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Abstract

Humanity is currently facing a global energy crisis. This is due to the shortage in the con-

ventional energy resources while the demand for energy is rising. In response to this cri-

sis, research in designingmore energy efficient systems has gained significant importance.

The Microgrids (MGs) are one of the main key elements in giving significant momentum

to efficient decentralized energy generation.

From the perspective of MGs power management, economical scheduling for generators,

energy storage, and demand loads are critical. Performance optimization processes are

needed to minimize the operating costs while considering operational constraints.

In this thesis, the optimal power flow problem for managing energy sources with storage

devices is presented for dc microgrids. The power management model has been exam-

ined in various scenarios. One of them is based on a network of a six-bus power system,

including an energy storage device coupling at a certain bus. The other scenario is based

on the same model but including more energy storage devices.

After analyzing the results of these scenarios, several conclusions have been made such

as when the energy storage should charge/discharge to minimize costs. The study shows

the feasibility of optimal power flow operation in DC microgrids.
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Nomenclature

N The set of buses

G The set of generation buses.

E The set of transmission lines.

n ∼ j Buses n and j connected by a line.

H Denotes hermitian transpose.

G The graph contains a set N of nodes and a set E of edges.

C The set of Complex numbers.

δ Voltage phase angles.

|V | Voltage magnitudes.

Pn Active power at bus n.

Qn Reactive power at bus n.

Vn Complex voltage at bus n.

ynj Admittance of line joining buses n and j.

Sn The net power injection at bus n.

In The current at bus n.

x The vector of state variables.

u The vector of control variables.

� 0 Positive Semidefinite

SDP Semidefinite Program.
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SOCP Second-Order Cone Program.

LP Linear programming.

QP Quadratic programming.

NLP Nonlinear programming.

IPM Interior point method.

SLP Sequential Linear Programming.

SM Simplex Method.

LIM Lambda-iterative Method.

SQP Successive Quadratic Programming.

GT Gradient Techniques.

NT Newton’s Techniques.

KKT Karush–Kuhn–Tucker.
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1 | Introduction

I n recent decades, electrical power systems have been significantly changing whereas

fixed power generation has been moving towards more distributed generation. The

increase in power demand and environmental concerns about conventional power gen-

eration are the main reasons for this transformation. An additional critical stimulus is

the substantial amount of energy losses in conventional methods. When power is pro-

duced from fossil fuels such as coal, hydrocarbons, fuel oil or natural gas, 40%–70% of the

energy in the current resources is wasted as heat. Additionally, 2% and 4% is lost in trans-

mission lines and distribution, respectively. Generally, as shown in Fig. 1.2.a, only 33% of

the energy input to generation makes it to the user as electricity. Nowadays, distributed

generation systems can be placed beside the load to utilize lower capacity of power gen-

eration resources, such as renewable energy sources, as seen in Fig. 1.2.b. Solar and wind

energy are themost popular types of renewable energy sources that can be integrated into

modern power systems and microgrids (MGs) [1, 2], and [3]. Microgrids consist of a col-

lection of such distributed generation systems coordinated with each other in a way that

increases the capacity of the system and improves the power quality [4, 5, 6, 7], and [8].
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Figure 1.1: (a) Energy losses in traditional power grid

Figure 1.2: (b) Concept of new power generation systems
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There are three main advantages associated with microgrids, which can be classified as:

technical, economical, and environmental. From a technical perspective, distributed gen-

eration systems can support the energy of remote places and provide very high efficiency

while lacking the fixed source vulnerability of large-scale networks, which is a factor in

the failure of power systems [9], and [8]. From the economic point of view and according

to market research studies, distributed generation minimizes line losses and interruption

costs for consumers while reducing fuel cost [10]. The environmental advantages of mi-

crogrid systems are investigated in [11] and include reducing the emissions of pollutants

and greenhouse gases, smaller physical footprint, and easier integration of clean energy

sources.

The general configuration of a DC microgrid is shown in Fig. 1.2). Indeed, DC micro-

grids have several advantages over their AC counterparts such as improving the energy

efficiency and the performance of power controllers and energy management schemes for

regulating power flow [12, 13], and [14]. In addition, some devices such as wind turbines,

electric vehicles, and electronic appliances are more easily integrated into DC than AC

networks since these devices are already either DC in nature or have a different natural

frequency than the primary grid. DC microgrid systems are very durable and efficient in

handling voltage sags and frequency variations in the primary grid as compared with AC

systems, since DC microgrids do not need frequency synchronization.

In microgrids, energy sources may be controlled by a power management system to op-

timize the power flow within the network. The objective of power management depends

on the mode of operation such as grid connected or island modes. The main goals of

the power management in grid connected mode is to stabilize the system and reduce the

electricity price in the main grid. In island mode, the main objective is to optimize the

microgrid operation by minimizing the cost of local generation [15], and [16].

Increasing the efficiency of power and the maximum utilization of renewable energy is
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fundamental in modern power systems. Energy storage can thus be an excellent technol-

ogy for this purpose [17], and [18]. When microgrids are connected to the main grid with

renewable resources, the energy storage guarantees none of the energy generated is lost.

For instance, if a renewable energy system such as wind is integrated to a DC microgrid

without energy storage devices, the surplus power produced will be wasted if the load is

not high enough. Only through the assistance of a dynamic energy storage system can util-

ities or system owners ensure they can store that energy for future use. Thus, microgrids

with energy storage are cost effective solutions to lower overall energy costs and improve

the grid’s efficiency.

1.1 Energy Storage Systems

Studying energy storage systems from a power management perspective becomes signif-

icantly important for several reasons. Some of these main aspects are sizing of the energy

storage, choice of the type of energy storage (e.g. lithium ion, flywheels, etc.) and optimal

charging/discharging strategies.

One of the earliest types of energy storages is hydro pumps, where the power is stored in

the form ofwater in a reservoir, whereas batteries store electrical energy in their chemistry.

Moreover, energy storage is a significant microgrid component which helps the main grid

in several ways such as ancillary services including load following, operational reserve,

renewable integration and relieving congestion and constraints. Indeed, energy storage

units must have the capability to respond sufficiently rapidly to transient power changes

in grid-connected mode and to keep themselves fully charged. There are also many other

applications that can utilize energy storage devices in microgrids, including consumers

energy management (minimize cost) and integration of renewable energy sources.

The control of such energy storage is crucial and implementing a three-level hierarchical
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control system can be used for optimum performance. For microgrids and energy storage

device systems, hierarchical control can consists of three levels beginning with “primary”

(for imitating physical behaviors to ensure system stability), “secondary” (for synchroniz-

ing control loops to smoothly connect or disconnect the microgrid from the distributed

generation system), and “tertiary” (for controlling the power flow between the microgrid

and the main grid) control levels. In this study, we focus on the tertiary control level,

which relates to the control of power/energy of the microgrid resources [19].

In particular, tertiary control can be achieved solving an optimal power flow (OPF) prob-

lem: a type of optimization process with the goal of minimizing an objective function

(e.g. power generation cost, losses, etc.), subject to network and physical constraints [20],

and [21]. However, there are significant challenges in solving OPF problems due to its

nonlinearity, non-convexity, and large scales [22]. Several numerical solution techniques

are available for solving this nonlinear optimization problem. Although these techniques

have been found to have capability and reliability limitations [23, 24, 25, 26, 27], and [28].

In the past decade, convex and conic relaxations have been proposed to overcome these

limitations in particular for AC microgrids [29, 30], and [31].

Recently, semidefinite programming (SDP) techniques have been employed to solve the

OPF problem, as described [32]. This approach is advantageous compared to the other

techniques as it is convex, and easily available solvers exist for problems ofmoderate/large

size. In some cases, the solution is globally optimal [33, 34]. The work of [35] has shown

proof of concept using convex programming techniques, although the work only covers a

few simple, limited systems [36].
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1.2 Thesis Outline

Following the introduction in Chapter 1, Chapter 2 introduces the OPF problem. We be-

gin by discussing the formulation and defining the general structure of an OPF problem,

objective functions, state and control variables, and constraints. Thereafter, we present the

difficulty of the OPF problem and the techniques to address it that are of common inter-

est in towards solving a global optimization problem. In Chapter 3, we formulate the OPF

without energy storage. In Chapter 4, we include energy storage into theOPF formulation.

In Chapter 5, we test the apply the semidefinite (SDP) relaxation technique on standard

test networks for the problem using a strategy based on a convex semi-definite program

for the OPF problem with energy storage. Then we conclude the thesis and explore a

future work in Chapter 6.
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2 | AC Optimal Power Flow Problem

AC Power flow (PF) refers to the power network solution that contains complex voltages,

active and reactive power, and complex currents at every bus in the specific power system

[37]. In the AC PF problem, the relations between voltage/current and active/reactive

power is nonlinear. Hence, obtaining a feasible set of solutions can be challenging due to

this nonlinearity.

Moreover, the Optimal Power Flow (OPF) problem is an optimization problem with the

main goal of minimizing the total cost of generation while at the same time meeting the

power flow relationships at every bus. Hence, this problem is nonlinear and non-convex

which complicates its solution. Improvement and redesign of power networks has in-

creased the network complexity. For example, the onset of independent power and the

development and production renewable generation in smart grids further extended the

scope of OPF. Several contributions have been made to reformulate and improve the OPF

formulation to be more efficient to handle the non-convexity problem under various hy-

potheses [38].

OPF problems play an essential role in power network operations and design. OPF can

minimize power generation cost and losses, subject to network and physical constraints

[20], and [21]. This optimization is indispensable in power network operations lasting

minutes, hours, or even up to one day. The formulation of the OPF provides the optimal

electrical response of the power transmission system to a specific set of power injections
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and loads.

