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Abstract

A cross domain solution is a means of information assurance that provides the ability

to access or transfer digital data between varying security domains. Most acceptable

cross domain solutions focus mainly on risk management policies that rely on using

protected or trusted parties to handle the information in order to solve this problem;

thus, a cross domain solution that is able to function in the presence of untrusted

parties is an open problem.

Homomorphic encryption is a type of encryption that allows its party members

to operate and evaluate encrypted data without the need to decrypt it. Practical

homomorphic encryption is an emerging technology that may propose a solution to

the unsolved problem of cross domain routing without leaking information as well

as many other unique scenarios. However, despite much advancement in research,

current homomorphic schemes still challenge to achieve high performance. Thus, the

plausibility of its implementation relies on the requirements of the tailored application.

We apply the concepts of homomorphic encryption to explore a new solution

in the context of a cross domain problem. We built a practical software case study

application using the YASHE fully homomorphic scheme around the specific challenge

of evaluating the gateway bypass condition on encrypted data. Next, we assess the

plausibility of such an application through memory and performance profiling in order

to find an optimal parameter selection that ensures proper homomorphic evaluation.

The correctness of the application was assured for a 64-bit security parameter selection

of YASHE resulting in high latency performance. However, literature has shown

that the high latency performance can be heavily mitigated through use of hardware

accelerators. Other configurations that include reducing number of SIMON rounds

or avoiding the homomorphic SIMON evaluation completely were explored that show

more promising performance results but either at the cost of security or network

bandwidth.
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Chapter 1

Introduction

1.1 Problem and Motivation

The purpose of cryptography is to protect data in the presence of an adversary with

concerns regarding the following: authentication, confidentiality, integrity, and non-

repudiation. A growing aspect in industry is to offload large data storage and expen-

sive computation to third party services. Although traditional cryptographic systems

are good at keeping data confidential and intact during transfer, the security then

falls onto the third party service provider once the data is decrypted for operational

use. As soon as the data is decrypted, the confidentiality aspect of the data is lost as

the data is now available in plain sight to the servicer.

The cross domain problem is concerned with transferring information from differ-

ent security domains while keeping the information secure. An application is said to

be a cross domain solution (CDS) if it solves this problem. Most current solutions are

based on a system of risk management that usually relies on protected party mem-

bers. However, there still exists an unsolved problem of how to create an autonomous

system that routes highly classified data through a lower or untrusted classified net-

work without revealing any information about the data to the intermediate parties.

The reason this problem is still open is because of a lack of solutions that allow an

untrusted or semi-trusted party to operate on the encrypted data to determine its

2



CHAPTER 1. INTRODUCTION

routing endpoint without decrypting the data first.

Homomorphic Encryption (HE) schemes pose a potential solution to the cross

domain problem. HE is a type of encryption that allows a party to perform com-

putations on encrypted data without the need to decrypt it. These computations

result in ciphertext that matches a ciphertext as if the evaluation result with the

original plaintexts was encrypted. The concept of a homomorphic encryption scheme

has been cited for the first time by Rivest, Adleman, and Dertouzous in 1978 [3];

however, the first construction of a plausible fully homomorphic encryption system

was not proposed until 2009 in Craig Gentry’s PhD dissertation [4]. Although impli-

cations of such a scheme that is able to perform arbitrary operations on data is huge,

the current schemes have glaring limitations, primarily performance, that remain an

open problem.

1.2 Homomorphic Encryption

Homomorphic Encryption is a type of encryption that allows a party to compute

operations on encrypted data without the need to know the underlying plaintext

data. Homomorphism is an algebraic term that comes from the greek words homos,

meaning ”same”, and morphe, meaning ”form” [5]. It is a term that is used to define a

map between two algebraic structures that preserves the operations of the structures.

In other words, given two algebraic structures with their own respective operations,

both denoted by (A, ∗) and (B, ◦), and a map f , denoted f : A 7→ B, the map f is

said to be homomorphic if the following holds:

f(x ∗ y) = f(x) ◦ f(y);x, y ∈ A

It follows to say that an encryption scheme that exhibits homomorphism is one whose

mapping function, namely the encryption function, preserves the operations between

the plaintext space and ciphertext space. In other words, operations on ciphertexts

3



CHAPTER 1. INTRODUCTION

will result in a similar operation being performed on the underlying plaintext. The

homomorphism property, as it applies to encryption, is a powerful feature as it allows

untrusted parties to operate on data without the need to decrypt it and compromise

the privacy of the users. This feature is highly sought after for applications where

most of the computation is handed off to third parties for large scale operations but

it is desired to keep the information secret from such party members. For example,

the applications of handling large medical records or sensitive data handling in the

cloud computing environment could benefit from the privacy feature of homomorphic

encryption.

1.3 This Work

The objective of this thesis is to explore and assess the viability of using homomorphic

encryption to create a solution to the cross domain problem. The results shed light on

the practicality of using a fully homomorphic encryption scheme as well as a potential

solution to the cross domain problem. The Yet Another Somewhat Homomorphic

Encryption Scheme (YASHE) [6] is used as an encryption scheme basis for building

a proof-of-concept application that determines routing endpoints for several pieces of

encrypted data based on a hierarchy of data attributes. The application was profiled

and analyzed to evaluate any potential problems that come with using homomorphic

encryption as a solution basis, as well as revealed methods to improve upon these

issues.

Despite the advancements in research related to current Homomorphic Encryption

schemes, there still exists several challenges that prevent them from being practically

implemented in a useful application. The largest one that is still being addressed by

research is the computational cost of all the homomorphic schemes. Due to the com-

plex mathematical structures utilized by current Homomorphic Encryption schemes

and the selection of parameters that guarantee evaluation correctness and security,

4



CHAPTER 1. INTRODUCTION

the computational cost required to satisfy a system that holds both confidentiality

and integrity of the data handled is expensive. In particular, the ciphertext expan-

sion of the evaluation data is quite large and also exhibits a large execution time to

completely evaluate.

Work first began with investigating the Brakerski-Gentry-Vaikuntanathan (BGV),

Brakerski/Fan-Verauteren (B/FV), and YASHE FHE schemes and related mathe-

matical structures to ensure familiarity with the schemes. In particular, the YASHE

scheme was chosen for implementation after being heavily investigated. YASHE was

chosen over the other two schemes for its simplicity and its performance benefits for

small scale applications. Familiarity was reinforced with toy examples to demon-

strate proof-of-concept and correctness of the scheme. A design of the application

was constructed that meets the needs of a cross domain solution. A proof-of-concept

application of the design was implemented using the YASHE scheme using the open

source work from [7] as a base. The application was then subjected to memory and

performance profiling using different scheme parameters to produce an assessment of

the practicality and correctness of the application.

5



Chapter 2

Background

2.1 Cross Domain Solutions

A cross domain solution (CDS) is a form of controlled interface that provides the

ability to access, either manually or automatically, or transfer information between

varying security domains [8]. It is a means of information assurance that aims to

achieve data confidentiality, integrity, and availability through a network. The sce-

nario, as described in Fig. 2.1, generally follows that a user would like to provide

access or transfer varying degrees of classified data to endpoint networks. This may

be in the form of an encrypted payload with an encrypted metadata tag. The end-

point networks should not obtain data whose classification does not match their own.

The difficult problem is that no party on the network except those whose classifica-

tion domain match the data should be able to recognize the type of data or how it

is would be routed. In other words, the data must be kept completely secure until

it reaches the proper endpoint. The National Institute of Standards and Technology

(NIST) provides a large catalog of security frameworks which includes a number of

non-mutually exclusive scenarios for cross domain solutions, primarily under the in-

formation flow enforcement section, from which an organization can select to fulfill

their requirements [9]; however, the methods and policies used are primarily deter-

mined by the implementing organization. Most CDS-related definitions have a focus

6



CHAPTER 2. BACKGROUND

Figure 2.1: The Cross Domain Network Problem

on security policy and risk management using protected domains with authorized

human personal to manually evaluate and control the flow of information. There-

fore, a system that is able to deploy a scheme to automatically use information while

maintaining security inside an untrusted domain is an open problem. The use of

homomorphic encryption as a means to achieve this remains a mostly unexplored

territory and proposes a potentially interesting solution.

2.2 A Basic Scheme

A basic scheme is presented to demonstrate the homomorphism properties as it ap-

plies to an encryption scheme. The scheme is heavily borrowed from Van Dijk’s FHE

scheme over integers [10]. The encryption methods demonstrate how a message is

transformed into a ciphertext and the decryption method demonstrates how the mes-

sage can be retrieved. The addition and multiplication operations demonstrate the

homomorphism of the scheme.

7



CHAPTER 2. BACKGROUND

2.2.1 Parameters

The scheme only requires a prime value p. This value is the secret key. The scheme

has a message space m ∈ {0, 1}.

2.2.2 Encryption

Generate two values, e and q, randomly from some distribution such as a uniform or

normal distribution. The message m is encrypted to obtain ciphertext c by:

c = E(m) = m+ 2e+ pq (2.1)

Many homomorphic encryption schemes follow a similar format for encryption. The

idea is that a message can be encrypted by masking it with a product of two element,

in this case p and q, plus a small ”noise” term, in this case 2e.

2.2.3 Decryption

The ciphertext c is decrypted to obtain the message m by:

m = D(m) = (c mod p) mod 2 (2.2)

The proof of correctness is as follows:

m = (c mod p) mod 2

m = (m+ 2e+ pq mod p) mod 2

m = (m+ 2e) mod 2

m = m �

It should be noted that the ciphertext only decrypts correctly if (m + 2e) < p. This

can be seen by considering both the cases when m + 2e = p and when m + 2e > p.

8
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When m + 2e = p, it is easy to deduce that the message is lost after the modulo p

operation as

(m+ 2e) mod p ≡ p mod p ≡ 0

and is only a true results if m is zero which does not make for a complete case. When

m+2e > p, then the parity of the message can be altered after the modulo p operation

which will result in the incorrect message after the modulo 2 operation.

2.2.4 Addition

Two ciphertexts, c1 and c2, that encrypt two messages, m1 and m2, can be added to

obtain a new ciphertext, c3. Decrypting c3 results in a plaintext whose value equals

the evaluation of m1 + m2. The proof of homomorphism of the scheme over addition

is as follows:

c3 = c1 + c2

c3 = m1 + 2e1 + pq1 +m2 + 2e2 + pq2

c3 = (m1 +m2) + 2(e1 + e2) + p(q1 + q2)

c3 = (m1 +m2) + 2e3 + pq3

It can be seen that the resulting ciphertext retains an encryption structure of the sum

of messages m1 and m2.

2.2.5 Multiplication

Two ciphertexts, c1 and c2, that encrypt two messages, m1 and m2, can be multiplied

to obtain a new ciphertext, c3. Decrypting c3 results in a plaintext whose value

equals the evaluation of m1m2. The proof of homomorphism of the scheme over

multiplication is as follows:

c3 = c1c2

9



CHAPTER 2. BACKGROUND

c3 = (m1 + 2e1 + pq1)(m2 + 2e2 + pq2)

c3 = (m1m2) + 2(m1r2 +m2r1 + 2e1e2) + kp

Note that the value k is simply the sum of product terms with the value p from the

multiplication of the two ciphertexts. It can be seen that the resulting ciphertext

retains an encryption structure of the product of messages m1 and m2.

2.2.6 Summary

It can be seen that the scheme presented is indeed homomorphic. It should be noted

that in order for the scheme is defined to only operate on binary data. This ensures

that a user can evaluate any abstract operation by constructing a binary circuit using

the homomorphic operations. A binary addition operation results in an operation

that matches a binary XOR-gate and a binary multiplication operation results in an

operation that matches a binary AND-gate. A construction using these gates can

perform any operation as these two binary operations form a functionally complete

set. Other FHE schemes follow similar constructions.

2.3 Types of Homomorphic Encryption

Homomorphic encryption refers to the type of encryption that allows a user to op-

erate on encrypted data; however, there are actually different HE schemes that fall

within the definition of three different types: Partially Homomorphic, Somewhat Ho-

momorphic, and Fully Homomorphic. The main distinction lies with what operations,

primarily among addition and multiplication, a user can perform with the data and

how the operations are restricted by the scheme.

