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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 
 

 

Degree:  Doctor of Philosophy   Program: Microsystems Engineering 

Authors Name:  Chenyu Zheng 

Advisors Name: Christopher J. Collison 

Dissertation Title: Efficient Organic Photovoltaic Cells Employing Squaraines and 

Their Aggregates: Experiment and Theory 

 

 

Organic photovoltaics (OPVs) have continued to attract attention over the past two 

decades, promising solution processable and aesthetically pleasing solar energy harvesting 

devices. The power conversion efficiency of OPV has improved rapidly owing to the 

development of novel conjugated polymers and functional molecules. Recently, donor-

acceptor push-pull type materials have been investigated ubiquitously for OPV 

applications due to their high extinction coefficients in the near-infrared region of the solar 

spectrum. At RIT, a series of donor-acceptor-donor type squaraine (SQ) materials have 

been systematically synthesized and investigated for their potential in bulk heterojunction 

(BHJ) OPV devices. This dissertation presents both experimental and theoretical work 

associated with these squaraines. 

In the first part, the dependence of solar cell performance on BHJ morphology is 

discussed, with the emphasis on how SQ aggregation dominates the morphological 

behavior of the BHJ upon spin coating and post annealing treatments. SQ aggregates in the 

BHJ films represents crystalline domains which should benefit the charge transport toward 

the electrodes. At the same time, SQ aggregation induces phase separation and leads to 
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formation of large SQ or PCBM domains. Domain size is a critical factor determining the 

solar cell efficiency as the exciton diffusion length in SQ films is believed to be small. The 

extent of phase separation can be controlled through varying SQ:PCBM weight ratio; a 

more homogeneously mixed BHJ morphology is obtained when PCBM content is high, 

leading to an improved solar cell efficiency. Film crystallinity and SQ aggregation is 

disrupted at high PCBM weight ratio but can be recovered via thermal annealing. 

Controlling the tradeoff between crystallinity and phase separation of the BHJ is identified 

as critical for device optimization of SQ-based solar cells. In addition, different SQ 

molecules have been comparatively investigated to reveal the correlation between the 

molecular structure and the aggregation properties. In this way, this dissertation connects 

SQ structure to aggregation properties, then to BHJ morphology and finally to OPV 

performance.  

The second half of this dissertation focuses on using an essential state model to fully 

understand the intermolecular interactions within the SQ aggregates. The model has been 

constructed based on three main charge resonant structures associated with the zwitterionic 

nature of the SQ conjugation backbone. Molecular aggregates of the SQ chromophores 

were built based on the experimentally obtained single crystal structures. Specifically, we 

found that, in as-cast BHJ films, the SQ-SQ interaction is dominated by Coulombic 

coupling (CC) while in annealed BHJ films the intermolecular charge transfer (ICT) 

strongly influences the electronic properties. The type of aggregation is shown to greatly 

influence the solar cell performance. Specifically, CC-aggregates formed in the as cast 

films yield better solar cell efficiency as compared to ICT-coupled aggregates (which is of 

higher ordered and more crystalline). 
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Finally, the sub-picosecond transient absorption spectroscopy results reveal how the 

excitons in the CC-aggregates are highly mobile, which rationalizes the high solar cell 

efficiency obtained from such aggregates.  
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Chapter 1. GENERAL INTRODUCTION 

The concept of using organic semiconducting materials in photovoltaics, i.e. organic 

photovoltaic (OPVs), was first brought up as a less expensive alternative to silicon-based 

solar cells. The scientific curiosity quickly grew as OPV relies on plastic materials, such 

as polymers, and with its seemingly unlimited material resources, and easy manufacturing 

processes. The first efficient organic photovoltaic cells, with 1% efficiency (under 

simulated AM2 illumination) were demonstrated in 1986 by Ching W. Tang at Eastman 

Kodak Co. in Rochester, New York.1 The cell was constructed by bringing two layers of 

organic semiconductors in contact to form a “bi-layer” heterojunction. Excitons generated 

in each layer can be efficiently dissociated at the junction interface, leading to a significant 

increase in photon-to-electron conversion efficiency as compared to solar cells with a 

single layer. In 1992, Heeger and Wudl et. al. reported an observation of photoinduced 

electron transfer from Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

(MEH-PPV) to buckminsterfullerene (C60).
2 A year later, they demonstrated that the charge 

transfer from polymer to fullerene occurs on a femtosecond time scale, faster than any other 

competing processes.3 The result of this is a theoretical promise that the photoinduced 

charge generation can be achieved with up to a 100% quantum efficiency. This discovery 

has led to the opening of an energetic/enthusiastic research field of OPVs.  

Various outstanding properties of OPV have been recognized. For example, large OPV 

modules can be manufactured through roll-to-roll printing techniques.4,5 This allows OPV 

devices to have small CO2 footprints, fast industrial throughput and cheap manufacturing 

cost. The flexibility and lightweight of OPVs allow the large solar panels to be easily 

transported or installed.6 The transparency of OPV enables the inventions of solar cell 
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glasses7 and windows8, which selectively convert non-visible light into electricity. In 

addition, an improved performance of OPV devices has been observed under LED light. 

As compared to using sunlight as the source, the OPV cells show a large increase in 

efficiency by up to 350% when shone under the indoor LED light bulb, leading to a power 

conversion efficiency exceeding that of crystalline silicon cells.9 This remarkable 

efficiency improvement is attributed to better spectral overlap between the artificial light 

source and absorbance of the materials. 

The performance of OPV cells has been continually improved by using novel 

materials10–12, refining fabrication processes13–15 and advancing device structures16. 

Nevertheless, the OPV efficiency is still low, rendering a high cost for the power it 

generates. Thus, improving the efficiency of the OPV devices remains as one of the top 

interests for many research groups. The lifetime of the solar cell products is also a critical 

aspect to evaluate the cost-effectiveness of OPV.17 Longer operating time allows more 

   

 

Figure 1.1. Demonstrations of organic photovoltaic (OPV) cells. Flexible OPV cells 

manufactured by roll-to-roll coating (top left), from reference 4. A solar glasses lens 

made from OPV cells (top right), from reference 7. A row of 100-meter-long OPV solar 

panels installed on a wooden frame (bottom), from reference 5.  
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power to be generated during the life-cycle of the solar cells. Another important research 

direction is to enable fabrication of OPV cells through non-toxic ink vehicles. In summary, 

in order to reach the commercialization requirements, OPV products need to have high 

efficiencies with practical stability, and can be realized by solution processes in non-toxic 

ink.18 

1.1 A Brief Description of the Principles of OPVs 

The process of photoinduced charge generation in OPV cells can be separated into five 

steps; 1) photon absorbance, 2) exciton diffusion, 3) charge dissociation, 4) charge 

transport and 5) charge collection (Figure 1.2).  

Upon absorbance of a photon, an electron in the ground state of the absorbing molecule 

is excited to a higher unoccupied molecular orbital forming a higher energy state in the 

molecule. This process is also described as the creation of a bound electron-hole pair, or 

an exciton. Unlike the Wannier-Mott excitons generated in the inorganic semiconductors, 

the Frenkel exciton produced in organic semiconductors has a binding energy that is 

significantly larger than the thermal energy at room temperature, in the range of 0.2 ~ 1 

eV.19 Thus, without a proper separation strategy, these excitons will eventually decay back 

via radiative or non-radiative pathways. To overcome this binding energy, two types of 

organic material with different highest occupied molecular orbitals (HOMO) and different 

lowest unoccupied molecular orbitals (LUMO) are mixed to form donor-acceptor 

heterojunctions. At the interface of these materials, the electron in the LUMO of the donor 

(in the excited state) can “hop” to the LUMO of the acceptor due to an energy offset, while 

the hole remains at the highest occupied molecular orbital (HOMO) of the donor. Hence, 
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the originally bound electron and hole are now spatially separated. Then, the electrons (and 

holes) transport through the continuous phases/domains of acceptors (and donors) and are 

eventually collected by the corresponding electrode. 

The external quantum efficiency (EQE) – a ratio between the number of electrons 

produced by and the number of photons incident on the solar cell device at the steady state 

of the organic solar cells is determined by the product of the individual efficiencies for 

each step: 

 𝜂𝐸𝑄𝐸 = 𝜂𝐴𝐵𝑆 ∙ 𝜂𝐸𝐷 ∙ 𝜂𝐶𝐷 ∙ 𝜂𝐶𝑇 ∙ 𝜂𝐶𝐶  (1.1) 

The absorbance efficiency, 𝜂𝐴𝐵𝑆, represents the number of photons that the solar cell 

can absorb versus the total number of photons that it received from the solar irradiation. It 

is influenced by two factors: absorbance bandwidth and absorptivity. The former can be 

 

Figure 1.2 Schematic diagram illustrating the five main steps for photo-charge 

generation mechanisms in an organic photovoltaic cell. a) Step 1, absorbance of a 

photon and generation of an exciton, b) step 2, exciton diffusion to the heterojunction, 

c) step 3, charge dissociation at the interface, d) step 4, charge transport in the pure 

domains and step 5, charge collection by the electrodes. 
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expressed as the wavelength range over which the active materials can absorb, and the 

latter indicates the probability of absorbance of a photon by the molecule at each 

wavelength. Organic dye materials normally have a high absorptivity (typically 104~105 

cm-1), so it only needs a small amount of material to absorb most photons in the active 

wavelength range. For efficient OPV devices, the organic layer can be as thin as ~100 nm. 

However, these materials typically have a narrow absorbance bandwidth. For widely 

investigated Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric acid 

methyl ester (PCBM) bulk heterojunction solar cells, the absorbance of the materials covers 

a spectrum roughly from 300 nm to 650 nm. Thus, most of the photons emitted from the 

sun are lost.20,21 Many efforts, therefore, have been directed to stacking multiple layers (i.e. 

organic tandem solar cell) or blend more than two types of functional materials with 

complementary absorbance spectra (i.e. organic ternary or quaternary solar cells) for more 

efficient photon harvesting. 

The exciton diffusion quantum efficiency, 𝜂𝐸𝐷 , represents the efficiency for the 

exciton to successfully diffuse to the heterojunction interface before it decays back to the 

ground state. Exciton diffusion length (𝐿𝐷), is a contributing factor for 𝜂𝐸𝐷  of organic 

semiconductors. 𝐿𝐷 is defined as the average distance that the exciton can move in a neat 

bulk material before it is spontaneously deactivated. The relationship between 𝐿𝐷 and 𝜂𝐸𝐷 

can be expressed by:20 

 𝜂𝐸𝐷 = 𝑒−𝑑/𝐿𝐷  (1.2) 

where 𝑑 is the distance between the exciton and the nearest interface. Equation (1.2) holds 

under the assumption that the exciton movement is a random walk with a constant step size 

(equal to the distance between molecules) and is not affected by the electric field (we 
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consider the exciton to be charge-neutral). Thus, the exciton diffusion quantum efficiency, 

𝜂𝐸𝐷 , depends exponentially on the ratio of 𝑑/𝐿𝐷 . A general equation calculating the 

exciton diffusion length, 𝐿𝐷, is given as:22 

 𝐿𝐷 = √2𝑎𝐷𝜏 (1.3) 

where 𝑎  represents the dimensionality of the diffusion, 𝑎 = 3  for three-dimensional 

exciton diffusion; 𝐷 is the diffusion coefficient of the exciton; 𝜏 is the exciton lifetime. The 

exciton lifetime of organic semiconductors is generally short, typically on a pico-to-

nanosecond scale and the 𝐿𝐷 for organic semiconductors is typically measured to be on the 

order of 1~10 nm.23–25 For the exciton diffusion coefficient, one would expect it to be larger 

in a crystalline material than in that same material’s amorphous state. This is true for 

several materials, such as 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA),24,26 

perylene derivatives27 and diketopyrrolopyrrole (DPP)-based molecules23. However, the 

exciton diffusion mechanism could be more complicated. For example, Siebbeles et al. 

have found that the molecular orientation in the crystal structure strongly influences the 

exciton diffusion length for phthalocyanine and porphyrin derivatives.28 Hestand et al. 

reported that the exciton diffusion dynamics can be significantly altered in 7,8,15,16-

tetraazaterrylene (TAT) nanopillars if the slip stack distance is only shifted by 0.5 Å.29 

Holmes et. al. reported, quite counterintuitively, an enhanced exciton diffusion in boron 

subphthalocyanine chloride (SubPc) by diluting this material with an inert host molecule 

to break the formation of SubPc crystallites.30 These studies imply that the exciton 

diffusion dynamics does not only relate to the crystallinity of the material, but also is 

strongly dictated by the molecular orientation and packing geometries, which might be 

specific to each individual molecule and structure. 
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Charge dissociation is the step for solar cells to convert the neutral exciton into free 

charges. For this step, there are two scenarios, as illustrated in Figure 1.3. When an exciton 

is formed on the donor molecule, the excited electron on the LUMO of donor can hop over 

to the LUMO of the acceptor with the aid of the energy offset, ∆𝐸𝐿𝑈𝑀𝑂. When an exciton 

is generated on the acceptor molecule, a hole is formed on the HOMO of the acceptor, 

which is then filled by an electron hopping from the donor HOMO, driven by ∆𝐸𝐻𝑂𝑀𝑂. 

These two cases result in the same outcome; the electron is located on the LUMO of 

acceptor and the hole is located on the HOMO of the donor. Generally, an energy offset of 

0.2-0.5 eV is required to get an efficient charge dissociation.31 This energy loss is inevitable 

in order to overcome the electron-hole binding energy of the excitons. Thus, for efficient 

charge dissociation efficiency, 𝜂𝐶𝐷, the LUMOs and HOMOs of the donor and acceptor 

need to be regulated to the appropriate levels.  

In the charge transport step, the dissociated charges move through continuous donor 

or acceptor domains towards the corresponding electrode. The transport of electrons 

 

Figure 1.3 illustration of charge dissociation mechanisms at the donor-acceptor 

interface when exciton is located on a) donor and b) acceptor.  When donor is excited, 

the electron is transferred between LUMO levels; when acceptor is excited, the electron 

is transferred between HOMO levels. The energy drives the charge dissociation is 

∆𝐸𝐿𝑈𝑀𝑂 and ∆𝐸𝐻𝑂𝑀𝑂 in a) and b). 
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(holes) is enabled via the overlap of frontier molecular orbitals between the two adjacent 

acceptors (donors). Before the charges are collected by the electrode, there are two possible 

pathways for them to recombine: monomolecular and bimolecular recombination, both of 

which result in electronic energy loss and deviate 𝜂𝐶𝑇 from 1.32  

Monomolecular recombination is a first order process (the order of the process is 

characterized by the light-intensity-dependent current-voltage tests) and often refers to 

geminate recombination and Shockley-Read-Hall recombination. Geminate recombination 

is when the initially generated electron recombines with the hole it was born with. It is not 

the major recombination loss in efficient solar cells where donor and acceptor are chosen 

with apposite energy levels.33–36  For Shockley-Read-Hall recombination, electron and hole 

recombine through a trap state formed by material impurities or incomplete phase 

separation (e.g. single donor molecule is surrounded by acceptors). The trap site quickly 

captures the initial charge, for example a hole, and creates a positive stationary electric 

field to attract nearby mobile electrons in the active layer. The rate of monomolecular 

recombination is thus determined by the density of the traps (independent of incident light 

intensity), 𝑛𝑡𝑟𝑎𝑝 , and the density of mobile charges in the active layer (dependent of 

incident light intensity), 𝑛𝑒−/ℎ+(𝐼):32 

 𝑘𝑚𝑜 ∝ 𝑛𝑡𝑟𝑎𝑝 ∙ 𝑛𝑒−/ℎ+(𝐼) (1.4) 

Hence, the rate constant of monomolecular recombination is proportional to the light 

intensity to the first order (𝑘𝑚𝑜 ∝ 𝐼).  

On the other hand, bimolecular recombination refers to the case when the mobile holes 

and electrons collide into each other during the charge transport step and eventually 

recombine before they are able to escape from the coulombic force. The recombination rate 
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constant is proportional to the density of positive and negative charge carriers (both 

dependent on light intensity): 

 𝑘𝑏𝑖 ∝ 𝑛𝑒−(𝐼) ∙ 𝑛ℎ+(𝐼) (1.5) 

Therefore, the rate constant of bimolecular recombination is proportional to the light 

intensity to the second order (𝑘𝑏𝑖 ∝ 𝐼2). To increase the quantum efficiency of charge 

transport, one would need to minimize the recombination losses. In particular, the loss of 

monomolecular recombination can be significantly reduced by improving the bulk 

heterojunction morphology.37 As mentioned above, unsatisfying morphology, such as an 

isolated donor surrounded by acceptors, can cause the formation of traps.33,37  

The last step of the photo-charge generation process is charge collection. The two 

electrodes collecting charges have different work functions. The electrons generated in the 

organic bulk move towards the lower work function electrode, such as aluminum or 

calcium, while the holes move towards the higher work function electrode, such as silver 

or gold. Indium tin oxide (ITO) is a transparent electrode that does not block the light, and 

thus is used in conjunction with one of the metal choices mentioned above. This metal 

oxide material has a moderate work function of 4.4 - 4.5 eV 38, allowing it to be used as 

either a hole-collecting or an electron-collecting electrode. For better charge 

extraction/collection efficiency, a buffer layer is often used in between the heterojunction 

layer and the metal or metal oxide electrode. Tris(8-hydroxyquinolinato) aluminium,39 

Bathocuproine,40,41 Bathophenanthroline,42 LiF 43 and ZnO 44,45 are effective cathodic 

buffer layer materials, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate 

(PEDOT:PSS),11 MoO3 
46,47 and V2O5 

48,49 are often used as the anodic buffer layers. The 

benefits of these buffer layers includes: 1) providing ohmic contact between the active 
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layer and the electrode to reduce the charge accumulation at the metal/organic interface; 2) 

blocking excitons from reaching the electrode to prevent exciton quenching; 3) smoothing 

the electrode surface to improve the active layer morphology and structure.  

Overall PCE will suffer if any one of the five steps is inefficient (Equation (1.1)). Thus, 

efforts have been driven towards improving the efficiencies of all the steps at the same time 

to maximize the OPV efficiency.  

1.2 Fabrication and Testing of OPVs 

Most efficient OPV devices are fabricated in the lab using vacuum thermal evaporation 

(VTE) or spin cast. The former method is mainly used for small molecule OPV device due 

to the ease of sublimation of small molecules. In this method, C60 and C70 are almost 

exclusively used as the acceptor material for their distinctly high exciton diffusion length 

and appropriate energy levels. VTE has some advantages; 1) the materials are processed in 

high vacuum, limiting the exposure to oxygen and moisture, and thus, the material 

degradation is minimized; 2) the resulting film is generally uniform and of high quality and 

3) the growth of the layer can be well controlled in terms of film thickness, material 

composition, etc., and the interface between each layer is well defined. The VTE method 

can also be easily tuned to make tandem solar cells because the evaporation of the top-cell 

material has little effect on the bottom layers.16,50,51 

For solution processes, the spin cast method is mainly used for polymer-based OPV 

cells fabricated in the lab. Small molecule active layers can also be processed via spin 

casting, yielding a uniform film with high device efficiency.11 PCBM and [6,6]-Phenyl-

C71-butyric acid methyl ester (PC71BM) are frequently used as acceptors in solution 



  

11 

 

processed BHJ solar cells. These fullerene derivatives are functionalized C60 or C70, to 

enable a good solubility in common organic solvents without sacrificing exciton and charge 

mobility in the spin cast films. Recently, many new non-fullerene acceptors have been 

developed and efficient BHJ solar cells are achieved with such  acceptors.52 The solution 

process is more relevant to the future of large-scale manufacture of OPV panels. Solution 

processing can be up-scaled to industrial roll-to-roll techniques, such as doctor blading, 

ink-jet printing and slot-die coating.4 

OPV device efficiency can be measured using two techniques, the current-voltage (J-

V) test and the spectral response test. The J-V test measures the current-voltage behavior 

of the device, delivering the power conversion efficiency (PCE) of the solar cell. Ideally, 

the solar cell should be tested against actual solar irradiation. A more practical method to 

test devices in the lab employs a solar simulator with an optical filter to mimic the solar 

spectrum after it penetrates through the air around the globe (air mass 1.5 G). The solar 

simulator is calibrated to have an intensity of 100 mW cm-2 (i.e. a 1-sun illumination 

intensity). Other irradiation intensities can be used to investigate the device properties, such 

as recombination, which is proportional to that intensity, as described above. In testing the 

solar cell, a voltage sweep is applied to the cathode and anode of the solar cell, and the 

current is sensed and measured by a source meter. 

A typical J-V curve of an organic solar cell device is shown in Figure 1.4. The three 

metrics determining the efficiency are the short circuit current density (𝐽𝑠𝑐), the open circuit 

voltage (𝑉𝑜𝑐) and the fill factor (FF). 𝐽𝑠𝑐 is the current density produced by the device at 

zero external bias under illumination; 𝑉𝑜𝑐 is the maximum voltage that the solar cell can 

output, when no current is drawn. The solar cell achieves its highest efficiency at the 
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maximum power point (MPP) as shown in the Figure 1.4. The FF is the ratio between 

maximum power point and the product of 𝐽𝑠𝑐 and 𝑉𝑜𝑐. The power conversion efficiency 

(PCE) is calculated as: 

 𝑃𝐶𝐸 =
𝐽𝑠𝑐 × 𝑉𝑜𝑐 × 𝐹𝐹

𝑃𝑖𝑛
 (1.6) 

where 𝑃𝑖𝑛 is the power of incident light (100 mW cm-2 for 1-sun illumination). 

An equivalent circuit diagram for OPV device is drawn in inset of Figure 1.4. The cell 

acts as a photocurrent source with an ideal diode in parallel, and a series resistor (𝑅𝑠) and 

a shunt resistor (𝑅𝑠ℎ ).53,54 For an ideal solar cell, 𝑅𝑠  is zero while 𝑅𝑠ℎ  is approaching 

infinity. In this case, the photocurrent in the first quadrant in Figure 1.4 should be a “steep” 

vertical line as the external bias favors the current flowing in a forward direction through 

the diode (and not through the shunt resistor). The photocurrent in the third quadrant, on 

 

Figure 1.4 A typical current-voltage test result of an organic photovoltaic device when 

measured without (black) and with (red) illumination. The fill factor is the ratio between 

the maximum power point and the product of short-circuit current, JSC, and open-circuit 

voltage, VOC. The inset shows an equivalent circuit of an OPV cell – the current source 

in parallel with a diode and a shunt resistor; a series resistor is also added to account 

any loss in current due to the resistance of the devices. 
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the other hand, should be a “flat” line with the values equal to 𝐽𝑠𝑐 since the external bias 

leads to the current flowing through the shunt resistor. Most organic solar cells deviate 

from the ideal case, with the current curve in the first quadrant taking a slope of 𝑉 𝑅𝑠⁄ , and 

the curve in the third quadrant taking a larger value than 𝐽𝑠𝑐 by the amount of 𝑉 𝑅𝑠ℎ⁄ . The 

overall J-V curve can be a modeled through modified diode equation53: 

 𝐽 = 𝐽𝑝ℎ − 𝐽𝑠 [exp (
𝑞(𝑉 − 𝐽𝑅𝑠)

𝑛𝑘𝐵𝑇
− 1) +

𝑉 − 𝐽𝑅𝑠

𝑅𝑠ℎ
] (1.7) 

where 𝐽 is the current density, 𝑉 is the external voltage,  𝐽𝑝ℎ is the photo-generated current 

density, 𝐽𝑠 is the reverse saturation current density, 𝑞 is elementary charge, 𝑛 is the ideality 

factor of the diode, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature. For the ideal 

case (𝑅𝑠ℎ → ∞ and 𝑅𝑠 ≈ 0), Equation (1.7) is reduced to an ideal diode equation plus a 

photocurrent density, 𝐽𝑝ℎ. 

Another method to evaluate solar cell performance is the spectral response test, which 

measures the solar cell photosensitivity at each specific wavelength. This test generates a 

spectrum of external quantum efficiency (EQE). The number of electrons is calculated 

from the measured current density, while the number of incident photons is calculated 

based on the power of the incident beam and the photon energy. For the instrumental set 

up, a light monochromator is used in between the light source and the solar cell; a beam 

chopper and a lock-in amplifier is used to optimize the signal-to-noise ratio. 

A typical EQE spectrum of a squaraine (SQ)-PCBM organic solar cell is shown in 

Figure 1.5 along with the absorbance spectra. Since the photoactive materials are generally 

absorbing at different regions, the EQE spectra can yield information about the 



  

14 

 

performance of each individual component. From Figure 1.5 we see that the absorbance of 

PCBM is lower than that of SQ. The EQE of the PCBM at the region of 300 – 500 nm, 

nevertheless, is comparable to that of the SQ at the region of 600 – 800 nm. This indicates 

that PCBM might be more efficient in exciton diffusion (𝜂𝐸𝐷), charge dissociation (𝜂𝐶𝐷) 

and charge transfer (𝜂𝐶𝑇). For tests measured under the short circuit condition, integration 

of the EQE over the entire solar electromagnetic spectrum will yield the current density 

that approximately equals the short circuit current density (Jsc) measured from the J-V 

characterization. 

 

Figure 1.5 A typical external quantum efficiency (EQE) spectrum (blue dots) of a 

squaraine-PCBM organic solar cell. Also shown is the absorbance spectra of the bulk 

heterojunction (BHJ) film (black line), of the squaraine (green dashed line) and of the 

PCBM film (brown dashed line). The absorbance spectra of BHJ film and PCBM neat 

film are experimentally obtained from the films, while the difference between the two 

qualitatively produces the absorbance spectra of squaraine. Note that the absorbance 

spectra of squaraine neat film is different from the real absorbance of squaraine in the 

BHJ film, in which squaraine molecules are less aggregated. 
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1.3 Basic Device Physics of OPVs 

1.3.1 Guidelines for interpreting the J-V curve of OPVs 

The J-V test is the most commonly used method to measure the efficiency of OPV 

devices. It yields three important parameters: short circuit current density (Jsc), open circuit 

voltage (Voc) and fill factor (FF).  These three parameters cannot be used to draw any 

mechanistic conclusions by themselves as these parameters are the outcome of many 

complexities. To investigate the solar cell as a function of a given property, we usually 

discuss the trend in Jsc, Voc and FF, in comparison to a reference device (to limit the 

influencing variables) or combine the results from J-V measurements and the results from 

other characterization techniques. 

Short circuit current density. Changes in Jsc can be related to the changes in 

absorbance of the materials, which might result from the difference in layer thickness, use 

of additional absorbers or absorbing layers, use of materials with different photoactive 

spectrum and morphology induced absorbance change. For example, the NIR absorbing 

materials, such as squaraines, are considered to have higher Jsc than P3HT, given that the 

solar irradiation spectrum has more photons in the NIR region (600 – 800 nm) than in the 

400-600 nm (where P3HT absorbs). Squaraine makes another good example of 

morphology-induced absorbance change, as its aggregates feature a much broader 

absorbance spectrum in the films, which is beneficial to achieve higher absorbance 

efficiency. The material absorbance spectra and EQE spectra are often measured to gain 

insights into the 𝜂𝐴𝐵𝑆 of the solar cells. 

The Jsc can also be affected by the efficiency of exciton diffusion (𝜂𝐸𝐷) and charge 
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transport (𝜂𝐶𝑇), which may both be affected by changes in morphology/crystallinity of the 

film. As mentioned above, the exciton diffusion length is sensitive to the material crystal 

structure. Generally, larger 𝐿𝐷  is expected in crystalline structures as compared to the 

amorphous, randomly distributed material domains.23,25 Thus, thin film X-ray diffraction 

measurements are often used to study the change in the film crystallinity and thus to infer 

the trend of exciton diffusion efficiency of the solar cell.40 Another important factor 

affecting both 𝜂𝐸𝐷 and 𝜂𝐶𝑇 is the domain size. When domain size is much larger than the 

exciton diffusion length, 𝜂𝐸𝐷 would suffer. 𝜂𝐶𝑇, on the other hand, is high since charges 

transport more directly in pure domains than the tortuous pathway transport for mixed 

phases. Domains in a BHJ film can be observed under a transmission electron 

microscope.55 

Saturation photocurrent density. Saturation photocurrent density is another 

important parameter which is often used to compare with Jsc. At the reverse external bias 

(i.e. the third quadrant in Figure 1.4), voltage favors the charge flow direction of the solar 

cell. In such favorable external field, the charge recombination probability in the BHJ films 

is reduced, leading to a photocurrent density that is larger than Jsc. As illustrated by the 

voltage-current curve in Figure 1.4, the photocurrent density at -1 V (i.e. 12.6 mA cm-2) is 

higher than the Jsc (i.e. 10.8 mA cm-2). This increase in photocurrent will be saturated at a 

sufficiently high reverse bias (usually at -2 ~ -3 V), and the photocurrent at this voltage is 

called the saturation photocurrent. On the other hand, a high reverse external bias might 

break the diode behavior of the solar cell, causing a current leakage (i.e. significant charge 

injection from the external sources into the solar cell due to the small 𝑅𝑠ℎ). Current leakage 

can make a non-negligible contribution to the saturation photocurrent density. Thus, the 
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saturation photocurrent is always obtained by subtracting the dark current from the 

measured solar cell photocurrent.  

Open circuit voltage. Voc is the maximum voltage that a solar cell can produce. It 

can also be viewed as the applied voltage at which all photogenerated charges are 

recombined within the BHJ. Voc is largely influenced by the interface energy gap between 

the donor and acceptor (𝐸𝐷𝐴), more specifically, the energy of donor HOMO and the 

acceptor LUMO. Brabec et al. have studied BHJ solar cells with MDMO-PPV as the donor 

and each of different fullerene derivatives (with various LUMO energy levels) as the 

acceptor, and they have found a roughly 0.3 eV difference between the Voc and the 𝐸𝐷𝐴.56 

This “missing” 0.3 eV has been observed for many other donor acceptor systems.57–60 

 𝑉𝑂𝐶 =
1

𝑒
(𝐸𝐿𝑈𝑀𝑂

𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐸𝐻𝑂𝑀𝑂
𝑑𝑜𝑛𝑜𝑟 − ∆) −

𝑘𝑇

𝑒
ln (

𝑛𝑒𝑛ℎ

𝑁𝑐
2

) (1.8) 

where 𝑛𝑒  and 𝑛ℎ  are electron and hole densities on the acceptor and donor domains 

respectively, 𝑁𝑐 is the density of states at the edge of the bands and ∆ represents the energy 

shift of the HOMOs and LUMOs, which originates from the disorder in the phase separated 

BHJ. Note that the charge densities, 𝑛𝑒 and 𝑛ℎ, are proportional to the intensity of incident 

light. Thus, Voc depends logarithmically on the power of incident light.32 

Fill factor. Fill factor (FF) measures the photocurrent loss due to the voltage at the 

“power generating quadrant”, and it is the ratio between the product of current density 

(𝐽𝑚𝑝𝑝) and voltage (𝑉𝑚𝑝𝑝) at the maximum power point and the product of the short circuit 

current density and open circuit voltage, 

 𝐹𝐹 =
𝐽𝑚𝑝𝑝 × 𝑉𝑚𝑝𝑝

𝐽𝑠𝑐 × 𝑉𝑜𝑐
 (1.9) 
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It is very sensitive to the charge recombination of the devices. For solar cells with high 

charge recombination probability, the loss of photocurrent would be aggravated by the 

unfavorable/forward external voltage at the fourth quadrant (Figure 1.4), leading to a low 

FF. The low or imbalanced charge mobilities would also reduce FF due to the difficulties 

extracting and collecting low-mobility charges at forward bias. 

1.3.2 Exciton diffusion and Fӧrster resonant energy transfer 

The local electronic excited state in organic semiconductors can induce a deformation 

of the conjugation units, leading to a change in bond length, i.e. stretching of the double 

bond and shortening of single bonds. This is referred to the electron-phonon coupling. For 

conjugated polymers, the nuclear rearrangement is at the greatest degree at the center of 

the exciton and gradually weakens for the units further away from the exciton. Such an 

exciton can be more accurately named as a Frenkel exciton,61  but for simplicity, we will 

keep the term exciton as the description of excitation energy in organic materials. For 

poly(phenylenevinylene) (PPV) polymers, the Frenkel polaron/exciton is reported to 

spread over around 6 monomer units.62 Efficient solar cell efficiency relies on the 

successful diffusion of the exciton to the donor/acceptor interface. It has been reported that 

when the polymer chain is perfectly conjugated or when small molecules are perfectly 

crystalized, the exciton can move coherently along the chain or crystallites, which is 

considered the fastest mechanism for energy transfer in the organic  materials.63 Of course, 

the local deformations, e.g. bond bending, twisting, etc., of the polymer chains exist 

ubiquitously in the bulk heterojunction films. These packing defects can terminate the 

coherent exciton migration along the chain, and therefore exciton diffusion occurs with 

other transfer mechanisms. 
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The excitations can diffuse between the polymer chains (or small molecules) through 

Fӧrster resonant energy transfer (FRET). FRET is a non-radiative transfer process from an 

energy donor to an energy acceptor via a long-range Coulombic interaction. Note that the 

“donor” and “acceptor” here refer to the molecules that undergo FRET (and could be the 

same type of molecules) and should be differentiated from the donor and acceptor materials 

of BHJ, where charge transfer at the interface between these materials is implied. Although 

sounding paradoxical, the energy transfer process can be thought of as simultaneous but 

non-radiative emission of a photon by the donor and subsequent absorbance of that photon 

by the acceptor (Figure 1.6). The rate of FRET can be calculated as64 

 𝑘𝐹𝑅𝐸𝑇 =
1

𝜏
(

𝑅0

𝑑
)

6

 (1.10) 

where 𝜏  is the fluorescence lifetime and 𝑑  is the distance between the donor and the 

acceptor. Thus, when 𝑑 = 𝑅0, the rate of FRET equals the radiative rate constant of the 

 

Figure 1.6 Energy level diagram illustrating the Fӧrster resonant energy transfer (FRET) 

between two identical molecules. (a) Starting with an excitation on molecule 1 (donor), 

the exciton can transfer to the molecule 2 via Coulombic coupling. (b) The FRET rate 

constant is proportional to the overlapping area of donor emission and acceptor 

absorption spectra. 
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exciton (an equal probability of FRET and exciton relaxation) and 𝑅0 is the Fӧrster radius 

which is calculated as 

 𝑅0
6 =

9𝜂𝑃𝐿𝜅2

128𝜋5𝑛4
∫ 𝜆4𝐹𝐷(𝜆)𝜎𝐴(𝜆)𝑑𝜆 (1.11) 

Here, 𝜅2 is the dipole orientation factor, 𝜂𝑃𝐿 is the photoluminescence quantum yield, and 

𝑛 is the refractive index at the wavelength where the spectral overlap integral is maximized. 

𝐹𝐷  is the normalized donor fluorescence and 𝜎𝐴  is the normalized acceptor absorbance 

cross section. Thus the integral represents the spectral overlap between (normalized) donor 

emission and acceptor absorbance spectra. According to Equation (1.11), FRET cannot 

take place when the donor is not capable of emitting photons (𝜂𝑃𝐿 = 0). In addition, when 

dipole orientations are aligned, 𝜅 would be increased, and so would the 𝑅0, leading to an 

efficient FRET. 

For molecules or polymer chain units that are sufficiently close to each other in the 

films, the frontier molecular orbital overlap might be large enough to enable the Dexter 

energy transfer process.22 In the Dexter process, the electron on an energy donor LUMO 

can transfer to the energy acceptor LUMO and the electron on the energy acceptor HOMO 

can transfer back to the energy donor HOMO. As a result, the excitation energy is 

transferred from donor to acceptor. Dexter energy transfer can only take place when there 

is a sufficient molecular orbital overlap. In other words, it only happens when conjugated 

units are close to each other. 