2.1 Formulation of the Optimal Power Flow Problem

As mentioned previously, the Optimal Power Flow (OPF) problem involves minimizing

the total cost of generation while ensuring that the power flow equations are met at every

bus. In addition, generation, voltage, and other constraints can be imposed.

In this chapter, a detailed overview of the OPF problem will be presented. This formula-

tion will be used and expanded in the next subsections to describe algorithms that will be

used for solving the OPF problem.

2.1.1 General Structure

The standard optimal power flow problem can be formulated as follows [38, 39], and [40]:

min
x,u

m∑
n=1

fn(x, u) (2.1)

subj. to (2.2)

g(x, u) = 0 (2.3)

h(x, u)− ≤ h(x, u) ≤ h(x, u)+ (2.4)

Where, fn(x, u) are cost functions, x is a vector of state variables, and u a vector of control

variables, which are usually the independent variables in an OPF. The equality constraints

(2.3) typically include the power flow equations at every bus. The inequality constraints

(2.4) physical bounds on the state and control variables.
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2.1.2 Objective Function

Themost common use of the OPF objective function is to reduce the total cost of the gener-

ated power, occasionally taking an account active transmission losses in the whole or part

of the power network as well. For the convergence, the generation cost functions are fre-

quently approximated by either linear or quadratic functions [41]. In some situations, the

cost is a function of both the generation active and reactive power in the network. Other

types of costs which can be included in the objective function include power transfer abil-

ity, investment cost, voltage profile, load shedding, environment impact, etc [38].

2.1.3 Variables

Analysis of the OPF equations reveals two types of variables: state variables and control

variables, also known as dependent and decision variables, respectively. In general, the

vector states x in the OPF problems describes the electrical state of the network. These

can be represented as voltage phase angles, voltage magnitudes, active power output of

the slack bus only, and reactive power of all generations at each bus, including the power

loads and line flows. These state variables can be represented as continuous in nature. On

the other hand, the control variables u in the OPF problems normally contain a subset of

the state variables and also variables describing control appliance adjustments, such as the

active power at the generator buses tap changes in transformer, position of the phase shift-

ing taps, and the status of the switched capacitors and reactors (switchable VAR sources).

These control variables can be represented as continuous or discrete. The selections of

the state variables x are imposed by the structure of PF equations utilized, whereas con-

trol variables vary among OPF formulations depending on the nature of the particular

problem [42], and [43].
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2.1.4 Constraints

Constraints are normally considered an integral part of a specific optimization problem

playing a crucial role in its categorization, for example, convex vs non-convex. In the OPF

problem, the network variables have to be within allowable bounds or else damage the

electrical power network devices or cause a malfunction. Typically, the constraints are

classified as equality and inequality constraints [42], and [43].

In OPF problems, equality constraints are normally represented by the power flow system

equations [44]. Inequality constraints identify upper and lower bounds on the control

and state variables of the devices of the electrical power network and also the bounds

required to ensure network security and stability [40]. The inequality constraints on the

state variables and controls can be partitioned as follows:

• State Variables Bounds on

– Voltage Magnitude.

– Voltage Angle.

– Power Line.

• Control Variables Bounds on

– Active Power Generation.

– Reactive Power Generation.

– Volt Ampere Reactive Power.

– Voltage Generation.

– Transformer Tap Position.

Moreover, the inequality constraints can also define forbidden areas of branch flow lim-

its, interface limits, active/reactive power reserve limits, spinning reserve requirements,
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transient security, transient stability, transient contingencies, environment constraints, ro-

tor angle stability, etc. [45].

2.1.5 Standard Optimal Power Flow (OPF) Problem

In this subsection, we present two mathematical models of the power system networks

and show their equivalence. Let the set of buses beN:={1, 2, 3, .., n}, the set of transmission

lines E ⊆ {N × N} of edges. Then n ∼ j denotes a line between the buses n and j.

2.1.5.1 Bus Injection Model (BIM):

The general bus injection model (BIM) is defined by the following power flow equations

that represent Kirchhoff’s laws at each bus

Sn =
∑
j:n∼ j

Vn(V H
n − V H

j )yH
nj, ∀n ∈ N (2.5)

the superscript H denotes hermitian transpose. Let the set the solutions of the power flow

V for each S to be:

V := {V ∈ C(n+1) | V satisfies (2.5)} (2.6)

The buses in the power networks can be divided into three classes: slack, generation, and

load buses. The next quantities are generally identified at each bus: voltage phase angles

δ, voltagemagnitudes |V |, active power output of the slack bus only Ps, and reactive power

of all generations Qn. Usually the voltage magnitudes and the angles are described by one

complex variableV rather than real and imaginary variables. Let us now consider the gen-

eral power networkmodeled by the subset of busesN:={1, 2, 3, .., n}, the set of transmission

lines E ⊆ {N × N} of edges, and the set of generation buses G ⊂ N.

• Pd
n + iQd

n : Complex power of the load connected to bus n, ∀n ∈ N.
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• Pg
n + iQg

n : Complex power output of the generator connected to bus n, ∀n ∈ N

• Vn: Complex voltage at bus n, ∀n ∈ N.

• ynj : Admittance of the transmission line (n, j) ∈ E, ynj =gnj + ibnj .

Define V , Pg, Qg, Pd and Qd as the vectors formed stacking, in lexicographical order the

values at all the buses of the corresponding variables Vn, Pg
n , Qg

n, Pd
n , and Qd

n ∀n ∈ N,

respectively. Assume fn(·) is a convex function representing the cost associated with bus

n ∈ N. The objective is to minimize the total cost of the system. This problem can then be

formulated as follows:

min
Pg
n,Vn

f =
∑
n∈N

fn(Pg
n ) (2.7)

subj. to (2.8)

|V−n | ≤ Vn ≤ |V+n |, ∀n ∈ N (2.9)

Pg−
n ≤ Pg

n ≤ Pg+
n , ∀n ∈ N (2.10)

Q−n ≤ Qn ≤ Q+n , ∀n ∈ N (2.11)

Pg
n +Qg

n = Pd
n +Qd

n + Vn

n∈N∑
j:n∼ j

{
Vn − V H

j

}
ynj, ∀n ∈ N (2.12)

|Vn − Vj | ≤ ∆V+nj , ∀(n, j) ∈ E (2.13)

In this formulation Pg
n and Qg

n are controllable variables, and Pd
n and Qd

n are given external

disturbances. The solution will give values of Pg
n and Qg

n, at every bus, that minimize the

cost and satisfy the physical and operational constraints of the network. In the remainder

of this work we specialize to DC power systems where Qg
n = Qd

n = 0 and the constraints are

P−n , P+n , Pd
n , V−n .
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2.2 Hardness of Optimal Power Flow (OPF) problem

There are three main challenges that must be faced in the numerical solution of OPF prob-

lems: 1) the presence of constraints, 2) the nonlinear nature of constraints and 3) switching

elements and scale of the system.

2.2.1 Active Constraints:

Given a feasible point, the inequality requirements satisfied at this point with strict im-

balances are called latent or inactive, while those limitations satisfied with equality are

alluded to as binding or active constraints. Finding the dynamic inequality limitations

has a combinatorial viewpoint, and it is a troublesome piece of tackling the OPF prob-

lem. Indirect approaches exist for solving OPF without utilizing a middle optimization

approach to obtain the active sets at an optimal solution [46].

2.2.2 Non-Convexity:

Despite the fact that some OPF problems can be formulated with linear objective func-

tion, the problem is nonlinear due to the power flow equations being nonlinear as shown

in (2.12). Subsequently, the non-convex feasible sets may even be unconnected. Therefore,

the Karush–Kuhn–Tucker (KKT) conditions are not usually adequate for a global opti-

mum. Specifically, for AC power systems, the OPF problem is naturally non-convex and

allows for many local optimal solutions. Correspondingly, existing solution approaches

utilized extensively in practice depend on repeated optimization approaches, which can

only return local optimal solutions with the achievement of a global optimal solution. In

summary, the non-convexity of the OPF problem broadly prohibits obtaining a solution

in polynomial time, which makes OPF NP-hard to achieve [12].
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2.2.3 Switching Behavior:

Tackling dual and integer variables that arise when representing node levels switch con-

trols in practical power systems introduces a significant level of difficulty due to the fact

the OPF becomes an integer programming problem. In addition increasing power net-

work size increases the computational complexity significantly [34].

2.3 Techniques to solveOptimal Power Flow (OPF) problem

2.3.1 Optimization Techniques

Many different approaches have been proposed to solve OPF problem, including linear

programming (LP), quadratic programming (QP), nonlinear programming (NLP), and in-

terior point methods (IPM). However, these approaches have not been widely used in in-

dustry according to [47]. As is to be expected there is no single approach that can be used

for all OPF problems, even though a few approachesmight bemore successful than others

in certain OPF problems. Some of the figures of merit used to compare algorithms uti-

lized in OPF problems, reported in [48], and [49] include accuracy, computational speed,

robustness, flexibility, scalability, solution quality, and rate of convergence. It is very chal-

lenging for a single algorithm to hold all these characteristics. However, solution quality,

robustness, rate of convergence, reliability, and scalability are of primary importance in se-

lecting an OPF optimization approach [49]. In this subsection, some of these approaches

are described in detail.
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2.3.2 Traditional Optimization Methods

Examples of traditional optimization algorithms for solving the OPF problem include:

Newton-likemethod, sequential linear programming (SLP), non-linear programming (NLP),

simplex method (SM), lambda-iterative methods (LIM), successive quadratic program-

ming (SQP), and gradient-based methods [47], and [50]. The simplex approach is appro-

priate for LP-based OPF problems and can be directly applied to the DC-OPF formulation

[27], and [51]. SLP is an extension of LP described by [52] that allows for optimizing prob-

lems with nonlinear characteristics by a sequence of linear approximations. In certain

cases, a NLP formulation can be reduced to an LP by utilizing linear approximations of

the objective function and constraints around an initial estimate of the optimal solution

[23, 53], and [54]. SQP is a solution method for NLP problems, and similar to SLP, it solves

the original problem by solving a sequence of QP problems, of which solutions converge

to a global optimal solution of the original problem [55]. In most SQP implementations

for an OPF problem, conventional power flow equations are linearized at each iteration,

which can increment the computational effectiveness at the cost of an increase in the num-

ber iterations. Many studies have investigated the implementation of SQP for solving OPF

problems [56, 57], and [58]. The following technique centers on directly solving the NLP

problem rather than solving a sequence of LP or QP approximation problems.