2.3.1 Partially Homomorphic Encryption

A Partially Homomorphic Encryption (PHE) scheme is one that allows an unbounded

operation on encrypted data but the type of operation allowed is limited to that

10



CHAPTER 2. BACKGROUND

single operation. Although PHE schemes can be useful, the applications of which

they are applicable is limited due to their limited operation set. There exists a

couple of applications where such schemes are used including e-voting [11] and private

information retrieval (PIR) [12].

2.3.2 Somewhat Homomorphic Encryption

A Somewhat Homomorphic Encryption (SWHE) scheme is one that allows a set of

operations, normally both addition and multiplication, but with a bound on either one

or both operations. Normally, these schemes allow one operation, usually addition,

to be performed an unlimited amount of times while the other operation, usually

multiplication, can be performed a limited number of times. SWHE schemes are

applicable to applications where the complexity and depth of the functions involved

are known beforehand but fall short for applications that desire arbitrary computation

on data. In addition, data can only be operated on to a certain extent before the

decrypt function will stop evaluating the ciphertext correctly, limiting the types of

applications that can be implemented using such a scheme.

2.3.3 Fully Homomorphic Encryption

A Fully Homomorphic Encryption (FHE) scheme is one that allows an arbitrary set of

operations to be evaluated on encrypted data an unlimited number of times. Despite

the usefulness of the prior two types of schemes, this type of scheme is the most

promising as it offers nearly no limitations on the type of computation one can execute

with encrypted data. However, despite much research effort, it has proved difficult to

construct a scheme that achieves practical full and unbounded homomorphism. No

such schemes were devised until Craig Gentry’s breakthrough in 2009 [4]. Since then,

several FHE schemes have been published and much improvement has been seen in

their development, but there are still several challenges that need to be addressed

11
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before these schemes will realistically see use in industry. It should also be noted that

a leveled fully homomorphic encryption scheme is one that can evaluate any circuit of

multiplicative depth L as an auxiliary input. In this sense, it is somewhat analogous

to say that such a scheme sits somewhere between SWHE and FHE, but for all

intents and purposes, it is grouped under FHE as all circuits can be fully evaluated

if the multiplicative depth L of the evaluation circuits are known beforehand and

parameters are chosen to accommodate for such evaluation.

2.4 Gentry’s Breakthrough

In 2009, Craig Gentry presented in his PhD dissertation [4] the first achievable FHE

scheme. This was a huge milestone for the long term problem of finding a FHE

scheme; arguably, the more valuable information that came from his dissertation was

the general blueprint that he outlines for achieving FHE schemes that has paved the

way for researchers. Before Gentry, research focused mainly on maximizing the circuit

complexity that an HE scheme can evaluate. Gentry shows that one can obtain a FHE

scheme using a SWHE scheme as a basis using two techniques he calls ”squashing”

and ”bootstrapping”. Gentry’s ingenious, yet conceptually simple, idea is if a SWHE

scheme is bootstrappable, a ciphertext can be ”refreshed” or ”re-encrypted” with

an elaborate scheme of encrypting and decrypting a ciphertext homomorphically to

produce a clean ciphertext (i.e. one with little noise). Therefore, Gentry’s approach

is to instead focus on minimizing the decryption circuit of an HE scheme in order to

create a bootstrappable scheme.

2.4.1 Squashing

A SWHE scheme is said to be bootstrappable if it is able to evaluate its own decryption

circuit. However, as it turns out, a decryption circuit usually involves a circuit of

large depth. The squashing technique is a method that reduces the decryption circuit

12
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depth. The squashing technique involves finding a set whose sum of elements equals

the inverse of the secret key and then multiplying a ciphertext by each of the set

elements. This reduces the decryption circuit to one with depth small enough for the

SWHE scheme to evaluate.

2.4.2 Bootstrapping

The bootstrapping technique is a method to create a ”fresh” ciphertext from a noisy

ciphertext that will decrypt to the same plaintext. The bootstrapping method as-

sumes there are two sets of public and secret key pairs and a ciphertext that is

encrypted with the first key pair. First, squashing is applied to a ciphertext to make

it bootstrappable. The technique basically involves decrypting the ciphertext homo-

morphically using an encryption of the first secret key and then applying encryption

using the second public key. The resulting ciphertext is a ciphertext with ”fresh”

noise but encrypted under a new key pair. This technique allows a SWHE scheme to

act as a FHE scheme by refreshing a ciphertext after any operations have been eval-

uated. However, it should be noted that this particular method is computationally

expensive which is a major drawback to the implementation of a FHE scheme.
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Chapter 3

Mathematical Constructs and Hard Problems

3.1 Ring Theory

A ring is one of the fundamental algebraic structures of abstract algebra. It consists

of a set of elements, often denoted R, and is equipped with two binary operations,

often denoted + and ·, that satisfy the ring axioms [13]. The ring axioms are as

follows:

1. R is an abelian group under addition:

• (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

• a+ b = b+ a for all a, b ∈ R.

• There exists an additive identity element 0 ∈ R such that a+ 0 = a for for

all a ∈ R.

• There exists an additive inverse element −a ∈ R such that a+−a = 0 for

all a ∈ R.

2. R is a monoid under multiplication:

• (a · b) · c = a · (b · c) for all a, b, c ∈ R.

• There exists a multiplicative identity element 1 ∈ R such that a ·1 = 1 ·a =

a for for all a ∈ R.
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3. R is distributive under multiplication:

• a · (b+ c) = (a · b) + (a · c) for all a, b, c ∈ R.

• (b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R.

The primary type of rings of interest are generalized quotient ring of polynomial rings.

A polynomial ring is that is formed from the set of polynomials with one or more

indeterminates with coefficients of elements from another ring or field. A polynomial

ring, represented as K[x], over the indeterminate x with coefficient in the ring or field

K, has the form of

∞∑
i=0

aix
i

where the coefficients ai are elements of K. The quotient ring, K[x]/(f(x)), where

f(x) ∈ K[x], is set of elements in K[x] mod f(x). A d-th cyclotomic polynomial is

the unique irreducible polynomial with integer coefficients which divides xd − 1 but

does not divide xk − 1 for all values k < d [14, 13]. If f(x) is the d-th cyclotomic

polynomial, φd(x), then the ring can be uniquely represented by all the polynomials

in K[x] with degree less than that of n = ϕ(d), where ϕ is Euler’s totient function

[14]. Any addition and multiplication operations involving two elements from the ring

follow the same form of addition and multiplication of polynomials but the result is

reduced modulo φd(x).

As such, polynomial ring elements as described before can be expressed as polyno-

mials with normal addition and multiplication operations. For example, let φd(x) =

x4 − 1 and elements a = x3 + x + 1, and b = x2 + x + 1 where x, y ∈ Z/φd(x). The

addition of x and y follow polynomial component wise addition:

a+ b = (x3 + x+ 1) + (x2 + x+ 1) = x3 + x2 + 2x+ 2.

The multiplication of x and y follow polynomial component wise distributive multi-

plication where the result is reduced modulo φd(x):
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a · b = ((x3 + x+ 1) · (x2 + x+ 1)) mod x4 − 1

a · b = (x5 + x4 + 2x3 + 2x2 + 2x+ 1) mod x4 − 1

a · b = 2x3 + 2x2 + 3x+ 2.

Note that, traditionally, modular reduction can be efficiently performed using the

Extended Euclidean method [15].

3.2 Lattices

The algebraic construct of the lattice has had an increasing presence in cryptography

primarily for hardness problems that rely on its underlying structure that is shown

to be resistant to currently known quantum computer algorithms [1]. Gentry uses

lattices, albeit primarily to take advantage of the shallow depth of the decryption

circuit of lattice-based cryptography schemes, as part of his strategy for formulating

a FHE scheme.

Let Rm be an m-dimensional vector of real numbers. A lattice in Rm is the set

L = L(b1, ..., bn) =

{
n∑
i=1

xibi : xi ∈ Z
}

of all combinations of n linearly independent vectors b1, ...,bn, where bi ∈ Rn [1, 14].

The integer n is called the rank of the lattice and the integer m is called the dimension

of the lattice. It is common to work with lattices that are full-rank, or in other words,

where m = n. The sequence of bi is called the basis of the lattice and is usually

represented as matrix

B = [b1, ...,bn] ∈ Rmxn.

with the basis vectors as columns. Any given lattice has an infinite number of bases.

For any lattice vector z, the vector x = (x1, ..., xn) is called the coefficient vector

where z = Bx. For a given lattice vector z, the `p norm of the vector, denoted ||z||p,

is a strictly positive value that follows
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||z||p =
( n∑
i=1

|xi|p)1/p
)

.

In other words, ||z||p defines the length or size of the vector z.

Geometrically speaking, a lattice can be represented as a set of infinite points of

an n-dimensional grid. For example, a 2-dimensional lattice can be represented as in

Fig. 3.1 [1]. The the basis of lattice in Fig. 3.1 is

B =

1 1

2 −1


where any point is the result of a linear combination of integer coefficients of the basis

vectors

b1 =

1

2

, b2 =

 1

−1

.

Figure 3.1: Example of a 2-dimensional Lattice [1]
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3.3 Shortest Vector Problem

The Shortest Vector Problem (SVP) is one of the most well-known hard problems on

lattices. Let λ(L) be the length of the shortest vector in the lattice L with dimension

n defined by basis matrix B. The SVP is formally defined as

minimizex∈Zn,x 6=0||Bx||p

and return x [16]. The problem essentially asks to find the shortest vector in L with

length λ(L).

An approximate version of the problem, denoted SVPγ(n), asks to find a non-zero

vector whose length is at most γ(n) ·λ(L). The approximation version of the problem

essentially asks to find a vector who is relatively short.

3.4 Closest Vector Problem

The Closest Vector Problem (CVP) is another hard problem on lattices. Let L be a

lattice with dimension n defined by basis matrix B and t ∈ Rm be vector that does

not necessarily lie on the lattice. The CVP is formally defined as

minimizex∈Zn||Bx− t||p

and return x [16]. The problem essentially asks to find a vector in L that lies closest

to the given vector t.

3.5 Learning with Errors

The Learning With Errors (LWE) problem is a hard problem that was first proposed

by Oded Regev [17]. The problem is defined formally as follows. Fix a size parameter

n ≥ 1, a modulus q ≥ 2, and a distribution χ on Zq. Set a secret vector s ∈ Znq .

Sample an arbitrary length sequence of vectors ai ∈ Znq uniformly at random and
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ei ∈ Zq according to χ. The LWE problem claims that it is difficult to retrieve s with

high probability provided a sequence of tuples in the form of (ai, 〈ais〉+ ei) [17, 18].

The problem has been shown to be reduced to worst-case lattice problems [17, 18, 19].

For example, say for n = 3 and q = 17, let

12s1 + 3s2 + 7s3 ≈ 11 mod 17

3s1 + 1s2 + 3s3 ≈ 1 mod 17

4s1 + 8s2 + 9s3 ≈ 6 mod 17

be the linear combinations obtained from the calculating the cross products of vectors

ai and s where

a1 =


12

3

4

 , a2 =


3

1

8

 , a3 =


7

3

9

 s =


s1

s2

s3


and adding a small noise term sampled uniformly from -1 and 1 to each result. LWE

claims that it is difficult to find vector s. The solution is

s =


1

2

4

.

3.6 Ring Learning with Errors

The Ring-Learning With Errors (R-LWE) problem is a special case of LWE that

instead handles with algebraic ring structures [18]. The R-LWE problem is defined

as follows. Fix a dimension parameter n ≥ 1 where n is a power of 2 and a prime

modulus q ≥ 2 satisfying q = 1 mod 2n. Rq is a ring defined by Zq[x]/〈xn + 1〉 and

let χ be some distribution over Rq. Set a secret element s ∈ Rq. Sample an arbitrary

length sequence of elements ai ∈ Rq uniformly at random and ei ∈ Rq according to

χ. The R-LWE problem claims that it is difficult to retrieve s with high probability
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provided a sequence of tuples in the form of (ai, ai ·s+ei) [17, 18]. The R-LWE scheme

offers increased efficiency over LWE in the context of cryptographic applications. For

example, each (a, b) ∈ Rq × Rq sample from the R-LWE distribution can replace n

samples (a, b) ∈ Zn
q × Zq from the LWE distribution. This exhibits itself in reduced

key sizes as well as faster computations. The RLWE problem is also reduced to hard

lattice problems [19].