In summary, there are three types of exciton diffusion: migration along the polymer 

chain (which may involve both Fӧrster and Dexter energy transfer), Fӧrster energy transfer 

and Dexter energy transfer. The overall diffusion efficiency can be evaluated using 

Equation (1.2) and Equation (1.3). 
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1.3.3 Marcus theory for electron transfer at the donor acceptor interface 

 Charges are generated in organic solar cell devices when the excitons dissociate into 

electrons and holes at the interface. The dissociation step may occur extremely rapidly, on 

the order of femtosecond time scale.3,65 This step can be described by Marcus’ theory, as a 

nonadiabatic electron transfer process.66 

As shown in Figure 1.7, Marcus theory considers the potential energy surfaces of the 

initial state, D*/A (where the donor holds an exciton) and the final state D+/A- (where the 

hole is on the donor and the electron is on the acceptor), each as an oscillator parabola in 

the reaction coordinate, Q. Δ𝐺0  is defined by the energy difference between the two 

surfaces’ minima. It represents the Gibbs free energy of the electron transfer process. The 

reorganization energy, 𝜆, describes the energy required to bring the initial state and the 

surrounding medium to the equilibrium geometry of the final state. The electron transfer 

happens at the point where the two parabolas intersect, leading to an identification of Δ𝐺†, 

which equals the energy difference between the crossing point and the bottom of the initial 

state free energy parabola. Δ𝐺† is also referred to as the activation energy that the initial 

state must acquire (via vibrational motion) in order for the electron transfer to occur. 

Therefore, the electron transfer rate constant depends on the activation energy via a 

standard Arrhenius equation, 

 𝑘𝐸𝑇 = 𝐴 𝑒−
Δ𝐺†

𝑘𝑇  (1.12) 

where 𝐴 is a prefactor and its value should depend on the electronic coupling of the initial 

and final states. The activation energy, Δ𝐺†, can be calculated based on the Gibbs free 

energy, Δ𝐺0, and the reorganization energy, 𝜆, via 
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 Δ𝐺† =
(𝜆 + Δ𝐺0)2

4𝜆
 (1.13) 

Thus, the electron transfer rate constant can be further calculated as67 

 𝑘𝐸𝑇 =
2𝜋

ℏ√4𝜋𝜆𝑘𝑇
𝑉𝐷𝐴

2 𝑒−
(𝜆+Δ𝐺0)

2

4𝜆𝑘𝑇  (1.14) 

where 𝑉𝐷𝐴 is the electronic coupling between the initial and final states, and thus depends 

on the donor and acceptor molecular orbital overlap.68,69 

For the electron transfer process in organic solar cells, Δ𝐺0  is the energy offset 

between the LUMO (or HOMO) levels of the donor and acceptor at the interface (i.e. 

Δ𝐸𝐿𝑈𝑀𝑂 or Δ𝐸𝐻𝑂𝑀𝑂 in Figure 1.3). Equation (1.14) describes that 𝑘𝐸𝑇 increases as −Δ𝐺0 

is increased, until the 𝑘𝐸𝑇 reaches the maximum at −Δ𝐺0 = 𝜆. Further increase to −Δ𝐺0 

will then actually decrease the electron transfer rate constant. This is referred to the famous 

Marcus inverted region. Recently, Coffey et al. have studied the electron transfer rate 

between a polymer donor and a series of fullerene derivatives with varying energy levels.31 

 

 

Figure 1.7 Potential energy surfaces for the Marcus theory description of electron 

transfer process. D/A refers to the ground state donor acceptor, D*/A represents that the 

donor holds an exciton while D+/A- indicates the generation of an electron on the donor 

and a hole on the acceptor. ΔG† is the activation energy, ΔG0 is the Gibbs free energy 

and λ is the reorganization energy. 
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They have demonstrated the existence of an optimal energy offset driving the electron 

transfer at the donor acceptor interface, after which the 𝑘𝐸𝑇 starts to decrease. This is direct 

evidence for the applicability of Marcus theory in OPV devices. 

1.3.4 Charge mobility and space-charge limited current model 

Charge mobility is an important aspect of materials for OPV application. High charge 

mobility can reduce the probability of bimolecular recombination. It was suggested that a 

mobility of above 10-4 cm2/Vs is required to achieve high fill factor (>65%) and high 

photovoltaic performance.70  

Measurements of charge mobility in neat films or bulk heterojunction films are often 

done under a space-charge limited condition.71 In the space-charge limited current (SCLC) 

regime, the unipolar charges injected from one electrode cannot be sufficiently conducted 

to the other electrode due to the low charge mobility of the organic materials, leading to a 

build-up of space charges in the organic bulk which then can diminish the electric field. 

Then, the amount of charge carrier density saturates and new charges cannot be injected 

until some charges are extracted from the other electrode. In other words, the current is 

limited by the transport of charges in the organic film, and the current-voltage 

characteristics become quadratic. Then the charge mobility can be obtained from the 

current-voltage measurements via72 

 𝐽 =
9

8
𝜖0𝜖𝑟𝜇ℎ/𝑒

(𝑉 − 𝑉𝑏𝑖)
2

𝐿3
 (1.15) 

with 𝜖0  the vacuum permittivity, 𝜖𝑟  the relative permittivity of the organic material 

(usually taking a value of ~ 2–4), 𝜇ℎ/𝑒 the mobility of holes/electrons, 𝑉𝑏𝑖 is the built-in 
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voltage due to the difference in work functions of the two electrodes and 𝐿 the thickness of 

the organic layer. 

There are a few conditions that must be achieved in order for the use of SCLC model. 

First, the device must be unipolar. For measurement of hole mobility, the injection of 

electrons from any of the electrodes must be blocked. Second, it requires efficient charge 

injection from the electrode to the organic layer. This is obtained by selecting an electrode 

material that has a work function aligned well with the HOMO (for hole mobility 

measurements) or LUMO (for electro mobility measurements) level of the investigated 

organic material. Third, the current cannot be significantly impacted by the series 

resistance of the device. In such a case, the current-voltage characteristics would become 

linear instead of quadratic.  Fourth, the difference between the work functions of the two 

electrodes must be considered. Since the materials of the two electrodes are sometimes 

different, the difference between their work function can induce a built-in voltage to the 

devices, which would affect the injection of charges when the applied voltage is small. 

1.4 Morphology of The Bulk Heterojunction Layer 

Bulk heterojunction (BHJ) solar cell performance is very sensitive to the morphology 

of the BHJ layer, a solid mixture of donor(s) and acceptor(s) with nanosized morphology 

formed by phase separation during fabrication processes or post-treatments (see Figure 

1.8). The phase separation is mainly driven by the mismatch in surface energy of the two 

components in the BHJ.73 Crystallization of some conjugated polymers or small molecules 

is also responsible for the phase behavior.74 The morphology of BHJ films is often 

characterized and expressed in terms of domain size, where domains refer to regions/spaces 
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that are enriched in one of the components of BHJ materials.75 Even though “good 

morphology” has been reported for most efficient BHJ solar cells, precise control of the 

domain size and nanomorphology of the BHJ is still difficult. An optimal BHJ morphology 

is qualitatively pictured as the interpenetrating network of the donor and acceptor that 

features a large interfacial area, with the domain size being large enough to support 

efficient charge transport, and, at the same time, small enough such that the excitons can 

successfully diffuse to the interface. By considering the typical exciton diffusion length, 

𝐿𝐷 , of organic materials and the charge recombination lengths predicted by Onsager 

theory67, the optimal domain size is predicted to be at the 10-20 nm length scale.73 

Controlling the BHJ morphology can be achieved with various methods, such as 

proper solvent usage, use of solvent additives, varying donor acceptor blend ratio, thermal 

annealing and solvent annealing. In addition, chemical modification of molecular structure 

is also observed to have a profound impact on the morphology of the BHJ layer. 

 

Figure 1.8 A schematic illustration of an organic photovoltaic device and the bulk 

heterojunction (BHJ) layer morphology. The BHJ layer contains a mixture of donor and 

acceptor materials, and the domain enriched by each component is represented by the 

purple or white area. It should be noted that the homogeneous domains (containing both 

donor and acceptor materials which are intimately mixed) might also exist in the BHJ, 

but are not drawn in the drawing. The real morphology of the BHJ is still under debate 

due to the difficulties in imaging the film on sub-nanometer scale.75 
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Solvents. Lee et al. demonstrated a dramatic change in domain size when spin casting 

BHJ materials from solvents with different boiling points.76 In particular, films spin cast 

from high boiling point solvents, such as chlorobenzene and xylene, exhibit large domain 

sizes on the order of 100-200 nm, as compared to the films spin cast from chloroform 

solution with domain sizes of ca. 27 nm. This is due to the strong demixing behavior 

observed for the studied materials and the slow evaporation of chlorobenzene and xylene 

which allows sufficient time for the growing of domains. On the other hand, for 

P3HT:PCBM BHJ, chlorobenzene is a better solvent choice than chloroform as the phase 

separation of the two components is not strong enough to form nanosized domains when 

spin casting from chloroform. 

For some small molecule (donor) - fullerene (acceptor) systems, the device 

performance can be significantly improved by adding a small amount of solvent additive, 

such as diiodooctane (DIO).11,77 This solvent additive has a high boiling point of 167 0C 

which evaporates slowly during spin casting. As a result, the extent of phase separation in 

BHJ films can be controlled by changing the volume ratio between the processing solvent 

and solvent additive.78 

D:A blend ratio. Donor acceptor blend ratio can also impact the morphology of the 

BHJ films. For many crystalline polymer donors, spin casting the solution containing both 

polymers and fullerenes produces amorphous films with a uniformly mixed morphology. 

This occurs because the fullerenes remain well mixed and diffuse into the polymer chains 

during the solvent evaporation, thus disturbing the polymer crystallization. Kozub et al. 

have demonstrated that the P3HT and PCBM, even after extensive annealing, are miscible 

to some extent, which suppresses the fullerene crystallization.79 Thus the desired 
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morphology is only achieved when fullerene content exceeds the miscibility limit. 

Controlling donor acceptor blend ratio is often the first step to optimize the BHJ 

morphology and the solar cell efficiency. The optimal D:A ratio can vary between 1:5 and 

7:3 depending on the materials that are used.11,41,80 

Thermal and solvent annealing. After spin casting the BHJ film, post treatments are 

often applied to the films in order to further control the phase separation and crystallization 

of the blend components. For example, a thermal post treatment is usually done on a 

hotplate (thermal annealing) or solvent annealing post treatments occur when subjecting 

the films to a solvent vapor environment. The thermal energy or solvent vapor allows the 

rearrangement of the polymer chains or molecules. Ultimately, it is the chemical 

incompatibility that drives the separation of the two components. However, it is much 

easier to control the phase separation extent by post treatments (by, e.g., changing the 

annealing temperature or time, or solvent vapor pressure) than by relying on changes 

during the spin casting process. 

Molecular modification. Molecular structure also has a huge impact on BHJ 

morphology.81–83 For example, by changing the alkyl chain length for P3HT, Gadisa et al. 

showed dramatic change in morphology and charge transport properties, resulting in 

different photovoltaic performances.82 A similar effect has also been reported by Min et al. 

for small molecule donors.83 So far, the studies on the impact of the molecular structure on 

morphology have been mainly focused on changing the solubilizing alkyl chains as such a 

modification of alkyl groups does not significantly alter the optical and electrical properties 

of the materials. 
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1.5 Small Molecule and Molecular Aggregates 

1.5.1 Impact of molecular aggregates on OPV performance 

Reliable and efficient BHJ solar cells have been well demonstrated with poly (3-

hexylthiophene) (P3HT) and PCBM bulk heterojunctions, with reported power conversion 

efficiencies ranging from 3.5% to 5%.84–86 Working with such benchmark materials, the 

research field has been focused on developing a fundamental understanding of 

photoinduced charge generation process in the OPV devices.57,87–90 In the meantime, new 

materials with better chemical, optical, electrical and mechanical properties have been 

designed and synthesized,91,92 along with novel device architectures93,94 and improved 

processing conditions,95,96 to push the power conversion efficiency toward 15%. Even 

though conjugated polymers continuously attract attention, small conjugated molecules 

have recently been demonstrated to exhibit comparable power conversion efficiencies.97,98 

Small molecules have several advantages over their polymer counterparts, such as well-

defined molecular weight and structure (while polymer synthesis suffers from batch-to-

batch variation), high solubility in solvents and easy synthetic and purification methods. 

Instead of conventional thermal deposition methods, solution processable small molecules 

for use in OPV devices have been recently discussed in detail.99–101 

Traditionally, most conjugated dye molecules have been studied and used in solution 

(as isolated “monomers”) but behave quite differently in the solid state, the expected 

geometry for OPV application. The intermolecular Coulombic interactions cause 

photophysical and transport properties of molecular aggregates to deviate from those of 

monomers. Aggregates are generally categorized into two types, H- and J-types, depending 
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on the alignment of the transition dipole moments. Typically, the H-aggregates exhibit a 

blue-shifted absorbance spectrum as compared to monomers, while the red-shifted 

absorbance is often associated with J-aggregation. The detailed descriptions of each type 

of aggregate can be found in section 1.5.2. Here we review the literature for the impact of 

molecular aggregates on solar cell performance. Meerholz and Würthner et al. have studied 

the impact of squaraine (SQ) H- and J-aggregates on solar cell performance.102 

Specifically, they have found that the H-aggregates seem to increase the open circuit 

voltage and J-aggregates appear to increase the short circuit current. However, the exact 

mechanism for such observations is still vague. Recently, the same group have reported 

bulk heterojunction solar cells employing a series of dipolar merocyanine dyes and their 

aggregates.103 These dipolar dyes have a high tendency to aggregate, as reflected by the 

film absorbance spectra and X-ray diffraction measurements. Nevertheless, the impact of 

aggregates, as compared to molecular amorphous states (monomer), on solar cell 

performance is not discussed in detail.  

In fact, the impact of molecular aggregates on solar cell performance has been under 

great debate. For example, Chen et al. have demonstrated a method to selectively control 

H- or J-aggregate formation of a SQ molecule by different processing solvents.104 In 

particular, when spin cast from chloroform solution, the SQ preferentially forms J-

aggregates in the films, while H-aggregate formation is dominated when ortho-

dichlorobenzene is used. The solar cells made from the two different solvents showed that 

the J-aggregate formation has a large advantage over the H-aggregates, with higher Voc. 

This is inconsistent with the report from Meerholz and Würthner that the H-aggregate 

showed higher Voc in their SQ-based solar cells.102 Previously, it was generally believed 
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that the J-aggregate is beneficial for exciton diffusion because of its large radiative rate 

constant, while the H-aggregate typically does not fluoresce, leading to an inefficient 

exciton diffusion via FRET. Recent theoretical work has demonstrated that exciton 

mobility can be very high in H-aggregates as well.29 

Special care must be taken when studying the impact of molecular aggregation on 

OPV performance. First, the aggregation of small molecules in the neat films might be 

strongly inhibited in donor acceptor bulk heterojunction blends. For example, Chen et al. 

have studied a series of SQ dyes that can form H- or J-aggregates in neat films.59 However, 

when blending SQ donors with a fullerene acceptor, PC71BM, the absorbance spectra 

showed that the SQ aggregation is completely disrupted and the films are essentially 

amorphous. Thus, comparison between the contributions of H- or J-type aggregates to OPV 

efficiency is less valid as there is no evidence to quantitatively describe the relative 

populations of each aggregate type in the OPV-relevant films.  Second, assigning the types 

of aggregate solely based on the peak shift of absorbance spectra is dangerous, as there are 

many other factors that could distort the absorbance peak, such as gas-to-crystal shift. 

Incorrect assignment of aggregation might lead to misleading conclusions about their 

contributions to solar cell performance. As we will show later, a proper interpretation of 

the photophysical properties of aggregates requires deep understanding of the 

intermolecular interactions which is often achieved with theoretical modeling. 

1.5.2 The Exciton models for molecular aggregates 

As introduced above, H- and J-aggregation has been identified for various 

chromophores. The intermolecular interactions in aggregates depend strongly on the 

orientation of the molecular transition dipole moments (TDM). As shown in Figure 1.9, 
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the TDM-TDM interaction leads to splitting of excited states, each higher or lower than 

the original monomeric excited state. This is often referred to as exciton splitting. 

According to Kasha’s Exciton model,105 the “face-to-face” dipole arrangement leads to an 

allowed transition from the ground state to the higher excited state (while the transition to 

the lower excited state is forbidden), resulting in a hypsochromically shifted absorbance 

peak. After excitation, the electrons in the higher excited state quickly relax to the lower 

excited state, from where the radiative transition to the ground state is suppressed. This 

type of aggregate is called an H-aggregate. When the molecules (and hence the TDM) are 

described as packing in a “head-to-tail” geometry, the transition from ground state to lower 

excited states is allowed, resulting in a bathochromically shifted absorbance peak and an 

enhanced emission rate. This class of aggregates is called the J-aggregates. As Kasha 

stated in his paper, this “head-to-tail” J-aggregate is more likely to be formed when the 

long geometrical molecular axis packed parallelly while the transition dipole moment is 

along the molecular short axis. The optically allowed state as often referred to as the 

“bright” state, and the forbidden state as the “dark” state. For slip stacking geometry as 

shown in the inset of Figure 1.9, the ordering of the bright and dark states is dependent on 

𝜃, an angle between the transition dipole moment and the line of the molecular centers. 

When 𝜃 = 54.70, the bright and dark states are degenerate, and the exciton splitting is zero 

(the optical transition is independent of intermolecular distance and the strength of the 

interaction coupling). 

The exciton model has been proven to be very successful in rationalizing the 

absorbance and emission behavior of the molecular aggregates. The model links the 

intermolecular Coulombic interactions to the molecular (and transition dipole moment) 
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geometry, which has profound influence on design and synthesis of macromolecular 

assemblies with specific photophysical properties. However, there are some limitations 

associated with this model. For example, the energy levels are subjected to the gas-to-

crystal shift due to the changing electric field of the environments (i.e. solvents, 

surrounding materials, etc.). This can disturb the interpretation of spectral shift of 

aggregates. In addition, the vibronic peaks (i.e. 0-𝑣 transitions, 𝑣 = 1,2,3 …) for organic 

materials can spread over 0.4 - 0.7 eV in the absorbance and emission spectra. These broad 

vibronic bands can further complicate the spectral behaviors of the aggregates. 

 

Figure 1.9 Energy level diagram for the Exciton model with ideal aggregates. The 

molecules are symbolized by the oval shapes with the double arrow representing the 

transition dipole moment. The intermolecular interaction in the dimer causes the 

splitting of the LUMO level. For the J-aggregate with the transition dipole moments 

aligned, the lower state is optically allowed, while the higher state is forbidden. On the 

other hand, the transition from the ground state to the higher state is allowed for the H-

aggregate with a parallel transition dipole moment arrangement. For slip stacking 

geometry shown in the inset, the allowed transition depends on the slip angle, 𝜃.  
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Figure 1.10 Energy level diagram of the Exciton model in ideal H- and J-aggregates 

with consideration of vibrational states. (a) and (b) represent the situations when the 

coulombic coupling is weak compared to the vibrational energy, 𝜔0, while (c) and (d) 

correspond to the strong coupling regime. For weakly coupled aggregates, the original 

vibrational states split into many sub-states where the ones on the top (bottom) of the 

package |𝐴𝑛⟩ are optically allowed for H-(J-) aggregate. When the coupling is strong, 

the splitting in vibrational states leads to a continuous distribution of vibrational states 

and the optically allowed state is located on the top (bottom) of the band for the H- (J-) 

aggregate. This figure is taken from reference 54. 
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In order to properly understand the photophysical properties of the aggregates, Spano 

has expanded Kasha’s model to account for the effects of intermolecular coupling, vibronic 

coupling and disorder in crystals on an equal footing.61,106 A detailed energy level diagram 

is drawn in Figure 1.10. Specifically, the absorbance line shape consists of all the 

transitions from the ground state (with no vibrational excitations) to the vibronically 

excited states based on the Franck-Condon principle. Each transition peak can be expressed 

as 0-0, 0-1, 0-2 … transitions, with the first and second number denoting the vibrational 

excitation in the ground and the excited state respectively. When the Coulombic coupling 

is weak as compared to the energy of a vibrational quanta (𝜔0 = 1400 cm-1 for typical 

organic conjugated molecules), the vibrational states of aggregates are split into many sub-

states within an energy package (|𝐴1⟩, |𝐴2⟩, etc. as shown in Figure 1.10). The optically 

allowed state is located on the top (bottom) of each vibrational package for H- (J-) 

aggregate. In addition, Spano has showen that the first two vibronic peak intensities are 

dependent on the Coulombic coupling strength, 𝑉, 

 
𝐼𝐴1

𝐼𝐴2
=

(1 − 0.96
𝑉

𝜔0
)

2

𝜆2 (1 + 0.29
𝑉

𝜔0
)

2 (1.16) 

where 𝑉 is the Coulombic coupling term and 𝜆2 is the Huang-Rhys factor. Therefore, the 

ratio of first two vibronic peaks increases when 𝑉 < 0 (corresponding to H-aggregate) but 

decreases when 𝑉 > 0 (corresponding to J-aggregate).  

When the coupling strength is large as compared to 𝜔0, the split in vibrational states 

is significant such that the vibrational levels are spread over the entire exciton band, while 

the bright state is located on the top (bottom) of the band for the H- (J-) aggregate. In this 
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case, the absorbance spectra would feature a single peak that is significantly blue- or red-

shifted from the original monomeric peaks. 

This ratio rule provides a more reliable method to identify the type of aggregates based 

on spectral line shape. As discussed above, the spectral shift might be due to the 

nonresonant intermolecular interactions (e.g. gas-to-crystal shift), while the vibronic peak 

ratio is less affected.  

1.5.3 The Essential-state model for multipolar chromophores 

In organic conjugated molecules, the overlapping 𝑝𝑍 orbitals of the carbon atoms arise 

from the alternating single and double bonds to give the pi-character. Charge delocalization 

is favored along the conjugation units and is responsible for the low-energy physics 

associated with this class of materials. While the exciton model is the most widely used 

computational approach to study the molecular aggregates, it does not take into 

consideration the effect of charge resonance on a single molecule. In multipolar 

chromophores, the electron donors and acceptors are often separated by a 𝜋 bridge and the 

probability of finding the electron on an intramolecular donor or acceptor is highly 

sensitive to the dipole environments, leading to absorption or fluorescence 

solvatochromism. 

An essential-state model (ESM) describing the charge transfer multipolar dyes has 

been developed by Painelli and coworkers recently.107–112 For quadrupolar molecules, such 

as squaraine molecules, a trio of diabatic electronic states can be used to represents the 

main charge resonant structures: the zwitterion D+A-D (|𝑍1⟩, where an electron has been 

transferred from the left intramolecular donor moiety to the central intramolecular acceptor 
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moiety), DAD (|𝑁⟩), absent of intramolecular charge transfer, and the zwitterion DA-D+  

(|𝑍2⟩, where an electron has transferred from the right hand donor moiety to the central 

acceptor moiety). Painelli et al. have also proposed a case where the electron resides on the 

𝜋 bridge for a dipolar system.110 For symmetric SQs, the two zwitterion states, |𝑍1⟩ and 

|𝑍2⟩ , are degenerate and separated from the neutral state, |𝑁⟩ , by an energy 𝜂𝑧 . The 

zwitterionic states couple to the neutral state via the electron transfer integral, 𝑡𝑍 , 

representing the movement of the electron (in squaraines) between a nitrogen atom on one 

arm and the central four membered ring (Figure 1.11). 

The Hamiltonian constructed based on these diabatic states can be straightforwardly 

diagonalized to give the electronic eigenstates of the chromophore. Specifically, three 

adiabatic eigenstates are obtained as shown in Figure 1.11. The lowest-energy state is 

defined as the ground state, |𝑔⟩, while the two excited states, |𝑐⟩ and |𝑒⟩, are one-photon 

or two-photon allowed, respectively. These three eigenstates are able to characterize the 

 

Figure 1.11 Schematics to illustrate the electronic basis states for quadrupolar 

chromophore in the Essential-state model (ESM). The diabatic states represent the main 

resonant structures of the molecule as a result of intramolecular charge transfer. The 

adiabatic states which are the eigenstates of the electronic Hamiltonian are responsible 

for the optical transitions. For linear quadrupolar chromophore, the first excited state 

|𝑐⟩ is one-photon (1PA) allowed and the second excited state |𝑒⟩ is two-photon (2PA) 

allowed. 
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low energy physics of the quadrupolar chromophore, i.e. absorbance, fluorescence and 

two-photon absorbance. 

Using ESM, Painelli et al. have investigated the solvatochromism effect and charge 

instability in fluorene-based and styrene-based quadrupolar chromophores, as well as 

squaraine dyes.107 Later, they have expanded the ESM to study the Coulombic interactions 

in the associated aggregates.113,114 In the aggregate model, they have mainly discussed the 

effect of Coulombic interactions on non-linear optics for multipolar chromophores. The 

ESM dimer model, with charge resonant diabatic states, naturally considers the 

polarizability of chromophores in the aggregates, providing an explicit advantage over the 

exciton model. 

1.6 Squaraine Donors for OPVs 

Squaraine chromophores has been enthusiastically researched for applications in BHJ-

OPV devices recently due to its high extinction coefficient in the near infrared region of 

the solar spectrum as well as the facile synthetic processes.115–117 Among many SQ 

structures, aniline- and indoline-based molecules are more synthetically accessible and 

thus are more frequently investigated for OPVs. With solubilizing alkyl groups attached to 

the nitrogen atoms, these SQ molecules generally exhibit high solubility in conventional 

organic solvents. Marks et al. have first reported a use of SQ donors in solution processed 

BHJ solar cells with efficiency above 1%.118 In the report, the authors pointed out that the 

linear or branched alkyl substituents allow manipulation of the solubility as well as control 

the crystalline packing structures. They have also observed that the solar cell efficiency is 

sensitive to SQ:PCBM ratio and thermal annealing treatment, presumably due to the 
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changes in BHJ morphology. Later, the same group has compared the alkyl- and alkenyl-

substituted SQ donors for BHJ-OPV devices.119 The marked effect of different solubilizing 

alkyl groups has been further recognized. 

Thompson and Forrest et al. have first reported highly efficient, vapor deposited OPV 

cells by using an aniline-based squaraine donor, later named “DIBSQ”.120 DIBSQ has been 

a very successful squaraine donor and high device efficiency can be realized by either 

solution or evaporation processes. In Wei et al.’s report,120 when compared to the 

previously used, blue-absorbing copper phthalocyanine, DIBSQ-based devices with 

thinner donor layer (6.5 nm vs. 40 nm) can achieve higher efficiency (3.1% vs. 1.2%), 

marked its advantages in absorption (i.e. the high extinction coefficient and the NIR 

absorption peak). Later, the efficiency has been further increased to 4.6% by thermal 

annealing the donor layer to improve the SQ crystalline structures and subsequently the 

exciton diffusion length.121 Yet, it has also been recognized that the exciton diffusion length 

is still short (~5 nm) even in these crystalline SQ structures, which significantly limit the 

use of a thicker donor layer for more efficient solar photon harvesting. Thus, the same 

group have explored the potential of DIBSQ in solution-processed BHJ solar cells.40,41 

Bulk heterojunction structure alleviates the negative influence of the short exciton diffusion 

length in DIBSQ donors and an averaged solar cell efficiency of 2.4 % has been obtained 

with the optimal DIBSQ:PC71BM ratio of 1:6. The lower efficiency can be attributed to the 

incomplete phase separation between DIBSQ and PC71BM in as-cast blends. Upon solvent 

annealing the BHJ layer in dichloromethane vapor, the SQ molecules crystallize and phase 

separate from the fullerenes, leading to a maximum device efficiency of 5.2%.41 Later, the 

same group has explored various SQ molecules with N-aryl groups attached to the nitrogen 
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atoms.122–125 The new squaraines exhibit red-shifted and broader absorption peaks as 

compared to DIBSQ. In addition, the aromatic groups are expected to improve π-π stacking 

of the SQ molecules and thus should improve exciton and charge transport. Yet, only small 

improvements have been seen. 

Chen et al. have independently studied DIBSQ in solution processed OPV devices, 

with reported efficiency of 4.8% under 1-sum illumination.126 Interestingly, the authors 

reported an improved power conversion efficiency of 6.1% by co-evaporating the DIBSQ 

and C70 to form the BHJ layer.127 The authors also investigated the effect of alkyl 

substituents and the hydroxyl groups on the aniline moiety on solar cell performance.59 

Dramatic changes in absorption spectra of neat films and the SQ single crystal structures 

have been realized with small modifications in those functional groups, which are 

responsible for the different solar cell performances. 

Recently, Yang et al. have explored the possibilities of using asymmetrical squaraines 

in BHJ devices, and device efficiencies similar to that of DIBSQ have been reported.128–132 

Noticeably, by binding two asymmetrical squaraine molecules together with a 

benzodithiophene unit, the hole carrier mobility has been improved significantly, leading 

to a high OPV efficiency of 6.33%. 

Spencer et al. reported the unique aggregation properties of SQ molecules and the 

aggregates can be controlled by co-solvent methods.133,134 These results highlight that the 

SQ aggregation can be used to control the thin film morphology and thus the device 

performance. SQ aggregates yield broader absorption spectra which should be beneficial 

for photon harvesting. At the same time, aggregates represent more ordered packing of 

molecules and thus are expected to have higher charge and exciton transport properties. 
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However, SQ aggregation does not always result in device improvements, and Spencer et 

al. made the efforts to apply Marcus-Hush theory to explain the changes in solar cell 

performance due to the SQ aggregation.69  

To summarize the above short review, SQ has been utilized in OPV devices only 

recently, but the power conversion efficiency has been dramatically improved. These 

achievements were realized by combining the efforts in material design and synthesis, 

better device structures and fabrications, and deep understanding of these small SQ 

molecules and their aggregates. In order to further improve the device performance with 

better molecules, some critical inefficient properties of SQ donors must be overcome; i) 

the narrow absorption spectra of SQ single molecules, ii) the short exciton diffusion length 

and iii) the low charge mobility in SQ films. SQ aggregation might provide a solution to 

all three shortages as aggregates generally have much broader absorption profiles and the 

crystalline structure in the aggregates is expected to improve the transport properties. In 

this dissertation, we focus on the effect of squaraine aggregation on solar cell performance 

and the controlling of squaraine aggregation to further improve the OPV efficiency. 

1.7 Aim and Outline of This Dissertation 

This dissertation has been focused on developing efficient bulk heterojunction OPV 

devices based on small squaraine donors and utilizing their aggregation properties to 

optimize the BHJ morphology and therefore the solar cell efficiency. In this chapter, a basic 

description of the OPV principles and device physics have been introduced to provide a 

necessary background and reference for the following chapters. For example, the 

interpretations of the device parameters in Chapter 3 and Chapter 4, such as short-circuit 
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current and fill factor, are based on the description in Section 1.3.1. Then, the basics of 

theoretical models, i.e. exciton model and essential-state model, describing the electronic 

structures of small molecules and their aggregates have been introduced in Section 1.5. 

This sets up the launching point for Chapter 5 and Chapter 6.  

The following chapters of this dissertation are arranged as follows. In Chapter 2, the 

experimental details of some major measurements in this dissertation are briefly 

introduced. The parameters and the set-ups are tuned for the specific measurements 

involving organic materials and for the specific instruments in the research labs at RIT and 

at other collaborating universities. The device making procedures have been continuously 

improved during the research, and different fabrication steps and materials might be used 

in different chapters, which are indicated in Chapter 2. 

In Chapter 3, we start to investigate the effect of squaraine aggregation on BHJ 

morphology with the first SQ molecule, DHSQ(OH)2. In the absorption spectra, we 

recognize that DHSQ(OH)2 molecules may exist in either monomeric and aggregated form, 

and the relative population of monomers and aggregates depends on the weight ratio of the 

SQ and fullerene. Thermal annealing can induce DHSQ(OH)2 aggregation, causing 

depletion of monomer population. The film crystallinity and donor-acceptor phase 

separation are investigated and correlated to SQ aggregation behavior. The OPV device 

performance is related to the morphologies of the BHJ. In Chapter 4, we explore the effect 

of N-alkyl substituents on SQ aggregation and BHJ morphology. The device efficiency is 

further improved to 4-5% with a better designed SQ molecule, DBSQ(OH)2. We find that 

the SQ aggregates always decrease the power conversion efficiency of the device even 
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though the BHJ morphology is improved. This should be attributed to the changes in 

excited state structures of the SQ aggregates as compared to the monomeric state. 

In Chapter 5 and Chapter 6, we use essential-state model to theoretically investigate 

the excited states structures of the SQ aggregates that are relevant to OPV. We identify two 

types of intermolecular interactions in the SQ aggregates: Coulombic coupling (CC) and 

intermolecular charge transfer (ICT). Here, we construct theoretical models based on the 

essential-state model107,108 to extract the information about the excited state structures of 

these SQ aggregates. The spectral signatures of these aggregates are analyzed to provide a 

spectral-based diagnostic approach to identify the desired aggregates for OPV application. 

In Chapter 7, we further investigate the excited state dynamics in the SQ aggregates. 

It is recognized that the excitons in Coulombically coupled (CC) aggregates are highly 

mobile and efficient energy transfer happens from SQ monomers to CC-aggregates. Thus, 

it is expected that the excitons generated in the system with mixed population have a high 

probability to reach the heterojunction interface and generate free charges. This at least 

partially explained the high efficiency obtained from these highly amorphous systems. 

Finally, Chapter 8 summarizes and concludes for this dissertation.  
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Chapter 2. METHODS 

In this chapter, the materials and the general methods that are employed in this 

dissertation are introduced. Note that the experimental procedures have been continuously 

improved over time during this dissertation work, and these will be explicitly stated in the 

following contents.  

2.1 Materials 

In this dissertation, aniline-based squaraine (SQ) molecules were used as the donors 

in BHJ-OPV devices. These SQ molecules are synthesized by Dr. Jeremy Cody’s research 

group at Rochester Institute of Technology (RIT). SQs have high extinction coefficients 

exceeding 105 cm-1 and narrow band gaps of ~ 1.6 eV. The general formula of SQs features 

a symmetric structure with a central squarylium and two di-hydroxyl anilines (shown in 

Figure 2.1). The squarylium is an electron acceptor while the nitrogen atoms on the anilines 

act as electron donors, forming a donor-π-acceptor-π-donor structure. Bigelow and Freund 

performed semiempirical molecular orbital calculations on SQs and have found that in 

solutions, the solvent cage surrounding the squarylium is positively charged while the 

negatively charged solvent cage is found near the nitrogen atoms.135 This indicates that the 

 

Figure 2.1 A general chemical structure of squaraine molecules. 
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ground state of SQ molecules has a strong zwitterionic character (partial positive charge 

on two nitrogen atoms while partial negative charge on two oxygen atoms, as drawn in 

Figure 2.1).  

The peripheral groups on the nitrogen atoms are alkyl chains to ensure a good 

solubility of SQs in conventional organic solvents. We found that SQs with alkyl groups 

of at least four hydrocarbons (i.e. either n-butyl or iso-butyl) have a good enough solubility 

for solution processing (> 16 mg mL-1). The peripheral chains also influence the crystal 

packing. For example, SQ with iso-butyl chains crystalize into a monoclinic structure with 

a space group of P21/c,122 while SQ with n-butyl chains has a triclinic crystal structure 

with a space group of P-1.136 

[6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C71 butyric acid 

methyl ester (PC71BM) was used as the acceptor for our BHJ devices. Poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) or molybdenum trioxide 

(MoO3) was used as the cathode buffer layer to provide better ohmic contact between the 

BHJ and the Indium tin oxide (ITO). All these materials are commercially available and 

used as received. 

