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“Unless someone like you cares a whole awful lot,

Nothing is going to get better. It’s not.”

- The Lorax
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Abstract

With the ever improving progress of technology, Software Defined Radio (SDR) has

become a more widely available technique for implementing radio communication.

SDRs are sought after for their advantages over traditional radio communication

mostly in flexibility, and hardware simplification. The greatest challenges SDRs face

are often with their real time performance requirements. Forward error correction

is an example of an SDR block that can exemplify these challenges as the error

correction can be very computationally intensive. Due to these constraints, SDR im-

plementations are commonly found in or alongside Field Programmable Gate Arrays

(FPGAs) to enable performance that general purpose processors alone cannot achieve.

The main challenge with FPGAs however, is in Register Transfer Level (RTL) de-

velopment. High Level Synthesis (HLS) tools are a method of creating hardware

descriptions from high level code, in an effort to ease this development process. In

this work a turbo code decoder, a form of computationally intensive error correction

codes, was accelerated with the help of FPGAs, using HLS tools. This accelerator was

implemented on a Xilinx Zynq platform, which integrates a hard core ARM processor

alongside programmable logic on a single chip.

Important aspects of the design process using HLS were identified and explained.

The design process emphasizes the idea that for the best results the high level code

should be created with a hardware mindset, and written in an attempt to describe a

hardware design. The power of the HLS tools was demonstrated in its flexibility by

providing a method of tailoring the hardware parameters through simply changing

values in a macro file, and by exploration the design space through different data

types and three different designs, each one improving from what was learned in the

previous implementation. Ultimately, the best hardware implementation was over

56 times faster than the optimized software implementation. Comparing the HLS

to a manually optimized design shows that the HLS implementation was able to
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achieve over a 19% throughput, with many areas for further improvement identified,

demonstrating the competitiveness of the HLS tools.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Software Defined Radio

The ever increasing power of digital technology as well as newly developed tools

have allowed software defined radio (SDR) to grow from an idea to a reality. SDRs

provide many advantages over traditional hardware radios including, flexibility, cus-

tomizability, longevity, reliability, and repurposability to name a few. SDR is a way

of implementing typical radio communication hardware, such as mixers, filters, gain

controllers, modulators, demodulators, using software.

The flexibility of SDR might be the most compelling aspect of the concept. SDRs

often allow a wide range of frequencies ranging from KHz to GHz to be used in a

single radio, which is uncommon for hardware radios. More importantly, SDRs can

potentially implement any protocol, or a range of protocols at once. In a common cell

phone for example, one might find different hardware specifically for Bluetooth, Wifi,

GPS, and GSM or CDMA communication. With SDR, all of these could potentially

be implemented in one, eliminating the need for separate dedicated hardware for the

different protocols.

The upgradability, reconfigurability, and repurposability are also enticing aspects

of SDRs. These capabilities allow radios to gain new features, new protocols, fix
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CHAPTER 1. INTRODUCTION

bugs, or change to suit entirely new applications. Additionally, this can also occur

remotely, which can have numerous benefits.

Reliability is another significant aspect of SDRs. Increased reliability can occur as

there is limited component tuning required, there are fewer components that can fail,

such as diodes or capacitors, and parameter differences, such as temperature change

or manufacturing variations, are limited.

Cost saving is another element that can be considered for SDRs. Cost savings

can occur as software can easily be reused for free, cutting down on design time

and material cost. This eliminates the need for expensive new hardware designs,

enabling low cost research development and testing. Additionally to this, little to no

maintenance is required.

Although SDRs have numerous advantages they also has very challenging disad-

vantages. The biggest one is that SDRs require a lot of processing power, increasing

power consumption, and potentially increasing cost. The technology behind it, such

as processors, Analog to Digitl Conveters (ADCs), and Digital to Analog Converters

(DACs), are not always fast enough for SDR applications. Additionally, the software

code can quickly become very complex.

1.1.2 Turbo Codes

One interesting SDR component is the error correction code block. Specifically, turbo

code error correction. Turbo codes are a widely used form of forward error correc-

tion that provides near channel capacity performance[1]. Their uses can be seen

from low signal to noise deep space satellites to real time cell phone communication.

For instance, the Long Term Evolution (LTE) standard uses turbo codes for error

correction[2] which requires low latency, and high reliability. Most implementations

of turbo codes can be found in integrated circuits due to their real time constraints

and computational intensity, which do not hold the advantages of SDR. Due to these
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CHAPTER 1. INTRODUCTION

requirements however they pose a significant challenge for SDRs, but remain an im-

portant aspect for radio communication.

1.1.3 Field Programmable Gate Arrays

Even though software defined radios are accessible like never before, many applica-

tions are not able to run on truly general purpose processors alone. SDRs often require

accelerators in the forms of Digital Signal Processors (DSPs) or Field Programmable

Gate Arrays (FPGAs). FPGAs allow custom digital hardware functionality to be

implemented, and can be reconfigured to implement new functionality when desired.

They are particularly interesting for software defined radios due to their ability to ac-

celerate specific tasks. Turbo codes provide a great module for FPGA acceleration for

their complexity, computational requirements, and frequent use described previously.

Using an FPGA can have the advantage that the implementation can be tailored to

the application requirements, handling different parameters such as latency, resource

usage, power consumption, and accuracy.

1.1.4 High Level Synthesis

Even with the tremendous performance improvements FPGAs can provide, the most

daunting aspect is developing for them. Development can be long and difficult. An

ever evolving method for developing for FPGAs is through the use of High Level Syn-

thesis (HLS) tools. HLS provides a design flow in which algorithms are implemented

using high level languages such as C or C++. These implementations get interpreted

by the HLS tools, which generate Register Transfer Level (RTL) models of the algo-

rithm in a hardware description language such as VHDL or Verilog. This removes the

developer from many of the low level nuances required by manually optimized designs,

which comes at the cost of complete customization. Manually optimized designs will

generally outperform HLS designs but require significant development time. Addi-

4



CHAPTER 1. INTRODUCTION

tionally, manually optimized designs require developers with knowledge of hardware

description languages whereas HLS can be used with only knowledge of high level

language. This opens the benefits of FPGAs to a new user base many times larger

than those with Hardware Description Language (HDL) knowledge. The decreased

development time allows for extensive exploration into the design space with much

less effort. Alongside this, the verification is greatly simplified, as higher level code

can be written more easily for the different test cases, and tested in software as well

as RTL simulation from the same tests files.

For the best results, a design process should be followed which describes the

hardware desired in a way that is effective for HLS translation. This paper examines

an approach to accelerate turbo code decoding with an FPGA using HLS tools. The

design process behind it is explored and the trade offs are analyzed. It also exemplifies

the advantages, flexibility and customization with significantly less development time

than that of a manual optimized hardware design.

1.2 Related Works

Previous research has explored the idea of implementing turbo code decoding in the

context of SDR. In [3-8] the hardware capabilities are considered when implementing

the decoder. Moreover, the implementation of the algorithm is tailored to take ad-

vantage of the specific hardware platform. In [3], [4], and [5], DSP are used as the

underlying hardware, while in [6] a GPU is used, in [7] a CPU is used, and in [8] mul-

tiprocessor systems are used. Even with these carefully considered implementations,

the performances achieved may still not be enough.

Although ASIC design for turbo codes is a commonly researched topic [9], and

can achieve the highest performance, the lack of flexibility does not lend itself to

SDR. Because of this, FPGA implementations are popular for implementing turbo

codes for SDR applications. Still, most of the techniques used in turbo code ASIC
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CHAPTER 1. INTRODUCTION

designs and turbo code FPGA designs can be used independent of the platform for

implementation. Much of the research in this domain relates to improving the algo-

rithm by reducing the computational intensity, reducing the resource requirements,

and improving the throughput. These techniques commonly focus on using the log

domain to reduce the computational intensity [10], and use a sliding window [11]

or other parallel implementations [12] to reduce resource requirements and improve

throughput. Even still, the actual hardware implementation is not easy to create,

and exploring new design techniques can be a difficult and time consuming task.

High Level Synthesis has been studied to see its effectiveness compared to tradi-

tional manual development [13, 14, 15], and has been specifically used for SDR imple-

mentation [16]. In [16] an SDR implementing the Zigbee protocol is constructed using

HLS. This work provides a proof of concept for the ability of HLS for SDR imple-

mentations. A manually optimized design was used as the baseline, and was created

in conjunction with the HLS to verify functionality. HLS has also been leveraged for

Error Correction Codes. In [17] a turbo code decoder is implemented. This work

takes a C implementation and attempts to implement it on an FPGA using HLS for

simulation purposes, and to gain an understanding of how quick development can be

achieved. The implementation does not come from a hardware design and does not

take advantage of any of the standard hardware techniques for effectively implement-

ing turbo codes such as a Sliding Window technique. As such the implementation is

not very optimized.

Low Density Parity Check (LDPC) codes are a competing code for forward error

correction code that also approaches the Shannon limit and is computationally com-

plex. HLS has been utilized to implement LDPC codes in several works [18] [19] [20].

In [18] three different HLS tools are compared and demonstrate performance within

the same order of magnitude as manually optimized designs. In [19] two LDPC de-

coder architectures are proposed and implemented using HLS to achieve throughputs
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greater than state or the art designs which are compared. In [20] Vivado HLS tools

are examined to see their effectiveness when implementing LDPC codes. The paper

discusses the mapping of the code to the hardware in detail and demonstrates the

ability to implement non trivial designs.
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Chapter 2

Software Defined Radio

2.1 Software Defined Radio

Software Defined Radio (SDR) has become an increasingly attractive radio implemen-

tation. The flexibility, reliability, and upgradability provide distinct advantages over

traditional radio hardware configurations. SDR allows a single platform to be used

for many different radio applications and protocols. SDR uses software to implement

radio components that are usually implemented in hardware. This allows incredible

opportunity for numerous different applications and protocols to work on a single

piece of hardware, whereas hardware radios are limited by the fixed architecture used

for its implementation.

One of the first well known software defined radios was the product of the De-

partment of Defense and went by the name of Speakeasy [21]. Speakeasy was pro-

grammable waveform, multiband, multimode radio, capable of emulating more than

15 existing military radios. It proved the concept that the same hardware can be

used for many different forms of radio communication through different software.

A simple example of a potential SDR application can be seen in modern day

smartphones. Smartphones can communicate over many different protocols such as

GSM, Wifi, and Bluetooth. Generally, to implement these protocols there is specific

hardware required which is unique to each protocol. Utilizing SDR, only a single

8



CHAPTER 2. SOFTWARE DEFINED RADIO

piece of hardware could cover a range of protocols at once.

One of the most compelling uses of software defined radio is in satellite commu-

nication. Main satellites fail over time due to hardware maintenance issues. This

probability is drastically decreased with SDR as there are less hardware components

to fail. Along with this, as technology moves forward over the years, a satellite can

still benefit from the software radio advancements, without ever needing to physi-

cally access the satellite, something not possible with hardware radios. This updat-

ing benefit can be seen in two examples. First, the Mars Recon Orbiter updating its

communication to use to Adaptive Data Rates, allowing much faster more efficient

communication[22]. Second, Voyager updated its Error Correction Code (ECC) after

launch which was critical to continued mission success[23].

2.1.1 Common Radio Principals

In order to understand typical SDR implementations it is helpful to have an under-

standing of some common radio principals. This is particularly helpful for under-

standing the partitioning between the hardware and where the software starts.

2.1.1.1 Heterodyning and Superheterodyning

Heterodyning and superheterodyning are common techniques found in most radio

communication today. Heterodyning mixes two frequencies to make a new frequency.

Often this is a carrier frequency mixed with a signal to create a modulated signal, or

to demodulate a signal. Superheterodyning is used in receiving radio communication,

and takes the Radio Frequency (RF) signal and uses heterodyning to convert it into

an Intermediate Frequency (IF) signal. From here more processing is completed and

it is converted to the baseband signal. There are a few reasons why this approach

is taken. First, if processing such as filtering and amplification are done at the high

RF frequencies they have poorer performance than the lower frequencies. Second, if
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Figure 2.1: An example superheterodyning receiver to display the partitioning of the RF,
IF, and baseband signals. An SDR can sample at any of the points along the path.

a radio can be tuned to different frequencies, it brings it to a common frequency for

further processing, eliminating the challenges that various frequencies pose. This is

typically accomplished by varying the oscillator that is used for heterodyning, and

keeping all of the tuning hardware constant for a fixed frequency. From here after

processing the signal is demodulated to obtain the baseband signal. A potential

radio reciever can be seen in Figure 2.1. In the figure, the RED SECTION shows the

processing in the RF signal, the GREEN SECTION shows the processing in the IF

signal, and the BLUE SECTION shows the baseband signal. The filters and amplifiers

are used to eliminate aliasing and unwanted frequencies, and tune the desired signal

to make it stronger.

2.1.2 Ideal SDR

Software defined radio requires some way for the software to interact with the real

RF world. Analog to Digital Converters (ADCs) and Digital to Analog Converters

(DACs) are used to convert the signal from RF to digital and digital to RF. Thus, the

perfect SDR transmitter would have three components. A processing system, a DAC,

and an antenna. The perfect SDR receiver would also have three components. An
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Figure 2.2: The ideal SDR receiver and transmitter made up of an antenna, ADC/DAC
and processing system.

antenna, an ADC, and a processing system. This SDR setup can be seen in Figure

2.2. DACs and ADCs in reality are limited, and thus limit the frequencies that can

be captured. Even if this weren’t an issue, processing systems do not have unlimited

computational power. This causes a typical SDR to have more hardware than an

ideal SDR would have. Many SDR receivers implement much of the superheterodyne

receiver shown in Figure 2.1 where the sampling is done at any point along that data

path. It can be done in the RF, IF, baseband or later as desired.

