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Abstract

With natural gas drilling on the rise (Penn State, 2012), there is a general lack of data on the
emissions from the entire lifecycle of hydraulic fracturing. This research project is designed to
study the health impacts of emissions from high volume hydraulic fracturing (HVHF) production
and at HVHF well sites. Using data from previous research (Korfmacher et al., 2015 and
Korfmacher et al., 2016) and the Environmental Protections Agency's Environmental Benefits
Mapping and Analysis Program - Community Edition (BenMAP-CE), estimated health impacts
and economic costs of emissions are analyzed. This study models the health impacts and
economic costs of particulate matter (PM), an inhalable pollutant known to cause adverse health
effects (OAR US EPA 2016a). Specifically, the study focuses on emissions at unconventional
wells associated with HVHF in Pennsylvania. Based on modeling results, 2,000-5,000 people
throughout Pennsylvania are being impacted by PM emissions released during HVHF activities,
with higher percentages of the population per grid cell (0.01%-0.25%) impacted near well site
locations, as compared to other parts of the state (0.0001%-0.006%). This study found that
emissions from PM generated during HVHF activities in Pennsylvania during the years 2011-
2015 would result in an estimated 2,100-5,300 premature deaths with 95% confidence intervals
of 600-3,500 deaths and 2,400-8,000 deaths respectively. The cost of these premature mortalities
are estimated to be $14 billion-$37 with 95% confidence intervals of $1 billion-$34 billion and
$4 billion-$79 billion respectively. This study shows that there is an increased risk of mortality
from PM released during HVHF activities near well sites that appears to be currently
underreported due to a lack of EPA monitors in rural parts of the country. This study acts as a
guide to highlight problem areas in rural parts of the country, where monitoring stations are
lacking and emissions from wells are relatively high.
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Introduction

Particulate Matter

Particulate matter (PM) is a type of pollution composed of a large assortment of diverse
chemicals, including nitrogen oxides, ammonia, sulfur dioxide, and other gases, in solid or liquid
form that originate from both natural and human activities (EPA 2011; OAR US EPA 2016d).
Common sources of PM emissions are fossil fuel combustion, industrial processes, and on-road
and non-road vehicles (EPA 2011). Pertinent to this study, unconventional natural gas production
and the hydraulic fracturing process are known sources of fine PM emissions (Alvarez 2009).
Other known sources are agriculture, forestry, areas under construction, or wildfires (OAR US
EPA 2016a; EPA 2011). PM is divided into three groups based on the diameter (less than 10
micrometers, less than 2.5 micrometers, and less than 1 micrometer) and the effect on human
airways (OAR US EPA 2016d). Figure 1 shows the relative size of PM, s and PM;, compared to

a human hair and beach sand.

€PM25
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Figure 1. The relative size of PM; s and PM, compared to a human hair and beach sand (OAR
US EPA 2016d).



PM, is commonly removed from the human airway through the nasal passage, but PM; s
or less deposits in the lungs. These deposits then cause oxidative stress and can lead to chronic
inflammation (Anderson, Thundiyil, and Stolbach, 2012). A groundbreaking study done in 1993,
known as the Harvard Six Cities Study, demonstrated a strong correlation between elevated
mortality rates and exposure to PM (Dockery et al. 1993). Since 1993, there have been many
studies linking PM to adverse health effects, concluding that PM pollution poses a threat to
human health and increases the risk of mortality (Kim, Kabir, and Kabir 2015). Another study
found that reductions in PM; s over a seven year period considerably reduced premature
mortalities (Fann and Risley 2011). Reducing PM mortality is a significant health goal, as the
World Health Organization (WHO) found that in 2002 there were 0.8 million premature deaths

associated with PM, s worldwide (World Health Organization 2002).

The 1970 Clean Air Act established air quality standards for six pollutants, including
PM,; s, which was revised in a 1990 amendment to an annual average daily limit of 12
micrograms per meter cubed for primary pollutant standards and an annual average daily limit of
15 micrograms per meter cubed for secondary pollutant standards (OAR US EPA 2016c; OAR
US EPA 2016¢). This level is determined by the EPA to be the amount of fine PM at which there
are minimal negative health impacts. However, many studies have noted there to be no precise
evidence on deciphering a level of PM exposure that no longer causes health issues (Dockery et

al. 1993).

Particulate Matter and High Volume Hydraulic Fracturing
Unconventional natural gas development is currently on the rise due to hydraulic
fracturing and horizontal drilling. Figure 2 shows the increase in natural gas production from

hydraulic fracturing in the United States between 2003 and 2017, with a large portion coming
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from the Marcellus Shale Formation (EIA 2017). Hydraulic fracturing is a method used to
extract natural gas that involves horizontal drilling through shale rock up to 9,000 feet
underground, then uses explosives, high-pressure water, sand, and miscellaneous chemicals to
fracture the rock and send gas flowing back up to the well (Penn State 2016). The fracturing
process requires 2.5 to 8 million gallons of water per well site, where 60-90% of this water is left
underground in the shale formation and the rest of the water arrives back at the surface and then

must be treated either onsite or transported to a treatment or disposal facility (Penn State 2016).
U.S. dry shale gas production

shale gas production (dry)
billion cubic feet per day
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= Fayetteville (AR) A0
= Bamett (TX) 25
® Woodford (OK) 20
Antrim (M, IN & OH) 10
Rest of US 'shalg’
5
1]
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Sources: ELA derived from siate administrative data collected by Drillinginfo Inc. Data are through October 2017 and represent ELA's official
tight gas estimates, but are not survey data. State abbreviations indicate primary state(s).

Figure 2. The increase in natural gas production from hydraulic fracturing in the United States
and, in particular, the Marcellus shale up to the year 2017 (EIA 2017).

The Marcellus Shale formation in particular has become an active location for HVHF,
especially around Pittsburg and rural areas of Pennsylvania (Figure 3). Beginning in 2007, rapid
development in this region resulted in 4,200 well sites in Pennsylvania by the year 2011 (Penn
State 2016). Emissions from well sites are a recent additional source of PM to the region,
particularly in rural areas unaccustomed to high levels of PM pollution. The Pennsylvania

Department of Environmental Protection (DEP) reported on emissions from unconventional



natural gas operations in the Marcellus Shale Basin, PA, stating that from 2013 to 2014, there

was a 25% increase in fine PM (DEP 2016).
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Figure 3 shows area of the Marcellus shale across the United State (Penn State 2016).

The U.S. Energy Information Administration (EIA) stated in the International Energy
Outlook 2016 that consumption of natural gas is projected to increase from 120 trillion cubic feet
in 2012 to 203 trillion cubic feet by 2040 (EIA 2016a). This increase is largely due to switching

from coal to natural gas, because natural gas produces fewer greenhouse gas emissions at a



competitive price. The EIA reported that coal produces 210 pounds of carbon dioxide per million
Btu of energy, while natural gas produces 117 pounds of carbon dioxide per million Btu of
energy (EIA 2016b). However, this rise in natural gas production may cause an increase in PM
pollution near well sites and roads used to transport water and waste, resulting in the potential

exposure to people living near these areas.

