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Abstract   

With natural gas drilling on the rise (Penn State, 2012), there is a general lack of data on the 

emissions from the entire lifecycle of hydraulic fracturing. This research project is designed to 

study the health impacts of emissions from high volume hydraulic fracturing (HVHF) production 

and at HVHF well sites. Using data from previous research (Korfmacher et al., 2015 and 

Korfmacher et al., 2016) and the Environmental Protections Agency's Environmental Benefits 

Mapping and Analysis Program - Community Edition (BenMAP-CE), estimated health impacts 

and economic costs of emissions are analyzed. This study models the health impacts and 

economic costs of particulate matter (PM), an inhalable pollutant known to cause adverse health 

effects (OAR US EPA 2016a). Specifically, the study focuses on emissions at unconventional 

wells associated with HVHF in Pennsylvania. Based on modeling results, 2,000-5,000 people 

throughout Pennsylvania are being impacted by PM emissions released during HVHF activities, 

with higher percentages of the population per grid cell (0.01%-0.25%) impacted near well site 

locations, as compared to other parts of the state (0.0001%-0.006%). This study found that 

emissions from PM generated during HVHF activities in Pennsylvania during the years 2011-

2015 would result in an estimated 2,100-5,300 premature deaths with 95% confidence intervals 

of 600-3,500 deaths and 2,400-8,000 deaths respectively. The cost of these premature mortalities 

are estimated to be $14 billion-$37 with 95% confidence intervals of $1 billion-$34 billion and 

$4 billion-$79 billion respectively. This study shows that there is an increased risk of mortality 

from PM released during HVHF activities near well sites that appears to be currently 

underreported due to a lack of EPA monitors in rural parts of the country. This study acts as a 

guide to highlight problem areas in rural parts of the country, where monitoring stations are 

lacking and emissions from wells are relatively high.  
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Introduction  

Particulate Matter 

 Particulate matter (PM) is a type of pollution composed of a large assortment of diverse 

chemicals, including nitrogen oxides, ammonia, sulfur dioxide, and other gases, in solid or liquid 

form that originate from both natural and human activities (EPA 2011; OAR US EPA 2016d). 

Common sources of PM emissions are fossil fuel combustion, industrial processes, and on-road 

and non-road vehicles (EPA 2011). Pertinent to this study, unconventional natural gas production 

and the hydraulic fracturing process are known sources of fine PM emissions (Alvarez 2009). 

Other known sources are agriculture, forestry, areas under construction, or wildfires (OAR US 

EPA 2016a; EPA 2011). PM is divided into three groups based on the diameter (less than 10 

micrometers, less than 2.5 micrometers, and less than 1 micrometer) and the effect on human 

airways (OAR US EPA 2016d).  Figure 1 shows the relative size of PM2.5 and PM10 compared to 

a human hair and beach sand. 

 
Figure 1. The relative size of PM2.5 and PM10 compared to a human hair and beach sand (OAR 

US EPA 2016d). 
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 PM10 is commonly removed from the human airway through the nasal passage, but PM2.5 

or less deposits in the lungs. These deposits then cause oxidative stress and can lead to chronic 

inflammation (Anderson, Thundiyil, and Stolbach, 2012). A groundbreaking study done in 1993, 

known as the Harvard Six Cities Study, demonstrated a strong correlation between elevated 

mortality rates and exposure to PM (Dockery et al. 1993). Since 1993, there have been many 

studies linking PM to adverse health effects, concluding that PM pollution poses a threat to 

human health and increases the risk of mortality (Kim, Kabir, and Kabir 2015). Another study 

found that reductions in PM2.5 over a seven year period considerably reduced premature 

mortalities (Fann and Risley 2011). Reducing PM mortality is a significant health goal, as the 

World Health Organization (WHO) found that in 2002 there were 0.8 million premature deaths 

associated with PM2.5 worldwide (World Health Organization 2002).   

 The 1970 Clean Air Act established air quality standards for six pollutants, including 

PM2.5, which was revised in a 1990 amendment  to an annual average daily limit of 12 

micrograms per meter cubed for primary pollutant standards and an annual average daily limit of 

15 micrograms per meter cubed for secondary pollutant standards (OAR US EPA 2016c; OAR 

US EPA 2016e). This level is determined by the EPA to be the amount of fine PM at which there 

are minimal negative health impacts. However, many studies have noted there to be no precise 

evidence on deciphering a level of PM exposure that no longer causes health issues (Dockery et 

al. 1993). 

Particulate Matter and High Volume Hydraulic Fracturing  

 Unconventional natural gas development is currently on the rise due to hydraulic 

fracturing and horizontal drilling. Figure 2 shows the increase in natural gas production from 

hydraulic fracturing in the United States between 2003 and 2017, with a large portion coming 
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from the Marcellus Shale Formation (EIA 2017). Hydraulic fracturing is a method used to 

extract natural gas that involves horizontal drilling through shale rock up to 9,000 feet 

underground, then uses explosives, high-pressure water, sand, and miscellaneous chemicals to 

fracture the rock and send gas flowing back up to the well (Penn State 2016). The fracturing 

process requires 2.5 to 8 million gallons of water per well site, where 60-90% of this water is left 

underground in the shale formation and the rest of the water arrives back at the surface and then 

must be treated either onsite or transported to a treatment or disposal facility (Penn State 2016).    

 

Figure 2. The increase in natural gas production from hydraulic fracturing in the United States 

and, in particular, the Marcellus shale up to the year 2017 (EIA 2017). 

 The Marcellus Shale formation in particular has become an active location for HVHF, 

especially around Pittsburg and rural areas of Pennsylvania (Figure 3). Beginning in 2007, rapid 

development in this region resulted in 4,200 well sites in Pennsylvania by the year 2011 (Penn 

State 2016). Emissions from well sites are a recent additional source of PM to the region, 

particularly in rural areas unaccustomed to high levels of PM pollution. The Pennsylvania 

Department of Environmental Protection (DEP) reported on emissions from unconventional 
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natural gas operations in the Marcellus Shale Basin, PA, stating that from 2013 to 2014, there 

was a 25% increase in fine PM (DEP 2016). 

 

Figure 3 shows area of the Marcellus shale across the United State (Penn State 2016). 

 

 The U.S. Energy Information Administration (EIA) stated in the International Energy 

Outlook 2016 that consumption of natural gas is projected to increase from 120 trillion cubic feet 

in 2012 to 203 trillion cubic feet by 2040 (EIA 2016a).  This increase is largely due to switching 

from coal to natural gas, because natural gas produces fewer greenhouse gas emissions at a 
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competitive price. The EIA reported that coal produces 210 pounds of carbon dioxide per million 

Btu of energy, while natural gas produces 117 pounds of carbon dioxide per million Btu of 

energy (EIA 2016b). However, this rise in natural gas production may cause an increase in PM 

pollution near well sites and roads used to transport water and waste, resulting in the potential 

exposure to people living near these areas.   

