P0

β0−σ2

) + 1.

Secondary users control the interference they create on the primary link by adapt-

ing their SINR target, βi, and through (3.4) their transmit power. The target SINR

on the ith secondary link, once met, results in the transmit bitrate ri, through [29]

βi =
2

(
r
(s)
i
W

)
− 1

k
, (3.6)

where

k =
1.5

−ln (5BER)
.

3.1.2 Network Layer Setup

Figure 3.1: Routing system

The secondary users need to transmit the data to the destination nodes through
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routers. Fig. 3.1 shows four secondary users transmitting over such system. Routing

path to the destination node through each router is compared by the secondary users

and the packets are transmitted to the router with highest throughput. If the queue

of the selected router is not full, packets arriving are placed in the queue, else the

packets get dropped. These queues are modeled as M/M/1/K queues. They are finite

queue with size of K packets. The arrival of packets is modeled as a Poisson process

with arrival rate λ. The service times for packets follow an exponential distribution

with mean µ. When the arrival rate is greater than the service rate (λ >µ), then the

utilization of M/M/1/K queues is large
(
ρ = λ

µ

)
>1. This indicates that the system

is unstable resulting into increase in the queue lengths to the congestion point. When

the queue length reaches its size K all packets that arrive will be dropped until the

queue length decreases. This results in packet loss. In this work we consider that the

traffic carried over the secondary links is video transmissions for Internet Protocol

Television (IPTV) services. The data at network layer is measured in packets, where

one packet size is 7*188 bytes (10528 bits).

3.1.3 Quality Metrics

QoE is used to measure the perception of video quality for the end-user after dis-

tortion due to source coding and packet loss at the routers. In this work, MOS is

the metric used for measuring QoE. Model in [3] is used to estimate the MOS for

video transmission over the secondary network. This model estimates QoE using the

objective measurements of network performance. The network performance for the

routing system is measured objectively by packet arrival rate (coded bit rate) and

Packet Loss Frequency (PLF) (number of packet lost burst events in one video of 10

second duration). This estimation model is shown in Fig. 3.2

This model uses parameters, PLF and the coded bit rate, to estimate the video
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Figure 3.2: Estimation model for QoE [3]

quality. The estimated video quality by this model, Vq, is given by equation (3.7) [3]

Vq = 1 + Icexp

(
−PLF

v4

)
, (3.7)

where

Ic = v1 −
v1

1 +
(
Br

v2

)
· v3

. (3.8)

where PLF is number of packet lost burst events for a video of 10sec duration, Br is

the coded bit rate and v1, v2, v3 and v4 are the coefficients of CODEC used for video

transmissions. In this work we used the H.264 CODEC for IPTV video transmissions.

The coefficients of this CODEC (v1, v2, v3 and v4) are as indicated in Table 3.1 [3].

The coded bit rate for this system depends upon SINR as can be seen from equation

3.6.

v1 v2 v3 v4
3.8 4.9 3.6 3.5

Table 3.1: Coefficients for H.264 CODEC [3]

The value of MOS Vq in (3.7) ranges from 1 to 5. The significance of the value of

MOS from an end-user perspective is shown in Table 3.2
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MOS Video Quality
1 Very poor
2 Poor
3 Average
4 Good
5 Very good

Table 3.2: Perception of quality measured through MOS

3.2 DQN-Based Learning Framework

In this system, the secondary users need to transmit over the secondary network

by keeping SINR to the primary users below a threshold level while maintaining

the QoE. In order to maintain the QoE over the network layer, the environmental

variables that need to be observed are the queuing delays at the router and packet

loss in the network along with the SINR. The metric for QoE used in this work, MOS,

depends upon the coded bit rate (Refer 3.6). Thus, changing the transmit rate affects

QoE as well as SINR. This resource allocation of transmit rates for secondary users

needs to be dynamic as per the changes observed in the environmental variables.

In this work, we use artificial neural network to solve this dynamic resource al-

location problem. The dynamic resource allocation framework used in this work is

the multi-agent DQN network. This framework maximizes the overall QoE while

maintaining the threshold SINR level. This is done by reinforcement learning. In

this technique, the secondary user (a reinforcement learning agent) performs near-

optimal control actions by observing environmental state and receiving immediate

rewards [22].