2.3.2.1 Gradient Techniques (GT):

This approche was among the first efforts in the late 1960s to find solution to OPF prob-

lems. Gradient techniques can be split into three essential paths of exploration: reduced

gradient techniques (RG), conjugate gradient techniques (CG), and generalized reduced

gradient techniques (GRG). Gradient technique generally utilize the first-order derivative

vectorO f (xk) of the objective function at the first iterate xk to decide an enhancing heading.

Gradient technique are not difficult to ensure convergence of correct functions. However,
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gradient technique is slow, i.e., requests additional repetition contrasted to higher-order

technique. Furthermore, since it does not use the second-order derivative, it may converge

to a local optimal point. Global optimality must be confirmed for nonconvex problems,

which eliminate most OPF formulations [20], and [12]. The RG technique has been used

to find a solution to the OPF problem by [59]. The CG technique is essentially an enhance-

ment and a change of the RG technique and is a standout amongst the most understood

iterative techniques for taking care of NLP problems with sparse systems of linear equa-

tions. Rather than utilizing the negative reduced gradient as the heading of descent, the

CG technique selects the descent trends such that it is conjugate to the past search trends

by including the present negative gradient vector to a scaled, linear combination of past

search trends. There are a few focal points of applying CG technique for resolving an OPF

problem, especially the enhancement and change of the characteristics over the RG tech-

nique [60]. The GRG technique is an augmentation and an expansion of the RG technique,

which empowers coordinate treatment of inequality and nonlinear constraints. Instead of

utilizing penalty functions, the GRG technique modifies the iterations by inserting slack

variableswith all inequality limitations and all constraints are linearized about the present

working point. In this manner, the first problem is moved into a progression of subprob-

lemswith linear constraints that can be determined byRGorCG techniques [61]. Be that as

it may, since linearization presents a hitch in the constraints, an extra advance is required

to adjust the variables toward the finish of every repetition with emphasis to recuperate

feasibility. In the OPF, this feasibility recuperation is performed by explaining a regular

power flow [62].

2.3.2.2 Newton’s Techniques (NT):

Newton’s technique (NT) is essentially a second-order method for unconstrained opti-

mization based on Taylor series expansion. The descent trend at a point xk is set to dk =

−H(xk)1O f (xk) , where H(xk) indicates the Hessian matrix of f at point xk . Then the tech-
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nique figures out a step size αk > 0 in trend dk satisfying confirmed step-size choosing

principles such as inexact line seeking with fall back. However, the technique does not

ensure to converge to a local optimum solution as the Hessian matrix H may not be pos-

itive semidefinite in an adequately large neighborhood of the lower or minimum point.

The NT requires the application of Lagrangian function when utilized to OPF problems.

Inequality constraints produced from the power system physical edges must either be ne-

glected or handled as equality, relying on whether they are bounded at either the optimal

solution or not. However, recognizing active inequality constraints is the main challenge

for Newton-based solutions for OPF problem, as mentioned in Section 2.2. In one study,

[63] presented aNewton-basedOPF technique and another investigation by [64] discussed

amore effective approach applying the Lagrangian function. Thus researchers havemade

momentous contributions to improve performance of power active inequality constraints

[65].

2.3.2.3 Interior Point Methods (IPM):

The challenge of implementing inequality constraints was a motivating factor for employ-

ing interior point methods (IPMs) to solve OPF problems. IPMs are a family of projec-

tive scaling approaches for solving linear and nonlinear optimization problems. IPMs

are used to define and follow a central path through the feasible district to the set of op-

timal solutions. The main point of feasibility enforcement is achieved either by utiliz-

ing partition terms in the augmented objective function or by manipulating the required

KKT conditions [66]. When utilized to solve OPF problems, IPMs have been developed

over the past decades. The most well-known techniques are the primal-dual interior-

point method (PDIPM) [67], Mehrotra’s predictor-corrector techniques [68], Gondzio’s

multiple-centrality corrections [69], and trust district techniques [70]. Among various

IPMs, PDIPMs are probably the most popular deterministic approaches studied in OPF

research. Granville [71] was the first to employ PDIPMs to the OPF problem, extending
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first PDIPMs for LP and QP to the NLP case of reactive power dispatch. Themain features

of Newton’s technique contain no requirement to define the active constraint set or have

an initial feasible solution. Several types of research on IPMs have focused on enhancing

PDIPMs by taking advantage of the framework of power flow constraints. For instance,

[72] suggested a changed PDIPMwhich utilizes a feature function to promote the conver-

gence properties for OPF. A simplified OPF formulation utilizing rectangular coordinates

and present mismatches described by [73] leads to a facilitation of Hessian matrix and can

reduce computational effort.

2.3.3 Convex Relaxation for Optimal Power Flow (OPF) problem

The traditional techniques for solving the non-linear and non-convex OPF problems have

been described in subsection 2.3.2. Some of these techniques rely on KKT conditions,

which can only assure a local optimal solution because of the non-convexity of the OPF

problem. Furthermore, the characteristics of the nonlinearity and the non-convexity of the

problem make the OPF problem NP-hard to solve. Taking into account that the OPF for-

mulation has been specified in subsection 2.1.5, the non-convexity of the problem dictates

power flow equation constraints (2.12). For each connection line (n, j) ∈ E, let ynj = anj +

ibnj indicate its admittance, and Y ∈ CN×N indicate the admittance matrix of the power

network, i.e.,

Ynj :=



−yre f
n j , i f n , j and (n, j) ∈ E∑

l∈N(n) ynl, i f n = j

0, Otherwise

(2.14)

where N(n) is known as set of buses at certain bus. Let In indicates the current of bus n,

and I := [I1I2...IN ]T indicate the current vector of all buses, which can be written as YV ,
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and Sn = Pn + iQn indicate the net power injection of bus n, i.e.,

Sn = Pn + iQn = (PGn − PDn) + i(QGn −QDn) (2.15)

The state of each bus can be written as:

• Current balance

In =
∑

j∈N(n)
ynj(VN − Vj), ∀n ∈ N (2.16)

• Power balance:

Sn = VnI∗n, ∀n ∈ N (2.17)

Define e1, e2,..., eN as the standard basis vectors in RN such that (en) j = 0 if n , j, (en) j = 1

if n = j. Therefore,

Sn = Pn+iQn = (PGn−PDn)+i(QGn−QDn) = VnI∗n = (e∗nV)(e∗nYV)∗ = e∗nVV∗Y ∗en = T r(VV∗Y ∗ene∗n)

(2.18)

1. Semidefinite Relaxation (SDP):

As mentioned earlier, the nonlinearity and non-convexity of the OPF problem make

it NP-hard. Thus, let the non-linear term VV∗ in equality constraint (2.3) be changed

by a new matrix variable M ∈ HN×N to define this constraint as a linear term and

to be convex, where HN×N indicates the set of N × N of Hermitian matrices. At the

same time, in order to make sure that the map from V to M is invertible, M must

be constrained to be both positive semidefinite and rank-one. The feasible set of

main OPF problem in subsection 2.1.5 can be equivalently formulated as follows (

for clarity, the transmission line constraints have been emitted but will be considered
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later):

Pg−
n ≤ Pg

n ≤ Pg+

n , ∀n ∈ N (2.19)

Qg−
n ≤ Qg

n ≤ Qg+

n , ∀n ∈ N (2.20)

(V−n )2 ≤ Mnn ≤ (V+n )2, ∀n ∈ N (2.21)

T R(MY ∗ene∗n) = (PGn − PDn) + i(QGn −QDn), ∀n ∈ N (2.22)

M = M∗ (2.23)

Rank(M) = 1 (2.24)

However, the rank constraint (2.24) makes OPF formulation non-convex. Eliminat-

ing this rank constraint from the optimization problem creates the SDP relaxation,

which is defined as a convex problem unless the objective function is a non-convex

function. SDP relaxation can be solved effectively and easily in polynomial time.

However, the main challenge is qualifying the solution for the relaxation to match

the optimal solution of the original non-convex problem. In some scenarios the re-

laxation is strict. In [34], it has been proved that the dual of the original OPF problem

is the same as the dual of the SDP relaxation; under certain circumstances, robust

duality holds between the SDP relaxation and the dual of the original OPF problem

with quadratic generation cost. Generally, the dual optimal value is only a lower

limit on the optimal objective value of the OPF problem and the lower limit may not

be strict in the presence of a nonzero duality gap. Moreover, it has been shown that

the global optimal solution to the OPF problem can be restored from the optimal so-

lution to the convex dual problem whenever the duality gap between the dual and

the original OPF problem is 0. In this scenario, the SDP relaxation is strict, the OPF

problem can be obtained either by utilizing SDP or dual relaxation. Reference, [34]

proposed solving the dual of the OPF problem instead of the primal SDP relaxation

as the number of variables in the primal SDP relaxation increases quadratically with
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the number of nodes in the network, while the number of variables in the dual prob-

lem grows linearly with the number of nodes. This uniqueness is especially valuable

when utilizing primal and dual interior-point algorithms for solving the primal SDP

and dual relaxations, respectively [34]. In their approach, a necessary and adequate

situation is provided to assure the existence of zero duality gap for the OPF prob-

lem, which is created for the standard IEEE benchmark systems with 14, 30, 57, 118,

and 300 buses including various randomly generated networks. Taking into con-

sideration the hardness of demonstrating this situation, another approach has been

studied to assure the existence of zero duality gap for the IEEE model. In this situ-

ation, a small perturbation is inserted into the admittance matrix that holds well in

practice. In addition, the duality gap is predicted to be zero for a large bus of power

systems due to the passivity of transmission lines and transformers [34]. More re-

cent approaches have been proposed with other sources of non-convexity in OPF,

such as variable transformer ratios, variable shunt elements and contingency con-

straints [74]. In addition to quadratic cost functions, the previous work on OPF with

arbitrary convex cost functions have been developed by [28]. In [28], they found that

because of the physics of the power network, every OPF problem can be effectively

solved in polynomial time after applying the following approximations:

• Write power balance equations as inequalities, and

• Place all equalities and the unknown parameters of the system.