Particulate Matter and Heavy Duty Diesel Trucks  

 Transportation is a large part of the HVHF process, using heavy duty diesel trucks to 

bring in water and sand for drilling. Additionally, trucks are used to transport flow-back 

wastewater from the well site to wastewater treatment facilities. Figure 4 represents the water use 

and transportation portion of hydraulic fracturing. A calculation of 4.4 million one-way heavy 

duty diesel trucks trips was found for transporting materials to and from well sites in the 

Marcellus Shale region of Pennsylvania between 2011 and 2013 (Korfmacher, Hawker, and 

Winebrake 2015). A majority of these diesel trucks are likely to have engines dating from before 

the 2007 model year, when cleaner emission controls technologies were introduced (Goldstein et 

al. 2014).  

 

Figure 4. The water and transportation portion of hydraulic fracturing (ORD US EPA 2016). 
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 Heavy duty diesel trucks produce emissions of PM, carbon dioxide, nitrogen oxides, 

sulfur oxides, and volatile organic compounds (US EPA 2008). From 2011-2013, an estimate for 

PM (PM10) pollution from transporting materials to and from well sites in the Marcellus Shale 

region of Pennsylvania was 18.9 to 40.7 Mg for old trucks and 3.1 to 6.6 Mg for new trucks 

(Korfmacher, Hawker, and Winebrake 2015). Research is lacking on the health impacts from 

exposure to this additional release of PM produced from diesel trucks used for the hydraulic 

fracturing process (Goldstein et al. 2014).   

 Localized well emissions are in addition to the transport emissions and are a more 

permanent, stationary source of PM pollution. A previous phase of this project (VanMunster 

2018) used a similar methodology, modeling the emissions from heavy duty diesel trucks 

associated with HVHF activities. VanMunster generated dispersion plumes from truck counts by 

road section using the atmospheric dispersion modeling system AERMOD (US EPA 2017), but 

was unable to capture the intense trucking and emission activity in the 2-3 week period when 

wells were drilled, due to a lack of temporal detail.  Her emission results were averaged out 

annually, which diluted the impact and generated very small estimates of premature mortality in 

Pennsylvania (VanMunster 2018). However, well sites emit PM pollution all year, not just 

during the couple of weeks during well development. For this reason, well data alone were used 

and kept at an annual time step for use in BenMAP-CE to model health impacts, producing a 

potentially more accurate representation of the health impacts from PM pollution linked to 

hydraulic fracturing. 
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Modeling Health Impacts of Particulate Matter 

 

 The EPA's Environmental Benefits Mapping and Analysis Program - Community Edition 

(BenMAP-CE) is a useful tool to estimate and model heath impacts. A previous study used 

BenMAP to evaluate the amount of mortalities avoided and economic benefits of the national air 

quality standards set in 2014 in China. The study compares PM levels from monitoring stations 

in China with the PM level set by the national air quality standard. The study models the PM2.5 

concentrations and estimates that 0.35 million deaths were avoided by the national air quality 

standard in 2014. They also use BenMAP to find the economic benefit of the avoided deaths to 

be about $65 billion (Chen et al. 2017).  

The US EPA used a similar methodology to assess the health impact of increasing 

temperatures from climate change. The study uses BenMAP with heat mortality health impact 

functions to estimate premature mortalities from different temperature scenarios. They use 

BenMAP to find values for all cause morality, cardiovascular disease, and non-accidental death 

along with subsequent economic costs, highlighting the ability to include these assessments in 

the economics of climate change (Voorhees et al. 2011).        

 The Harvard Six Cities study provides an example for a health modeling approach. The 

study design focuses on a population and defines variables such as age, race, and gender. They 

then compare the recorded ambient air quality with an observed change in air quality across six 

cities. A regression is run on each city for each of the defined variables and pollution sources to 

calculate mortality ratios. After controlling for differences in the population, the study found an 

association between increased mortality and higher levels of fine PM (Dockery et al. 1993). A 

more recent study conducted by the EPA, titled "Estimating the National Public Health Burden 
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Associated with Exposure to Ambient PM2.5 and Ozone", uses BenMAP-CE software to 

automate the health impact analysis to conduct an analysis of the effects of PM2.5 on mortality. 

This study combines the photochemical Community Multiscale Air Quality (CMAQ) model 

along with monitored ambient air quality into a 12x12 km grid. The study then uses population 

demographics with the air quality data to assess mortality rates across the United States during 

the summer of 2005. They use mortality risk coefficients derived from epidemiology literature, 

using sources such as the American Cancer Society and the Harvard Six Cities Study, to find 

mortality rates from a change in PM emissions. They also calculate the lives saved if there were 

more stringent air quality standards. The study found that for 2005 air quality levels, there were a 

total of 130,000 mortalities from PM2.5 exposure, concluding that PM2.5 emissions are a threat to 

public health (Fann et al., 2012). 

Purpose 

 

 This study will use BenMAP-CE to develop a model of the health effects and economic 

costs of PM2.5 emissions at HVHF well sites in Pennsylvania. This model can then be used to 

identify potentially high PM2.5 concentrations in parts of Pennsylvania near well sites and 

estimate health impacts and economic costs on a larger scale, especially for currently 

underrepresented rural parts of the country, where there are many well sites but few EPA 

monitoring stations. 
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Methods 

 

 With the EPA's Environmental Benefits Mapping and Analysis Program - Community 

Edition (BenMAP-CE), health impacts and economic costs of increased PM emissions from 

hydraulic fracturing activities can be analyzed. This health impacts analysis approach involves 

three key mechanisms: (1) the monitored changes in ambient air quality are input into BenMAP-

CE; (2) using a specified health equation drawn from epidemiology literature, a relationship is 

found between pollution and health effects; (3) economic values associated with these health 

effects are calculated (OAR US EPA 2016b). Figures 5 and 6 illustrate this approach. 

Figure 5.  BenMAP-CE incorporates each of the above steps to estimate health impacts (OAR 

US EPA 2016b).  

 

 

Figure 6. Above is an example of how BenMAP-CE calculates economic values associated with 

changes in air pollution (OAR US EPA 2016b). 
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 Modeled and monitored air quality data were input into BenMAP-CE. Monitored ambient 

air quality data provided by EPA monitoring stations, along with reported monitored well site 

emissions, were used for this analysis (DEP 2016; US EPA 2018). Because the EPA monitoring 

stations are reported as daily average concentrations, monitored well emissions were converted 

to match this dataset by dividing annual reported emissions by the total days in a year.  

