2002-2003 Undergraduate Bulletin

Rochester Institute of Technology
Rochester Institute of Technology
2002-2003 Institute Calendar

FALL QUARTER (20021)
April 29-September 12, 2002
Fall Registration. Use telephone, Student Information System, walk-in or mail-in options. Students will be billed.*
August 29
Move-in for new students
September 2
Move-in for returning students
September 5
Day and evening classes begin
September 7
Saturday classes begin
September 12
Last date to drop/add courses
October 18
Last date to withdraw with a “W” grade
November 13
Last day class
November 14
Reading day (no day classes)
November 16
Last Saturday class
November 15, 16, 18, 19, 20
Final exams—day classes
November 20
Last evening class
November 21-December 1
Fall/winter break

WINTER QUARTER (20022)
October 21-December 9, 2002
Winter Registration. Use telephone, Student Information System, walk-in or mail-in options. Students will be billed.*
December 2
Day and evening classes begin
December 7
Saturday classes begin
December 9
Last date to drop/add courses
December 21
Last day of classes before break
January 6, 2003
Day and evening classes resume
January 11
Saturday classes resume
January 24
Last date to withdraw with a “W” grade
February 21
Last day class
February 22
Last Saturday class
February 24, 25, 26, 27, 28
Final exams—day classes
February 28
Last evening class
March 1-March 9
Winter/spring break

SPRING QUARTER (20023)
January 27-March 17, 2003
Spring Registration. Use telephone, Student Information System, walk-in or mail-in options. Students will be billed.*
March 10
Day and evening classes begin
March 15
Saturday classes begin
March 17
Last date to drop/add courses
April 18
Last date to withdraw with a “W” grade
May 16
Last day class
May 17
Last Saturday class
May 19, 20, 21, 22, 23
Final exams—day classes
May 23
Last evening class
May 23
Academic Convocation (7:30 p.m.)
May 24
Commencement
May 25-June 1
Spring/summer break

SUMMER QUARTER (20024)
April 21-June 9, 2003
Summer Registration. Use telephone, Student Information System, walk-in or mail-in options. Students will be billed.*
June 2
Day and evening classes begin
June 7
Saturday classes begin
June 9
Last date to drop/add summer quarter courses
July 4
Holiday (no classes)
July 11
Last date to withdraw with a “W” grade
July 12
July 4 makeup day
August 8
Last day class
August 9
Last Saturday class
August 9, 11, 12, 13
Final exams—day classes
August 15
Last evening class

*Refer to quarterly schedule of courses for specific registration dates and times.
About This Bulletin

The academic programs, course curricula, policies and standards described in this Undergraduate Bulletin are in effect for students admitted to RIT during the 2002-2003 academic year. The purpose of this bulletin is to provide students with a comprehensive source of information to use in planning their undergraduate education.

Master's and doctoral degree programs, plus other post-baccalaureate offerings, are described in RIT's Graduate Bulletin, available through the Office of Graduate Enrollment Services.

The RIT Undergraduate Bulletin does not constitute a contract between the Institute and its students on either a collective or individual basis. It represents RIT’s best academic, social and financial planning at the time of publication. Course and curriculum changes, modification of tuition, fees, dormitory, meal, or other charges; plus unforeseen changes in other aspects of RIT sometimes occur after the bulletin has been printed, but before the changes can be incorporated in a later edition. Because of this, Rochester Institute of Technology does not assume a contractual obligation with its students for the contents of this Undergraduate Bulletin.

RIT Undergraduate Bulletin 2002-2003

©Copyright 2002, Rochester Institute of Technology
All rights reserved

Produced by the Office of University Publications

This material was produced, in part, through an agreement between Rochester Institute of Technology and the U.S. Department of Education.

For more information concerning undergraduate study at RIT, contact:

Rochester Institute of Technology
Undergraduate Admissions Office
Bausch & Lomb Center
60 Lomb Memorial Drive
Rochester, N.Y. 14623-5604
admissions@rit.edu
585-475-6631
www.rit.edu

Contents

Calendar (inside front cover) 5
An Introduction to RIT ... 5
Campus and Community .. 7
Graduation Requirements 9
Academic Programs of Study
 College of Applied Science and Technology 15
 College of Business ... 50
 B. Thomas Golisano College of Computing and Information Sciences .. 57
 Kate Gleason College of Engineering 65
 College of Imaging Arts and Sciences 77
 College of Liberal Arts 95
 College of Science .. 106
 National Technical Institute for the Deaf 130
Course Number Index ... 163
Course Descriptions ... 164
Academic Policies and Procedures 324
Counseling and Academic Services 326
Campus Life ... 335
Admission to Undergraduate Study 347
Expenses and Financial Aid 352
Administration and Faculty 364
Terminology ... 382
Index ... 383

RIT will admit and hire men and women; veterans; persons with disabilities; individuals of any race, creed, religion, color, national or ethnic origin, sexual orientation, age or marital status in compliance with all appropriate legislation.
An Introduction to Rochester Institute of Technology

R\textsuperscript{espected internationally as a world leader in career-oriented and professional education, Rochester Institute of Technology has been setting an innovative pace since 1829, when Colonel Nathaniel Rochester became the first president of the Rochester Athenaeum. In 1891, the Athenaeum merged with Mechanics Institute, which had been founded by a group of businessmen to instruct in "drawing and such other branches of studies as are most important for industrial pursuits." In 1944, recognizing the increasingly specialized professional nature of its programs, the university adopted the name it holds today.