2. Second-Order Cone Relaxation (SOCP):

SOCP relaxation a linear function is minimized over the intersection of an affine

set and the product of second-Order cones. SOCP relaxation is nonlinear convex

problem that involve linear and quadratic program as special cases. However, SOCP

relaxations have a much lower computational complexity than the SDP relaxations.

The main challenge of solving the OPF problem comes from the nonlinear equality
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constraints in (2.12). To avoid this problem, one can approximate the feasible set of

OPF problem with a convex set via change of variables: ∀n ∈ N, define

Unj = VnVj , n ∼ j (2.25)

For each line n ∼ j where n < j, let H2×2 as follow

Mnj =


vn Unj

U jn v j

 ∈ H
2×2 (2.26)

By introducing the new (slack) variable Unj , the feasible set of the OPF problem can

be expressed as

Pg
n − Pd

n =

n∈N∑
j:n∼ j

(
vn −Unj

)
ynj, ∀n ∈ N (2.27)

Pg−
n ≤ Pg

n ≤ Pg+
n , ∀ n ∈ N (2.28)

v−n ≤ vn(κ) ≤ v+n , ∀ n ∈ N (2.29)

Mnj =


vn Unj

U jn v j

 � 0, ∀n ∼ j (2.30)

Rank(Mn j) = 1 ∀n ∼ j (2.31)

In this transformation, the rank constraint is a non-convex set. To recover convexity

the feasible set can be relaxed by removing the rank constraint (2.31). If in addition

the cost function to be minimized is convex the problem becomes an SOCP, because

the set of positive semidefinite matrices defines a conic constraint. This will be re-

ferred as the SOCP relaxation of the OPF [12].

While contrasting the SDP relaxation and SOCP relaxation for OPF problem, we no-

tice that the SDP relaxations have amatrix variable M with N×(N+1)
2 unknown entries;

as a consequence the number of decision variables in the SDP is N2. Subsequently,
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it can be challenging to obtain effectively while increasing N . On the other hand,

the SOCP relaxations are more memory efficient than SDP relaxations because it en-

forces constraints only on the sub-matrices of M . Furthermore, the SOCP relaxations

have a lower computational complexity.

The SOCP relaxation is said to be exact when the solution for the original OPF prob-

lem satisfies the rank one constraint. When the relaxation is exact the solution of the

SOCP is also a global optimal solution of the original OPF problem [22].

A number of researchers have proposed different SOCP relaxations that guarantee

exactness that exploit particular characteristics of the power system [20]. For in-

stance, in [75] it is shown that their SOCP relaxation can be exact for radial networks.

Other approaches include [20] and [75]. They suggested some adjustments to the

OPF formulation with imposing slightly different voltage magnitude lower and up-

per bounds in (2.9). This makes it possible to prove that the SOCP relaxation for the

adjusted OPF problem is exact. There is no guarantee that the adjustment OPF prob-

lem will have a feasible set that is close to that of the original OPF problem. Hence,

the solution obtained with this approach may not be close to the global solution of

the original OPF problem. On the other hand, [20] and [75] reported favorable nu-

merical results for IEEE test networks demonstrating that the SOCP relaxations may

work well in practice but with no guarantees.
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3 | Optimal Power Flowwithout Energy

Storage

3.1 Notation

In this section, the notation of the DC system is presentedwhichwill be used for the rest of

the paper. The DC model contains buses and lines connecting all buses with each others.

These lines can be linked in tree, mesh, and radial topologies, Fig. (3.1) shows.

Figure 3.1: Summary of notation.
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The graph G :={N, E} contains a set N of nodes and a set E of edges. Each line connects

an ordered pair (n, j) of buses. If two buses n and j are connected by a tie line directly, we

denote (n, j) ∈ E by n ∼ j. For each bus n ∈ N, Vn represents its voltage, In represents the

current injection, and Pn represents the power injection. At each line, let ynj represents

the admittance, and Inj represents the current flow between buses n ∼ j from n to j, also

Znj := 1
ynj

it is impedance. For each bus n ∈ E, let Pg
n (t) denotes the generation at time t

and Pd
n (t) denote its constant load demand. Notice that all the above parameters are real

numbers since we are working in DC network.

3.2 Mathematical Model and Problem Formulation

3.2.1 Analysis of Optimal Power Flow without Energy Storage

In this section, we present a derivation of optimal power flow problem. This formulation

does not include energy storage elements and a fully connected 3 bus system as shown in

Fig.(3.2). The Power flows in network are controlled by the following physical rules:

Inj = (Vn − Vj)ynj , ∀{n, j} ∈ E (Ohm’s Law)

In =
∑
j:n∼ j

(Inj) , ∀{n, j} ∈ N (Current balance)

Pn = VnIn , ∀{n, j} ∈ N (Power Balance)

Therefore, the power flow at bus n satisfies:

Pg
n − Pd

n = Vn

∑
j:n∼ j

(Vn − Vj)ynj , ∀{n, j} ∈ N (3.1)
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Figure 3.2: 3-bus of Power system.

Then, the optimal power flow problem for this particular example is:

min
Pg
n,Vn

∑
n∈N

fn(Pg
n ) (3.2)

subj. to (3.3)

Pg
n − Pd

n = Vn

3∑
j:n∼ j

(Vn − Vj)ynj n = 1, . . . , 3 (3.4)

Pg−
n ≤ Pg

n ≤ Pg+
n , n = 1, . . . , 3 (3.5)

V−n ≤ Vn ≤ V+n , n = 1, . . . , 3 (3.6)

The cost (3.2) is a function of generation in each node The equality constraint (3.4) is non-

linear in Vn and nonconvex. It can be replaced by a linear constraint on VVT with a new

matrix variable U:=VVT and Vn = [V1,V2,V3]T . However, to make the map from V to U

invertible, U must be constrained to be positive semidefinite (SDP) with rank equal to

one. Relaxing the rank constraint (removing it) leads to a second-order cone programming
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(SOCP) problem. The resulting OPF is:

min
Pg
n,Vn,Mnj

∑
n∈N

fn(Pg
n ), ∀n ∈ N (3.7)

subj. to (3.8)

Pg
n − Pd

n =

n∈N∑
j:n∼ j

(
vn −Unj

)
Ynj, ∀n ∈ N (3.9)

Pg−
n ≤ Pg

n ≤ Pg+
n , ∀n ∈ N (3.10)

v−n ≤ vn ≤ v+n , ∀n ∈ N (3.11)

Mnj =


vn Unj

U jn v j

 � 0 ∀n ∼ j (3.12)

As mentioned above, if the solution fo the SOCP problem satisfies the rank one constraint

it is also a global solution to the original non-convex OPF. Eliminating the rank one con-

straint results in a convex problem by enlarging the feasible set; however, the new feasible

set is larger than that of the originalOPFproblem. That iswhy checking the rank condition

a posteriory is necessary.
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3.3 Demonstration andEvaluation of ProposedOptimal Power

Flow (OPF) Method

3.3.1 Introduction

This section demonstrates the OPF algorithm by testing a six-bus system described in [76].

We will begin by implementing the OPF algorithm using both a Matlab nonlinear pro-

gramming solver and using the special solver CVX which is a Matlab software for solving

a complex convex optimization problems; files required for this case study can be found

in [77] and [78]. The computer specification for running this algorithm is a Lenovo Intel

Core i5 DDR3 SDRAM (2410M Cache, 2.30 GHz) with 8GB memory.

3.3.2 System Description

The Six-bus system is illustrated in Fig.5.3 [76]. The unit data for this system are given by

Table. (3.1)

Figure 3.3: 6-bus of Power System.
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BUS Cost Func-
tion

V−n V+n Pg−
n Pg+

n Pd
n

1 5 350 450 0 10,000 0
2 7 350 450 0 10,000 0
3 0 350 450 0 10,000 10,000
4 0 350 450 0 10,000 6,000
5 0 350 450 0 10,000 0
6 0 350 450 0 10,000 0

Table 3.1: DC Microgrid Parameters.

The conductances between each bus are shown in table.3.2.