For example, say for n = 4 and q = 17, let

(3x3 + 5x2 + 7x+ 10)s ≈ 13x3 + 11x2 + 7x+ 11 ∈ Rq

(12x3 + 14x2 + 3x+ 6)s ≈ 13x3 + 12x2 + 5x+ 10 ∈ Rq

(2x3 + 1x2 + 6x+ 6)s ≈ 12x3 + 5x2 + 14x+ 13 ∈ Rq

(3x3 + 9x2 + 12x+ 15)s ≈ 13x3 + 11x2 + 15x+ 1 ∈ Rq

be the linear combinations obtained from the calculating the products of ring elements

ai and s where

a1 = 3x3 + 5x2 + 7x+ 10 ∈ Rq

a2 = 12x3 + 14x2 + 3x+ 6 ∈ Rq

a3 = 2x3 + 1x2 + 6x+ 6 ∈ Rq

a4 = 3x3 + 9x2 + 12x+ 15 ∈ Rq

and adding a small noise term where the coefficients are sampled uniformly from

-1 and 1 to each result. R-LWE claims that it is difficult to find the ring element s.

The solution is

s = 13x3 + 2x2 + 3x+ 2 ∈ Rq.
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Fully Homomorphic Encryption Schemes

4.1 Preliminaries and Notation

Both the message space and ciphertext space of the schemes are defined with some

relation to the ring R. The ring R is defined as Z[X]/(φd(X)) for an integer d. The

set of elements in R can thus be uniquely represented as all polynomials of degree

less than n = ϕ(d) with integer coefficients. These elements may be represented as a

vector with elements from the coefficients of the polynomial form. The coefficients of

all ciphertext elements are often reduced by an integer q which is denoted by a map,

[·]q, that reduces a given coefficient element by modulo q into the interval (−q/2, q/2].

This mapping extends to a ring element by applying the map to each individual

coefficient of the polynomial. A second coefficient modulus t < q determines the

plaintext message space R/tR, or in other words, where messages are in R with

coefficients modulo t. An integer w is used to represent integers in a radix-w system.

Let `w,q = blogw(q)c + 1. The notation Rq is used to denote the ring R whose

coefficients are reduced by the modulus q. For a ring or field K, the notation Kn

denotes an n-tuple list of elements from the the ring or field K. Elements that are a

single element are denoted in lowercase notation such as z and vectors or tuples are

denoted in lowercase boldface notation z.

The schemes define two functions Dw,q and Pw,q which are called the word decom-
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position and powers of functions, respectively. The notion of the word decomposition

function follows that since an integer z in the interval (−q/2, q/2] can be written

uniquely as
∑`w,q−1

i=0 ziw
i where zi are integers within the bound [0, w], then a ring

element x ∈ R can be written as
∑`w,q−1

i=0 xiw
i where xi ∈ R with coefficients in

(−w/2, w/2]. The word decomposition function is defined as

Dw,q : R→ R`w,q , x 7→ ([x0]w, [x1]w, ..., [x`w,q−1]w).

In other words, the word decomposition function maps a ring element to a vector of

`w,q elements where each vector element is a ring element whose coefficients are the

individual word decompositions of the individual original coefficients. The powers of

function is defined as

Pw,q : R→ R`w,q , x 7→ ([x]q, [xw]q..., [xw
`w,q−1]q).

In other words, the powers of function maps a ring element to a vector of `w,q ele-

ments where each vector element is the original ring element scaled with an iteratively

increasing exponential of the radix integer. The Powersof2 function is a special de-

notation of the powers of function for a radix value of 2.

4.2 Brakerski-Gentry-Vaikuntanathan Scheme

The Brakerski-Gentry-Vaikuntanathan (BGV) [20] presented a novel leveled fully

homomorphic scheme with large improvements in performance at the cost of weaker

security assumptions. The scheme still primarily relies on R-LWE problem as a

security basis. The objective of the BGV scheme focuses on improving the per-

gate computation of the homomorphic operations. BGV builds off of the techniques

introduced by the BV scheme such as their method of avoid the squashing method

[21]. A core component of this construction, however, is its effective way for managing

the noise of the ciphertext terms by improving the modulus switching technique from

22



CHAPTER 4. FULLY HOMOMORPHIC ENCRYPTION SCHEMES

BV [21]. BGV uses an iterative approach to the modulus switching technique so that

the noise grows linearly instead of quadratically with homomorphic multiplication

operations at the expense of gradually reducing the homomorphic capacity. With

this technique, it is able to effectively avoid the bootstrapping method to create a

leveled fully homomorphic scheme and evaluate an L-level circuit with Õ(λ ·L3) per-

gate computation complexity. However, Brakerski et. al. do propose a follow-up

scheme that uses bootstrapping, somewhat ironically, as an optimization to achieve

Õ(λ2) per-gate computation complexity that is independent of the circuit depth. All

ciphertexts are represented as a pair of ring elements.

The basic leveled BGV scheme based on the R-LWE assumption is stated [20].

Note that another version of the scheme that implements bootstrapping to construct

a completely FHE scheme from BGV is provided by [20].

• ParamsGen(λ, L): Given the security parameter λ, fix a positive integer d that

determines R and a distribution χ on R. For j = L down to 0, generate a

decreasing ladder of moduli qi. Output (d, qi, χ).

• KeyGen(d, q, χ): For j = L down to 0, Sample s′i ← χ and set si = (1, s′i).

Sample a′i ← Rqi uniformly and an element ei ← χ and set bi = a′is
′
i + 2ei.

Set ai = (bi,−a′i)T . Set s′j = sj ⊗ sj ∈ R
(2
2)
qj . Set bi = ai+ Powersof2(si) (Add

Powersof2(s1) ∈ Rdlog2(qi)eqi to the a’s first column). Set τs′j+1→sj = bi except for

when j = L. Set the secret key sk to a vector of si and the public key pk a

vector of ai and a vector of τs′j+1→sj is a public parameter.

• Encrypt(pk, m): To encrypt a message m ∈ R2, set m = (m, 0) ∈ R2
2. Sample

r ← χ and e← χ2 output the ciphertext

c = m + 2 · e + aTL · r ∈ R2
qL

.

• Decrypt(sk, c): Suppose the ciphertext c is encrypted under sj. To decrypt c,

compute
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m = [[〈c, sj〉]qj ]2.

• SwitchKey(τs′j → sj−1, c, qj): Output the new ciphertext

c1 = BitDecomp(c)T · bj.

• Refresh(c, τs′j → sj−1, qj, qj−1): Suppose the ciphertext is encrypted under s′j.

Do the following:

1. Switch Keys: Set c1 ← SwitchKey(τs′j → sj−1, c, qj), a ciphertext under

the key sj−1 for modulus qj.

2. Switch Moduli: Set c2 ← Scale(c1, qj, qj−1, 2), a ciphertext under sj−1 for

modulus qj−1.

• Add(pk, c1, c2): Takes two ciphertexts encrypted under the same sj (Use Refresh

to make it so if they are not). Set c3 = c1 + c2, a ciphertext encrypted under

s′j. Output the ciphertext

cadd =Refresh(c3, τs′j → sj−1, qj, qj−1).

• Mult(pk, c1, c2): Takes two ciphertexts encrypted under the same sj (Use Re-

fresh to make it so if they are not). Set c3 to the coefficient vector of Llongc1,c2
(x⊗x).

Output the ciphertext

cmult =Refresh(c3, τs′j→sj−1
, qj, qj−1).

4.3 Brakerski/Fan-Verauteren Scheme

The Brakerski/Fan-Verauteren (BFV) [22], also commonly denoted FV, is a port of

the scale-invariant FHE B12 scheme by Brakerski [23] based on the LWE assumption

into one based on the R-LWE assumption. FV also exhibits two methods for relin-

earization that are more optimal than the technique used in B12. In addition, despite
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the avoidance of the technique in [23], FV introduces modulus switching from [21] as

an optimization just as the BGV scheme for bootstrapping proposes. Like BGV and

a few others, FV avoids the use for the squashing technique. The FV scheme offers

a fully constructed leveled FHE scheme whose noise grows linearly with the depth of

the evaluation circuits due to the scale-invariance techniques adopted from B12. All

ciphertexts are represented as a pair of ring elements.

The leveled FV scheme based on the first variation of the relinearization technique

is stated [22]. Note that another version of the scheme that implements bootstrapping

to construct a completely FHE scheme from FV is provided by [22].

• ParamsGen(λ): Given the security parameter λ, fix a positive integer d that

determines R, moduli q and t with 1 < t < q, and distributions χkey, χerr on

R. Choose an integer radix w. Output (d, q, t, χkey, χerr, w).

• KeyGen(d, q, t, χkey, χerr, w): Sample s ← χkey. Sample a← Rq uniformly at

random, e← χerr, and compute b = [−(as+ e)]q. Sample a← R
`w,q
q uniformly

at random, e ← χ
`w,q
err , and compute γ′ = [Pw,q(s

2)− (e + as)]q ∈ R`w,q and set

γ = (γ′, a). Output (pk, sk, evk) = ((b, a), s, γ).

• Encrypt((b, a), m): The message space isR/tR. Sample u← χkey, e1, e2 ← χerr,

and output the ciphertext

c = ([b q
t
c[m]t + e1 + bu]q, [e2 + au]q) ∈ R2.

• Decrypt(s, c): To decrypt a ciphertext c = (c0, c1), compute

m = [b t
q
[c0 + c1s]qe]t ∈ R.

• Relin(c̃mult, evk): Let (b, a) = evk and c̃mult = (c0, c1, c2). Output the cipher-

text

c̃mult2 = ([c0 + 〈Dw,q(c2),b〉]q, [c1 + 〈Dw,q(c2), a〉]q).
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• Add(c1, c2): Let c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1). Output the ciphertext

cadd = ([c1,0 + c2,0]q, [c1,1 + c2,1]q).

• Mult(c1, c2, evk): Output the ciphertext

cmult = Relin(c̃mult, evk), where

c̃mult = (c0, c1, c2) = ([b t
q
c1,0c2,0e]q, [b tq (c1,0c2,1 + c1,1c2,0)e]q, [b tqc1,1c2,1e]q).

4.4 YASHE

The Yet Another Somewhat Homomorphic Encryption (YASHE) scheme is a leveled

fully homomorphic encryption scheme developed by Bos et. al [6] based on the Stehlé

and Steinfeld [24] and López-Alt et al. [25] encryption schemes. The scheme’s se-

curity is based on the Ring-Learning With Error (R-LWE) hardness assumption [19]

that has been gaining traction in the cryptographic community due to its promising

performance and security properties. The scheme offers a regularization technique to

perform a key switching operation after multiplication to transform the ciphertext to

one encrypted under the original key and as well as prevent the need to expand the

ciphertext size after each operation. Its ciphertext is representable with a single ring

element and the scheme offers promising performance benefits.

The more practical variant of the YASHE scheme is stated [6].

• ParamsGen(λ): Given the security parameter λ, fix a positive integer d that

determines R, moduli q and t with 1 < t < q, and distributions χkey, χerr on

R. Choose an integer radix w. Output (d, q, t, χkey, χerr, w).

• KeyGen(d, q, t, χkey, χerr, w): Sample f ’, g ← χkey and let f = [tf ′ + 1]q. If f

is not invertible modulo q, choose a new f ’. Compute the inverse f−1 ∈ R of f

modulo q and set h = [tgf−1]q. Sample e, s ← χ
`w,q
err , compute γ = [Pw,q(f) +

e + hs]q ∈ R`w,q . Output (pk, sk, evk) = (h, f , γ).
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• Encrypt(h, m): The message space is R/tR. Sample s, e ← χerr and output

the ciphertext

c = [b q
t
c[m]t + e+ hs]q ∈ R.

• Decrypt(f , c): To decrypt a ciphertext c, compute

m = [b t
q
[fc]qe]t ∈ R.

• KeySwitch(c̃mult, evk): Output the ciphertext [〈Dw,q(c̃mult), evk〉]q.

• Add(c1, c2): Output the ciphertext

cadd = [c1 + c2]q.