2.1.3 Open Source SDR C and C++ Libraries

Different libraries were examined to see which was the best candidate to integrate

with FPGA acceleration using HLS. The following is a small synopsis of three of the

libraries examined to see how suited they were for the requirements.

2.1.3.1 GNU Radio

GNU Radio is one of the most widely used SDR libraries available. It provides many

signal processing blocks that can be connected together and used to create SDRs.

There is a useful visual tool that can be used to quickly connect SDR blocks for rapid
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prototyping. The library is mainly written in C++, with many of the user tools being

written in python. The SDR implementations can run with actual hardware, or in a

simulated environment. Leveraging HLS with GNU radio can be difficult as it relies

on dynamic memory and pointers, has its own data passing mechanism, has its own

scheduler, and has many external dependencies. These overheads are not well suited

for HLS and could be difficult to overcome.

2.1.3.2 Liquid DSP

Liquid DSP is a lightweight open source library for DSP written in C. It was designed

to be a standalone framework for embedded SDR implementations with minimal ex-

ternal dependencies, and minimal overhead. It provides blocks that are scalable,

flexible, and dynamic. The library provides no underlying infrastructure for connect-

ing components, managing memory, or proprietary datatypes. That is left to the user

to handle, to eliminate unnecessary overhead and keep it light weight. It compiles

using CMAKE which may take some converting to be compatible with HLS tools.

2.1.3.3 CSDR

CSDR is a library written in C that was created for the cost effective RTL2832U-SDR

dongles. It is a comparatively small library and is restricted to receiving transmission

only as the RTL2832U-SDR dongles are incapable of transmitting. As such, it is a

very simple library with decent code documentation. This library was used for the

initial SDR prototyping with HLS.
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Chapter 3

Turbo Codes

3.1 Turbo Code Error Correction

Turbo codes provide a technique for error correction with near Shannon limit perfor-

mance that can often be found in the context of SDR. Turbo codes are iteratively

decodable codes allowing them to be customized for accuracy and latency. The codes

consist of an encoder and a decoder, with the encoder being relatively simple, and

the decoder being much more complex. A simplified system integration can be seen

in Figure 3.1. In this figure, a bit sequence gets encoded by a turbo code encoder,

modulated, sent over a noisy channel, demodulated, error corrected using a turbo

code decoder, and a bit sequence is recovered. The Encoder and the Decoder blocks

are used to represent the turbo codes.

Figure 3.1: A simplified example of how turbo codes are integrated into radio communi-
cation.
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Figure 3.2: An example of a memory 2 Recursive Systematic Convolutional (RSC) En-
coder.

Figure 3.3: An example of a turbo code encoder containing two RSC encoders.

3.1.1 Turbo Code Encoder

Turbo code encoding at the lowest level uses a Recursive Systematic Convolutional

(RSC) encoder. An example is shown in Figure 3.2. An RSC encoder takes an input

sequence of bits and produces two output sequences of bits of equal length. One

sequence exactly matches the input sequence, known as the systematic bits, and the

other sequence is the parity bits, or redundant information used to help recover the

input sequence. The recursive aspect of RSC encoders uses a feedback which creates

an infinite impulse response which is beneficial for encoders. This infinite impulse
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Figure 3.4: A high level view of the turbo code decoder consisting of MAP decoders,
interleavers, deinterleavers, and a hard decision maker. The bold lines highlight the feedback
loop present in the turbo decoder.

will continue to have the parity bits change even if in the presence of a long string of

the same bit values which is beneficial for error correction.

Multiple RSC encoders can be concatenated in parallel to increase the amount

of parity information. In order to decorrelate the redundancy bits from the two

encoders, an interleaver is used at the input of the second RSC encoder to change

the order of the bits. This is done for each subsequent RSC encoder. The additional

RSC encoders systematic outputs do not provide new information and are ignored.

An example turbo code encoder with two RSC encoders can be seen in Figure 3.3.

This example encoder is used for the remainder of this section.

3.1.2 Turbo Code Decoder

In this example the turbo code decoder contains two Maximum A Posteriori (MAP)

decoders, otherwise called Bahl, Cocke, Jelinek, and Raviv (BCJR) decoders [24].

Each MAP decoder is used for one parity sequence.

The outputs of the MAP decoders are used as inputs to the subsequent decoders

forming a feedback loop. As the number of iterations through the feedback loop
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Figure 3.5: The state machine representing the example RSC encoder. The encoder
memory is shown in the parenthesis. Inputs of zero are shown as dotted lines, and inputs of
one are shown with full lines. The input and output format is represented as input/output
marked on the transition lines.

Figure 3.6: This diagram represents a trellis with 5 states over 4 bits. The red lines
represent an input bit of one and the dotted blue lines represent and input bit of zero.
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Figure 3.7: This diagram shows an example of how an encoded sequence can be represented
with the trellis. The bolded black lines represent a path that the sequence could take.
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increases so does the confidence in the output. When the desired number of iterations

through the feedback loop is met, both outputs are fed into a hard decision maker

which gives the final output.

The MAP decoder makes up the complex part of this algorithm. It constitutes

the majority of the decoder, and relies heavily on the trellis structure. A trellis is a

time-invariant state machine used to represent an RSC encoder. The truth table for

every possible state for the previous RSC encoder can be seen in Table 3.1. A state

machine can be extracted from this truth table. The state machine representation

can be seen in Figure 3.5. The RSC encoder used has a memory of two bits, or four

possible states, as seen in the figure. This state machine over time makes up the

trellis. The trellis used for this example can be seen in Figure 3.6. Examining the

figure shows the four states at each time interval, along with the transitions between

each time interval. When encoding, a single path is taken through the trellis, where

a new parity bit is produced at each step. An example of this is displayed through

Figure 3.7. The MAP decoder uses this trellis structure which represents how the

input sequence was encoded, and tries to find the path taken using the systematic

sequence and the parity sequence.

The MAP decoder calculates the Log Likelihood Ratio (LLR) for each bit, or in

other words the probability a bit is a 0 or a 1. The LLR is calculated as

LLR(uk|y) = log
P (uk = 1|y)

P (uk = 0|y)
, (1)

here P (uk = 1|y) is the probability that the bit uk is 1 given the entire information

sequence, y, has been received and where P (uk = 0|y) is the probability that the

bit uk is 0 given the entire information sequence, y, has been received. This can be
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Table 3.1: Truth table representation of the RSC encoder shown previously.

Input Memory 1 Memory 2 State A =
Memory 1

XOR
Memory 2

B = Input
XOR A

Output =
Memory 2

XOR B

0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 1 0 2 1 1 1
0 1 1 3 0 0 1
1 0 0 0 0 1 1
1 0 1 1 1 0 1
1 1 0 2 1 0 0
1 1 1 3 0 1 0
0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 1 0 2 1 1 1
0 1 1 3 0 0 1
1 0 0 0 0 1 1
1 0 1 1 1 0 1
1 1 0 2 1 0 0
1 1 1 3 0 1 0

expressed using three terms as follows

LLR(uk|y) = ln

∑
(αk−1(s

′)γ(s′, s)βk(s))∑
(αk−1(s′)γ(s′, s)βk(s))

, (2)

where αk−1(s
′) is the probability that the trellis is in state s′ at t = k − 1, starting

from t = 0 and moving forward in time, where βk(s) is the probability that the trellis

is in state s at t = k, starting from t = N and moving backwards in time, and

where γk(s′, s) is the probability that if the trellis is in state s′ at time t = k − 1, it

moves to state s at t = k. The γ terms are branch transition probabilities known as

the branch metrics. The α terms are computed recursively moving forward in time,

called forward recursion, and the β terms are computed recursively moving backward

in time, called backward recursion.

These terms can be understood conceptually with the help of the trellis structure.
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Figure 3.8: This diagram shows how the Gamma, Alpha, and Beta terms are represented
in the trellis. The Gamma terms are the state transitions represented by the Γn in the
diagram. The Alpha terms are denoted by An and move left to right. The Beta terms are
denoted by BN and move right to left.

Figure 3.8 displays each of the terms by labeling pieces of the trellis. In the figure the

gamma terms are represented by the transitions between the states, while the Alpha

terms are represented by the states going forward, and the Beta terms are represented

by the states going backwards.

The branch metrics or gamma terms are calculated

γk(s′, s) = Ck exp (
1

2
(Lcykuk + ukL(uk) + Lc

n∑
i=1

ykixki)), (3)

where uk is the trellis input, L(uK) is the extrinsic information from the previous

MAP decoder, Lc is the channel reliability, n is the number of bits being considered

(in this case 2 for the systematic bit and parity bit), yk is the bit received (systematic
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bit or parity bit), xk is the trellis output, and Ck is a constant that gets divided out

later and can be ignored.

The forward recursion or alpha terms are calculated

αk(s) = αk−1(s
′)γk(s′, s), (4)

where α0 is initialized

α0(s) =


1, if s = 0

0, otherwise.

The backward recursion or beta terms are calculated

βk−1(s)) = βk(s′)γk(s′, s), (5)

where βk−1 is initialized

βk−1(s) =


1, if s = 0

0, otherwise.

The MAP decoding algorithm requires long, resource intensive exponential func-

tions, and a large number of multiplication functions. Improvements using the log

domain can greatly reduce the complexity without sacrificing any accuracy [10]. Us-

ing the log domain, exponentials can be removed, the large amount of multiplications

can become additions, and additions can become the max* operation seen in equation

3.

max ∗(a, b) = max(a, b) + ln(1 + e−|a−b|), (6)

This variation is commonly referred to as the MAX-LOG-MAP algorithm. Further

simplifications can be made while still maintaining exceptional results by using the

MAX operation and a correction factor, where this correction factor is stored in
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a small 8 value look up table[25]. The decoder can be simplified even further by

ignoring the correction factor entirely. This is commonly referred to as the MAX-

MAP algorithm. For simplicity, the MAX-MAP variant of the algorithm was used

for the FPGA acceleration.

The Γ terms in the log domain can be computed as follows

Γk(s′, s) =
1

2
ukL(uk) +

Lc

2

n∑
i=1

ykixki (7)

The alpha terms in the log domain can be computed as follows

log(αk(s)) = Ak(s) = max ∗
s′

(Ak−1(s
′) + Γk(s′, s)), (8)

where A0 is initialized

A0(s) =


0, if s = 0

−∞, otherwise.

The beta terms in the log domain can be computed as follows

log(βk−1(s)) = Bk−1(s) = max ∗
s′

(Bk(s′) + Γk(s′, s)), (9)

where Bk−1 is initialized

Bk−1(s) =


0, if s = 0

−∞, otherwise.

Upon completion of all of three of these terms, the extrinsic information or LLR

can be calculated in the log domain as

L(uk|y) = max ∗
(s′,s)for uk=1

(Ak−1(s
′) + Γk(s′, s) +Bk(s))
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− max ∗
(s′,s)for uk=0

(Ak−1(s
′) + Γk(s′, s) +Bk(s)), (10)

Again, this extrinsic information is used in subsequent decoders to improve the reli-

ability of the error correction.

The outputs of the MAP decoders are fed to the hard decision maker.

uk =


1, if L(uk|y)1 + L(uk|y)2 + Lc ∗ uk > 0

0, otherwise.

The two outputs are added together along with the systematic bit multiplied by the

channel reliability. If the value is positive it is considered a 1 otherwise it is a zero.

The equation can be seen in the Equation above.

3.1.3 Implementations

There are many variants of the MAP decoder which have implementation advan-

tages. Each of the variants were implemented one by one. Initially, the regular

MAP decoder was implemented in software. The psuedocode for the MAP decoder

can be seen in Appendix A. Then the LOG-MAP implementation was created, fol-

lowed by the MAX-LOG-MAP implementation, MAX-LOG-LUT-MAP, and finally

the MAX-MAP implementation. The LOG-MAP variant is the same as the MAP

decoder but using the log domain. The MAX-LOG-MAP decoder is the same as the

LOG-MAP decoder but uses the max* operator in place of the log function. The

MAX-LOG-LUT-MAP is the same as the MAP-LOG-MAP but uses a look up table

for the correction factor in place of calculating the max* correction factor. Finally,

the MAX-MAP is the same as the MAX-LOG-LUT-MAP but ignores the correction

factor entirely. The psuedocode for the MAX-MAP decoder can be seen in appendix

B.

This MAX-MAP implementation was used as the basis for the remainder of the
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research. Supporting code was written to test the turbo code decoder, including the

different variants of the MAP decoder. This code produced random sequences of

data, created interleaver patterns used for encoding and decoding of data, encoded

the data using the turbo code encoder, added Gaussian noise to the signal, ran the

turbo code decoder, recorded the decoding time, calculated the BER of the output,

and printed the results with their corresponding input parameters. The block size

and trellis size were compile time macros, but the testing framework allowed simple

iterations through some run time parameters as well. The SNR start, stop, and step

amounts, the number of turbo decoder iteration start, stop, and step amounts, and

the number of simulations per parameter were all run time specified, allowing for

many parameters to be checked in a single run. The turbo code decoder using the

MAX-MAP decoder results can be seen in Figure 3.9. This figure clearly shows that

performance of the error correction improves with increased iterations and approaches

a limit, as expected.
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Figure 3.9: Bit Error Rate performance of a MAX-MAP turbo code decoder with a block
size of 4000, and a trellis with 8 states.
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High Level Synthesis Guidelines

The goal of HLS tools is to facilitate the design process of hardware implementations

on the FPGA by translating a software description of an algorithm into a hardware

description language implementation. Taking software designed for sequential exe-

cution will likely not produce hardware implementations that are competitive with

the ideal manually optimized designs. Instead, to maximize the effectiveness when

utilizing HLS tools, it is important to take special care in the design approach, and to

develop the software implementation with a hardware-centric mindset. This involves

starting with a hardware design in mind and writing code that attempts to emulate

it. Additionally, it involves adapting the coding style to the HLS requirements, which

is not always in agreement with software best practices. In this work, important

aspects of this design process are identified in order to use the HLS tool effectively.