Particulate Matter and Heavy Duty Diesel Trucks

Transportation is a large part of the HVHF process, using heavy duty diesel trucks to
bring in water and sand for drilling. Additionally, trucks are used to transport flow-back
wastewater from the well site to wastewater treatment facilities. Figure 4 represents the water use
and transportation portion of hydraulic fracturing. A calculation of 4.4 million one-way heavy
duty diesel trucks trips was found for transporting materials to and from well sites in the
Marcellus Shale region of Pennsylvania between 2011 and 2013 (Korfmacher, Hawker, and
Winebrake 2015). A majority of these diesel trucks are likely to have engines dating from before
the 2007 model year, when cleaner emission controls technologies were introduced (Goldstein et

al. 2014).

Figure 4. The water and transportation portion of hydraulic fracturing (ORD US EPA 2016).
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Heavy duty diesel trucks produce emissions of PM, carbon dioxide, nitrogen oxides,
sulfur oxides, and volatile organic compounds (US EPA 2008). From 2011-2013, an estimate for
PM (PM,) pollution from transporting materials to and from well sites in the Marcellus Shale
region of Pennsylvania was 18.9 to 40.7 Mg for old trucks and 3.1 to 6.6 Mg for new trucks
(Korfmacher, Hawker, and Winebrake 2015). Research is lacking on the health impacts from
exposure to this additional release of PM produced from diesel trucks used for the hydraulic

fracturing process (Goldstein et al. 2014).

Localized well emissions are in addition to the transport emissions and are a more
permanent, stationary source of PM pollution. A previous phase of this project (VanMunster
2018) used a similar methodology, modeling the emissions from heavy duty diesel trucks
associated with HVHF activities. VanMunster generated dispersion plumes from truck counts by
road section using the atmospheric dispersion modeling system AERMOD (US EPA 2017), but
was unable to capture the intense trucking and emission activity in the 2-3 week period when
wells were drilled, due to a lack of temporal detail. Her emission results were averaged out
annually, which diluted the impact and generated very small estimates of premature mortality in
Pennsylvania (VanMunster 2018). However, well sites emit PM pollution all year, not just
during the couple of weeks during well development. For this reason, well data alone were used
and kept at an annual time step for use in BenMAP-CE to model health impacts, producing a
potentially more accurate representation of the health impacts from PM pollution linked to

hydraulic fracturing.



Modeling Health Impacts of Particulate Matter

The EPA's Environmental Benefits Mapping and Analysis Program - Community Edition
(BenMAP-CE) is a useful tool to estimate and model heath impacts. A previous study used
BenMAP to evaluate the amount of mortalities avoided and economic benefits of the national air
quality standards set in 2014 in China. The study compares PM levels from monitoring stations
in China with the PM level set by the national air quality standard. The study models the PM; 5
concentrations and estimates that 0.35 million deaths were avoided by the national air quality
standard in 2014. They also use BenMAP to find the economic benefit of the avoided deaths to

be about $65 billion (Chen et al. 2017).

The US EPA used a similar methodology to assess the health impact of increasing
temperatures from climate change. The study uses BenMAP with heat mortality health impact
functions to estimate premature mortalities from different temperature scenarios. They use
BenMAP to find values for all cause morality, cardiovascular disease, and non-accidental death
along with subsequent economic costs, highlighting the ability to include these assessments in

the economics of climate change (Voorhees et al. 2011).

The Harvard Six Cities study provides an example for a health modeling approach. The
study design focuses on a population and defines variables such as age, race, and gender. They
then compare the recorded ambient air quality with an observed change in air quality across six
cities. A regression is run on each city for each of the defined variables and pollution sources to
calculate mortality ratios. After controlling for differences in the population, the study found an
association between increased mortality and higher levels of fine PM (Dockery et al. 1993). A

more recent study conducted by the EPA, titled "Estimating the National Public Health Burden



Associated with Exposure to Ambient PM; s and Ozone", uses BenMAP-CE software to
automate the health impact analysis to conduct an analysis of the effects of PM; 5 on mortality.
This study combines the photochemical Community Multiscale Air Quality (CMAQ) model
along with monitored ambient air quality into a 12x12 km grid. The study then uses population
demographics with the air quality data to assess mortality rates across the United States during
the summer of 2005. They use mortality risk coefficients derived from epidemiology literature,
using sources such as the American Cancer Society and the Harvard Six Cities Study, to find
mortality rates from a change in PM emissions. They also calculate the lives saved if there were
more stringent air quality standards. The study found that for 2005 air quality levels, there were a
total of 130,000 mortalities from PM; 5 exposure, concluding that PM; 5 emissions are a threat to

public health (Fann et al., 2012).

Purpose

This study will use BenMAP-CE to develop a model of the health effects and economic
costs of PM; s emissions at HVHF well sites in Pennsylvania. This model can then be used to
identify potentially high PM2.5 concentrations in parts of Pennsylvania near well sites and
estimate health impacts and economic costs on a larger scale, especially for currently
underrepresented rural parts of the country, where there are many well sites but few EPA

monitoring stations.



Methods

With the EPA's Environmental Benefits Mapping and Analysis Program - Community
Edition (BenMAP-CE), health impacts and economic costs of increased PM emissions from
hydraulic fracturing activities can be analyzed. This health impacts analysis approach involves
three key mechanisms: (1) the monitored changes in ambient air quality are input into BenMAP-
CE; (2) using a specified health equation drawn from epidemiology literature, a relationship is
found between pollution and health effects; (3) economic values associated with these health

effects are calculated (OAR US EPA 2016b). Figures 5 and 6 illustrate this approach.

Baseline Inc/dence

Effect Health
estimate impact

. e s .
.‘............ [ ]
.. .... L ......
[ ] [ ] [ ] [ ] * L ] [ ] L ]
. 100 « $5,000 =
] [ ] [ L ] ® L ] [ ] [ ] . .
.... .... A ... . $5,000/admission y $5UU,000
i eneiacestie
[ ] [ ] [ ] [ ] [ ]

it . . » L
* @ L]
. &

An air quality policy The economic value of The economic value is
reduces the number of each avoided admission the number of cases
hospital admissions by is $5,000 in the year multiplied by the value

100 2010 of each admission

Figure 6. Above is an example of how BenMAP-CE calculates economic values associated with
changes in air pollution (OAR US EPA 2016b).
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Modeled and monitored air quality data were input into BenMAP-CE. Monitored ambient
air quality data provided by EPA monitoring stations, along with reported monitored well site
emissions, were used for this analysis (DEP 2016; US EPA 2018). Because the EPA monitoring
stations are reported as daily average concentrations, monitored well emissions were converted

to match this dataset by dividing annual reported emissions by the total days in a year.