2.2 Optical Characterization 

Absorbance and fluorescence are critical methods and often the first step to 

characterize the excited state properties of SQ chromophores. The absorbance measured 

from dilute solution can give information on excitations of individual molecules, while the 

absorbance studies of thin films are measuring the excitations on molecular aggregates or 

crystalline structures. The change in the spectra of solutions and films can yield 
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information about the intermolecular interactions in aggregates. The optical measurements 

are performed for SQs in different environments, e.g. Poly(methyl methacrylate) (PMMA) 

films, neat films and blend films. 

Solutions. SQs were dissolved in conventional organic solvents, such as chloroform, 

chlorobenzene, tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO). Several dilution 

steps were needed to bring the optical density low enough for the UV-Vis instrument 

(Shimazu-2401PC spectrophotometer). SQs in our lab exhibit sharp absorbance peaks in 

solution with extinctions coefficients of > 105 M-1 cm-1 at ~ 650 nm. Fluorescence of SQs 

in solution was measured using a HORIBA FluoroMax fluorometer. The 

photoluminescence quantum yield (PLQY) was obtained by using a Quanta-𝜑 integrating 

sphere. All squaraines have a high PLQY of > 0.8, which falls in the typical characteristics 

of squaraine dyes.116,117 

Films. Thin films were made by spin casting the solution with a concentration of 8-16 

mg mL-1 onto glass substrates. Chloroform was frequently used as the solvent. Typically, 

the film thickness is in the range of 80-200 nm. The absorbance spectra of the films were 

largely affected by the addition of PCBM or PMMA, and less sensitive to the concentration 

and spin speed. In some cases, thermal annealing was performed to the films to induce SQ 

aggregation. The thermal treatment was performed by placing the film on a digital hot place 

at a set temperature (the temperature at the surface is calibrated against an infrared 

thermometer and a ± 5 ºC deviation from the displayed value is assumed). After annealing, 

the films were allowed to cool to the room temperature before taken to the absorbance 

measurements. 
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PMMA films. For some studies, polymethylmethacrylate (PMMA) polymer and SQs 

are co-dissolved in chloroform solution and then spin cast into thin films. The solution is 

often heated on a hotplate set at 60 0C for 5-10 min to ensure the solids are fully dissolved 

(especially for low SQ weight percent films). Here, the weight percent (wt%) of SQ is 

defined as the ratio of SQ mass divided by the total weight of both SQ and PMMA solids. 

Upon spin casting, the SQ molecules are dispersed in the PMMA matrix with the molecular 

separation controlled by the wt% of SQs. The average molecular separation, 𝑑, between 

SQ molecules in the PMMA matrix can be estimated via: 

 𝑑 = √
𝑀

𝑁𝐴 × 𝑤𝑡% × 𝜌𝑃𝑀𝑀𝐴

3

 (2.1) 

where 𝑀 is the molecular mass of SQ molecule, 𝑁𝐴 is the Avogadro’s number and 𝜌𝑃𝑀𝑀𝐴 

is the density of PMMA (typically 1.17 g cm-3 obtained from Sigma-Aldrich). Note that 

Equation (2.1) is under the assumption that adding SQ in PMMA matrix does not alter the 

density nor the volume of the thin films. Thus, it only works at low SQ wt% regime. 

Mixed-solvent solution. For mixed-solvent solutions, we dissolved SQs in a solvent 

mixture containing DMSO and H2O. DMSO is a good solvent with a high solubility for 

SQ monomers and is miscible with H2O to form a uniform solvent environment. H2O is a 

non-solvent for SQs. Thus, the solvent quality can be precisely controlled by changing the 

volume ratio of DMSO and H2O.137 For making a mixed solvent solution, we first dissolved 

SQ into DMSO to make a stock solution with concentration of 1 mg mL-1. Sonication of 

the DMSO solution were sometimes needed to ensure that the SQs are fully dissolved. A 

series of blank solvent blends were prepared with varying DMSO/H2O volume ratio. The 

final solutions were made by slowing injecting the DMSO stock solution into the blank 
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solvent mixture during sonication. The nano-sized aggregates were found to be stable in 

the solvent mixture for ~ 2-8 hrs. For absorbance measurements, the blank solvent mixtures 

were used to baseline the spectrometer before taking measurements of each corresponding 

mixed-solvent solution. 

2.3 Solar Cell Device Fabrication 

Patterning ITO substrates. In Chapter 4, we describe results from devices made from 

using patterned ITO, which allows us to get better contact to the two electrodes when taking 

voltage-current measurements in the glove box. Commercialized ITO plates (5×5 inches) 

obtained from VisionTek Systems Ltd. were cleaned by rinsing in acetone, isopropanol 

and deionized water consecutively, and then subjected to air drying. The cleaned ITO plates 

were then transferred to the Semiconductor & Microsystems Fabrication Laboratory 

(SMFL) at RIT for lithography processes. In SMFL, HPR-504 photoresist was spin cast 

onto the ITO plates at a spin speed of 2000 rpm, followed by a soft bake step at 120 0C. 

The photoresist layer covered by a self-designed chromium mask (making contact with the 

photoresist layer) was then exposed to the mercury broadband irradiation. The exposed 

photoresist was developed using CD-26 positive developer, followed by a hard bake step 

at 120 0C. The etching step was performed on a hotplate at 100 0C (digital reading, while 

the etchant is at 35 – 55 0C) for 5 minutes. The etchant was made of hydrochloric acid with 

1:1 dilution by deionized water. The etched ITO plates were rinsed in acetone to wash off 

the un-exposed photoresists, followed by consecutive rinses in isopropanol and deionized 

water. In the final step, the large 5×5 inches ITO plates were cut into small substrates, each 

with a dimension of 20×15 mm. 
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OPV device fabrication. An appropriate number of ITO substrates (unpatterned ITO 

substrates in Chapter 3 and patterned substrates in Chapter 4) were cleaned in an acetone 

and isopropanol ultrasonic bath, followed by double rinses in hot deionized water. 

Substrates were dried using the vacuum air gun with a proper use of cleanroom wipes. At 

the back of the substrates, the device number was labeled and (for patterned ITO substrate) 

the divisions between each ITO strip were marked with a line. (The number is to help to 

easily differentiate devices with different processing conditions and the line is to help find 

the ITO contact when testing the devices). The substrates were then moved to an oven and 

annealed at 150 0C for 15 minutes to ensure that any solvents attached to the surface were 

fully evaporated. Then, the substrates were UV-Ozone (Jelight Inc. Model 18) treated for 

15 minutes. 

For devices using a PEDOT:PSS cathode buffer layer (used in Chapter 3), a 1 mL 

PEDOT:PSS dispersion (obtained from Ossila Inc.) was taken out from the refrigerator and 

filtered through a 45 μm PTFE filter to remove any large aggregates or particles. Then, the 

dispersion was spin coated onto the ITO substrates at a spin speed of 4000 rpm, followed 

by a bake step at 150 0C for 5 minutes. 

For devices using a MoO3 cathode buffer layer (used in Chapter 4), the patterned ITO 

substrates were loaded into a cathode buffer layer mask, and then the mask was installed 

in the vacuum deposition system (Angstrom Engineering Inc.). The MoO3 evaporation was 

done in the vacuum with a base pressure of < 1 × 10−6 Torr and a rate of 0.5 Å 𝑠−1. After 

the evaporation, a 100 Å MoO3 was obtained. 

After fabrication of the cathode buffer layer, the substrates were immediately 

transferred into the glove box to a spin coater. The BHJ layer was obtained by spin casting 



  

49 

 

the solution onto the substrate at a spin speed of 1500 rpm (unless another speed is noted). 

For some studies, some BHJ coated substrates were annealed on a hotplate in the glove 

box; (temperature varies for different studies and will be stated in each Chapter). 

Then the BHJ coated substrates were loaded into an anode layer mask for anode layer 

deposition. Similar to the MoO3 deposition step, the loaded mask was installed into the 

evaporator and the base pressure of the chamber was allowed to drop to < 1 × 10−6 Torr. 

The aluminum is evaporated onto the BHJ layer at a rate of 3 Å 𝑠−1 with a final thickness 

of 1000 Å. The final device structure is: ITO(~100 nm)/MoO3 (10 nm) or PEDOT:PSS 

(~40 nm)/SQ:PCBM BHJ (~70-120 nm)/Al (100 nm). 

Some devices were encapsulated to preserve the photovoltaic materials from 

degradation. For encapsulation, a glass coverslip and epoxy glue (products from Ossila 

Inc.) were used to encapsulate it. It was observed that the BHJ active layer material is 

soluble the epoxy and the device efficiency was found to drop by ~ 15% when measured 

immediately after encapsulation (although the stability was found to be improved 

significantly). When storing in ambient condition, the device degrades to < 20% of its 

original efficiency after 24 hrs. When storing in a nitrogen-filled glove box, the device 

retains 30 – 50 % of its original efficiency after 24 hrs. When encapsulated with epoxy and 

cover slips, the device can retain ~ 90% of its efficiency after a week (see Appendix B). 

2.4 Solar Cell Performance Evaluation 

Current-voltage (J-V) testing. J-V tests were performed on a Newport 91192 solar 

simulator at a power of 100 mW cm-2. The light intensity was calibrated against standard 

InGaP solar cells fabricated in NASA Glenn Research Center, Photovoltaic Branch 5410. 
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The calibration was performed once a month. The OPV devices were tested immediately 

after the anode layer deposition to prevent any device performance fluctuations due to the 

material degradation. The J-V measurements were taken by using a Keithley 2400 

sourcemeter and a four-point probe geometry. Each device was scanned by sweeping the 

voltage from -2 V to 2 V. 

For devices using unpatterned ITO substrates (in Chapter 3), the J-V test was 

performed outside the glove box and the probes were placed onto the ITO and aluminum 

to get contact on these two electrodes. The device area was defined by the area of the 

aluminum capping layer, which is 2.9 mm2. Great care had to be taken as the probes can 

very easily penetrate the thin aluminum layer (100 nm), causing damage to the devices. 

For devices fabricated on patterned ITO substrates, the device area was defined by the 

overlapping area of aluminum and ITO, i.e. 4.5 mm2. Good ohmic contact on both 

electrodes can be achieved easily without worry of damaging the devices. 

The data were collected using an internally developed LabView program. The solar 

cell short circuit current, open circuit voltage, fill factor and power conversion efficiency 

were reported by averaging over 16 devices for each data point presented here, and the 

standard deviations were provided in all cases. Some data from obviously defected devices 

(e.g. those with significant current leakage or completely short-circuited) were excluded 

from the averaged value. The percentage of defected devices was less than 5% for devices 

on patterned ITO substrates and around 25-50% for devices on unpatterned ITO substrates 

(penetrating the aluminum layer is often the cause). 

Spectral response test. External quantum efficiency (EQE) of the solar cell was 

measured on a spectral response set-up at NanoPower Research Laboratory (NPRL) at RIT. 
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The system was calibrated against a Si standard supplied by Optronic Laboratories. The 

light generated by a halogen bulb was sent to a monochromator and then a beam chopper. 

The monochromatic light was then focused on the solar cell device with a beam diameter 

of ~1 mm. The currents were measured by two probes attached to ITO (cathode) and 

aluminum (anode) respectively, using a specialized tool box which is designed and 

manufactured by Chenyu Zheng and the RIT machine shop. The current signal was sent to 

the Stanford Research System (SRS) 570 preamplifier. The SRS 570 preamplifier is able 

to detect current as low as nano amperes and then up-converts it to voltage signal, which 

is sent to the SRS 830 Merlin lock-in amplifier. The Lock-in amplifier was set to the 

frequency of the beam chopper. The EQE spectrum and data were obtained using a 

LabView program. 

2.5 Hole-only Device 

For measurement of hole carrier mobility, the hole-only devices were fabricated. The 

preparation/cleaning of ITO substrates is the same as that described in Section 2.3. The 

ultra-cleaned ITO substrates were then loaded to the evaporator for MoO3 deposition. At 

the proper base pressure, a 10 nm-thick MoO3 layer was evaporated onto the substrates. 

Then a BHJ layer or a neat donor layer was deposited by spin coating. Each device was 

capped with another 10 nm-thick MoO3 layer and a 100 nm aluminum cathode. The device 

structure is: ITO (~ 100 nm)/MoO3 (10 nm)/SQ or SQ:PCBM BHJ (~100 nm)/MoO3 (10 

nm)/Al (100 nm). The MoO3 layers are acting as hole injection and extraction layers due 

to the low MoO3 work function.128 The hole mobilities of the pristine squaraine films as 

well as of the SQ:PCBM blend films are extracted by fitting the current−voltage curves of 
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single carrier devices to the Mott−Gurney law (Equation (1.15)) for the voltage region 

where the current is space-charge limited.72 

The film thickness is an important parameter that must be measured before applying 

Equation (1.15). The thickness is measured by an atomic force microscope (Bruker Inc. 

model INNOVA) performed in tapping mode. First, the films were obtained by spin casting 

onto glass substrates with a spin speed and a concentration that is the same as is used when 

preparing the hole-only devices. Then the films were immersed in deionized water to allow 

the film to crack and create a sharp edge. The thickness of the film can be readily measured 

using AFM by scanning across such a sharp edge. 

Electric measurements were performed inside the glove box using a Keithley 2400 

sourcemeter in the dark. The voltage is scanned from 0 V to 6 V to ensure that the space-

charge limited regime is reached. 

2.6 Morphology Characterization Techniques 

The morphological characterization techniques applied in this dissertation include X-

ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy 

(AFM), Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA). 

XRD. In this dissertation, two different XRD systems were used. In Chapter 3, The 

XRD system was built at RIT. Monochromated Cu K𝛼 radiation (𝜆 = 1.542 Å) generated 

from an analytical sealed tube X-ray source was employed to make the measurements 

under ambient conditions (293 K). The films were made by spin casting a solution onto the 

glass substrates. The blank substrates were measured on the identical set up to account for 

the scattering and diffraction of the X-ray beam by those substrates (the glass). The final 
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X-ray diffractograms were obtained by subtracting the results of the blank substrates. The 

diffraction was scanned using a dwell time of 2-8 seconds for each data point to increase 

the signal-to-noise ratio.  

In Chapter 4, thin film XRD measurements were taken at Alfred University, through 

a collaboration with Scott Misture. A Bruker D8 Advanced system with a Bragg-Brentano 

geometry set-up was used to take the XRD measurements at room temperature. The 

diffracted X-ray signal is measured using a LYNXEYE XE position sensitive detector 

while the films were slowly spinning at a rate of 30 rpm. In-situ high-temperature X-ray 

diffraction measurements (in-situ HTXRD) were performed with an Anton PAAR high 

temperature control system. The X-ray sources are Cu Kα1 (1.54056 Å) and Kα2 (1.54439 

Å) lines for both room temperature and high temperature. The films were prepared on the 

ITO/MoO3 substrates with the same procedure of OPV fabrication (without aluminum 

cathode layer). The scans of ITO/MoO3 substrates were used as the baseline to selectively 

investigate the diffraction peak of the squaraine crystalline structure. For in-situ HTXRD, 

the diffractograms were measured during a thermal ramp from 30 0C to 150 0C (with a 30 

0C interval), then cooled back down to 30 0C. Powder XRD were measured by carefully 

spreading the squaraine powders onto a quartz holder. The measurements were taken in 

both room temperature and high temperature systems. 

TEM. A JEOL JEM-2010 transmission electron microscope was used to directly 

investigate the BHJ morphology. The TEM employed a 210 LaB6 filament and was 

operated at 200 kV. An AMT image capture system was used to take images. Due to the 

difference in mass densities of SQ and PCBM, the PCBM-enriched domains appear darker 

than the SQ-enriched regions. The domain size was estimated by using ImageJ software. 
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The films for TEM studies were prepared by spin casting solution onto glass substrates and 

subsequently immersing the films into deionized water. Each film was picked up by a 

specialized TEM microgrid and then dried by gently touching the microgrid with a 

cleanroom tissue. The water was allowed to further evaporate under ambient condition. 

The focus of the electron beam was achieved on local defects of the films, such as cracks 

or holes and images were then taken on the area beside these defects. The quality of the 

TEM images was free from the distortions by any image processing. 

AFM. The surfaces of the organic films were analyzed using an INNOVA AFM 

system. The measurements were performed under tapping-mode at ambient condition. The 

rate of each scan was set at 0.5 Hz. The area of each scan was typically 5×5 μm. The 

surface roughness was readily obtained from the software with the AFM height image. The 

AFM images were free from the distortions by any image processing. 

DSC and TGA. DSC is a powerful tool to analyze the thermal behavior of the bulk 

materials. It measures the temperature of the analytes versus the thermal energy provided 

to it. For melting, crystallization and other exo- or endothermic processes of the analytes, 

a TA Instruments Q2000 differential scanning calorimeter was used. The sample was 

loaded in a hermetic aluminum pan and a lid was gently crimped on by using a TA 

Instrument Press. For decomposition of the materials, a TA Instruments Q500 

thermogravimetric analyzer (TGA) was used. The sample was massed using the integrated 

balance in the TGA prior to thermal ramping and was continuously weighed during the 

thermal ramping. For DSC, the temperature was ramped back and forth three times from 

25 0C to 270 0C at a constant ramping speed of 10 0C min-1. Nitrogen gas was flowed during 

the scan to prevent material from degradation. For TGA, the temperature was ramped from 
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25 0C to 400 0C at a speed of 5 0C min-1 (after the first ramping, the materials were 

completely degraded/vaporized). 

2.7 Time-resolved Measurements 

The excited state lifetime was measured using a time correlated single photon counting 

(TCSPC) system at RIT, and a transient absorption (TA) spectroscopy system at the 

University of Rochester. 

In TCSPC system (See Figure 2.2), a Newport Ti:Sapphire laser with an output 

wavelength of 800 nm and a frequency of 76 MHz was used as the excitation source. The 

laser pump was then converted to the desired wavelength (between 600 nm and 640 nm) 

by passing it through an optical parametric oscillator (OPO) and a frequency doubling 

crystal. The beam was then split into two; one triggered the Fast Trigger Diode to initiate 

the Picoharp 300 picosecond timer and the other excited the sample/analyte. The 

luminescence was subsequently detected at the right angle geometry with respect to the 

excitation beam. A monochromator was used to select the emission photons. Immediately 

after the Avalanche photodiode detected an emitted photon, the Picoharp 300 timer was 

stopped (the Picoharp 300 timer has a resolution of 4 pico-seconds). The laser pulse 

duration and the slit width of the spectrometer must be tuned such that no more than one 

photon is received per start-stop cycle. The fluorescence lifetime was obtained by tail 

fitting the decay curve. 

The femtosecond transient absorption (TA) spectroscopy studies were performed 

through a collaboration between RIT and University of Rochester. The initial research 

ideas originated with Chenyu Zheng, who also prepared all samples at RIT. The TA 
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experiments and data interpretation were conducted by Michael Mark at the University of 

Rochester. The results were discussed by Michael Mark and Chenyu Zheng. In order to 

assist the readers, the experimental details are introduced here with the full recognition that 

Mark performed the measurements and data collection. 

For the TA set up, A regeneratively amplified Ti:Sapphire laser was used to generate 

a laser pulse at 800 nm and at a 1 kHz repetition rate. The laser beam was converted to the 

desired pump wavelength of 640 nm by passing it through a non-collinear parametric 

amplifier (NOPA).138,139 The probe beam was created by focusing a beam of the 800 nm 

fundamental onto a sapphire crystal to generate a white light continuum from 450 nm to 

1000 nm. The transient absorption signal was collected by a grating spectrograph (Acton, 

300mm fl, 150gr/mm) before reaching a charge-coupled device (CCD) camera (Princeton 

Instruments, Pixis 100BR). The white light was filtered by using a dye solution (NIR800A, 

QCR Solutions Corp) to block the residual 800 nm photons. During the experiments, the 

samples were translated in both x and y direction on a mechanical stage to prevent photo-

 

Figure 2.2 A schematic of the time correlated single photon counting (TCSPC) system 

at Rochester Institute of Technology. The optical parametric oscillator (OPO) is used to 

provide excitation beam tuning but is omitted in this schematic.  
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bleaching. For solution measurements, the sample was injected into a 2-mm fused silica 

cuvette with an absorbance of 0.7 at the maximum. 

The transient absorption anisotropy was obtained by collecting the transient signal by 

setting the probe beam at parallel and perpendicular geometries with respect to the pump 

polarization. The transient anisotropy was calculated via 

 𝜌(𝑡) =
(∆𝐴∥ − ∆𝐴⊥)

(∆𝐴∥ + 2∆𝐴⊥)
 (2.2) 

For power dependent study, the TA spectra were collected at three powers of 20, 40 

and 80 nJ/pulse.  

  

 

Figure 2.3 A schematic of the femtosecond transient absorption spectroscopy set up at 

University of Rochester. The commercially available Ti:Sapphire Amplifier (Spectra-

Physics) was used as the laser source. The pump beam was generated by a non-collinear 

parametric amplifier (NOPA). The probe beam was generated by focusing the 

fundamental 800 nm onto a sapphire crystal to generate a white light continuum from 

450 nm to 1000 nm. The transient absorption signal was collected by a grating 

spectrograph and a CCD camera (not drawn). 
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Chapter 3. BHJ MORPHOLOGY AND MONOMER-AGGREGATE 

POPULATION CONTROL IN SQ:PCBM SOLAR CELLS 

 

 

 

 

 

In this chapter, we investigate the effect of squaraine (SQ) aggregations in SQ:PCBM 

bulk heterojunction solar cells. First, we demonstrate a mixed population of monomers and 

aggregates existing in spin-cast SQ:PCBM BHJ films, where monomers indicate 

amorphous regions and aggregates are crystalline domains in the BHJ. The population of 

monomers and aggregates can be tuned by thermal annealing the as-cast films. Our analysis 

of annealed films demonstrates a delicate trade-off between increased crystallinity and 

larger domain sizes. Crystallinity improves but often at the expense of larger crystal size, 

as supported by XRD and TEM measurements. In order to achieve high solar cell 

performance, we need to improve the film crystallinity and at the same time control the 

domain growth.  



  

59 

 

3.1 Introduction 

The significant dependence of solar cell efficiency on bulk heterojunction morphology 

is well established for polymer-fullerene solar cells.140,141 In terms of how this morphology 

impacts device efficiency, a well-mixed, small-domain-size morphology with a large 

donor-acceptor interface will lead to an efficient exciton dissociation. On the other hand, 

mixed domains may cause inefficient electron and hole charge transport, and higher 

probabilities for geminate or bimolecular recombination in the BHJ. The optimal BHJ 

morphology is anticipated as small-size domains (on the 10-20 nm length scale) of donor 

or acceptor interdigitated into each other to enable i) a large interfacial area that allows an 

efficient exciton dissociation and ii) connected pathways for each electron or hole to 

efficiently charge transport to the electrodes.142 Müller et al. described how it is necessary 

to simultaneously maximize exciton generation, exciton dissociation and charge transport. 

However they also state that optimization of the blend ratio and processing protocols to 

dial in the perfect morphology is a huge barrier to overcome.143  

For the benchmark material, P3HT, it is well documented that through annealing, the 

polymer crystallization is the driving force for micro- and nano-structure evolution in 

P3HT:PCBM blends, while PCBM crystallization is suppressed by miscibility of the 

fullerene and polymer.144 As a consequence, a desirable morphology is achieved with a co-

existence of pure P3HT crystalline phases and P3HT:PCBM mixed phases leading to an 

optimal performance. Thus, the morphological improvements can be achieved with the 

processing conditions.  

SQ molecules are known to form aggregates/crystallites in the solid state films.145 

However the morphology in SQ:PCBM BHJ solar cells is less investigated.126,129,146 It is 
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suggested that the SQ crystallites exist in the BHJ especially after thermal or solvent 

annealing, but the size of the crystallites is less clear. Many SQ molecules59,126,130,130,147,148 

synthesized for OPV application show various absorption spectra in neat films with 

multiple peaks, blue- or red-shifted from the monomer peak in solution, which are thus 

assigned to H- or J-aggregates. Nevertheless, when blended with PCBM, the absorption 

spectra are more or less the same (broader profiles with the same peak as the monomer 

absorbance in solution). 

In this chapter, we investigate the effect of squaraine (SQ) aggregations in SQ:PCBM 

bulk heterojunction solar cells. First, we measured the absorbance spectra of DHSQ(OH)2 

(2,4-bis[4-(N,N-dihexylamino)-2,6-dihydroxyphenyl]squaraine) (Figure 3.1) molecules in 

solution, neat film, and in BHJ films with varying donor acceptor blend ratios. DHSQ(OH)2 

in solution are monomers with a sharp absorbance peak at 650 nm and a high extinction 

coefficient. DHSQ(OH)2 in neat films are strongly-coupled aggregates that have broad 

absorbance profiles with two peaks at 560 nm and 660 nm. The absorption spectra of 

DHSQ(OH)2 in BHJ films are different from the above two situations, exhibiting a mixed 

population of monomer and aggregates. Second, we use a X-ray diffraction set up and a 

bright-field transmission electron microscope and to investigate the film crystallinity and 
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Figure 3.1 Chemical structure of DHSQ(OH)2. 
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phase separation in DHSQ(OH)2:PCBM BHJ during thermal annealing. We have 

demonstrated that the DHSQ(OH)2 monomers are present in amorphous regions while 

aggregates represents crystalline structures in the BHJ. Finally, organic solar cells were 

fabricated and the efficiencies were then correlated with the BHJ morphology. We have 

concluded that the optimal BHJ morphology can be obtained by first using a high fullerene 

weight ratio to suppress DHSQ(OH)2 aggregation, and then thermal annealing the blend 

film to improve the film crystallinity. The annealing temperature is critically controlled 

such that the crystallinity is improved without invoking phase separation.  

3.2 Absorbance Study of SQ Aggregation in SQ-PCBM BHJ Films 

The absorbance spectra of DHSQ(OH)2 in chloroform solution and as as-cast films are 

shown in Figure 3.2. The monomer absorbance is sharp and narrow (with a full width at 

half maximum of 0.073 eV), with a measured extinction coefficient of 1.5×105 cm-1 M-1 

at 𝜆𝑚𝑎𝑥 of 650 nm in chloroform. The neat film absorbance shows a dramatic broadening 

with two peaks at 556 nm and 656 nm. This unique broadening of absorbance has been 

observed previously.133,145,149,59 Here we assign this “double-hump” absorbance profile to 

strongly-coupled SQ aggregates. Better interpretation of the spectrum involving a deeper 

theoretical investigation can be found in Chapter 6. It should be emphasized here that both 

absorbance peaks belong to SQ aggregates and there is little monomer population in the 

neat films (annealing induces little change in the absorbance spectra). 

DHSQ(OH)2:PCBM blend films were made by spin casting chloroform solutions co-

dissolving SQs and fullerenes (the blend ratio is dictated by the relative weight percent of 

each  component). The absorbance spectra exhibit a gradual change as the fullerene loading 
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is changed as shown in Figure 3.2. First, we should note that PCBM mainly absorbs at 300 

- 500 nm and thus does not significantly overlap with the DHSQ(OH)2 spectra. When the 

weight ratio of PCBM is increased, the relative peak height at 560 nm diminishes with a 

concomitant red-shift in the low energy peak. In 93.75 wt% PCBM film, the peak at 678 

nm dominates with an absorption “shoulder” at around 630 nm (and the peak at 560 nm is 

small). In such low SQ content films, the DHSQ(OH)2 molecules can be viewed as 

“dissolved” in a PCBM solid solution. We thus assign the peak at 678 nm in 93.75 wt% 

PCBM film to the squaraine monomer. It is immediately noted that there is a ~ 30 nm red 

shift for DHSQ(OH)2 monomers in blend films as compared to the solution absorbance 

peak. This red-shifted monomeric peak is tentatively attributed to the nonresonant 

interaction (i.e. gas-to-crystal shift) between DHSQ(OH)2 molecules and the surrounding 

environments that the SQs are subjected to, i.e. PCBM vs. chloroform.150 Indeed, SQs are 

 

Figure 3.2 Normalized absorbance spectra of DHSQ(OH)2 in dilute chloroform solution 

(10-5 M) and as thin films. Left: absorbance spectra of solution and neat films 

normalized to the maximum with absorbance peaks at 650nm (solution), and556 nm 

and 656 nm (film). Right: change in absorbance spectra of DHSQ(OH)2:PCBM blend 

films as a function of PCBM weight ratio. The spectra are normalized to the lower 

energy absorbance peak. The black arrow marks the red-shift of the low energy peak as 

the PCBM loading is increased. 
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known for their strong solvatochromism effect.107,108 Other possibilities, such as the charge 

transfer complexes151 formed by DHSQ(OH)2 and PCBM, though unlikely (since no 

evidence has been found in absorption spectra for complex formation in solution), cannot 

be ruled out without further investigations.  

Another important observation is that the monomer absorbance in 93.75 wt% PCBM 

film appears broader than the solution absorbance. This broadening has been reported for 

SQs in Poly(methyl methacrylate) (PMMA) solid solutions and is attributed to smaller 

long-range intermolecular interactions (between two SQ molecules).145 Nevertheless, this 

smaller interaction is dwarfed by the short-range interactions that must contribute to the 

formation of the more typical “double-hump” spectra. For now, we will use the term 

“monomer” to indicate the SQ molecules that are weakly coupled such that the absorbance 

spectra are similar to that of the monomer in solution, and the term “aggregate” to represent 

the SQ molecules that are packed densely and orderly and have a “double-hump” 

absorbance spectra at 560 nm and 660 nm. 

Then it is easy to understand that the film absorbance peak at 660 nm is actually a 

composite peak consisted of DHSQ(OH)2 monomers (peak at 678 nm) and the low-energy 

peak of the aggregates (peak at 656 nm). It is important to recognize that the resulting peak 

shifts depend on the relative amounts of the two species present, in accordance with the 

apparent peak shift observed with the addition of two Gaussian peaks with different peak 

positions and representing states with exchanging populations. When the monomer 

population is increased (by increasing PCBM weight ratio) the absorbance peak is moving 

towards longer wavelength. 

Previously, many researchers assigned the absorbance red-shifted from the monomer 
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in solution to the formation of J-aggregates.59,126,149 This interpretation was rooted in the 

red shift relative to the monomer peak in solution. Similarly, the peak at 560 nm in neat 

and annealed blend films (blue-shifted relative to the monomer peak in solution) was 

assigned to the DHSQ(OH)2 H-aggregate. Thus, the difference in solar cell performances 

before and after thermal annealing was sometimes correlated to the changing populations 

of SQ “J-aggregates” and “H-aggregates”.149 We want to emphasize that it would be hasty 

to assign the types of aggregates solely based on spectral shift. In the DHSQ(OH)2:PCBM 

system, we identified two species, monomer and aggregate, each with a different 

absorbance spectrum.  

The conversion from monomer to aggregates can be achieved through thermal 

 

Figure 3.3 The absorbance changes in DHSQ(OH)2:PCBM blend films upon thermal 

annealing. Left: change in absorbance spectra of the 75 wt% PCBM film as a function 

of annealing temperature (films were annealed for 1 min); the spectra are normalized to 

the PCBM absorbance peak and the absorbance spectrum of the neat PCBM film is also 

shown for comparison. Right: the peak ratio between high energy absorption peak at 

560 nm, “H”, and low energy absorption peak at 660 nm, “L”, in DHSQ(OH)2:PCBM 

pristine (black square) and annealed (red circle) films. The values of both peaks are 

obtained by properly subtracting the PCBM contribution. The ratio value, “H/L”, 

represents the relative population of aggregates to monomers; i.e. when there is 100% 

aggregate, the “H/L” is expected to be 1.57, as for the neat SQ film. Smaller “H/L” 

values represent higher monomer populations present in the blend films. 
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annealing as shown in Figure 3.3. Upon annealing for one minute, the blend film with 75 

wt% PCBM shows a “recovery” of aggregate formation, indicated by the increase in 

absorption at 560 nm and a simultaneous blue-shift of the low energy features from 670 

nm (at 20 0C) to 655 nm (1 min anneal at 175 0C). In 175 0C-annealed films, the absorbance 

mimics the neat SQ film spectrum (Figure 3.2). This again strongly supports the spectral 

assignment that the features at 650nm – 700 nm result from both DHSQ(OH)2 monomer 

and aggregate contributions, and that the changes in peak position and peak ratio are caused 

by the interconversion of these two species. 

This same annealing study was conducted through a comprehensive set of different 

blend ratios. The intensity ratios of the absorbance at 560 nm (high energy, or H) and 660 

nm (low energy, or L), after subtraction of the PCBM contribution to each spectrum before 

and after annealing, are plotted against the blend ratio. For as-cast films, the “H/L” steadily 

decreases as fullerene wt% increases. After annealing at 175 0C for one minute, the “H/L” 

increases to almost the same value as for the neat SQ films, as long as the weight ratio of 

PCBM is below 80 wt%. Above this threshold, the aggregate formation upon annealing is 

retarded by the overwhelming amount of fullerenes. 

In summary, DHSQ(OH)2 neat films demonstrate the effects of fast aggregation during 

the spin casting process but, in the high presence of PCBM, transfer of an amorphous, more 

homogeneous mixture to the film dominates and aggregation is disrupted. The disruption 

of the aggregation and the relative population of monomer and aggregate correlate well 

with the percentage of the fullerene present in the films. We consider that upon spin casting 

from a low boiling point solvent (such as chloroform), the homogeneous mixture of the 

solution is partially transferred to the film such that the blends are well mixed. When 
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thermally activated, the DHSQ(OH)2 monomers start to aggregate in the solid films. A 

large interconversion between monomers and aggregates was seen in films with a range of 

40 wt% to 80 wt% PCBM. This change in DHSQ(OH)2 species population is expected to 

impact the film crystallinity and BHJ morphology. 

3.3 Impact of SQ Aggregation on BHJ Morphology 

For better connection between DHSQ(OH)2 aggregation and OPV device efficiency, 

we investigated the morphological change of the films during annealing. With a large phase 

separation, the surface area of the donor-acceptor interface shrinks and the distance 

requires for exciton diffusion to the interface increases, leading to a reduced charge 

generation. On the other hand, high crystallinity is considered to be beneficial for exciton 

diffusion rate and charge capture. When the dipole orientation factor of donor and acceptor 

is large, the Fӧrster Resonance Energy Transfer (FRET) is efficient.152 The dipole 

orientation factor is large in a highly ordered crystal material, and is small in an amorphous 

state with randomized dipole alignments.145 Hence exciton diffusion rates are enhanced in 

ordered materials. Increased charge transfer integrals between ordered molecules would 

also indicate more efficient frontier orbital overlap and improved mobility. Reduced 

bimolecular charge recombination will result leading to improved device performance.142 

The DHSQ(OH)2:PCBM BHJ morphologies at different donor acceptor weight ratio and 

upon thermal annealing as investigated by using XRD, TEM and DSC. 