One of the goals of this research was to identify the necessary aspects of HLS that

lead to hardware comparable in terms of performance to manually optimized designs.

Three different points of interest were identified to be very important and can be seen

as guidelines that lead to good implementation.

1. A good understanding of the tools.

2. Having a coding style that is effective for HLS.

3. Starting with a hardware design in mind and writing code that attempts to
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emulate it.

This section will discuss these point at a general level and provide some examples.

After this, the implementation of the algorithm is discussed in detail.

4.1 Understand The Tool Offerings

An understanding of what is offered from the tools, and how the tools work in terms

of synthesis, are essential elements necessary to take advantage of HLS. In the case

of Vivado HLS that means understanding the available implementation choices such

as directives, data types, and interfaces, and when to use them. It also means being

able to read and understand HLS reports, and being able to analyze the output using

the different analysis tools provided.

4.1.1 IDE Features

Vivado HLS has many features that can greatly enhance productivity and shorten

development time. Some of these features include analysis tools which explain the

mapping between the high level code and cycle by cycle operation, resource usage,

timing information, and different simulation methods.

4.1.2 Directives

Arguably the most significant aspect of Vivado HLS to understand is the directives.

As mentioned previously, using HLS to compete with hand coded RTL implemen-

tations is not as simple as selecting a function to synthesize. Part of the reasoning

behind this is that there are many things that can be done in hardware that cannot

be expressed in high level code alone. To accommodate for this HLS tools can be

provided with directives. Directives are extensions of C and C++ that guide the

tools to different hardware implementations. Several directives were identified to be
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very impactful in HLS hardware designs, and thus greatly affecting performance and

resource utilization:

• Pipelining directive allows fine grained parallelism by increasing utilization of

hardware. It is used to pipeline loops, allowing future iterations of for loops to

start before the previous ones have finished, increasing utilization and through-

put. Pipelining isn’t always free however. When pipelining a loop, all sub loops

and sub functions may be unrolled completely which can dramatically increase

resource usage.

• Dataflow directive allows coarse grained parallelism across functions or loops

which increasing utilization of hardware. Dataflow will place a FIFO buffer

between functions or between loops enabling subsequent functions or loops to

receive and work with data before the previous function or loop has finished.

• Loop unrolling allows parallelism in loops by replicating hardware. This can be

very effective, allowing single cycle computations, but can be costly in terms of

resources.

• Array partitioning reduces access contention by splitting an array at the hard-

ware level, which provides more parallel ports for access. The Array Partitioning

directive requires intimate knowledge of the hardware design, and data access

patterns, but without it severe penalties can be faced. For large arrays, block

RAM is most commonly used as storage. Although this is often the appropriate

method to use, block RAM only has two ports per block that can be used data

access each cycle. This can be a huge bottleneck in a design. Partitioning splits

the arrays among different blocks, allowing for more ports to access the memory

at once. Arrays can be partitioned completely allowing for fully parallel access,

but again comes at the cost of resources as it is implemented using FFs and

LUTs.
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• Inlining removes the hierarchy of the function call which in turn allows the

tools more freedom to optimize. This can be quite effective for increasing per-

formance, but can be more confusing for analysis.

• Interface specifies how the ports are created. This is a very significant directive

when it comes to system integration as it directs how the data is passed into

and out of the accelerator, and how it is interacted with.

• Dependence provides the tools with more information enabling false dependen-

cies to be removed, which allows pipelining or improved pipelining. The tools

choose functionality over performance and thus sometimes see dependencies

that are not required. Eliminating those false or not required dependencies can

enhance pipelining performance.

4.1.3 Data Types and Libraries

Xilinx provides arbitrary precision libraries which let the user have more control

over data types. With these libraries a user can select the bit widths of data types,

which can be very useful for minimizing resources, or creating data types larger than

can be specified using native C or C++ types. These libraries are also useful for

implementing fixed point data types. Fixed point data types are common in hardware

designs as replacements for floating point as they can be calculated much faster and

more efficiently.

In addition to that there are also other libraries provided by Xilinx that can be

leveraged for effective implementations. Some of these libraries include DSP, Math,

Linear Algebra, Streaming, and Video.
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4.2 Coding Style

When writing the code for the hardware it is important to have a coding style tailored

to hardware. In other words, when implementing a design it is best not to have a

software perspective in mind, but instead think about what hardware will be created

from the high level code. For example in software, it is good practice to avoid branches

when possible as branch penalties can play a huge factor in slowing performance.

Branches behave differently when consider for HLS. Using HLS, an if statement

will usually be interpreted as a multiplexor in hardware. Multiple multiplexors or

larger multiplexors do not face the same penalties as branch penalties. It is this

kind of thinking, and understanding of what hardware the tools will interpret from

the code that will guide good coding style and implementations. This can be a

difficult mindset to adjust to at first, but is vital for good results. Along with this,

there are many restrictions on coding styles as some things are not synthesizable.

Some of the unsynthesizable aspects include operating system calls, STL functions,

function pointers, and pointers without compile time size definitions. In addition to

this recursion is not allowed, and pointer casting is very limited.

There are several ideas that come to mind for guiding good code. Code should be

explicit and well defined. The tools will not optimize the hardware unless it can prove

optimization will not break functionality. Being explicit provides more information

and allows more optimizations to occur. Also keeping the control flow simple and

avoiding complex code will produce better results. More complex control flow leads

to higher resource usage requirements as well as longer latency delays. Understanding

the building block of the FPGA such as FlipFlops, LUTs, DSP48s, or block RAM,

and coding to take advantage of their properties can be beneficial as well.

A few examples taken from [26] of how to take advantage of these ideas in coding

style can be seen below.
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4.2.1 Bounded Loop Iterators

Bounding loops with a maximum number of iterations and using break statements

for early termination will allow the tools to run optimizations that arent possible

with dynamic for loops. Again the tools do not break functionality, so if a variable is

specified as an 32 bit int but it only ever loops a maximum of 200 times, depending

on how its written, the tools may not be able to prove that the counter never goes

over 200 and thus will unnecessarily use 32 bit variables to count. These longer 32

bit variables take up more resources and take longer to evaluate than 8 bit variables.

With perfectly defined loops the bit widths of the data path and control signals can

be optimized.

Listing 4.1: Example code which does not provide definitive boundaries for the for loop

resulting in subpar HLS results.

1 #define MAX 200

2 int total ( int in_array [ MAX ] , int size ) {

3 int total=0;

4 for ( int i=0; i<size ; i++){

5 total = total + in_array [ i ] ;

6 }

7 return total ;

8 }

Listing 4.2: Example code with bounded loops and an early conditional break statement

which allows the HLS to optimize the implementation.

1 #define MAX 200

2 int total ( int in_array [ MAX ] , int size ) {

3 int total=0;
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4 for ( int i=0; i<MAX ; i++){

5 total = total + in_array [ i ] ;

6 if (i == size ) {

7 break ;

8 }

9 }

10 return total ;

11 }

4.2.2 Being Explicit Where Possible

This bring about the point of being explicit and allowing the tools to make optimiza-

tions. For example, although the tools will interpret if statements as multiplexors,

it does not mean if statements should be used without consideration. The tools

will optimize where possible by sharing resources. In the example below there are

two if statements that could be written using if else instead. Using two separate if

statements will duplicate the foo hardware as the tools cannot prove the paths are

mutually exclusive. Figure 4.1 shows a simplified idea of potential hardware that

could be created from the description. As can be seen in the figure, the foo hardware

is duplicated.

Listing 4.3: Example code disregarding potential mutual exclusion which restricts the

tools from optimizing.

1 if (A == Value1 )

2 A = Foo (X ) ;

3 if (B == Value2 )

4 B = Foo (Y ) ;

Written this way, mutual exclusion cannot be proven, and potential optimizations

such as resource sharing go untouched.
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Figure 4.1: Illustration of the hardware interpretation when mutual exclusion is not
proven. In this case two separate foo units are required.
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Figure 4.2: Illustration of the hardware interpretation when mutual exclusion is proven.
In this case one foo unit can be shared.

The following listing provides more information that can be taken advantage of

to enhance hardware implementation. A simplified idea of the hardware that could

be created from this high level code can be seen in Figure 4.2. This figure has a more

complicated control path but enables a single foo hardware unit to be implemented

which may be very beneficial.

Listing 4.4: Example code being explicit and displaying mutual exclusion which allows

the tools to optimize further. In this case by sharing resources.

1 if (A == Value1 )

2 A = Foo (X ) ;

3 else if (B == Value2 )

4 B = Foo (Y ) ;

Written this way, mutual exclusion is proven, and resource sharing optimizations

can be made. This a very simple example but the principal of being explicit can be
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applied more widely in design.

4.2.3 Single Return Point

Another good design practice is using a single return point. This can lower the

complexity of the control path, and allows for the pipeline stages to be balanced

better. This is beneficial for resource usage, latency, and debugging. If there is

more than one possible exit point, flags can be used to skip extra computation. The

example below first shows code that can return early which should try to be avoided

for HLS. After this an alternative method of using flags is shown.

Listing 4.5: Example code showing multiple return points in a function which should be

avoided for good HLS coding style.

1 if ( exit_early == true ) {

2 return A ;

3 }

4 A = A + B ;

5 return A ;

Listing 4.6: Example code showing how flags can be used to easily bypass sections of code

and cleanly create a single return point.

1 flag_add_B = true ;

2 if ( exit_early == true ) {

3 flag_add_B = false ;

4 }

5 if ( flag_add_B == true ) {

6 A = A + B ;

7 }

8 return A ;
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Although this code can be simplified further, the coding style of using flags to

bypass sections of code has shown to be effective for more complex examples.

4.3 Write Code That Emulates Hardware

One of the most significant aspects for HLS implementations that achieve near hand

coded performance is writing code that tries to emulate a hardware design. This

is very important as this type of coding doesn’t always make sense from a software

standpoint but is vital for good results. Software that achieves the same functional

equivalency can likely be completed in a more straightforward implementation with

fewer lines of code, but gives very different hardware results. For example increasing

parallelism at the hardware level can lead to code which has a complex control flow,

and calls the same function multiple times, which has no software benefit. Addition-

ally, this may introducing extra variables or extra buffers that are unnecessary in

software.

One example of this can be seen in a simplified case that was encountered through

this work. In this case, dataflow and pipelining were not applicable due to the nature

of the dependencies. The software functionality is capable of being expressed as shown

in the listing below. The subsequent hardware created can be seen in Figure 4.3. The

figure demonstrates how the code will produce hardware that runs sequentially.

Listing 4.7: Example code showing how hardware performance can be limited due to data

dependencies on a single buffer.

1 for ( LOOP ) {

2 ACQUIRE_DATA (A ) ;

3 USE_DATA (A ) ;

4 }

Instead of this hardware, it was desired that the data acquisition and data usage
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Figure 4.3: Example of resulting hardware from listing 4.7

occur in parallel to increase performance. To do this, a pingpong buffer scheme

could be used. In this case, the acquire data function would use one buffer, while

the use data buffer would use another buffer, and they would swap buffers for each

loop. Code to represent this hardware can be seen in the listing below. The hardware

representing of this can be seen in Figure 4.4. This figure clearly shows the two

functions can run in parallel by removing the dependencies between them.

Listing 4.8: Example code showing how parallel functions could be used to reduce the

memory access limitations.

1 // I n i t i a l i z a t i o n

2 ACQUIRE_DATA (B ) ;

3 Toggle = true ;

4

5 for ( LOOP ) {
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Figure 4.4: Example of resulting hardware from listing 4.8

6 if Toggle {

7 ACQUIRE_DATA (A ) ;

8 USE_DATA (B ) ;

9 }

10 else {

11 ACQUIRE_DATA (B ) ;

12 USE_DATA (A ) ;

13 }

14 Toggle = ! Toggle ;

15 }

16 // c leanup

As can be seen when comparing both code listings, the pingpong buffer scheme

adds complexity to the code which would not add any benefit during software ex-

ecution. The hardware on the other hand would be significantly different, gaining

the ability for the functions to occur in parallel. This is only a simple example, but

emphasizes the importance of writing the software to describe the desired hardware.
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Chapter 5

HLS MAX-MAP Implementation

The turbo code decoder is the complex part of turbo code error correction. Within

the turbo code decoder, the complex, compute intensive piece of the algorithm is

the MAP decoder. This was chosen to undergo FPGA acceleration. In this case,

the MAX-MAP variant of the MAP decoder described previously, was used as it

contains many benefits for hardware implementation. This chapter describes the

implementation details of the MAX-MAP decoder for targeting HLS. The high level

hardware designs are explored first, followed by the low level building blocks that

made up the implementation.

5.1 High Level Designs

The explanation of the implementation is easiest to comprehend from the top-down,

looking at the high level design approach. Furthermore, starting with the software

implementation, and moving through the hardware designs provides insight into the

thought process that was behind the implementations, and demonstrates the ability

to easily explore the design space. Ultimately, there were three different hardware

designs that were created, building off what was learned from previous implementa-

tions.
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Figure 5.1: The high level flow of data for the original MAP decoder. The N inputs rep-
resents the entire block of information received. Each of the terms are calculated separately
in their entirety before continuing to the next calculations.

5.1.1 Software

At the topmost level, the block diagram software implementation can be seen. The

regular software flow of data through a MAX-MAP decoder can be seen in Figure

5.1. This figure shows the algorithm being broken down into 4 main functions, each

one representing one of the terms of the algorithm. In this implementation, each of

these calculations occurs for the entire N inputs, which typically ranges from 40 to

6144 as specified in the LTE standard [27], before starting the next calculations. This

requires the entire input block to be received before continuing, and requires all of

the calculation results to be stored.
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Listing 5.1: Pseudo Code for the original software design.