From
BUS

To BUS Conductances

1 5 0.5
5 3 0.02
3 4 0.02
4 6 0.02
6 2 0.5
6 5 0.02

Table 3.2: Conductances Between Lines

In this test system, there are two power loads (Pd
n ) and two generators dispatched. The

power loads (Pd
3 and Pd

4 ) at bus 3 and 4 are set to be 10 KWh and 6 KWh, respectively. The

cost function values are also set to Pg
1 = 5 $/MWh and Pg

2 = 7 $/MWh. At each bus, the

power variables are bounded to between 0 and 10 KWh and the voltage constraints are set

between 350 V and 450 V.
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3.3.3 Solution to Nonlinear OPF

Based on the system described in the previous subsection, the general OPF problem is as

follows:

min
X

f = [5Pg
1 + 7Pg

2 ] (3.13)

XT :=
[
Pg

1 Pg
2 V1 V2 V3 V4 V5 V6

]

subj. to (3.14)

P1 = Pg
1 − Pd

1 = V1(V1 − V5)y15 (3.15)

P2 = Pg
2 − Pd

2 = V2(V2 − V6)y26 (3.16)

P3 = Pg
3 − Pd

3 = V3(V3 − V4)y34 + V3(V3 − V5)y35 (3.17)

P4 = Pg
4 − Pd

4 = V4(V4 − V3)y43 + V4(V4 − V6)y46 (3.18)

P5 = Pg

5 − Pd
5 = V5(V5 − V1)y51 + V5(V5 − V3)y53 + V5(V5 − V6)y56 (3.19)

P6 = Pg

6 − Pd
6 = V6(V6 − V2)y62 + V6(V6 − V4)y64 + V6(V6 − V5)y65 (3.20)

[Pg
n, Pd

n , Vn] =



0 ≤ Pg
1 ≤ 10K

0 ≤ Pg
2 ≤ 10K

350 ≤ V[1,..,6] ≤ 450

Vre f
1re f = 380

Pd
3 = 10K

Pd
4 = 6K
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Where V[1,..,6] represents the voltages at each bus.

3.3.3.1 Solution Report and Analysis

In this example, the optimal cost is 9, 5615$/hour .The final result is shown by

Bus Pg
n Vn

1 10,000 380
2 6,5164 375.48
3 0 366.36
4 0 366.42
5 0 366.84
6 0 366.80

Table 3.3: Matlab-Nonlinear programming solver Result

The solver takes 10 iterations to reach the minimum cost of the system with 1.123837 sec-

ond of total CPU time.

3.3.4 Solution to Convex Relaxation of OPF

Using the convex relaxation technique, we can obtain the following problem:

min
X

f = [5Pg
1 + 7Pg

2 ] (3.21)

XT :=
[
Pg

1 Pg
2 v1 v2 v3 v4 v5 v6 Unj

]
, ∀n ∼ j
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subj. to (3.22)

P1 = Pg
1 − Pd

1 = (v1 −U15)y15 (3.23)

P2 = Pg
2 − Pd

2 = (v2 −U26)y26 (3.24)

P3 = Pg
3 − Pd

3 = (v3 −U34)y34 + (v3 −U35)y35 (3.25)

P4 = Pg
4 − Pd

4 = (v4 −U43)y43 + (v4 −U46)y46 (3.26)

P5 = Pg

5 − Pd
5 = (v5 −U53)y53 + (v5 −U51)y51 + (v5 −U56)y56 (3.27)

P6 = Pg

6 − Pd
6 = (v6 −U64)y64 + (v6 −U5)y65 + (v6 −U62)y62 (3.28)

[Pg
n, Pd

n , Vn] =



0 ≤ Pg
1 ≤ 10K

0 ≤ Pg
2 ≤ 10K

350 ≤ V[1,..,6] ≤ 450

Vre f
1re f = 380

Pd
3 = 10K

Pd
4 = 6K

Where v[1,..,6] represents the voltage square at each bus.

Therefore, the Mnj in OPF can be formulated as follows: In the relaxation step, the rank

constraint Rank(Mnj) is eliminated, but a positive semidefinite constraint Mnj � 0 needs

to be kept. We refer to this relaxation as SDP hereafter.

R :=


Mnj

. . .

Mnj


� 0 ∀i ∼ j (3.29)
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3.3.4.1 Solution Report and Analysis

In this example, the optimal cost is 95244.5$/hour .The final result is shown by

No. Pg
n vn Vn=

√
vn Mnj=

√
V2

nj

1 10,000 14440 380 13940
2 6,5164 14980 374.48 13773
3 0 13422 366.42 13424
4 0 13426 366.42 13439
5 0 13457 366.84 13440
6 0 13454 366.80 13456

Table 3.4: CVX Result

By (2.30), (2.31), and (3.29) the matrix of R can be obtained as follows:

R :=




v1 U15

U51 v5

 
v2 U26

U62 v6

 
v3 U34

U43 v4

 
v4 U46

U64 v6

 
v5 U53

U35 v3

 
v6 U65

U56 v5





� 0

(3.30)

The solver takes 22 iterations to reach the minimum cost of the system with 2.51 second
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of total CPU time, 0.11 second per iteration.

3.3.5 Result Summary

This chapter presented the OPF solution of six-bus system via the linear power system

model. The results showed that the CVX solver is more effective and accurate than non-

linear programming for large-scale system. Moreover, the minimum solution satisfied

constraints. Nevertheless, the final cost using the Matlab nonlinear programming solver

was 9, 5615$/hour , which was very close to the final cost using the CVX solver.
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4 | Optimal Power FlowwithEnergyStorage

4.1 Notation

In this chapter, we first review the notation. A Graph G:={N, E} contains a setN of nodes

and a set E of edges. Each line connects an ordered pair (n, j) of buses. If two buses n and j

are connected by a tie line directly, we denote (n, j) ∈ E by n ∼ j. For each bus n ∈ N, Vn(κ)

represents its voltage. At each line let ynj represents the conductance between bus n ∼ j

from n to j. For each bus n ∈ N, let Pg
n (κ) denotes the generation, Pd

n (κ) its load demand at

time κ and bn(κ) the value of the energy storage at time κ. The energy storage elements a

modeled by the difference equation (4.1). It can therefore be considered as the following

collection of discrete linear time-varyingmodels (one for each τ = {1, ..., (M)}), whose state

at time κ (going backward in time) is κ ∈ τ. It also can be assumed that Ts represents the

time step of the time series. Moreover, rn(κ) represents the value of the power at time (κ)

where it charges when rn(κ) has a negative value; r−n < 0. Otherwise it discharges when

rn(κ) has a positive value; r+n ≥ 0. In addition, B−n and B+n represent the minimum and

maximum value of the energy storage, respectively.
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4.2 The Optimal Power Flow with Energy Storage

An OPF problem optimizes both variables V and P over the feasible solutions of the bus

injection model in (3.4). Additionally, all voltage magnitudes must satisfy (3.11) where

the lower and upper bounds are represented by V−n and V+n . The lower bound of voltage

magnitude is assumed to be greater than zero to avoid triviality in the system. The power

injection is also bounded as shown in (3.10), similar to the case of the voltage magnitudes,

where P−n and P+n are given bounds on the injections at bus n. We now formulate an

OPF with energy storage and time-varying generation costs and demands. As mentioned

previously, bn(κ) represents the value of the energy storage at time κ at bus n. The amount

of the energy storage is modeled to follow the first order difference equation.

bn(κ + 1) = bn(κ) + αnrn(κ), ∀n ∈ N, κ ∈ τ (4.1)

where αn denotes the time interval [κ, κ+1]. Assuming the initial energy stored is bn(0) ≥ 0

at each bus n ∈ N

0 ≤ B−n ≤ bn(κ) ≤ B+n , ∀n ∈ N, κ ∈ τ (4.2)

where B−n and B+n represent the minimum and maximum value of the energy storage at

bus n, respectively. Moreover, the charge rate of the battery are bounded by:

r−n ≤ rn(κ) ≤ r+n , ∀n ∈ N, κ ∈ τ (4.3)

where κ=1, ..., (τ+ 1). The power flow constraint at each bus n ∈ N and time κ ∈ τ are thus:

Pg
n (κ) − Pd

n (κ) − rn(κ) =
n∈N∑
j:n∼ j

(
vn(κ) −Unj(κ)

)
Ynj, ∀n ∈ N, κ ∈ τ (4.4)

where Pg
n (κ) represents the generation at bus n at time κ and Pd

n (κ) represents its load.
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Thus, OPF problem with energy storage in DC microgrid can be formulated as follows:

min
Pg
n (κ),Vn(κ),bn(κ),rn(κ)

∑
n∈N

{ M∑
κ=1

fn(Pg
n (κ)) + hκn(bn(τ))

}
, ∀n ∈ N, κ ∈ τ (4.5)

subj. to (4.6)

V−n ≤ Vn(κ) ≤ V+n , ∀n ∈ N, κ ∈ τ (4.7)

Pg−
n ≤ Pg

n (κ) ≤ Pg+
n , ∀n ∈ N, κ ∈ τ (4.8)

r−n ≤ rn(κ) ≤ r+n , ∀n ∈ N, κ ∈ τ (4.9)

b−n ≤ bn(κ) ≤ b+n , ∀n ∈ N, κ ∈ τ (4.10)

bn(κ + 1) = bn(κ) + αnrn(κ), ∀n ∈ N, κ ∈ τ (4.11)

Pg
n (κ) − Pd

n (κ) − rn(κ) =
n∈N∑
j:n∼ j

(
V2

n (κ) − Vn(κ)Vj(κ)
)
ynj, ∀n ∈ N, κ ∈ τ (4.12)

• The Initial Condition (I.C) of bn at κ = 0

bn(0) = µc, ∀n ∈ N (4.13)

• The Voltage Reference at bus nre f

Vre f
nre f (κ) = V0 (4.14)
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Now, we present the convex formulation of the OPF problem with energy storage:

min
Pg
n (κ),vn(κ),bn(κ),rn(κ),Un(κ)

∑
n∈N

{ M∑
κ=1

fn(Pg
n (κ)) + hκn(bn(τ))

}
, ∀n ∈ N, κ ∈ τ (4.15)

subj. to (4.16)

v−n ≤ vn(κ) ≤ v+n , ∀n ∈ N, κ ∈ τ (4.17)

Pg−
n ≤ Pg

n (κ) ≤ Pg+
n , ∀n ∈ N, κ ∈ τ (4.18)

r−n ≤ rn(κ) ≤ r+n , ∀n ∈ N, κ ∈ τ (4.19)

B−n ≤ bn(κ) ≤ B+n , ∀n ∈ N, κ ∈ τ (4.20)

bn(κ + 1) = bn(κ) + αnrn(κ), ∀n ∈ N, κ ∈ τ (4.21)

Pg
n (κ) − Pd

n (κ) − rn(κ) =
n∈N∑
j:n∼ j

(
vn(κ) −Unj(κ)

)
Ynj, ∀n ∈ N, κ ∈ τ (4.22)

Mnj =


vn Unj

U jn v j

 � 0, ∀n ∼ j (4.23)

Rank(Mnj) = 1 (4.24)

where vn:=V2
n and Unj :=VnVj ∀n ∼ j.