 A previous phase of this study used AERMOD to model PM emissions dispersal and 

concentrations from heavy duty diesel trucks used for HVHF activities in PA (Korfmacher et al. 

2016; VanMunster 2018). The raw data from AERMOD results were clipped and merged to the 

CMAQ grid in ArcGIS, a geographic information system equipped with tools to manipulate and 

analyze data, and the total amount of emissions were found for each 12x12 km square area to 

ensure matching resolution across each data set (Korfmacher et al., 2016). Average emission 

concentrations were then calculated for each 12x12 km square so the resolution of the grid 

matched that of the monitored ambient air pollution provided in BenMAP-CE.  

A similar approach was used for this study to convert reported well site emissions to a 

12x12 km CMAQ grid for the use in BenMAP. However, because the reported well site dataset 

contains almost 6,000 entries per year, AERMOD could not be used to generate a model (DEP 

2016). Therefore, the reported emissions were aggregated to a 12x12km CMAQ grid for use in 

BenMAP without the use of AERMOD.     

 Monitored changes in ambient air quality from the years 2011-2016 were calculated for 

the state of Pennsylvania using the US EPA's (USEPA) monitoring stations as well as data the 

Pennsylvania Department of Environmental Protection (PADEP) releases on annual emissions 

from hydraulic fracturing activities, including fine PM emissions (DEP 2016). The PADEP 
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dataset displays reported PM emissions at well sites. The combined USEPA and PADEP 

monitoring stations together display a truer representation of PM concentrations than the EPA 

monitoring stations alone. EPA monitoring stations tend to be clustered around urban areas with 

known air quality issues, with few monitoring stations set up in rural areas (Figure 7).   

 

Figure 7.  The distribution of active and inactive monitoring stations in Pennsylvania as well as 

well site locations. 

 Because of the distance between rural sites, these monitoring stations may not accurately 

pick up localized emissions from well sites or other pollution sources. The voluntarily reported 

PADEP well emissions play the part of filling in these large gaps between EPA stations. Using 

ArcGIS, the well sites were selected by location and the total emissions per well site within each 

12x12 km area were found. Because the well sites are reported annually, the average daily 

concentration was calculated by dividing the total annual amount by the number of days in a year 

in order match the EPA monitoring emissions format for the use of BenMAP-CE. Changes in 
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emissions were calculated by comparing the baseline ambient air quality of just the USEPA 

monitoring stations, provided as part of BenMAP CE, with the combined data set of the PADEP 

reported emissions and the USEPA monitoring stations. 

With BenMAP, one or more Health Impact Functions (HIFs) can be used to determine 

the effect on health that a change in PM emissions has on the designated population. A HIF 

involves four key mechanisms designed from epidemiology literature: (1) the monitored changes 

in ambient air quality; (2) the population exposure density; (3) the baseline occurrence rate; (4) 

an effect estimate drawn from previous studies (OAR US EPA 2016b). 

BenMAP-CE is equipped with HIFs that can be used to analyze several respiratory 

illnesses and mortality. Figure 8 illustrates how a HIF works. Beta (ß) is the percent change that 

the chosen health effect has per each unit of population (USEPA 2015). Baseline incidence (Yo) 

represents the average number of people who suffer from a given health impact occurring from 

any cause together with air pollution over a set period of time (USEPA 2015). Delta PM (δPM) 

is the variation between the initial amount of air pollution and the amount after a change in air 

quality occurs (USEPA 2015). Exposed population (Pop) shows the value of people impacted by 

a change or reduction in air pollution (USEPA 2015). Basically, the equation is:   

𝐻𝑒𝑎𝑙𝑡ℎ 𝐸𝑓𝑓𝑒𝑐𝑡 = 𝐴𝑖𝑟 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 × 𝐻𝑒𝑎𝑙𝑡ℎ 𝐸𝑓𝑓𝑒𝑐𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 × 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

× 𝐻𝑒𝑎𝑙𝑡ℎ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 

 (USEPA 2015) 
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Figure 8. Above is an example of a HIF derived from an epidemiology study (OAR US EPA 

2016b). 

 

 The focus area of this study will be the state of Pennsylvania. In the rural, northeastern 

part of Pennsylvania, there are many well sites but a small population density. While the results 

may show small health effects or low mortality rates because there are fewer people living in this 

area, this is an underrepresented area regarding air quality monitoring and the methods derived 

may potentially be used to estimate impacts to rural parts of the country on a larger scale.  Figure 

9 below shows two maps of Pennsylvania displaying the population density and well site 

locations. 
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Figure 9 shows the well sites and population density of the study area in 2010. 

 

 Fann et al. (2012) suggests using health endpoints related to premature mortality and 

hospital visits for respiratory and cardiovascular issues, ensuring no two issues get counted 
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twice. This study also suggests using mortality as an endpoint due to its influence over the EPA 

regulatory process. Additionally, when selecting a HIF for PM2.5 emissions, premature mortality 

is a good assessor for PM2.5 because epidemiological studies generally account for urban areas 

with large populations as well as single cities with smaller populations, such as the population of 

Northeastern Pennsylvania (Fann and Risley 2011). When using multiple HIFs it is also 

important to ensure that each epidemiological study characterized the same population 

demographics, such as age, race, sex and ethnicity (Fann and Risley 2011). For this study, HIFs 

were drawn from study areas geographically similar to Pennsylvania, such as Eastern US cities, 

and assessed all cause mortality. 

 Using the calculated health impacts, economic costs can be associated with these lives 

lost or impacted. BenMAP-CE includes the Cost of Illness metric, which represents the cost of 

hospital admissions, emergency room visits, work loss days, and medical bills related to poor air 

quality (OAR US EPA 2016b). Furthermore, BenMAP-CE estimates economic values from 

pollution with a Willingness to Pay metric, which incorporates the Cost of Illness metrics as well 

as the economic value of pain and dissatisfaction (OAR US EPA 2016b). A Value of Statistical 

Life (VSL) can also be used to calculate the cost of avoided premature loss of life. VSL is the 

dollar value associated with the amount a population is willing to pay to slightly decrease the risk 

of death (OAR US EPA 2016b). From these values, future policy can be assessed relative to this 

issue or a benefit cost analysis can be derived from this study related to the cost of natural gas to 

better incorporate the cost environmental externalities. 

 BenMAP-CE produces results in the form of tables, maps, and raw data (US EPA 2015). 

These maps can be imported into ArcGIS for comparison and visualization. The results will 
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potentially fill in missing air quality data and underscore areas of high PM emissions, where 

health impacts are the greatest.  