3.3.1 Change of film crystallinity with SQ aggregation 

The film crystallinity was investigated by thin film XRD. The experimental set up was 
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introduced in Section 2.6. For SQ neat films in Figure 3.4a, one diffraction peak is observed 

at q = 0.37 Å-1 (or 2θ = 5.20) in good agreement with the 001 plane calculated from the 

single crystal structure of DHSQ(OH)2.
153 This diffraction peak is sharp and narrow, 

confirming that the squaraine is are highly crystalline. As the amount of PCBM is 

 

 

Figure 3.4 X-ray diffractograms recorded for DHSQ(OH)2:PCBM films (a) at different 

blend ratios in pristine films and (b) as a function of thermal annealing. The films were 

prepared by spin coating DHSQ(OH)2 or DHSQ(OH)2:PCBM blend solutions with 0 

wt% (neat SQ), 25 wt%, 50 wt% and 75 wt% PCBM onto a glass substrate. After XRD 

measurements of the pristine films, they were then subjected to thermal annealing at 

137 0C and 175 0C, respectively, for 3 min. The main diffraction peaks for various blend 

ratios are located at 2θ = 5.2, which corresponds to the (001) plane in the single crystal 

structure. The dwell time for data acquisition is 2 s for all films except the 75 wt% films, 

in which 8 s dwell time was used to resolve the peak structure. 
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increased, the intensity of the diffraction peak diminishes and broadens, suggesting a 

decrease in crystallinity in those films. For the 75 wt% PCBM film, the weak diffraction 

peak is approaching the limit of our experimental resolution. For all blend films, no 

diffraction peaks were identified for PCBM, indicating that the fullerene molecules were 

essentially amorphous in the BHJ films.154 

The crystal peak at q = 0.37 Å-1 increases in relative intensity by thermal annealing 

(Figure 3.4b). This correlates very well with the spectral change and confirms that the 

DHSQ(OH)2 aggregates are associated with crystallites. The diffraction peak intensity of 

neat DHSQ(OH)2 films is independent of the annealing temperature, indicating that the 

DHSQ(OH)2 molecules are already crystallized during spin casting. Overall, the consistent 

observation in absorbance spectra and XRD results demonstrates that the DHSQ(OH)2 

crystallization is the driving force for phase separation and aggregation 

3.3.2 SQ-PCBM phase separation upon annealing 

Beyond the increase in extent of crystallinity throughout the films, a separate issue is 

the increase in crystal domain size and the phase separation, also important for OPV 

performance.75,88,155–157 Here, we go on to consider phase separation through a differential 

scanning calorimetry (DSC) study. The samples are prepared by spin casting the solution 

(with different blend ratios) onto glass petri dishes and then scraping the solids off with a 

razor blade. The materials obtained in this way are analogous to the BHJ films in OPV 

devices. During the DSC measurements, the samples are 1) heated from 50 0C to 260 0C, 

and then 2) cooled to below 75 0C, and again 3) heated back up to 350 0C. The DSC 

thermograms recorded for each step are shown in Figure 3.5. 
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During step 1 for each blend ratio, separate exothermic and endothermic features are 

observed respectively at 155 0C-165 0C and 194 0C-208 0C. The endotherms correspond 

with the melting point of DHSQ(OH)2, consistent with the literature.158 The exothermic 

peak is associated with the SQ-fullerene phase separation because i) it is only observed in 

the blend films, and increases in intensity with PCBM content; ii) it is not observed in step 

3 as the phase separation is assumed to be complete at the end of step 1. It should be noted 

that the highest temperature for step 1 is delicately set below the melting point of PCBM 

(at 290 0C, identified by the small endothermic peak in 100 wt% PCBM film in Figure 3.5, 

step 3) to eliminate the possibility of DHSQ(OH)2 and PCBM remixing in their liquid-

liquid phase.  

In the cooling step (step 2), the peaks at 135 0C-150 0C are assigned to the DHSQ(OH)2 

crystallization exotherms from the melt. In step 3, the endotherms at 190-200 0C belong to 

 

Figure 3.5 The DSC heating and cooling thermograms of DHSQ(OH)2: PCBM bulk 

heterojunction blends of different compositions. The samples were heated from room 

temperature to 260 0C (a, step 1), then cooled to below 75 0C (b, step 2), and finally 

heated back to 350 0C (c, step 3). The exothermic and endothermic peaks are normalized 

to the mass of the solids. 
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the re-melting of DHSQ(OH)2. We note that the endotherms in this step are decreased (< 

12 0C) compared to the melting point in the step 1. The shift itself is not fully anticipated 

but is consistent with a gradual decomposition of the SQ during the process. This 

observation is also consistent with the thermal decomposition temperature measured by 

Tian et al.158 Substantial degradation of DHSQ(OH)2 was found at 280 0C in step 3, where 

the large exothermic peak was found. The PCBM does not show any decomposition below 

400ºC based on an evaluation of the material mass through DTA/TGA. 

In summary, DSC results help us to identify the DHSQ(OH)2 crystallization 

endotherm at 135 0C-150 0C and the SQ fullerene phase separation exotherm at 155 0C-

165 0C. We subsequently investigate the phase separation and BHJ morphology through 

TEM at two key temperatures: 137 0C, a point just upon the recrystallization endotherm 

but below the phase separation exotherm, and 175 0C a point well above the phase transition 

exotherm but below the melting point of DHSQ(OH)2. 

3.3.3 Change of phase separation with SQ aggregation 

Wei et al. have measured the exciton diffusion length of a SQ molecule sample to be 

1-5 nm.121 Thus, an optimal domain size of SQ donors is estimated to have a diameter of 

~10 nm. Here, we use TEM to investigate the domain size and compare it to the SQ exciton 

diffusion length. 

In TEM micrographs (Figure 3.6), the dark areas are assigned to the PCBM-rich 

domains and the light areas are assigned to the SQ-rich domains.  The origin of the contrast 

in the TEM images is ascribed to the density difference between SQ (𝜌 = 1.22 g cm-3 as 

measured for SQ single crystals and considered the upper limit for the density of SQ 

films153) and PCBM (𝜌 = 1.5-1.6 g cm-3)55,159,160 and 𝜌 = 1.22 g cm-3. Thus, the bright 
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phases are assigned to the SQ-rich domains and the dark phases are PCBM-rich domains, 

due to the relatively higher electron scattering density of PCBM as compared to SQs.  

In the TEM image of unannealed films (Figure 3.6, top panel), the composites appear 

to be well mixed. For 25 wt% PCBM, the fullerene phase cannot be distinguished from the 

SQ aggregate phase (the black dots are assumed to be defects in the films). In 50 wt% 

PCBM films, SQ and fullerene phases can be seen with an estimated size of 100-200 nm 

in diameter. Such domains, if chemically pure, are considered too large as compared to the 

exciton diffusion length of SQs. In 75 wt% PCBM films, small and fine phases are formed. 

We infer from the 50 wt% sample that these two compounds are chemically incompatible 

 

Figure 3.6 TEM micrographs of spin-cast DHSQ(OH)2:PCBM films without treatment 

(top) and annealed at 137 0C (middle) and 175 0C (bottom) for 3 min. The blend ratios 

under study are from left to right: 25 wt%, 50 wt% and 75 wt% of PCBM. The scale bar 

at the bottom of each image is 200 nm. The crack lines in some images are only for 

focusing the objective lenses of the TEM. 
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and phase separate when mixed evenly. This is consistent with thermodynamically driven 

phase separation observed in DSC. UV-Vis absorption showed that even in 75 wt% PCBM 

films, the squaraine aggregates still exist in a high population but, given these TEM images 

and our XRD data, the crystalline domains formed in such films are small in size (< 50 nm 

in diameter), assuring a high donor acceptor interfacial area. 

Annealing at 175 0C induces a dramatic phase separation for all films independent 

of the blend ratio. At a slightly lower annealing temperature, 137 0C, the phase separation 

was not as profound as for the 175 0C annealed films, as hypothesized. This is because the 

annealing temperature is below the critical phase separation temperature characterized by 

DSC. Given the increase in aggregate absorption in UV-Vis spectra (Figure 3.3) and the 

increase in X-ray diffraction peak (Figure 3.4) after annealing at 137 0C, the extent of 

crystallinity is increased while further phase separation is minimized leading towards an 

optimized morphology for OPV device operation. 

3.4 Organic Solar Cells Based on DHSQ(OH)2:PCBM BHJ 

The OPV cells have been fabricated using SQ and PCBM in a device structure of 

ITO/PEDOT:PSS/SQ:PCBM BHJ/Al.  The BHJ active layer was deposited by spin casting 

chloroform solution with varying SQ to PCBM ratios with a fixed squaraine concentration 

of 4 mg mL-1. The active layers were annealed at 137 0C or 175 0C for 30 seconds, and the 

device results are compared to unannealed devices. The device parameters are listed in 

Table 3.1. 

Upon increasing the PCBM ratio from 25 wt% to 75 wt%, the power conversion 

efficiency increased from 0.15% to 0.98%, corresponding to a 6-fold improvement. This is 
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attributed to the large heterojunction interface provided by the finely mixed donor and 

acceptor phase at high fullerene content and the associated higher electron mobility for 

high volume-percentage PCBM.143 Upon 175 0C annealing, the well mixed phases separate 

into large chemically pure domains, as shown in the TEM images (Figure 3.6), which leads 

to the diode like behavior and a tremendous deterioration of device efficiency. 

When annealed at 137 0C, the low temperature onset of the crystallization exotherm 

of DHSQ(OH)2 obtained from DSC thermograms, the device performance improves from 

0.86% to 0.92% for the 1:1 blend and from 0.98% to 1.24% for the 1:3 blend. The increased 

device efficiency mainly stems from the improved open circuit voltage and fill factor. The 

short circuit current, however, stays the same or even slightly decreases after annealing. 

This is counterintuitive given that film crystallinity increases without any detrimental phase 

Table 3.1 The device performances of DHSQ(OH)2: PCBM at different blend ratios 

with and without thermal treatments. 

Blend 

ratio 

Thermal 

treatment 

Device parameters 

JSC (mA/cm-2) VOC (V) FF PCE (%) 

3:1 
None 1.95 ± 0.32 0.29 ± 0.06 0.27 ± 0.07 0.15 ± 0.05 

175 0C 0.2 0.02 0.07 0.00 (diode)a 

1:1 

None 4.15 ± 0.15 0.53 ± 0.05 0.39 ± 0.03 0.86 ± 0.12 

137 0C 3.84 ± 0.22 0.55 ± 0.04 0.43 ± 0.05 0.92 ± 0.19 

175 0C 0.54 0.15 0.26 0.02 (diode)a 

1:3 

None 4.69 ± 0.30 0.52 ± 0.06 0.40 ± 0.06 0.98 ± 0.19 

137 0C 4.64 ± 0.21 0.59 ± 0.07 0.45 ± 0.06 1.24 ± 0.26 

175 0C 1.08 0.18 0.26 0.06 (diode)a 

a the devices showed diode behavior and the parameters can hardly be obtained and thus are 

considered imprecise (with no standard deviation provided). 
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separation, as demonstrated by XRD and TEM. The reason for unimproved JSC is 

considered to be related to the LUMO energy level shift upon aggregation. The J-V 

characteristics of the champion as-cast and annealed solar cells are shown in Figure 3.7, 

with the solar cell parameters listed in the figure caption. It is immediately seen that the 

annealed device yielded a better Voc compared to the as-cast solar cells. This improvement 

in Voc is not well understood. 

In previous studies of squaraine materials in OPV devices, the same strategies 

employed to optimize solar cells, such as thermal annealing, do not always lead to the same 

resulting device efficiency. It has been reported that improving crystallinity of the SQ films 

by thermal annealing121,126 and solvent annealing41 results in an optimized solar cell  

performance. Our group has found a decrease in the device efficiency after thermal 

annealing69 and, in this case, we assign this to the significant DHSQ(OH)2:PCBM phase 

separation at high annealing temperatures. The domain size after phase separation is 

estimated to be 50-200 nm in diameter, comparable to the expected thickness of the films. 

 

Figure 3.7 Current-Voltage characteristics of DHSQ(OH)2:PCBM BHJ devices before 

and after thermal treatment. The solar cell parameters for best unannealed devices: Jsc 

= 4.84 mA cm-2, Voc = 0.54 V, FF = 46.6%, PCE = 1.22%; the solar cell parameters for 

best annealed devices: Jsc = 4.61 mA cm-2, Voc = 0.72 V, FF = 49.9%, PCE = 1.66%. 
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Extensive phase separation will lead to loss of PCE but mixing can be controlled through 

rapid evaporation of spin-casting solvent and dilution by PCBM. The increase in efficiency 

resulting from higher PCBM blend ratios therefore has a different origin to the increase in 

efficiency described elsewhere,40,41,126 associated with conducting PCBM networks. 

The phase separation of small squaraine molecules when mixed with fullerenes is 

unique when compared to polymers. It has been reported that the P3HT and PCBM are 

essentially miscible in the films143,144. In our study, we found that the phase separation 

happened with no limitation. This suggests that the optimization strategy of squaraine 

based OPV devices should be different from that of polymer based devices. In particular, 

based on our work, we suggest that more attention should be paid to the phase separation 

during fabrication. Thermal annealing, solvent annealing and use of solvent additives 

remain important since these processing parameters allow some control over intrinsic 

factors like crystallinity and chemical incompatibility.144 

3.5 Discussion 

In this chapter we demonstrated the successful application of a squaraine molecules, 

DHSQ(OH)2, in OPV devices. The power conversion efficiency obtained from optimizing 

BHJ morphology is 1.24 ± 0.26 %, with a champion efficiency of 1.66 % (Jsc = 4.61 

mA/cm2, Voc = 0.72 V, FF = 50%). The device efficiency is improved by over 25 % 

regarding to the unoptimized devices. 

Specifically, in DHSQ(OH)2:PCBM BHJ solar cells, we recognized a mixed 

population of squaraine monomer and aggregate. The relative population can be tuned by 

changing the SQ:PCBM blend ratio and thermally annealing the films. We demonstrated 
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that the SQ aggregate is associated with crystalline structure and infer a subsequent benefit 

for charge transport in the BHJ. On the other hand, thermal annealing can induce extensive 

phase separation, leading to domain sizes much larger than the exciton diffusion length. 

The optimal device performance can be achieved the mid-way between mixing and phase 

separation, where the crystallinity of the film is improved without initiating the formation 

of large and pure domains. This can be done by first blending SQ with a high content of 

PCBM to form a mixing morphology, and then by annealing such films at a carefully 

chosen temperature and annealing time to allow SQ to aggregate/crystallize into small and 

interconnected domains. We then demonstrate a correlation between BHJ morphology and 

device efficiency, which can serve as a guideline for characterizing new SQ materials and 

optimizing their photovoltaic performance. 

We found that the DHSQ(OH)2 and PCBM completely phase separate under slow 

evaporation of chloroform, leaving fiber-like snowflake-shaped SQ crystals with PCBM 

domains filling the rest of the space (Figure 3.8). During this slow evaporation process 

over a month, the system moves towards a well-established, thermally equilibrated and 

large-scale phase separation. 

 

Figure 3.8 A photograph of DHSQ(OH)2:PCBM film formed in the bottom of a 

scintillation vial by slow evaporation of chloroform solvent. The green snowflake-like 

fibers are SQ crystals and the black amorphous material in between the SQ crystals is 

the pure PCBM clusters. 
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We note that the power conversion efficiency of our devices is low. The OPV device 

performance can be optimized by inserting an electron transporting or exciton blocking 

layer, such as bathocuproine (BCP) 59,123, by replacing the PEDOT:PSS layer with 

materials with better energy matching, such as MoO3 
121,126 and by replacing PCBM with 

PC71BM, which absorbs more efficiently in the visible spectrum 153. We will address this 

issue in the next chapter.  
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Chapter 4. IMPACT OF ALKYL CHAIN LENGTH ON BHJ 

MORPHOLOGY AND SOLAR CELL PERFORMANCE 

 

 

 

 

 

In this chapter, we have investigated a series of aniline based squaraines (SQs), with 

varying solubilizing alkyl chains, as donor materials in bulk heterojunction (BHJ) solar 

cells. Although these squaraine molecules exhibit similar absorbance spectra and crystal 

structure, the difference in properties that drive the OPV performance becomes apparent 

when blending each squaraine with PCBM. Disruption of SQ aggregation is observed with 

the presence of PCBM, more so for the shorter side chain SQ. As a result, the shorter side 

chain SQs exhibit a large drop in hole-mobilities of the BHJ films as compared to their neat 

films, whereas the mobility decreases for the longer side chain counterparts are small. 

However, morphological studies have shown that the phase separation rapidly happens 

during the spin casting process for the longer side chain SQs. Ultimately it is the extent of 

phase separation that dominates the final device efficiency. After device optimization, our 

best performing SQ yields a champion cell efficiency of 5.6%.  
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4.1 Introduction 

The alkyl groups attached to the rigid conjugated units in small molecule or polymeric 

materials are mainly for promoting their solubility in common organic solvents. Recently, 

modification of alkyl side groups has been shown to be an effective way to control the 

crystallization of the polymers and small moelcules.81–83,161 In a previous work by Nguyen 

et al., a further increase in alkyl side groups in polymers, for example to octyl (i.e. P3OT) 

and decyl (i.e. P3DT), was found to significantly aggravate the phase separation and led to 

unsatisfactory morphology and device efficiency.81 Gadisa et al. studied the effect of alkyl 

side chain length of poly(3-alkyl thiophene) (P3AT), specifically with butyl (i.e. P3BT), 

pentyl (i.e. P3PT) and hexyl (i.e. P3HT) side chains, on morphology and charge transport 

in P3AT:PCBM BHJ.82 The results showed that the P3HT:PCBM BHJ, with a higher 

degree of phase separation, has a more balanced bipolar charge transport in BHJ and thus 

a better device performance.  

Successful OPV application of SQ molecules is at least partially related to their ability 

to aggregate or crystallize in thin films either upon spin casting or after subsequent 

annealing treatment. Highly crystalline SQ films lead to a significant increase in exciton 

diffusion length and charge mobility, and thus improved power conversion efficiency 

(PCE). For example, Wei at el. has reported an increase in exciton diffusion length of SQ 

by a factor of 3 after thermally annealing the DiBSQ(OH)2 thin films before C60 and 

aluminum cathode deposition.121 For solution processed bulk heterojunction (BHJ) cells 

using DiBSQ(OH)2, the cell PCE was significantly increased by over 100% after solvent 

vapor annealing (SVA) in dichloromethane (DCM) vapor.41 In some previous studies, 

however, a decrease in device PCE was found after thermal annealing for some other 
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SQ:PCBM systems, in which the only molecular structure difference of our SQs as 

compared to DiBSQ(OH)2 is the choice of side chains.69,145 In Chapter 3, we pointed out 

that the efficiency roll-off of our SQ:PCBM BHJ solar cells is due to over-developed phase 

separation. Therefore, controlling donor acceptor phase separation is critical for highly 

efficient SQ:PCBM based solar cells. 

In the present chapter, we study the influence of solubilizing alkyl side groups on hole 

mobility, film crystallinity, phase separation and, subsequently, solar cell performance of 

SQ:PCBM BHJ. A series of aniline based SQ molecules with n-propyl (i.e. DPrSQ(OH)2), 

n-butyl (i.e. DBSQ(OH)2), n-pentyl (i.e. DPSQ(OH)2) and n-hexyl (i.e. DHSQ(OH)2) 

carbon chains (Figure 4.1) were synthesized according to the procedure described 

previously.136 The first three SQs are needle-like shiny crystals, while DHSQ(OH)2 is a 

fiber-like dull solid. 

These SQ molecules show very similar properties in solution and as neat films, as they 

share the same conjugated backbones and the same crystal packing motif. However, we 

observe different degrees of aggregate disruption in as-cast SQ:PCBM blend films; for SQs 

with longer alkyl groups, the aggregation is less disrupted in the presence of fullerenes, 
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R = n-propyl, n-butyl, n-pentyl, or n-hexyl

 

Figure 4.1 Molecular structure of a series of aniline based SQ molecules. R = n-propyl, 

n-butyl, n-pentyl and n-hexyl for DPrSQ(OH)2, DBSQ(OH)2, DPSQ(OH)2 and 

DHSQ(OH)2 respectively. 
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leading to a higher degree of film crystallinity. Subsequently, the phase separation is more 

profound for SQs with longer alkyl chains. As a result, OPV performance is in the order of 

DBSQ(OH)2 > DPSQ(OH)2 > DHSQ(OH)2. The low efficiency of devices employing 

DHSQ(OH)2 is related to its non-optimal BHJ nanomorphology with extensive phase 

separation, while the best performing BHJ of DBSQ(OH)2:PCBM is essentially a uniform 

mixing of two components. 

Although hierarchical phase separation and polymer crystallization has often been 

considered as critical to achieve high efficiency in polymer/fullerene solar cells,75,155 our 

observations suggest a different case for SQ based OPV. Thin film X-ray diffraction studies 

have demonstrated that the best performing DBSQ(OH)2:PCBM BHJ films are essentially 

amorphous. This is likely due to the smaller (when compared to polymers) exciton 

diffusion length, Ld = 1~5 nm,121,124 measured in typical SQ films; efficient exciton 

dissociation cannot be achieved once the domain size is above this value. Our work has 

shown that longer side chain length (from butyl to hexyl) will exacerbate the phase 

separation between squaraine donors and fullerene acceptors in spin-cast BHJ films, 

leading to a large decrease in solar cell performance. Although the trend is readily seen that 

the shorter side groups would be beneficial to achieve optimal BHJ morphology when 

blended with fullerenes, we want to emphasize that the alkyl side groups must be 

sufficiently long to enable a good solubility of squaraine in conventional organic solvents. 

DPrSQ(OH)2, for example, has limited solubility of 3 mg/mL in chloroform, which renders 

a low film quality through solution casting processes. 
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4.2 Single Crystal Structures 

The single crystal structures of this series of aniline based SQ molecules feature a 

common “slip stack” packing motif. The crystal structure of a representative SQ, 

DBSQ(OH)2, is shown in Figure 4.2. The crystal system is triclinic with the P-1 space 

group. The molecular backbone (i.e., phenyl-squarylium-phenyl) is planarized by 

intramolecular hydrogen bonds between the phenyl ring hydroxyl groups and the squaric 

core oxygens. The slip stack structure comfortably fits the long N-alkyl molecular arms 

and, at the same time, enables short interplanar spacing. 

The cartoon in Figure 4.2b illustrates one way to quantify this slip stack structure using 

artificial Cartesian coordinates. The 𝑦-axis is defined by the molecular long axis on which 

are located the two nitrogen atoms (blue dots), the 𝑥-axis is defined by the short axis on 

which are located the two squaric oxygen atoms (red dots). The 𝑧-axis is perpendicular to 

   

Figure 4.2 Single crystal structures of aniline SQs with linear alkyl side groups. a): 

Molecular packing of DBSQ(OH)2
 single crystal, featuring a π-π stacking with slippages 

in both long and short molecular axes; other SQs adopt a similar slip stacking motif in 

the single crystal. b): a simple cartoon illustrates the slip stack of the SQ molecules with 

an artificial Cartesian coordinate; 𝑥 and 𝑦 axes are along the short and long molecular 

backbones respectively, so the 𝑧  axis is perpendicular to the parallell π-stacked 

molecular planes. Red dots represent oxygen atoms on the squaric acid moiety and blue 

dots are nitrogen atoms to which the alkyl groups attached (omitted). 
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the 𝑥𝑦 plane. In this way, the small differences in crystal structure of three SQs can be 

quantified and the results are summarized in Table 4.1, along with the unit cell dimensions. 

Overall, the difference in π-π stacking distance, ∆𝑧, is less than 0.1 Å and the differences 

in slips in 𝑥 and 𝑦 axes, ∆𝑥 and ∆𝑦, are less than 0.2 Å. 

4.3 Impact of Alkyl Chain on SQ Aggregation 

All three SQs share typical absorbance spectra in solution and films, as shown in 

Figure 4.3. The absorption spectra of these squaraine monomers in solution overlap with 

each other, sharing a stronger 0-0 transition at 650 nm (ε = 3 ~ 4 × 105 M-1 cm-1) and a 

weak 0-1 transition at 600 nm. The similar absorption profile in chloroform solutions is 

due to the shared molecular conjugated backbone unit. The alkyl side groups do not perturb 

the electronic structures of the individual molecule. The absorption spectra of squaraine 

Table 4.1 Single crystal structure data for aniline based SQ molecules with linear alkyl 

chains. The unit cell dimensions for DPrSQ(OH)2, DBSQ(OH)2, DPSQ(OH)2 and 

DHSQ(OH)2 single crystals are listed, along with the calculated slippages in the short 

and long molecular axes (i.e. ∆𝑥  and ∆𝑦 respectively) and π-π interplanar distances 

(∆𝑧). 

Compound a / Å b / Å c / Å ∆𝑥 / Å ∆𝑦 / Å ∆𝑧 / Å 

DPrSQ(OH)2
[42] 5.215(2) 10.894(4) 11.156(5) 1.848 3.579 3.318 

DBSQ(OH)2
[42] 5.169(4) 10.846(9) 13.538(11) 1.879 3.470 3.353 

DPSQ(OH)2 5.227(2) 10.694(4) 15.412(5) 1.688 3.621 3.371 

DHSQ(OH)2
[50] 5.097 10.746 16.604 1.734 3.498 3.276 
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films are also similar to each other with a “double-hump” shape and the two peaks are at 

550 nm and ~ 660 nm. Noticeably, DPrSQ(OH)2 has a larger low-energy band which red-

shifted to ~730 nm. This is due to the strong coupling to intermolecular charge transfer 

state (will be discussed in Chapter 6). The red-shifted peak and broader absorption profile 

might benefit the light harvesting properties. However, the low solubility of this squaraine 

limit its practical application in solution-processed solar cell devices.  

After annealing the neat films at 90 0C, the absorbance spectra do not change for 

DPSQ(OH)2 and DHSQ(OH)2; but for DPrSQ(OH)2 and DBSQ(OH)2, the absorption 

changes a little with further splitting between the peaks (Figure A1). This change in 

absorbance indicates that DBSQ(OH)2 may have re-arranged itself in a tighter crystal 

packing structure under annealing. The lack of significant spectral change upon annealing 

for DPSQ(OH)2 and DHSQ(OH)2 indicates that the crystallization may be immediately 

  

Figure 4.3 Normalized absorbance spectra of three SQs in chloroform solution (dashed 

line) and as neat films (solid line). The absorbance spectra for all three solutions overlap 

each other with the same peak position. The SQ neat films are annealed at 90 0C for 5 

min to ensure a complete aggregation of SQ molecules. 
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complete after spin casting. Overall, the neat film absorbance spectra of all three SQs are 

very similar, which undoubtedly results from the shared molecular backbone, as well as 

the similar crystal packing motif.  

Except for DPrSQ(OH)2, the solubilities of all SQs studied here, in chloroform, are > 

24 mg/mL. The low solubility (3 mg mL-1) of DPrSQ(OH)2 significantly limits its practical 

application in solution processes. Thus, the later discussion will be mainly focused on the 

other three DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2. 

In contrast to the similar absorbance spectra of solution and neat films in Figure 4.3, 

the absorbance spectra of as-cast SQ:PCBM blend films are distinct from each other. The 

absorbance spectra of SQ:PCBM blend films with the weight ratio of 1:1 is shown in Figure 

4.4a. Here PCBM is used instead of PC71BM to open the optical window (500-750 nm) 

through which the absorbance of SQ aggregates can be clearly seen. DBSQ(OH)2 shows a 

   

Figure 4.4 Normalized absorbance spectra of three SQs in SQ:PCBM (1:1 w/w) blend 

films. a): as-cast films show different absorption spectra with SQs of different side chain 

lengths.b): absorbance spectra of the blend films after annealing at 90 0C for 5 min. b) 

inset: SQ monomer absorbance peak in 98 wt% PCBM, with dashed lines representing 

the absorption spectra of SQ monomer in solution for comparison. 
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disruption of aggregation in the presence of 50 wt% PCBM, as evidenced by a loss of the 

double hump and a peak emerging at 677 nm, similar to the peak at 678 nm of the 

(monomer) blend films with 2 wt% of SQ (Figure 4.4b inset). But if one compares these 

two spectra, the SQ absorbance peak in the 50 wt% PCBM films is broader than that in 98 

wt% PCBM films, with a distinguishable “shoulder” at 600 nm. This shoulder decreases 

as the PCBM weight ratio is increased and, therefore, it is ascribed to the weak interaction 

between SQ molecules in the SQ:PCBM blend films. On the other hand, the 

DHSQ(OH)2:PCBM blend film exhibits an absorbance spectrum similar to that of the neat 

film, indicating the aggregates are formed completely. Interestingly, for the 

DPSQ(OH)2:PCBM blend film, an intermediate spectrum is exhibited, with a 

distinguishable aggregate double hump as well as a monomer absorption feature. 

Similar absorbance spectra were observed for other blend ratios, from 5:5 to 2:8. 

Specifically, DBSQ(OH)2 aggregates are completely disrupted throughout different blend 

ratios (with the absorbance “shoulder” decreasing as the PCBM ratio increases), 

DPSQ(OH)2 shows absorbance spectra indicating mixtures of aggregate and monomer and 

the aggregates of DHSQ(OH)2 are gradually disrupted by increasing the weight ratio of 

PCBM, but a significant amount of aggregates are still formed in a 2:8 SQ:PCBM blend 

ratio. Even in 2:98 blend ratios, a small DHSQ(OH)2 aggregate absorbance peak at 550 

nm can clearly be observed in the spectrum (Figure 4.4b inset). Thus, SQ aggregate 

formation, when blended with PCBM, is favored by longer alkyl side groups. 

Upon annealing the SQ:PCBM films at 90 0C for 5 min, the absorbance spectra of all 

three blend films start to resemble those of the neat films, as seen in Figure 4.4b, with the 

biggest spectral change being observed for the DBSQ(OH)2:PCBM blend. This spectral 
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change suggests i) there is a significant amount of initial disorder of DBSQ(OH)2 and 

DPSQ(OH)2 molecules in the as-cast blend films and ii) these SQ molecules can easily 

self-assemble or aggregate in films upon thermal annealing.  

Figure 4.4a and b are explained as follows. The disruption of aggregation in as-cast 

DBSQ(OH)2:PCBM blends is due to the rapid loss of the solvent environment during spin 

casting with the materials being frozen into a kinetically stable mixed state, not too 

dissimilar to the homogeneous solution phase. DPSQ(OH)2 and DHSQ(OH)2, however, 

manage to form ordered structures (i.e. aggregates) in the blend films even during spin 

casting.  

4.4 Impact of Alkyl Chain on BHJ Morphology 

Due to such differences in aggregation for these three SQ molecules when blended 

with PCBM, the heterojunction blends are expected to have varying film crystallinity, hole 

mobility properties, film morphologies and subsequently different organic photovoltaic 

performances. In morphology characterizations, the SQ:PCBM blend ratio is fixed at 5:5 

w/w. This is to maximize the contrast between these different materials, although higher 

PCBM weight ratio would decrease the phase separation and film crystallinity, resulting in 

higher device performances, especially for DHSQ(OH)2 (as demonstrated in Chapter 3). 

4.4.1 Crystallinity of neat and BHJ films 

   In the XRD study, the films were prepared by spin casting neat SQ solutions or 

SQ:PCBM solutions onto MoO3 treated ITO substrates, resembling the condition of the 

films prepared for hole-only and solar cell devices. The XRD patterns of ITO/MoO3 
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substrates were recorded and weak diffraction peaks of the ITO layer were identified at 2θ 

= 21.50 (corresponding to the (2 1 1) plane), 2θ = 30.60 (corresponding to the (2 2 2) plane) 

and 2θ = 35.50 (corresponding to the (4 0 0) plane)162; no diffraction peaks were identified 

for the thin MoO3 layer (thickness = 8 nm). Besides these peaks, the crystalline SQ 

diffraction peaks of neat and blend films are found at 2θ = 50 ~ 60 for all three SQs. This is 

expected since all SQs share the same crystal packing motif (Figure 4.2). 

In thin film XRD patterns of neat SQ films (Figure 4.5), the SQ crystalline structures 

can be identified with a sharp peak at 2θ = 6.010, 5.680 and 5.010 for thermally annealed 

DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2 neat films, respectively. The DHSQ(OH)2 

neat film pattern also features a small peak at 2θ = 9.910, suggesting a higher degree of 

crystallinity of this SQ in spin-cast films. It should be mentioned that for DBSQ(OH)2 and 

DPSQ(OH)2, similar diffraction peaks of 2θ ≈ 9-100 are also observed but with a much 

lower intensity. The diffraction peaks at 2θ = 50 ~ 60 are close in position with the (0 0 1) 

plane powder diffraction peak, calculated based on SQ single crystal structures. The rest 

of the diffraction peaks are lost in the background due to the thin nature of the films.  

Given that for DHSQ(OH)2, the peak intensity is greatest and full width at half 

maximum (FWHM) is the narrowest, we conclude that DHSQ(OH)2 neat films exhibit the 

highest level of crystallinity. The as-cast DPSQ(OH)2 neat films are also highly crystalline. 

The thermal annealing does not significantly change the intensity and shape of the  

diffraction peaks of these two SQ neat films, consistent with the observation in absorbance 

spectra after annealing. The XRD patterns of as-cast DBSQ(OH)2 neat films only show a 

very weak XRD peak at 2θ = 6.010 and multiple shoulders at 2θ = 70 ~ 80, consistent with 

the as-cast DBSQ(OH)2 neat films being more amorphous. A more crystalline film is 
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obtained after annealing, indicated by a significant increase in the diffraction peak at 2θ = 

6.010 and disappearance of the shoulder peaks. In general, SQs with longer side chains, i.e. 

DHSQ(OH)2 and DPSQ(OH)2, have a higher degree of crystallinity in the as-cast films. It  

is, interestingly, the opposite trend to that from the reported polymer side chain studies, 

which suggests that side chains could induce disorder and defects in the crystal structure.163 

For XRD patterns of blend films (with SQ:PCBM 5:5 w/w) shown in Figure 4.5, the 

results correspond very well with the absorbance spectral data in Figure 4.4. First, for 

DBSQ(OH)2:PCBM blends, the absorbance spectra indicate a complete disruption of SQ 

  

Figure 4.5 X-ray diffraction (XRD) patterns of SQ neat films before (black) and after 

(red) thermal annealing. The ITO substrate diffraction pattern is also provided in green. 

Thermal annealing was done in-situ with temperature ramped up every 30 0C from 30 
0C to 150 0C, then cooled down to 30 0C. The results for annealed films refer to the films 

after they have been cooled back down to 30 0C. In order to clearly resolve all the 

diffraction peaks, the peak intensities were plotted logarithmically and the 

diffractograms of annealed films are shifted upwards. 
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aggregation. Correspondingly, there are no observable diffraction peaks in the XRD 

patterns of the DBSQ(OH)2:PCBM films. Second, DHSQ(OH)2 is fully aggregated in 

blend films as indicated by absorbance. Consistently, a sharp peak at 2θ = 5.140 is observed 

in the XRD patterns together with a weak peak at 2θ = 9.990. These two peaks for the 

blended films are consistent with the diffraction patterns of neat DHSQ(OH)2 films (2θ = 

5.010 and 9.910), indicating that this SQ can retain highly crystalline structure in the films 

even in the presence of PCBM. Third, DPSQ(OH)2:PCBM blend films act in an 

intermediate way, having a certain degree of crystallinity as predicted by absorbance 

spectra. Fourth, after thermal annealing, XRD patterns of all three SQ:PCBM blend films 

exhibit a high film crystallinity with their peaks resembling those of the annealed neat SQ 

   

Figure 4.6 X-ray diffraction (XRD) patterns of SQ:PCBM blend films (5:5 w/w) before 

(black) and after (red) thermal annealing. The experimental condition was kept the same 

as Figure 4.5, the peak intensities were plotted logarithmically and the diffractograms 

of annealed films are shifted upwards. 
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films. These trends are wholly consistent with our observations in absorbance spectra. 

Thus, we conclude that the film crystallinity of SQ:PCBM BHJ is completely driven by 

squaraine aggregation. 