3.2.1 Framework

Let the set of state space for this framework be S = {s1, s2, ...sn}. The state at time

t reflects the interference caused by the secondary users on both the primary and

secondary networks. The states, St = (It, Lt) are as shown in equations (3.9) and
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(3.10)

It =


0, if

∑N
i=1 Ψi

(
β
(i)
t

)
< 1.

1, otherwise.

(3.9)

Lt =


0, if

∑N
i=1 αiΨi

(
β
(i)
t

)
< 1.

1, otherwise.

(3.10)

The states St reflect the interference caused by the secondary users. The value of It

depends upon the power allocation validity for secondary users and Lt depends upon

the SINR constraint for primary users.

At time t, an agent observes state S (t) and selects an action from the action

space, A (t). The action space is a finite discrete space of candidate target SINRs,

denoted by A = {β(i)
1 , β

(i)
2 , ...β

(i)
n }. By selecting one action from the action space, the

secondary user is modifying its transmit power and also the transmit code rate and

modulation scheme.

In reinforcement learning, the optimal action selection is done by receiving im-

mediate rewards. In this system, the reward is calculated as given in equation 3.11

r
(i)
t (at, st) =


M, if It+1 + Lt+1 > 0.

Vq, otherwise.

(3.11)

where M is a constant that is set to be smaller than the reward for any action selected

by the system. This encourages the state (0,0). Vq is the MOS for IPTV packets as

given by (3.7). It is assumed that the secondary users don’t have any information

about other users and all other users are considered a part of environment to calculate

the reward. The part of this design corresponds to the physical layer.
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3.2.2 Optimal Action Selection

The optimal action is selected in reinforcement learning by selecting an action from

the action space and receiving reward for the action. Each secondary user conducts

a search into the action space to find an optimal policy through the DQN learning

algorithm to maximize its own reward. The reward reflects experienced MOS for each

secondary user. The overall MOS is maximized when each secondary user selects ac-

tions that maximize the cumulative future reward. The optimal action-value function

is as follows:

Q∗i (s, a) = max
π

{
∞∑
t=0

γtE
(
ri(s, a)(i)t |st=s,at=a,π

)}
(3.12)

where Q∗i (s, a) is the maximum discounted sum of rewards r (s, a) over a long time un-

der an optimal policy π. According to Bellman’s principle of optimality, the solution

to (3.5) can be obtained by taking the optimal action if all the strategies thereafter

are optimal:

Q∗i (s, a) = max
a′

[ri (s, a) + γQ∗i (s′, a′)] . (3.13)

The equation (3.12) is a value iteration algorithm that converges to the optimal Q-

value if t → ∞. A function estimator is used to estimate the optimal action-value

function. We use a neural network as nonlinear approximator to estimate the action-

value function. A fully connected feed-forward Multilayer Perceptron (MLP) network

is used to perform the maximization of reward and obtain the optimal action values.

DQN is a deep reinforcement learning algorithm that combines the process of

reinforcement learning with deep neural networks to approximate the Q action-value

function. DQN uses the technique of ”experience replay”. This technique uses a

replay memory which stores the experience of each secondary user after taking an

action from the action set. At each time step the value of this replay memory is
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updated by next state values and current values of action, state and reward ei (t) =

(ai (t) , si (t) , ri (t) , si (t+ 1)).

Each secondary user utilizes two neural networks - one to approximate the action-

value function Qi (s, a; θi) and other to approximate the target action-value function

Q′i (s, a; θ′i) where θi and θ′i represent current and old parameters respectively. The

current parameters are updated through mini-batch of random samples from replay

memory ei (t). The parameters θi of action-value function are updated utilizing gra-

dient descent algorithm based on following cost function:

L (θi) = E

[(
ri (s, a) + γmax

a′∈A
(Q′i (s

′, a′; θ′i))−Qi (s, a; θi)

)2
]

(3.14)

3.2.3 Algorithm

Algorithm 1 explains the DQN-based learning framework. This algorithm optimizes

the action value based upon SINR caused by the secondary user. Upon convergence,

this algorithm finds the optimal value of the average transmission rate for secondary

users. The secondary users transmit over the network with this transmission rate.