 The first step of BenMAP-CE is to create an air quality surface. A dataset was created for 

this study. A 12x12km CMAQ grid for the state of Pennsylvania was extracted from the US 

CMAQ data set provided with BenMAP and then uploaded to use as the grid definition. PM 2.5 

was chosen for pollutant. The EPA Standard Monitor dataset was used for the control. For the 

baseline, a monitor dataset was created using the well site data. In ArcGIS, a monitor dataset was 

created by first importing the air quality surface shapefile of Pennsylvania produced in BenMAP 

using just the EPA Standard Monitor dataset for each year 2011-2015. This shapefile is a model 

of the interpolated air quality using just the EPA stations in Pennsylvania (Figure 10).   

Because there are few EPA stations in PA and very few near well site locations, reported 

well site emissions will be combined in each 12x12km grid cell and added to the amount 

produced from BenMAP for each grid cell except where there is an EPA station in the grid cell. 

For grid cells containing an EPA monitor station, only the EPA station data were used. This 

method is used because it is likely the grid cells containing an EPA station contain an accurate 

PM2.5 report, while grid cells not containing and EPA station, especially ones far away from an 

EPA station, are not reflecting PM emissions from well sites and, therefore, do not contain an 

accurate PM2.5 report. Figure 11 shows the BenMAP generated air quality surfaces using just the 

reported well site emissions. Figure 12 displays the maps for the combined EPA plus well site air 

quality surfaces using ArcGIS.   
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Figure 10 Shows the BenMAP generated air quality surfaces using only the EPA monitor 

stations for the years 2011-2015.  
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Figure 11 Shows the BenMAP generated air quality surfaces using only the reported well site 

emissions for the years 2011-2015. 
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Figure 12 Shows the combined air quality surfaces using the EPA monitor stations and the 

reported well site emissions for the years 2011-2015.  
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 For the baseline, this combined EPA and well site dataset is used. The delta is then 

calculated as baseline minus control or (EPA Stations + Well Sites) - EPA Stations, resulting 

in a report of the health impacts of just the well site emissions. BenMAP is equipped with a 

population dataset for 2010 for the entire United States. This 2010 United States Census 

population dataset was clipped down to just the area of Pennsylvania for smoother processing. 

The included EPA Standard Health Impact Functions were used for this project. The HIF's were 

filtered to select the all cause mortality functions from the authors Krewski 2009, Pope 2002, 

Lepeule 2012, and Laden 2006 (Krewski et al. 2009; Pope et al. 2002; Lepeule et al. 2012; 

Laden et al. 2006; US EPA 2014; US EPA 2015).  

 The incidence aggregation and valuation aggregation were both chosen to use the PA 

12x12 km CMAQ grid. No pooling was selected for this project to show the variability of 

mortality rates across PA. For the valuation method, a Value of Statistical life metric was used 

"based on a range from $1-10 million with a normal distribution" (USEPA 2015). An audit trail 

was produced from BenMAP, displaying the input used for each step in BenMAP to produce the 

models for individual years (Appendix B).   
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Results 

 

 Table 1 shows HIFs and the annual estimated premature deaths and corresponding 95% 

confidence intervals for each year for emissions from the wells from 2011-2015. Figure 13 

graphically displays the estimated premature deaths found for each health equation for each year. 

For each equation, there was a large increase in premature deaths in 2013, but an overall 

decrease from 2011 to 2015. The total death toll over the five year period ranged from 2,100 - 

5,300 deaths with 95% confidence intervals of 600 - 3,500 deaths and 2,400 - 8,000 deaths 

respectively. The total estimated economic costs of these deaths for the five year period ranged 

from $14 - $37 billion with 95% confidence intervals of $1- $34 billion and $4 - $79 billion 

respectively. Table 2 shows the economic costs of the estimated premature deaths found for each 

health equation for each year as well as the 95% confidence intervals.   

Figure 14 is a map of the estimated mortality using the Laden heath equation without 

converting to a population percentage per grid cell. Without considering the population per grid 

cell, the map shows hot spots around largely populated cities from emissions captured from the 

EPA monitors from multiple pollution sources, not just well emissions, as seen around Pittsburg. 

Additionally, this percentage represents the percent risk for each grid cell. The rural areas 

represent interpolations with well site emissions added, so they may not be capturing all rural 

sources. More monitoring stations should be placed in rural areas to capture emissions from all 

pollution sources. Figures 15 - 17 are maps for each year for each health equation.  

The Pope and the Krewski health equations used the same Beta, producing the same 

incidence and maps (Krewski et al. 2009; Pope et al. 2002). For this reason, only the Krewski 

health equations maps are displayed below. These maps show the percentage of the population 
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impacted within each 12 x 12 km grid cell. These maps indicate hot spots are located around well 

sites. These maps suggest that while the number of premature deaths may be small in rural areas 

because the population is small, the percentage of premature deaths per grid cell population is 

higher near well sites than in areas distant from well sites. 

 

Laden Equation:        (𝟏 − [
𝟏

𝒆𝜷×∆𝑷𝑴]) × 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆 × 𝑷𝑶𝑷       𝜷 = 𝟎. 𝟎𝟏𝟒𝟖 

Krewski Equation:    (𝟏 − [
𝟏

𝒆𝜷×∆𝑷𝑴
]) × 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆 × 𝑷𝑶𝑷       𝜷 = 𝟎. 𝟎𝟎𝟓𝟖 

Pope Equation:          (𝟏 − [
𝟏

𝒆𝜷×∆𝑷𝑴]) × 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆 × 𝑷𝑶𝑷       𝜷 = 𝟎. 𝟎𝟎𝟓𝟖 

Lepeule Equation:     (𝟏 − 𝒆−𝜷×∆𝑷𝑴) × 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆 × 𝑷𝑶𝑷      𝜷 = 𝟎. 𝟎𝟏𝟑𝟏 

Figure 13 graphically displays the estimate premature deaths found for each health equation for 

each year throughout PA and the formula with corresponding Beta values for each health 

equation (Krewski et al. 2009; Pope et al. 2002; Lepeule et al. 2012; Laden et al. 2006). 
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Table 1 Estimates of premature deaths and corresponding 95% confidence intervals for each 

health impact function for each year. 