4.4.2 Phase separation in BHJ films 

Besides the crystallinity, we have also characterized the phase separation in BHJ films 

using AFM and TEM. Samples for TEM measurements were prepared as described 

previously in Section 3.3.3. The samples prepared for AFM images were analogous to OPV 

devices. 

For the surface morphology of SQ:PCBM blend films analyzed by tapping mode 

AFM, we obtained a root mean square (rms) of surface roughness to be 1.21 nm, 1.90 nm 

and 3.31 nm for DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2 blend films respectively. 

Amorphous films are expected to have finer granularity and to be smoother, whereas 

crystalline films are expected to show a courser topography associated with the larger 

domains. Thus, we expect DHSQ(OH)2 BHJ films to have a larger domain size due to 

phase separation. Indeed, we see that, in TEM images, a very clear phase separation 

between DHSQ(OH)2 and PCBM. The diameters of the dark phases are estimated to be 60-

80 nm. DPSQ(OH)2:PCBM blends show a finely mixed morphology with weak bright/dark 

contrast and DBSQ(OH)2:PCBM blends show a completely mixed and contrast-less image, 

which is consistent with its amorphous film morphology proven by the XRD results.  

Therefore, we conclude that SQs with longer side groups have a higher degree of 

crystallinity and subsequently more extensive phase separation in the as-cast films. Similar 

observations have been reported by Nguyen et al81 and Gadisa et al82 for polymer-fullerene 

systems and by Min et al83 for oligomer-fullerene systems. One explanation is that the 
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longer side groups create more space between the rigid conjugated backbones, thus 

allowing improved diffusion of fullerenes towards increasing phase purity. Overall, we 

interpret our data in a similar way. The XRD results in Figure 4.6 show that peak position, 

2θ, decreases (or d-spacing increases) as the side chain length is increased for SQ materials. 

If we assign the sharp XRD peak at 2θ ≈ 9-100 to the (0 0 1) plane of SQ crystallites, then 

 
 

 
 

 

Figure 4.7 Atomic force microscope (AFM) height images (left panel) and Transmission 

electron microscope (TEM) images (right panel) for a) DBSQ(OH)2:PCBM, b) 

DPSQ(OH)2:PCBM and c) DHSQ(OH)2:PCBM blend films. The SQ:PCBM weight 

ratio is 5:5. AFM image size: 5 × 5 μm. Scale bars in TEM:  100 nm. 
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the c-axis configuration of the crystals formed in BHJ films is calculated to be 13.52 Å, 

14.31 Å and 16.22 Å for DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2, respectively. 

We also consider that as the side chains increase in size, the overall rigidity of the 

molecule is reduced, with a lower relative contribution of the intramolecular hydrogen 

bonding. The flexibility towards diffusion of molecules (in particular, the fullerenes) is 

increased. In other words, the materials will be more “liquid-like” as the side chains 

increase, especially at the early stage of the solution drying process during spin casting. As 

fullerene self-assembly takes place, this leads to the enrichment of the pure phases and 

therefore the phase separation is accelerated.79 After the fullerene diffuses out from the 

SQ:PCBM mixed phase, the remaining SQ molecules can aggregate or crystalize into pure 

phases with crystallite dimensions similar to those of the neat SQ films. 

4.5 Impact of Alkyl Chain on Solar Cell Performance 

4.5.1 Hole carrier mobilities in neat and blend films 

Due to such differences in aggregation, crystallization and phase separation for these 

three SQ molecules in blended films, the heterojunction blends are expected to have 

varying hole mobility properties and subsequently different organic photovoltaic 

performances. 

Charge mobility is a critical factor that influences the free charge extraction (versus 

recombination) in the bulk heterojunction layer, and thus can significantly affect the solar 

cell short-circuit current and fill factor.37,164 Previous work by Proctor et al70 has shown 

that in solution processed small molecule (SM) solar cells with fill factor > 0.65, the hole 

mobilities of the donor acceptor blends are almost exclusively on the order of 10-4 cm2/V·s. 
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Indeed, the hole mobility is often measured to be the lower limit of the bipolar charge 

transport in SM:PCBM bulk heterojunctions.36,70,97,165 Therefore, it is considered a critical 

threshold property to evaluate small donor molecules for OPV application. Here, the hole 

mobilities of the pristine squaraine films as well as of the SQ:PCBM blend films are 

extracted by fitting the current-voltage curves of single carrier devices to the Mott-Gurney 

law for the voltage region where the current is space-charge limited.166 The device structure 

and fabrication can be found in Chapter 2, and the results are shown in Figure 4.8 and Table 

4.2. 

The hole mobilities of SQ neat films are measured to be 3.1×10-4 cm2/V·s, 3.0 ×10-4 

cm2/V·s, 1.4×10-4 cm2/V·s for DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2 respectively. 

The fitted curves can be found in Figure A2. In neat films we recall that the absorption 

spectra and XRD patterns are similar for each SQ, representing a similar extent of 

crystallinity. Therefore, we can attribute the decrease in hole mobility, as the side chain 

  

Figure 4.8 Hole mobilities of SQ neat films (black squares) and SQ:PCBM blend films 

(colored dots) as a function of the number of side chain carbons of the SQ molecule. 

The measurements were done on unannealed films. For each mobility data point, we 

averaged over 5 different devices. 
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length increases, to the detrimental impact of non-conductive alkyl groups. Overall, the 

hole mobilities of SQ neat films are promising and are all above 10-4 cm2/V·s. Yet, after 

blending the SQ with PCBM, the mobility immediately drops by up to an order of 

magnitude, to 𝜇ℎ  = 4.2×10-5 cm2/V·s, 5.5 ×10-5 cm2/V·s, 6.7×10-5 cm2/V·s for 

DBSQ(OH)2:PCBM, DPSQ(OH)2:PCBM and DHSQ(OH)2:PCBM blends respectively at 

the 5:5 ratio. This is clearly related to the disruption of squaraine crystalline structures in 

blend films. If one compares the hole mobilities with the absorbance and XRD data, a trend 

is readily observed; for SQ with larger spectral change or crystallinity disruption when 

blended with fullerene (as compared to SQ neat films), the drop in hole mobility is also 

more significant. Specifically, DHSQ(OH)2 is able to retain 50% of its neat film mobility 

in SQ:PCBM 5:5 (w/w) blend films, whereas the mobility of DBSQ(OH)2 drops to only 

10% of its neat film mobility for films with the same weight to weight blends. As a result, 

the hole mobilities of the blended films are similar to each other, with DHSQ(OH)2 blends 

taking the highest value. Therefore, the change in hole mobilities between neat and blend 

films correlates very well with the disruption of the packing order in the SQ donor phases. 

Table 4.2 Hole mobility values of SQ neat and SQ:PCBM blend films  (unit: 10-4 

cm2/V·s).The data are averaged over 4-6 devices (the standard deviation for each 

parameter is shown in the parenthesis). 

SQ Neat film 
SQ:PCBM blend films (D:A blend ratio) 

(5:5) (4:6) (3:7) (2:8) 

DBSQ(OH)2 3.1 (±0.7) 0.42 (±0.09) 0.47 (±0.03) 0.57 (±0.03) 0.56 (±0.04) 

DPSQ(OH)2 3.0 (±0.3) 0.55 (±0.04) 0.62 (±0.03) 0.81 (±0.01) 0.65 (±0.05) 

DHSQ(OH)2 1.4 (±0.4) 0.67 (±0.08) 0.85 (±0.11) 0.65 (±0.06) 0.61 (±0.06) 
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4.5.2 Organic photovoltaic performance 

Organic photovoltaic devices are constructed with the same conditions for all three 

SQs, and the results are listed in Table 4.3. Power conversion efficiency of all three SQs 

are 2.0-3.6%. The Voc values slightly decrease from 0.84 V to 0.79 V as the blend ratio 

increases, but do not change much when comparing different SQs. This is consistent with 

the assumption that the alkyl side chains do not significantly perturb the electronic energy 

levels of these molecules. In general, higher device performance is achieved in the order 

of DBSQ(OH)2 > DPSQ(OH)2 > DHSQ(OH)2. 

The differences in fill factor and short circuit current in these solar cells should be 

highlighted. We recall that even though DBSQ(OH)2 and DPSQ(OH)2 each have a higher 

hole mobility when compared to DHSQ(OH)2, the hole mobilities of SQ:PCBM BHJ films 

are measured to be similar for all three SQs. Therefore, we cannot use mobility alone to 

explain the difference in solar cell performances. In fact, the difference in solar cell 

performance can only be well explained by considering BHJ morphology. For 5:5 ratio, 

the short circuit current decreases from 8.5 mA/cm2 to 7.6 mA/cm2, and then to 6.8 mA/cm2 

as side chain length decreases, and the fill factors of DBSQ(OH)2 and DPSQ(OH)2 based 

devices are above 0.5 while the DHSQ(OH)2 based devices only exhibited a FF of 0.44. 

This should be related to the dissatisfactory nanomorphology of DHSQ(OH)2:PCBM at the 

5:5 ratio, as shown in Figure 4.7. Specifically, the DHSQ(OH)2:PCBM blend phase 

separates extensively while the other two blends are well mixed. Noticeably, the 

DHSQ(OH)2:PCBM 3:7 blends yield a competitive FF of 0.5, leading to a slight increase 

in the efficiency to 2.9%. This is because the DHSQ(OH)2 aggregation is, to a certain 

degree, disrupted in the 3:7 blend, as compared to the 5:5 blend. We have already shown 
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in Chapter 3, that the SQ phase domain size is greatly reduced as the PCBM weight ratio 

increases. As a result, the DHSQ(OH)2:PCBM 3:7 w/w BHJ morphology has been slightly 

improved towards a more well mixed state, similar to DBSQ(OH)2:PCBM and 

DPSQ(OH)2:PCBM blends at the 5:5 weight ratio. Therefore, SQs with longer side chains 

need more PCBM to disrupt the aggregation and thus to suppress the phase separation. 

Table 4.3 Detailed organic photovoltaic cell parameters for SQ:PCBM at different blend 

ratios under 1-sun illumination. The values are obtained by averaging over 16 cells on 

different films (the standard deviation for each parameter is shown in the parenthesis). 

SQ materials Blend ratios 
Jsc 

(mA/cm2) 
Voc (V) FF (%) PCE (%) 

DBSQ(OH)2 

5:5 7.59 (±0.16) 0.84 (±0.01) 47.5 (±1.4) 3.01 (±0.15) 

4:6 8.40 (±0.20) 0.82 (±0.01) 48.1 (±1.3) 3.30 (±0.12) 

1:2 (best) 8.34 (±0.11) 0.82 (±0.01) 52.0 (±0.6) 3.57 (±0.12) 

3:7 9.16 (±0.29) 0.79 (±0.01) 42.1 (±1.0) 3.02 (±0.08) 

1:3 8.01 (±0.15) 0.79 (±0.01) 40.0 (±1.2) 2.52 (±0.08) 

2:8 7.24 (±0.18) 0.74 (±0.01) 37.2 (±0.6) 1.98 (±0.08) 

DPSQ(OH)2 

5:5 5.98 (±0.25) 0.85 (±0.01) 51.6 (±1.7) 2.62 (±0.19) 

4:6 6.74 (±0.17) 0.84 (±0.01) 53.0 (±2.0) 2.99 (±0.15) 

1:2 7.28 (±0.24) 0.83 (±0.01) 50.0 (±1.8) 3.00 (±0.08) 

3:7 (best) 7.36 (±0.17) 0.83 (±0.01) 52.3 (±1.6) 3.20 (±0.10) 

1:3 7.83 (±0.12) 0.82 (±0.01) 45.5 (±1.7) 2.92 (±0.11) 

2:8 7.57 (±0.16) 0.80 (±0.01) 43.2 (±1.9) 2.63 (±0.13) 

DHSQ(OH)2 

5:5 6.47 (±0.17) 0.84 (±0.01) 43.1 (±1.4) 2.34 (±0.14) 

4:6 6.69 (±0.19) 0.83 (±0.01) 46.4 (±1.0) 2.59 (±0.13) 

3:7 (best) 6.76 (±0.19) 0.82 (±0.01) 48.5 (±2.0) 2.68 (±0.16) 

2:8 6.52 (±0.29) 0.79 (±0.01) 42.9 (±2.0) 2.22 (±0.21) 
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We then switched the fullerene acceptor from PCBM to PC71BM. PC71BM has a 

higher absorptivity in the visible region of the spectrum, and thus is expected to enhance 

the contribution of fullerene absorption to photo-generated charges. The efficiency is 

further increased by using PC71BM for DBSQ(OH)2, mainly due to the improved short-

circuit current from 8.5 mA/cm2 to 10.2 mA/cm2, resulting in an increased power 

conversion efficiency to 5.4% (champion device). Interestingly, the solar cell 

characteristics remain the same for DPSQ(OH)2 based devices independent of fullerene 

choice. For DHSQ(OH)2, the solar cell efficiency even decreases from 2.9% to 2.5%, after 

switching the acceptor from PCBM to PC71BM. This could be related to the enhanced 

phase separation when using PC71BM as the acceptor.60 

Although the DBSQ(OH)2:PC71BM blend has achieved the best solar cell efficiency, 

the XRD data suggest that the blend is essentially amorphous, resulting from highly mixed 

SQ and fullerene. This amorphous state leads to a large drop in hole mobility in the blend 

films (4.2×10-5 cm2/V·s) as compared to the neat films (3.1×10-4 cm2/V·s), which is a 

  

Figure 4.9 J-V curves of the representative SQ:PC71BM bulk heterojunction solar cell 

for each squaraine molecule. The dark current is shown in the dashed line suggesting 

the robustness of the solar cell devices. 
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significant drawback for charge transport and collection. We noticed that there are a few 

small molecules, such as the dithienosilole (DTS) based donors, which are able to retain 

high hole mobilities when blended with PCBM.15,70,77 As a result, the OPV devices 

produced by such materials are more efficient compared to our SQ-based OPV cells. We 

thus highlight a possible future study to improve the hole mobility of SQ materials when 

blended with fullerenes. 

4.5.3 Optimizing DBSQ(OH)2-based devices 

In Chapter 3, we demonstrated that the film morphology can be carefully optimized 

by thermal annealing at a low temperature. Here, we conducted thermal and solvent vapor 

treatment for DBSQ(OH)2:PC71BM BHJ solar cells and seek to further improve the solar 

cell efficiency. 

Nevertheless, we found that the solar cell efficiency is reduced when the devices were 

annealed at 90 0C or through gentle solvent annealing for 5 min (Table 4.5). The drop in 

Table 4.4 OPV parameters of optimized DA ratio of DBSQ(OH)2, DPSQ(OH)2 and 

DHSQ(OH)2 when blended with PC71BM. Devices are made the same way as the 

devices using PCBM. The data are analyzed by averaging over 16 devices on different 

films. 

Donor 
Blend 

ratios 
Jsc, mA/cm2 Voc, V FF 

PCE, % 

(ave.)a 

DBSQ(OH)2 1:2 9.98 (±0.30) 0.82 (±0.01) 0.55 (±0.01) 4.54 (±0.20) 

DPSQ(OH)2 3:7 7.65 (±0.10) 0.82 (±0.02) 0.49 (±0.01) 3.10 (±0.11) 

DHSQ(OH)2 3:7 6.72 (±0.51) 0.80 (±0.02) 0.41 (±0.01) 2.24 (±0.21) 
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device efficiency mainly comes from the slightly reduced Voc and largely reduced FF. This 

is contradictory to what we have found previously in Chapter 3. For treated films, the 

crystallinity is only marginally improved as proven by the XRD patterns in Figure 4.10, 

and the BHJ films are still largely amorphous. On the other hand, the no extensive phase 

separation was seen in the TEM images (Figure 4.11). Here, we think the 

DBSQ(OH)2:PCBM (or PC71BM) system might be different from that of DHSQ(OH)2, in 

that the DHSQ(OH)2 will have already formed significant amount of aggregates in the 

blend films (during spin casting), while DBSQ(OH)2 largely remains as monomers. 

Therefore, an annealing treatment of DBSQ(OH)2-based devices would induce much larger 

change in the relative populations of monomers and aggregates. We look to understand the 

relative contributions of the energetic states (i.e. excited states of monomer and aggregate) 

Table 4.5 Photovoltaic performances of DBSQ(OH)2:PCBM and DBSQ(OH)2:PC71BM 

BHJ solar cells before and after annealing treatment. The optimized ratio of 1:2 is used 

in this study. The treatment is done before the evaporation of the aluminum anode. 

Acceptor Treatment Jsc, mA/cm2 Voc, V FF PCE, % 

PCBM 

No 8.31 (±0.11) 0.83 (±0.01) 0.52 (±0.01) 3.57 (±0.12) 

TAa 7.76 (±0.19) 0.75 (±0.02) 0.47 (±0.01) 2.71 (±0.14) 

SVAb 8.07 (±0.21) 0.78 (±0.02) 0.45 (±0.01) 2.84 (±0.14) 

PC71BM 

No 9.98 (±0.30) 0.82 (±0.01) 0.55 (±0.01) 4.54 (±0.20) 

TAa 9.91 (±0.32) 0.80 (±0.01) 0.44 (±0.02) 3.48 (±0.12) 

SVAb 9.83 (±0.24) 0.80 (±0.02) 0.44 (±0.01) 3.41 (±0.11) 
a TA is thermal annealing at 90 0C for 5 min after spin casting the active layer. 
b SVA is solvent vapor annealing by subjecting the films in chloroform vapor for 5 min. 
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to the dissociated charges at the heterojunction interface in the following chapters of this 

dissertation. 

4.6 Discussion 

In this chapter, we have provided a comprehensive description of the properties of a 

series of squaraines with varying side-chain length, pertinent to their use in organic 

  

Figure 4.10 X-ray diffraction patterns of DBSQ(OH)2:PCBM (1:2 w/w) films before 

(black) and after (red) thermal annealing at 90 0C for 5 min. In order to clearly resolve 

all the diffraction peaks, the diffractograms of the annealed film are shifted upward. 

 

 

   

Figure 4.11 TEM images of DBSQ(OH)2:PCBM (1:2 w/w) bulk heterojunction films 

before (left) and after (right) thermal annealing at 90 0C for 5 min. Scale bar: 100 nm. 
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photovoltaics. Despite the molecular structure differences, the molecules pack with the 

same slip-stack motif, and absorbance spectra of neat films are very similar for each 

material. Nevertheless, when these squaraines are blended with PCBM, the differences in 

properties that drive OPV efficiency become apparent. Absorbance spectra indicate well a 

qualitative disruption of crystallinity, more so for short chain squaraines. For longer side-

chain squaraines, phase separation is more significant and some evidence of crystal 

structure is retained by DHSQ(OH)2:PCBM blends. Melting point and crystallization 

temperatures decrease as the side chains become larger, which leads to a greater ease of 

squaraine and PCBM self-assembly.  

Hole carrier mobility is increased for neat films made with squaraines of short side 

chain length but when crystal packing is disrupted in blends, this mobility drops. For 

squaraines of longer side chain length, the blended films retain a higher mobility than their 

short chain counterparts, resulting from phase separation during the spin casting process 

phase separation even during the spin casting process. However, ultimately it is the phase 

separation that limits the power conversion efficiency. We found that the amorphous film 

with the finely mixed morphology yielded better device performance than the crystalline 

film with phase separated donor and acceptor domains. These results and interpretations 

culminate in an ongoing strategy to maximize ordered molecular packing while 

maintaining smaller domain sizes that nevertheless connect in a bicontinuous network. 

DBSQ(OH)2 is therefore the best selection in our series (while solubility for squaraines 

decreases quickly as chain length is reduced further). 

This observation of reduced efficiency with increased phase separation seems different 

to results from a previously reported squaraine, DiBSQ(OH)2, (or DIBSQ). In this case, 
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Wei et al have reported an increase in power conversion efficiency when the BHJ film was 

subjected to thermal or solvent annealing (leading to higher squaraine aggregation and film 

crystallinity).41,121 We, on the other hand, found an immediate decrease in efficiency when 

we mildly anneal our devices. This might be attributed to the different alkyl groups between 

DiBSQ(OH)2 (i.e. branched alkyl chains) and the series of squaraines investigated in this 

chapter (i.e. linear alkyl chains). Specifically, the linear alkyl chains in our squaraines will 

lead to tighter and more thermodynamically favorable aggregation/crystallization, based 

on chemical intuition. When we compared the annealed BHJ films, we found that our 

DIBSQ:PC71BM BHJ showed a much higher diffraction peak in XRD and a more dramatic 

absorption change due to squaraine aggregation than DIBSQ:PC71BM with similar 

annealing procedures.41,167 The linear alkyl chains are expected to allow a better diffusion 

of fullerenes in the BHJ films. Even though TEM shows no phase contrast, we estimate 

that a small extent of phase separation has already taken place in as-cast 

DBSQ(OH)2:PC71BM films, leading to an optimal BHJ morphology even without 

annealing. Thus, as-cast DBSQ(OH)2-based devices can yield comparable efficiency as the 

DIBSQ-based devices with post additional treatments.41,121  
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Chapter 5. USING AN ESSENTIAL-STATE MODEL TO 

INVESTIGATE THE COULOMBIC INTERACTIONS IN 

SQUARAINE AGGREGATES 

 

 

 

 

 

In this chapter, we use an Essential-state model (ESM) to simulate the SQ monomer 

and aggregate absorption spectra. The basics of ESM have been introduced in Chapter 1. 

Three diabatic electronic states are employed to describe the charge resonant structures of 

the quadrupolar SQ molecules and the Hamiltonian is diagonalized to yield vertical ground 

and excited states. By adding vibrational and vibronic Hamiltonians, the SQ monomeric 

absorption spectra can be well reproduced by ESM. For SQ aggregates, there are two forms 

in as-cast and annealed blend films; one has a slightly broader absorption spectrum than 

for monomers and a higher Franck-Condon shoulder; the other has a much broader 

absorption spectrum with a “double-hump” profile. By performing joint experimental and 

theoretical investigations, we have successfully simulated the absorption spectrum of the 

first type of aggregates that were observed in as-cast BHJ films and analogous PMMA 

solid solution films. We conclude that this is a typical H-aggregate where the Coulombic 

coupling dominates the intermolecular interactions when molecules are less densely 

packed. The spectrum of the second type of aggregates cannot be rationalized with the 

current model indicating another form of interactions exists between molecules in the 

aggregates (for details see Chapter 6).  
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5.1 Introduction 

Understanding the nature of the excited states of squaraine donors is critical for 

developing efficient OPV cells as well as many other optoelectronic applications. Schwenn 

et al,168 and separately Coffey et al169 discuss the major driving forces for generation of 

free carriers from excitonic states using Marcus Hush theory (see Section 1.3.3). The 

molecular aggregates are known to have shifted electronic states due to the intermolecular 

interactions.105 Thus, the driving force for electron transfer from the squaraine aggregates 

to fullerene acceptor should be different when compared to the electron transfer from 

squaraine monomers. Spencer et al.170 subsequently describe how Marcus-Hush theory can 

be used to explain why the increased crystallinity (and associated aggregation) within 

squaraine devices may have a detrimental effect upon the donor-acceptor electron transfer 

rate, which appears to limit OPV device efficiency.  

In a system with a variety of aggregates and polymorphs, the intermolecular coupling 

between the multiple donors and the fullerene acceptor will vary depending on the 

electronic and spatial properties of those donor species. Thus, even for the simple binary 

bulk heterojunction systems, the ability of molecules to form aggregates, polymorphs, or 

complexes could introduce more than one type of donor-acceptor interface. For our studied 

SQ molecules, e.g. DBSQ(OH)2, the absorption of the solution shows a narrow peak 

(FWHM ~ 0.081 eV) at 650 nm, which transfers to a broader profile in as-cast BHJ films, 

and then further changes into a characteristic “double-hump” spectrum after thermal 

annealing. Thus, there exist at least two types of SQ:PCBM interfaces and annealing would 

change the relative population these two. Direct comparison of these two interfaces in 

terms of their contribution to OPV performance might be complicated given that there are 
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many other critical factors, such as BHJ morphology, charge mobility, anode or cathode 

buffer layers, etc. Therefore, we must first develop a comprehensive understanding of the 

excited state properties of squaraines, based on their molecular structure and the solid state 

packing in pure and blended form. 

In more recent work, some confusion seems apparent regarding the origin of the 

panchromatic solid state spectral features when using typical assignments134,171–175 based 

solely on the aggregation-induced spectral shifts176,177 described by Kasha.105, where a red-

shift is characteristic of J-aggregates and a blue-shift is characteristic of H-aggregates. 

Thus, high energy peaks are often attributed to H-state excitation, and low energy peaks 

attributed to J-state excitation. Such an assignment is misleading considering that spectral 

shifts can arise from non-resonant couplings.177,150 In addition, concerted H- and J-state 

excitations (i.e. Davydov splitting) rely on the oblique arrangement of transition dipole 

moments, contradicted by the observation that the SQ single crystal structures feature a 

slip stacking motif with one molecule per unit cell (Figure 4.2). Thus, accurate 

interpretation of the SQ film absorbance spectra is the critical first step to understand the 

energetic states of SQ aggregates. 

Bigelow and Freund178 performed semi-empirical molecular orbital calculations on 

squaraine monomers, emphasizing the ground state conformational and solution-phase 

spectroscopic properties. In solution, they describe a positively charged solvent cage 

surrounding the oxygen atoms and a negatively charged solvent cage surrounding the 

amino phenyls, inducing a greater D+/2-A--D+/2 character within the ground state. The 

calculations of Bigelow and Freund178 suggest that the crystal structure of a hydroxy-

squaraine might reveal an intermolecular packing consistent with these solvent 
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interactions, i.e. the zwitterionic contribution in the crystal phase seems to be stabilized 

through intermolecular electrostatic interactions in a manner similar to the stabilization 

achieved in solution via the formation of  squaraine/solvent complexes.  

Mixing of zwitterionic character within the ground state was also shown by Painelli 

and coworkers to be essential for describing symmetry-breaking and solvatochromism in a 

variety of quadrupolar dye molecules.107 The essential-state model accounts for the charge-

transfer nature of the transitions within a given squaraine: each chromophore is described 

with two donor units (amine side arms) and a central squarylium acceptor unit. 

In this chapter, we investigate the SQ monomer and aggregates by using the ESM. For 

SQ aggregates in as-cast BHJ films as well as in PMMA solid solution films, we consider 

the Coulombic interaction between different donor and acceptor sites of the molecule. With 

a full understanding of the nature of the excited states in squaraine aggregates, we provide 

a foundation to recognize the critical impact of controlling aggregation towards higher 

efficiencies of OPV devices, which rely on a fast rate of charge transfer at the bulk 

heterojunction interface. 

5.2 Models 

5.2.1 Monomer Hamiltonian with vibronic coupling 

In this section, we derive the Hamiltonian for a symmetric SQ chromophore and its 

aggregate using the ESM.107,108 As previously introduced in Section 1.5.3, for quadrupolar 

dyes with linear D-π-A-π-D or A-π-D-π-A structures, the ESM identifies three essential 

states including one neutral state and two degenerate zwitterionic states, i.e. D-A-D (|𝑁⟩), 

D+-A--D (|𝑍1⟩) and D-A--D+ (|𝑍2⟩) (with similar definitions for the A-π-D-π-A molecule). 
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The two zwitterionic states lie above the neutral state with energy 𝜂𝑧  (𝜂𝑧  > 0) and are 

coupled to the neutral state via a charge transfer integral, 𝑡𝑧. The electronic Hamiltonian 

for a single chromophore can thus be expressed as 

 𝐻̂𝑚𝑜𝑛
𝑒𝑙 = 𝜂𝑧 ∑|𝑍a⟩⟨𝑍a|

𝑎

− 𝑡𝑧 ∑{|𝑁⟩⟨𝑍a| + ℎ. 𝑐. }

𝑎

 (5.1) 

Diagonalizing the Hamiltonian yields three “adiabatic” states, each a linear combination of 

the essential “diabatic” states: 

 |𝑔⟩ = √1 − 𝜌 |𝑁⟩ + √𝜌 2⁄ (|𝑍1⟩ + |𝑍2⟩) (5.2) 

 |𝑐⟩ = √1
2⁄ (|𝑍1⟩ − |𝑍2⟩) (5.3) 

 |𝑒⟩ = √𝜌|𝑁⟩ − √(1 − 𝜌)
2

⁄ (|𝑍1⟩ + |𝑍2⟩)  (5.4) 

where |𝑔⟩ is the ground state, and |𝑐⟩ and |𝑒⟩ are the first (one-photon allowed) and second 

  

Figure 5.1 Illustration of the basic concepts of the Essential-state model (ESM) for 

squaraine molecules. a) Three essential diabatic states describing the charge resonance 

structures; b) energy diagram of diabatic states and coupling between them; c) energy 

diagram of adiabatic states calculated based on the Hamiltonian in Equation (5.1). 
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(two-photon allowed) excited states. The energy of each electronic state is: 𝐸𝑔 = 𝜂𝑍 −

𝑡𝑍√2(1 − 𝜌)/𝜌 , 𝐸𝑐 = 𝜂𝑍  and 𝐸𝑒 = 𝜂𝑍 + 𝑡𝑍√2𝜌/(1 − 𝜌) . Here, 𝜌 = 0.5(1 − 𝜂𝑍/

√𝜂𝑍
2 + 2𝑡𝑍

2) which defines the charge distribution of the squaraine molecule in the ground 

state, 𝐷
𝜌

2⁄ − 𝐴−𝜌 − 𝐷
𝜌

2⁄ . When 𝜌  is approaching 0 (𝜂𝑍  is a large positive value), the 

ground state is dominated by the |𝑁⟩ state and the |𝑐⟩ and |𝑒⟩ states become degenerate 

and are dominated by zwitterionic states. The |𝑐⟩  state is completely zwitterionic, 

independent of 𝜌 . Thus, |𝑐⟩ can be represented by 𝐷0.5 − 𝐴−1 − 𝐷0.5 , with the charge 

having been completely moved from nitrogen to squarylium. For a typical quadrupolar dye, 

0 < 𝜌 < 0.5. 

In order to account for intramolecular vibrations, one vibrational coordinate is 

introduced for each charge transfer degree of freedom (vibrational site), thereby accounting 

for the nuclear geometry rearrangement caused by the different charge distributions. For 

each vibrational site, we visualize each arm as a quantum harmonic oscillator adopting a 

vibrational mode with an energy quantum of ℏ𝜔𝑣𝑖𝑏 = 1300 cm-1 (or 0.16 eV). Thus, the 

vibrational Hamiltonian reads, 

 𝐻̂𝑣𝑖𝑏
𝑚𝑜𝑛 = ℏ𝜔𝑣𝑖𝑏 ∑ 𝑏𝑎

†𝑏𝑎

𝑎

 (5.5) 

where 𝑏𝑎
† (𝑏𝑎) creates (annihilates) a vibrational quantum on each molecular arm (𝑎 = 1, 

left arm; 𝑎 = 2, right arm) of the chromophore with an energy of ℏ𝜔𝑣𝑖𝑏 (assumed to be the 

same for both neutral and zwitterionic states). For monomer simulations, we found that the 

total vibrational quanta (left + right arms) of 4 is able to accurately reproduce the 

experimental absorbance spectra. 

For vibronic coupling, the nuclear geometry of each arm is represented as a harmonic 
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potential with the equilibrium point (arm length) defined by the electronic state of the 

system. If one arm is hosting a zwitterion, the parabola minimum of its nuclear potential 

surface will be shifted, as compared to its neutral form, by 𝜆𝑧
2, which is the (zwitterionic) 

Huang-Rhys (HR) parameter, and 𝜆𝑧
2 = 1 . Thereafter, orthogonality requirements are 

dropped and the vibronic coupling is allowed between |𝑁⟩ and |𝑍1⟩ or |𝑁⟩ and |𝑍2⟩ with a 

different vibrational state on the appropriate arm. The vibronic coupling factors are 

calculated through the Franck-Condon principle. For example, the neutral state with one 

vibrational quantum on its left arm (|𝑁_1_0⟩) can couple to the first zwitterionic state with 

no vibrational quantum (|𝑍1_0_0⟩) through an integral of −𝑡𝑧〈1|0̃〉. The first and second 

terms are the electronic and the vibronic coupling terms, respectively. Note that the 

vibrations on the right arm for the two states are the same (= 0 in this case). If, on the other 

hand, the vibrational quantum numbers on the right arms of the |𝑁⟩ and |𝑍1⟩ state are 

different, the coupling term as well as the whole integral goes to zero, which is subject to 

the orthonormality rule of the wavefunction. Therefore, we can write the vibronic coupling 

term in the Hamiltonian as: 

 𝐻̂𝑣𝑖𝑏
𝑚𝑜𝑛 = ℏ𝜔𝑣𝑖𝑏𝜆𝑧 ∑(𝑏𝑎

† + 𝑏𝑎 + 𝜆𝑧)|𝑁⟩⟨𝑍𝑎|

𝑎

 (5.6) 

The complete monomer Hamiltonian constructed by combining the electronic 

(Equation (5.1)), vibrational (Equation (5.5)) and vibronic (Equation (5.6)) Hamiltonians 

is: 

 𝐻̂𝑚𝑜𝑛 = 𝐻𝑒𝑙
𝑚𝑜𝑛 + 𝐻𝑣𝑖𝑏

𝑚𝑜𝑛 + 𝐻𝑣𝑖𝑏−𝑒𝑙
𝑚𝑜𝑛  (5.7) 

The eigenvalues and eigenstates can be obtained by diagonalization of the Hamiltonian 

in Equation (5.7). 
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5.2.2 Aggregate Hamiltonian with Coulombic coupling 

For squaraine aggregate, we first consider the Coulomb interaction between molecules 

in zwitterionic states; the zwitterion charge densities are collapsed to positive and negative 

point charges residing on the nitrogen atoms and at the center of the four-membered ring, 

respectively. Thus, the Coulomb potential for each specific aggregate state |𝑆⟩ can be 

calculated by: 

 𝑉̂ =
1

4𝜋𝜀𝜀0
∑ ∑ ∑

𝒒𝑛(𝑖)𝒒𝑚(𝑗)

|𝒓𝑛,𝑖 − 𝒓𝑚,𝑗|
𝑖,𝑗𝑛>𝑚𝑆

|𝑆⟩⟨𝑆| (5.8) 

where 𝜀 is the dielectric constant of the materials and is assumed to be equal to 3 in the 

calculation, taking into account the screening of charges not explicitly accounted for within 

the model. 𝑛 and 𝑚 counts the molecule number in the aggregates, while 𝑖 and 𝑗 counts the 

site number on each molecule (= 1, 2 and 3 for left nitrogen, central squarylium and right 

nitrogen). 𝒒  and 𝒓  represent the point charge and the position vector for a specific 

molecular site, and we input values taken from the experimental squaraine single crystal 

structure determination. We assume that the squaraine aggregates in thin films adopt 

similar packing structures as in the single crystal. The single crystal structures for all 

unbranched alkyl anilinic di-hydroxyl squaraines studied in our work share a similar slip-

stack motif.  

The DBSQ(OH)2 single crystal structure is shown in Figure 4.2 in Chapter 4. The 

Coulomb interaction between molecules in different stacks in single crystal structure can 

be neglected because the distance between the functional groups is far (> 10 Å, see crystal 

dimensions in Table 4.1). Thus we only consider the Coulomb interaction between the 

nearest-neighbor molecules in the same stack. The distance between two interacting point 

charges can be calculated using four geometry parameters: the arm length (𝑙), the pi-
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stacking distance (∆𝑧), and the long (∆𝑥) and short (∆𝑦) axis displacements. The arm 

length, 𝑙, is the distance separating the nitrogen atoms from the center of the squarylium 

ring. The pi-stacking distance, ∆𝑧, is the distance between the two planes of neighboring 

molecules. ∆𝑥  is the slip distance along the long molecular axis (across two nitrogen 

atoms). Finally, ∆𝑦 is the slip distance along the short molecular axis (across two oxygen 

atoms).  