A previous phase of this study used AERMOD to model PM emissions dispersal and
concentrations from heavy duty diesel trucks used for HVHF activities in PA (Korfmacher et al.
2016; VanMunster 2018). The raw data from AERMOD results were clipped and merged to the
CMAAQ grid in ArcGIS, a geographic information system equipped with tools to manipulate and
analyze data, and the total amount of emissions were found for each 12x12 km square area to
ensure matching resolution across each data set (Korfmacher et al., 2016). Average emission
concentrations were then calculated for each 12x12 km square so the resolution of the grid

matched that of the monitored ambient air pollution provided in BenMAP-CE.

A similar approach was used for this study to convert reported well site emissions to a
12x12 km CMAQ grid for the use in BenMAP. However, because the reported well site dataset
contains almost 6,000 entries per year, AERMOD could not be used to generate a model (DEP
2016). Therefore, the reported emissions were aggregated to a 12x12km CMAQ grid for use in

BenMAP without the use of AERMOD.

Monitored changes in ambient air quality from the years 2011-2016 were calculated for
the state of Pennsylvania using the US EPA's (USEPA) monitoring stations as well as data the
Pennsylvania Department of Environmental Protection (PADEP) releases on annual emissions

from hydraulic fracturing activities, including fine PM emissions (DEP 2016). The PADEP
11



dataset displays reported PM emissions at well sites. The combined USEPA and PADEP
monitoring stations together display a truer representation of PM concentrations than the EPA
monitoring stations alone. EPA monitoring stations tend to be clustered around urban areas with

known air quality issues, with few monitoring stations set up in rural areas (Figure 7).

EPA Monitoring Stations for PM 2.5 (ug/m3) and Well Sites
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Figure 7. The distribution of active and inactive monitoring stations in Pennsylvania as well as
well site locations.

Because of the distance between rural sites, these monitoring stations may not accurately
pick up localized emissions from well sites or other pollution sources. The voluntarily reported
PADEP well emissions play the part of filling in these large gaps between EPA stations. Using
ArcGIS, the well sites were selected by location and the total emissions per well site within each
12x12 km area were found. Because the well sites are reported annually, the average daily
concentration was calculated by dividing the total annual amount by the number of days in a year

in order match the EPA monitoring emissions format for the use of BenMAP-CE. Changes in
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emissions were calculated by comparing the baseline ambient air quality of just the USEPA
monitoring stations, provided as part of BenMAP CE, with the combined data set of the PADEP

reported emissions and the USEPA monitoring stations.

With BenMAP, one or more Health Impact Functions (HIFs) can be used to determine
the effect on health that a change in PM emissions has on the designated population. A HIF
involves four key mechanisms designed from epidemiology literature: (1) the monitored changes
in ambient air quality; (2) the population exposure density; (3) the baseline occurrence rate; (4)

an effect estimate drawn from previous studies (OAR US EPA 2016b).

BenMAP-CE is equipped with HIFs that can be used to analyze several respiratory
illnesses and mortality. Figure 8 illustrates how a HIF works. Beta () is the percent change that
the chosen health effect has per each unit of population (USEPA 2015). Baseline incidence (Yo0)
represents the average number of people who suffer from a given health impact occurring from
any cause together with air pollution over a set period of time (USEPA 2015). Delta PM (6PM)
is the variation between the initial amount of air pollution and the amount after a change in air
quality occurs (USEPA 2015). Exposed population (Pop) shows the value of people impacted by
a change or reduction in air pollution (USEPA 2015). Basically, the equation is:

Health Ef fect = Air Quality Change X Health Ef fect Estimate X Exposed Population

X Health Baseline Incidence

(USEPA 2015)

13



Epidemiology study

Incidence
(log scale)
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Figure 8. Above is an example of a HIF derived from an epidemiology study (OAR US EPA
2016b).

The focus area of this study will be the state of Pennsylvania. In the rural, northeastern
part of Pennsylvania, there are many well sites but a small population density. While the results
may show small health effects or low mortality rates because there are fewer people living in this
area, this is an underrepresented area regarding air quality monitoring and the methods derived
may potentially be used to estimate impacts to rural parts of the country on a larger scale. Figure
9 below shows two maps of Pennsylvania displaying the population density and well site

locations.
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PA Well Site Locations
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Figure 9 shows the well sites and population density of the study area in 2010.

Fann et al. (2012) suggests using health endpoints related to premature mortality and

hospital visits for respiratory and cardiovascular issues, ensuring no two issues get counted
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twice. This study also suggests using mortality as an endpoint due to its influence over the EPA
regulatory process. Additionally, when selecting a HIF for PM2.5 emissions, premature mortality
is a good assessor for PM2.5 because epidemiological studies generally account for urban areas
with large populations as well as single cities with smaller populations, such as the population of
Northeastern Pennsylvania (Fann and Risley 2011). When using multiple HIFs it is also
important to ensure that each epidemiological study characterized the same population
demographics, such as age, race, sex and ethnicity (Fann and Risley 2011). For this study, HIFs
were drawn from study areas geographically similar to Pennsylvania, such as Eastern US cities,

and assessed all cause mortality.

Using the calculated health impacts, economic costs can be associated with these lives
lost or impacted. BenMAP-CE includes the Cost of Illness metric, which represents the cost of
hospital admissions, emergency room visits, work loss days, and medical bills related to poor air
quality (OAR US EPA 2016b). Furthermore, BenMAP-CE estimates economic values from
pollution with a Willingness to Pay metric, which incorporates the Cost of Illness metrics as well
as the economic value of pain and dissatisfaction (OAR US EPA 2016b). A Value of Statistical
Life (VSL) can also be used to calculate the cost of avoided premature loss of life. VSL is the
dollar value associated with the amount a population is willing to pay to slightly decrease the risk
of death (OAR US EPA 2016b). From these values, future policy can be assessed relative to this
issue or a benefit cost analysis can be derived from this study related to the cost of natural gas to

better incorporate the cost environmental externalities.

BenMAP-CE produces results in the form of tables, maps, and raw data (US EPA 2015).

These maps can be imported into ArcGIS for comparison and visualization. The results will

16



potentially fill in missing air quality data and underscore areas of high PM emissions, where

health impacts are the greatest.

The first step of BenMAP-CE is to create an air quality surface. A dataset was created for
this study. A 12x12km CMAQ grid for the state of Pennsylvania was extracted from the US
CMAQ data set provided with BenMAP and then uploaded to use as the grid definition. PM 2.5
was chosen for pollutant. The EPA Standard Monitor dataset was used for the control. For the
baseline, a monitor dataset was created using the well site data. In ArcGIS, a monitor dataset was
created by first importing the air quality surface shapefile of Pennsylvania produced in BenMAP
using just the EPA Standard Monitor dataset for each year 2011-2015. This shapefile is a model

of the interpolated air quality using just the EPA stations in Pennsylvania (Figure 10).