The implementation of routing system for the network layer is explained in algorithm

2. Average packet loss frequency is calculated for the videos transmitted as,

Average PLF = (Number of packets lost)/(Duration of video).
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Algorithm 1 Multi-agent DQN-based learning framework

1: for all SUi, i = 1, ..., N do
2: Initialize replay memory
3: Initialization of the neural network for action-value function Qi with random

weights θi
4: Initialization of the neural network for target action-value function Q′i with
θ′i=θi

5: end for
6: for Monte-Carlo simulations = 1:K do
7: for t < T do
8: for all SUi, i = 1, ..., N do
9: Select a random action with probability ε

10: Otherwise select the action
11: a

(i)
t = arg max

a
(i)
t

Qi

(
s
(i)
t , a

(i)
t ; θi

)
12: Update the state s

(i)
t+1 (3.9) and (3.10) and the rewards R

(i)
t (3.11)

13: Store ei (t) = (ai (t) , si (t) , ri (t) , si (t+ 1)) in experience replay mem-
ory of secondary user i, Di

14: Update parameters (θ) of action-value functionQ
(
s
(i)
t , a

(i)
t ; θi

)
, by sam-

pling random mini-batch of transitions from Di (3.14)
15: Every C step update parameters of target action-value function θ′i=θi
16: end for
17: end for
18: end for
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Algorithm 2 Queueing System

1: for tt < (V ideoDuration) /δ do
2: Send a packet in the video to destination
3: if equal output rate of routers then
4: Probabilistic routing strategy for next hop
5: else
6: minimum cost = maximum path bandwidth
7: Next hop = minimum cost
8: end if
9: if queue full at router then

10: Packet is dropped. Increment the packet loss counter
11: else
12: Place packet in queue and calculate time to reach destination
13: end if
14: end for
15: Calculate PLF, average delay for all packets sent and queue utilization
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Cross Layer Routing using Deep Reinforcement Learning

The quality of video for secondary users transmitting over a network gets affected

due to packet loss at the routers. The resource allocation considering only physical

layer does not account for packet loss observed at the network layer. Also, the static

routing algorithms do not consider the dynamic nature of environment of CRNs.

This affects QoE for the end-users. In this work we develop a cross layer routing

scheme using DQN-based framework for reinforcement learning. In this technique, the

secondary users perform dynamic resource allocation over both the physical as well as

the network layer. In order to consider network layer, action space for each secondary

user performing reinforcement learning is expanded. The expanded action space

comprises of SINR on the transmission link and next hop for packets based on delays

observed at the intermediate routers. The neural network uses DQN-based framework

to perform optimization over the action space, A = [β1, β2 · · · βn, h1, h2 · · ·hn] where

β1, β2 · · · βn represents SINR and h1, h2, ..., hn represent next hop for each secondary

user.

4.1 Cross layer Routing in CRN

The DQN framework for cross layer routing has the state space as St = (It, Lt) given

by equation (3.9) and (3.10). The state space reflects interference caused by the

secondary users under the constraints of threshold set by primary user and validity
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of power allocation. The cross layer routing considers optimization over the network

layer for IPTV video transmissions. As such, the action space is expanded to consider

the network layer parameter, next hop for the packet routing. Routing delays observed

by the secondary users are given as an input to the neural network. This routing delay

is the total delay of service time for the packet leaving the queue (µ) and the time

required to service packets already present in the queue. Next hop is estimated by

neural network for each packet generated based on this routing delay. The time spent

by a packet in the routing system (Tp) is given by equation (4.1)

Tp (t) = (1 + qlen (t)) ∗ pktlen ∗ µ (4.1)

where qlen (t) is length of queue at at time t, pktlen is the length of IPTV packets

and µ is the service rate.

Algorithm 3 depicts the steps for cross layer routing. Secondary users utilize the

ε-greedy approach for selecting the first action parameter, transmit rate. The video

transmissions over network are performed using this selected transmit rate. For each

video packet that is being sent over the network, the second action parameter (next

hop) is selected based on delay seen at each router in the system. Action is updated

with next hop to the router with minimum delay.