With Equation (5.8), we can write the Coulombically-coupled (CC) aggregate as 

 𝐻̂𝐶𝐶
𝐴𝑔𝑔

= ∑ 𝐻̂𝑛
𝑚𝑜𝑛

𝑛

+ 𝑉̂ (5.9) 

Here, the aggregate contains 𝑛  chromophores in one stack of molecules. While the 

Coulomb interaction impacts only the diagonal elements of the Hamiltonian when 

expressed in the diabatic basis, rotation into the adiabatic basis that diagonalizes ∑ 𝐻̂𝑛
𝑚𝑜𝑛

𝑛  

transforms these interactions to the more familiar terms responsible for resonant energy 

transfer between molecular sites. The off-diagonal terms coupling degenerate states are 

similar to the terms that serve to couple molecular excitons in exciton theory. For example, 

when the intermolecular separation R is large, the familiar point-dipole coupling expression 

which scales as R3 is recovered. Additionally, there are off-resonant Coulomb terms which 

account for the molecular polarizability by allowing states having different numbers of 

excitations to mix. 

5.2.3 Oscillator strength and optical spectra calculation 

 

Oscillator strength describes the probability of the transition between eigenstates (e.g. 

absorption or emission) and is proportional to the square of the transition dipole moment, 

a quantum mechanical matrix, as: 
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 𝑓𝑔𝑒 = 𝐸𝑔𝑒〈𝐺|𝜇̂|Ψ𝑒〉2 (5.10) 

𝜇̂ is the dipole moment operator; G and Ψ𝑒 are the wavefunctions of the ground (with the 

lowest-energy state) and excited states of the transition, whose values can be pulled directly 

from the eigenvector matrix. The transition energy is given by 𝐸𝑔𝑒 = 𝐸𝑒 − 𝐸𝑔 . The 

oscillator strength calculations run over all the eigenstates that are above the ground state 

(defined by its energy). 

The dipole moment of a given state in the diabatic basis is calculated by collapsing the 

charge densities to point charges located on the donor or acceptor moiety as described 

above. For a pair of equal and opposite charges (e) separated by a distance r, 𝜇 = 𝑒𝑟.179 In 

the case of squaraine monomer, 𝑟  should be equal to the arm length. To simplify the 

calculations, we normalize the dipole moment (by setting the arm length equal to 1) to get 

the relative oscillator strength values. Thus, the monomer dipole moment operator can be 

simply written as 

 𝜇̂ = |𝑍2⟩⟨𝑍2| − |𝑍1⟩⟨𝑍1| (5.11) 

given that the dipole moments of the two zwitterionic states are of the same magnitude 

with opposite direction. For aggregates, the dipole moment can be evaluated by the sum 

over the charge expression: 

 𝝁(𝑆) = ∑ ∑ 𝑞𝑆(𝑛)𝒓𝑞𝑆(𝑛)

𝑞𝑆(𝑛)𝑛

 (5.12) 

where the terms are defined previously. 

The absorbance spectra are calculated by applying a Gaussian broadening function to 

the oscillator strength of the ground-to-excited state transitions: 
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 𝐴(𝐸) = ∑ 𝑓𝑔𝑒

Ψ𝑒

exp (−
𝐸 − 𝐸𝑔𝑒

2

𝜎2
) (5.13) 

where 2√ln(2) 𝜎 is the full width at half maximum of the absorbance line shape.  

The fluorescence spectra are calculated in a similar manner as the absorbance 

(Equation (5.13)): 

 𝐹(𝐸) = ∑ 𝐸𝑒0𝑔|⟨Ψ𝑒0
|𝜇̂|Ψ𝑔⟩|

2

Ψ𝑔

exp (−
𝐸2

𝜎2
) (5.14) 

where the calculation runs over all the eigenstates that are below the initial excited state. 

Thus, the identification of the initial excited states |Ψ𝑒0
⟩ is critical. We assume that, after 

excitation, the excited state with the lowest energy is populated as the relaxation generally 

happens much quicker than emission. Thus |Ψ𝑒0
⟩  is the excited state with the lowest 

energy. We note that each eigenstate is a linear combination of the essential diabatic states. 

For the SQ aggregate, the electronic ground state and excited states have different 

combinations from the neutral and zwitterionic states, analogous to that of the monomer as 

shown in Equation (5.2) – Equation (5.4). Generally, the ground (excited) state has less 

(more) contribution from the zwitterionic state. Hence, |Ψ𝑒0
⟩ is the lowest-energy state that 

has a sudden increase in the zwitterionic character. 

5.3 Experiments and Simulations 

5.3.1 Monomer absorption spectrum and simulations 

In order to parameterize the essential states Hamiltonian of Equation (5.13) for SQ 

spectra, we compared our calculated absorption spectrum for each molecule with the 

experimentally measured spectrum.  
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Previously, Painelli and coworkers have successfully applied ESM to SQ 

molecules.107,108 In accordance with their results for a similar SQ, we set 𝑡𝑍 = 1.05 eV. The 

vibrational quantum, ℏ𝜔𝑣𝑖𝑏 = 1300 cm-1 (0.16 eV), corresponding to the vinyl stretching 

mode in nuclear motions of conjugated molecule.106 The zwitterionic Huang-Rhys 

parameter  (𝜆𝑧
2) describes the displacement of the potential energy surface minima between 

the zwitterionic and neutral states, and its value is set equal to 1. 106,180 By adjusting the 

energy of the diabatic zwitterion states until our simulations reproduced the experimental 

spectrum, we obtained 𝜂𝑍 = 0.69 eV for the best spectral fit. For all monomer calculations, 

we have applied a Gaussian lineshape function with standard deviation 0.06 eV. 

Figure 5.2 shows the simulated monomer spectrum along with the experimental results 

for comparison. A good fit is demonstrated by using the parameters in Table 5.1. These 

parameters are the same for all the other di-hydroxyl squaraine molecules studied (such as 

DPrSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2), which is expected as they share the same 

conjugation backbones. It is quite interesting that a (diabatic) HR factor of unity for the 

vibronic coupling within each “arm” does not lead to a vibronic progression with roughly 

  

Figure 5.2 Simulated (black line) and experimental (green dots) monomer absorption 

spectra (normalized to the maximum). Simulation parameters are listed in Table 5.1. 
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equal 0-0 and 0-1 intensities, as would be expected of the Poissonian progression with a 

HR factor of 1. This is because the ESM approach is different to the well-known exciton 

model in that the essential states selected to represent the chromophore are “premixed” or 

diabatic states. Thus, the parameters associated with these diabatic states cannot be directly 

“copied” into the adiabatic regime. For example, after diagonalizing the monomer 

Hamiltonian, 𝜆𝑧, which denotes the PES shift in the diabatic basis, is transformed into 𝜆, 

which describes the PES shift in the adiabatic eigenstates (i.e. ground and excited states). 

Thus, one cannot simply extract 𝜆𝑧 from the vibronic progression present in the monomer 

absorption or emission spectra. 

5.3.2 Aggregate absorption spectrum in PMMA films 

The absorption spectra of SQ thin films are different from that in solution (e.g. 

DBSQ(OH)2 in different environments in Figure 5.3). In particular, as shown in Figure 5.3, 

the absorption of the solution shows a narrow peak at 650 nm with a Franck-Condon (FC) 

Table 5.1 Simulation parameters for the SQ monomer 

absorption spectrum that best represents the experimental 

data in chloroform solution. 

Parameter DBSQ(OH)2 

𝜂𝑍 0.69 eV 

𝑡𝑍 1.05 eV 

𝜆𝑧
2 1 

ℏ𝜔𝑣𝑖𝑏 0.16 eV 

Vibmax 4 

Linewidth 0.15 eV 

Spectral Shift -0.087 eV 
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shoulder at 600 nm. SQ molecules in as-cast BHJ films exhibit slightly broader profiles 

with a red-shifted peak at 678 nm. Also, the FC shoulder is taking a higher oscillator 

strength than that of the solution spectra. The SQ molecules in neat films provide a unique 

“double-hump” absorption profile and both peaks are broad, leading to a panchromatic 

absorption spectra. These spectral differences for the SQs result from the different 

intermolecular interactions in various environments. For solutions with a concentration of 

10-5 M, the SQ molecules are completely dissolved with an average intermolecular distance 

of ~ 55 nm. At such large distances, the intermolecular interaction is negligible. Thus, the 

solution spectrum clearly belongs to the SQ monomer. For thin films, the intermolecular 

separation is much closer. In such cases, the intermolecular interactions, such as Coulombic 

coupling (CC) or intermolecular charge transfer (ICT), become strong and significantly 

impact the absorption spectra. 

In this chapter, we continue to focus on the SQ aggregates in BHJ films in Figure 5.3. 

  

Figure 5.3 Normalized absorption spectra of DBSQ(OH)2 in chloroform solution 

(black), as-cast BHJ films (red) and neat films (blue). The concentration of solution is 

10-5 M. The spectrum of as-cast BHJ films (SQ:PCBM 1:1 w/w) is obtained by 

subtracting the PCBM contribution from the total absorption. 
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In SQ:PCBM BHJ films, nevertheless, the interactions are complicated. As previously 

mentioned, the red-shifted absorption peak may come from the SQ-PCBM interaction. 

Thus, we blend polymethylmethacrylate (PMMA) polymer, instead of PCBM, with SQ to 

control its aggregate. PMMA is a transparent, inert polymer with good solubility in typical 

organic solvents. It does not interact with SQs and shows little absorption in the SQ-active 

region. Upon spin casting, we effectively disperse SQs randomly in the PMMA matrix and 

the intermolecular separation is controlled by the weight percent of the SQs. With 

controlled intermolecular distance, we can obtained the SQ aggregates that mimic the 

aggregates in as-cast BHJ films. 

As shown in Figure 5.4, when DBSQ(OH)2 is mixed into the PMMA matrices, the 

absorption profile is shown to antisymmetrically broaden such that the 0-1 vibronic 

transition gains oscillator strength as the wt% of SQ increases from 0.01% to 15%. The 

absorption spectrum of the 0.01 wt% PMMA film is almost overlapping with the solution 

spectrum, suggesting minimum intermolecular interactions. With the PMMA density of 

  

Figure 5.4 Normalized absorption spectra of DBSQ(OH)2 in PMMA films with varying 

SQ wt%. The SQ solution spectrum is also shown in dashed line for comparison. Inset: 

molecular structure of PMMA.  
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1.17 g cm-3 (Sigma-Aldrich), we estimated a SQ intermolecular distance of ~20 nm in the 

0.01 wt% PMMA film (Equation (2.1)). This separation distance quickly decreased to ~1.7 

nm in the 15 wt% PMMA film (data listed in Table 5.2). 

5.3.3 Simulation of CC-aggregate absorption 

According to the single crystal structure of DBSQ(OH)2, the molecules are packed in 

a parallel manner with one molecule per unit cell (Figure 4.2). The conjugation backbone 

of the molecule is planar and the registry of the adjacent molecule features a slip stack (∆𝑥 

= 3.4 Å and ∆𝑦 = 2.0 Å) and a short interplanar distance (∆𝑧 = 3.4 Å). When dispersed in 

PMMA solid solutions, we will start by making the simplest of assumptions, that the 

molecular packing is similar to the slip stacking in the single crystal structure, albeit with 

a much larger intermolecular distance. Thus, in our aggregate model, we keep ∆𝑥 and ∆𝑦 

consistent with that of single crystal structure and varied the ∆𝑧 from 5 Å to 20 Å. Note 

that we are building the simplest model here. We recognized that the orientation of the 

Table 5.2 Estimated intermolecular distance of SQ 

molecules in PMMA films. 

wt% Distance (nm) 

0.01% 19.9 

0.25% 6.8 

1% 4.3 

3% 3.0 

6% 2.4 

15% 1.7 
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molecule should be more random and complicated in the PMMA films, which would 

certainly necessitate more exhaustive computational investigations. 

In the ESM model, we consider a trimer of DBSQ(OH)2 due to the computational time 

restraints of working with larger aggregates. We are aware that the trimer may not be 

expected to account for the entirety of the aggregates due to its finite size; however, it is 

an efficient model that takes account of Coulombic interactions well, between adjacent 

molecules. A small number of time-consuming simulations of larger aggregates consisting 

of rigid chromophores do not significantly alter the conclusions drawn from the trimer 

system. The molecules in the trimer are allowed to interact Coulombically via 𝑉̂  in 

Equation (5.8) and (5.9). The position of the molecules with respect to others determines 

their Coulombic interaction, which we have scaled by a dielectric constant (𝜀) of 3 to 

account for the screening effect.  

  

Figure 5.5 Simulated absorption spectra of DBSQ(OH)2 trimer at different ∆𝑧, assumed 

to mimic the SQ aggregates in PMMA films. Inset: packing structure of SQ trimer. ∆𝑥 

= 3.4 Å and ∆𝑦 = 2.0 Å, consistent with the single crystal structure. ∆𝑧 is varied from 

20 Å to 5 Å, corresponding to the large range of molecular separations in PMMA films.  
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The simulated trimer spectra are shown in Figure 5.5. As we can see, the 0-1 (0-0) 

vibronic peak continuously gains (loses) oscillator strength as ∆𝑧  decreases. This is 

consistent with what we have observed in PMMA films. With this simple packing 

alignment assumption, when comparing Figure 5.5 and Figure 5.4, we think that there exist 

various types of aggregate in PMMA films, each with a different ∆𝑧. For example, in 6 

wt% PMMA film, the SQ aggregates can have a large range of ∆𝑧 and each one has its own 

contribution to the overall spectra. Thus, even though the average molecular separation is 

estimated to be 2.3 nm, there will exist SQ aggregates with a ∆𝑧 of < 1 nm. This is further 

explored in transition absorption spectroscopy in Chapter 7. Overall, there is a higher 

population of aggregates with short ∆𝑧 in concentrated PMMA films, as compared to the 

dilute films. For 0.01 wt% PMMA film, we think the molecules are well dispersed in the 

PMMA matrix and there is little aggregate population. 

In a short summary, the SQ aggregates in BHJ films and analogous PMMA films do 

result from intermolecular Coulombic interactions and we assign this type of aggregate as 

the CC-aggregate. The increased 0-1 vibronic oscillator strength coincides with the 

expectations of H-aggregate character in the Exciton model as introduced in Section 1.5.2.  

5.3.4 Fluorescence of CC-aggregate 

Identification of H- and J-aggregates could help to infer the local molecular 

orientations in the solid state, because this aggregation must arise from changes in 

intermolecular interactions. The consequences of photophysical properties and 

photovoltaic performances on aggregation must be explored. Más-Montoya and Janssen181 

have reported that the H- or J-aggregate formation of diketopyrrolopyrrole (DPP) based 

molecules can be controlled by changing the position of the side chains on the two 
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peripheral thiophene units. In particular, the DPP-based molecules that form H-aggregates 

exhibit lower photovoltaic performances than those that form J-aggregates; nevertheless, 

the exact mechanism is unclear. Hestand et al.29 theoretically investigated the slip stacked 

7,8,15,16-tetraazaterrylene (TAT) nanopillars and found that upon transversely sliding the 

molecules in the aggregates by 0.5 Å, the H-aggregate behavior of the nanopillars is 

reinforced by the constructive interference between long-range Coulombic coupling and a 

short-range charge transfer coupling. This then leads to a dramatic improvement in exciton 

mobility, which is beneficial for many organic optoelectronic applications.  

As previously mentioned, the SQ CC-aggregates exhibit similar vibronic intensity 

redistribution to those predicted for H-aggregates defined by the Exciton model. 

Historically, the molecular exciton model, which is based on Frenkel excitons, is widely 

used to investigate the photophysics of molecular aggregates. The exciton model describes 

the Coulomb-induced splitting of the local, degenerate excited states in an uncoupled 

aggregate into upper and lower exciton states (as compared to the original monomer excited 

state). For aggregates with a collinear transition dipole moment alignment, two types of 

aggregates are categorized according to the sign of the Coulombic coupling term; if the 

coupling is positive (negative), then the “bright” states, which carry all the oscillator 

strength, is located at the top (bottom) of the band, leading to formation of an H- (J-) 

aggregate.105 For the H-aggregate, the higher excited states are populated after excitation, 

and then quickly decay to the lowest excited state via molecular vibrations. Since the lowest 

excited state does not couple to the ground state, fluorescence is inhibited. Suppressed 

fluorescence is a signature of H-aggregate.105 
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Figure 5.6 Upper panel: simulated absorption (solid lines) and fluorescence (dash-dot 

lines) spectra of DBSQ(OH)2 trimer at different ∆𝑧; Lower panel: fluorescence spectra 

obtained from measuring PMMA films at different weight percent. Inset a: simulated 

monomer absorption and fluorescence spectra. Inset b: same fluorescence spectra as in 

the main figure but with a larger scale. Inset c: experimentally obtained monomer 

absorption and fluorescence spectra. Inset d: the absorption spectra of the PMMA films 

at different weight percent. For simulation: ∆𝑥 and ∆𝑦 were set the same as Figure 5.5. 

∆𝑧 is varied from 15 Å to 4 Å. For experiments: the emission spectra were measured in 

the same conditions for all films. 
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We performed a theoretical investigation on the fluorescence properties of the CC-

dimer (instead of trimer). The fluorescence calculation details have been introduced 

previously (Section 5.2.3) and the simulated spectrum is shown in the upper panel of Figure 

5.6. The absorption spectrum of the dimer demonstrates a vibronic intensity redistribution 

as the molecules approach each other (i.e. decreasing ∆𝑧) in the aggregate, similar to the 

observation in Figure 5.5. The fluorescence spectrum showed an immediate drop in 

intensity in the dimer as compared to the monomer (as shown in Inset a in Figure 5.6) and  

the fluorescence quantum yield continues to decrease as molecules become closer (∆𝑧 is 

decreased) (see Figure 5.6 inset b), with a concomitant red shift in peak position. This 

suppressed fluorescence further suggests that the SQ molecules form H-aggregates. 

The experimental fluorescence spectra of PMMA films are shown in Figure 5.6 (lower 

panel). Of note, the PMMA films were made by co-dissolving SQ with PMMA in 

chloroform solution and then spin casting into thin films. The concentration of PMMA in 

chloroform was fixed at 40 mg mL-1. At low SQ weight percent, the molecules are 

considered monodispersed in the films with fixed thickness, and thus each film has the 

same optical path length. Thus, we view PMMA films as a solid solution of SQ molecules 

and the molecular separations (and subsequently the intermolecular interactions) are 

controlled by SQ wt%. Indeed, the absorption spectra (Figure 5.6 Inset d) demonstrated 

that more SQ aggregates are formed in higher SQ wt% films, similar to that observed in 

Figure 5.3. The fluorescence spectra were measured at the same condition for all films. 

Consistent with our ESM calculations, the fluorescence intensity decreases quickly (with 

red-shifted peaks) as the SQ wt% is increased. Yet, the contribution from the inner filter 

effect152 (i.e. reabsorption of emitted radiation) cannot be ruled out. 
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Based on a good match between theoretical and experimental observations in Figure 

5.6, we conclude that SQ forms H-aggregates in the PMMA films (as well as in the as-cast 

SQ:PCBM BHJ films). The intermolecular interactions are dominated by the Coulombic 

coupling between charges on donor and acceptor moieties in adjacent SQ molecules. 

Hence, the excitons generated in such aggregates should adopt similar properties as the 

Frenkel excitons. 

5.4 Discussion 

In this chapter, we use an Essential-state model (ESM) to simulate the SQ monomer 

and aggregate absorption spectra. First, we introduced the monomer and aggregate 

Hamiltonian within the ESM. Three diabatic electronic states are used to describe the main 

charge resonant structure of the SQ monomer. Upon diagonalization, three adiabatic states 

are obtained, representing the ground, first excited and second excited state. The electronic 

states are then filled by multiple vibrational levels by considering the vibrational and 

vibronic Hamiltonians. The monomer absorption spectra can be well reproduced by the 

complete Hamiltonian in Equation (5.7), demonstrating the accuracy of the ESM in 

describing the electronic configurations of single SQ molecules in solution. 

For SQ thin films, we identified two forms of SQ aggregates; one has a slightly broader 

absorption spectra than monomers and a higher 0-1 Franck-Condon shoulder and has been 

observed in as-cast SQ:PCBM blend films as well as in PMMA solid solution films; the 

other has a much broader absorption spectrum with a “double-hump” profile, which was 

observed in neat films or annealed SQ:PCBM blend films. By tuning the ESM to account 

for the intermolecular Coulombic interactions, we have successfully rationalized the 



  

126 

 

spectral behavior of the first form of aggregates. We conclude that, in PMMA films (or as-

cast SQ:PCBM blend films), the SQ molecules exist in H-aggregates with various 

intermolecular separation, ∆𝑧. Each aggregate has its contribution to the overall absorption 

spectrum. 

On the other hand, the Coulombic ESM failed to simulate the typical absorption 

spectrum of the second form of aggregates. Figure 5.7 shows a simulated absorption 

spectrum of SQ aggregates with the molecules interacting Coulombically. The calculation 

was performed by considering the SQ trimer positioned at a geometry consistent with the 

single crystal structure, which is assumed to be the most stable and compact conformation 

in which SQ molecules pack. We see that the absorption spectrum of SQ neat films is much 

broader than the simulated spectrum and the peak spacing is 0.38 eV, significantly larger 

than the vibronic spacing, ~ 0.16 eV, obtained from simulations. 

  

Figure 5.7 Experimental (dotted lines) and simulated (solid lines) absorption spectra of 

DBSQ(OH)2 monomer and aggregate. The simulation cannot faithfully reproduce the 

typical SQ aggregate spectrum in neat films, which is much broader and the peak 

splitting is dramatic as compared to the vibronic spacing (~0.16 eV). 
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While several explanations can be given to account for the origin of the spectral line 

shape of the SQ aggregates in neat films, we found that these arguments are not consistent 

with the experiments. For example, one might reasonably attribute the two broad peaks to 

upper and lower Davydov components. Nevertheless, this contradicts the single crystal 

structure where there is only one molecule per unit cell. Davydov splitting requires oblique 

transition dipole moment alignments so that the absorption to both symmetric and 

antisymmetric excited states is allowed. Other explanations are also suggested. For 

example, one might also assign the two peaks to H- and J-aggregates that are independently 

formed in the neat films. On the other hand, there might exist another interaction 

mechanism acting within the single crystal of SQs that causes this panchromatic absorption 

profile. We look to further test these hypotheses and discover the origin of the broad 

absorption spectra of SQ neat films in Chapter 6. 
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Chapter 6. INTERMOLECULAR CHARGE TRASNFER IN SQ 

AGGREGATES 

 

 

 

 

 

The Essential-state model (ESM) with Coulomb considerations can successfully 

rationalize the spectral lineshape of the PMMA films. Yet, it failed to simulate the broad 

absorption spectra associated with SQ neat films. As discussed above, there might be an 

additional form of intermolecular interaction when SQ molecules are densely 𝜋-stacked. 

The single crystal structure of the SQs has been introduced in Chapter 4. From this 

structure, one can see that the donor moiety (nitrogen atom) is near the acceptor moiety 

(squarylium) of the next molecule in the same stack. We thus hypothesize that the 

intermolecular charge transfer can effectively occur between neighboring molecules, 

which modifies the ESM to allow several additional charge-separated (CS) diabatic states. 

The simulation based on the revised model against the experiments has been proven to be 

successful, which validates our hypothesis. We assign this new form of SQ aggregate to 

the “ICT-aggregate”. The origin of the two broad absorption peaks in SQ ICT-aggregates 

has been discussed in detail. Together with Chapter 5, we have developed complete theory 

to assign the SQ aggregates in solid state films; the CC-aggregate forms when SQ 

molecules are Coulombically interacting with each other in a loose packing geometry 

while, when chromophores are sufficiently close, ICT-aggregates are formed. The 

photophysics of each type of aggregate can be fully explained by the ESM. The work 

presented in this chapter is based on the collaboration between RIT and Temple University. 

The initial model was developed by Dr. Nicholas J. Hestand at Temple University and was 

modified by Chenyu Zheng. The simulation results presented in this chapter were 

performed based on Chenyu’s code, but much credit should certainly go to Nick. The data 

were used in this chapter with Dr. Hestand’s consent. 
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6.1 Introduction 

As previously discussed, the Coulombic coupling is not sufficient to represent the 

entire intermolecular interactions in SQ single crystals. We note that Tristani-Kendra and 

Eckhardt182 have studied the origin of the absorption line shape of a similar SQ molecule, 

1,3-bis[4-(N,N-diethylamino)-2-hydroxyphenyl]squaraine (DESQ(OH)). In particular, 

they assigned the absorption polarized perpendicular to the molecular plane to an 

intermolecular charge transfer (ICT) interaction. They argued that the slip-stacked crystal 

packing of DESQ(OH) provides an ideal environment for ICT due to a short interplanar 

spacing of 3.35 Å. The spatially overlapping molecular orbitals at the donor (nitrogen) and 

acceptor (squarylium) moieties on neighboring molecules also support the argument. 

Earlier, Tanaka et al.183 have pointed out how the slipped stack or “staircase” structure is 

favorable for charge resonance interactions for aggregates of cyanine dyes. Recently, 

Guasch et al.184 studied the ICT in a dimer of D-A dyads and its effect on optical and 

electron spin resonance (ESR) spectra. They suggested that the electron delocalization in 

the dimer system is driven by the subtle “interplay” of intramolecular electron transfer and 

ICT. 

As shown in Figure 4.2, our DBSQ(OH)2 also packs in a slip stacking arrangement in 

single crystals. The nitrogen atom of one molecule is placed in close proximity to the 

squarylium of the neighboring molecule. Adding the fact that the interplanar spacing (∆𝑧) 

is as small as 3.35 Å (Table 4.1), it suggests that the DBSQ(OH)2 (as well as similar SQs 

such as DPrSQ(OH)2, DHSQ(OH)2, etc.) is a good candidate for ICT. Specifically, the 

charges can transfer from the nitrogen to the squarylium of the neighboring molecule 

through molecular orbital overlap. We assert that ICT is responsible for the double-hump 
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absorption observed in SQ neat films.  

In this chapter, we extend the ESM for aggregates to allow for intermolecular charge 

transfer between molecules. We show that, with the extended model, the double-hump is a 

result of interplay between intramolecular and intermolecular charge transfer in SQ 

aggregates. Thus, together with the theoretical modeling in Chapter 5, we provide a 

comprehensive framework for understanding the nature of the excited states in SQ 

aggregates, which critically depends on the molecular packing. We hence recognize the 

huge potential of controlling aggregation in OPV devices towards higher efficiency. 

6.2 Models 

Intermolecular charge transfer (ICT) necessitates four additional diabatic states to 

represent the ionized molecule after the charge has been transferred: D+AD (|𝐶1⟩), DAD+ 

( |𝐶2⟩ ), DA-D ( |𝐴⟩ ) and D+A-D+ ( |𝑍3⟩ ). Note that |𝑍3⟩  is a cationic state holding a 

zwitterion. Since we consider that the total aggregate must remain as a neutral-charge entity 

during a photoexcitation, the charge-separated (CS) states always exist in pairs (an anionic 

state and a cationic state). These four CS diabatic states are produced by ICT from the 

original three neutral diabatic states. Thus, the ESM has been extended to account for a 

total of seven diabatic states. Such ionic species are expected to affect the optical properties 

of the material as it couples directly to the optically active exciton state. 

We further define the energy of the infinitely separated anionic (|𝐴⟩) and cationic (|𝐶1⟩ 

or |𝐶2⟩) pair to be 𝜂𝐶𝑇. For simplicity, we approximate the energy of an infinitely separated 

|𝑍3⟩ and |𝐴⟩ pair to be 𝜂𝐶𝑇 + 𝜂𝑍, adding the energy required to create a zwitterion on the 

neutral arm of a cation in a |𝐶1⟩ (or |𝐶2⟩ ) and |𝐴⟩ CS pair. While this approximation is not 
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rigorous, it reduces the number of adjustable parameters in the model and should be a 

suitable estimate. The total energy of the CS pair is also influenced by the distance 

dependent Coulomb interaction through the Coulomb operator 𝑉̂. The neutral states and 

CS states couple through an intermolecular charge transfer integral, 𝑡𝐶𝑇, which describes 

the transfer of an electron between overlapping donor and acceptor moieties on 

neighboring molecules, as shown in Figure 6.1. Last but not the least, the equilibrium 

nuclear geometries of the ionic states are defined by an ionic HR factor, 𝜆𝐶𝑇
2 . Since we 

expect that the geometric rearrangement of the ionic species is smaller compared to the 

zwitterion, 𝜆𝐶𝑇
2  is simply set to the half of the 𝜆𝑧

2, in line with the expectation that the 

geometric rearrangement of the ionic states is smaller than that of the zwitterionic states.185 

  

Figure 6.1 An illustration of the intramolecular (left) and intermolecular (right) charge 

transfer for squaraines in the upper panel, and the resulting total of seven diabatic states 

in the bottom panel. The rhombus represents the squarylium and the circle denotes the 

nitrogen atom. 
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Now, the complete Hamiltonian for the ICT-aggregates reads: 

 𝐻̂𝐼𝐶𝑇
𝐴𝑔𝑔

= 𝐻̂𝐶𝐶
𝐴𝑔𝑔

+ 𝐻̂𝐶𝑆 + 𝐻̂𝑖𝑛𝑡𝑒𝑟 (6.1) 

where 𝐻̂𝐶𝐶
𝐴𝑔𝑔

 has been introduced in Equation (5.9); 𝐻̂𝐶𝑆 is the Hamiltonian for CS states 

and 𝐻̂𝑖𝑛𝑡𝑒𝑟 represents the ICT term that couples the neutral and CS states. 

The Hamiltonian for the additional CS states can be written as a sum of the electronic 

and vibronic terms can be written as 

 𝐻̂𝐶𝑆 = 𝐻̂𝑒𝑙
𝐶𝑆 + 𝐻̂𝑒𝑙−𝑣𝑖𝑏

𝐶𝑆  (6.2) 

It should be noted that the vibrational energy of the CS states is accounted for in the 

𝐻̂𝐶𝐶
𝐴𝑔𝑔

 term in Equation (6.1). The electronic Hamiltonian for CS states is given by 

 𝐻̂𝑒𝑙
𝐶𝑆 = 𝜂𝐶𝑇 ∑|𝐴𝑛⟩⟨𝐴𝑛|

𝑛

+ 𝜂𝑍 ∑|𝑍3,𝑛⟩⟨𝑍3,𝑛|

𝑛

− 𝑡𝑍 ∑(|𝑍3,𝑛⟩⟨𝐶𝑎,𝑛| + ℎ. 𝑐. )

𝑎,𝑛

 (6.3) 

where 𝑛 runs over all the molecules in the aggregates. Since the aggregate remains charge 

neutral before and after excitation, the anions and cations must exist in pairs. Thus, the first 

term counts the number of CS pairs. The energy of a CS pair composed of one molecule in 

the anion state |𝐴⟩ and the other molecule in the cation state, |𝐶1⟩ or |𝐶2⟩ is 𝜂𝐶𝑇, while the 

|𝐴⟩ |𝑍3⟩ pair has an additional energy of a zwitterion, 𝜂𝑍 . The third term describes the 

intramolecular charge transfer that transforms a cationic state (|𝐶1⟩ or |𝐶2⟩) to the |𝑍3⟩ 

state, via a intra-CT integral of 𝑡𝑍. 

The vibronic Hamiltonian that couples the electronic and nuclear degrees of freedom 

is  

 

𝐻̂𝑒𝑙−𝑣𝑖𝑏
𝐶𝑆 = ℏ𝜔𝑣𝑖𝑏𝜆𝐶𝑇 ∑(𝑏𝑎,𝑛

† + 𝑏𝑎,𝑛 + 𝜆𝐶𝑇)(|𝐶𝑎,𝑛⟩⟨𝐶𝑎,𝑛| + |𝐴𝑛⟩⟨𝐴𝑛|)

𝑛,𝑎

 

+ ℏ𝜔𝑣𝑖𝑏𝜆𝑍 ∑(𝑏𝑎,𝑛
† + 𝑏𝑎,𝑛 + 𝜆𝑍)|𝑍3,𝑛⟩⟨𝑍3,𝑛|

𝑛,𝑎

 

(6.4) 
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where the potential energy surfaces (PES) of the CS states are shifted by the ionic HR 

factor, 𝜆𝐶𝑇
2 . Note that while the cation only influences the molecular arm where it resides, 

the anion is considered to affect both arms. We treat the PES shift of anion and cation states 

with the same ionic HR factor to reduce the adjustable parameters. We do not expect the 

exact value of the ionic HR factor to have a large effect on our main results. Finally, the 

second term in Equation (6.4) describes the PES shift of the |𝑍3⟩ state, for which we 

considered both arms hold a zwitterion (with the zwitterionic Huang-Rhys factor, 𝜆𝑍
2). 

The ICT term, 𝐻̂𝑖𝑛𝑡𝑒𝑟, in Equation (6.1) can be expressed as 

 

𝐻̂𝑒𝑙
𝑖𝑛𝑡𝑒𝑟 = 

−𝑡𝐶𝑇 ∑(|𝑁𝑛𝑁𝑛+1⟩⟨𝐴𝑛𝐶1,𝑛+1| + |𝑁𝑛𝑁𝑛+1⟩⟨𝐶2,𝑛𝐴𝑛+1|

𝑛

+ |𝐴𝑛𝐶1,𝑛+1⟩⟨𝑍2,𝑛𝑍1,𝑛+1| + |𝐶2,𝑛𝐴𝑛+1⟩⟨𝑍2,𝑛𝑍1,𝑛+1|

+ |𝑍1,𝑛𝑍1,𝑛+1⟩⟨𝐶1,𝑛𝐴𝑛+1| + |𝑍2,𝑛𝑍2,𝑛+1⟩⟨𝐴𝑛𝐶2,𝑛+1|

+ |𝑍3,𝑛𝐴𝑛+1⟩⟨𝑍1,𝑛𝑁𝑛+1| + |𝐴𝑛𝑍3,𝑛+1⟩⟨𝑁𝑛𝑍2,𝑛+1| + ℎ. 𝑐. ) 

(6.5) 

which describes all possible movements of electrons between molecules. While Equation 

(6.5) is somewhat cumbersome to write down, its physical meaning is intuitive. In our 

model, the squaraines are slip stacked from left to right as the index 𝑛 increases, thus, 

electrons transfer between molecules from the right arm of the molecule with index 𝑛 and 

the left arm of molecule having index 𝑛 + 1. For example, the electron can be transferred 

from the right nitrogen atom of the molecule 𝑛 to the central squarylium of the molecule 

𝑛 + 1 , resulting in a coupling between the initial state |𝑁𝑛𝑁𝑛+1⟩  and the final state 

|𝐴𝑛𝐶1,𝑛+1⟩ via an inter-CT integral, 𝑡𝐶𝑇, as expressed by the first term of Equation (6.5). 

The calculation of the oscillator strength and absorption spectra are the same as 

described in Section 5.2.3. Of note, CS states (including |𝑍3⟩ state) does not have transition 
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dipole moments and their impact on absorption spectra lies in their ability to couple to the 

three neutral states shown in Figure 6.1. 

6.3 Experiments and Simulations 

6.3.1 SQ aggregates in mixed solvent solutions 

As previously shown in Figure 5.7, the ESM dimer with Coulomb interaction cannot 

reproduce the absorption spectra of the neat films of DBSQ(OH)2 (and other linear-chain 

SQ molecules). The broadening of the absorption spectrum into the double hump is often 

found in similar anilinic squaraines with linear N-alkyl chains. In literature, many attribute 

it to existence of different SQ polymorphs in the neat films, and therefore the coexistence 

of H- and J-aggregates.149,172–175 Although these interpretations contradict to the SQ single 

crystal structures, we look further evidences to interpret the unique absorption spectra of 

SQ aggregates in neat films. 