A private, coeducational university in upstate New York, RIT offers academic programs that combine outstanding teaching, a strong foundation in the liberal arts and sciences, modern classroom facilities and work experience gained through the university’s cooperative education program.

More than 200 different programs—including such distinctive offerings as microelectronic and software engineering, imaging science, film/video animation, biotechnology, physician assistant, printing management, international business, telecommunications, and the programs of RIT’s School for American Crafts and National Technical Institute for the Deaf (NTID)—draw students from every state and more than 80 foreign countries.

Approximately 10,000 full-time undergraduate students, 2,100 part-time undergraduate students, and 2,400 graduate students attend RIT. More than 85,000 RIT alumni can be found around the globe.

Almost one-third of our undergraduates are transfer students from two-year colleges or other four-year institutions. More than one-third are women, and adult students make up a significant portion of the total enrollment. Our full-time undergraduate students include 1,100 deaf students, and deaf and hearing students often share the same residence halls and classes on campus.

A nationally respected leader in professional and career-oriented education, RIT has been recognized by U.S. News & World Report magazine as one of the nation’s leading comprehensive universities and one of America’s "Best College Values."

RIT’s cooperative education program is the fourth oldest and one of the largest in the world. We place more than 2,600 students in co-op work positions with approximately 1,300 employers every year, and more than 600 companies visit RIT to conduct 6,500 employment interviews.

Few universities provide RIT’s variety of career-oriented studies. Our eight colleges offer outstanding programs in business, engineering, art and design, science and mathematics, liberal arts, photography, computing, hospitality management, and many other areas.

As a major university, RIT offers academic opportunities that extend far beyond science and technology, including more liberal arts courses and faculty than are found at most liberal arts colleges. With a strong foundation in the humanities and social sciences, RIT graduates understand both technological developments and the larger philosophical and ethical issues presented by technology.

RIT encourages the appreciation of diversity through a variety of liberal arts courses, campus events, and special programs (including the annual International Banquet, Black History Month, Martin Luther King Jr. Celebration, and Hispanic Heritage Week). Students are encouraged to take advantage of the diverse educational opportunities RIT provides, because the world in which they will live and work will be composed of people from many backgrounds, lifestyles and cultures.

Colleges and Degrees

As a university, RIT is made up of eight separate colleges, each of which offers a number of academic programs. The descriptions that follow provide an overview of each college and its programs.

The College of Applied Science and Technology (pages 1549) offers a wide variety of degrees (BS and MS), diplomas and certificates to full- and part-time students. Programs and courses are offered during the day, during the evening, on Saturdays and by distance delivery. Bachelor of science programs include civil engineering technology; electrical, computer and telecommunications engineering technology; manufacturing and mechanical engineering technology; electrical-mechanical engineering technology; food, hotel, travel and nutrition management; packaging science; environmental management, and applied arts and science. Many of these programs also offer master’s degrees. Associate degrees, diplomas and certificates are offered in several areas and are especially appropriate for the part-time adult student who is looking for convenience, quality and practicality. The computer integrated manufacturing program has been recognized as one of the top five in the United States by the Society of Manufacturing Engineers. Many new students in this college transfer from two-year schools to the college’s BS degree programs.

The College of Business (pages 50-56) offers the BS degree with majors in accounting, finance, international business, management, management information systems, marketing, and photographic marketing management. An upper division certificate program in management information systems is also available. An emphasis on technology, a commitment to quality, and a global perspective are the foundations upon which our programs are built. It is one of few business colleges to offer a cooperative education program. The college awards BS, MBA, and MS degrees and has earned accreditation from the Association to Advance Collegiate Schools of Business (AACSB International). An accelerated BS/MBA option offers outstanding undergraduates an opportunity to complete both degrees in five years. The “America’s Best Colleges” edition of U.S. News & World Report magazine has ranked RIT’s College of Business among the top 50 undergraduate business schools in the nation.
The B. Thomas Golisano College of Computing and Information Sciences (pages 57-64) is one of the largest colleges in the nation devoted to the study of computer science, information technology, software engineering, and related fields. In 1972, RIT was among the first institutions in the United States to offer a full undergraduate degree program in computer science. Academic innovation has continued in recent years, as RIT has developed the nation’s first undergraduate degree programs in information technology and software engineering. The college awards AAS, BS, and MS degrees, and all BS programs require cooperative education.