Because there are few EPA stations in PA and very few near well site locations, reported
well site emissions will be combined in each 12x12km grid cell and added to the amount
produced from BenMAP for each grid cell except where there is an EPA station in the grid cell.
For grid cells containing an EPA monitor station, only the EPA station data were used. This
method is used because it is likely the grid cells containing an EPA station contain an accurate
PM, s report, while grid cells not containing and EPA station, especially ones far away from an
EPA station, are not reflecting PM emissions from well sites and, therefore, do not contain an
accurate PM; s report. Figure 11 shows the BenMAP generated air quality surfaces using just the
reported well site emissions. Figure 12 displays the maps for the combined EPA plus well site air

quality surfaces using ArcGIS.
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PM 2.5 Air Quality Surface
Produced by EPA Monitors

)

2011 Legend 2012

[ ] UTRC_CMAQ_12km

[J utrRc_STATES

Daily 24 Hour Mean PM2.5

s o-c2

Bl e22-9018

[ 9.19-9.97 &
[ 998-10586

[ ]1057-1095 A
[ J1096-11.31

[ ]132-11.7 |G op oo op
[ ]1n72-1214

[ 1215- 1256

2013 B 1257 - 13.01

B 302-145

2015

Figure 10 Shows the BenMAP generated air quality surfaces using only the EPA monitor
stations for the years 2011-2015.
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PM 2.5 Air Quality Surface
Produced by Well Sites

(Micrograms per Cubic Meter)
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Figure 11 Shows the BenMAP generated air quality surfaces using only the reported well site

emissions for the years 2011-2015.
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PM 2.5 Air Quality Surface
Produced by EPA Monitors Plus Well Sites
(Micrograms per Cubic Meter)

Legend 2012
PM 2.5

Il 6.79-9.00
I 001 - 10.00
I 10.01-11.00
B 11.01-12.00
[ ]1201-13.00 -
[ ]1301-14.00
[ |1401-1500
[ ] 1501-18.00
0 60 12 240 km
[ 18.01-22.00 R
[ 22.01-26.00

; B 25.01-32.00
2013 [Jutrc_sTATES

[ ] UTRC_CMAQ_12km

2015

Figure 12 Shows the combined air quality surfaces using the EPA monitor stations and the
reported well site emissions for the years 2011-2015.
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For the baseline, this combined EPA and well site dataset is used. The delta is then
calculated as baseline minus control or (EPA Stations + Well Sites) - EPA Stations, resulting
in a report of the health impacts of just the well site emissions. BenMAP is equipped with a
population dataset for 2010 for the entire United States. This 2010 United States Census
population dataset was clipped down to just the area of Pennsylvania for smoother processing.
The included EPA Standard Health Impact Functions were used for this project. The HIF's were
filtered to select the all cause mortality functions from the authors Krewski 2009, Pope 2002,
Lepeule 2012, and Laden 2006 (Krewski et al. 2009; Pope et al. 2002; Lepeule et al. 2012;

Laden et al. 2006; US EPA 2014; US EPA 2015).

The incidence aggregation and valuation aggregation were both chosen to use the PA
12x12 km CMAQ grid. No pooling was selected for this project to show the variability of
mortality rates across PA. For the valuation method, a Value of Statistical life metric was used
"based on a range from $1-10 million with a normal distribution" (USEPA 2015). An audit trail
was produced from BenMAP, displaying the input used for each step in BenMAP to produce the

models for individual years (Appendix B).
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Results

Table 1 shows HIFs and the annual estimated premature deaths and corresponding 95%
confidence intervals for each year for emissions from the wells from 2011-2015. Figure 13
graphically displays the estimated premature deaths found for each health equation for each year.
For each equation, there was a large increase in premature deaths in 2013, but an overall
decrease from 2011 to 2015. The total death toll over the five year period ranged from 2,100 -
5,300 deaths with 95% confidence intervals of 600 - 3,500 deaths and 2,400 - 8,000 deaths
respectively. The total estimated economic costs of these deaths for the five year period ranged
from $14 - $37 billion with 95% confidence intervals of $1- $34 billion and $4 - $79 billion
respectively. Table 2 shows the economic costs of the estimated premature deaths found for each

health equation for each year as well as the 95% confidence intervals.

Figure 14 is a map of the estimated mortality using the Laden heath equation without
converting to a population percentage per grid cell. Without considering the population per grid
cell, the map shows hot spots around largely populated cities from emissions captured from the
EPA monitors from multiple pollution sources, not just well emissions, as seen around Pittsburg.
Additionally, this percentage represents the percent risk for each grid cell. The rural areas
represent interpolations with well site emissions added, so they may not be capturing all rural
sources. More monitoring stations should be placed in rural areas to capture emissions from all

pollution sources. Figures 15 - 17 are maps for each year for each health equation.

The Pope and the Krewski health equations used the same Beta, producing the same
incidence and maps (Krewski et al. 2009; Pope et al. 2002). For this reason, only the Krewski
health equations maps are displayed below. These maps show the percentage of the population

22



impacted within each 12 x 12 km grid cell. These maps indicate hot spots are located around well
sites. These maps suggest that while the number of premature deaths may be small in rural areas
because the population is small, the percentage of premature deaths per grid cell population is

higher near well sites than in areas distant from well sites.
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Laden Equation: (1 — -4 ]) X Baseline Incidence x POP 3 =0.0148

eBxAPM

Krewski Equation: (1 - _eBxlAPM]) X Baseline Incidence Xx POP 8 =0.0058

Pope Equation: (1 - m]) X Baseline Incidence Xx POP 3 =0.0058

Lepeule Equation: (1 — e #*APM) x Baseline Incidence x POP 8 =0.0131

Figure 13 graphically displays the estimate premature deaths found for each health equation for
each year throughout PA and the formula with corresponding Beta values for each health
equation (Krewski et al. 2009; Pope et al. 2002; Lepeule et al. 2012; Laden et al. 2006).
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Table 1 Estimates of premature deaths and corresponding 95% confidence intervals for each

health impact function for each year.