We turn our attention to the DBSQ(OH)2 aggregates formed in mixed solvents where 

a nice transformation from monomers to aggregates can be controlled by changing solvent 

quality or temperature. In the mixed solvent work, we dissolve the squaraine in a mixture 

of solvents containing dimethyl sulfoxide (DMSO) and H2O. DMSO is a good organic 

solvent with a high solubility for SQ, and is miscible with H2O (a non-solvent for SQs) to 

form a uniform solvent environment.186 As the solvent quality is controlled by changing 

the ratio of the two solvents, a transformation between monomers and aggregates can be 

observed (see Figure 6.2a). The absorption spectra of the SQ aggregates formed in mixed 

solvents mimic those of the neat films, indicating that both aggregates have the same 

structure and packing. The photoluminescence spectra of the mixed solvent solution during 
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such transformations are shown in Figure 6.2b. As the monomer population decreases, the 

monomer absorption peak disappears, as does the fluorescence. Any fluorescence emission 

for a J-aggregate would be seen as transitions to the bottom of the exciton band are optically 

allowed. We stress how the lack of fluorescence must contradict an assignment of the low 

energy peak to a J-aggregate (as well as to a monomer) and we present an alternative, more 

accurate assignment based on our ESM and intermolecular charge transfer consideration. 

Using solvent mixtures of 80% DMSO:20% H2O (by volume) for DBSQ(OH)2, the 

absorption spectra show the coexistence of monomers and aggregates. Then the mixed 

solvent solutions were heated up to 65 0C and with this temperature increase, the SQ 

molecules should be entropically driven to separate from aggregates into monomers. 

Indeed, from room temperature, 25 0C, to 65 0C, a gradual increase in monomer absorption 

is seen in Figure A3 with a concomitant decrease in the double hump at ~540 nm and ~710 

nm. Two isosbestic points at 595 nm and 672 nm can be clearly identified, which serves as 

strong evidence for the inter-conversion between monomer and a single form of aggregate 

 

Figure 6.2 The a) absorption and b) photoluminescence spectra of DBSQ(OH)2 in 

DMSO:H2O solvent mixtures measured as a function of solvent quality change. For 

photoluminescence spectra, the solvent mixture was excited at 595 nm. 
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(with a double hump absorption feature). Similar experiments have been performed for 

other squaraines and the results are similar to those of DBSQ(OH)2. 

6.3.2 Simulation of SQ ICT-aggregate 

The simulated spectra based on Equation (6.1) are shown in Figure 6.3 with a narrow 

absorption line width (0.05 eV) to resolve all the subpeaks. In the model, we again consider 

a dimer as an effective representative of SQ aggregates in the solvent mixture due to the 

computational restraints (as now four additional diabatic states are activated by ICT). For 

both simulated curves (with only CC, and with both CC and ICT), the dimer geometry is 

consistent with the single crystal structure. As compared to the ESM when only considering 

Coulombic coupling (blue curve), the influence of ICT is immediately seen as this 

spectrum contains a substantial contribution of low energy components filled out with 

vibronic structures (red curve). The high energy peak is further blue shifted and the whole 

collection of spectral features is reminiscent of the experimental spectrum. As we broaden 

the Gaussian lineshape to 0.15 eV, the simulated absorption spectrum is greatly consistent 

with the spectra of DBSQ(OH)2 in solvent mixtures of DMSO:H2O as shown in the left of 

Figure 6.3, demonstrating the critical contribution of ICT on excited state configurations 

of SQ aggregates that exist in neat films and solvent mixtures. 

We have also simulated the absorption spectra of other SQ aggregates, i.e. 

DPrSQ(OH)2 and DHSQ(OH)2, based on Equation (6.1) and the parameters are listed in 

Table 6.1. For the simulation, the dimer geometry was set in accord with the single crystal 

structure while only 𝜂𝐶𝑇 and 𝑡𝐶𝑇 were taken as adjustable parameters (note that 𝜂𝑧 and 𝑡𝑧 

are parameterized based on the SQ monomer spectrum simulation as well as the 

literature107,108), which were set to the values that best reproduce the experiments. We stress 
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that a consistent Gaussian line width of 0.15 eV was taken for the entire spectrum and the 

broad peaks in the experiments are due to the overlapping of vibronic structures.  

We also found that 𝜂𝐶𝑇 is largely responsible for the relative peak height of the two 

“humps” (i.e. as the 𝜂𝐶𝑇 is increased, the oscillator strength is redistributed to the low-

energy peak), while 𝑡𝐶𝑇 greatly controls the peak spacing (i.e. 𝑡𝐶𝑇 is large when two peaks 

are far part in the spectrum). For comparison, the magnitude of the intermolecular charge 

transfer integral, 𝑡𝐶𝑇  follows the order of DPrSQ(OH)2 > DBSQ(OH)2 > DHSQ(OH)2, 

which is in agreement with the far-split absorption peaks in absorption spectra of 

DPrSQ(OH)2 neat films as compared to other two SQs (Figure 4.3). Thus, DPrSQ(OH)2 

appears to couple more strongly to the ICT state than the SQs with longer side groups, 

which is consistent with the shorter nearest-neighbor donor-acceptor distance observed in 

 

Figure 6.3 Comparison between experimental (dotted line) and simulated (solid line) 

absorption spectra. Left: a narrow line shape is used to resolve all vibronic structures. 

Right: an optimized line shape is used to achieve a best fit of the experiments. The blue 

line is simulated by using Equation (5.9), only considering Coulombic interactions, 

while the red line is simulated by using Equation (6.1), where both Coulombic 

interactions and intermolecular charge transfer are considered. The experimental 

spectrum is obtained from DMSO:H2O mixed solvent solution. All spectra are 

normalized to the absorption maximum. 
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DPrSQ(OH)2 single crystals. Note that the 𝑡𝐶𝑇  obtained from the dimer simulation is 

considered as an effective value that represents the upper bound of the true values. In large 

aggregates, most molecules have two nearest neighbors to which each can couple, while 

only one coupling is counted in the dimer model. In real case, a smaller 𝑡𝐶𝑇 is enough to 

represents the intermolecular charge transfer strength and to reproduce the absorption 

spectra of the aggregates. 

6.4 Discussion 

In this chapter, we have faithfully reproduced double-hump absorption spectra of SQ 

aggregates in neat films with the special consideration of intermolecular charge transfer 

(ICT). Yet, the exact origin for such peak splitting and vibronic structures in Figure 6.3 is 

Table 6.1 Essential-state parameters for DPrSQ(OH)2, DBSQ(OH)2 and 

DHSQ(OH)2. The monomeric parameters are the same for all three SQs 

while the main differences lie in the energy of the charge separated states, 

𝜂𝐶𝑇 , and the intermolecular charge transfer integral, 𝑡𝐶𝑇 , which are 

underlined. 

Parameter DPrSQ(OH)2 DBSQ(OH)2 DHSQ(OH)2 

𝜂𝑧 0.69 eV 0.69 eV 0.69 eV 

𝑡𝑧 1.05 eV 1.05 eV 1.05 eV 

𝜆𝑍
2  1 1 1 

𝜂𝐶𝑇 1.42 eV 1.37 eV 1.53 eV 

𝑡𝐶𝑇 0.55 eV 0.34 eV 0.30 eV 

𝜆𝐶𝑇
2  0.5 0.5 0.25 

ℏ𝜔𝑣𝑖𝑏 0.16 eV 0.16 eV 0.16 eV 

Line width 0.15 eV 0.15 eV 0.15 eV 

Spectral shift -0.087 eV 0.006 eV 0 eV 
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less clear. As mentioned previously, the new ionic states do not have transition dipole 

moment and their contribution to the spectrum is entirely due to their ability to couple to 

the original neutral excitonic states. Here, we build a rigid (i.e. vibrationless), non-

interacting (i.e. without intermolecular interactions) dimer model to mechanistically 

understand the spectral lineshape of SQ ICT-aggregate. In this simple model, only 

electronic Hamiltonian is considered to investigate how the ionic states mixes with the 

neutral excitonic states. 

The Hamiltonian for rigid, non-interacting dimer model can be written as: 

 𝐻̂𝑒𝑙
𝑛𝑖 = ∑(𝐻̂𝑒𝑙,𝑛

𝑛𝑒𝑢 + 𝐻̂𝑒𝑙,𝑛
𝐶𝑆 )

𝑛

 (6.6) 

where 𝑛 runs from 1 to 2 for the dimer. In Equation (6.6), we only consider the seven 

electronic states for the (charge neutral) dimer. The Coulomb and intermolecular charge 

transfer coupling terms (𝑉̂ and 𝐻̂𝑒𝑙
𝑖𝑛𝑡𝑒𝑟) are neglected. Also neglected are the vibrational 

 

Figure 6.4 Energy diagram of rigid dimer diabatic states. The neutral states are shown 

on the left while the CS states are shown on the right, indicated with the energy 

difference between each state. The CS states are approximately located near the double 

zwitterionic states, given that 𝜂𝐶𝑇 ≈ 2𝜂𝑍. 
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and vibronic coupling terms. Thereafter, the Hamiltonian in Equation (6.6) only contains 

15 possible diabatic dimer states: |𝑁𝑁⟩ , |𝑁𝑍1⟩, |𝑁𝑍2⟩, |𝑍1𝑁⟩, |𝑍1𝑍1⟩,  |𝑍1𝑍2⟩, |𝑍2𝑁⟩ , 

|𝑍2𝑍1⟩, |𝑍2𝑍2⟩, |𝐶2𝐴⟩,  |𝐴𝐶1⟩, |𝐶1𝐴⟩, |𝐴𝐶2⟩, |𝑍3𝐴⟩ and |𝐴𝑍3⟩. Their energies are shown in 

Figure 6.4. Here, we take the order within the ket to denote the molecule number. For 

example, the ket |𝑁𝑍1⟩ defines the first molecule in state 𝑁 and the second molecule is in 

the state of 𝑍1. The first nine states that represent both molecules in the dimer are neutral, 

and the remaining six states are cation-anion pairs. While 𝑡𝑍 is considered in the model (in 

𝐻̂𝑒𝑙,𝑛
𝑛𝑒𝑢) for the mixing of |𝑁⟩, |𝑍1⟩ and |𝑍2⟩ states, 𝑡𝐶𝑇 is neglected and thus the CS-dimer 

states do not mix with the charge neutral states.  

Eigenstates and eigenvalues can be obtained by diagonalizing Equation (6.6). The 

lowest-energy state is defined as the ground state, while all the higher excited states are 

considered excited states (although some of them are only two-photon allowed). We begin 

to evaluate the symmetry of the adiabatic electronic states. This involves taking the direct 

product of the monomeric diabatic states of the two chromophores, in terms of a symmetric 

(𝑆) and antisymmetric (𝐴𝑆) linear combination of the states with respect to inversion. 

Based on inversion symmetry, we can separate some degenerate electronic states. Thus, 

the nine neutral adiabatic eigenstates can be expressed as: |𝑔𝑔⟩𝑆 , |𝑔𝑐⟩𝑆 , |𝑔𝑐⟩𝐴𝑆, |𝑔𝑒⟩𝑆 , 

|𝑔𝑒⟩𝐴𝑆, |𝑐𝑐⟩𝑆, |𝑐𝑒⟩𝑆, |𝑐𝑒⟩𝐴𝑆 and |𝑒𝑒⟩𝑆, and the six ionic eigenstates are: |𝑎𝑐1⟩𝑆, |𝑎𝑐1⟩𝐴𝑆, 

|𝑎𝑐2⟩𝑆, |𝑎𝑐2⟩𝐴𝑆, |𝑎𝑐3⟩𝑆 and |𝑎𝑐3⟩𝐴𝑆. Note that the phase of the molecule is defined such 

that the first and second molecule in the dimer are symmetric under inversion. For ionic 

adiabatic states, 𝑎 and 𝑐 represents general anionic and cationic states, while index 1 to 3 

indicates the energy of the states from low to high (and should be differentiated from the 

number in diabatic states, e.g. |𝑍1⟩). 
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The eigenvalue (i.e. energy) of each state can be calculated and here we only listed 

several states of interests: 

 𝐸
|𝑔𝑐⟩𝑆
(0)

= 𝐸
|𝑔𝑐⟩𝐴𝑆
(0)

= (1 + 𝜌)𝜂𝑍 + 2𝑡𝑍√2𝜌(1 − 𝜌) (6.7) 

 𝐸
|𝑎𝑐1⟩𝑆
(0)

= 𝐸
|𝑎𝑐1⟩𝐴𝑆
(0)

= 𝜂𝐶𝑇 + 𝜌𝜂𝑍 + 2𝑡𝑍√2𝜌(1 − 𝜌) (6.8) 

 𝐸
|𝑎𝑐2⟩𝑆
(0)

= 𝐸
|𝑎𝑐2⟩𝐴𝑆
(0)

= 𝜂𝐶𝑇 (6.9) 

 𝐸
|𝑎𝑐3⟩𝑆
(0)

= 𝐸
|𝑎𝑐3⟩𝐴𝑆
(0)

= 𝜂𝐶𝑇 + (1 − 𝜌)𝜂𝑍 − 2𝑡𝑍√2𝜌(1 − 𝜌) (6.10) 

By transforming the transition dipole moment matrix, 𝜇̂, into the symmetrized basis, 

we found that only one excited state, |𝑔𝑐⟩𝐴𝑆, has a significant transition dipole moment 

from the ground state |𝑔𝑔⟩𝑆 . Without 𝐻̂𝑒𝑙
𝑖𝑛𝑡𝑒𝑟  (which contains the 𝑡𝐶𝑇  term), all six CS 

states do not couple to the original nine exciton states and thus do not carry oscillator 

strength and in the absence of CS states, the |𝑔𝑐⟩𝐴𝑆  state is solely responsible for the 

absorption lineshape, resulting in the spectrum shown as the blue line in Figure 6.3. Thus, 

in order to understand the origin of the double-hump absorption profile, we need to 

investigate how this |𝑔𝑒⟩𝐴𝑆 state mixes with the CS states. 

Only the states of the same symmetry can couple and the coupling strength is weak 

when two involved states are far apart in energy. Thus, |𝑔𝑐⟩𝐴𝑆  can couple to |𝑎𝑐1⟩𝐴𝑆 , 

|𝑎𝑐2⟩𝐴𝑆 and |𝑎𝑐3⟩𝐴𝑆. We have calculated the energies of these four states, as shown in 

Equations (6.7)-(6.10). |𝑎𝑐1⟩𝐴𝑆  is the lowest-energy ionic state, but still significantly 

higher in energy than |𝑔𝑐⟩𝐴𝑆 as 𝜂𝐶𝑇 ≫ 𝜂𝑍. Thus, the coupling between |𝑔𝑐⟩𝐴𝑆 and |𝑎𝑐1⟩𝐴𝑆 

is small in the non-interacting dimer based on Equation (6.6). 

Nevertheless, upon addition of the 𝑉̂  term in Equation (6.6), the ionic states are 

stabilized by the Coulomb potential. For example, the energy of |𝐴𝐶1⟩ states is lowered by 
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the positive-negative large interaction between molecules. As a result, the energy of 

|𝑎𝑐1⟩𝐴𝑆 is close to that of the |𝑔𝑐⟩𝐴𝑆 state. 

These two states couple via a matrix element, 𝜏 = 2𝑡𝐶𝑇𝑡𝑍/√𝜂𝑍
2 + 8𝑡𝑍

2. The general 

form of the two diagonal states can be written as 

 𝑎|𝑔𝑐⟩𝐴𝑆 − 𝑏|𝑎𝑐1⟩𝐴𝑆 (6.11) 

 𝑏|𝑔𝑐⟩𝐴𝑆 + 𝑎|𝑎𝑐1⟩𝐴𝑆 (6.12) 

where 𝑎 and 𝑏 are coefficients determined by the energy difference between |𝑔𝑐⟩𝐴𝑆 and 

|𝑎𝑐1⟩𝐴𝑆 and the matrix element. Since |𝑔𝑐⟩𝐴𝑆 carries all the oscillator strength from the 

ground state, the weight of the |𝑔𝑐⟩𝐴𝑆 (square of the coefficient) in each diagonal state 

determines the oscillator strength from the ground state. 

Thus, in absence of ICT interactions, the squaraine molecules form H-aggregates 

(consistent with the face-to-face stacking structure in single crystals) and the antisymmetric 

|𝑔𝑐⟩𝐴𝑆 state is the only optically allowed “bright” state. When ICT is activated, the |𝑔𝑐⟩𝐴𝑆 

state strongly mixes with the charge separated state |𝑎𝑐1⟩𝐴𝑆, and the resulting two diagonal 

states are both optically allowed (due to the |𝑔𝑐⟩𝐴𝑆 components in each state), leading to 

the unique double hump absorption spectra. Note that the coupling between other states is 

also possible even though the energy difference might be large, leading to a more 

complicated structure of electronic states for squaraine aggregates. Nevertheless, our 

simple non-interacting rigid dimer model provides a qualitative, reliable understanding of 

the origin of the double peaked absorption spectrum for SQ aggregates in neat films and 

solvent mixtures. 
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Chapter 7. INVESTIGATION OF EXCITED STATE DYNAMICS IN 

SQ AGGREGATES USING A TRANSIENT ABSORPTION 

SPECTROSCOPY 

 

 

 

 

 

In this chapter, the excited state dynamics of fully solvated DBSQ(OH)2 in chloroform 

solution, as well as the DBSQ(OH)2 monomers and CC-aggregates formed in PMMA solid 

solution films were investigated using femtosecond transient absorption (TA) 

spectroscopy. The results demonstrated an efficient transfer of excitations from SQ 

monomer to CC-aggregates in the films, leading to a shortening of the monomer excited 

state lifetime. Singlet-singlet annihilation is also observed in both DBSQ(OH)2  monomers 

as well as the CC-aggregates in PMMA films, indicating the excitations are highly mobile 

in such systems. The results suggest that the excitons can efficiently diffuse to the 

DBSQ(OH)2:PCBM interface even in the amorphous, mixed domains containing both 

monomers and CC-aggregates, which may then explain the high power conversion 

efficiency achieved in the as-cast BHJ films. The TA experiments and data analysis were 

performed by Michael Mark in McCamant’s lab at University of Rochester. The data were 

used in this chapter with Michael Mark’s consent. 
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7.1 Introduction 

Molecular aggregates may exhibit drastically different photophysical and transport 

properties when packed in different orientations. As discussed in Chapter 1, for the widely 

accepted exciton model,105 the molecular Coulomb coupling splits the excited state of the 

monomer. For molecules packed in a “face-to-face” (“head-to-tail”) geometry, the higher 

(lower) excited state is optically bright while the lower (higher) excited state is dark, and 

this aggregate is referred to as an H- (J-) aggregate. Fast exciton diffusion has been often 

reported for the J-aggregates of several molecular systems, including the perylene 

bisimide,187 cyanine dyes188 and oligomers63, due to the ease of detecting fluorescence from 

the lowest Frenkel state of the J-aggregate. Thus, it is often believed that the J-aggregation 

would benefit exciton diffusion in OPVs.181 Nevertheless, recent studies have 

demonstrated that the H-aggregate can also support fast exciton diffusion.189  

Furthermore, recent theoretical studies185,190,191 by Nicholas Hestand and Frank Spano 

have shed light on the molecular aggregates using theory that goes beyond Kasha’s H- and 

J-aggregate description. The intermolecular interactions in such slightly more complicated 

aggregate systems include both long-range Coulombic coupling as well as short-range 

charge transfer coupling, and the interference between the two dramatically alters the 

exciton transport properties.29 Their work provides a new perspective that the exciton 

diffusion in aggregates are largely controlled by the nature of the intermolecular 

interactions.  

Exciton diffusion is a fundamental step that greatly impacts OPV performance and 

therefore the effect of material aggregation on remains a critical topic of ongoing study. In 

particular, the exciton generated in the aggregate can be delocalized over a few neighboring 
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molecules via intermolecular coupling, which benefits the exciton diffusion and 

dissociation in organic photovoltaic devices.190,192 Wei et al. have reported a nearly 3-fold 

enhancement in exciton diffusion length in thermally annealed SQ:fullerene films, which 

was attributed to improvements in crystal packing and SQ aggregation. In addition, Bruck 

et al.149 and Chen et al.104 have individually reported a beneficial J-aggregate formation in 

SQ-based organic solar cell devices. Nevertheless, in these papers as well as many other 

studies134,175,193, the formation of aggregates and the improving OPV performances are 

considered to be separate or are considered as two individual experimental observations. 

Even when it appears that they are strongly correlated, the mechanistic details connecting 

these two observations is still lacking to this date.193–196  

In this chapter, we investigate the excited state properties in DBSQ(OH)2 aggregates 

with femtosecond transient absorption spectroscopy. The aggregates of DBSQ(OH)2, as 

discussed previously, exist ubiquitously in the thin films. By changing the SQ-fullerene 

blend ratio or when applying a thermal annealing treatment, the SQ absorption can be tuned 

from a spectrum that is slightly broader (with a higher 0-1 vibronic peak) when compared 

to monomer absorption to a spectrum that is much broader with a double hump feature 

(Figure 4.4). The different absorption spectra will later be explained by the nature of the 

intermolecular interactions, based on theoretical investigations in previous chapters. The 

former broadened “single hump” absorption is a CC-aggregate in which the Coulombic 

coupling dominates the intermolecular interactions, while the latter double hump is 

associated with ICT-aggregates, recognizing that the intermolecular charge transfer also 

exerts a significant influence on the excited states of the aggregate. 

When the CC-aggregate dominates the SQ populations in the DBSQ(OH)2:PCBM as-
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cast films, the thin film XRD (Figure 4.6) demonstrates that films are essentially 

amorphous. However, we found that the amorphous as-cast films produce the most 

successful OPVs with efficiency >5%. Thus, the exciton diffusion and dissociation are 

expected to be at high yield for efficient photoinduced-charge generation. Here, we test the 

power-dependence of the transient absorption decay to study the singlet-singlet 

annihilation phenomenon in the DBSQ(OH)2 films. The results show that not only are the 

excitons highly mobile in the monomer and CC-aggregates, but that the energy can be 

transferred from the monomer to CC-aggregates as described with ultrafast kinetics. These 

results provide insight as to how such a high power conversion efficiency can be achieved 

in amorphous as-cast BHJ films for DBSQ(OH)2 and PC71BM blends. 

7.2 Transient Absorption Studies of SQ Solution and PMMA Films 

As introduced in Chapter 6, the SQ molecules form CC-aggregates when dispersed in 

PMMA solid solutions. The Coulomb interaction in the aggregate couples the electronic 

states of individual molecules, leading to H-aggregate-like spectral behavior, i.e. blue-

shifted absorption peaks with increasing 0-1 vibronic oscillator strength (Figure 5.4). The 

steady state absorption spectra of PMMA films with different SQ weight percent have been 

shown in Figure 5.4. As have been discussed in Chapter 5, the molecular separation 

distance is decreased as the weight percent of SQ is increased (Table 5.2). Thus, the 

intermolecular coupling strength between SQ chromophores is stronger in more 

concentrated PMMA films. Hence, the impact of the coulombic interaction on exciton 

dynamics can be investigated by comparing the transient absorption results from the 
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PMMA films with the steady state absorption spectra, which steadily broaden as the 

contribution of coulombic interaction increases with SQ concentration. 

7.2.1 Transient absorption of SQ in solution and in dilute PMMA films 

The transient absorption spectra for fully solvated DBSQ(OH)2 monomers in 

chloroform solution are shown first in Figure 7.1. At early times, At early times, the 

spectral region of negative change in absorption (ΔOD) mirrors the steady state absorption 

spectra with a peak at 650 nm. This similarity with the steady-state absorption is explained 

given that this region is dominated by the ground state bleach (GSB), demonstrating the 

depopulation of the monomer ground state. There is some contribution from stimulated 

emission (SE); we note that the steady-state fluorescence peaks at 660 nm, only ~10nm or 

~230 cm-1 Stokes-shifted from absorption peak. After 5 ps, a slight red-shift of the negative 

ΔOD peak is seen, the shift being attributed to the stabilization of excited states by solvent 

reorganization. Two excited state absorption (ESA) bands are seen at 440 nm and 500 nm, 

corresponding to the S1  Sn transitions. 

The transient signal dynamics of the SQ monomer at 440 nm (ESA peak), 503 nm 

(ESA peak), 652 nm (GSB peak) and 675 nm (SE peak) are plotted in Figure 7.1b. All the 

decays can be fitted by a slow time constant of 2.7 ns, and three fast time constants, 200 

fs, 1.63 ps, and 11ps. The decays are fit with small amplitudes for the fast components, 

consistent with the observation of the small and fast loss in kinetic traces, apparent at early 

times in  Figure 7.1b). The fast time constants can be assigned to the solvent and internal 

reorganization, in accord with the growth of signal at 675 nm, the SE region, due to the 

dynamic Stokes Shift. The slow time constant is consistent with the fluorescence lifetime 

measured from TCSPC (i.e. 2.3 ns).197 Transient polarization anisotropy decays via  
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molecular rotation in solution. The transient polarization anisotropy is measured, and 

seemingly decays via molecular rotation in solution. The rotational correlation time is 

measured to be 220 ps, which is consistent with the reported values for an indo-based 

SQ.198 

The transient absorption spectra of a very dilute PMMA film (0.01 SQ wt%) and the 

corresponding decay kinetics are shown in Figure 7.2. The spectra are similar to those of 

the monomer solution in Figure 7.1. However, no fast time constants on a femtosecond 

scale are observed in the decay dynamics. This is likely due to the rigid PMMA matrix that 

hinders any structural reorganization of the SQ molecules after excitation. The kinetics are 

fit well with two time constants of 52 ps and 2.7 ns. The total decay time constant is the 

 

Figure 7.1 Transient absorption spectra (top) and the corresponding kinetic traces 

(bottom) of DBSQ(OH)2 in chloroform solution after excitation at 640 nm. The steady 

state absorption spectrum is shown in the dashed line in the top panel. The kinetic traces 

(at the ESA, GSB and SE peaks) are plotted against a linear time axis for the first 5 ps 

and a logarithmic time axis for the remaining time period of study (i.e. 6 ~ 1700 ps). 
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same as that measured for the DBSQ(OH)2 solution, demonstrating that PMMA is a non-

interacting medium. In addition, the chromophores in the dilute film are sufficiently far 

apart (the intermolecular distance of SQs in 0.01 wt% PMMA film is estimated to be ~ 20 

nm, see Table 5.2) such that they can be viewed as monomers (with the same photophysical 

properties as the fully solvated DBSQ(OH)2 monomers in solution) that are “dissolved” in 

the polymer matrix. Thus, any changes in the photophysical properties of SQs in more 

concentrated PMMA films can be attributed to the intermolecular interactions as 

chromophores are closer to each other.  

 

Figure 7.2 Transient absorption spectra (top) and the corresponding kinetic traces 

(bottom) of DBSQ(OH)2 in 0.01wt% PMMA films after excitation at 640 nm. The 

steady state absorption spectrum is shown in the dashed line in the top panel. The kinetic 

traces (at ESA, GSB and SE peaks) are plotted plotted against a linear time axis for the 

first 5 ps and against a logarithmic time axis for the remaining time period of study (i.e. 

6 ~ 1700 ps).  
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7.2.2 Transient absorption of SQ in concentrated PMMA films 

 

The effect of the coupling interaction on excited state dynamics were investigated 

through transient absorption (TA) and are shown in Figure 7.3. In Chapter 5 we discussed 

how this Coulombic interaction in the DBSQ(OH)2 CC-aggregate effectively transfers the 

oscillator strength from the 0-0 vibronic peak to the higher-energy 0-1 peak while 

simultaneously causing a hypsochromic shift in the transition energies (Figure 5.5).  Upon 

photoexcitation, the TA spectra show an instantaneous negative GSB and positive ESA 

signals, similar to those in 0.01 wt% PMMA films except that the GSB becomes broader 

as the concentration increases. As time progresses, the original GSB spectra evolve into 

new profiles with dominant 0-1 transition peaks and weak 0-0 peaks, prominently 

illustrated in the 6 wt% and 15 wt% PMMA films. Along with the changing GSB 

magnitude, the sharp ESA signal at 500 nm diminishes, leaving a single ESA peak at 460 

 

Figure 7.3 Transient absorption spectra of PMMA films with (a) 1 wt%, (b) 3 wt%, (c) 

6 wt% and (d) 15 wt% of DBSQ(OH)2, after excitation at 640 nm. The steady state 

absorption spectra are shown as the dashed line in each figure. 
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nm, slightly red-shifted from the original ESA peak at 440 nm. Again, these trends are 

more clearly observed in the concentrated films in Figure 7.4). These changes in both GSB 

and ESA signals indicate that few monomer excited states are present after 100 ps. The 

GSB spectra in concentrated (6 wt% and 15 wt%) PMMA films at 100 ps are in great 

agreement with the simulated absorption spectra using the Essential-state model with 

Coulombic coupling (Figure 5.5), suggesting that the “new” GSB and ESA signals should 

belong to the Coulombic-coupled aggregates. For less concentrated films (1 wt% and 3 

wt%), the spectral evolution is less clear, but one can still see that the signals at ~600 nm 

decay at a slower rate when compared to the signals at 650 nm, indicating a small amount 

of CC-aggregates formed in the dilute films.  

The total excited state lifetime (taking into account the longest decay kinetics in the 

spectrum) is 663 ps, 627 ps, 323 ps and 250 ps for each PMMA films, 1 - 15 wt% 

respectively. These lifetimes are significantly shorter than that of the monomer in dilute 

(0.01 wt%) PMMA film, which is 2700 ps. Furthermore, the lifetime measured from the 

 

Figure 7.4 Transient absorption spectra of PMMA films of different DBSQ(OH)2 

concentrations at 100 ps. The spectra are normalized to the GSB peak. For higher wt% 

films, the GSB spectra are in great consistency with the simulated spectra in Figure 5.5, 

exhibiting a higher 0-1 transition peak at 600 nm (more so in higher wt% films). This 

indicates the preserved excited states after 100 ps are mostly CC-aggregates. 
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decay kinetics of monomer ESA at 503 nm for each PMMA films is observed to be even 

shorter than the total lifetime values indicated above, especially for higher concentration 

films. In Figure 7.3 c and d, we see an increase in magnitude of the GSB at 605 nm because 

the monomers can energy transfer to associated CC-aggregates thus depleting their ground 

state population. Supporting this explanation, an isosbestic point is observed at 625 nm in 

the early time scale (0-2.5 ps) between the GSB’s of the SQ monomers and CC-aggregates. 

Based on these observations, we assign the early spectral behavior and the fast monomer 

decay to the energy transfer from monomers to CC-aggregates in PMMA films. 

7.3 Excited State Dynamics in PMMA Films 

High photovoltaic performance relies on efficient exciton diffusion to the interface, 

and therefore exciton mobility in organic semiconductors is a critical intrinsic property that 

will impact the success of a given materials for OPV application. The main excited state 

diffusion mechanism in bulk heterojunction layers is likely a long-range Fӧrster resonant 

energy transfer (FRET).199,200 This energy transfer may be achieved via dipole-dipole 

interactions between two identical molecules as well as for a heterogeneous donor-acceptor 

pair. As previously discussed, transfer of excitation energy from monomers to CC-

aggregates is inferred from transient absorption spectra for DBSQ(OH)2 PMMA films, and 

the fast depopulation of the monomer excited state. In this section, we investigate the rate 

of this energy transfer with respect to the changing SQ wt% in the PMMA films. In 

addition, this energy transfer may lead to multiple excitations on DBSQ(OH)2 aggregates, 

which in some circumstances may undergo singlet-singlet annihilation. Such annihilation 

processes have been investigated for many semiconducting polymers,187,201–203 as their 
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study can yield useful information about the exciton diffusion dynamics. Thus, we also test 

the power dependence of the decay kinetics for the DBSQ(OH)2 PMMA films. 

7.3.1 Energy transfer between monomer and aggregate in PMMA films 

The energy transfer rate can be extracted from the decay of the monomer ESA at 500 

nm, shown in Figure 7.5a and the growth of CC-aggregate GSB at 605 nm, shown in Figure 

7.5b. In Figure 7.5a, there is a clear acceleration (from black to red traces) in the loss of 

the ESA signal at 500 nm as the concentration of DBSQ(OH)2 is increased. For the 1 wt% 

film, the ESA still exists after 100 ps, while the ESA disappears in less than 2 ps for the 15 

wt% film. Consistent with the ESA loss kinetics, the rise (more negative ΔOD) in the 605 

GSB signals is observed to be faster in the more concentrated films. For example, the ΔOD 

in the 605 nm signal is most negative at ~ 80 ps in 1 wt% film while the same ΔOD 

maximum decrease occurs at ~ 2 ps for the 15 wt% film (Figure 7.5b). Finally, the rate of 

energy transfer obtained by fitting the kinetic traces are 3.17 ps, 0.56 ps, 1.50 ps and 0.34 

ps for 1 wt%, 3 wt%, 6 wt% and 15 wt% films. These energy transfer time constants are 

much faster than the total excited state lifetimes (see Table 7.1). The faster energy transfer 

rate in higher concentration PMMA films is attributed to the higher population of 

DBSQ(OH)2 aggregates, which act as energy acceptors collecting the excitations from the 

initially excited monomer.  

Transient anisotropy decay is a strong indicator for transfer of excitation energies 

between chromophores. In the rigid PMMA matrix, the SQ molecules are fixed in position. 

Therefore, the anisotropy can only decay when the excitation on the initially excited 

molecule is transferred to an adjacent molecule with a different transition dipole moment 

orientation. The rate constants of anisotropy decay are measured to be 2.95 ps, 0.27 ps, 
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0.10 ps and 0.37 ps for the 1 wt%, 3 wt%, 6 wt% and 15 wt% films, respectively, following 

a general decreasing trend which is in accord with the energy transfer rate constants in 

those films. 

It must be recognized that not only can the loss of anisotropy be attributed to the energy 

transfer from monomers to aggregates, but it may also originate from homo-FRET transfer 

between monomers. Indeed, the small Stokes shift of SQ monomer ensures that there is a 

significant overlapping between absorption and fluorescence spectra. According to 

Equation (1.10) and (1.11), the FRET radius is calculated to be 7.34 nm for SQ monomers 

and the corresponding time constants (i.e. the inverse of the rate constant, 𝑘𝐹𝑅𝐸𝑇  in 

Equation (1.10)) are calculated to be from ~ 100 ps, in the 1 wt% PMMA film, to ~ 0.5 ps, 

 

Figure 7.5 Normalized decay profile of ESA signal at (a) 500 nm (monomer) and the 

growth profile of GSB signal at (b) 605 nm (CC-aggregate). The GSB signal at 605 nm 

is plotted logarithmically to illustrate the initial (negative) rise due to the energy transfer 

from the monomer to CC-aggregate. 
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in the 15 wt% PMMA film. Clearly, the fast FRET can definitely outcompete the natural 

decay of the excited state of monomer (i.e. 2700 ps). 

In a short summary, the excitation in DBSQ(OH)2 can undergo FRET transfer to other 

unexcited monomers as well as cascade to the CC-aggregates. Any back energy transfer to 

the monomers from the CC-aggregates is prevented because the CC-aggregate will not 

fluorescence, in accordance with theory described in Chapter 5. Hence, at longer times (> 

100 ps), there are few excited monomers while most excitations are located on the CC-

aggregates, which then decay in several hundreds of picoseconds. Next, we look to 

investigate the exciton dynamics in DBSQ(OH)2 aggregates in PMMA films. 