1 MAP_decode ( systematic [ NUM_BITS ] ,

2 parity [ NUM_BITS ] ,

3 extrinsic [ NUM_BITS ] ,

4 noise ,

5 decoder_output [ NUM_BITS ] )

6 {

7 calculate_gamma ( systematic [ NUM_BITS ] ,

8 parity [ NUM_BITS ] ,

9 extrinsic [ NUM_BITS ] ,

10 noise ,

11 gamma_output [ NUM_BITS ] ) ;

12

13 calculate_alpha ( gamma_output , alpha_output ) ;

14

15 calculate_beta ( gamma_output , beta_output ) ;

16

17 calculate_LLR ( gamma_output ,

18 alpha_output ,

19 beta_output ,

20 decoder_output ) ;

21 }

5.1.2 Hardware Design 1: Initial Sliding Window

The target hardware implementation for HLS uses a sliding window approach, which

is common for hardware designs. In this case, a sliding window approach means only

a number of bits are considered at one time, starting with the first bits and moving

to the later bits, rather than using the entire sequence at once. A visual example

of this using a trellis structure can be seen in Figure 5.2. Other than allowing for

good hardware implementation, the siding window approach has many benefits to
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Figure 5.2: The sliding window approach shown on a trellis structure. In this example a
window of 5 and a hop of 2 is used.

the algorithm itself. On one hand, the Beta values can start to be calculated before

all of the bits are received, and thus before all the Gamma and Alpha calculations

are completed. Because of this, continuous streams of data are possible, instead

of requiring whole blocks at a time. Additionally, this approach allows for more

parallelism, and less resource usage as less information is needed at one time. This

approach is made possible by initializing the Beta values with either equal probability

of being in each state, or the most recently calculated Alpha values for each state.

This design takes a slight hit in accuracy as the starting state of the Beta values is

unknown. To reduce the effect of this imperfect initialization, the first Beta values

calculated are thrown away as they are not as accurate as the later values. They are

recalculated again later, requiring extra

The high level design of the sliding window implementation can be seen in Figure

5.3. It is important to note that the figure ignores the initialization and cleanup re-

quired for the sliding window approach, but is required for the actual implementation.

A significant aspect to the design is that to reduce the number of extra calculations,

instead of having the window slide and produce one output per frame, it hops by

H and produces H outputs for frame. The figure shows an overarching loop with
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Figure 5.3: The high level hardware design for the initial sliding window approach. N
represents the number of inputs in the block, W represents the number of inputs in the
window, and H represents the amount to hop by for each window. Each of the inner loops
is pipelined in this design.
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nested loops inside of it. Each iteration will produce H results, while N/H iterations

will produce outputs for all of the N inputs. In this design, the Gamma and Alpha

Calculation Units are combined as they can occur concurrently. These terms do not

require any extra calculations and thus loop H times. The results are then stored in

a buffer, where the Gamma results are passed to the the Beta Calculation hardware.

The Beta Calculation require the extra calculations and thus loops W times, using

only H results for the next hardware. The extrinsic values are then calculated using

all three buffers. This hardware loops H times and produces one output per loop.

Only the last H calculated Beta values are used in the extrinsic value calculation.

Listing 5.2: Pseudo Code for the original sliding window design.

1 MAP_decode ( systematic [ NUM_BITS ] ,

2 parity [ NUM_BITS ] ,

3 extrinsic [ NUM_BITS ] ,

4 noise ,

5 decoder_output [ NUM_BITS ] )

6 {

7

8 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

9 i n i t i a l i z a t i o n code

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

11

12 for NUM_BITS/WINDOW_HOP {

13

14 // Ca l cu l a t e the new gamma and alpha going forwards in time

15 for WINDOW_HOP {

16 //PIPELINE

17 #pragma HLS p i p e l i n e I I=xx

18 new_gamma = calculate_gamma ( systematic [ bit ] , parity [ bit ] , ←↩

extrinsic [ bit ] , noise_param , trellis ) ;
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19 bit++;

20 gamma_buffer_write ( new_gamma ) ;

21

22 new_alpha = calculate_alpha ( last_alpha , gamma_buffer , ←↩

trellis ) ;

23 alpha_buffer_write ( new_alpha ) ;

24 last_alpha = new_alpha ;

25 }

26

27 // Ca l cu l a t e be ta terms going backwards in time

28 // i n i t i a l i z e from the l a s t c a l c u l a t e d a lpha

29 last_beta = last_alpha ;

30

31 //Go through the en t i r e window l en g t h f o r the Beta terms

32 for WINDOW {

33 //PIPELINE

34 #pragma HLS p i p e l i n e I I=xx

35 new_beta = calculate_beta ( last_beta , gamma_buffer , trellis←↩

) ;

36 beta_buffer_write ( new_beta ) ;

37 last_beta = new_beta ;

38 }

39

40 // Ca l cu l a t e Ex t r i n s i c LLRs

41 for WINDOW_HOP {

42 //PIPELINE

43 #pragma HLS p i p e l i n e I I=xx

44 result = calculate_extrinsic ( gamma_buffer , alpha_buffer , ←↩

beta_buffer , trellis ) ;

45 decoder_output_write ( result ) ;

46 }

47 } // END fo r NUM BITS/WINDOWHOP

48
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49 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

50 c leanup code

51 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

52 }

Special buffers were necessary and are explicitly shown in this design. The buffers

only hold one window size of data. This enables the hardware design to use much

less resources than storing the entire block of all the terms.

From the analysis of our design, unsurprisingly, the Beta calculations took most

computation time. This is due to the multiple times more calculations being required

than the Gamma and Alpha calculations. Two different directions were explored from

this point.

5.1.3 Hardware Design 2: Replicated Hardware

The second design, shown in Figure 5.4, sought to alleviate the Beta Calculation Unit

bottleneck by replicating hardware, enabling parallel Beta Calculation Units. This

effectively hides the extra calculations. To accommodate for this approach, larger

buffers are required, as well as extra resources for the duplicated hardware. Still,

with this design only a single type of calculation unit could run at one time.

In this case, there are nB Beta Calculation Units. This requires nB times the

amount of new data to work with each loop. For this reason, the Gamma and Alpha

Calculation Units loop nB times as the previous version, represented by nB*H in

the figure. The individual Beta Calculation loops remain at W loops as they are

independent. Again nB times the amount of data per loop will be produced, requiring

the LLR Calculation Unit to loop nB times as the previous version as well, represented

by nB*H in the figure. As the inner loops is going through nB times as much data

per loop, the outer loop needs to run fewer times to handle the same amount of data

as the previous version, represented by N/(nB*H) in the figure.
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Figure 5.4: The second high level hardware design. This is the same as the previous
design except with multiple parallel Beta Calculation Units. In this diagram nB represents
the number of parallel Beta Calculation Units, N represents the number of inputs in the
block, W represents the number of inputs in the window, and H represents the amount to
hop by for each window. Again each of the inner loops is pipelined in this design.

47



CHAPTER 5. HLS MAX-MAP IMPLEMENTATION

Listing 5.3: Pseudo Code for the second sliding window design with two Beta Calculation

Units.

1 MAP_decode ( systematic [ NUM_BITS ] ,

2 parity [ NUM_BITS ] ,

3 extrinsic [ NUM_BITS ] ,

4 noise ,

5 decoder_output [ NUM_BITS ] )

6 {

7

8 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

9 i n i t i a l i z a t i o n code

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

11

12 for NUM_BITS /( WINDOW_HOP∗NUM_BETA_CALCULATION_UNITS ) {

13

14 // Ca l cu l a t e the new gamma and alpha going forwards in time

15 for WINDOW_HOP∗NUM_BETA_CALCULATION_UNITS {

16 //PIPELINE

17 #pragma HLS p i p e l i n e I I=xx

18 new_gamma = calculate_gamma ( systematic [ bit ] , parity [ bit ] , ←↩

extrinsic [ bit ] , noise_param , trellis ) ;

19 bit++;

20 gamma_buffer_write ( new_gamma ) ;

21

22 new_alpha = calculate_alpha ( last_alpha , gamma_buffer , ←↩

trellis ) ;

23 alpha_buffer_write ( new_alpha ) ;

24 last_alpha = new_alpha ;

25 }

26

27 // Ca l cu l a t e be ta terms going backwards in time

28 // i n i t i a l i z e from the l a s t c a l c u l a t e d a lpha
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29 last_beta = last_alpha ;

30

31 //Go through the en t i r e window l en g t h f o r the Beta terms

32 for WINDOW {

33 //PIPELINE

34 #pragma HLS p i p e l i n e I I=xx

35 new_beta1 = calculate_beta ( last_beta1 , gamma_buffer , ←↩

trellis ) ;

36 beta_buffer1_write ( new_beta1 ) ;

37 last_beta1 = new_beta1 ;

38

39 new_beta2 = calculate_beta ( last_beta2 , gamma_buffer , ←↩

trellis ) ;

40 beta_buffer2_write ( new_beta2 ) ;

41 last_beta2 = new_beta2 ;

42 }

43

44 // Ca l cu l a t e Ex t r i n s i c LLRs

45 for WINDOW_HOP {

46 //PIPELINE

47 #pragma HLS p i p e l i n e I I=xx

48 result1 = calculate_extrinsic ( gamma_buffer , alpha_buffer , ←↩

beta_buffer1 , trellis ) ;

49 decoder_output_write ( result1 ) ;

50

51 result2 = calculate_extrinsic ( gamma_buffer , alpha_buffer , ←↩

beta_buffer2 , trellis ) ;

52 decoder_output_write ( result2 ) ;

53 }

54 } // END fo r NUM BITS/WINDOWHOP

55

56 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

57 c leanup code
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Figure 5.5: The third high level hardware design. This design also has parallel Beta
Calculation Units but is different in that the entire design is pipelined instead of just the
inner loops so each of the calculation units have the ability to run in parallel. In this diagram
nB represents the number of parallel Beta Calculation Units, N represents the number of
inputs in the block, W represents the number of inputs in the window, and H represents
the amount to hop by for each window.

58 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

59 }

5.1.4 Hardware Design 3: Fully Pipelined

A key feature of any hardware design is to utilize the hardware as much as possible.

One limitation of the second design is that while one calculator is going, the others sit

idle. An ideal design would be able to have complete hardware utilization at all times.

With this in mind, the last design, shown in Figure 5.5, sought to have more utilization
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by combining each of the calculation units into a single pipeline rather than pipelining

on the individual calculation unit level. The figure shows only one looping structure

which allows the entire design to be pipelined. To achieve this the Beta Calculation

Units are required to have more advanced control logic which determine if and when a

Beta Calculation Unit should run, and keep track of the indexes into the Gamma and

Alpha buffers. In addition to this the LLR Calculation Unit requires extra control

logic which determines which Beta buffers and associated Gamma and Alpha values

to process each loop. The total loops in this case is N inputs ∗ (W/(nB ∗H)) where

W is the window size, nB represents the number of Beta Calculation Units, and H

represents the hop amount. Although this design may seem like the obvious best

approach, it may not necessarily turn out to be better. With this design, the pipeline

only runs as fast as its slowest calculation unit. If the slowest calculation unit is not

running every cycle it could delay potentially faster calculation units unnecessarily,

which is the case under some parameters. This is exemplified further in the Results

section.

Listing 5.4: Pseudo Code for the fully pipelined sliding window design with 2 Beta Cal-

culation Units.

1 MAP_decode ( systematic [ NUM_BITS ] ,

2 parity [ NUM_BITS ] ,

3 extrinsic [ NUM_BITS ] ,

4 noise ,

5 decoder_output [ NUM_BITS ] )

6 {

7

8 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

9 i n i t i a l i z a t i o n code

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

11
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12 for NUM_BITS−(INITIALIZATION_OVERHEAD+CLEANUP_OVERHEAD ) {

13

14 // Ca l cu l a t e the new gamma and alpha going forwards in time

15 for WINDOW_HOP∗NUM_BETA_CALCULATION_UNITS {

16 //PIPELINE

17 #pragma HLS p i p e l i n e I I=xx

18 new_gamma = calculate_gamma ( systematic [ bit ] , parity [ bit ] , ←↩

extrinsic [ bit ] , noise_param , trellis ) ;

19 bit++;

20 gamma_buffer_write ( new_gamma ) ;

21

22 new_alpha = calculate_alpha ( last_alpha , gamma_buffer , ←↩

trellis ) ;

23 alpha_buffer_write ( new_alpha ) ;

24 last_alpha = new_alpha ;

25 }

26

27 // Ca l cu l a t e be ta terms going backwards in time

28 // i n i t i a l i z e from the l a s t c a l c u l a t e d a lpha

29 last_beta = last_alpha ;

30

31 //Go through the en t i r e window l en g t h f o r the Beta terms

32 for WINDOW {

33 new_beta1 = calculate_beta ( last_beta1 , gamma_buffer , ←↩

trellis ) ;

34 beta_buffer1_write ( new_beta1 ) ;

35 last_beta1 = new_beta1 ;

36

37 new_beta2 = calculate_beta ( last_beta2 , gamma_buffer , ←↩

trellis ) ;

38 beta_buffer2_write ( new_beta2 ) ;

39 last_beta2 = new_beta2 ;

40 }
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41

42 // Ca l cu l a t e Ex t r i n s i c LLRs

43 for WINDOW_HOP {

44 result1 = calculate_extrinsic ( gamma_buffer , alpha_buffer , ←↩

beta_buffer1 , trellis ) ;

45 decoder_output_write ( result1 ) ;

46

47 result2 = calculate_extrinsic ( gamma_buffer , alpha_buffer , ←↩

beta_buffer2 , trellis ) ;

48 decoder_output_write ( result2 ) ;

49 }

50 } // END fo r NUM BITS/WINDOWHOP

51

52 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

53 c leanup code

54 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

55 }

5.2 Design Trade-off Analysis

Initial results while developing the different designs showed the second design with

replicated Beta Calculation Units actually performed significantly better than the

fully pipelined third design. This was a result was not intuitive at first. With a

fully pipelined implementation, calculation units can run in parallel which is not the

case with the second design. At this point in development, the Gamma Calculation

Units could produce one output every 60 cycles, the Alpha and Beta Calculation

Units could produce one output every 40 cycles, and the LLR Calculation Unit could

produce one output every cycle. Ignoring initialization, cleanup, filling the pipeline,

and other aspects, basic calculations demonstrate the counter intuitive performances.