• Mult(c1, c2, evk): Output the ciphertext

cmult = KeySwitch(c̃mult, evk), where c̃mult = [b t
q
c1c2e]q.

4.5 YASHE Toy Example

To better demonstrate the data structures and homomorphic properties of the YASHE

scheme, a toy example is provided. The example demonstrates the encryption, de-

cryption, binary addition, and binary multiplication operations, the intermediate

operations involved, and how the resulting data looks.

4.5.1 Preliminaries

For the purposes of keeping the example small and comprehensible, the security of

the scheme is ignored and instead the parameters are chosen to keep the sizes of the

ring elements small. The integer d is chosen to be 8 to set the modulus polynomial

of the ring R to the d-th cyclotomic polynomial, φd(x), of x4 + 1. This limits the
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elements of the ring R to polynomials of degree ϕ(8) = 4. The modulus parameter

q is chosen to be 601 which determines the coefficient bounds of the polynomials.

The modulus parameter t is chosen to be 2 since no batching will be utilized for the

example and only bits of data are handled. The integer radix value w is chosen to be

2 for simplicity. Define `w,q = 10.

The distribution χkey is chosen to be a uniform distribution of the values of -1,

0, and 1. The distribution χerr is chosen to be a bounded normal distribution with

bounds of -3 and 3. When the scheme asks calls to sample a polynomial from the one

of the distributions, it is sufficient to think of the sampling as setting every coefficient

of the polynomial to a random sample from the distribution described.

The ring operations for addition and multiplication follow the same rules for poly-

nomial addition and multiplication but all results are implicitly reduced by φ8(x).

All examples were computed and evaluated using an implemented Matlab script

that performed all operations utilizing Matlab’s polynomial evaluation functions.

4.5.2 Key Generation

Ring elements f ′ and g are sampled from χkey:

f ′ = −x2 + x

g = −x3 + x2 − x+ 1

The ring element f is computed using f ′:

f = [tf ′ + 1]q

f = [(2)(−x2 + x) + 1]601

f = −2x2 + 2x+ 1

The ring element f−1 is computed using an inverse method such as the Extended

Euclidean algorithm [15]:

f−1 = 255x3 − 148x2 + 280x+ 206
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The ring element h is computed using g and f−1:

h = [tgf−1]q

h = [(2)(−x3 + x2 − x+ 1)(255x3 − 148x2 + 280x+ 206)]601

h = −248x3 + 66x2 − 57x− 25

Values e and s are sampled `w,q times from χerr. The `w,q-element vector of ring

elements that composes γ is calculated from e, s, and h by calculating [Pw,q(f)+e+hs]q

to generate an `w,q number of ring elements. Each iteration of the calculation is

represented in Table 4.1.

The public key pk = h, the secret key sk = f , and the evaluation key evk = γ.

4.5.3 Encryption

Let plaintext messages, m1 and m2, be two binary values 0 and 1, respectively. Two

ciphertexts, c1 and c2, can be computed for each bit message using the encryption

function. The values for e and s are sampled from χerr for each encryption. This

function requires the knowledge of the public key:

c1 = [b q
t
c[m1]t + e1 + hs1]q

c1 = [(300)(0) + (−x3 + 2x+ 1) + (−248x3 + 66x2 − 57x− 25)(x2 + x+ 1)]601

c1 = −240x3 − 16x2 + 168x+ 158

c2 = [b q
t
c[m2]t + e2 + hs2]q

c2 = [(300)(1) + (3x3 − 1) + (−248x3 + 66x2 − 57x− 25)(−x3 − 2x2 + x)]601

c2 = 208x3 − 255x2 + 146x+ 21

4.5.4 Decryption

The two ciphertexts, c1 and c2, can be decrypted using the decryption function. This

function requires the knowledge of the secret key:

m1 = [b t
q
[fc1]qe]t
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m1 = [b 2
601

[(−2x2 + 2x+ 1)(−240x3 − 16x2 + 168x+ 158)]601e]2

m1 = [b1.977x3 + 0.013x2 + 0.013x+ 0.017e]2

m1 = [2x3 + 0x2 + 0x+ 0e]2

m1 = 0

m2 = [b t
q
[fc2]qe]t

m2 = [b 2
601

[(−2x2 + 2x+ 1)(208x3 − 255x2 + 146x+ 21)]601e]2

m2 = [b.023x3 + 1.983x2 + 0.010x+ 0.988e]2

m2 = [0x3 + 2x2 + 0x+ 1e]2

m2 = 1

4.5.5 Homomorphic Addition

The two ciphertexts, c1 and c2, can be homomorphically added by performing a ring

element addition with both ciphertexts:

c3 = [c1 + c2]q

c3 = [(−240x3 − 16x2 + 168x+ 158) + (208x3 − 255x2 + 146x+ 21)]601

c3 = −32x3 − 271x2 − 287x+ 179

Decrypting the result shows that the two underlying plaintext values were evaluated

under binary addition:

m3 = [b t
q
[fc3]qe]t

m3 = [b 2
601

[(−2x2 + 2x+ 1)(−32x3 − 271x2 − 287x+ 179)]601e]2

m3 = [b0x3 + 1.997x2 + 2.329x+ 1.005e]2

m3 = [0x3 + 2x2 + 2x+ 1e]2

m3 = 1 = m1 +m2

4.5.6 Homomorphic Multiplication

The two ciphertexts, c1 and c2, can be homomorphically multiplied by performing

a multi-step process. First, an intermediate multiplication ciphertext, c̃mult, is com-
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puted:

c̃mult = [b t
q
c1c2e]q

c̃mult = [b 2
601

(−240x3 − 16x2 + 168x+ 158)(208x3 − 255x2 + 146x+ 21)e]601

c̃mult = −58x3 + 113x2 − 104x− 2

The ciphertext results in a homomorphic evaluation of the plaintext data under mul-

tiplication, however, due to the quadratic overhead of polynomial multiplication, it

is technically encrypted under the square of the secret key. In fact, this data could

be decrypted with such a key. However, since the data is intended to be reused for

further evaluation, a key switching mechanism is used to align the ciphertext to the

original secret key. First, the word decomposition of c̃mult is computed using the

binary bit decomposition of all the coefficients. The binary representation of each

of the coefficients in c̃mult is represented in Table 4.2. Note that the elements are

expressed in their positive integer form by the modulus 601.

Table 4.2: Bit Decomposition of c̃mult coefficients

Bit 9 8 7 6 5 4 3 2 1 0

C
o
effi

ci
en

t

543 1 0 0 0 0 1 1 1 1 1

113 0 0 0 1 1 1 0 0 0 1

497 0 1 1 1 1 1 0 0 0 1

599 1 0 0 1 0 1 0 1 1 1

The routine Dw,q(c̃mult) is used to generate `w,q-element vector of ring elements

generated from the bit compositions of each of the coefficients that make up the entire

ring element. Each iteration of the calculation and the resulting ring elements that

compose of the entire word decomposition of c̃mult is represented in Table 4.3.
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Table 4.3: Iterative Evaluation for c̃mult Word Decomposition

i Dw,q(c̃mult)

0 1x3 + 1x2 + 1x+ 1

1 1x3 + 0x2 + 0x+ 1

2 1x3 + 0x2 + 0x+ 1

3 1x3 + 1x2 + 1x+ 0

4 1x3 + 1x2 + 1x+ 1

5 0x3 + 1x2 + 1x+ 0

6 0x3 + 1x2 + 1x+ 1

7 0x3 + 0x2 + 1x+ 0

8 0x3 + 0x2 + 1x+ 0

9 1x3 + 1x2 + 1x+ 1

The final ciphertext, c3, is computed using the key switch routine. The key switch

routine calls to compute the cross product between word decomposition of c̃mult vector

and the evaluation key vector. The results of each individual multiplication element

and then the summation of the components is represented in Table 4.4. All operations

are performed implicitly using the ring multiplication operation with a modulus of

601.
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Table 4.4: Cross Product Evaluation for 〈Dw,q(c̃mult), evk〉

i Dw,q(c̃mult)i · evki

0 −184x3 + 96x2 − 300x+ 42

1 −163x3 − 179x2 − 233x− 15

2 −275x3 − 213x2 + 267x− 151

3 −129x3 + 195x2 − 156x− 86

4 −276x3 − 25x2 − 117x+ 97

5 −204x3 − 245x2 − 115x− 262

6 257x3 − 86x2 − 129x− 205

7 288x3 − 15x2 − 158x− 124

8 172x3 + 290x2 + 77x+ 7

9 45x3 − 14x2 − 187x+ 165

Sum 157x3 − 176x2 + 151x+ 69

The resultant ciphertext, c3, is therefore computed to be 157x3+425x2+151x+69.

Decrypting the result shows that the two underlying plaintext values were evaluated

under binary multiplication:

m3 = [b t
q
[fc3]qe]t

m3 = [b 2
601

[(−2x2 + 2x+ 1)(157x3 + 425x2 + 151x+ 69)]601e]2

m3 = [b0.346x3 + 1.960x2 + 0.007x+ 0.0131e]2

m3 = [0x3 + 2x2 + 0x+ 0e]2

m3 = 0 = m1 ∗m2
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Parameter Selection

There are a few concerns regarding the parameter selection of the FHE schemes. The

parameters chosen for the implementation of a scheme have an effect on the several

components of the scheme: security, ciphertext size, performance, circuit evaluation

depth, and the plaintext space. The main difficulty with choosing the ”best” pa-

rameters is that each of the components seem to be heavily intertwined such that

one particular selection of parameters may have a positive effect on one component

but an adverse effect on another. The main parameters that influence each of these

components are the polynomial ring degree, denoted n, and the ciphertext coefficient

modulus, denoted q. Other parameters that have an influence, but are not examined

as heavily as the other two, are the secret and error distribution parameters, χkey and

χerr.

5.1 Security

The analysis of the security R-LWE based schemes is not very straight forward due to

the influence on the security from the mix of parameters. The security lies primarily

in the masking of the plaintext data with the noise terms that are randomly sampled.

In addition, the number of coefficients of each ring and the size of the coefficients,

ie. the parameters n and q, have an effect on the analysis of finding the secret

element. There has been a recent effort for standardization of FHE schemes and the
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analysis of their security [26] in order to provide a recommendation of parameters.

The authors made an security analysis for varying parameters by evaluating the bit

security strength against three known attack algorithms: the unique shortest vector

attack (uSVP) [27], the decoding attack [28, 29], and the dual attack [30]. These three

attacks are based heavily off the usage of the BKZ-2.0 lattice reduction algorithm [31].

The authors based their analysis off of the analysis of Albrecht, Player, and Scott [29]

who provide an open source and online estimator tool. In order to simplify their

analysis, the error distribution is set constant to a Discrete Gaussian distribution

with width γ = 8/
√

2π and focusing on the effects of choosing a secret distribution

from the uniform, error, and ternary (ie. uniformly from -1, 0, 1) distributions. For a

desired bit security parameter, their analysis describes the required upper bound on

coefficient size (in bits) of the coefficient modulus q for varying ring degrees n. We

first begin focus on a security level of 128-bits for the interest of this study and then

approach other security levels as needed. Although the authors provide a collection of

results for the three separate secret distributions, it was found that the upper bound

on the coefficient modulus q rarely varied more than a couple bits for a given degree

n value. In the interest of this study, the ternary distribution will be the focus for

the secret key distribution. The authors of YASHE provide a summary of similar

parameter that ensure 80-bit security [6]. We utilized the same estimator tool by

Albrecht et. al. [29] to obtain similar parameters that ensure 64-bit security. A

summary of the results of the varying security analysis of the study is represented

in Table 5.1. The upper bound of the coefficient size increases as the degree of the

ring increases, so if any reason asks for it, a larger coefficient can be used as long as

the ring degree is chosen appropriately. It should be noted, however, that the upper

bound of the coefficient size decreases for higher levels of security [26].
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Table 5.1: R-LWE Based FHE Parameters for Varying Security Levels

n log2(q) security
1024 56 64

- 80
29 128
21 192
16 256

2048 110 64
79 80
56 128
39 192
31 256

4096 218 64
157 80
111 128
77 192
60 256

8192 438 64
312 80
220 128
154 192
120 256

16384 885 64
622 80
440 128
307 192
239 256

32768 - 64
1243 80
880 128
612 192
478 256
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5.2 Ciphertext Size

Ciphertext expansion, or the ratio between a plaintext and ciphertext space, is an

important concern with FHE schemes as it tends to be large. The ciphertexts are

represented with ring elements in the BGV, FV, and YASHE schemes. Therefore, it is

easy to see that the size of the ciphertext would be directly related to the ring degree

and coefficient sizes and no relation to the secret and error distributions chosen. For

each ring element involved in representing a ciphertext, the minimal amount of space

required to represent the ring, not accounting for overhead, would be the ring degree,

n, times the coefficient size, log2(q). Furthermore, for evaluation purposes, data is

encrypted bit-wise, so the ciphertext expansion for an l-bit value would be l·n·log2(q).