Five videos, each of 10 second duration, are sent over the network. When a packet

in current video transmission arrives at the router with a full queue, then the packet

gets dropped causing a packet loss event. After all the videos are transmitted over

the system, average PLF is calculated for each video. PLF is the number of packet

lost burst events over a 10 second duration. Reward, MOS, is calculated for these

observed parameters, average PLF and transmit rate using equation (3.7).
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Algorithm 3 Multi-agent DQN-based learning framework

1: for all SUi, i = 1, ..., N do
2: Initialize replay memory
3: Initialization of the neural network for action-value function Qi with random

weights θi
4: Initialization of the neural network for target action-value function Q′i with
θ′i=θi

5: end for
6: for Monte-Carlo simulations = 1:K do
7: for t < T do
8: Initialize the parameters of routing system to 0
9: Select a random action with probability ε

10: Otherwise select the action
11: a

(i)
t = arg max

a
(i)
t

Qi

(
s
(i)
t , a

(i)
t ; θi

)
12: Update λ with the action selected.
13: for tt < V ideoDuration do
14: if Probability of packet arrival < λ ∗ δ then
15: for all SUi, i = 1, ..., N do
16: Compare router delays and update next hop for the packet
17: end for
18: end if
19: if queue full at router then
20: Packet is dropped. Increment the packet loss counter
21: else
22: Place packet in queue and calculate time to reach destination
23: end if
24: end for
25: Update the state s

(i)
t+1 (3.9) and (3.10) and the rewards R

(i)
t (3.11)

26: Store ei (t) = (ai (t) , si (t) , ri (t) , si (t+ 1)) in experience replay memory
of secondary user i, Di

27: Update parameters (θ) of action-value function Q
(
s
(i)
t , a

(i)
t ; θi

)
, by sam-

pling random mini-batch of transitions from Di (3.14)
28: Calculate average PLF over the number of videos sent.
29: Every C step update parameters of target action-value function θ′i=θi
30: end for
31: end for
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4.2 Simulation Setup

Monte-Carlo simulations were used to study the action value selection. For primary

user, threshold SINR is set at 1dB, transmission power is 10mW and power of AWGN

is 1nW. The primary user and all secondary users are distributed within 300m radius

around the primary base station and secondary base station respectively. Distance

between primary and secondary base stations is 2km. The path loss model for channel

gains is log-distance model with loss exponent of 2.8 transmission rate for a single

secondary user could be chosen between range of 0.1 to 0.5 Mbps.

In the IPTV communication model, each elementary stream is converted into an

interleaved stream of time stamped Packetized Elementary Stream (PES) packets.

The transport stream (TS) is formed by breaking up the PES packets into fixed-sized

TS packets of 188 bytes that are referenced to independent time bases [30]. One IP

packet consists of 7 TS packets [3]. Thus number of bits in 1 packet = 7*188*8 =

10528 bits. 10 videos of 10 seconds each are transmitted over the routing system. The

routing system consists of 2 routers with M/M/1/K queues. The transmission rate is

adjusted by the secondary users in order to adjust the SINR. This is possible due to

the AMC scheme used in secondary users. The arrival rate of packets is determined

by this transmit rate range for the secondary users which is 0.1 to 0.5 Mbps. This

rate is the result of action taken by the neural network in secondary users.

DQN has learning rate set to α = 0.01 and discounting factor set to γ = 0.9 For

ε-greedy approach, ε is set to 0.8 initially, after convergence, it reduces to 0. Two

separate feed-forward MLP networks are used to approximate action-value and target

action-value functions. Each of these neural networks have three fully connected

hidden layers with four, three and two neurons respectively. The input layer consists

of four nodes representing state (It and Lt) and selected action to be taken (SINR

and next hop for the packets). The output layer is one neuron corresponding to the

34



CHAPTER 4. CROSS LAYER ROUTING USING DEEP REINFORCEMENT
LEARNING

selected action SINR.

The neural networks were also tried with different configurations of number of

hidden layers and number of neurons in each hidden layer to study performance

changes. The alternate configuration tried was of 2 hidden layers with 10 neurons

each. A little performance improvement is seen. The convergence of DQN algorithm

is a little faster with this configuration of the neural network and the results for MOS

are consistent with those with previous configuration.

The capacity of replay memory and mini-batch is 100 and 10 respectively. The

number of Monte-Carlo simulation iterations is set to 500.