Since (4.24) is a non-convex constraint, it must be relaxed to arrive at the convex formula-

tion. Also, fn has to be a convex function.

• The Initial Condition (I.C) of bn at κ = 0

bn(0) = µc, ∀n ∈ N (4.25)

• The Voltage Reference at bus nre f

Vre f
nre f (κ) = V0 (4.26)

47



Equation (4.1) is often written in term of the State-of-Charge, SOCn(κ) := bn(κ)
Etot

, where Etot

is the total energy. Hence it is equivalent to

SOCn(κ + 1) = SOCn(κ) + αnrn(κ), ∀n ∈ N, κ ∈ τ (4.27)

where, αn is Ts
Etot

. With respect to SOC inequalities (4.20) became

SOC−n ≤ SOCn(κ) ≤ SOC+n , ∀n ∈ N, κ ∈ τ (4.28)

where

• fn(Pg
n ) is a convex cost function, which represents generation.

• hκn(bn(τ)) represents the terminal cost.

4.2.1 Optimal Power Flow with Line Constraints

It is also possible to limit the current going through any line n ∼ j. Let Inj be a threshold

of the current flow through n ∼ j, then the line constraint can be formulated as:

(vn −Unj −U jn + v j)y2
nj ≤ I2

nj (4.29)

which in terms of original voltage variables is:

(Vn − Vj)2y2
nj ≤ I2

nj (4.30)
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Adding (4.29) to the constraints of the OPF problem leads to :

min
Pg
n (κ),vn(κ),SOCn(κ),rn(κ),Un(κ)

M∑
κ=1

{ ∑
n∈N

fn(Pg
n (κ)) + hκn(bn(τ))

}
, ∀n ∈ N, κ ∈ τ (4.31)

subj. to (4.32)

v−n ≤ vn(κ) ≤ v+n , ∀n ∈ N, κ ∈ τ (4.33)

Pg−
n ≤ Pg

n (κ) ≤ Pg+
n , ∀n ∈ N, κ ∈ τ (4.34)

r−n ≤ rn(κ) ≤ r+n , ∀n ∈ N, κ ∈ τ (4.35)

B−n ≤ SOCn(κ) ≤ B+n , ∀n ∈ N, κ ∈ τ (4.36)

SOCn(κ + 1) = SOCn(κ) + αnrn(κ), ∀n ∈ N, κ ∈ τ (4.37)

Pg
n (κ) − Pd

n (κ) − rn(κ) =
n∈N∑
j:n∼ j

(
vn(κ) −Unj(κ)

)
Ynj, ∀n ∈ N, κ ∈ τ (4.38)(

vn(κ) −Unj(κ)
)
Ynj ≤ Pnj (4.39)(

v j(κ) −U jn(κ)
)
Yjn ≤ Pjn (4.40)

Mnj =


vn Unj

U jn v j

 � 0, ∀n ∼ j (4.41)

One way to keep some of the theoretical ensures is to force the line constraints in terms of

power flows alternatively. In specific, |Inj | ≤ Înj is equivalent to |Pnj | ≤ Vn Înj . Assuming

that Vn is near to its nominal value, then |Pnj | ≤ Vn Înj can be proximated by |Pnj | ≤ P̂nj for

some P̂nj ∈ R. Hence, the final formulation of the line constraints can be written as (4.39)

and (4.41).

(For detailed proofs, see Theor em − 7 in [20]).
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4.2.2 Modeling the Energy Storage

Assuming that bus n can have at most one battery for energy storage, we denote SOCn

the charge of the battery at bus n. For simplicity, batteries were modeled as discrete-time

integrators:

SOCn(κ + 1) = SOCn(κ) + αnrn(κ), SOCn(0) given (4.42)

where αn [h/KW] is the event sampling and rn(κ) the rate of charge. In the rest of this

section, we will show how to express the dynamic equations imposed by the battery as

algebraic linear equations suitable for inclusion in a non dynamic optimization problem.

Consider a causal linear, time-invariant, discrete-time system with the state-space equa-

tions

x(κ + 1) = Ax(κ) + Bu(κ), x(0) = xo (4.43)

y(κ) = Cx(κ) + Du(κ)

where x is the state vector and u the input vector.

The general expression for the solution of the state-space equations is

x(κ) = Aκxo +

κ−1∑
m=0

A(τ−1)−mBu(m), κ ≥ 0 (4.44)

In the context of OPF problems, τ is the index of the planning epoch. Suppose that the

problem involves (M) epochs, starting at M = 1. Then (4.44) can be written in matrix form
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as:

x(M) − AM xo =
[
AM−1B · · · AB B

]


u(0)

u(1)
...

u(M − 1)


Collecting all the states at each epoch in a vector, we obtain the following linear algebraic

equation:



x(1)

x(2)
...

...

x(M)


−



A

A2

...

...

AM


xo =



B 0 · · · · · · 0

AB B . . . 0
. . .

. . .
. . .

...

AM−2B . . . B 0

AM−1B AM−2B · · · AB B





u(0)

u(1)
...

...

u(M − 1)


For the particular model of the battery in (4.42) the above equations reduce to



SOCn(1)

SOCn(2)
...

...

SOCn(M)


−



1

1
...

...

1


SOCn(0) =



αn 0 · · · · · · 0
...

. . .
. . . 0

...
. . .

. . .
...

...
. . . 0

αn · · · · · · · · · αn





rn(0)

rn(1)
...

...

rn(M − 1)


(4.45)
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5 | Demonstration andEvaluation of Pro-

posedOPFMethodwithEnergy Storage

5.1 Introduction

This section demonstrates the DC-OPF problem with energy storage by testing a six-bus

system [76]. This problem is a nonconvex optimization problem whose objective function

has discontinuous first order derivatives that we solved through a special CVX solver and

ran on a Lenovo Intel Core i5 DDR3 SDRAM (2410MCache, 2.30 GHz) with 8GBmemory.

5.2 CASE STUDIES

5.2.1 Test Case of DCMicrogrid System

The first test case considers DCmicrogrid system, with two separate power sources— the

DC network and a battery device — directly connected to the microgrid through a bus.

The battery device is added to the grid to provide sufficient power to the loads, in case of

the local power is not enough or if a generator fails.

52



5.2.2 Scenario-I, Parameters and Results

The microgrid, is a system of six buses shown in Fig. 5.1. The network consists of two

power generators at buses 1 and 2, two loads at buses 3 and 4, four link buses (i.e., without

generation nor load) and eight transmission lines. An energy storage unit has added to

bus 6. Since the full life of a battery device is directly related to the number of charging and

discharging cycles, there is a cost associatedwith it a per charge cycle [79]. The parameters

and the boundary conditions associated with the power generators, the SOC, and the bus

reference are given in Table. 5.1 and the power loads at different operational times are

given in Appendix − I Table. 7.1. The line constraints are given in Table. 5.2. The costs of

power purchased from the generators are set to Pg
1 = 5$/MWh and Pg

2 = 7$/MWh. The

voltage magnitude bounds for all buses are set between 350 V and 450 V, and the voltage

magnitude at the first bus defined as a reference bus, Vre f
1 , is 380 V.

BUS V−n V+n Pg−
n Pg+

n Vre f
nre f SOC−n SOC+n r−n r+n

1 - - 0 10K 380 - - - -
2 350 450 0 10K - - - - -
3 350 450 - - - - - - -
4 350 450 - - - - - - -
5 350 450 - - - - - - -
6 350 450 - - - 0.2 0.8 -7K 7K

Table 5.1: The bound constraints.

BUS ∆Vnj(κ)− ∆Vnj(κ)+
3 To 4 -2K 2K
4 To 3 -2K 2K
5 To 6 -2K 2K
6 To 5 -2K 2K

Table 5.2: The power capacity constraints.

In this scenario, the transmission lines between buses 5 and 6 and between buses 3 and 4

are bounded. The storage battery is bounded by a capacity SOCn(κ)− and SOCn(κ)+with a

53



charge or discharge rate (discussed earlier) as rn(κ)−and rn(κ)+. The initial condition of the

storage battery was chosen to be 0.7 KWh. A total of 20 KWh of energy was proposed as

well as the sampling time of one hour, and the simulations were performed over one day.

The simulation results illustrate the advantages of including an energy storage under low

and high demand circumstances. During low demand, the energy is stored in the storage

unit and then released when the load is high, smoothing the total power injected into the

grid.

5.2.3 Demonstration of Scenario-I

The system in Fig. 5.1 includes a storage device at bus 6.