 

  

2011 Beta Age Range Population

Baseline 

Mortality

Estimate 

Premature 

Deaths

Incidence 95% 

Confidence 

Interval

Lepeule 0.013102826 25-99 9,714,123 139,398 894 (448, 1335)

Pope 0.005826891 30-99 8,834,707 138,461 398 (109, 683)

Krewski 0.005826891 30-99 8,834,707 138,461 398 (269, 525)

Laden 0.014842001 25-99 9,714,123 139,398 1012 (456, 1559)

2012

Lepeule 0.013102826 25-99 9,714,123 139,398 882 (441, 1317)

Pope 0.005826891 30-99 8,834,707 138,461 391 (107, 673)

Krewski 0.005826891 30-99 8,834,707 138,461 391 (265, 517)

Laden 0.014842001 25-99 9,714,123 139,398 998 (449, 1539)

2013

Lepeule 0.013102826 25-99 9,714,123 139,398 1136 (569, 1695)

Pope 0.005826891 30-99 8,834,707 138,461 505 (138, 868)

Krewski 0.005826891 30-99 8,834,707 138,461 505 (342, 668)

Laden 0.014842001 25-99 9,714,123 139,398 1285 (580, 1979)

2014

Lepeule 0.013102826 25-99 9,714,123 139,398 976 (490, 1455)

Pope 0.005826891 30-99 8,834,707 138,461 435 (119, 746)

Krewski 0.005826891 30-99 8,834,707 138,461 435 (294, 574)

Laden 0.014842001 25-99 9,714,123 139,398 1104 (499, 1698)

2015

Lepeule 0.013102826 25-99 9,714,123 139,398 767 (384, 1146)

Pope 0.005826891 30-99 8,834,707 138,461 341 (93.2, 585.6)

Krewski 0.005826891 30-99 8,834,707 138,461 341 (230, 450)

Laden 0.014842001 25-99 9,714,123 139,398 868 (391, 1338)
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2011

Estimate 

Premature 

Deaths

Values 

(Billions)

Lepeule 894.4 $6.2 $470,000,000 $14,000,000,000

Pope 397.5 $2.8 $92,000,000 $6,600,000,000

Krewski 397.5 $2.8 $270,000,000 $5,600,000,000

Laden 1011.9 $7.0 $460,000,000 $16,000,000,000

2012

Lepeule 881.6 $6.1 $880,000,000 $13,000,000,000

Pope 391.4 $2.7 $290,000,000 $6,300,000,000

Krewski 391.4 $2.7 $430,000,000 $5,400,000,000

Laden 997.6 $6.9 $930,000,000 $15,000,000,000

2013

Lepeule 1136.1 $7.9 $1,200,000,000 $17,000,000,000

Pope 505.3 $3.5 $420,000,000 $8,100,000,000

Krewski 505.3 $3.5 $590,000,000 $6,900,000,000

Laden 1285.1 $9.0 $1,300,000,000 $19,000,000,000

2014

Lepeule 976.3 $6.8 $810,000,000 $14,000,000,000

Pope 434.6 $3.0 $250,000,000 $7,100,000,000

Krewski 434.6 $3.0 $410,000,000 $6,000,000,000

Laden 1104 $7.7 $840,000,000 $17,000,000,000

2015

Lepeule 767.2 $5.3 $760,000,000 $11,000,000,000

Pope 340.6 $2.4 $250,000,000 $5,500,000,000

Krewski 340.6 $2.4 $370,000,000 $4,700,000,000

Laden 868 $6.0 $800,000,000 $13,000,000,000

Values 95% Confidence Interval

Table 2 The economic costs of the estimated premature deaths found for each health 

equation for each year as well as the 95% confidence interval using a normal distribution. 
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Figure 14 Map of the estimated mortality using the Laden health equation without converting to 

a population percentage per grid cell distribution. 
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Figure 15 Maps of the estimated mortality using the Laden health equation as a percentage of 

the population impacted, or the percent risk, within each 12 x 12 km grid cell for each year. 
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Figure 16 Maps of the estimated mortality using the Krewski health equation as a percentage of 

the population impacted, or the percent risk, within each 12 x 12 km grid cell for each year. 
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Figure 17 Maps of the estimated mortality using the Lepeule health equation as a percentage of 

the population impacted, or the percent risk, within each 12 x 12 km grid cell for each year. 
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Discussion 

 

 PM2.5 released at HVHF well sites from hydraulic fracturing activities are causing an 

increased risk of premature mortality to populations living near well sites, based on model results 

using the well emissions data. The results indicate that as a product of well emissions from 2011-

2015, an estimated 2,100-5,300 premature deaths occurred annually, with 95% confidence 

intervals of 600-3,500 deaths and 2,400-8,000 deaths respectively.  EPA monitoring stations are 

located far from well site locations (Figure 7) and are likely not picking up significant PM2.5 

emissions from area wells, generating an air quality surface that is underreporting the amount of 

PM2.5 in rural parts of PA near well sites. Looking at the well site emissions map (Figure 11), 

there are hot spots in rural Northeastern PA where PM2.5 emissions reached 10-22 micrograms 

per cubic meter, but the EPA monitor map (Figure 10) shows a smooth gradient in that area of 

PM2.5 emissions under 10 micrograms per cubic meter. This suggests that EPA monitor stations 

are not picking up the additional well emissions and that the extrapolations of just the EPA 

monitors are based off of predominately urban monitor stations, underestimating the PM2.5 

concentrations in some rural areas. This study is a guide to problem areas, such as rural parts of 

Northeastern PA (Figures15-17), where EPA stations are lacking and emissions from wells are 

relatively high, based on self-reported data.  

 Referring to Figures 10-12, comparing the air quality surface generated by only the EPA 

monitoring stations versus the air quality surface generated by only the well site locations, the 

EPA stations do not appear to represent the reported well site emissions. Fine PM has a travel 

range of less than one kilometer to hundreds of kilometers, depending on atmospheric conditions 

and the surrounding land (WHO 2006). For this reason, it is important to monitor ambient air 
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quality conditions at a smaller scale, especially near industrial activities (WHO 2006). Rural 

areas are currently underrepresented concerning air quality monitoring in the United States. 

Within the study area, there was an increase in EPA stations from the year 2011-2015 (Appendix 

A), however the increase was small (1 station was added for the rural northeastern part of 

Pennsylvania) and there remains a large gap in monitoring stations in rural areas of 

Pennsylvania. This study suggests the EPA should consider placing more monitor stations in 

rural parts of the county near industrial activities, such as concentrated well sites.  

 There are several limitations to this analysis. The well site emissions are based off a 

voluntary report of emissions at well sites. These reports come from a calculation based off of 

emission factors that the hydraulic fracturing companies deem most appropriate, rather than 

actual emissions monitoring (PADEP 2016). Furthermore, some well sites opt out of reporting 

emissions, potentially causing the results of this project to be an underestimation of emission 

impacts. Future projects should work toward gaining a more accurate inventory of well site 

emissions by placing monitors near well sites.  

Additionally, this study assumes PM stays within a 12x12 km range after being released 

at a well site (so no additions or mixing between 12x12 boxes). The dispersal of PM may be 

impacted by the land features and weather patterns, potentially shifting the location of the high 

PM concentration areas. Future studies with the capability to run large data sets through 

AERMOD should input the reported well site emissions into AERMOD to create a more 

accurate model of the dispersal pattern and travel distance of fine PM emissions released at well 

sites.    