A table of ring element sizes for a single bit encryption, ignoring the the technique

of batching [32], with similar parameters listed in Table 5.1, is represented in Table

5.2. It is obvious to see that maintaining a small selection of parameters is important

for minimizing the ciphertext expansion because it is large even for relatively small

parameters.

5.3 Plaintext Space

There are two components of the plaintext space as it relates to the parameter n.

For a plaintext modulus t, which is normally set to 2, the BGV, FV, and YASHE

schemes define a plaintext space Rt as it relates to the ring R defined by ring degree

parameter. Normally, a single bit defined by the modulus 2 would be encrypted at

a time as this allows a boolean circuit to be homomorphically evaluated with the

data. However, a user is not technically restricted to do such. A user can indeed

use all n slots of the polynomial to encode a given message; however, this restricts

their homomorphic operations to the finite field of GF (2t) under the irreducible of

the ring, φ(X).
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Table 5.2: Ciphertext Ring Element Sizes of Varying Parameters

n log2(q) Ring Element Size (kB)
1024 56 7

29 3.625
21 2.625
16 2

2048 110 27.5
79 19.75
56 14
39 9.75
31 7.75

4096 218 109
157 78.5
111 55.5
77 38.5
60 30

8192 438 438
312 312
220 220
154 154
120 120

16384 885 1770
622 1244
440 880
307 614
239 478

32768 1243 4972
880 3520
612 2448
478 1912

The more important aspect of the influence of n applies to the batching technique

optimization. Batching effectively encrypts multiple plaintext blocks into a single

encryption where follow up homomorphic circuits apply separately to each block

but only requires the computation of a single execution [32]. The technique works

through a crafty construction of changing the plaintext modulus t to a prime and then

performing homomorphic operations on t-mod circuits. Through use of the Chinese

Remainder Theorem [15], evaluating a circuit over the plaintext can be thought of

operating on the individual factors of the modulus. The only restriction is that t
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must be selected such that t is a prime and t = 1 mod 2n. A larger degree value

n increases the number of batch slots that the plaintext can support. It should be

noted, however, that such a technique induces slightly more noise into ciphertext [20],

however, this is usually outweighed by increased throughput of the system.

5.4 Performance

The main concern with large parameters for n and q is their effect on the homomorphic

operation execution time, primarily that of the multiplication operation. Since the

ciphertext elements are synonymous with a polynomial representation, the execution

time of performing such an operation will scale dramatically with n. The operation

overhead of the naive approach to polynomial multiplication is at least quadratic

O(n2) [33]. However, there do exist algorithms such as the Karatsuba [34] and Fast

Fourier Transform (FFT) [33] with reduced complexities of O(n1.584) and O(n log(n)),

respectively; however, despite the reduction in computation cost, it can be seen how

large values of n can still have a significant impact on the expected complexity of

these algorithms. It should also be noted that although these algorithms do not

normally account for coefficient sizes whereas large coefficients are speculated to have

similar adverse effects on performance. Considering that these operations will likely

be executed many times, it is vital that these parameters be kept as small as possible.

5.5 Circuit Depth

The trend for parameter selection is to keep the parameters n and q as small as

possible. The main culprit that prevents such small parameters from being used is

the desired evaluation circuit depth. It should be noted that for YASHE, and for

other schemes in general, that a ciphertext decrypts incorrectly if the norm of the

noise term of the ciphertext exceeds half of q [6]. Due to the noise growth involved
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in the homomorphic operations, the circuit depth L that a scheme can evaluate is

limited by how fast the noise will grow with respect to q. Intuitively, if the error that is

embedded in a ciphertext is sampled from a small distribution, the noise should grow

slower than that of a ciphertext whose noise is sampled from a wide distribution. In

addition, given an error distribution, the depth of a circuit that YASHE can evaluate

increases with an increasing value for q which conflicts with the notions parameter

selection for security and performance. The YASHE scheme defines that the bounds

for L must satisfy

2(1 + ε1)
L−1δ2Lt2L−1BL

key((1 + ε1)tV + L(tBkey + t2 + `w,qwBerr)) < (b q
t
c+ [q]t),

where ε1 = 4(δtBkey)
−1, δ = n, Berr is the bound of the error distribution, Bkey

is the bound of the key distribution, lw,q is the number of w-bits in q, and V =

ntBkey(2Berr + [t]q/2) is the amount of inherent noise in a ciphertext [6]. Thus,

theoretically, the expected guaranteed depth L that YASHE can evaluate can be

calculated using the elaborate equation with assumptions based on the bounds of the

error growth in a ciphertext and others parameters. A python script was written to

determine the maximum value of the evaluation depth L that passes the inequality

equation when w = 232, Bkey = 1, Berr = 48, and t = 2. The guaranteed evaluation

depth L that the YASHE scheme can evaluate with the parameters chosen for the

proposed security levels is represented in Table 5.3. It should be noted, however,

that the evaluation depth is slightly deeper as the authors of YASHE note that their

bounds equation is very conservative with regards to the parameters [6] and thus

should be regarded more as a guide than a rule. It should also be noted by the values

presented that YASHE offers a relatively shallow multiplicative depth, especially for

smaller parameters, which is a serious concern.
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Table 5.3: Expected Multiplication Evaluation Depth of Varying Parameters

n log2(q) L
1024 56 1

29 0
21 0
16 0

2048 110 3
79 2
56 1
39 0
31 0

4096 218 7
157 5
111 3
77 2
60 1

8192 438 14
312 10
220 7
154 4
120 3

16384 885 28
622 19
440 13
307 9
239 7

32768 1243 38
880 26
612 18
478 14

5.6 Anticipated Issues

The primary concerns and focus of this thesis is on the performance and efficiency

of FHE schemes and how it will affect the practicality of applying such schemes to a

cross domain solution. These problems stem from the complexity of the mathematical

structures required to utilize the hardness problems that the FHE schemes rely on.

The main culprit for this is that the data needs to be encrypted bitwise in order to

take advantage of the homomorphic evaluation properties. Each bit of a plaintext
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value needs to be encrypted under the FHE scheme and results in a ciphertext for

each individual bit. This also means that all operations on encrypted data must be

evaluated using a circuit that operates bitwise with a combination of gates from a

functionally complete set of logic gates. Generally, this set happens to include bitwise

addition, which is analogous to a logic XOR-gate, and bitwise multiplication, which

is analogous to a logic AND-gate, where each of these operations are performed under

the homomorphism property. This requirement complicates the evaluation of even

some of the most seemingly easy operations such as addition of two integers as such

circuits are complicated compared to the scale of the individual gate operations.

As the parameter selection investigation shows, there exists a complicated tan-

gling between the scheme parameters and their effects on security, performance, and

circuit evaluation correctness. With this and the consideration described prior, it can

be seen why fully homomorphic evaluation do result in large ciphertexts and poor per-

formance. Performance optimization desires that parameters q and n be kept small

to ensure homomorphic operations operate on simple structures. Circuit evaluation

correctness requires that the ciphertext coefficient q parameter be large to ensure

the scheme will allow enough homomorphic operations to ensure the utilized circuits

can be evaluated. And security of the homomorphic schemes place upper bounds

on parameter q for given parameter n which directly conflicts with the previous two

considerations. So it was important that all parameters configurations were explored

during experimentation in order to determine the best parameter selection for a given

application.

The notion of the significance of memory and performance results produced by

homomorphic encryption is supported by literature. For example, an AES-128 circuit

was homomorphically evaluated with an implementation of the BGV scheme [20] in

2015 in order to gain an empirical assessment of these qualities. The AES circuit

was chosen because of its natural benchmark features: AES is widely used, AES is
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nontrivial, and AES has a regular structure. Both a non-bootstrapped variant and

a bootstrap variant were implemented and compared for purposes of evaluating the

affect that bootstrapping has on the performance. For the non-bootstrapped variant,

120 AES blocks were packed into a single ciphertext and were encrypted and decrypted

homomorphically. For the bootstrapping variant, 180 AES blocks were packed into a

single ciphertext and were encrypted and decrypted homomorphically. The program

was executed on an Intel Core i5-3320M running at 2.6GHz with 4GB of RAM. The

execution results of the program is shown in Table 5.4 [35].

Table 5.4: Homomorphic AES Performance

Test m φ(m) lvls Q̄ security params/key-gen (s) Encrypt (s) Decrypt (s) memory

no bootstrap 53261 46080 40 886 150-bit 26.45/73.03 245.1 394.3 3GB
boostrap 28679 23040 23 493 123-bit 148.2/37.2 1049.9 1630.5 3.7GB

The authors found that it took about four minutes to process an entire AES-128

operation and required roughly 3GB of RAM when implemented without bootstrap-

ping. When they introduced the bootstrapping method, the operation time increased

to eighteen minutes and required roughly 3.7GB of RAM. Many optimization tech-

niques were utilized, such as SIMD batching techniques, that ultimately yielded an

amortized process rate of two seconds per AES block without bootstrapping and six

seconds per AES block with bootstrapping [35]. It is observable from such a proof-of-

concept implementation that performance is a serious concern as it takes a lot of time

and memory to process such a small amount of data. This improvement was only

achieved through the optimization techniques devised between the time of implemen-

tations. It is noted by the authors that better results could probably be obtained

using other methods such as utilizing parallelism techniques of which they did not

take advantage [35].
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Case Study

6.1 Implemented Scheme

The introduction of using the R-LWE hardness assumption as a basis for the second

generation schemes has severely cut down on the required memory resources to store

keys and ciphertexts as well as sped up the homomorphic operations. The FHE

scheme which was chosen for implementation was the YASHE scheme. The scheme

is one of the most recently of the proposed ”second” generation FHE schemes based

on the R-LWE assumption and has some promising performance optimizations over

the first generation schemes. It offers several features such as scale-invariance via a

key switching mechanism and single ring element ciphertexts.

The scheme was chosen over the other two examined schemes. The reason for

choosing YASHE over the BGV scheme is its relative simplicity over the BGV scheme.

The BGV scheme offers powerful features, however, it is hardly fit for a lightweight

application such as a network secure routing solution. It features large circuit depth

evaluation and optimized operations to compensate but it requires large scale imple-

mentations due to such requirements like its large keys. In addition, BGV implemen-

tation libaries such as HElib [36] are complicated and have limited documentation. As

such, it was decided it would be best to use a relatively smaller and simpler scheme.

The reason for choosing YASHE over the FV scheme is based primarily off of
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the comparison results of Lepoint et al. [7]. In the authors’ comparison study, they

found that FV’s operations with the exception of key generation take about twice as

long as to compute as YASHE’s. The decryption operation take roughly the same

amount of computation time. However, it should be noted that this might simply

be because of the ciphertext structure of FV since FV requires two ring elements to

represent a given ciphertext whereas YASHE only requires one. The comparison may

not be completely fair, therefore, as the operations of FV might be parallelizable in

regards to both its ring elements. However, this would only make the implementation

more complicated and it is speculated that both would have similar operation speeds

afterwards as the primitive operations involved are very similar so depending on such

an optimization is somewhat trivial.