Estimate Incidence 95%
Baseline Premature Confidence
2011 Beta Age Range | Population = Mortality Deaths Interval
Lepeule | 0.013102826 25-99 9,714,123 139,398 894 (448, 1335)
Pope 0.005826891 30-99 8,834,707 138,461 398 (109, 683)
Krewski | 0.005826891 30-99 8,834,707 138,461 398 (269, 525)
Laden 0.014842001 25-99 9,714,123 139,398 1012 (456, 1559)
2012
Lepeule | 0.013102826 25-99 9,714,123 139,398 882 (441, 1317)
Pope 0.005826891 30-99 8,834,707 138,461 391 (107, 673)
Krewski | 0.005826891 30-99 8,834,707 138,461 391 (265, 517)
Laden 0.014842001 25-99 9,714,123 139,398 998 (449, 1539)
2013
Lepeule | 0.013102826 25-99 9,714,123 139,398 1136 (569, 1695)
Pope 0.005826891 30-99 8,834,707 138,461 505 (138, 868)
Krewski | 0.005826891 30-99 8,834,707 138,461 505 (342, 668)
Laden 0.014842001 25-99 9,714,123 139,398 1285 (580, 1979)
2014
Lepeule | 0.013102826 25-99 9,714,123 139,398 976 (490, 1455)
Pope 0.005826891 30-99 8,834,707 138,461 435 (119, 746)
Krewski | 0.005826891 30-99 8,834,707 138,461 435 (294, 574)
Laden 0.014842001 25-99 9,714,123 139,398 1104 (499, 1698)
2015
Lepeule | 0.013102826 25-99 9,714,123 139,398 767 (384, 1146)
Pope 0.005826891 30-99 8,834,707 138,461 341 (93.2, 585.6)
Krewski | 0.005826891 30-99 8,834,707 138,461 341 (230, 450)
Laden 0.014842001 25-99 9,714,123 139,398 868 (391, 1338)

24




Table 2 The economic costs of the estimated premature deaths found for each health
equation for each year as well as the 95% confidence interval using a normal distribution.

Estimate
Premature Values

2011 Deaths (Billions)| Values 95% Confidence Interval
Lepeule 894.4 $6.2 $470,000,000 $14,000,000,000
Pope 397.5 $2.8 $92,000,000 $6,600,000,000
Krewski 397.5 $2.8 $270,000,000 $5,600,000,000
Laden 1011.9 $7.0 $460,000,000 | $16,000,000,000

2012
Lepeule 881.6 $6.1 $880,000,000 | $13,000,000,000
Pope 391.4 $2.7 $290,000,000 $6,300,000,000
Krewski 391.4 S2.7 $430,000,000 $5,400,000,000
Laden 997.6 $6.9 $930,000,000 $15,000,000,000

2013
Lepeule 1136.1 $7.9 $1,200,000,000 | $17,000,000,000
Pope 505.3 $3.5 $420,000,000 $8,100,000,000
Krewski 505.3 $3.5 $590,000,000 $6,900,000,000
Laden 1285.1 $9.0 $1,300,000,000 | $19,000,000,000

2014
Lepeule 976.3 $6.8 $810,000,000 $14,000,000,000
Pope 434.6 S3.0 $250,000,000 $7,100,000,000
Krewski 434.6 $3.0 $410,000,000 $6,000,000,000
Laden 1104 $7.7 $840,000,000 | $17,000,000,000

2015
Lepeule 767.2 S5.3 $760,000,000 $11,000,000,000
Pope 340.6 S2.4 $250,000,000 $5,500,000,000
Krewski 340.6 S2.4 $370,000,000 $4,700,000,000
Laden 868 $6.0 $800,000,000 | $13,000,000,000
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Figure 14 Map of the estimated mortality using the Laden health equation without converting to
a population percentage per grid cell distribution.
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Figure 15 Maps of the estimated mortality using the Laden health equation as a percentage of
the population impacted, or the percent risk, within each 12 x 12 km grid cell for each year.
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Figure 16 Maps of the estimated mortality using the Krewski health equation as a percentage of
the population impacted, or the percent risk, within each 12 x 12 km grid cell for each year.
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Figure 17 Maps of the estimated mortality using the Lepeule health equation as a percentage of
the population impacted, or the percent risk, within each 12 x 12 km grid cell for each year.
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Discussion

PM, 5 released at HVHF well sites from hydraulic fracturing activities are causing an
increased risk of premature mortality to populations living near well sites, based on model results
using the well emissions data. The results indicate that as a product of well emissions from 2011-
2015, an estimated 2,100-5,300 premature deaths occurred annually, with 95% confidence
intervals of 600-3,500 deaths and 2,400-8,000 deaths respectively. EPA monitoring stations are
located far from well site locations (Figure 7) and are likely not picking up significant PM; s
emissions from area wells, generating an air quality surface that is underreporting the amount of
PM, 5 in rural parts of PA near well sites. Looking at the well site emissions map (Figure 11),
there are hot spots in rural Northeastern PA where PM,; 5 emissions reached 10-22 micrograms
per cubic meter, but the EPA monitor map (Figure 10) shows a smooth gradient in that area of
PM,; s emissions under 10 micrograms per cubic meter. This suggests that EPA monitor stations
are not picking up the additional well emissions and that the extrapolations of just the EPA
monitors are based off of predominately urban monitor stations, underestimating the PM; s
concentrations in some rural areas. This study is a guide to problem areas, such as rural parts of
Northeastern PA (Figures15-17), where EPA stations are lacking and emissions from wells are

relatively high, based on self-reported data.

Referring to Figures 10-12, comparing the air quality surface generated by only the EPA
monitoring stations versus the air quality surface generated by only the well site locations, the
EPA stations do not appear to represent the reported well site emissions. Fine PM has a travel
range of less than one kilometer to hundreds of kilometers, depending on atmospheric conditions

and the surrounding land (WHO 2006). For this reason, it is important to monitor ambient air
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quality conditions at a smaller scale, especially near industrial activities (WHO 2006). Rural
areas are currently underrepresented concerning air quality monitoring in the United States.
Within the study area, there was an increase in EPA stations from the year 2011-2015 (Appendix
A), however the increase was small (1 station was added for the rural northeastern part of
Pennsylvania) and there remains a large gap in monitoring stations in rural areas of
Pennsylvania. This study suggests the EPA should consider placing more monitor stations in

rural parts of the county near industrial activities, such as concentrated well sites.

There are several limitations to this analysis. The well site emissions are based off a
voluntary report of emissions at well sites. These reports come from a calculation based off of
emission factors that the hydraulic fracturing companies deem most appropriate, rather than
actual emissions monitoring (PADEP 2016). Furthermore, some well sites opt out of reporting
emissions, potentially causing the results of this project to be an underestimation of emission
impacts. Future projects should work toward gaining a more accurate inventory of well site

emissions by placing monitors near well sites.