For a window size of 20 and a hop of 2 with two Beta Calculation Units, to produce
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100 outputs design 2 would take:

−−−−− DESIGN 2 −−−−−

GAMMA and ALPHA :

2∗H inner loops ∗ N/2H outer loops = N total loops

100 total loops ∗ 60 cycles per loop = 6000 cycles

BETA :

W inner loops ∗ N/(2∗H ) outer loops = (N∗W ) /(2∗H ) total loops

(100∗20) /(2∗2) = 500 total loops

500 total loops ∗ 40 cycles per loop = 20000 cycles

LLR :

2∗H inner loops ∗ N/2H outer loops = N total loops

100 total loops ∗ 1 cycle per loop = 100 cycles

TOTAL :

total cycles = 6000+20000+100 = 26100 cycles

Ignoring the time it took to fill the pipeline, the design 3 fully pipelined hardware

design could loop at a rate of 60 cycles per loop.

For a window size of 20 and a hop of 2 with two Beta Calculation Units, to produce

100 outputs design 3 would take:

−−−−− DESIGN 3 −−−−−

TOTAL :

N∗(W/(2∗H ) ) loops = 100∗ (20/(2∗2) ) = 500 loops

500 total loops ∗ 60 cycles per loop = 30000 total cycles

−−−−− COMPARE −−−−−

54



CHAPTER 5. HLS MAX-MAP IMPLEMENTATION

30000 total cycles is greater than 26100 total cycles .

Design 2 is faster .

On the surface it is counter intuitive that the fully pipelined approach is slower

than pipelining on the inner level. Looking closer, there are two aspects which create

this scenario. The first is that the pipeline can only go as fast as its slowest stage.

in this case, the Gamma Calculation Unit as is unable to run faster than 60 cycles

per output. Along with that, the window size is 10, the hop size is 2, and the

number of Beta Calculation Units is 2. A saturated number of Beta Calculation

Units, W/H, in this case 10/2 = 5 units, would be able to produce a Beta output

every loop. As it is not saturated, there are extra loops required due to the extra

Beta calculations needed. In these extra loops, there are no Gamma outputs being

produced, yet the pipeline remains at 60 cycles per loop, whereas in the previous

design the Beta Calculation Unit loops could achieve 40 cycles per loops. These

extra cycles in this case have a big impact on overall performance. With a greater

number of Beta Calculation Units the fully pipelined design 3 design would achieve

a better performance. Calculations for a fully saturated number of Beta Calculation

Units can be seen below.

−−−−− DESIGN 2 −−−−−

GAMMA and ALPHA :

5∗H inner loops ∗ N/5H outer loops = N total loops

100 total loops ∗ 60 cycles per loop = 6000 cycles

BETA :

W inner loops ∗ N/(5∗H ) outer loops = (N∗W ) /(5∗H ) total loops

(100∗20) /(5∗2) = 200 total loops

200 total loops ∗ 40 cycles per loop = 8000 cycles
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LLR :

5∗H inner loops ∗ N/5H outer loops = N total loops

100 total loops ∗ 1 cycle per loop = 100 cycles

TOTAL :

total cycles = 6000+8000+100 = 14700 cycles

−−−−− DESIGN 3 −−−−−

TOTAL :

N∗(W/(5∗H ) ) loops = 100∗ (20/(5∗2) ) = 200 loops

200 total loops ∗ 60 cycles per loop = 12000 total cycles

−−−−− COMPARE −−−−−

12000 total cycles is less than 14700 total cycles .

Design 3 is faster .

As shown, with the fully saturated number of Beta Calculation Units, the fully

pipelined approach performs better.

Ultimately however, this Gamma Calculation Unit bottleneck was eliminated by

inlining the Gamma Calculation function, as inlining removes the hierarchy of function

calls and allows the tools to optimize in ways it couldn’t previously. This does however

emphasize the importance of starting off simple without making any assumptions, and

iterating and improving further based on hard evidence.

5.3 Low level implementations

The individual calculation units and the circular buffers were the low level components

that made up the building blocks of the implementation. When creating these blocks,

they were optimized individually before being implemented into the system. The
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calculation unit implementation and optimization was straightforward and quick.

The buffers underwent large changes and many iterations. Although these building

blocks were important themselves, how they were used had a substantial impacted

performance as well.

5.3.1 Calculation Units

The calculation units are important to examine as they make up the algorithm. The

calculation units went through some changes but could mostly be used ”as is” from

the software implementation as they are mostly just mathematical computations. The

initial software however was not optimized for implementation but was written to ex-

plicitly follow the algorithm. As such, some improvements were made that were also

used to improve the software implementation. These improvements included manual

loop unrolling, fully unrolling with the directives, and only calculating and storing

half the values, as the other half is just the negative of the first. The Gamma Calcu-

lation Unit was able to gain extra optimizations by using the INLINE directive which

proved to be very effective, as inlining allows the tools to make extra optimizations

by removing the function call hierarchy. Due to the recursive nature of the Alpha

and Beta Calculation Units, these became the biggest bottlenecks. Inlining did not

produce any significant effect due to the recursive dependency requirements. One fu-

ture optimization that could be used to improve performance would be to implement

better normalization. Normalization prevents overflows but requires the calculation

unit to wait for all of the calculations to be completed and then iterate over the

elements an extra time. More advanced normalization could prove very beneficial.

The LLR Calculation Unit was able to be pipelined at one cycle per output an thus

wasn’t looked at much for further optimization.
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5.3.2 Circular Buffer

Circular buffers underwent the biggest, most significant changes. Initially, the buffers

were implemented as shift registers. This functionality worked fine but consumed

a lot of resources as it was implemented with FFs and LUTs. Instead, BRAM was

desired as it is designed for this. BRAM can be used for storing large amounts of data

but is limited to two ports per BRAM. This two port bottleneck can be minimized by

strategically splitting the data among block RAMs using the array partition directive.

In lieu of a shift registers, a circular buffer system was created to take advantage of

the BRAM. Functions were created which could write to or read from the head or

the tail of the buffer by taking a buffer as input.

Along with the optimizations that were made to this code, how it was used also

played a large factor in performance. For example early on the entire circular buffers

were copied at once which had a large negative impact on performance due to the port

bottleneck. To alleviate this, instead of using different Gamma buffers to support the

different Beta Calculation Units, a single larger buffer was used, and separate indexes

were kept for each instance needing to access the buffer. This added complexity to

the code, but greatly increased performance of the hardware, and actually reduced

resource usage.

5.3.3 Dependencies

Initially, due to the way the MAX-MAP decoder was coded, dependencies played a

substantial part in slowing performance. In sequential software execution, initializing

a variable from a previous variable may make the most sense algorithmically, and not

face any penalty. In hardware this created unnecessary dependencies. Independent

temporary variables and independent arrays were created to remove these unnecessary

dependencies wherever possible. This added complications to the code but enabled

far more parallelism and better pipelining throughput. The HLS reports were often
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used to identify the sources of these dependency issues.

5.3.3.1 Trellis Structure in Code

The calculation units rely on the trellis structure for their calculations, which is passed

as a parameter. The trellis structure is used to determine three things. One is the

output when going from one state to the next, given an input (0 or 1). Another

is the previous state given a starting state, and an input (0 or 1). The last is the

next state given a starting state, and an input (0 or 1). Each of these corresponds

to one of the calculation units. The Gamma Calculation Unit uses the output, the

Alpha Calculation Unit uses the previous state, and the Beta Calculation Unit uses

the next state. Initially, the entire trellis structure containing all the information

was passed to each of the calculation units. This was marked as a dependency by

the HLS tools, limiting performance. To alleviate this, initially the DEPENDENCE

directive was used to mark it as a false dependency which removed this limitation. The

trellis representation was initially stored in BRAM which, as mentioned earlier, may

only provide two ports for access. As the loops were being fully unrolled, complete

parallel access of the trellis was required. This was accomplished by using the ARRAY

PARTITIONING directive. When this was done, the trellis was split into three unique

arrays to simplify the code, which eliminated the false dependency that was occurring

previously.

5.3.4 Data Types

One area of design that has a big impact when utilizing HLS is the data types. Xilinx

provides solutions which enable the user to have control over aspects of data types

that are not possible using native C and C++ types. The data types used for HLS can

either be native data types or Xilinx specific arbitrary precision data types. Xilinx

arbitrary precision types are able to be simulated in C++ using the exact specified

59



CHAPTER 5. HLS MAX-MAP IMPLEMENTATION

representation. The HLS tools are able to handle and implement double precision and

single precision floating point. Although this is powerful, many hardware designers

choose to go with a fixed point representation of the data as fixed point is simpler

and more efficient than floating point. Fixed point representations consume fewer

resources and have shorter latency than floating point representations making them

desirable for hardware designs. They can often suffer from accuracy or precision

compared to floating point, but this can be minimized when optimizing fixed point

for a specific algorithm.

The decoder design initially started off with double precision floating point to

ensure the highest accuracy could be achieved. After this, floating point was used

to see the trade offs. This was followed by a fixed point representation using the

arbitrary precision library. For this representation, 8 integer bits and 16 decimal bits

were used. This required switching from C to C++ to support the arbitrary precision

fixed point library. Even though a C++ compiler was used, the only part of the code

that took advantage of the C++ was the fixed point data type. This 8 integer bit

and 16 decimal bit data type was used to represent all of the non integer variables. A

somewhat common technique for optimization using fixed point in hardware designs

is to tune your data types to the different stages of application. This means that the

24 bits used to represent the fixed point universally in this design might be larger than

necessary at some stages, or might be too small and lose information at other stages

due to the nature of the algorithm. Using different fixed point representations at

different points in the algorithm is a technique that has been used when implementing

turbo codes [28]. The particular fixed point BER performance used compared to the

floating BER performance can be seen in Figure 5.6. The figure shows that the fixed

point representation has little impact on the BER performance.
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Figure 5.6: The fixed point BER performance compared to the floating point BER per-
formance.
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5.4 Flexibility

Along with reduced development time, one of the biggest benefits of HLS is the

ease of flexibility that it provides. Having high level software describe the hardware

allows techniques of high level code to be used. For this implementation, most of the

flexibility came from a single file which defined most of the modifiable parameters.

The quick single line modifications could change the implementation of the hardware

with minimal effort. This can be very powerful as it provides the ability to tailor

the hardware specifically for the application at hand. For example, the block size,

window size, window hop amount, and number of Beta Calculation Units, could all

be specified by changing a single line. Possibly more significantly, the data type

representation could be easily specified as well, allowing double precision floating

point representation, single precision floating point representation, or an arbitrary

fixed point representation specified by the user, to be chosen by changing a single line.

This enables a lot of flexibility that would be much harder to handle using traditional

manually optimized design. The desired clock period is another parameter that could

be set. In addition to this, the three different designs could be specified with only a

few clicks as well.

Changing the parameters is not always that simple however. At least in this

case, the parameter changes may require tuning to get optimized hardware imple-

mentations. Specifically, the directive values used for one set of parameters may not

be suitable for another set of parameters. For example, the array partitioning and

pipeline initiation interval may need to be modified to get the best results for the

parameters at hand. In this case, this tuning would only need to occur once for a

given set of parameters, and can be easily reused again if the same parameters are

desired.
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5.5 Accelerator Integration

Vivado was used to integrate the accelerator and generate the bitstream. The bit-

stream from Vivado was exported to XSDK. The environment setup from the software

implementation was copied over to XSDK as well. XSDK was used to program the

hard core ARM processor and configure the accelerator using the programmable logic.

Everything was mostly kept the same with the code that was copied over except for

two things. The first was the large arrays that were being input into the acceler-

ated were specified at absolute addresses so their location could be handled manually.

Second, the code to setup and run the accelerator was put in place to do so. If reg-

ular software execution was desired the accelerator calls were replaced with software

function calls using #Defines.

5.5.1 Accelerator Interface

System integration played a large part in performance and need further consideration

if the accelerator was to be implemented into an SDR as is. Initially, an AXI master

interface was used to pass the data from memory to the accelerator. Analysis of

this approach is discussed below. Ultimately, this interface became a huge bottleneck

and the BRAM interface was used instead. The AXI master interface should not

be counted out as the interface of choice, but was not considered further as system

integration was not the main focus of this research. The BRAM interface required

more explicit control from Processing System (PS) but eliminated this bottleneck so

ultimately the true speed of the HLS implementation could be uncovered.