Figure 5.1: Scenario I: A power system with energy storage at bus six.
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The following description as mentioning earlier: power generations are represented by

Pg
n , storage power is rn(κ), and the event sampling is αn. The battery is modeled by its

minimum and themaximumvalue of the energy storage rn(κ)− and rn(κ)+, and the battery

State of Charge SOCn, in the range 0.2 and 0.8. This represents energy in this problem.

min
Pg
n (κ),vn(κ),SOCn(κ),rn(κ),Un(κ)

24∑
κ=1

∑
n∈6

fn(5Pg
1 (κ) + 7Pg

2 (κ)) (5.1)

subj. to (5.2)

380 ≤ vn(κ) ≤ 450, ∀n ∈ 6, κ ∈ τ (5.3)

0 ≤ Pg
1 (κ) ≤ 10K, κ ∈ τ (5.4)

0 ≤ Pg
2 (κ) ≤ 10K, κ ∈ τ (5.5)

−7K ≤ r6(κ) ≤ 7K, κ ∈ τ (5.6)

0.2 ≤ SOC6(κ) ≤ 0.8, κ ∈ τ (5.7)

SOC6(κ + 1) = SOC6(κ) + α6r6(κ), κ ∈ τ (5.8)

Pg

[1,2](κ) − Pd
[3,4](κ) − r6(κ) =

n∈6∑
j:n∼ j

{
vn(κ) −Unj(κ)

}
Ynj, ∀n ∈ 6, κ ∈ τ (5.9)

−2K ≤
{
vn(κ) −Unj(κ)

}
Ynj ≤ 2K (5.10)

−2K ≤
{
v j(κ) −U jn(κ)

}
Yjn ≤ 2K (5.11)

R :=


Mnj

. . .

M jn


� 0, ∀n ∼ j (5.12)

• The Initial Condition (I.C) of SOC6 at κ = 0

SOC6(0) = 0.7 (5.13)
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• The Voltage Reference at bus nre f

Vre f
nre f (κ) = 380 (5.14)

The problemwas solved numerically usingCV X . The results are summarized in Table. 5.3.

Optimal value 505927
Computation Time (s) 0.12

Table 5.3: The result of Scenario-I.

It was verified, a posteriory, that the rank one conditions on Mnj, ∀ n ∼ j were satisfied.

Hence the optimal value of the cost reported in the table is also global optimum for the

original OPF. The numerical values of power injections and nodal voltages are listed in

Appendix-I, Tables. 7.2 and 7.3.
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5.2.4 System Load Data

The total power load of the DCmicrogrid for each hour is shown in Fig. 5.2. This includes

the power loads at buses 3 and 4. The power load at bus 3 is constant during the opera-

tional time. However, the power load at bus 4 is unsteady with the average hourly power

load of around 7.5 KWh.

Figure 5.2: The actual power loads
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5.2.5 System Generation Data

The power generator schedule for the 24 hours is given in Fig. 5.3, which illustrates that all

generators during the operational time arewithin the bounds and satisfied the constraints.

Figure 5.3: The generator schedule

In Fig. 5.4, it can been seen that the battery schedule satisfied the constraints and bounds

during the operations. Moreover, battery charging and discharging happen during the

production times as can be seen by noting the graphs. The energy stored in the battery

is charging during 1 to 6, 11 to 16, and between 23 to 24. It is also discharging during 7

to 10 and between 17 to 22. The stored power is utilized to feed nearby loads and avoid

losses and the high cost on the system if faraway the DC generations are used to feed these

loads. Since the battery is not needed to hold any further power at the end of 25 hours, it
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is economically beneficial to discharge all the battery energy so the net battery energy is

0. The total optimal cost for supplying the load is given in Table. 5.3.

Figure 5.4: The battery schedule

A list of the standby power battery values are given inAppendix-I, Table. 7.3. These values

are required at each hour to support the system by providing energy necessary for the

loads.

5.2.6 State-of-Charge (SOC)

AdynamicOPF problem has been solved due to the dynamics of the state-of-charge (SOC)

of the battery. As shown in Fig. 5.5, it can be seen experimentally when the battery is ei-

ther charged fully SOC = 100% or discharged to SOC = 0%.
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Figure 5.5: The State-of-charge schedule
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5.2.7 Parameters and Results of Scenario-II

In this scenario, the OPF formulation with energy storage dynamics are applied to ex-

amine the reliability and stability of the system. The DC microgrid is, shown in Fig. 5.6.

Presently the network consists of two power generators at buses 1 and 2, two loads at

buses 3 and 4, and four link buses (i.e., without including generation nor load) and eight

transmission lines. Furthermore, two energy storage units have been applied in the net-

work at buses 5 and 6. The main aim of including a battery device in this system is to

increase system security by acting as a standby when required. The parameters and the

constraints in the system associatedwith the power generators, the SOC, and the bus refer-

ence are shown in Table. 5.4, and the power loads at different operational time are given in

Appendix-II Table. 7.4. Moreover, the line constraints have been considered in this case as

shown in Table. 5.5. The costs of power purchased to the main grid throughout the oper-

ation are also set to Pg
1 = 5$/MWh and Pg

2 = 7$/MWh. The voltage magnitude Vn bounds

for all buses are set between 350 and 450 per units (p.u.) and the voltage magnitude at

first bus is defined as a reference bus, Vre f
nre f =380V .

BUS V−n V+n Pg−
n Pg+

n Vre f
nre f SOC−n SOC+n r−n r+n

1 - - 0 10K 380 - - - -
2 350 450 0 10K - - - - -
3 350 450 - - - - - - -
4 350 450 - - - - - - -
5 350 450 - - - 0.2 0.8 -7K 7K
6 350 450 - - - 0.2 0.8 -7K 7K

Table 5.4: The Bound Constraints.

BUS ∆Vnj(κ)− ∆Vnj(κ)+
3 To 4 -2K 2K
4 To 3 -2K 2K
5 To 6 -2K 2K
6 To 5 -2K 2K

Table 5.5: The power capacity constraints
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In this scenario, the transmission lines between buses 5 and 6 and between buses 3 and 4

are bounded. The storage battery is bounded by a capacity SOCn(κ)− and SOCn(κ)+ with

a charge or discharge rate (discussed earlier) as rn(κ)−and rn(κ)+. The initial condition of

the storage battery was chosen to be 0.7 KWh. A total of 20 KWh of energy was proposed

as well as the sampling time of one hour, and the simulations were performed over one

day. The simulation results illustrate the advantages of including energy storage devices

under low and high demand circumstances.

5.2.8 Demonstration of Scenario-II

The system is illustrated in Fig. 5.6 and includes two storage devices at buses 5 and 6. Dur-

ing the power production, the energy is stored in the battery and released when the rn(κ),

value of the power at time (κ), is rn(κ)+ ≥ 0 and rn(κ)− ≤ 0, respectively.
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Figure 5.6: Scenario II: A power system with two energy storages.

The following illustration as given earlier: power generations are described by Pg
n , stor-

age power is rn(κ), and the event sampling is αn. The battery is modeled by its minimum

and the maximum values of the energy storage rn(κ)− and rn(κ)+, and the battery state-of-

charge SOCn, in the range 0.2 and 0.8, this describes energy in this problem.
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The optimization problem for this case is:

min
Pg
n (κ),vn(κ),SOCn(κ),rn(κ),Un(κ)

24∑
κ=1

(
5Pg

1 (κ) + 7Pg
2 (κ)

)
(5.15)

subj. to (5.16)

380 ≤ vn(κ) ≤ 450, ∀n ∈ 6, κ ∈ τ (5.17)

0 ≤ Pg
1 (κ) ≤ 10K, κ ∈ τ (5.18)

0 ≤ Pg
2 (κ) ≤ 10K, κ ∈ τ (5.19)

−7K ≤ r[5,6](κ) ≤ 7K, κ ∈ τ (5.20)

0.2 ≤ SOC[5,6](κ) ≤ 0.8, κ ∈ τ (5.21)

SOC[5,6](κ + 1) = SOC[5,6](κ) + α[5,6]r[5,6](κ), κ ∈ τ(5.22)

Pg

[1,2](κ) − Pd
[3,4](κ) − r[5,6](κ) =

n∈6∑
j:n∼ j

{
vn(κ) −Unj(κ)

}
Ynj, ∀n ∈ 6, κ ∈ τ (5.23)

−2K ≤
{
vn(κ) −Unj(κ)

}
Ynj ≤ 2K (5.24)

−2K ≤
{
v j(κ) −U jn(κ)

}
Yjn ≤ 2K (5.25)

R :=


Mnj

. . .

M jn


� 0, ∀n ∼ j (5.26)

• The Initial Condition (I.C) of SOC[5,6] at κ = 0

SOC[5,6](0) = 0.7 (5.27)

• The Voltage Reference at bus nre f

Vre f
1re f (κ) = 380 (5.28)
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The optimal value of the cost and the running time are shown in Table. 5.6.

Optimal value 1.62046e+06
Computation Time (s) 2.88

Table 5.6: The result of Scenario-II.

The numerical values of power injections and nodal voltages are listed in Appendix-II,

Tables 7.5 and 7.6.
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5.2.9 System Load Data

Similarly to the previous scenario, the total power load of the DC micro-grids for each

hour is shown in Fig. 5.11. This includes the power loads at buses 3 and 4. The power

load at bus 3 is constant during the operational time. However, the power load at bus 4 is

unsteady with the average hourly power load of around 7.5 kWh.

Figure 5.7: The actual power loads

66



5.2.10 System Generation Data

The power generators schedule for 24 hours is given in Fig. 5.8. In this figure, it can been

seen that all generators during the operational time are within the bounds and satisfied

the constraints.

Figure 5.8: The generator schedule

In Fig. 5.9, it can be seen that the battery schedule satisfied the constraints and bounds

during the operations. Furthermore, battery charging and discharging happen during the

production times as can be seen by noting the graphs. The energy stored in the battery at

bus 5 is charging during 1 to 6, 8 to 10, 17 to 18, and between 22 to 23. It is also discharging

during at 7, 11 to 16, 18 to 21, and at 24. On the other hand, when the energy at bus

5 is stored in the battery, the battery at bus 6 is discharged from energy. In bus 6 the

battery starts to store at the beginning of the operation until hour 7, then it discharges
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from hours 8 to 12, then back to restore the battery between 13 and 17, and next the battery

discharges during 18 to 22. The stored powers are utilized to feed nearby the loads and

avoid losses and the high cost on the system if faraway DC generations feed these loads.