32 
 

 

 While the results indicate relatively low mortality rates across PA, as seen in Figure 14, 

when considering the population distribution across PA, a larger percentage of risk of 0.01% - 

0.24% is seen near well sites than in other parts of PA where risk of 0.0001% - 0.006% is 

measured (Figures 15-17). This correlation suggests that living near well sites increases a 

population's risk of premature mortality, because the ratio is disproportionate across PA. This 

also suggests that there is a necessity for further EPA monitors to be placed near HVHF activities 

to better assess PM2.5 emissions on a finer scale and more accurately represent the air quality. 

 Table 1 shows a large range of 400-1000 incidence in the estimate premature mortality 

from different health equations derived from epidemiological studies from different authors. This 

difference is caused from the use of different hazard ratios in each equation, resulting in different 

beta coefficients. The range of incidence, as recommended by the EPA, shows that while there 

are scientific differences on the amount of impacts from PM on premature mortality, there still 

exists an impact from PM on premature mortality (USEPA 2012). The results of this study, even 

at the lower bound as seen in the estimate premature deaths found by using the Pope or Krewski 

health equations, still suggest 2,070 premature deaths in Pennsylvania over the five year period 

due to emissions near well sites (Table 1). 

 There is also a monetary benefit from improved air quality. The Value of a Statistical 

Life for premature mortality per incidence was $8 million for a 1990 income level and $9.6 

million for a 2020 income level (USEPA 2012). Tables 2 shows the differences in values 

associated with the estimate incidences found from the chosen health equations. Essentially, 

there is value of $8-9 million per estimate incidence as seen in Table 2. There are many 

uncertainties when considering economic effects, such as inflation, discount rates, income level, 

etc., which contributes to the large range in confidence for each value. Additionally, the age 



33 
 

 

range of 25-99 will also impact the value of life, as the population varies per age group, causing 

more uncertainty in the economic value for each health equation. Figure 18 is a graph of the age 

distribution in Pennsylvania from the 2010 United States Census. There appears to be a 

decreasing number of people above the age of 65, with increased populations aged 15-24 and 45-

54. The VSL for a younger person will be a higher value than that of an older person. Because of 

this, large confidence intervals can be seen in Table 2 for the values associated with premature 

mortality.   

 

Figure 18 displays a graph of the age distribution in Pennsylvania in 2010 (US Census Bureau 

2018).  
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Conclusions 

 

 This study highlights areas of increased risk of mortality from PM generated by hydraulic 

fracturing activities. There is an increased risk of mortality from PM released during hydraulic 

fracturing activities near well sites that appears to be currently underreported due to a lack of 

EPA monitors in rural parts of the country. As seen in Figures 15-17 and Table 1, there are an 

estimated 2,070-5,267 premature deaths in Pennsylvania as a result of PM emissions released 

during hydraulic fracturing activities from 2011-2015, with higher percentages of the population 

per grid cell (0.01%-0.25%) being impacted near well site locations as compared to other parts of 

the state (0.0001%-0.006%). The cost of these premature mortalities, as seen in Table 2, are 

estimated to be $14 billion-$37 billion and a 95% confidence interval of $1 billion-$34 billion 

and $4 billion-$79 billion respectively.  

 These estimated values should be considered when determining the cost to produce 

natural gas using hydraulic fracturing. It is important to assess environmental externalities when 

addressing policy related to energy production. While natural gas production produces fewer 

particulate emissions than other fossil fuels, such as coal, increased natural gas production may 

shift the focus away from growth in renewable energy generation (Feng, Davis, Sun, & Hubacek, 

2016). Additionally, because well sites are typically considered individual sources of emissions 

rather than as collective unit of many well sites, emissions from wells are effectively unregulated 

by the Clean Air Act (Kosnik 2007; Brady 2011). This underscores the need for EPA monitoring 

stations near hydraulic fracturing well sites. This study acts as a guide to hot spot emission 

locations, where EPA stations are needed. A similar study using BenMAP to assess air quality in 
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China stated one of the biggest limitations of their study was an inadequate number of 

monitoring sites (Chen et al. 2017).  

This study can also be used to predict the outcome in regards to fine PM and premature 

mortality of future hydraulic fracturing activities in other parts of the country as well as current, 

underrepresented areas near hydraulic fracturing activities. Policymakers should consult these 

impacts when considering the use of hydraulic fracturing over other sources to meet energy 

consumption needs and how the data limitations suggest a more regulatory approach to reporting 

emissions.  

 Previous stages of this project studying the emissions from heavy duty diesel trucks 

associated with HVHF can be combined with the findings of this study to fine-tune hot spot 

locations of PM emissions. These combined emissions should be run through AERMOD to 

better account for the dispersal of emissions and then through BenMAP to model the heath 

impacts and economic costs. This study did not account for the increase in emissions from heavy 

duty diesel truck used for hydraulic fracturing activities, potentially underreporting the full 

health impacts of hydraulic fracturing activities. The combined studies will provide a more 

complete evaluation of the emissions and health impacts from HVHF activities. 
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Appendix A 

EPA monitor station locations for the years 2011 to 2015.  
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Appendix B 

BenMAP Audit Trail for 2011 

BenMAP-CE 1.1.0 

<Aggregate, Pool & Value> 

Create Datetime:2018-04-17 12:23:12 

IsRunInPointMode:False 

Latin Hypercube Points:20 

Population Dataset:PA-PA_CMAQ_12KM 

Year:2010 

Threshold:0 

<Baseline.And.Control.Group0> 

<Pollutant> 

Name:PM2.5 

Observation Type:Daily 

Season0:January 01-March 31 

Season1:April 01-June 30 

Season2:July 01-September 30 

Season3:October 01-December 31 

Metric0:D24HourMean 

Seasonal Metric0:QuarterlyMean 

</Pollutant> 

<Baseline.Air.Quality.Surfaces> 

Create Datetime:2018-03-21 10:26:40 

Pollutant:PM2.5 

Interpolation Method:VoronoiNeighborhoodAveragin 

Library Monitors:True 

Monitor Dataset Name:EPA plus Wells Updated  

Monitor Year:2011 

<Grid.Definition> 

Name:PA_CMAQ_12KM 

ID:40 

Columns:357 

Rows:172 

Grid Type:Shapefile 

Shapefile Name:PA_CMAQ_12KM_WGS1984 

</Grid.Definition> 

<Pollutant> 

Name:PM2.5 

Observation Type:Daily 

Season0:January 01-March 31 

Season1:April 01-June 30 

Season2:July 01-September 30 

Season3:October 01-December 31 

Metric0:D24HourMean 

Seasonal Metric0:QuarterlyMean 
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</Pollutant> 