5.5.1.1 AXI Interface

The HLS INTERFACE directive was used to specify a master AXI interface in which,

the programmable logic acted as the AXI master, and the PS, the AXI slave. The
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Vivado integration can be seen in Figure 5.7. The figure shows the simple connection

too the processing system and DDR over the AXI interface. Each of the parameter

arrays is on its own separate bus, while the smaller parameters are tranfered over

using an axi slave interface. On the hard core ARM processor side, at run time

the addresses pointing to DDR memory were given to the accelerator so it could

request data when it was running. These addresses represented the large arrays

used as parameters to the accelerator. The code was written such that each loop

a single element from each array was requested. The AXI interface excels at larger

sequential burst (up to 256 elements) memory accesses. The code was restructured

to read and write bursts at a time. Tests were conducted which examined how burst

size effected performance and concluded that in this case bursts of 16 provided the

best performance per programmable logic memory usage trade-off. Higher bursts got

nearly the same performance but required greater programmable logic memory, while

anything lower dropped performance significantly. Ultimately the bursting resulted in

about a 2x speedup but memory accesses still consumed the majority of the running

time. Designs were created which would continue to improve performance but were

never implemented. One of these designs ran two functions in parallel, one being the

decoder, the other being responsible for accessing memory. Using ping pong buffers,

the memory access function would fill one buffer as the decoder would consume one,

and buffers would swap for the next iteration, allowing them to run in parallel. This

design should eliminate much of the bottleneck of the memory accesses as they are

happening completely in parallel. The simplified pseudo code can be seen below. This

design was used as a previous example in the HLS guidelines section.

Listing 5.5: Example code showing how parallel functions could be used to reduce the

memory access limitations.

1 // I n i t i a l i z a t i o n
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2 access_mem (b ) ;

3 toggle = true ;

4

5 for ( loops ) {

6 if toggle {

7 access_mem (a ) ;

8 decode (b ) ;

9 }

10 else {

11 access_mem (b ) ;

12 decode (a ) ;

13 }

14 toggle = ! toggle ;

15 }

16 // c leanup

The requirement to having them run in parallel is to ensure the code is written

so that there are no dependencies between the functions. This is a very simplified

design but shows the principals of how the design would work.

5.5.1.2 BRAM Interface

To eliminate this bottleneck, the BRAM interface was used. The Vivado integration

can be seen in Figure 5.8. The figure shows the BRAM connection to the accelerator

and processing system. The use of this interface is much different than using the AXI

interface, and the integration is much more involved. Both the processing system and

the accelerator required explicit access to the BRAM, creating more complexity in

the integration. At runtime, before the accelerator is called, the parameters are read

from DDR and copied into BRAM. When the accelerator is complete the data is read

from BRAM and copied back into DDR. This becomes a little bit of a hindrance from

the calling code as there are several copies that occur for the numerous iterations of
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the decoder. This interface however makes much more sense if the entire turbo code is

being accelerated, allowing BRAM to be used for all of the intermediate steps instead

of accessing DDR over and over again. If this were the case, a single copy to BRAM

at the start of the decoder, and a single copy from BRAM at the end of the decoder

would be required. This approach was able to completely remove the memory access

bottleneck and allowed the true speed of the accelerator to be seen.

5.5.2 Issues Running On The Board

It is important to note two issues were faced when trying to run the system. These

issues are not specific to the accelerator and may occur in other work as well. The

first issue faced was the stack was not large enough and would run out of room. To fix

this the linker script needed modification to make the stack larger. The second issue

faced was the running the accelerator initially produced values that were different

than the simulation produced. A new simpler accelerator was created as a test to

find the root cause of the issue. The Integrated Logic Analyzer was used to see the

data being passed to the accelerator over the AXI interface and it was uncovered

that the incorrect data was being transferred over the interface. Further inspection

showed this data was not random but instead was outdated data from previous runs.

It was eventually realized that cache was enabled by default and was causing this

issue. This was turned off and the issue was fixed.
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Chapter 6

Results

It is important to first understand the platform used before appreciating the results.

This chapter discusses the hardware used and then compares the results across differ-

ent aspects. Most significantly, software implementations are compared to hardware

to see how effective hardware acceleration can be utilizing HLS, and HLS throughput

is compared with manually optimized designs to see how competitive HLS is against

fully custom implementations.

6.1 Zynq Platform

The Xilinx Zynq platform was leveraged for this work. This platform integrates an

ARM processor with programmable logic of an FPGA. This allows a very beneficial

setup for an SDR. The software can run on the ARM processor and any tasks requiring

acceleration can be run on the programmable logic of the FPGA. This decreased the

time and complexity of building the system, as it is all integrated into a single chip.

The board used for this woork was the ZCU102 evaluation kit, a Zynq-Ultrascale+

chip.

A simplified diagram of the integration between the hardcore application and

the FPGA accelerator can be seen in Figure 6.1. The figure shows the MAX-MAP

accelerator, the control lines used to start and stop the accelerator, and the interface

to the BRAM where the accelerator accesses the bit sequences. The specifications
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Figure 6.1: Simplified diagram of how the turbo code decoder and MAX-MAP Decoder
accelerator is connected on the Zynq hardware.

of the hardware used for these tests can be seen in Table 6.1 and Table 6.2. Table

6.1 lists the hardcore processor specifications, while Table 6.2 lists the programmable

logic specifications.

Table 6.1: ZCU102 Processor Specifications

Type Name Operation Frequency
General Purpose Core Quad Core Cortex A53 up to 1.5GHz
Realtime Core Dual Core Cortex R5 up to 600MHz
Graphics Processor Mali-400 MP2 500MHz

Table 6.2: ZCU102 Programmable Logic Specifications

Type Amount
Programmale Logic Cells 599 k
Flip Flops 548 k
LookUp Tables 274 k
DSP Slices 2.5 k
Block Ram 32.1 Mb

6.2 Designs used for testing

In this section the different test cases will be described and justified. The test case

implemented an entire turbo code encoder and decoder, but only accelerated and
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profiled the MAX-MAP decoder. The hardware acceleration was broken into three

different designs as explained previously.

• Design 1: sliding window approach with pipelining, unrolling and partition

directives as a baseline hardware design,

• Design 2: baseline + replicated beta calculation units,

• Design 3: baseline + replicated beta calculation units + further loop pipelining.

Within each of these designs, the data representations was modifiable between

double precision floating point, single precision floating point, and fixed point. The

fixed point used in this case used 8 integer bits and 16 decimal bits. This provided

9 hardware acceleration tests. These same test cases, except for the fixed point

representations, were recorded in software acceleration to present a baseline. This

provides excellent insight into how effective FPGA acceleration can be in an SDR.

These results were recorded for decoding a bit sequence from a memory 3 RSC encoder

represented by a trellis with 8 states, and decoding a bit sequence from memory 4

RSC encoder represented by a trellis with 16 states.

6.2.1 Parameters

Each of the parameters is modifiable by simply changing the value in a single file, and

can be tailored to meet the requirements of the application. The number of iterations

as well as SNR, were run time parameters, while the flexible compile time parameters

were the block size, the trellis size, the window size, the window hop, the number

of Beta Calculation Units, the data type representation, and the clock period, which

can be seen in Table 6.3. In Table 6.4 the parameter which remained constant for

the different test cases can be observed. These parameters were selected to represent

practical values and remained fixed throughout the research.
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Along with the architecture selection, the test cases tested different data type

representations and different trellis sizes, to see how these parameters affected the

implementation. The data type implementations varied from double precision float-

ing point, to single precision floating point, to fixed point, with fixed point being

represented by 8 integer bits and 16 decimal bits. The trellis states altered between

8 states to 16 states.

Table 6.3: Modifiable Implementation Parameters

Parameter Unit
Block Size # Bits
Window Size # Bits
Window Hop # Bits
Parallel Beta Calculation Units # Units (designs 2 and 3 only)
Trellis States # States
Data Type Representation Type
Clock Period Nano Seconds

Table 6.4: Value of Parameters which Remained Constant

Block Size 3200 Bits
Window Size 32 Bits
Window Hop 8 Bits
Parallel Beta Calculation Units 4 Units (designs 2 and 3 only)
Clock Period 2.963 ns

6.3 Hardware vs Software

6.3.1 Software Designs

The first metrics looked at how the different designs compared for software execution.

These results are significant for drawing larger conclusions later. The timing results

were recorded using a global ARM timer available on the chip. The memory 3 double

precision floating point and single precision floating point results for each of the three

designs can be seen in Table 6.5. Fixed point was not included in these tests as fixed
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point representations were not created for software execution. The different test cases

are each within 7% of the mean. The memory 4 software results can be seen in Table

6.6. These results are all within 5% of the mean.

Table 6.5: Memory 3 encoder software results

Design double precision software cycles single precision software cycles
Design 1 1,880,455 1,807,305
Design 2 1,902,489 1,824,358
Design 3 1,938,593 1,884,609

Table 6.6: Memory 4 encoder software results

Design double precision software cycles single precision software cycles
Design 1 3,667,772 3,331,676
Design 2 3,689,522 3,349,087
Design 3 3,695,286 3,457,006

Comparing the two test cases shows that the larger memory test case consumed

about a 2 times the amount of cycles which is expected as the trellis state doubles in

size, requiring 2 times as many calculations. Examining the test cases individually

shows there is not a huge difference between the implementations in software, even

though there are significant differences in the designs, and differences in the data

types. In both cases the double precision data type representation takes longer than

the single precision, which is to be expected. The results also show that the data

type representation accounts for a larger difference than the designs.

6.3.2 Hardware vs Software

An software optimized MAX-MAP decoder was created to be used as a baseline to

compare to the hardware implementations. This version of the software leveraged the

Single Instruction Multiple Data (SIMD) feature of the ARM core. The timing results

for this implementation can be seen in Table 6.7. This optimized implementation was

roughly 6 times faster than the implementations created for use with HLS.
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The memory 3 double precision floating point, single precision floating point,

and fixed point results for each of the three designs can be seen in Table 6.8. The

speedups of the hardware implementations over the optimized software implementa-

tion is recorded in the table and also shown in Figure 6.2. The Figure illustrates

the potential benefit of the hardware implementations, where In the best case the

hardware is over 56 times faster.

Table 6.7: Optimized Software Results

Memory Size Single Precision Software Cycles
Memory 3 281,553
Memory 4 570,526

Table 6.8: Memory 3 Hardware Results

Hardware Cycles Speedup (Multiple)
Design double float fixed double float fixed
Design 1 317451 284048 162804 0.8869 0.9912 1.7294
Design 2 116349 107344 25302 2.4199 2.6229 11.1277
Design 3 70747 59006 4988 3.9797 4.7716 56.4461

The same was repeated for the memory 4 shown in Table 6.9. The optimized

software implementations is used to compare the against the hardware designs for

the memory 4 tests. The speedups are recorded in the table and also shown in Figure

6.3. The results are similar to the previous test cases. In the best case the hardware

is over 43 times faster.

Table 6.9: Memory 4 Hardware Results

Hardware Cycles Speedup (Multiple)
Design double float fixed double float fixed
Design 1 358944 326873 297088 1.5895 1.7454 1.9204
Design 2 168462 155150 23623 3.3867 3.6773 24.1513
Design 3 81518 77248 13014 6.9988 7.3856 43.8394

Comparing the designs, it is clear to see that design 2 increases performance over

design 1, and design 3 increases performance even further. Again, design 2 is able to
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Figure 6.2: Performance of the memory 3 hardware accelerator implementations over the
best software implementation. Block Size: 3200 Bits, Trellis Size: 8 States, Window Size:
32 Bits, Window Hop : 8 Bits, Beta Calculation Units: 4 Units

Figure 6.3: Performance of the memory 4 hardware accelerator implementations over the
best software implementation. Block Size: 3200 Bits, Trellis Size: 16 States, Window Size:
32 Bits, Window Hop : 8 Bits, Beta Calculation Units: 4 Units
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do this with hardware replication, increasing parallelism, and hiding the extra Beta

calculations required by the sliding window approach. Design 3 is able to take this

even further as the design is fully pipelined, allowing each of the calculation units to

run in parallel, instead of only allowing one type of calculation unit to run at a time.

In design 1, for the parameters chosen, the Beta Calculation unit has to calculate

4 times as many values as the Gamma and Alpha Calculation units, requiring 4

times as many cycles. The LLR Calculation Unit is very fast and comparatively the

calculation time is negligible. Design 2 is able to hide the extra Beta calculations

through parallelism, bringing it down to an equal number of cycles per output as

the Gamma and Alpha calculations. Therefore it is estimated that design 2 should

be able to achieve roughly a 2.5 times speedup over design 1. Analysis shows that

this is accurate for the floating point implementations. Design 3 allows for parallelism

between calculation units, halving the cycles per output, which is estimated to account

for roughly a 2 times speedup of design 3 over design 2. Again this is seen for the

floating point implementations. In each of the three designs for the floating point

implementations, the bottleneck was speed of the evaluation of the mathematical

calculations in the different calculation units, as reported by the Vivado HLS tools.

Parallelizing the calculation unit bottleneck allowed for predictable results.

The fixed point representations enabled large leaps in performance as the simpler

logic requires less resources, and can be evaluated faster. The bottleneck of floating

point implementations was the calculation units, but this was not the case for the fixed

point implementations. Instead, the bottleneck of the fixed point implementations,

as reported from the Vivado HLS tools, was the reading and writing of the local

variable dependencies between the Gamma and Alpha Calculation Units, and the

Beta Calculation Units. The structure of these dependencies changed for each of the

three designs, causing less predictable speedups.

One interesting outlier is in the case of the memory 4, design 1 implementations.
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In all other cases, the fixed point representation is noticeably better than the floating

point implementations. In this specific case, it is still the best, but not by nearly

as significant an amount. In this case, it is speculated that less optimized memory

partitioning is the cause.

In the previous subsection the software implementations were compared and showed

there is some difference between the implementations, but nothing greater than 7%

from the mean. The software, written different ways, changes the control flow and

code complexity but does not greatly impact the performance in sequential execution.

Comparing the hardware implementations on the other hand shows extraordinary dif-

ferences upwards of 63 times faster if the best implementations is compared to the

worst implementation. This re-enforces the previously discussed point that writing

high level code for hardware often requires code that does not make sense for sequen-

tial software execution.

These results exhibit the profound abilities of FPGAs when accelerating tasks

with hardware. Furthermore, it shows that HLS can be and effective method for

developing hardware accelerators.