Table 7.1 The time constants for total excited state lifetime, energy transfer and loss of 

anisotropy in different PMMA films. 

 1% SQ 3% SQ 6% SQ 15% SQ 

Total excited state 

lifetime a 
𝜏1 663 ps 627 ps 323 ps 250 ps 

Energy transfer 

time constant b 

𝜏1 3.17 ps 0.564 ps 1.50 ps 0.344 ps 

𝜏2 31.4 ps 4.02 ps - - 

Anisotropy decay 

time constant c 

𝜏1 2.95 ps 0.274 ps 0.102 ps 0.366 ps 

𝜏2 38.3 ps 2.95 ps 1.20 ps - 

a The total excited state lifetime is obtained by fitting the decay kinetics at 620 nm. 
b The averaged energy transfer rate is obtained by averaging the signal loss at 500 nm 

(monomer ESA) and signal gain at 600 nm (aggregate GSB). 
c The anisotropy loss is obtained by fitting the decay kinetics of the TA signal at 660 nm 

(monomer SE). 
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7.3.2 Singlet-singlet annihilation in PMMA films 

Singlet-singlet (S-S) annihilation occurs when two excitons interact with each other at 

short distances (typically within one polymer chain or between closely stacked molecules 

or aggregates). Under a high-power excitation pump, the excitons may exist in high 

densities (especially for molecules with high extinction coefficient) such that inter-exciton 

distance is within the exciton diffusion length. Thus, S-S annihilation is often observed for 

many conjugated polymers and molecular aggregates where the generated excitons are 

highly mobile.203–206 Here, the decay kinetics associated principally with the monomer as 

well as with the CC-aggregates were studied for different excitation powers: 20, 40 and 80 

nJ/pulse. The decay rate constants for monomers and aggregates were obtained by fitting 

the decay curves at 500 nm (monomer ESA) and 600 nm (CC-aggregate GSB). 

For decay kinetics of the monomer ESA at 500 nm (Figure 7.6a), there is a noticeable 

 

Figure 7.6 The weighted average decay rate constants for TA signals at (a) 500 nm 

(monomer ESA) and (b) at 600 nm (CC-aggregate GSB). The decay kinetics are 

weighted by the TA signal amplitudes to minimize the influence of overlapping spectra 

from monomers and aggregates. 
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decrease in time constant for higher photon flux (except for 6 wt% and 15 wt% PMMA 

films) indicating S-S annihilation occurs for monomers in PMMA films. The lack of power 

dependence in high SQ wt% PMMA films is attributed to the fast energy transfer rate, with 

time constants of 0.3-1.5 ps, which must outcompete the S-S annihilation process. For 

PMMA films with low SQ wt%, energy transfer is less likely to occur on a fast time scale 

(see Table 7.1) as there are fewer aggregates formed. Thus, in those films, S-S annihilation 

should be the main relaxation mechanism for the monomer excited state and is largely 

responsible for the short total excited state lifetime (e.g. 663 ps for 1 wt% PMMA film) as 

compared to the 2700 ps decay time of monomer excited state in the least concentrated 

0.01 wt% PMMA film. Overall, the SQ monomer excited states quickly depopulate via 

both energy transfer and S-S annihilation processes, where the former (later) process 

dominates in higher (lower) concentration PMMA films. 

The long-time decays of the GSB signals at 600 nm (corresponding to the aggregate 

GSB given that monomer is depleted at early times) exhibit a substantial power dependence 

for all PMMA films as shown in Figure 7.6b. We note that the transfer of excitations from 

monomer to aggregate has essentially been completed at long time scales. Thus, the 

observed power dependence indicates that the excitons in the aggregates (formed either by 

initial excitation or by energy transfer) are highly mobile such that the higher densities of 

excitons lead to a faster S-S annihilation rate.  

The S-S annihilation studies suggest that the excitons formed in both monomers and 

aggregates of DBSQ(OH)2 are highly mobile. This is beneficial for the exciton diffusion 

step as the excitons formed in the center of the pure phases can efficiently diffuse to the 

heterojunction interface and subsequently undergo dissociation. Unfortunately, the exact 
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S-S annihilation rate for monomers and aggregates cannot be obtained without knowing 

the initial exciton density in the PMMA films after excitation. This is currently under 

investigation through our collaboration with Mark and McCamant at University of 

Rochester.  

7.4 Discussion 

In this chapter, we have investigated the excited state dynamics of fully solvated 

DBSQ(OH)2 in chloroform solution, as well as the SQ monomers and CC-aggregates 

formed in PMMA solid solution films to gain insight on the energy transfer processes and 

exciton movements in the organic photovoltaic devices. 

The monomers in solution exhibit a long excited state lifetime of 2.7 ns which is 

consistent with reported values of similar SQ molecules in the literature.198,207 Two ESA 

peaks are observed at 440 nm and 503 nm, representing S1  Sn transitions. When 

DBSQ(OH)2 molecules are dispersed in a rigid PMMA matrix with large intermolecular 

distances (e.g. 0.01 wt%, DBSQ(OH)2) the SQ molecules exhibit similar photophysical 

properties as for fully solvated monomers in solution. The intermolecular interaction is 

negligible; the absorption spectra and the excited state lifetime are wholly consistent with 

the solution measurements. 

The advantages of the PMMA solid solution approach lie in the ability to control the 

intermolecular distance by changing the SQ weight percent. As calculated in Table 5.2, the 

molecular separation distance can be tuned from 20 nm in 0.01 wt% film to 1.7 nm in 15 

wt% film. At decreasing intermolecular distances, the molecules experience intermolecular 

interactions of increasing strengths, resulting in different photophysical properties. 
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For 0.25 wt% PMMA films, the absorption spectrum suggests that there are still few 

aggregates that have formed. Yet, the excited state lifetime is measured to be significantly 

shorter than the 0.01 wt% film (i.e. 750 ps vs. 2700 ps). Such differences, based on transient 

polarization anisotropy decay kinetics, are attributed to the singlet-singlet annihilation 

process. This annihilation might occur through Fӧrster-type dipole-dipole interactions.204 

In higher concentration (1-15 wt%) PMMA films, DBSQ(OH)2 molecules exist in both 

monomer and CC-aggregate forms. Energy transfer from monomer to aggregate is 

observed in transient absorption spectra at increasing delay times. At longer times (> 100 

ps), the negative GSB signals at 600-700 nm feature a higher 0-1 vibronic peak, in excellent 

agreement with the previous simulated CC-aggregate spectra. This consistency validates 

the previous Essential-state model approach. For 6 wt% and 15 wt% PMMA films, an 

isosbestic point was observed (Figure 7.3), evidencing the energy transfer process. The 

energy transfer rate constant (obtained from the kinetic traces of monomer ESA at 500 nm 

and CC-aggregate GSB at 600 nm) is measured to be 0.3-3 ps, significantly faster than any 

other photophysical processes. 

At a long-time scale, the excitation energies originating in the monomer excited states 

have completely been transferred to the CC-aggregates (given that the energy transfer rate 

outcompetes other photophysical processes). The decay of the CC-aggregate excited state 

(GSB signals at 600 nm) was also found to be power dependent, indicating that the 

excitations undergo S-S annihilation in the CC-aggregates as well. Overall, we found that 

the excitations are mobile in both SQ monomers and CC-aggregates (due to the 

observations of S-S annihilation in both species), and when the population of CC-

aggregates is large, the energy transfer from monomer to aggregate is faster than the S-S 
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annihilation rate in monomers. 

The highly mobile excitations and the energy transfer from monomers to CC-

aggregates are considered beneficial for the exciton diffusion step in OPVs. Since the 

absorption spectra of the 15 wt% PMMA films (Figure 5.4) are similar to those of 

DBSQ(OH)2:PCBM bulk heterojunction films (Figure 5.3), we argue that there is a similar 

monomer and CC-aggregates population; the 15 wt% PMMA is a good analogue for 

DBSQ(OH)2 in a working device. Thus, we think the photophysical processes in the BHJ 

films are similar to those in the PMMA films, except that charge dissociation can of course 

occur at the donor-acceptor interface. Highly mobile excitations in SQ phases (both 

monomer and CC-aggregates) will enable an efficient exciton diffusion to the SQ-PCBM 

interface and subsequently an efficient charge dissociation. This may explain the high 

efficiency achieved with the amorphous, as-cast devices, where previously we thought the 

exciton diffusion may have been substantially hindered by the disordered and amorphous 

domains. 

Upon annealing the BHJ films, SQ monomers and CC-aggregates transform into ICT-

aggregates with a double-hump absorption profile (see Figure 4.4b). We note that the 

annealed devices yield a lower external quantum efficiency and a decreased PCE. Here, 

we think the TA experiments for annealed SQ neat films might give some insight to the 

photophysics of the ICT-aggregates that could explain the inferior performance of such 

aggregates in OPVs. This is highlighted as a future direction that is beyond the scope of 

this dissertation. 
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Chapter 8. SUMMARY AND CONCLUSIONS 

In this dissertation, we have investigated the effect of squaraine aggregation on organic 

photovoltaic device efficiencies, with development of a deeper understanding of the 

intermolecular interactions and excited state structures and dynamics of the squaraine 

aggregates. The aim has been to provide guidance for developing future squaraine 

chromophores with desirable aggregation properties for efficient organic photovoltaics. 

For this purpose, both experimental and theoretical results have been provided in this 

dissertation.  

In the experiments, the solar cell devices have been fabricated to study the effect of 

donor-acceptor blend ratio, post-annealing treatment, and squaraine molecular structures. 

In Chapter 3, the parent squaraine molecule DHSQ(OH)2, was tested for its potential in 

OPV devices. In Section 3.2, comprehensive absorption studies have been carried out and 

we have recognized a mixed SQ monomer and aggregate population in the bulk 

heterojunction films when blended with PCBM. In particular, the DHSQ(OH)2 monomer 

in a “solid solution” of PCBM exhibits an absorption peak at 678 nm, slightly red shifted 

from the monomer peak at 650 nm in chloroform solution. On the other hand, the 

DHSQ(OH)2 aggregate showed two-peak absorption at 550 nm and 660 nm, resulting in a 

significantly broadened absorption spectrum as compared to the monomer. The 

overlapping absorption of the monomer and aggregates at 660-680 nm poses some 

difficulties when considering the relative populations of these two species. However, 

qualitative estimation the relative population can nevertheless be drawn based on the ratio 

of the two peaks of the aggregate (Figure 3.3). Our work thus clarifies the debate within 

the literature59,126,131,132,146,149 over the nature and relative population of aggregates formed 
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in SQ:PCBM systems. For neat films, DHSQ(OH)2 demonstrates a fast aggregation upon 

spin casting with little monomer population present in the films. The presence of PCBM 

induces a disruption of DHSQ(OH)2 aggregation, leading to an increasing population of 

SQ monomers as the PCBM weight ratio is increased. Thus, the donor-acceptor blend ratio 

strongly impacts the relative monomer-aggregation population in the OPV devices. When 

thermally annealed, the movement of molecules in the bulk heterojunction has been 

activated, leading to SQ aggregation (Figure 3.3) and phase separation. 

In Section 3.3, through thin film XRD studies, we further confirmed that the 

DHSQ(OH)2 aggregates are crystalline while monomers are amorphous. This suggests that 

the exciton diffusion and charge transport might be more efficient in the aggregated 

domains. The crystallinity of the film was shown to depend on the relative populations, 

which can be altered by the blend ratio. The phase-separated domain sizes have been 

characterized by TEM. We have found that thermal annealing can induce extensive phase 

separation between DHSQ(OH)2 and PCBM, leading to a formation of domains that are as 

large as 100-200 nm, more than 10 times larger than the measured exciton diffusion length 

of a similar squaraine.121 Our analysis of annealed films demonstrates a delicate trade-off 

between increased crystallinity and larger domain sizes. 

Organic solar cell efficiencies can be well correlated with the BHJ morphology and 

the DHSQ(OH)2 aggregation. The optimized efficiency was achieved by first blending SQ 

with high fullerene content to disrupt the aggregation and thus to reach a finely mixed 

morphology, and then thermally annealing the BHJ films to activate SQ aggregation while 

preventing extensive phase separation. In order to find the “sweet spot” for annealing 

temperature, thermal behavior of the BHJ was characterized and we discovered a phase-
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separation onset temperature of 137 0C for DHSQ(OH)2:PCBM blends. Thus, a guideline 

for device optimization for small squaraine molecular donor and fullerene acceptor BHJ 

solar cells has been provided. 

Then, the solar cell fabrication is improved by patterning ITO substrates, use of a better 

absorbing PC71BM acceptor and by replacing acidic PEDOT:PSS with MoO3 as the 

transport layer. The efficiencies of the devices were significantly improved.  

In Chapter 4, a series of SQ molecules with changing alkyl side groups were 

investigated for OPV applications. These molecules have very similar photophysical 

properties in solution as well as in neat films, as expected for their shared conjugation 

backbones and similar crystal structure (adopting a slip-stack packing geometry). 

However, when they were blended with fullerenes, significant differences in aggregation, 

film crystallinity and BHJ morphology became apparent. The absorption spectra of 

SQ:PCBM blend films demonstrated the disruption of aggregation in the presence of 

fullerene. For DHSQ(OH)2, less disruption was observed than for DPSQ(OH)2 and 

DBSQ(OH)2. Such differences in aggregation disruption correlate with changes in film 

crystallinity and BHJ morphology, both of which drive the efficiency of OPV devices. 

In XRD studies in Section 4.4, we found that the neat films are crystalline with a 

diffraction peak corresponding to the crystal (001) plane. The extent of crystallinity of the 

blend films were found to be in the order of DBSQ(OH)2 > DPSQ(OH)2 > DHSQ(OH)2, 

corresponding well with the aggregate population in the films, observed through absorption 

spectroscopy. The hole mobilities of SQ neat films were measured to be on the order of 10-

4 ~ 10-5 cm2/V·s, with DBSQ(OH)2 taking a higher value. Nevertheless, the mobility 

dropped when SQ aggregation (and crystal packing) was disrupted in blends. In particular, 
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the mobility dropped by over 10-folds for DBSQ(OH)2:PCBM blends, while the SQ with 

longer side chains were able to retain a higher mobility in blend films. As a result, the hole 

carrier mobilities of SQ:PCBM blend films were in the order DHSQ(OH)2 > DPSQ(OH)2 

> DBSQ(OH)2, the exact reversed order when compared to that in neat films. This trend 

was observed due to the higher crystallinity associated with the DHSQ(OH)2:PCBM blends 

when the aggregation of DHSQ(OH)2, through decreased SQ-Fullerene chemical 

compatibility, was less disrupted by the fullerene. 

Charge mobility is a critical factor for the solar cell efficiency. Previous studies70,208,209 

have suggested a required threshold mobility of electrons and holes on the order of 10-4 

cm2/V·s for efficient OPV devices with high fill factor. While high electron mobility in 

fullerenes has been reported by many groups, on the order of 10-3 ~ 10-4 cm2/V·s,57,210,211 

the hole mobility in the donor phase is often measured to be the lower limit of the bipolar 

charge transport in small molecule donor-fullerene bulk heterojunction solar cells.36,70,97,165 

Thus, based on the mobility results, DHSQ(OH)2 was expected to be a better performing 

donor materials for OPV devices. 

However, the OPV efficiencies from these three SQ molecules contradicted the 

mobility results. DBSQ(OH)2 yielded the best OPV efficiency of 5.6% even though its 

mobility dropped by almost 10-fold upon blending with fullerene, with that hole mobility 

being the lowest among the three SQ molecules studied. This could only be explained by 

the BHJ morphology. For longer side chain SQs, the phase separation must have occured 

during the spin casting (even without thermal annealing, see Chapter 3). The extensive 

phase separation reduced the interfacial area between donor and acceptor, limiting the 

exciton diffusion and charge dissociation efficiency. DBSQ(OH)2, on the other hand, 
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mixed well with fullerene and the finely mixed, amorphous blends can efficiently convert 

excitons to free charges. 

These results culminated in an ongoing strategy to inhibit phase separation between 

SQs and fullerenes. One might think that the SQ-fullerene mixing can be further improved 

by continually reducing the length of the alkyl side groups. Nevertheless, we found that the 

SQ with propyl alkyl groups (i.e. DPrSQ(OH)2) was quite insoluble in conventional 

organic solvents. The quality of spin cast films was significantly affected by the solubility, 

resulting in a lower efficiency as compared to DBSQ(OH)2. 

Wei et al. have studied OPV devices employing DiBSQ(OH)2,
40,41,121 a similar 

squaraine. When comparing the iso-butyl to the linear butyl groups (in DBSQ(OH)2), the 

optimized solar cell devices exhibited similar efficiency, ~ 5%. Different from 

DBSQ(OH)2, thermal or solvent annealing was a necessary step to achieve such solar cell 

performances for DiBSQ(OH)2, and the unannealed BHJ devices only yielded ~ 2% with 

a significantly lower Jsc.41 For our DBSQ(OH)2-based devices, the optimized efficiency 

was achieved without any additional post-treatment step. Furthermore, we obtained an 

immediate decrease in device efficiency when our devices were mildly annealed (Table 

4.5). This different response of device performance to annealing treatment is attributed to 

the different aggregation propensities of these two SQs. There would be more steric 

hindrance induced by the bulkier isobutyl chains to hinder the aggregation of DiBSQ(OH)2. 

We found that our DBSQ(OH)2:PC71BM BHJ films showed a more dramatic change in 

absorption spectra upon annealing due to the SQ aggregation than that of 

DiBSQ(OH)2:PC71BM films. Nevertheless, the marked differences between these two very 

similar squaraine molecules is interesting and is worth further investigation.  
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In the second half of this dissertation (Chapter 5 and 6), we performed a theoretical 

investigation on DBSQ(OH)2 aggregates that are relevant to OPV. Specifically, we 

identified two types of aggregates in as-cast and annealed BHJ films, each associated with 

different absorption spectra. The absorption spectrum of the first type of aggregate was 

described as a broader monomer spectrum with a higher 0-1 vibronic transition peak. The 

second type of aggregates has a unique “double-hump” absorption spectra, which is often 

mentioned in this dissertation. The difference in optical spectra was shown to originate 

from the changes in the electronic state configurations of the aggregates. Therefore, even 

for the simple SQ:PCBM binary system, there will exist multiple types of donor acceptor 

interface. The exciton dissociation is largely controlled by the energetics at the interface, 

as therefore would the OPV efficiency. 

Here, we constructed a theoretical model to extract the information about the excited 

state structures of different types of aggregates. For theoretical work in Chapter 5 and 6, 

an essential-state model has been developed with a full consideration of both Coulombic 

coupling (CC) as well as intermolecular charge transfer (ICT) coupling. The essential-state 

model, has recently been intensely studied and expanded by Painelli et al.107–114,184,212 It 

uses a minimum number of diabatic states to represent the charge resonant structures of the 

multipolar chromophore. Low-energy physical descriptions (i.e. absorption, fluorescence, 

etc.) can be obtained by transforming the diabatic states into adiabatic vertical states via 

Hamiltonian diagonalization. The ESM realized an accurate description of symmetry 

breaking, solvatochromism effects and other puzzling problems associated with these 

multipolar molecules (including squaraines107,108) that were previously difficult to obtain 

via the widely used exciton model.  
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Beyond Painelli’s work, our model focused on the intermolecular interactions in the 

SQ aggregates. The model has not only accounted for the Coulombic interactions in the 

aggregates, but also recognized the contribution from the intermolecular charge transfer 

(ICT) states. In particular, we found that the Coulombic coupling dominates the 

intermolecular interactions in the first type of aggregate (hence this is referred to the CC-

aggregate). In the second type of aggregate (i.e. the ICT-aggregate), additional charge-

separated diabatic states have been incorporated due to the intermolecular charge transfer 

from the donor moiety (i.e. nitrogen atom) of one molecule to the acceptor moiety (i.e. 

squarylium) of the neighboring molecule.  

 Chapter 5 focused on constructing the ESM for the DBSQ(OH)2 CC-aggregate. In 

SQ:PCBM blend films, the non-negligible interactions between SQ and PCBM can induce 

a shift in absorption spectra (as illustrated in Figure 3.3). Thus, in order to selectively 

investigate SQ-SQ interactions, we blended an inert polymethylmethacrylate (PMMA) 

polymer, instead of PCBM, with SQ to control its aggregation. By changing the SQ weight 

percent with respect to PMMA, we controlled the average inter-squaraine distance, which 

dictates the coupling strength in the aggregate. The absorption spectra of SQ in PMMA 

solid solution films demonstrated a gradual change from monomer-like spectra to CC-

aggregate spectra similar to those in the SQ:PCBM blends (Figure 5.4).  

The Hamiltonian of the CC-aggregate was constructed based on squaraine monomers. 

A trio of diabatic states describes the neutral and zwitterionic charge resonant structures 

for a single molecule. The Coulombic interactions were calculated by the point charges 

residing on the nitrogen atoms or the central squarylium rings between zwitterionic 

molecules in the aggregates. By assuming a similar aggregate geometry as the single crystal 
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structure, with enlarged intermolecular distances (as would be expected in such PMMA 

films), the absorption spectra of DBSQ(OH)2 in PMMA films can be well reproduced with 

the model with all simulation parameters taken from the monomer, and from the 

literature.107,108 The calculations of fluorescence spectra indicated that these CC-aggregates 

are analogous to the H-aggregates of the exciton model. The vibronic progression in the 

calculated spectra also exhibited an oscillator strength gain (loss) in the 0-1 (0-0) vibronic 

peak. This redistribution of vibronic peak intensities was also seen in the H-aggregate 

modeled using the exciton model. It is also consistent with the experimental observation of 

the increasing 0-1 vibronic shoulder in the absorption spectra of PMMA films with 

increasing SQ weight percent. 

The Coulombic ESM reproduced the PMMA-film absorption spectra very well. Yet, 

it failed to do so for the neat or annealed blended films (Figure 5.7). This is because the 

intermolecular charge transfer occurs in the closely packed SQ ICT-aggregates which 

mostly exist in neat or annealed blended films. Four ionic diabatic states, in addition to the 

original three charge neutral diabatic states, needed to be considered when the ICT is 

enabled, which necessitated two additional simulation parameters, 𝜂𝐶𝑇 and 𝑡𝐶𝑇. These two 

adjustable parameters were set to best reproduce the absorption spectra. By using the new 

and complete Hamiltonian in Equation (6.1) for ICT-aggregates, we achieved an excellent 

consistency between simulated and experimental spectra, as shown in Figure 6.3. 

The origin of the “double-hump” absorption lineshape is well understood through this 

new model. Each of the two broad absorption peaks consisted of several sub vibronic peaks 

as shown in Figure 6.3. By taking out the vibrational and vibronic Hamiltonians, we found 

two electronic states that are “bright” to the ground state. These two states were 
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qualitatively understood to be the product of the coupling between |𝑔𝑐⟩𝐴𝑆  and |𝑎𝑐1⟩𝐴𝑆 

states. Of note, the |𝑔𝑐⟩𝐴𝑆 state is the original optically allowed Frenkel state in the CC-

aggregate. The |𝑎𝑐1⟩𝐴𝑆 state, on the other hand, is a “dark” state that cannot be populated 

by the transition from the ground state. The coupling (with a matrix element of 𝜏 =

2𝑡𝐶𝑇𝑡𝑍/√𝜂𝑍
2 + 8𝑡𝑍

2) between the Frenkel state and the dark |𝑎𝑐1⟩𝐴𝑆 state resulted in two 

new states that both contain the |𝑔𝑐⟩𝐴𝑆  state components. Hence, both new states are 

optically allowed. 

Finally, in Chapter 7, the excited state dynamics of DBSQ(OH)2 in chloroform 

solution and in PMMA solid solutions were investigated using femtosecond transient 

absorption spectroscopy. The monomer in extremely dilute PMMA films showed the same 

excited decay dynamics as that in fully solvated monomers in chloroform solution. Two 

excited state absorption peaks were found at 440 nm and 503 nm. The excited state 

absorption, ground state bleach and stimulated emission signals decayed with the same 

time constant, indicating that only monomer excited states are populated upon 

photoexcitation. As soon as the concentration of SQs was increased, the excited state 

lifetime was measured to be significantly shorter than the 0.01 wt%. The fast decay of the 

monomer excited state lifetime was attributed to the transfer of excitation from monomer 

to CC-aggregate formed in those PMMA films, as well as to a singlet-singlet annihilation 

process. At a longer time scale, the transient absorption spectra evolved from that of the 

monomer to the CC-aggregate, with an excited state absorption peak at 460 nm and a 

ground state bleach at 600-700 nm featuring a higher 0-1 vibronic peak, in excellent 

agreement with the previously simulated CC-aggregate spectra (Figure 5.5). 

Singlet-singlet annihilation is observed in both monomer and CC-aggregate, 



  

170 

 

indicating that the excitons formed in those systems are highly mobile. The mobile 

excitations and the energy transfer from monomer to CC-aggregate are considered 

beneficial for the exciton diffusion step in OPVs. This explained the high efficiency 

achieved with as-cast amorphous DBSQ(OH)2:PC71BM bulk heterojunctions. 

Both theoretical and experimental works in this dissertation have led to some 

promising future directions. In the theory part, we have identified two types of 

intermolecular interactions: Coulomb coupling (CC) and intermolecular charge transfer 

(ICT) coupling. We have also developed a deep understanding of the impact of ICT states 

on excited state structures of SQ aggregates. Yet, the effect of ICT coupling on the excited 

state dynamics is unclear. Nicholas Hestand et al.29 have theoretically shown that the 

exciton mobility can be dramatically altered by the interference between Coulombic 

coupling and intermolecular charge transfer coupling in the molecular aggregates. 

Specifically, when these two intermolecular interactions constructively (destructively) 

interfere, the exciton movement is significantly enhanced (hindered). Here, in order to 

explore the impact of ICT on exciton mobility in SQ aggregates, one method is to link the 

essential-state model to the exciton model (which was used for exciton transfer efficiency 

calculations in the literature29).  

In addition, the ESM contains three diabatic electronic states and N2 vibronic states 

(where N-1 is the maximum vibrational quanta on each molecular arm). Thus, the basis set 

becomes large when considering aggregates. Due to computational restraints, any 

aggregate with a size larger than a trimer cannot be effectively modeled with acceptable 

computational time. A vibronic exciton model has advantages in this regard since the 

modeled chromophore consists of just two electronic levels with the ground and excited 
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state nuclear potentials represented by shifted harmonic wells. Thus, by linking the ESM 

to the exciton model, we can potentially increase the aggregate size.  

To accomplish this, the critical first step is to link the ESM parameters to the 

parameters in the exciton model. Since the ESM is constructed based on diabatic states, the 

parameters are effectively diabatic in nature, which is different from the adiabatic 

parameters in the exciton model. Thus, these parameters need to be “translated” to the 

effective parameters in the exciton model.  

For the transient absorption experiment, the excited state dynamics in SQ ICT-

aggregates is of particular interest as a comparison with the dynamics of the CC-

aggregates. In the solar cell devices, we observed that the power conversion efficiency of 

the devices immediately decreased when DBSQ(OH)2 formed ICT-aggregates. This 

decrease in efficiency cannot be fully explained without knowing the exciton dynamics in 

these ICT-aggregates. Thus, a transient absorption investigation of the DBSQ(OH)2 ICT-

aggregates in annealed neat films might provide additional insight of the inferior 

performance of such aggregates in OPV devices. 
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Appendix A. SUPPORTING FIGURES 

 

 

 

Figure A1 Absorbance spectra of DBSQ(OH)2 (top), DPSQ(OH)2 (middle) and 

DHSQ(OH)2 (bottom) neat films before and after annealing at 90 0C. Films are spin cast 

from chloroform solution ([SQ] = 12 mg/mL) at a spin speed of 1500 RPM. For 

DPSQ(OH)2 and DHSQ(OH)2 neat films, there is little change in absorbance spectra 

after thermal annealing; for DBSQ(OH)2 neat film, the two absorbance peaks at 565 nm 

and 648 nm further split to 555 nm and 660 nm, respectively, after 5 min annealing at 

90 0C.  
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Figure A2  Representative J-V curves (blue dots) as well as the space-charge limited 

current (SCLC) model fitting lines (red line) for DBSQ(OH)2, DPSQ(OH)2 and 

DHSQ(OH)2 neat film hole-only devices. The device structure is ITO/MoO3 (8 

nm)/SQ/MoO3 (8 nm)/Al (100 nm). The thickness of the SQ neat layers and the mobility 

values are indicated. 
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Figure A3  Absorption spectra of 80% DMSO:20% H2O (by volume) for DBSQ(OH)2, 

as a function of temperature. Two isosbestic points are found at 595 nm and 672 nm, 

confirming the interrelation between monomer and aggregate, with the double hump 

feature associated with squaraine aggregate. 
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Appendix B. STABILITY STUDY OF SQ-BASED OPV DEVICES 

For real application of OPV, the stability of the devices is, without a doubt, an 

important factor. SQ materials are known for their stability against moisture and oxygen, 

allowing the active layer to be solution processed in ambient condition.213 In this section, 

we test the stability and thermal behavior of our SQ molecules using thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC). We also tested the stability 

of our solar cell devices with encapsulation. 

For TGA results in Figure B.1a, the onset degradation temperature is measured to be 

260-265 0C for DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2. DPrSQ(OH)2 exhibits a 

slightly higher onset degradation temperature of 283 0C. A higher onset degradation 

temperature would be more advantageous for device stability, yet the solubility limitation 

associated with DPrSQ(OH)2 is a drawback. 

 

Figure B.1 a) Thermogravimetric analysis and b) differential scanning calorimetry 

results of SQ materials. The asterisks highlight a unique endothermic peak at 100 0C of 

DBSQ(OH)2 powder solids. 
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The melting and crystallization temperatures of SQ materials decrease as the side chain 

length is increased. The onset melting temperatures are 235 0C, 225 0C and 205 0C 

respectively, and the onset crystallization temperatures are 198 0C, 181 0C and 178 0C 

respectively for DBSQ(OH)2, DPSQ(OH)2 and DHSQ(OH)2 respectively. We consider 

that as the side chain length is increased, the overall rigidity of the molecule is reduced. 

Thus, an enhanced flexibility towards diffusion of molecules in the BHJ films is expected 

when the molecule has longer side groups. 

Another interesting observation is that there is an endothermic peak at ~ 100 0C for 

DBSQ(OH)2 powders. This suggests that the solids may undergo a phase transition process 

that absorbs energy. Indeed, we also observed a peak shift in in situ high temperature XRD 

(Figure B.2). In the in situ X-ray diffractograms, DBSQ(OH)2 powders exhibit three major 

 

Figure B.2 In-situ high temperature X-ray diffraction (XRD) patterns of DBSQ(OH)2 

powders during a thermal ramping from 30 0C to 150 0C, then cooled back down to 30 
0C.The powder XRD pattern at 30 0C matches well with the calculation based on the 

single crystal structure (data not shown). The crystal planes corresponding to different 

peaks are indicated in initial 30 0C films. 
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peaks: 2θ = 6.50, 2θ = 11.40 and 2θ = 14.30, corresponding to (0 0 1), (0 1 1̅) and (0 1 2) 

plane of the crystal structure. When temperature is raised to 90 0C, new diffraction peaks 

are emerging at 2θ = 5.50, 2θ = 10.30 and 2θ = 13.30. Although the corresponding crystal 

planes cannot be determined due to the lack of single crystal structure, the decreased 2θ 

values suggest the unit cell spacing is larger for this new polymorph. When temperature is 

raised to 120 0C, the entire material seems to have completed the phase transition. After 

the material is cooled down from 150 0C to room temperature, the DBSQ(OH)2 powder 

has changed back to its original phase. These data suggest that DBSQ(OH)2 can undergo a 

phase transition at 90-120 0C, which is fully consistent with the DSC data shown in Figure 

B.1. 

To improve the stability of solar cell devices, we used a light curable epoxy and glass 

coverslips (Ossila Inc.) to encapsulate DBSQ(OH)2:PC71BM bulk heterojunction solar 

cells (see Figure B.3). This way, the solar materials are sealed from oxygen and moisture, 

which can react with organic materials as an oxidation reaction.17 The device stabilities 

with and without encapsulation are shown in Figure B.3. 

 

Figure B.3 A photo of organic photovoltaic devices with and without encapsulation by 

epoxy and coverslips. It is seen that for cells with encapsulation, the organic layer is 

dissolved when exposed to the epoxy, but the organic layer underneath the aluminum 

cathode is intact as demonstrated by the comparison of the back side of the devices. 
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The detailed investigation steps are as follows. The fabrication and testing of solar 

cells are conducted in a nitrogen-filled glove box to minimize the material degradation due 

to the reaction with oxygen or moisture. After we have fabricated the devices, we test them 

immediately (i.e. “freshly made” in Table B.1). Then we encapsulate it with the epoxy and 

glass coverslips and test them right after encapsulation (i.e. “Encap” in Table B.1). For 

aging of the encapsulated devices, the cells are tested 1 day, 2 days and 2 weeks after being 

stored in ambient condition. For comparison, devices without encapsulation are also tested 

after 1 day of storage in ambient condition (the efficiency dropped so dramatically that the 

subsequent testing was determined to be unnecessary). 

The freshly made devices have the highest averaged efficiency of 5.13% (note that it 

is slightly higher than previously obtained in Table 4.4 due to the use of a slightly lower 

active layer solution concentration of 12 mg mL-1). We have noticed that the UV-curable 

epoxy used for encapsulation can actually dissolve the SQ:PCBM active layer films. 

Immediately after the solar cells are encapsulated, we see a drop in efficiency from 5.13% 

to 4.39% (see Table B.1). We noticed that the drop in efficiency only comes from the 

Table B.1 The device stability investigation of DBSQ(OH)2:PC71BM BHJ solar 

cells with encapsulation. 

Conditions Jsc, mA/cm2 Voc, V FF PCE, % 

Freshly made 10.47 (±0.31) 0.84 (±0.01) 0.58 (±0.01) 5.13 (±0.17) 

Encap 10.05 (±0.19) 0.79 (±0.01) 0.55 (±0.01) 4.39 (±0.08) 

1 day 9.97 (±0.20) 0.80 (±0.01) 0.54 (±0.01) 4.35 (±0.12) 

2 days 9.77 (±0.23) 0.79 (±0.01) 0.54 (±0.01) 4.20 (±0.13) 

2 weeks 9.67 (±0.27) 0.79 (±0.01) 0.54 (±0.01) 4.15 (±0.19) 

1 day 3.77 (±0.64) 0.81 (±0.01) 0.31 (±0.02) 0.96 (±0.22) 

 



  

199 

 

decreased short circuit current from 10.05 mA cm-2 to 9.67 mA cm-2, while open circuit 

voltage and fill factor remains unchanged. A slower efficiency drop is expected as the 

devices age for a longer time. As a comparison, the un-encapsulated solar cells show 

dramatic deterioration in efficiency from 5.13% to 0.96% only after 1 day at ambient 

condition. The representative J-V curves after aging the devices are shown in Figure B.4.  

In a short summary, we have investigated the stability of the SQ materials and SQ-

based OPV devices. According to TGA results, the SQ materials are stable when heated to 

260 0C in inert nitrogen environment (see Chapter 2 for experimental details). When 

exposed to air, the solar cell devices show dramatic degradation as shown in Figure B.4. 

Nevertheless, the solar cell devices show long-time stability after encapsulation, 

demonstrating that SQ materials have potentials for real world OPV applications. 

  

Figure B.4 Representative current-voltage curves of the DBSQ(OH)2:PC71BM BHJ 

devices aged for 2 weeks with and without encapsulation.  
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