6.2 SIMON

The SIMON block cipher is a lightweight block cipher that was publicly released by

the National Security Agency (NSA) in 2013 [2]. The cipher exhibits a balanced

Feistel network [37] with a round operation that consists of a mix of three simple

bitwise operations: shift, XOR, and AND. The cipher consists of a round function

and a key schedule function that are both executed repeatedly in series based on

the number of rounds defined by a selection of parameters. A block diagram of the

SIMON round function is represented in Fig. 6.1, where the operation Si denotes a

binary left rotation shift of i bits, the ⊕ operation denotes a binary XOR operation,

and the & operation denotes a binary AND operation. The SIMON cipher offers a

small collection of different groups of parameters to select based on block and key size

requirements. In particular, the key schedule round changes based on the parameter

configuration used. A block diagram of the SIMON key schedule function configured

for a block size of 32 bits and a 64-bit key is represented in Fig. 6.2. The variable c

is a constant set by the standard where c = 232 − 4 and zj is a periodic bit stream
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Figure 6.1: SIMON Block Cipher Round Function Block Diagram [2]

sequence zj = 1111101000100101011000011100110... where the term (zj)i refers to

the i-th bit of zj.

Figure 6.2: SIMON Block Cipher Key Schedule Function Block Diagram [2]

6.3 Case Study Scenario

The main focus of this work will be the cross domain solution application using HE.

The first step in analyzing the practicality of homomorphic encryption as a tool for

solving the cross domain problem is to establish a case study which contextualizes

the problem. This will reveal glaring issues and open up the problem for analysis
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of where HE can be applied. Following the analysis of the case study, a proof-of-

concept application can then be implemented using the YASHE and SIMON schemes

in order gain a practical profiling and gain some insight into the limitations of such

an application. As stated, a CDS is a form of controlled interface that provides the

ability to access, either manually or automatically, or transfer information between

varying security domains [8]. Therefore, the case study will focus on the ability to

route data from a source to a proper endpoint without revealing any information

about the data over an untrusted network. The definition of the case study follows.

There exists multiple source users who want to relay information of varying clas-

sifications to specific endpoints. The data they relay is broadcasted on an untrusted

network where the it will be received by all parties who act as network gateways.

The purpose of the gateways is to only relay information whose classification matches

that of the classification of the network at its endpoint. These gateways can also be

treated as untrusted parties who must learn nothing about the type of data they relay

nor the actual classification of its endpoint. Once a gateway has processed the data

and determined the access level of the data it has observed, it will then relay the data

to its endpoint at which the network can further handle the information. The system

includes multiple types of classifications: Top Secret, Secret, Confidential, Restricted,

Official, Unclassified. An endpoint network may have one or more users associated

with it. A figure that represents the concept of the case study is represented in Fig.

6.3. Multiple networks may also share a classification, however, it should be noted

that classified data does not necessarily need to be shared amongst all of them and

there may be a further division of permission associated with the data according the

the actual end users. In other words, although two networks may be classified as Top

Secret, such as the networks defined with users ATS, BTS, and DTS, the data may

also have a destination address specified for a single member such as only for users

BTS or even DTS. This responsibility may fall to the head of the network instead of
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Figure 6.3: The Cross Domain Network Case Study

the gateway or some collaboration between the two.

Since the gateway is to learn nothing of the classification of the data and only

whether the information should pass, the gateway is required to process a boolean

result that is either true or false, regarding whether to route the result. As such,

the gateway learns nothing about the data, or its intended destination, if the result

does not end up passing the check. This prevents a rogue gateway and network from

searching for specific information and gathering data.

6.4 The Application

As mentioned, the objective of the application is to route varying levels of classified

data through an untrusted network without revealing any information regarding the

49



CHAPTER 6. CASE STUDY

data. The approach taken is to build an application from the perspective of a single

user, a gateway, and a network router. The user will be responsible for setting up

the data to evaluate, the gateway will be responsible for evaluating the data, and the

router will be responsible for observing the result data in order to properly determine

the route end point. To achieve this, the idea is to use the YASHE scheme to securely

evaluate the data to determine a proper router endpoint. This way no information

regarding the attributes of the data is revealed but a result is still obtainable. The

design is constructed with the following assumptions and requirements in mind:

• Payload data must remain encrypted at all times.

• Payload must have associated attribute data.

• Required network bandwidth should be minimized.

• Gateway must be treated as an untrusted party member.

• Gateway must not be able to decrypt homomorphic encryption data.

• Router can be semi-trusted at most.

• Router should only have access to result data.

The final concern to keep in mind with the construction of the design is the constraints

and limitations of YASHE. Since performance and memory usage are a serious con-

cern with YASHE and other FHE systems, the best approach to handling the data is

to work with small but descriptive portions of data that is sufficient enough to deter-

mine what type of data is encrypted and its destination. To achieve this, a short piece

of metadata will be computed and encrypted alongside the payload data. The meta-

data will be the primary data to evaluate homomorphically in order to determine

a destination endpoint. This way, the amount of data that needs to be encrypted

and evaluated homomorphically is minimized which should put the performance and
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memory problems within bounds that are acceptable. The design requirements are

addressed as follows.

6.4.1 Encrypted Payload

The payload can remain encrypted at all times by encrypting the data through tra-

ditional means. To ensure an extra layer of security for sensitive information that

the payload conveys, the payload should even be encrypted under a scheme unrelated

to the homomorphic portion of the protocol with a key that is only shared between

the front end and back end users. This ensures that under the circumstance that the

routing protocol is compromised, the data itself remains secure.

For all intents and purposes, the encryption and handling of the payload is ignored

in the implementation of the application. This is because the focus of the application

is about addressing and analyzing the feasibility of HE as a solution. Since the

application does not actually operate on a network and instead speculates the effects

on the network, the payload is effectively ignored. However, it should be noted that

it might be important to analyze in future work as the size of the payload and its

transfer may have an effect on the processing requirements of the solution.

6.4.2 Payload Attribute Data

The payload is accompanied by metadata that describes the attributes of the payload

data. For the purpose of the application, the metadata is a small piece of information

that contains a tag of what type of classification that identifies the payload. The

metadata was chosen to be a 32-bit value whose assignment is equal to that of one of

the masking values for each of the security classification values: Top Secret, Secret,

Confidential, Restricted, Official, Unclassified. The choice to represent the metadata

as a 32 bit value was made to avoid potential security concerns. The values repre-

senting each attribute need to be distinct enough from one another to ensure that an
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Table 6.1: Assigned Metadata Classificaion Values

Description Hex Value
Top Secret 0xE7191C86

Secret 0x72CCDDC8

Confidential 0xC989E663

Restricted 0x636C6E0C

Official 0x99BB94C7

Unclassified 0xCCCCE185

adversary can not spoof the system by guessing what a particular attribute’s meta-

data value is and performing a homomorphic comparison between the actual data

and their guess. A value size of 32-bits is non-trivial enough to defend against an

adversary learning about the descriptions of metadata in this way. In addition, since

this is the data that will need to be evaluated homomorphically in order to ultimately

determine access, the data is chosen to be kept small to minimize the complexity of

the homomorphic operations involved. Each classification attribute is randomly as-

signed a different and distinct value. The assigned values of each classification in the

context of the application are represented in Table 6.1.

6.4.3 Minimize Network Bandwidth

Even though the data that will be evaluated is small, the ciphertext expansion issue is

still a glaring problem simply because the data will be transferred through a network

and thus could have an adverse effect with the limited bandwidth of the network.

A clever optimization to this problem that has been addressed in research [35, 7] is

to instead transfer the data encrypted by means of a traditional block cipher and

then decrypt the data with a homomorphically evaluated decryption circuit of the

block cipher. The block cipher encrypted data simply needs to be encrypted with

the FHE scheme first and then homomorphically evaluated with the block cipher

decryption circuit alongside a homomorphic encryption of the block cipher key. The

metadata can then be evaluated homomorphically just as if it had originally been
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Figure 6.4: Server Data Flow for Homomorphically Evaluating Metadata

encrypted under the FHE scheme. An example data flow of this process as it would

be processed by the gateway is represented in Fig. 6.4 [7]. Such a design policy

requires an expensive one time transfer of the homomorphic encryption of the block

cipher key and only the follow up transfers of the evaluation data encrypted under

the block cipher. Note that this greatly reduces the required network bandwidth

by a factor equal to that of the ciphertext expansion factor. However, it should

also be noted that this will require more computation on the gateway side as the

YASHE encryption operation has been off-loaded to the gateway in addition to the

requirement of homomorphically decrypting the data. This computational cost will

be based on how lightweight the block cipher is and how efficiently it can be evaluated

homomorphically. Since the bandwidth is anticipated to be limited and the processing

power of the users are anticipated to be weaker than the gateway elements, this is

expected to be an improvement to the system.

It would thus be in the best interest of the proof-of-concept design to use a block

cipher of simple complexity to simplify the effort required to evaluate the circuit in

addition to minimize the noise growth of the resulting homomorphic ciphertext so

that there is still enough leftover evaluation depth to perform the actual evaluation

of the metadata. A block cipher that meets this need is the lightweight SIMON block

cipher [2].

Compared to other traditional block ciphers such as AES, the operations of the
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SIMON block cipher are relatively simple. The cipher operations consists of a mix of

three simple bitwise operations: shift, XOR, and AND. These types of operations fit

well into the context of FHE operations since YASHE and other FHE schemes utilize

binary operations to achieve full homomorphism. In the context of homomorphic

evaluation with a vector of ciphertexts that encrypt the individual bits of a block, a

binary shift operation is implemented with a trivial index swapping of the ciphertexts,

and XOR operation is implemented with a homomorphic addition operation, and an

AND operation is implemented with a homomorphic multiplication operation. The

only real concern involved with the homomorphic evaluation implemenation of this

cipher is how many AND operations are performed in series which is strictly defined

by the number of rounds of the round function. The key schedule routine does not

exhibit any AND operations so it is not a concern. To minimize the number of rounds

required, the application will use the smallest parameter selection with a 32-bit block

size and a 64-bit key with a 32 round encryption routine [2].

6.4.4 Untrusted Gateway

The function of gateway is the heart of the cross domain solution. However, the

gateway inherently needs to be untrusted as it pertains to the cross domain problem;

if it were trusted on the same level as the data it handles, then there would not

be a need for the cross domain solution. The gateway being untrusted means that

it cannot obtain any information regarding the data it handles. This is where the

application of HE comes into play. The YASHE scheme will allow the gateway to

evaluate the encrypted data it receives and obtain an encrypted result. However, to

prevent the gateway from observing the data encrypted by YASHE, it must not have

access to the secret key. This will prevent it from decrypting any of the data that

it has access. The gateway will still need access to the public key and evaluation

key of the system in order to properly shape the encrypted metadata tag into the
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homomorphic space and be able to evaluate on the data. However, since the gateway

cannot decrypt the result of the evaluation, that task now has to be entrusted to the

network router.

6.4.5 Semi-Trusted Router

The router is responsible for decrypting the result of the evaluation. For this reason,

the router may need to be considered a semi-trusted party on the network in the

sense that it needs to be entrusted with a sensitive piece of information, namely the

secret key of the YASHE scheme. However, since the router now has access to any

YASHE encrypted data, the router must not be allowed access to anything encrypted

under the public key. In particular, the most important piece of information that

the router must not have access to is the block cipher key that is encrypted under

the YASHE public key. This can be avoided through secure communication of such

data between the front end users and the gateways through an overhead layer of

traditional cryptographic means. The overhead analysis of the secure communication

will be ignored for the purpose of the case study application. Concretely, the only data

that the router should have access to is the secret key and the encrypted evaluation

results from the gateway.

6.4.6 Dataflow

The design of the case study application that fulfills the requirements is as follows.

As a proof-of-concept for purposes of analysis, the application involves only a single

user, gateway, and router. A top level design of data flow is represented in Fig. 6.5.

The user generates a SIMON cipher key and encrypts it under YASHE encryption.

This data is theoretically securely transferred to the gateway as a one-time costly

operation. The same operation also requires a one-time homomorphically evaluated

key expansion of the encrypted SIMON key. The user generates one random meta-
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Figure 6.5: Top Level Application Design

data tag to describe a theoretical payload as described by the metadata scheme and

encrypts it under SIMON encryption using the generated SIMON key. The gateway

element theoretically receives this data and performs a homomorphic evaluation of

the data to produce an encrypted result under YASHE encryption. The somewhat

large resulting ciphertext is theoretically transferred to the router. The router per-

forms a YASHE decryption on the data for final evaluation on whether to pass or

drop the data through the network.