6.3.3 Hardware Resource Utilizations

It is important to look at resource utilization when creating hardware designs. The

memory 3 double precision floating point, single precision floating point, and fixed

point hardware usages for each of the three designs can be seen in Table 6.10. In this

table, the Block RAM, DSP slices, Flip-Flops, and Look-Up Tables are reported as

these make up the programmable logic of the FPGA. The memory 4 resource usage

can be seen in Table 6.11.

These results show that generally, the fixed point designs used far fewer resources

than the floating point counterparts. This is expected as fixed point representations

are simpler and smaller than floating point representations. The fewer resources
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Table 6.10: Memory 3 Resource Usage Table

Design Data
Type

BRAM DSP48E FF LUT

Amount % Amount % Amount % Amount %
Maximum
Capacity

—– 912 100 2,520 100 548,160 100 274,080 100

Design 1
double 113 12.39 54 2.14 61,170 11.16 60,160 21.95
float 97 10.64 39 1.55 38,854 7.09 38,851 14.18
fixed 85 9.32 4 0.16 26,772 4.88 36,435 13.29

Design 2
double 137 15.02 81 3.21 84,602 15.43 90,914 33.17
float 109 11.95 61 2.42 50,751 9.26 54,500 19.88
fixed 93 10.20 4 0.16 31,852 5.81 45,167 16.48

Design 3
double 121 13.27 30 1.19 89,928 16.41 85,897 31.34
float 101 11.07 21 0.83 54,811 10.00 54,047 19.72
fixed 101 11.07 4 0.16 36,620 6.68 51,767 18.89

Table 6.11: Memory 4 Resource Usage Table

Design Data
Type

BRAM DSP48E FF LUT

Amount % Amount % Amount % Amount %
Maximum
Capacity

—– 912 100 2,520 100 548,160 100 274,080 100

Design 1
double 145 15.90 212 8.41 121,180 22.11 127,669 46.58
float 113 12.39 137 5.44 65,663 11.98 66,795 24.37
fixed 95 9.32 4 0.16 31,602 5.77 52,250 19.06

Design 2
double 193 21.16 153 6.07 147,869 26.98 183,605 66.99
float 137 15.02 109 4.33 77,696 14.17 95,630 34.89
fixed 105 11.51 4 0.16 41,436 7.56 74,233 27.08

Design 3
double 161 17.65 53 2.10 120,329 21.95 161,679 58.99
float 121 13.27 31 1.23 75,019 13.69 90,041 32.85
fixed 57 6.25 4 0.16 62,633 11.43 97,439 35.55

required along with the tremendous speedups that were displayed previously, demon-

strate why fixed point designs are desirable for hardware implementations. Further

analysis shows that as the designs progressed, they generally increased in resource us-

age. Again, design 2 increased parallelism by replicating the Beta Calculation Units,

so the increase in resources is expected. Design 3 added a more complex control flow

to allow further pipelining, in addition to the replicated Beta Calculation Units, so

the increase is expected as well.

Comparing across tables shows that the memory 4 implementation uses signifi-

cantly more resources than the memory 3 implementation. This is because the mem-
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ory 4 uses a trellis with 16 states whereas the memory 3 uses a trellis with only 8

states.

One interesting take away is that fixed point implementations hardly took advan-

tage of the DSPs compared to the floating point representations, demonstrating the

DSPs value in floating point implementations. When hand coding RTL the low level

building blocks are something that might need to be highly considered, but when

utilizing HLS this can be abstracted away.

The BRAM resource utilization is relatively equal in all of the memory 3 imple-

mentations as the implementations were created with more memory than required for

the input and output parameters. In addition to this, the smaller 8 state trellis does

not require much BRAM, hiding the details in the parameter overhead. More insight

can be gained by looking at the memory 4 results. These results show that the par-

allelism of design 2 increases the BRAM usage as expected, but the fully pipelined

implementations are able to optimize and actually use less resources. Also as ex-

pected, the double precision floating point implementations require more BRAMS

than the single precision floating point representations, and the fixed point represen-

tations require the least number of BRAMs.

6.4 HLS vs Manually Optimized Design

The previous sections focused the acceleration advantages hardware can provide over

sequential execution, but even more interesting conclusions can be drawn if the HLS

implementations are compared against manually optimized designs. The HLS tools

become even more favorable if they not only have the advantages in flexibility, devel-

opment time, and design space exploration, but can compete with manually optimized

designs.

The throughput of the best implementation can be seen in Table 6.12. This table

compares the results recorded from an HLS implementation against the implemen-
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tation results from [28]. In [28], a manually optimized Sliding Window MAX-MAP

decoder is used, allowing fair comparisons as the architectures follow the same design

principals.. In this case, the HLS implementation on the Zynq Ultrascale+ hardware

achieves 19.53% of the throughput of the manually optimized design. Both imple-

mentations use a trellis with 8 states, and are fully parallelized with respect to the

Beta Calculation Units. The manually optimized design however does this with a

window of size 20, a hop of size 1, and 20 parallel Beta Calculation Units, whereas

the HLS implementation in this case uses a window of size 32, a hop of size 8, and

4 parallel Beta Calculation Units. Besides this, there are three differences in design

that can account for some of the performance improvement of manually optimized

implementation.

• Smaller fixed point representations which are tuned for different stages. The

manually optimized design uses a minimum of 7 bits with 4 integer and 3 dec-

imal bits, and a maximum of 13 bits with 10 integer and 3 decimal bits. The

HLS implementation uses a constant 24 bits with 8 integer and 16 decimal bits

throughout the entire implementation.

• Improved normalization. The manually optimized design uses modulo normal-

ization whereas the HLS implementation uses subtractive normalization.

• Optimized Gamma Calculation Unit. The manually optimized design optimizes

the Gamma Calculation unit further than the HLS design, requiring 4x less

calculations.

Each of these improvements are fully applicable to the HLS design and should be con-

sidered for future work. This is discussed again in the following chapter. The results

show that although the manually optimized design is faster, HLS is still competitive

while enabling numerous advantages. It is important to remember there is still room

for improvement of the HLS design.
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Table 6.12: Throughput Table

Work Tech. Family Max. Freq. Throughput
Custom[28] Virtex V 346MHz 346 Mbps
HLS Zynq UltraScale+ 337.5MHz 67.5 Mbps

Figure 6.4: The values that change in a single line to create unique implementations
demonstrating the flexibility of HLS

Although the HLS implementation did not reach the same throughput as the

manually optimized design, a huge advantage in flexibility is gained. To demonstrate

the power of the flexibility, a new implementation was created with entirely new

parameters. This implementation only required changing to the values in a single

file, shown in Figure 6.4, and checking the reports to ensure there were no errors.

Selecting new parameters took only seconds, and within a few minutes an entirely

new MAX-MAP decoder accelerator was up and running. In this case, the design 3

fixed point implementation was selected, along with a 4 state trellis, which is smaller

than the previous designs, requiring less calculations and enabling faster decoding.

In addition to this, a smaller block size of 1600 bits was used, halving the calculation

requirements. A window size of 17 was used, with a hop of 2, and 3 parallel Beta

Calculation Units. The hardware cycles and resource usages can be seen in Table

6.13 and Table 6.14 respectively.

Table 6.13: Memory 2 Hardware Results

Hardware Cycles
Design fixed
Design 3 2,978
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Table 6.14: Memory 2 Resource Usage Table

Design Data
Type

BRAM DSP48E FF LUT

Amount % Amount % Amount % Amount %
Maximum
Capacity

—– 912 100 2,520 100 548,160 100 274,080 100

Design 3 fixed 81 8.88 4 0.16 26,324 4.80 31,054 11.33
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Conclusion and Future Work

7.1 Conclusions

High Level Synthesis can be a powerful tool. This work focused on exploring the

potential of HLS for accelerating SDR tasks. In particular, turbo codes, a popular

form of forward error correction, were described and underwent hardware accelera-

tion using an FPGA and HLS tools. Different aspects necessary for effective HLS

development were identified, mainly emphasizing the idea that a hardware mindset is

required for effective results. The advantages available for HLS were seen throughout

the development, including flexibility, design space exploration, and reduced devel-

opment time. The final implementations allowed quick and easy parameter selection

from modifying a single macro file, demonstrating the flexibility gained using HLS

tools. The design space was explored and compared using three different designs, with

the capability of using 3 different data types each. The designs started with a simple

sliding window approach, then added hardware replication to enable parallelism and

hide extra calculations, and finally used an improved pipelining design to increase

throughput even further. The data types included double precision floating point,

single precision floating point, and fixed point with 8 integer and 16 decimal bits.

Two different trellis sizes were used for test cases. The results showed that in the

best case, the hardware acceleration was over 8500 times faster than the best software
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implementation, and in the worst case the hardware acceleration was still over 130

times faster than the best software implementation. The software implementations

however did not vary by more than 8% of the mean, supporting the idea that to most

effectively use HLS, and approach with a hardware mindset is required. The HLS

implementation was also compared with a manually optimized design and achieved

19% of the throughput comparatively, with further room for improvements identi-

fied in the next section. Thus emphasizing the competitiveness of HLS compared to

traditional manually optimized designs.

7.2 Further Design Improvements

The various results display the very promising potentials of HLS. The acceleration

capability over software is outstanding at up to 8597 times faster, and is still compet-

itive to manually optimized designs running at 19.53% throughput. Even with the

current results, there are several areas which can be investigated to further improve

the results.

The three biggest areas for improvement identified are with the normalization,

access contention, and fixed point tuning. Normalization is not explicit in the al-

gorithm but is used to removed overflow susceptible by computer representations of

values. It requires finding the maximum value in the calculation results, and then

modifying all of calculation results a second time before finalizing them so they can

be used at the next stages. Due to the recursive dependency nature of the Alpha

and Beta Calculation Units, this extra calculation time cannot be hidden. On the

other hand, memory access was an important aspect of the implementations and was

handled carefully, but the access contention can still be improved further. Lastly, the

fixed point representation used a single representation all throughout the design. It

can be beneficial to tailor specific sections of the algorithm to different fixed point

representations as demonstrated in [28]. This fine tuning customization of the repre-
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sentation will provide optimizations that enable even greater performance, and also

reduce resource utilization.

The current designs also make the assumption that a single new bit is available

for each loop. Removing this assumption could allow new designs to take advantage

and improve throughput further, but may not be possible depending on application

requirements. In addition to this, one immediate improvement that can be taken

advantage of with very little human effort is pushing the tools further. There is room

left for the tools to be pushed further to increase programmable logic clock speed

and possibly reduce resource usage by simply setting harsher constraints for Vivado

implementation. These are some of the current improvements that could be made

to enhance this MAX-MAP decoder, but further improvements to the overall turbo

code implementation is discussed in detail in the next section.

7.3 Future Work

In addition to the previous section, there are many areas to expand on this research.

Most significantly, future work should investigate implementing the entire turbo code

decoder in hardware instead of the just the MAX-MAP decoder. This will create a

more practical implementation and enable direct comparisons between other turbo

code decoders. Additionally, parallel MAP decoders implementations should be ex-

plored for increased throughput that more closely matches state of the art designs.

Manually optimized implementation should be created to have perfectly comparable

results. This will provide more insight into the trade offs between manually optimized

implementations and HLS implementations. Lastly, the turbo code error correction

should be integrated as part of an SDR design to analyze the effects of FPGA accel-

eration on the whole system. The system integration was a big piece that was largely

ignored which could have a significant impact on results in real systems.

85



Bibliography

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,” in Communications, 1993.
ICC ’93 Geneva. Technical Program, Conference Record, IEEE International
Conference on, vol. 2, May 1993, pp. 1064–1070 vol.2.

[2] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150mbit/s 3GPP LTE turbo
code decoder,” in 2010 Design, Automation Test in Europe Conference Exhibi-
tion, March 2010, pp. 1420–1425.

[3] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and K. Flautner, “Design
and implementation of turbo decoders for software defined radio,” in 2006 IEEE
Workshop on Signal Processing Systems Design and Implementation, Oct 2006,
pp. 22–27.

[4] F. Kienle, H. Michel, F. Gilbert, and N. Wehn, “Efficient MAP-algorithm im-
plementation on programmable architectures,” in Adv. Radio Sci., 2003, pp.
259–263.

[5] B. Kang, N. Vijaykrishnan, M. J. Irwin, and T. Theocharides, “Power-efficient
implementation of turbo decoder in SDR system,” in IEEE International SOC
Conference, 2004. Proceedings., Sept 2004, pp. 119–122.

[6] D. R. N. Yoge and N. Chandrachoodan, “GPU implementation of a pro-
grammable turbo decoder for software defined radio applications,” in 2012 25th
International Conference on VLSI Design, Jan 2012, pp. 149–154.

[7] L. Huang, Y. Luo, H. Wang, F. Yang, Z. Shi, and D. Gu, “A high speed turbo
decoder implementation for CPU-based SDR system,” in IET International Con-
ference on Communication Technology and Application (ICCTA 2011), Oct 2011,
pp. 19–23.

[8] F. Gilbert, M. J. Thul, and N. Wehn, “Communication centric architectures for
turbo-decoding on embedded multiprocessors,” in 2003 Design, Automation and
Test in Europe Conference and Exhibition, 2003, pp. 356–361.

[9] S. Belfanti, C. Roth, M. Gautschi, C. Benkeser, and Q. Huang, “A 1gbps LTE-
advanced turbo-decoder ASIC in 65nm CMOS,” in 2013 Symposium on VLSI
Circuits, June 2013, pp. C284–C285.

[10] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-
optimal MAP decoding algorithms operating in the log domain,” in Communi-
cations, 1995. ICC ’95 Seattle, ’Gateway to Globalization’, 1995 IEEE Interna-
tional Conference on, vol. 2, Jun 1995, pp. 1009–1013 vol.2.