Since the battery is not needed to hold any further power at the end of 25 hours, it is

economically beneficial to discharge all the battery energy so the net battery energy is 0.

The total optimal cost for supplying the load is given in Table. 5.6.

Figure 5.9: The battery schedule

A list of the standby of power battery values are given in Table. 7.6.
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5.2.11 State-of-Charge (SOC)

AdynamicOPF problem has been solved due to the dynamics of the state-of-charge (SOC)

of the battery. As shown in Fig. 5.10, it can be seen experimentally when the battery is

either charged fully SOC = 100% or discharged to SOC = 0%.

Figure 5.10: The State-of-charge schedule
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5.2.12 Analysis of Results

As it can be seen from above scenarios the SOCP is is exact, i.e. Rank(Mn j) = 1 holds,

∀n ∼ j and hence the solution found is also a global solution of the original OPF. The scale

of the problems solved in this work is small. In practice multi-bus DC systems may inte-

grate a large number of buses. The results of computation time suggests that the proposed

method may not be suitable to very large scale systems.

Therefore, following flowchart summarizes the SOPC relaxation approach used to solve

the OPF problem.

Figure 5.11: The flowchart of the convexification process

The solution of the SOCP includes a set of 2 × 2 positive semidefinite matrices Mnj, ∀ n j.

Hence it is necessary to check the rank constraint a posteriory. If it is satisfied then the

optimal solution is the global solution of the original OPF problem. If it is not satisfied

then, in general, nothing can be said [12].
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6 | Conclusion and Future Work

6.1 Conclusions

In this work, we formulated an optimal power flow (OPF) problem with dynamic energy

storage as a static optimization problem. This results in a nonlinear programming prob-

lem. This problemwas transformed to a problemwith constraints over the cone of positive

semidefinitematrices and required the introduction of a rank suitable constraint. The rank

constraint was ignored resulting in am SOPC problem which can be solved numerically

as using SDP solvers. This approach was tested in various scenarios. One with a single

energy storage and another with more energy storage devices.

Analysis of the numerical result analysis of these scenarios shows that the optimal solution

is can be obtained, i.e. Rank(Mn j) = 1 holds, ∀n ∼ j.

Form the figures we can see that, as expected, the energy stored was scheduled to balance

the power of loads and generation sources. It can be seen that energy storage provides

additional flexibility to the system for handling load variations and power limits, with the

potential of providing improved power quality, stability, load following, peak reduction,

and reliability.
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6.2 Future Work

There are several future research directions that have been revealed as a result of thiswork.

We summarize the most promising below.

• The most important next step is to integrate recent algorithms that explicitly enforce

the rank one constraint instead of ignoring it and checking it after the fact. There

are a few approaches that can be considered such as the well known nuclear norm

minimization [80] and also low-rank inducing norms recently proposed in [81].

• Another research direction to make this practical is necessary to reformulate the

problem as a distributed dynamic optimization problem. This will be necessary to

solve large-scale power flow problems but will also enable the implementation us-

ing low cost embedded system making it more affordable for less affluent and rural

communities.

• Finally, it is natural to consider the problem as a polynomial optimization problem

given that the nonlinearities are polynomial. This is already happening and will

bring powerful alternatives to find global solutions to optimal power flow problems.
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7 | APPENDIX

7.1 Appendix-I

Time (hr) Pd
3 Pd

4
1 4K 2236.89
2 4K 1454.8
3 4K 1248.7
4 4K 1276.1
5 4K 1845.2
6 4K 3523.9
7 4K 7148.9
8 4K 9380.8
9 4K 9794.5
10 4K 9480.1
11 4K 8951.7
12 4K 8178.8
13 4K 7615.9
14 4K 7543.5
15 4K 8071.9
16 4K 9013.8
17 4K 11005
18 4K 14109
19 4K 14249
20 4K 13005
21 4K 11393
22 4K 9145.9
23 4K 6354.0
24 4K 3973.6

Table 7.1: Power Load for Scenario-I.

Time (hours) Pg
1 Pg

2
∑

Pg

1 6214.7 142.84 6357.6
2 5942.3 143.11 6085.4
3 5870.6 143.18 6013.7
4 5880.1 143.17 6023.3
5 6078.2 142.96 6221.2
6 6664.4 10222 7686.4
7 7939.4 3481.2 11421
8 6781.5 5536.1 12318
9 6347.5 5553.8 11901
10 6677.2 5540.3 12218
11 7233.0 5517.7 12751
12 8050.1 5484.4 13535
13 8104.6 5482.0 13587
14 8079 5483 13562
15 8163.4 5479.8 13643
16 7167.6 6170 13338
17 6221.4 10K 16221
18 8492.4 10K 18492
19 8790.1 10K 18790
20 7940.7 10K 17941
21 7932.2 10K 17932
22 7028.5 6446.3 13475
23 7658.7 2938.1 10597
24 6821.9 1324.6 8146.5

Table 7.2: Power Generation for Scenario-I.

73



Time (hr) PLoads
3 PLoads

4
∑

PLoads r6
1 4K 2236.89 6236.9 -16.810
2 4K 1454.8 5454.8 505.15
3 4K 1248.7 5248.7 642.67
4 4K 1276.1 5276.1 624.39
5 4K 1845.2 5845.2 244.60
6 4K 3523.9 7523.9 1.5456e-04
7 4K 7148.9 11149 -2.6321e-05
8 4K 9380.8 13381 -1343.2
9 4K 9794.5 13795 -2154.7
10 4K 9480.1 13480 -1538.0
11 4K 8951.7 12952 -501.96
12 4K 8178.8 12179 1013.3
13 4K 7615.9 11616 1626.3
14 4K 7543.5 11544 1675.6
15 4K 8071.9 12072 1222.8
16 4K 9013.8 13014 3.5765e-04
17 4K 11005 15005 -5.6655e-05
18 4K 14109 18109 -4473.9
19 4K 14249 18249 -4614.8
20 4K 13005 17005 -2801.1
21 4K 11393 15393 -110.20
22 4K 9145.9 13146 6.7061e-05
23 4K 6354.0 10354 7.3379e-05
24 4K 3973.6 7973.6 -1.4010e-04

Table 7.3: Power Load and rate of charge for Scenario-I.
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7.2 Appendix-II

Time (hr) Pd
3 Pd

4
1 4K 2236.89
2 4K 1454.8
3 4K 1248.7
4 4K 1276.1
5 4K 1845.2
6 4K 3523.9
7 4K 7148.9
8 4K 9380.8
9 4K 9794.5
10 4K 9480.1
11 4K 8951.7
12 4K 8178.8
13 4K 7615.9
14 4K 7543.5
15 4K 8071.9
16 4K 9013.8
17 4K 11005
18 4K 14109
19 4K 14249
20 4K 13005
21 4K 11393
22 4K 9145.9
23 4K 6354.0
24 4K 3973.6

Table 7.4: Power Load for Scenario-II.

Time (hr) Pg
1 Pg

2
∑

Pg

1 6414.5 143.05 6557.5
2 6415.2 143.05 6558.2
3 6415.4 143.05 6558.4
4 6415.4 143.06 6558.4
5 6415 143.07 6558
6 6664.4 1022 7686.4
7 7004.9 3480.9 10486
8 6912.4 5515.5 12428
9 6911 5516.2 12427
10 6912.2 5515.7 12428
11 7118.8 5506.7 12625
12 7121 5505.4 12626
13 7122.7 5505 12628
14 7122.8 5505 12628
15 7121.3 5505.2 12627
16 7082.7 6169.9 13253
17 6261.6 10K 16262
18 6222.8 10K 16223
19 62208 10K 16221
20 6237.8 10K 16238
21 6245.9 10K 16246
22 7054.6 6446.3 13501
23 7216.7 2938 10155
24 6821.8 1324.6 8146.5

Table 7.5: Power Generation for Scenario-II.
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Time (hr) PLoads
3 PLoads

4
∑

PLLoads r5 r6 r5 + r6
1 4K 2236.89 6236.9 191.00 -16.598 174.40
2 4K 1454.8 5454.8 452.67 505.08 957.75
3 4K 1248.7 5248.7 521.61 642.54 1164.1
4 4K 1276.1 5276.1 512.48 624.27 1136.8
5 4K 1845.2 5845.2 322.21 244.71 566.91
6 4K 3523.9 7523.9 8.3177e-03 3.2036e-03 1.1521e-02
7 4K 7148.9 11149 -886.16 -4.1974e-04 -886.16
8 4K 9380.8 13381 124.65 -1363.2 -1238.5
9 4K 9794.5 13795 537.59 -2191.4 -1653.8
10 4K 9480.1 13480 223.91 -1562 -1338.1
11 4K 8951.7 12952 -108.55 -512.41 -620.95
12 4K 8178.8 12179 -880.24 1034.2 153.97
13 4K 7615.9 11616 -930.12 1649.2 719.05
14 4K 7543.5 11544 -905.76 1697.5 791.74
15 4K 8071.9 12072 -986.95 1248.0 261.05
16 4K 9013.8 13014 -80.645 6.8607e-03 -80.639
17 4K 11005 15005 1129.4 -363.74 765.62
18 4K 14109 18109 -3720.4 -3946.0 -7666.4
19 4K 14249 18249 -3998.7 -4087.3 -8086.0
20 4K 13005 17005 -1517.5 -2831.0 -4348.4
21 4K 11393 15393 393.90 -772.0 -378.10
22 4K 9145.9 13146 24.843 1.2644e-03 24.844
23 4K 6354.0 10354 -419.24 1.4531e-03 -419.24
24 4K 3973.6 7973.6 -1.3429e-02 -2.7123e-03 -1.6141e-02

Table 7.6: Power Load and rate of charge for Scenario-II.
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