The main focus of the analysis lies with the operations performed by the gate-

way. A design of the data flow performed by the gateway is represented in Fig. 6.6.

To actually evaluate the encrypted metadata under SIMON encryption, the gateway

homomorphic decrypts the SIMON ciphertext using a homomorphically evaluated

SIMON decryption circuit and the encrypted SIMON key under YASHE encryption.

After words, the gateway now has the plain metadata but encrypted under YASHE

encryption. A homomorphic bitwise compare circuit is used to correctly evaluate the

metadata based on a simple string compare of the encrypted result against relevant

encrypted metadata tags. An example of a 4-bit bitwise compare circuit is represented

in Fig. 6.7. Note again that each XOR gate would be performed through a homo-
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Figure 6.6: Gateway Process Flow

morphic addition operation between two encrypted bits and each AND gate would

be performed through a homomorphic multiplication operation. The invert gate op-

eration is executed through an XOR operation of the resulting bit with an encrypted

value of ’1’. The multiplicative depth of a full n-bit comparison circuit is equal to

log2(n); so, the 32-bit comparison circuit needed by the application has a multiplica-

tive depth of 5. Theoretically, the encrypted metadata tags to compare the data can

even be dynamically provided to the gateway through a subscribe system from the

end-users to prevent the server from knowing the format of the metadata scheme;

however, for this proof-of-concept application, the gateway will simply compare the

string against all encrypted tags. After circuit evaluation, the gateway provides a

complete encrypted summary result which is transferred to the router.

6.4.7 Software Implementation

The application was implemented in a C++ software application. Lepoint et al.

[7] provide a preliminary open source implementation of the YASHE scheme. The

implementation offers an easy to follow class architecture for YASHE which includes

parameter set up, key generation, encryption, decryption, and ciphertext addition and

multiplication operations. Their implementation also provide a homomorphic evalu-
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Figure 6.7: Bitwise Compare Circuit

ation implementation of the SIMON block cipher scheme. The application uses the

Fast Library for Number Theory (FLINT) [38] and GNU Multiple Percision (GMP)

[39] arithmetic libraries which are optimized libraries for working with large data

structures such as the ones used in the YASHE scheme. The application utilizes

multi-threading for YASHE and homomorphic SIMON operations. The application

is compiled using gcc 4.4.7 and executed on an AMD A10-7850K running at 1.7GHz

with 16GB of RAM for all experiments.
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Profiling Results

7.1 Results

In order to make a proper analysis of the application, all important portions of data

were profiled for memory usage and execution time. The memory profiling results

of the application, set with varying parameters to ensure 128-bit YASHE security, is

represented in Table 7.1. The results of the memory profiling suggest exactly what

was speculated. The ciphertext expansion for a small 32-bit piece of metadata is quite

large with all portions of data representable within the kilobyte and even megabyte

ranges. However, the data is not too large for a modern computing unit to handle.

The more serious concern regarding memory is how much data needs to transmit over

the network. For the most part, the public key, evaluation key, and encrypted SIMON

key only need to be transmitted during a one-time expensive transaction so their sizes

are not a primary concern. The metadata that is transferred with every payload is

a small 32-bit of data encrypted under SIMON so there is no concern regarding how

expensive it may be to transfer it the gateway. The follow-up encrypted results that

need to be handed to the router do not exceed more than a few megabytes which is

also acceptable.

The performance profiling results of the application with the same parameters

is represented in Table 7.2. As opposed to the memory profiling, the performance
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Table 7.1: Memory Profile Results of CDS Application with 128-bit Security Parameters

n log2(q)

YASHE
Secret

Key
(kB)

YASHE
Public

Key
(kB)

YASHE
Evaluation

Key (kB)

YASHE
Encrypted

SIMON
Key (kB)

Encrypted
Metadata

(Bytes)

Evaluation
Data (kB)

Result
(kB)

1024 29 8 8 8 512 4 256 8
2048 56 16 16 32 1,024 4 512 16
4096 111 64 64 256 4,096 4 2,048 64
8192 220 256 256 1,792 16,384 4 8,192 256

16384 440 896 896 12,544 57,344 4 28,672 896
32768 880 3,584 3,584 100,352 229,376 4 114,688 3,584

Table 7.2: Average Performance Profile Results of CDS Application with 128-bit Security
Parameters

n log2(q)

YASHE
Encrypt
SIMON
Key (s)

YASHE
Encrypt
Tag (s)

Homomorphic
SIMON

Decryption (s)

Homomorphic
Metadata

Evaluation (s)

YASHE
Result

Decrypt (s)

1024 29 0.033 0.020 0.504 0.097 0.001
2048 56 0.070 0.038 1.492 0.290 0.003
4096 111 0.618 0.303 14.864 2.405 0.025
8192 220 2.515 1.190 111,186.000 17.705 0.199

16384 440 13.304 4.554 549,340.000 96,611.000 0.458
32768 880 62.657 2.055 2,399,270.000 436,046.000 1.550

profiling results suggest that there may exist some concerns. Again, the encryption of

the SIMON key is a one time process and the amount of time needed to process the

operation exceeded no more than over a minute so there is no need for concern there.

The total execution time to encrypt the metadata and evaluate the data, however, is

much more alerting. The results suggest that a large amount of processing time is

required to completely evaluate the metadata. In fact, the amount of time required

to process the data when n = 32768 almost exceeds an hour, which would make it

difficult to use in a practical application even with optimizations. The amount of

time required to process the data when n ≤ 16384 does not exceed a little over 10

minutes which is more likely to fall within acceptable limits accounting for potential

optimizations. The decryption of the result was the fastest process of all the opera-

tions barely requiring more than a second of processing time at most which should

be acceptable within the processing bounds for the router in the setting. The param-
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eters could always be increased to allow for more evaluation depth but it was already

established that the n = 32768 parameters result in impractical performance so the

idea of increasing the parameters further is disregarded.

7.2 Noise Growth

Despite the optimism provided by the results of the memory and performance profil-

ing, it turns out the parameters to ensure 128-bit security are still a bit too strict for

the homomorphic evaluation to complete successfully. For all parameters presented

before, the resulting comparison evaluation failed to return the correct verified re-

sult. This is because the noise of the ciphertext grows too large to correctly decrypt

the result after an evaluation of the entire circuit. The reason behind this is that

the evaluation depth of the SIMON decryption depth is too deep for the provided

parameters. To observe this effect and better conclude where the problem persists,

the noise growth of the system was profiled for the varying levels 128-bit, 80-bit, and

64-bit security parameters.

7.2.1 Full Evaluation

The noise level of the entire evaluation circuit, that is both the SIMON decryption

circuit followed by the comparison circuit, was measured and plotted for every mul-

tiplication level against all parameters with n ≤ 16384. Due to the large size of the

coefficients, the noise value is represented in bit width notation instead of actual val-

ues. The plots of the measured noise growths for the varying parameters of 128-bit,

80-bit, and 64-bit security are represented in Fig. 7.1, 7.2, and 7.3, respectively. Note

that because the ciphertext becomes incorrect after a certain noise value, specifically

when the noise value is greater than half the value of the coefficient q, the noise value

could not be measured further than this point. This results in the noise saturating

at the described value when the ciphertext is no longer correct and results in a sat-
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uration appearance in the plot. The full evaluation of both the SIMON decryption

circuit and the comparison circuit requires 37 layers of multiplicative depth.

Figure 7.1: Ciphertext Noise Growth for SIMON and Compare Evaluation Circuits with
128-bit Security Parameters

Figure 7.2: Ciphertext Noise Growth for SIMON and Compare Evaluation Circuits with
with 80-bit Security Parameters

As such, the data suggests what was expected for the circuit evaluation with

the 128-bit parameters. The data does show how the depth at which the circuit

could be evaluated increases with the increasing parameter sizes suggesting that a

complete evaluation could be achieved if the parameters were large enough. The noise

growth, however, plateaued after a certain amount of multiplication depth for each
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Figure 7.3: Ciphertext Noise Growth for SIMON and Compare Evaluation Circuits with
64-bit Security Parameters

parameter setup and all evaluations fail no later than halfway during the evaluation

suggesting that achieving 128-bit security is probably not achievable within practical

bounds. This means that the application is going to need to depend on a lower

security parameter setup.

As the data suggests, 80-bit security is not achievable either under the current

setup. All noise growth plots with the 80-bit security parameters plateaued after a

certain depth as well. It is evident that the upper bound on the evaluation depth is

larger than that of the more strict parameters given by the 128-bit setup. However, a

complete and correct evaluation was achieved using a 64-bit security parameter setup

when n = 16384, which shows that a configuration is possible. However, all smaller

parameters failed, so this limits the application to using this set of parameters.

Fig. 7.4 compares the noise growth between the varying security levels when

n = 16384. It is observable from this data that lower security parameters permit

deeper evaluation depth. This is due to the larger ciphertext coefficient sizes that

are permitted by lower security parameters and as such the noise saturates at later

evaluation depths.
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Figure 7.4: Noise Growth Comparison for Varying Bit Security Parameters with n=16384

7.2.2 Comparison Only Evaluation

A possible direction to move in order to fend off the noise growth problem is to avoid

using the homomorphic evaluation circuit. To assess this option, the noise was again

profiled after the SIMON encryption and homomorphic decryption procedures were

removed thus leaving only the comparison evaluation circuit. Note that this results

with memory and performance profiling similar to that of the results represented in

Tables 7.1 and 7.2 but just ignoring the SIMON evaluation portions. The plots of the

measured noise growths of only the comparison circuit for the varying parameters of

128-bit, 80-bit, and 64-bit security are represented in Fig. 7.5, 7.6, and 7.7, respec-

tively. The full evaluation of the comparison circuit requires 5 layers of multiplicative

depth.

Due to the significantly lower multiplicative depth of the comparison circuit, the

data shows there are several parameter setups for each security option that achieved

a complete and correct evaluation. The results show that a 128-bit security setup can

be achieved using at the parameter setup for n ≥ 8192, a 80-bit security setup can

be achieved using the parameter setup for n ≥ 4096, and a 64-bit security setup can

be achieved using the parameter setup for n ≥ 4096. It should also be noted that the
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Figure 7.5: Ciphertext Noise Growth for Only the Comparison Evaluation with 128-bit
Security Parameters

parameter setup for n = 2048 under the 64-bit security setup could potentially be

achieved with slight modifications to some parameters as the noise growth just barely

overreaches the level for correctness. These setups at least offers the higher security

options as opposed to the setup with the SIMON evaluation. However, note that this

sort of system flow would require the user to encrypt their data under YASHE and

tranfer the large ciphertext over the broadcast network which may not be acceptable

under certain network restrictions.

7.3 Varying Radix-w

The radix-w parameter is normally used as an optimization for reducing the dimen-

sion of the PowersOf and WordDecomp vectors which results in a smaller public key

and a faster key switching routine. However, it comes at the expense of increasing

the noise growth of the multiplication operation [6]. Therefore, reducing the value for

w should increase the multiplicative depth that the scheme can evaluate for a given

parameter selection at the expense of increasing the public key size and decreasing

the performance of the multiplication operations. To assess this, the noise growth
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Figure 7.6: Ciphertext Noise Growth for Only the Comparison Evaluation with 80-bit
Security Parameters

was profiled for varying values of w using the n = 4096 parameters for 64-bit security

as a benchmark point. The noise growth plot for varying w is represented in Fig.

7.8. As the data suggests, decreasing values of w does in fact slow the noise growth.

Unfortunately, the rate at which it slowed the growth only amounted to about a single

extra multiplication depth. Accounting for memory and performance hits that de-

creasing the value of w results, it is recommended that this value be used primarily as

a performance optimization instead of a multiplication depth enhancement optimiza-

tion except under the circumstance where a single level of multiplication is absolutely

needed. In fact, as long as the multiplication depth permits a few extra trade-offs, the

value of w should be increased to benefit from the memory and performance benefits.