Additionally, this study assumes PM stays within a 12x12 km range after being released
at a well site (so no additions or mixing between 12x12 boxes). The dispersal of PM may be
impacted by the land features and weather patterns, potentially shifting the location of the high
PM concentration areas. Future studies with the capability to run large data sets through
AERMOD should input the reported well site emissions into AERMOD to create a more
accurate model of the dispersal pattern and travel distance of fine PM emissions released at well

sites.
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While the results indicate relatively low mortality rates across PA, as seen in Figure 14,
when considering the population distribution across PA, a larger percentage of risk of 0.01% -
0.24% is seen near well sites than in other parts of PA where risk of 0.0001% - 0.006% is
measured (Figures 15-17). This correlation suggests that living near well sites increases a
population's risk of premature mortality, because the ratio is disproportionate across PA. This
also suggests that there is a necessity for further EPA monitors to be placed near HVHF activities

to better assess PM; s emissions on a finer scale and more accurately represent the air quality.

Table 1 shows a large range of 400-1000 incidence in the estimate premature mortality
from different health equations derived from epidemiological studies from different authors. This
difference is caused from the use of different hazard ratios in each equation, resulting in different
beta coefficients. The range of incidence, as recommended by the EPA, shows that while there
are scientific differences on the amount of impacts from PM on premature mortality, there still
exists an impact from PM on premature mortality (USEPA 2012). The results of this study, even
at the lower bound as seen in the estimate premature deaths found by using the Pope or Krewski
health equations, still suggest 2,070 premature deaths in Pennsylvania over the five year period

due to emissions near well sites (Table 1).

There is also a monetary benefit from improved air quality. The Value of a Statistical
Life for premature mortality per incidence was $8 million for a 1990 income level and $9.6
million for a 2020 income level (USEPA 2012). Tables 2 shows the differences in values
associated with the estimate incidences found from the chosen health equations. Essentially,
there is value of $8-9 million per estimate incidence as seen in Table 2. There are many
uncertainties when considering economic effects, such as inflation, discount rates, income level,

etc., which contributes to the large range in confidence for each value. Additionally, the age
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range of 25-99 will also impact the value of life, as the population varies per age group, causing
more uncertainty in the economic value for each health equation. Figure 18 is a graph of the age
distribution in Pennsylvania from the 2010 United States Census. There appears to be a
decreasing number of people above the age of 65, with increased populations aged 15-24 and 45-
54. The VSL for a younger person will be a higher value than that of an older person. Because of

this, large confidence intervals can be seen in Table 2 for the values associated with premature

mortality.

Census 2010 Total Population Age Distribution

1,200,000
1,000,000
800,000
600,000
400,000
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Age Range

Figure 18 displays a graph of the age distribution in Pennsylvania in 2010 (US Census Bureau
2018).
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Conclusions

This study highlights areas of increased risk of mortality from PM generated by hydraulic
fracturing activities. There is an increased risk of mortality from PM released during hydraulic
fracturing activities near well sites that appears to be currently underreported due to a lack of
EPA monitors in rural parts of the country. As seen in Figures 15-17 and Table 1, there are an
estimated 2,070-5,267 premature deaths in Pennsylvania as a result of PM emissions released
during hydraulic fracturing activities from 2011-2015, with higher percentages of the population
per grid cell (0.01%-0.25%) being impacted near well site locations as compared to other parts of
the state (0.0001%-0.006%). The cost of these premature mortalities, as seen in Table 2, are
estimated to be $14 billion-$37 billion and a 95% confidence interval of $1 billion-$34 billion

and $4 billion-$79 billion respectively.

These estimated values should be considered when determining the cost to produce
natural gas using hydraulic fracturing. It is important to assess environmental externalities when
addressing policy related to energy production. While natural gas production produces fewer
particulate emissions than other fossil fuels, such as coal, increased natural gas production may
shift the focus away from growth in renewable energy generation (Feng, Davis, Sun, & Hubacek,
2016). Additionally, because well sites are typically considered individual sources of emissions
rather than as collective unit of many well sites, emissions from wells are effectively unregulated
by the Clean Air Act (Kosnik 2007; Brady 2011). This underscores the need for EPA monitoring
stations near hydraulic fracturing well sites. This study acts as a guide to hot spot emission

locations, where EPA stations are needed. A similar study using BenMAP to assess air quality in
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China stated one of the biggest limitations of their study was an inadequate number of

monitoring sites (Chen et al. 2017).

This study can also be used to predict the outcome in regards to fine PM and premature
mortality of future hydraulic fracturing activities in other parts of the country as well as current,
underrepresented areas near hydraulic fracturing activities. Policymakers should consult these
impacts when considering the use of hydraulic fracturing over other sources to meet energy
consumption needs and how the data limitations suggest a more regulatory approach to reporting

emissions.

Previous stages of this project studying the emissions from heavy duty diesel trucks
associated with HVHF can be combined with the findings of this study to fine-tune hot spot
locations of PM emissions. These combined emissions should be run through AERMOD to
better account for the dispersal of emissions and then through BenMAP to model the heath
impacts and economic costs. This study did not account for the increase in emissions from heavy
duty diesel truck used for hydraulic fracturing activities, potentially underreporting the full
health impacts of hydraulic fracturing activities. The combined studies will provide a more

complete evaluation of the emissions and health impacts from HVHF activities.
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Appendix A
EPA monitor station locations for the years 2011 to 2015.
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Appendix B
BenMAP Audit Trail for 2011

BenMAP-CE 1.1.0

<Aggregate, Pool & Value>

Create Datetime:2018-04-17 12:23:12
IsRunInPointMode:False

Latin Hypercube Points:20
Population Dataset:PA-PA. CMAQ 12KM
Year:2010

Threshold:0
<Baseline.And.Control. Group0>
<Pollutant>

Name:PM2.5

Observation Type:Daily
Season(:January 01-March 31
Seasonl:April 01-June 30
Season2:July 01-September 30
Season3:October 01-December 31
MetricO:D24HourMean

Seasonal MetricO:QuarterlyMean
</Pollutant>
<Baseline.Air.Quality.Surfaces>
Create Datetime:2018-03-21 10:26:40
Pollutant:PM2.5

Interpolation Method:VoronoiNeighborhoodAveragin
Library Monitors: True

Monitor Dataset Name:EPA plus Wells Updated
Monitor Year:2011

<@Grid.Definition>
Name:PA CMAQ 12KM

1D:40

Columns:357

Rows:172

Grid Type:Shapefile

Shapefile Name:PA CMAQ 12KM_WGS1984
</Grid.Definition>

<Pollutant>

Name:PM2.5

Observation Type:Daily
Season0:January 01-March 31
Seasonl:April 01-June 30
Season2:July 01-September 30
Season3:October 01-December 31
MetricO:D24HourMean

Seasonal MetricO:QuarterlyMean
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</Pollutant>

</Baseline.Air.Quality.Surfaces>
<Control.Air.Quality.Surfaces>

Create Datetime:2018-03-21 10:27:02
Pollutant:PM2.5

Interpolation Method:VoronoiNeighborhoodAveragin
Library Monitors: True

Monitor Dataset Name:EPA Standard Monitors PM2.5
Monitor Year:2011

<Grid.Definition>

Name:PA CMAQ 12KM

ID:40

Columns:357

Rows:172

Grid Type:Shapefile

Shapefile Name:PA CMAQ 12KM_ WGS1984
</Grid.Definition>

<Pollutant>

Name:PM2.5

Observation Type:Daily

Season(:January 01-March 31

Seasonl:April 01-June 30

Season2:July 01-September 30
Season3:October 01-December 31
MetricO:D24HourMean

Seasonal MetricO:QuarterlyMean

</Pollutant>

</Control.Air.Quality.Surfaces>
</Baseline.And.Control.Group0>
<Selected.health.impact.functions>
<Health.impact.function.0>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Start age:30

End age:99

Race:

Ethnicity:

Gender:

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean
Author:Krewski et al.