4.3 Simulation Results

4.3.1 Benchmark Algorithm

The algorithm 1 was selected as a benchmark. This algorithm performs resource

allocation for only the physical layer. The DQN framework provides optimum bitrate

for each secondary user for the observed environmental conditions. This average

transmission rate is as shown in table 4.1. These transmit rates were selected from a

set of 0.1 to 0.5 Mbps rates by the DQN algorithm.

Number of Secondary Users 2 4 6
Average bitrate (Mbps) 0.1646 0.1737 0.2439

Table 4.1: Average bitrates for secondary users

For CRNs performing resource allocation over physical layer only, video quality

(QoE) is 4.8 which is a very good quality for the end user. However, this assumes

that the end user receives the video directly from the secondary users. In practical

cases, there are a number of routers in the network that route the video packets to

the appropriate destination. To model this scenario, the output of secondary users is

transmitted over a network.
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The network comprises of two routers with a fixed queue length and equal output

bitrate. The packets are routed to the destination using probabilistic routing strategy.

Since the throughput for both the router is same, the probability of each router being

selected is 0.5. When IPTV packets are sent over this network, the average MOS of

2.5 was observed which is a poor quality of video from the end user perspective. This

can be seen in Fig. 4.1a. These results were obtained by increasing the output rates

for the routers in the network. The packet arrival rate for IPTV packets sent over

the network is (Average bitrate)/(IPTV packet length). Even when the output rate

of router is very high (1Mbps) as compared to the range of packet arrival rates, it is

seen that packet loss is still observed for this setup as seen in Fig. 4.1b. Since IPTV

data consisting of video is sent over the network, packet loss frequency greater than

4 packets per 10 second video duration also results in degradation of video quality.

The low MOS results is due to the static selection of the routers at physical layer for

transmission. To overcome these drawbacks, we developed a model to use the routing

system environment as a part of DQN learning algorithm.

It can also be seen from these results that as the number of secondary users

increases, the packet arrival rate multiplies by the number of users in the system.

The network consisting of 2 routers cannot handle this very high packet arrival rate.

This results in high packet loss and the MOS drops to around 0. If a larger network

with more routers is used, then this scenario of high number of secondary users can

be supported.

4.3.2 Cross Layer Routing Algorithm

Algorithm 3 was used for resource allocation in the cross layer routing. Fig. 4.2(a)

shows changes in MOS for varying the number of secondary users in the secondary

network. The network parameters set for these simulation are : output rate of routers

= 0.3 Mbps and queue length = 5 packets.
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(a) MOS vs Output rate

(b) PLF vs Output rate

(c) Average Delay vs Output rate

Figure 4.1: DQN implementation for only PHY layer
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As it can be seen in Fig. 4.2 the addition of more than two secondary users result

in significant degradation of the quality of video transmitted. This is because of the

same reason explained before, two routers in the system cannot handle the high traffic

load of multiple video sources (secondary users). With increase in secondary users,

the transmission rate multiplies by the number of users actively sending data in the

system. This results in ρ > 1 for higher number of users, causing an unstable system

and congestion. This results in increase in queue lengths causing high packet loss as

can be seen in Fig. 4.2(b).

However, even with decrease in MOS due to high influx of video traffic, the cross

layer system achieves a better quality than that of single layer CRNs. This is because

the cross layer network always tries to route to the node with minimum delay. So,

even with queue lengths increasing exponentially, the cross layer network tries to

balance the load on both the routers in an attempt to increase MOS.
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(a) MOS

(b) PLF

Figure 4.2: Effects of changing number of secondary users
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4.3.3 Increasing Queue Length

The transmission of packets over the network was compared by varying the queue

sizes at the routers. The range of queue size is calculated based on packet arrival

rates. Packet arrival rates are given by:

Pa =
Br

Pl

where Br is the transmit bitrate and Pl is the IPTV packet length = 10528bits.

Minimum transmission rate of the secondary users is 0.1 Mbps. The packet arrival

rate for a secondary user transmitting with this bit rate is 9.49 packets/sec. Average

transmission rate of secondary users is 0.3 Mbps. The packet rate for this bit rate is

28.49 packets/second. Hence the range of queue lengths, 5 to 30 packets, is used to

observe the effect on system parameters.