7.4 Varying Rounds for SIMON

Another natural option to attempt to optimize the parameter selection of the full

application is to reduce the complexity of the decryption circuit. The only way to

do so for the SIMON cipher is to reduce the number of rounds. To assess whether

doing so will open other options for parameter selection, the noise growth was tracked
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Figure 7.7: Ciphertext Noise Growth for Only the Comparison Evaluation with 64-bit
Security Parameters

against the 64-bit security parameters of for a various number of SIMON rounds. The

parameter selection for n = 16384 was ignored since it was already confirmed that

this setup operates correctly. The final noise value after a labeled number of SIMON

rounds against the varying parameter values is represented in Table 7.3. As it turns

Table 7.3: Bit Noise After Varying Rounds of SIMON

n log2(q)
Rounds

32 16 8 4
1024 56 55 55 55 55
2048 110 109 109 109 109
4096 218 217 217 217 199
8192 438 437 437 296 198
16384 885 813 478 299 210

out, lowering the number of rounds does not offer many more options. The only

parameter setups where correctness was ensured was for n = 8192 with at most 8

SIMON rounds and n = 4096 with at least 4 SIMON rounds. All other setups were

shown to still fail. However, it should be noted that altering the SIMON cipher

to use such a small number of rounds is synonymous with lowering the security of

the cipher [40]. According the the authors of [40], the security analysis of SIMON

starts to suggest heavy decay of security after reducing the number of rounds past 16.
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Figure 7.8: Ciphertext Noise Growth for Varying Radix-w

Although it would be appealing to take advantage of such a setup, the SIMON cipher

is the first security layer in concealing the metadata and relying on too weak of an

assumption would completely compromise the system. Therefore, this optimization

is considered not very practical and should be avoided.

7.5 Final Parameter Selection Choices

The mentioned analysis techniques established allow for a small collection of param-

eter configurations to be established that caters to a variety of requirements. The

configurations were established based on the smallest parameters that allowed for

correct evaluation within the requirement restraints of the configuration. The first

configuration, represented as configuration α, defines parameters for a configuration

that correctly evaluates the SIMON decryption and comparison circuits while estab-

lishing 64-bit security under YASHE. The values of n = 16384, log2(q) = 885, and

w = 232 were deemed the most optimal for such an establishment. The second con-

figuration, represented as configuration β, defines parameters for a configuration that

correctly evaluates evaluates an reduced 8-round SIMON decryption and compari-

son circuit while establishing 64-bit security under YASHE. The values of n = 8192,
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Table 7.4: Memory Profile Results of CDS Application

Configuration
YASHE

Secret
Key (kB)

YASHE
Public

Key
(kB)

YASHE
Evaluation

Key (kB)

YASHE
Encrypted

SIMON
Key (kB)

Encrypted
Metadata

(Bytes)

Evaluation
Data (kB)

Result
(kB)

α 1,792 1,792 50,176 114,688 4 57,344 1,792
β 448 448 6,272 28,672 4 14,336 448
γ 64 64 448 N/A 2,097,152 2,048 64
δ 32 32 224 N/A 1,048,576 1,024 32

Table 7.5: Average Performance Profile Results of CDS Application

Configuration

YASHE
Encrypt
SIMON
Key (s)

YASHE
Encrypt
Tag (s)

Homomorphic
SIMON

Decryption (s)

Homomorphic
Metadata

Evaluation (s)

YASHE
Result

Decrypt (s)

α 48.333 26.129 3,083.360 489.089 148.423
β 11.590 6.424 473.138 370.097 0.456
γ N/A N/A N/A 3.206 0.024
δ N/A N/A N/A 1.229 0.010

log2(q) = 438, and w = 232 were deemed the most optimal for such an establishment.

The last two configurations, represented as configurations γ and δ, define parameters

for configurations that correctly evaluate only the comparison circuit under 128-bit

or 64-bit security. The values of n = 4096, log2(q) = 111, and w = 216 were deemed

the most optimal for configuration γ to achieve 128-bit security under YASHE. The

values of n = 2048, log2(q) = 110, and w = 216 were deemed the most optimal for

configuration δ to achieve 64-bit security under YASHE. The memory profiling re-

sults for each configuration is represented in Table 7.4 and the performance profiling

results for each configuration is represented in Table 7.5.

Each of the configurations offer a trade-off between strengths and weaknesses.

Configuration α first and foremost offers a set of parameters that ensure correctness

and security under YASHE for a fully established application data flow. However, the

profiling results show that this configuration results in largest memory footprint and

execution time of all the configurations. However, these were the only parameters

established that could completely evaluate the application.
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Configuration β offers less costly option against α at the trade-off of reducing

the number of rounds in the SIMON cipher. This option is faster and requires less

memory but offers weaker security under SIMON [40].

Configurations γ and δ offer alternative options to the application design. By cut-

ting out the SIMON cipher from the design, the performance and memory footprints

improve significantly. However, this change requires a crucial networking change. In-

stead of transferring a small 32 byte metadata under SIMON encryption, the users are

now responsible for transferring the metadata encrypted under YASHE which is sig-

nificantly larger. However, because the parameters are relatively small, the encrypted

tags are not critically large and this trade-off may potentially outweigh benefits of

the prior application if the network bandwidth allows it. However, it should be noted

that this configuration can not effectively utilize the batching technique as the gate-

way has no way of packing multiple encrypted metadata tags into a single ciphertext

anymore. However, any acceleration optimizations will still apply.

It should be noted, however, that performance optimization is still a possibility.

For example, the throughput of the system could be increased significantly using the

batching technique [32]. This would entail the gateway collecting several metadata

samples and batching them into a single ciphertext for evaluation. The evaluation

would then result in each metadata sample being evaluated separately at the cost of a

single evaluation, resulting in a larger data throughput at the cost of nearly negligible

pre- and post-processing procedures.

In addition, literature has shown that hardware acceleration is a promising option

for optimizing homomorphic operations. Michael Foster devised a high level synthesis

module for large polynomial multiplication using the Karatsuba algorithm in order to

target the costly multiplication operation of homomorphic encryption schemes [41].

In his Master’s thesis, he reports theoretical speedups up to 135 times over traditional

optimized software methods [41]. Indeed, this work could naturally be implemented
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using a cloud server environment with FPGA integration to achieve high performance

optimizations. Wei Dai et. al. have built a discrete Fourier transform based library

for Nvidia GPUs to support the homomorphic operations of addition and multipli-

cation [42]. Their research has achieved speedups up to 2.8 times for homomorphic

multiplication over a comparable CPU bound implementation [42]. Erdinç Öztürk et.

al. have designed a custom FPGA hardware accelerator to optimize homomorphic

multiplications [43]. They report speedups more than 102 times faster than software

implementations [43]. Indeed, large speedups can be achieved through use of hard-

ware accelerators through use of different mediums such as GPU, FPGA, and HLS

designs. Other works include [44, 45, 46].
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Conclusions and Future Work

This work has shown that, provided the application process is kept lightweight and

simple, a cross domain solution can be achieved using an application of homomor-

phic encryption. We demonstrated that a practical application that securely transfers

cross domain information across an untrusted network can be achieved under a pa-

rameter selection that ensure 64-bit security under both the YASHE and SIMON

schemes while guaranteeing correctness is achievable. Such a configuration requires

an execution time of about one hour and no more than a 220 MB of total sum of

processing memory, both of which are achievable by most modern computing sys-

tems. The system exhibits high latency due to the need to homomoprhically evaluate

the SIMON decryption circuit to ensure that the required user to gateway network

bandwidth remains low.

Alternative configurations were established that performance faster in the case

that these results are considered too restrictive. One such configuration removes the

SIMON decryption circuit to significantly decrease the amount of work required to

process the encrypted data. Under this configuration, using parameters to ensure

both correctness and 128-bit security results in a process that executes in less than

a minute. Likewise, using parameters to both ensure correctness and 64-bit security

executes in less than a couple seconds. The trade-off in both systems compared to the

original is that the metadata must now be encrypted and transferred under YASHE
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which moves the encryption workload to the user. This systems also requires a larger

network bandwidth.

However, the conclusion on practicality of any of the configurations in a real world

changes based on requirements and perspective. From the perspective of a government

or military application, the performance results of the complete configuration system

could likely fit within operable boundaries if security requirements outweigh the need

for low processing latency. From the perspective of a commercial application, the

performance results of the complete configuration system do not mesh well in the

high speed competitive environment of today’s industry where most applications are

expected to execute in real time. These applications could, however, be able to afford

the network bandwidth trade-off of the configurations described if the bounds of the

system allow it.

Other fully homomorphic encryption schemes and techniques should be explored.

The YASHE scheme is designed in a way to keep ciphertext and key elements small.

However, other schemes, such as BGV, do not take this approach and instead focus

on more robust designs that allow for the evaluation of deeper circuits. A route for

further research is to explore such schemes and evaluate whether faster performance

can be achieved under them and observe what trade-offs would be present.

The performance of current fully homomorphic encryption schemes, especially

within the context of large parameters, can still be improved upon. Hardware accel-

eration is a natural route to take to approach this problem that has been explored

previously in research [41, 42, 43]. The next step would be to explore and deploy such

optimizations to expand upon this work.

73



Bibliography

[1] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A Crypto-
graphic Perspective, ser. The Kluwer International Series in Engineering and
Computer Science. Boston, Massachusetts: Kluwer Academic Publishers, Mar.
2002, vol. 671.

[2] R. Beaulieu, D. Shors, J. Smith, and S. Treatman-clark, “The simon and
speck families of lightweight block ciphers,” Cryptology ePrint Archive, Report
2013/404, 2013, https://eprint.iacr.org/2013/404.

[3] R. L. Rivest and M. L. Dertouzos, “On Data Banks and Privacy Homomor-
phisms,” 1978.

[4] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme. Stanford
University Stanford, 2009, vol. 20, no. 09.

[5] H. G. Liddell and R. Scott, An intermediate Greek-English lexicon: founded
upon the seventh edition of Liddell and Scott’s Greek-English lexicon. Harper
& Brothers, 1896.

[6] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for a
ring-based fully homomorphic encryption scheme,” Cryptology ePrint Archive,
Report 2013/075, 2013, https://eprint.iacr.org/2013/075.

[7] T. Lepoint and M. Naehrig, “A comparison of the homomorphic encryption
schemes fv and yashe,” in International Conference on Cryptology in Africa.
Springer, 2014, pp. 318–335.

[8] Committee on National Security Systems, “Committee on National Security
Systems (CNSS) Glossary,” no. 4009, p. 160, 2015. [Online]. Available:
https://cryptosmith.files.wordpress.com/2015/08/glossary-2015-cnss.pdf

[9] NIST, “Security and Privacy Controls for Federal Information Systems and Or-
ganizations Security and Privacy Controls for Federal Information Systems and
Organizations,” Sp-800-53Ar4, pp. 400+, 2014.

[10] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2010, pp. 24–43.

[11] J. D. C. Benaloh, “Verifiable secret-ballot elections,” 1987.

[12] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single database,
computationally-private information retrieval,” in Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on. IEEE, 1997, pp. 364–373.

74

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/075
https://cryptosmith.files.wordpress.com/2015/08/glossary-2015-cnss.pdf


BIBLIOGRAPHY

[13] D. J. S. Robinson and P. (Firm), An introduction to abstract algebra, 1st ed.
New York: Walter de Gruyter, 2003;2008;.

[14] H. Cohen, Number Theory: Tools and Diophantine Equations. New York:
Springer, 2007, vol. 239.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2009.

[16] S. Khot, “Hardness of approximating the shortest vector problem in lattices,”
J. ACM, vol. 52, no. 5, pp. 789–808, Sep. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1089023.1089027

[17] O. Regev, “On lattices, learning with errors, random linear codes, and cryptog-
raphy,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[18] ——, “The learning with errors problem,” Invited survey in CCC, vol. 7, 2010.

[19] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning
with errors over rings,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2010, pp. 1–23.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ser. ITCS ’12. New York, NY,
USA: ACM, 2012, pp. 309–325. [Online]. Available: http://doi.acm.org/10.
1145/2090236.2090262

[21] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871,
2014.

[22] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryp-
tion,” Cryptology ePrint Archive, Report 2012/144, 2012, https://eprint.iacr.
org/2012/144.

[23] Z. Brakerski, “Fully homomorphic encryption without modulus switching from
classical gapsvp,” in Advances in cryptology–crypto 2012. Springer, 2012, pp.
868–886.
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[45] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias, “Accelerating homo-
morphic evaluation on reconfigurable hardware,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2015, pp. 143–163.
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