Qualifier:Random effects cox; 44 individual and 7 ecologic co-variates; 1999--2000 follow-up
(Commentary table 4)

44



Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP
Year:2009

Location:

Other pollutants: TSP, O3, SO4, SO2

Reference:Krewski D, Jerrett M, Burnett R, et al. 2009. Extended Follow-Up and Spatial
analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality. Health
Effects Institute, Cambridge MA

Baseline functional form:Incidence*POP

Incidence dataset:Mortality Incidence (2010)

Prevalence dataset:

Variable dataset:

Beta:0.005826891

Beta distribution:Normal

P1Beta:0.000962763

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

</Health.impact.function.0>

<Health.impact.function.1>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Start age:25

End age:99

Race:

Ethnicity:

Gender:

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean

Author:Laden et al.

Qualifier:
Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP
Year:2006

Location:

Other pollutants:

Reference:Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery. 2006. Reduction in Fine
Particulate Air Pollution and Mortality: Extended follow-up of the Harvard Six Cities Study. Am
J Respir Crit Care Med.

Baseline functional form:Incidence*POP
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Incidence dataset:Mortality Incidence (2010)
Prevalence dataset:

Variable dataset:

Beta:0.014842001

Beta distribution:Normal
P1Beta:0.004169721

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

</Health.impact.function.1>
<Health.impact.function.2>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality
Endpoint:Mortality, All Cause

Start age:25

End age:99

Race:

Ethnicity:

Gender:

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean
Author:Lepeule et al.

Qualifier:
Function:(1-EXP(-Beta*DELTAQ))*Incidence*POP
Year:2012

Location:

Other pollutants:

Reference:Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and
mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Vol 120(7).
965-970

Baseline functional form:Incidence*POP
Incidence dataset:Mortality Incidence (2010)
Prevalence dataset:

Variable dataset:

Beta:0.013102826

Beta distribution:Normal
P1Beta:0.00334674

P2Beta:0

A:0
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NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

</Health.impact.function.2>
<Health.impact.function.3>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Start age:30

End age:99

Race:

Ethnicity:

Gender:

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean

Author:Pope et al.

Qualifier:
Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP
Year:2002

Location:

Other pollutants:

Reference:Pope, C.A., 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito and G.D.
Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine
particulate air pollution. Jama. Vol. 287 (9): 1132-41.
Baseline functional form:Incidence*POP

Incidence dataset:Mortality Incidence (2010)
Prevalence dataset:

Variable dataset:

Beta:0.005826891

Beta distribution:Normal

P1Beta:0.002157076

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

</Health.impact.function.3>
<Health.impact.function.4>
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Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Start age:0

End age:0

Race:

Ethnicity:

Gender:

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean

Author: Woodruff et al.

Qualifier:
Function:(1-(1/((1-Incidence)*EXP(Beta*DeltaQ)+Incidence)))*Incidence*POP
Year:2006

Location:

Other pollutants:

Reference:Woodruff, T. J., J. D. Parker and K. C. Schoendorf. 2006. Fine particulate matter
(PM2.5) air pollution and selected causes of postneonatal infant mortality in California.
Environmental Health Perspectives. Vol. 114: 786?7790.
Baseline functional form:Incidence*POP

Incidence dataset:Mortality Incidence (2010)

Prevalence dataset:

Variable dataset:

Beta:0.006765865

Beta distribution:Normal

P1Beta:0.007338828

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

</Health.impact.function.4>
</Selected.health.impact.functions>

<Log.And.Message>

Processing complete. HIF processing time: 0 hours 0 minutes 58 seconds.
</Log.And.Message>

Sort Incidence LHPs:False

Default Advanced Pooling Method:Roundweightstotwodigits
Default Monte Carlo Iterations:5000

Random Seed:1

<Inflation.Adjustment>
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Dataset:

Year:2010

</Inflation. Adjustment>
<Income.Growth.Adjustment>

Dataset:

Year: -1
<Adjust.Income.Growth.EndpointGroups>
Upper Respiratory Symptoms:1
Mortality: 1

Lower Respiratory Symptoms:1

Chronic Bronchitis: 1

Chronic Asthma:1

Asthma Exacerbation:1

Acute Respiratory Symptoms: 1

Acute Bronchitis: 1
</Adjust.Income.Growth.EndpointGroups>
</Income.Growth.Adjustment>
<Incidence.Aggregation>

Name:PA CMAQ 12KM

ID:40

Columns:357

Rows:172

Grid Type:Shapefile

Shapefile Name:PA_ CMAQ 12KM_WGS1984
</Incidence.Aggregation>
<Valuation.Aggregation>

Name:PA CMAQ 12KM

ID:40

Columns:357

Rows:172

Grid Type:Shapefile

Shapefile Name:PA_ CMAQ 12KM_WGS1984
</Valuation.Aggregation>
<Incidence.Pooling. And.Aggregation.>
<MortalityPooling.Method.TypeNone>
<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality
Endpoint:Mortality, All Cause
Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Author:Krewski et al.

Year:2009

Location:116 U.S. cities

Other pollutants: TSP, O3, SO4, SO2
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Reference:Krewski D, Jerrett M, Burnett R, et al. 2009. Extended Follow-Up and Spatial
analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality. Health
Effects Institute, Cambridge MA

Start age:30

End age:99

Baseline functional form: TSP, O3, SO4, SO2

Incidence dataset:Mortality Incidence (2010)
Beta:0.005826891

Beta distribution:Normal

P1Beta:0.000962763

P2Beta:(

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>

<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Author:Laden et al.

Year:2006

Location:6 cities

Other pollutants:

Reference:Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery. 2006. Reduction in Fine
Particulate Air Pollution and Mortality: Extended follow-up of the Harvard Six Cities Study. Am
J Respir Crit Care Med.

Start age:25

End age:99

Baseline functional form:

Incidence dataset:Mortality Incidence (2010)
Beta:0.014842001

Beta distribution:Normal

P1Beta:0.004169721

P2Beta:0

A:0

NameA:

B:0

NameB:
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C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>
<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality
Endpoint:Mortality, All Cause
Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Author:Lepeule et al.