</Baseline.Air.Quality.Surfaces> 

<Control.Air.Quality.Surfaces> 

Create Datetime:2018-03-21 10:27:02 

Pollutant:PM2.5 

Interpolation Method:VoronoiNeighborhoodAveragin 

Library Monitors:True 

Monitor Dataset Name:EPA Standard Monitors PM2.5 

Monitor Year:2011 

<Grid.Definition> 

Name:PA_CMAQ_12KM 

ID:40 

Columns:357 

Rows:172 

Grid Type:Shapefile 

Shapefile Name:PA_CMAQ_12KM_WGS1984 

</Grid.Definition> 

<Pollutant> 

Name:PM2.5 

Observation Type:Daily 

Season0:January 01-March 31 

Season1:April 01-June 30 

Season2:July 01-September 30 

Season3:October 01-December 31 

Metric0:D24HourMean 

Seasonal Metric0:QuarterlyMean 

</Pollutant> 

</Control.Air.Quality.Surfaces> 

</Baseline.And.Control.Group0> 

<Selected.health.impact.functions> 

<Health.impact.function.0> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Start age:30 

End age:99 

Race: 

Ethnicity: 

Gender: 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Krewski et al. 

Qualifier:Random effects cox; 44 individual and 7 ecologic co-variates; 1999--2000 follow-up 

(Commentary table 4) 
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Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP 

Year:2009 

Location: 

Other pollutants:TSP, O3, SO4, SO2 

Reference:Krewski D, Jerrett M, Burnett R, et al. 2009. Extended Follow-Up and Spatial 

analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality. Health 

Effects Institute, Cambridge MA 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Prevalence dataset: 

Variable dataset: 

Beta:0.005826891 

Beta distribution:Normal 

P1Beta:0.000962763 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

</Health.impact.function.0> 

<Health.impact.function.1> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Start age:25 

End age:99 

Race: 

Ethnicity: 

Gender: 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Laden et al. 

Qualifier: 

Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP 

Year:2006 

Location: 

Other pollutants: 

Reference:Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery. 2006. Reduction in Fine 

Particulate Air Pollution and Mortality: Extended follow-up of the Harvard Six Cities Study. Am 

J Respir Crit Care Med.  

Baseline functional form:Incidence*POP 
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Incidence dataset:Mortality Incidence (2010) 

Prevalence dataset: 

Variable dataset: 

Beta:0.014842001 

Beta distribution:Normal 

P1Beta:0.004169721 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

</Health.impact.function.1> 

<Health.impact.function.2> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Start age:25 

End age:99 

Race: 

Ethnicity: 

Gender: 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Lepeule et al. 

Qualifier: 

Function:(1-EXP(-Beta*DELTAQ))*Incidence*POP 

Year:2012 

Location: 

Other pollutants: 

Reference:Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and 

mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Vol 120(7). 

965-970 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Prevalence dataset: 

Variable dataset: 

Beta:0.013102826 

Beta distribution:Normal 

P1Beta:0.00334674 

P2Beta:0 

A:0 
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NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

</Health.impact.function.2> 

<Health.impact.function.3> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Start age:30 

End age:99 

Race: 

Ethnicity: 

Gender: 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Pope et al. 

Qualifier: 

Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP 

Year:2002 

Location: 

Other pollutants: 

Reference:Pope, C.A., 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito and G.D. 

Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine 

particulate air pollution. Jama. Vol. 287 (9): 1132-41. 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Prevalence dataset: 

Variable dataset: 

Beta:0.005826891 

Beta distribution:Normal 

P1Beta:0.002157076 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

</Health.impact.function.3> 

<Health.impact.function.4> 
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Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Start age:0 

End age:0 

Race: 

Ethnicity: 

Gender: 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Woodruff et al. 

Qualifier: 

Function:(1-(1/((1-Incidence)*EXP(Beta*DeltaQ)+Incidence)))*Incidence*POP 

Year:2006 

Location: 

Other pollutants: 

Reference:Woodruff, T. J., J. D. Parker and K. C. Schoendorf. 2006. Fine particulate matter 

(PM2.5) air pollution and selected causes of postneonatal infant mortality in California. 

Environmental Health Perspectives. Vol. 114: 786?790. 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Prevalence dataset: 

Variable dataset: 

Beta:0.006765865 

Beta distribution:Normal 

P1Beta:0.007338828 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

</Health.impact.function.4> 

</Selected.health.impact.functions> 

<Log.And.Message> 

Processing complete. HIF processing time: 0 hours 0 minutes 58 seconds. 

</Log.And.Message> 

Sort Incidence LHPs:False 

Default Advanced Pooling Method:Roundweightstotwodigits 

Default Monte Carlo Iterations:5000 

Random Seed:1 

<Inflation.Adjustment> 
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Dataset: 

Year:2010 

</Inflation.Adjustment> 

<Income.Growth.Adjustment> 

Dataset: 

Year : -1 

<Adjust.Income.Growth.EndpointGroups> 

Upper Respiratory Symptoms:1 

Mortality:1 

Lower Respiratory Symptoms:1 

Chronic Bronchitis:1 

Chronic Asthma:1 

Asthma Exacerbation:1 

Acute Respiratory Symptoms:1 

Acute Bronchitis:1 

</Adjust.Income.Growth.EndpointGroups> 

</Income.Growth.Adjustment> 

<Incidence.Aggregation> 

Name:PA_CMAQ_12KM 

ID:40 

Columns:357 

Rows:172 

Grid Type:Shapefile 

Shapefile Name:PA_CMAQ_12KM_WGS1984 

</Incidence.Aggregation> 

<Valuation.Aggregation> 

Name:PA_CMAQ_12KM 

ID:40 

Columns:357 

Rows:172 

Grid Type:Shapefile 

Shapefile Name:PA_CMAQ_12KM_WGS1984 

</Valuation.Aggregation> 

<Incidence.Pooling.And.Aggregation.> 

<MortalityPooling.Method.TypeNone> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Author:Krewski et al. 

Year:2009 

Location:116 U.S. cities 

Other pollutants:TSP, O3, SO4, SO2 
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Reference:Krewski D, Jerrett M, Burnett R, et al. 2009. Extended Follow-Up and Spatial 

analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality. Health 

Effects Institute, Cambridge MA 

Start age:30 

End age:99 

Baseline functional form:TSP, O3, SO4, SO2 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.005826891 

Beta distribution:Normal 

P1Beta:0.000962763 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Author:Laden et al. 

Year:2006 

Location:6 cities 

Other pollutants: 

Reference:Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery. 2006. Reduction in Fine 

Particulate Air Pollution and Mortality: Extended follow-up of the Harvard Six Cities Study. Am 

J Respir Crit Care Med.  

Start age:25 

End age:99 

Baseline functional form: 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.014842001 

Beta distribution:Normal 

P1Beta:0.004169721 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 



51 
 

 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Author:Lepeule et al. 