86



BIBLIOGRAPHY

[11] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of MAP turbo
decoder algorithms,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 9, no. 2, pp. 305–312, April 2001.

[12] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a highly-
parallel 3GPP LTE/LTE-advance turbo decoder,” Integration, the VLSI Journal,
vol. 44, no. 4, p. 305315, 2011.

[13] S. Lahti, P. Sjvall, J. Vanne, and T. D. Hmlinen, “Are we there yet? a study on
the state of high-level synthesis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–1, 2018.

[14] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level synthesis:
Promises and challenges,” in 2011 9th IEEE International Conference on ASIC,
Oct 2011, pp. 1102–1105.

[15] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against a hand-
written code in the cryptographic domain? a case study,” in 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14), Dec 2014,
pp. 1–8.

[16] V. Bhatnagar, G. S. Ouedraogo, M. Gautier, A. Carer, and O. Sentieys, “An
FPGA software defined radio platform with a high-level synthesis design flow,”
in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), June 2013,
pp. 1–5.

[17] M. Rler, H. Wang, U. Heinkel, N. Engin, and W. Drescher, “Rapid prototyp-
ing of a DVB-SH turbo decoder using high-level-synthesis,” in 2009 Forum on
Specification Design Languages (FDL), Sept 2009, pp. 1–6.

[18] J. Andrade, N. George, K. Karras, D. Novo, F. Pratas, L. Sousa, P. Ienne,
G. Falcao, and V. Silva, “Design space exploration of LDPC decoders using
high-level synthesis,” IEEE Access, vol. 5, pp. 14 600–14 615, 2017.

[19] Y. Sun, J. R. Cavallaro, and T. Ly, “Scalable and low power LDPC decoder
design using high level algorithmic synthesis,” in 2009 IEEE International SOC
Conference (SOCC), Sept 2009, pp. 267–270.

[20] E. Scheiber, G. Bruck, and P. Jung, “Implementation of an LDPC decoder for
IEEE 802.11n using Vivado high-level synthesis,” 2013.

[21] R. I. Lackey and D. W. Upmal, “Speakeasy: the military software radio,” IEEE
Communications Magazine, vol. 33, no. 5, pp. 56–61, May 1995.

[22] D. Bell, S. Allen, N. Chamberlain, M. Danos, C. Edwards, R. Gladden, D. Her-
man, S. Huh, P. Ilott, T. Jedrey, T. Khanampornpan, A. Kwok, R. Mendoza,
K. Peters, S. Sburlan, M. Shihabi, and R. Thomas, “MRO relay telecom sup-
port of Mars science laboratory surface operations,” in 2014 IEEE Aerospace
Conference, March 2014, pp. 1–10.

87



BIBLIOGRAPHY

[23] J. Taylor and R. Ludwig, Voyager Telecommunications, p. 66.
[Online]. Available: https://descanso.jpl.nasa.gov/monograph/series13/
DeepCommoOverall--141030A ama.pdf

[24] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate (corresp.),” IEEE Transactions on Information
Theory, vol. 20, no. 2, pp. 284–287, Mar 1974.

[25] S. Papaharalabos, M. Sybis, P. Tyczka, and P. T. Mathiopoulos, “Modified log-
MAP algorithm for simplified decoding of turbo and turbo TCM codes,” in VTC
Spring 2009 - IEEE 69th Vehicular Technology Conference, April 2009, pp. 1–5.

[26] M. Fingeroff, High-level synthesis Blue book. Xlibris Corporation, 2010.

[27] “Evolved universal terrestrial radio access (e-utra); multiplexing and channel
coding,” in 3GPP TS 36.212 version 8.8.0 Release 8, vol. 8, 2010, p. 14.

[28] R. Shrestha and R. Paily, “Design and implementation of a high speed MAP
decoder architecture for turbo decoding,” in 2013 26th International Conference
on VLSI Design and 2013 12th International Conference on Embedded Systems,
Jan 2013, pp. 86–91.

88

https://descanso.jpl.nasa.gov/monograph/series13/DeepCommoOverall--141030A_ama.pdf
https://descanso.jpl.nasa.gov/monograph/series13/DeepCommoOverall--141030A_ama.pdf


Chapter 8

Appendix

8.1 Apprendix A: MAP Decoder Psuedocode

Listing 8.1: Psuedocode for the MAP decoder.

1

2 calculate_gamma ( systematic [ NUM_BITS ] ,

3 parity [ NUM_BITS ] ,

4 extrinsic [ NUM_BITS ] ,

5 noise ,

6 gamma_output [ NUM_BITS ] [ NUM_STATES ] [ NUM_INPUTS ] )

7 {

8 for NUM_BITS {

9 for NUM_STATES {

10 // input i s e i t h e r 0 or 1

11 for NUM_INPUTS {

12 //uk = input

13 xk = trellis_get_output ( state , input ) ;

14 gamma_output [ bit ] [ state ] [ input ] = exp ( 0 . 5∗ noise∗parity←↩

[ bit ]∗ xk + 0.5∗ uk ∗( extrinsic [ bit ]+noise∗systematic [←↩

bit ] ) )

15

16 }
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17 }

18 }

19 }

20

21 calculate_alpha ( gamma_output [ NUM_BITS ] [ NUM_STATES ] [ NUM_INPUTS ] ,

22 alpha_output [ NUM_BITS ] [ NUM_STATES ] )

23 {

24 for NUM_BITS {

25 for NUM_STATES {

26 previousState0 = trellis_get_previous_state ( state , INPUT_0←↩

) ;

27 previousState1 = trellis_get_previous_state ( state , INPUT_1←↩

) ;

28

29 alpha [ bit+1] [ state ] = ( alpha [ bit ] [ previousState0 ] ∗ gamma [←↩

bit ] [ previousState0 ] [ INPUT_0 ]

30 + alpha [ bit ] [ previousState1 ] ∗ gamma [←↩

bit ] [ previousState1 ] [ INPUT_1 ] ) ;

31

32 }

33 }

34 }

35

36 calculate_beta ( gamma_output [ NUM_BITS ] [ NUM_STATES ] [ NUM_INPUTS ] ,

37 beta_output [ NUM_BITS ] [ NUM_STATES ] )

38 {

39 for NUM_BITS down to 0 {

40 for NUM_STATES {

41 nextState0 = trellis_get_next_state ( state , INPUT_0 ) ;

42 nextState1 = trellis_get_next_state ( state , INPUT_1 ) ;

43

44 beta [ bit−1] [ state ] = ( beta [ bit ] [ nextState0 ] ∗ gamma [ bit ] [←↩

nextState0 ] [ INPUT_0 ]
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45 + beta [ bit ] [ nextState1 ] ∗ gamma [ bit ] [←↩

nextState1 ] [ INPUT_1 ] ) ;

46

47 }

48 }

49 }

50

51 calculate_LLR ( gamma_output ,

52 alpha_output ,

53 beta_output ,

54 decoder_output )

55 {

56 for NUM_BITS {

57 input_of_0 = 0 ;

58 input_of_1 = 0 ;

59

60 // f o r an input o f 0

61 for NUM_STATES {

62 nextState0 = trellis_get_next_state ( state , INPUT_0 ) ;

63 input_of_0 += alpha [ bit ] [ state ] ∗ gamma [ bit ] [ state ] [←↩

INPUT_0 ] ∗ beta [ bit ] [ nextState0 ] ;

64 }

65

66 // f o r an input o f 1

67 for NUM_STATES {

68 nextState1 = trellis_get_next_state ( state , INPUT_1 ) ;

69 input_of_1 += alpha [ bit ] [ state ] ∗ gamma [ bit ] [ state ] [←↩

INPUT_1 ] ∗ beta [ bit ] [ nextState1 ] ;

70 }

71

72 decoder_output [ bit ] = log ( input_1/input_0 ) ;

73 }

74 }

91



CHAPTER 8. APPENDIX

75

76 MAP_decode ( systematic [ NUM_BITS ] ,

77 parity [ NUM_BITS ] ,

78 extrinsic [ NUM_BITS ] ,

79 noise ,

80 decoder_output [ NUM_BITS ] )

81 {

82 calculate_gamma ( systematic [ NUM_BITS ] ,

83 parity [ NUM_BITS ] ,

84 extrinsic [ NUM_BITS ] ,

85 noise ,

86 gamma_output [ NUM_BITS ] ) ;

87

88 calculate_alpha ( gamma_output , alpha_output ) ;

89

90 calculate_beta ( gamma_output , beta_output ) ;

91

92 calculate_LLR ( gamma_output ,

93 alpha_output ,

94 beta_output ,

95 decoder_output ) ;

96 }

8.2 Apprendix B: MAX-MAP Decoder Psuedocode

Listing 8.2: Psuedocode for the MAX-MAP decoder variant.

1

2 calculate_gamma ( systematic [ NUM_BITS ] ,

3 parity [ NUM_BITS ] ,

4 extrinsic [ NUM_BITS ] ,
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5 noise ,

6 gamma_output [ NUM_BITS ] [ NUM_STATES ] [ NUM_INPUTS ] )

7 {

8 for NUM_BITS {

9 for NUM_STATES {

10 // input i s e i t h e r 0 or 1

11 for NUM_INPUTS {

12 //uk = input

13 xk = trellis_get_output ( state , input ) ;

14 // Just remove the exponent from the MAP implementat ion

15 gamma_output [ bit ] [ state ] [ input ] = 0 .5∗ noise∗parity [ bit←↩

]∗ xk + 0.5∗ uk ∗( extrinsic [ bit ]+noise∗systematic [ bit←↩

] )

16

17 }

18 }

19 }

20 }

21

22 calculate_alpha ( gamma_output [ NUM_BITS ] [ NUM_STATES ] [ NUM_INPUTS ] ,

23 alpha_output [ NUM_BITS ] [ NUM_STATES ] )

24 {

25 for NUM_BITS {

26 for NUM_STATES {

27 previousState0 = trellis_get_previous_state ( state , INPUT_0←↩

) ;

28 previousState1 = trellis_get_previous_state ( state , INPUT_1←↩

) ;

29

30 // Turn the mu l t i p l i c a t i o n s in t o add i t i on s

31 alpha0 = alpha [ bit ] [ previousState0 ] + gamma [ bit ] [←↩

previousState0 ] [ INPUT_0 ] ;
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32 alpha1 = alpha [ bit ] [ previousState1 ] + gamma [ bit ] [←↩

previousState1 ] [ INPUT_1 ] ;

33 // Addi t ions turn in t o the max opera tor

34 // take the max o f the two

35 alpha [ bit+1] [ state ] = max ( alpha0 , alpha1 ) ;

36 }

37 }

38 }

39

40 calculate_beta ( gamma_output [ NUM_BITS ] [ NUM_STATES ] [ NUM_INPUTS ] ,

41 beta_output [ NUM_BITS ] [ NUM_STATES ] )

42 {

43 for NUM_BITS down to 0 {

44 for NUM_STATES {

45 nextState0 = trellis_get_next_state ( state , INPUT_0 ) ;

46 nextState1 = trellis_get_next_state ( state , INPUT_1 ) ;

47

48 // Turn the mu l t i p l i c a t i o n s in t o add i t i on s

49 beta0 = beta [ bit ] [ nextState0 ] + gamma [ bit ] [ nextState0 ] [←↩

INPUT_0 ] ;

50 beta1 = beta [ bit ] [ nextState1 ] + gamma [ bit ] [ nextState1 ] [←↩

INPUT_1 ] ;

51

52 // Addi t ions turn in t o the max opera tor

53 // take the max o f the two

54 beta [ bit−1] [ state ] = max ( beta0 , beta1 ) ;

55 }

56 }

57 }

58

59 calculate_LLR ( gamma_output ,

60 alpha_output ,

61 beta_output ,
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62 decoder_output )

63 {

64 for NUM_BITS {

65 max0 = −inf ;

66 max1 = −inf ;

67

68 // f o r an input o f 0

69 for NUM_STATES {

70 nextState0 = trellis_get_next_state ( state , INPUT_0 ) ;

71 // Mu l t i p l i c a t i o n s turn in t o add i t i on s

72 input_of_0 = alpha [ bit ] [ state ] + gamma [ bit ] [ state ] [ INPUT_0←↩

] + beta [ bit ] [ nextState0 ] ;

73 // Addi t ions turn in t o max opera tor

74 max0 = max (max0 , input_of_0 ) ;

75 }

76

77 // f o r an input o f 1

78 for NUM_STATES {

79 nextState1 = trellis_get_next_state ( state , INPUT_1 ) ;

80 // Mu l t i p l i c a t i o n s turn in t o add i t i on s

81 input_of_1 = alpha [ bit ] [ state ] + gamma [ bit ] [ state ] [ INPUT_1←↩

] + beta [ bit ] [ nextState1 ] ;

82 // Addi t ions turn in t o max opera tor

83 max1 = max (max1 , input_of_1 ) ;

84 }

85

86 // Log domain use s u b t r a c t i on

87 decoder_output [ bit ] = max1 − max0 ;

88 }

89 }

90

91 MAP_decode ( systematic [ NUM_BITS ] ,

92 parity [ NUM_BITS ] ,
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93 extrinsic [ NUM_BITS ] ,

94 noise ,

95 decoder_output [ NUM_BITS ] )

96 {

97 calculate_gamma ( systematic [ NUM_BITS ] ,

98 parity [ NUM_BITS ] ,

99 extrinsic [ NUM_BITS ] ,

100 noise ,

101 gamma_output [ NUM_BITS ] ) ;

102

103 calculate_alpha ( gamma_output , alpha_output ) ;

104

105 calculate_beta ( gamma_output , beta_output ) ;

106

107 calculate_LLR ( gamma_output ,

108 alpha_output ,

109 beta_output ,

110 decoder_output ) ;

111 }
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