Year:2012

Location:6 Eastern Cities

Other pollutants:

Reference:Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and
mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Vol 120(7).
965-970

Start age:25

End age:99

Baseline functional form:

Incidence dataset:Mortality Incidence (2010)
Beta:0.013102826

Beta distribution:Normal
P1Beta:0.00334674

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>
<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality
Endpoint:Mortality, All Cause
Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Author:Pope et al.

Year:2002

Location:51 cities
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Other pollutants:

Reference:Pope, C.A., 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito and G.D.
Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine
particulate air pollution. Jama. Vol. 287 (9): 1132-41.

Start age:30

End age:99

Baseline functional form:

Incidence dataset:Mortality Incidence (2010)

Beta:0.005826891

Beta distribution:Normal

P1Beta:0.002157076

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>

</MortalityPooling.Method.TypeNone>

<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions

Endpoint group:Mortality

Endpoint:Mortality, All Cause

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean

Author:Krewski et al.

Qualifier:Random effects cox; 44 individual and 7 ecologic co-variates; 1999--2000 follow-up
(Commentary table 4)

Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP

Year:2009

Location:

Other pollutants: TSP, O3, SO4, SO2

Reference:Krewski D, Jerrett M, Burnett R, et al. 2009. Extended Follow-Up and Spatial
analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality. Health
Effects Institute, Cambridge MA

Start age:30

End age:99

Baseline functional form:Incidence*POP

Incidence dataset:Mortality Incidence (2010)

Beta:0.005826891

Beta distribution:Normal
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P1Beta:0.000962763

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>
<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality
Endpoint:Mortality, All Cause
Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean
Author:Laden et al.

Qualifier:
Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP
Year:2006

Location:

Other pollutants:

Reference:Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery. 2006. Reduction in Fine
Particulate Air Pollution and Mortality: Extended follow-up of the Harvard Six Cities Study. Am
J Respir Crit Care Med.

Start age:25

End age:99

Baseline functional form:Incidence*POP
Incidence dataset:Mortality Incidence (2010)
Beta:0.014842001

Beta distribution:Normal
P1Beta:0.004169721

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>
<Health.impact.function>
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Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean

Author:Lepeule et al.

Qualifier:
Function:(1-EXP(-Beta*DELTAQ))*Incidence*POP
Year:2012

Location:

Other pollutants:

Reference:Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and
mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Vol 120(7).
965-970

Start age:25

End age:99

Baseline functional form:Incidence*POP

Incidence dataset:Mortality Incidence (2010)
Beta:0.013102826

Beta distribution:Normal

P1Beta:0.00334674

P2Beta:(

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>

<Health.impact.function>

Health impact function dataset:EPA Standard Health Functions
Endpoint group:Mortality

Endpoint:Mortality, All Cause

Pollutant:PM2.5

Metric:D24HourMean

Metric statistic:Mean

Seasonal metric:QuarterlyMean

Author:Pope et al.

Qualifier:
Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP
Year:2002

Location:
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Other pollutants:

Reference:Pope, C.A., 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito and G.D.
Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine
particulate air pollution. Jama. Vol. 287 (9): 1132-41.
Start age:30

End age:99

Baseline functional form:Incidence*POP
Incidence dataset:Mortality Incidence (2010)
Beta:0.005826891

Beta distribution:Normal
P1Beta:0.002157076

P2Beta:0

A:0

NameA:

B:0

NameB:

C:0

NameC:

Percentile:0

Weight:0

</Health.impact.function>
</Incidence.Pooling.And.Aggregation.>
<Valuation.Pooling. Window.Name.201 1>
Mortality

<KrewskiPooling.Method. TypeNone>
<Valuation.Function>

1D:332

Dataset:EPA Standard Valuation Functions
EndPointGroupID:12

Endpoint group:Mortality

EndPointID:50

Endpoint:Mortality, All Cause

Start age:0

End age:99

Qualifier:VSL, based on 26 value-of-life studies.
Reference:

Function:A*B*AllGoodsIndex
NameA:mean VSL in 1990$

DistA:Weibull

A:4800000

P1A:5320000

P2A:1.50958800315857

NameB:CPI-U "all items" conversion factor
B:1.31752109527588

NameC:

C:0
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NameD:

D:0

Weight:0

</Valuation.Function>
</KrewskiPooling.Method. TypeNone>
<LadenPooling.Method. TypeNone>
<Valuation.Function>

ID:332

Dataset:EPA Standard Valuation Functions
EndPointGrouplD:12

Endpoint group:Mortality

EndPointID:50

Endpoint:Mortality, All Cause

Start age:0

End age:99

Qualifier:VSL, based on 26 value-of-life studies.
Reference:

Function:A*B*AllGoodsIndex
NameA:mean VSL in 1990%
DistA:Weibull

A:4800000

P1A:5320000

P2A:1.50958800315857

NameB:CPI-U "all items" conversion factor
B:1.31752109527588

NameC:

C:0

NameD:

D:0

Weight:0

</Valuation.Function>
</LadenPooling.Method.TypeNone>
<LepeulePooling.Method.TypeNone>
<Valuation.Function>

1D:332

Dataset:EPA Standard Valuation Functions
EndPointGroupID:12

Endpoint group:Mortality

EndPointID:50

Endpoint:Mortality, All Cause

Start age:0

End age:99

Qualifier:VSL, based on 26 value-of-life studies.
Reference:

Function:A*B*AllGoodsIndex
NameA:mean VSL in 1990$

56



DistA:Weibull

A:4800000

P1A:5320000

P2A:1.50958800315857

NameB:CPI-U "all items" conversion factor
B:1.31752109527588

NameC:

C:0

NameD:

D:0

Weight:0

</Valuation.Function>
</LepeulePooling.Method.TypeNone>
<PopePooling.Method.TypeNone>
<Valuation.Function>

1D:332

Dataset:EPA Standard Valuation Functions
EndPointGrouplID:12

Endpoint group:Mortality

EndPointID:50

Endpoint:Mortality, All Cause

Start age:0

End age:99

Qualifier:VSL, based on 26 value-of-life studies.
Reference:

Function:A*B* AllGoodsIndex
NameA:mean VSL in 1990$
DistA:Weibull

A:4800000

P1A:5320000

P2A:1.50958800315857

NameB:CPI-U "all items" conversion factor
B:1.31752109527588

NameC:

C:0

NameD:

D:0

Weight:0

</Valuation.Function>
</PopePooling.Method.TypeNone>
</Valuation.Pooling. Window.Name.2011>
Processing complete. Valuation processing time: 0 hours 0 minutes 2 seconds.
</Aggregate, Pool & Value>
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