Year:2012 

Location:6 Eastern Cities 

Other pollutants: 

Reference:Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and 

mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Vol 120(7). 

965-970 

Start age:25 

End age:99 

Baseline functional form: 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.013102826 

Beta distribution:Normal 

P1Beta:0.00334674 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Author:Pope et al. 

Year:2002 

Location:51 cities 
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Other pollutants: 

Reference:Pope, C.A., 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito and G.D. 

Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine 

particulate air pollution. Jama. Vol. 287 (9): 1132-41. 

Start age:30 

End age:99 

Baseline functional form: 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.005826891 

Beta distribution:Normal 

P1Beta:0.002157076 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

</MortalityPooling.Method.TypeNone> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Krewski et al. 

Qualifier:Random effects cox; 44 individual and 7 ecologic co-variates; 1999--2000 follow-up 

(Commentary table 4) 

Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP 

Year:2009 

Location: 

Other pollutants:TSP, O3, SO4, SO2 

Reference:Krewski D, Jerrett M, Burnett R, et al. 2009. Extended Follow-Up and Spatial 

analysis of the American Cancer Society Linking Particulate Air Pollution and Mortality. Health 

Effects Institute, Cambridge MA 

Start age:30 

End age:99 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.005826891 

Beta distribution:Normal 
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P1Beta:0.000962763 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Laden et al. 

Qualifier: 

Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP 

Year:2006 

Location: 

Other pollutants: 

Reference:Laden, F., J. Schwartz, F. E. Speizer and D. W. Dockery. 2006. Reduction in Fine 

Particulate Air Pollution and Mortality: Extended follow-up of the Harvard Six Cities Study. Am 

J Respir Crit Care Med.  

Start age:25 

End age:99 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.014842001 

Beta distribution:Normal 

P1Beta:0.004169721 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

<Health.impact.function> 



54 
 

 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Lepeule et al. 

Qualifier: 

Function:(1-EXP(-Beta*DELTAQ))*Incidence*POP 

Year:2012 

Location: 

Other pollutants: 

Reference:Lepeule J, Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and 

mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Vol 120(7). 

965-970 

Start age:25 

End age:99 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.013102826 

Beta distribution:Normal 

P1Beta:0.00334674 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

<Health.impact.function> 

Health impact function dataset:EPA Standard Health Functions 

Endpoint group:Mortality 

Endpoint:Mortality, All Cause 

Pollutant:PM2.5 

Metric:D24HourMean 

Metric statistic:Mean 

Seasonal metric:QuarterlyMean 

Author:Pope et al. 

Qualifier: 

Function:(1-(1/EXP(Beta*DELTAQ)))*Incidence*POP 

Year:2002 

Location: 



55 
 

 

Other pollutants: 

Reference:Pope, C.A., 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito and G.D. 

Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine 

particulate air pollution. Jama. Vol. 287 (9): 1132-41. 

Start age:30 

End age:99 

Baseline functional form:Incidence*POP 

Incidence dataset:Mortality Incidence (2010) 

Beta:0.005826891 

Beta distribution:Normal 

P1Beta:0.002157076 

P2Beta:0 

A:0 

NameA: 

B:0 

NameB: 

C:0 

NameC: 

Percentile:0 

Weight:0 

</Health.impact.function> 

</Incidence.Pooling.And.Aggregation.> 

<Valuation.Pooling.Window.Name.2011> 

Mortality 

<KrewskiPooling.Method.TypeNone> 

<Valuation.Function> 

ID:332 

Dataset:EPA Standard Valuation Functions 

EndPointGroupID:12 

Endpoint group:Mortality 

EndPointID:50 

Endpoint:Mortality, All Cause 

Start age:0 

End age:99 

Qualifier:VSL, based on 26 value-of-life studies. 

Reference: 

Function:A*B*AllGoodsIndex 

NameA:mean VSL in 1990$ 

DistA:Weibull 

A:4800000 

P1A:5320000 

P2A:1.50958800315857 

NameB:CPI-U "all items" conversion factor 

B:1.31752109527588 

NameC: 

C:0 
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NameD: 

D:0 

Weight:0 

</Valuation.Function> 

</KrewskiPooling.Method.TypeNone> 

<LadenPooling.Method.TypeNone> 

<Valuation.Function> 

ID:332 

Dataset:EPA Standard Valuation Functions 

EndPointGroupID:12 

Endpoint group:Mortality 

EndPointID:50 

Endpoint:Mortality, All Cause 

Start age:0 

End age:99 

Qualifier:VSL, based on 26 value-of-life studies. 

Reference: 

Function:A*B*AllGoodsIndex 

NameA:mean VSL in 1990$ 

DistA:Weibull 

A:4800000 

P1A:5320000 

P2A:1.50958800315857 

NameB:CPI-U "all items" conversion factor 

B:1.31752109527588 

NameC: 

C:0 

NameD: 

D:0 

Weight:0 

</Valuation.Function> 

</LadenPooling.Method.TypeNone> 

<LepeulePooling.Method.TypeNone> 

<Valuation.Function> 

ID:332 

Dataset:EPA Standard Valuation Functions 

EndPointGroupID:12 

Endpoint group:Mortality 

EndPointID:50 

Endpoint:Mortality, All Cause 

Start age:0 

End age:99 

Qualifier:VSL, based on 26 value-of-life studies. 

Reference: 

Function:A*B*AllGoodsIndex 

NameA:mean VSL in 1990$ 
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DistA:Weibull 

A:4800000 

P1A:5320000 

P2A:1.50958800315857 

NameB:CPI-U "all items" conversion factor 

B:1.31752109527588 

NameC: 

C:0 

NameD: 

D:0 

Weight:0 

</Valuation.Function> 

</LepeulePooling.Method.TypeNone> 

<PopePooling.Method.TypeNone> 

<Valuation.Function> 

ID:332 

Dataset:EPA Standard Valuation Functions 

EndPointGroupID:12 

Endpoint group:Mortality 

EndPointID:50 

Endpoint:Mortality, All Cause 

Start age:0 

End age:99 

Qualifier:VSL, based on 26 value-of-life studies. 

Reference: 

Function:A*B*AllGoodsIndex 

NameA:mean VSL in 1990$ 

DistA:Weibull 

A:4800000 

P1A:5320000 

P2A:1.50958800315857 

NameB:CPI-U "all items" conversion factor 

B:1.31752109527588 

NameC: 

C:0 

NameD: 

D:0 

Weight:0 

</Valuation.Function> 

</PopePooling.Method.TypeNone> 

</Valuation.Pooling.Window.Name.2011> 

Processing complete. Valuation processing time: 0 hours 0 minutes 2 seconds. 

</Aggregate, Pool & Value> 
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