Fig. 4.3(a) shows 30% more MOS in cross layer routing system for queue size of 5

packets. For higher values of queue size, single layer CRNs and cross layer CRNs have

comparable video quality. This can be seen by decrease in packet loss (Fig. 4.3(b)).

PLF decreases as more space is available in routers to store incoming packets due to

higher queue lengths. This in turn results in better quality.
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(a) MOS

(b) PLF

Figure 4.3: Effects of changing queue lengths
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4.3.4 Varying Output Rates of Routers

The transmit rate that can be selected by secondary user ranges between 0.1 to 0.5

Mbps. Hence, to analyze the effect of service rates, values for output bit rate for the

routers are selected between 0.02 to 0.6 Mbps. The queue size is set to minimum of

5 packets. Fig. 4.4(a) shows that the average video quality for DQN learning over

only the physical layer converges to MOS = 2.9 when output rate of the queues is

0.2 Mbps. This is due to probabilistic determination of next hop for packets and also

the transmission rate is optimized for the physical layer parameters before sending

the packets on network. Even when the output rate of the queues is increased, these

factors give rise to some packet loss as seen in Fig. 4.4(b).

However, for cross layer CRNs considering the network layer parameter (queue

delay), MOS is greater than 4. This is because the best route is selected for each

packet based on the delays observed in network which minimizes the probability of

packet loss. Also the DQN framework for cross layer approach works on optimizing

the transmission rate (physical layer parameter) as well as the packet delay (network

layer parameter). The result is 30% increase in MOS.

The delays observed in the router are the same for both the systems. Delays are

calculated for packets that are sent through the router queue. Since the output rate

for routers in both the system are the same, the delay observed are similar as can

be seen in Fig. 4.4(c). The average delay for packets in the network system will be

different in the two cases compared if the network has different paths to destination

and more number of routers.
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(a) MOS

(b) PLF

(c) Delay

Figure 4.4: Effects of changing output rate for queues with minimum queue length
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4.3.5 Router Loading

Utilization of a router in this system is given by the fraction of generated packets sent

to the router. The utilization for ith router in the network is:

Ui =
Pi∑Nr

i=1 Pi

where Pi is the number of packets sent to the ith router and Nr is the total number of

routers. Thus, utilization 50% of router 1 indicates that 50% of the generated packets

were sent to this router. For calculating the utilization of queue, queue length is set

to minimum, i.e. 5 packets.

4.3.5.1 Equal Output Rates at Routers

The output rates at both the routers is set to 0.3 Mbps to calculate utilization of

queue. When both the routers have equal service rate or throughput, the routing

cost on both the paths to destination node are equal. For CRNs performing resource

allocation over only physical layer, we assume that the environmental variables at

only the physical layer are observed by the secondary users for routing packets to the

destination node. Hence, the probabilistic routing approach is implemented for single

layer CRNs. In this approach, the next hop for the packet is selected randomly as

the cost to destination is same via both paths with probability of 0.5 for each router.

However, cross layer routing system uses DQN to determine next hop for queue based

on observed packet delays.

As expected, for random router selection and DQN based router selection, the

router utilization is around 50%. This is because both the schemes utilize the routers

equally to transmit the data. Fig. 4.5 shows average utilization of the routers for both

systems. In system performing physical layer only optimization, utilization of queue

varies due to the random selection of next hop for a packet for video transmissions.
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However the probability of router being selected as the next hop is around 0.45 to

0.55.

(a) Routing algorithm for single layer CRNs

(b) Router utilization

Figure 4.5: Equal output rates at the routers

4.3.5.2 Different Output Rates at Routers

The output rate for router 1 is set to 0.3 Mbps while the output rate of router 2 is

set to 1.5 times that at router 1 (0.45 Mbps). Queue sizes of both the routers are 5

packets Router selection at physical layer is done by routing through the path with

maximum throughput to the destination node. In this case, for the physical layer

only approach all the packets get routed to Router 2 giving its utilization of 100%.
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Since the physical layer only DQN optimization does not consider delay or queue

length, the secondary user routes packets to this router even if they get dropped at

the routing node.

The cross-layer system observes delay at the next hop and accordingly decides the

action. When queue length of the router with more throughput increases, delay at

this router also increases. In this situation the cross layer system routes packets to

Router 1. This can be seen from Fig. 4.6 where the utilization for the cross layer

system is equal for both the routers, thus, showing that the packets are equally routed

to both routers to prevent congestion at any one of them.

(a) Routing algorithm for single layer CRNs

(b) Router utilization

Figure 4.6: Unequal output rates at the routers
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The effect of selecting different multiplication factor for output bit rate for router

2 is as shown in Fig. 4.7. Router 1 maintains an output rate of 0.3Mbps. The ratio

of output rates between the two routers is set to [0.5, 1, 1.5, 2]. As can be seen, the

performance metric for cross layer system are approximately invariant for different

values of output rate of Router 2. This confirms the equal utilization of routers even

when they have different output rates.

For optimizations on physical layer only, the system has better MOS and less

packet loss only when both routers have equal output rates, i.e. multiplication factor

for Router 2 is 1. Due to equal throughput on both routers, next hop is randomly

selected which results in less packet loss than when only one router with more through-

put is selected.
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(a) MOS

(b) PLF

Figure 4.7: Changing ratio of output rates between routers
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Conclusion

A cross layer routing system developed in this work performs resource allocation

by observing the environmental variables over physical and network layer and takes

actions to update its own parameters across these layers in order to maximize QoE for

video transmissions. For smaller queue lengths at the intermediate routers, the cross-

layer system proves to be efficient by achieving MOS 1.4 times that of CRNs over

physical layer. Thus, time sensitive information such as video or live streaming can be

performed without much impairment over the secondary network with a cross-layer

DQN resource allocation.

Also this system performs efficient utilization of the routers by performing load

balancing based on observed packet delays. For a system of routers with different

throughput, this system performs better by maintaining a constant level of video

quality. For this configuration, the system outperformed the CRNs for physical layer

only. The increase in MOS for cross layer routing is around 62%. This proves that the

system can be extended to a system of multiple routers with varying queue lengths

and service rates and the performace will not be effected.
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Future Work

Transfer learning for secondary users provides improved learning process. This was

implemented for Q-learning algorithm in [22]. The idea can be further extended to

transfer information through sharing the routing tables for a new secondary user

joining the network to speed up the learning process. With current simulation setup,

each user sends the video packets over the environment during the learning phase to

update action values for next hop. This adds up in simulation time. Transfer learning

approach will be useful to reduce this overhead.

The cross layer routing system can be used for more number of routers to be more

closer to practical routing systems. Such systems might also handle more number of

secondary user transmissions more effectively by finding routing paths with minimum

delays. Graph theory has been proven to be useful in some CRNs implementations. In

[31] routing is implemented for overlay spectrum sharing scheme using game theory.

The cross layer approach implemented in this routing scheme for CRNs can be

extended for multiple layers of OSI communication model. For additional action set

values, more hidden layers need to be connected for the MLP neural network.

Different aspects of cognitive radio design can be studied with the ease of increas-

ing action space in DQN. Energy efficient communication (Green communication) is

one such feature that can be optimized using DQN for resource allocation considering

spectral as well as energy efficiency metrics. In [32], an optimal power allocation
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scheme that maximizes the instantaneous energy efficiency metrics is proposed. La-

grangian method is used for obtaining this power allocation. This work showed that

the effect of the interference constraint in underlay CRNs is minimal on the energy effi-

ciency metrics. The DQN-based reinforcement learning can be used by the secondary

users to optimize power to achieve energy-efficient communication over secondary

network.
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Acronyms

AMC Adaptive Modulation and Coding

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CRNs Cognitive Radio Networks

DQN Deep Q-networks

DSA Dynamic Spectrum Access

IOT Internet of Things

IPTV Internet Protocol Television

MDP Markov Decision Process

MLP Multi Layer Perceptron

MOS Mean Opinion Score

NN Neural Network

OFDMA Orthogonal frequency-division multiple access

OSA Opportunistic Spectrum Access

OSI Open System Interconnection

PLF Packet Loss Frequency

QoE Quality of Experience
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Acronyms

QoS Quality of Service

SINR Signal to Interference plus Noise Ratio
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