The Kate Gleason College of Engineering (pages 65-76) offers BS degree programs in computer, electrical, industrial, mechanical, and microelectronic engineering. Degree options also are offered for students interested in specializing in areas such as ergonomics, manufacturing, aerospace, or automotive engineering. The “America’s Best Colleges” edition of U.S. News & World Report magazine has ranked the college fifth among engineering colleges in the United States that do not offer the Ph.D. degree. Starting in their third year, students in all engineering programs participate in the college’s cooperative education program. For those who need time to decide on a particular major, the college also offers an undeclared engineering program in the first year. Accelerated degree programs (combined BS and master’s) are available in most departments.

The College of Imaging Arts and Sciences (pages 77-94) includes the School of Art, School of Design, School for American Crafts, School of Film and Animation, School of Photographic Arts and Sciences and School of Print Media. Specialized labs and darkrooms, studios, computer facilities, photo and graphic design archives, and a broad range of high-tech equipment are provided for students. Degrees include the associate, bachelor of fine arts, bachelor of science, master of fine arts, master of science, and master of science for teachers. RIT is generally recognized as the nation’s top-ranked university for printing/publishing and for the study of photography.

The College of Liberal Arts (pages 95-105) provides a comprehensive program of liberal education that is the foundation for all RIT students’ educational experience. In addition to core requirements, students elect a concentration or a minor from a wide variety of disciplines in the humanities, social sciences, or behavioral sciences. The college also offers bachelor of science degrees in criminal justice, economics, professional and technical communication, psychology, public policy, and social work, and master of science degrees in communication and media technologies, public policy, and school psychology. A one-year RIT exploration program is offered for students who are undecided about which degree program to pursue.

The College of Science (pages 106-129) is career oriented, emphasizing the practical aspects of science and mathematics. The college offers a variety of degree programs in the sciences; mathematics and statistics; imaging science; and allied health sciences, including a physician assistant program, biotechnology, bioinformatics, polymer chemistry, and other unique programs. An undeclared science option is popular with new students who want more time to decide on their major. The premedical core is a set of courses required for admission to most medical, dental, and veterinary schools. The college awards associate, bachelor of science, and master of science degrees, as well as the nation’s only doctoral degree (Ph.D.) in imaging science. Many of the college’s bachelor of science degree programs offer a cooperative education option.

The National Technical Institute for the Deaf (pages 130-161) provides technical and professional programs for approximately 700 deaf students enrolled in diploma or associate degree programs and provides extensive educational access services for more than 400 deaf students who are pursuing a bachelor’s or master’s degree or taking courses in RIT’s other colleges. Within NTID, students may choose a variety of options/concentrations in accounting technology, administrative support technology, art and computer design, applied computer technology, automation technologies, business technology, computer aided drafting technology, computer integrated machining technology, digital imaging and publishing technology, healthcare billing and coding technology, industrial computer electronics, laboratory science technology, and ophthalmic optical finishing technology. They can earn a diploma or associate degree through these programs. The college also enrolls hearing students in its ASL-English Interpretation programs.

Accreditation
RIT is chartered by the legislature of the State of New York and accredited by:

The Commission on Higher Education
Middle States Association of Colleges and Schools
3624 Market Street
Philadelphia, Pa. 19104-2600
215-662-5606

and

New York State Education Department
Office of College and University Evaluation
5 North Mezzanine
Albany, N.Y. 12234
518-474-2593

In addition to institutional accreditation, curricula in the colleges are accredited by appropriate professional accreditation bodies. Where applicable, specific mention of these is included in the college descriptions. Students wishing to review documents describing accreditation should contact the Office of the Associate Provost for Academic Programs.

Sponsored Research Projects
Externally sponsored projects are a vital and integral component of RIT’s educational and research activity. Faculty and students undertake sponsored projects for a variety of important reasons: to add to the body of knowledge, for professional development, and to strengthen academic programs. Sponsored projects enhance the Institute’s academic programs, broaden its research resources, provide opportunities for student participation in research, strengthen university-industrial partnerships and serve the wider community. Moreover, grants and contracts enhance existing resources and provide new opportunities for faculty, staff, and students. External funding comes from federal and state agencies, private foundations, and corporations. RIT’s major sponsors include the National Science Foundation (NSF), the National Institutes of Health (NIH), the Department of Education (USDE), the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and New York State. The office of Grants, Contracts and Intellectual Property (GCIP) projects $30 million in awarded projects for the 2003-2002 fiscal year. Contact GCIP at 585-475-7985, gcip@rit.edu or visit their Web site at www.research.rit.edu.
Campus and Community

Home to more than one million people, the greater Rochester area is a major technical and industrial center and is well known for its rich cultural and intellectual opportunities. Rochester is the third-largest city in New York State and the home of a number of major corporations. A strong technology-based economy has made Rochester one of the 10 largest exporting cities in the United States.

The city provides a perfect setting for students seeking a dynamic and diverse environment, with a variety of opportunities for employment, entertainment, and personal growth. Large enough to include numerous restaurants, plenty of live music, movie theaters, parks, beaches, and shopping areas, Rochester is also small enough to explore and enjoy. A city bus line and RIT shuttle bus service provide transportation to and from campus.

Within walking distance of one another in the downtown area are the Rochester Museum and Science Center, Strasenburgh Planetarium, the Memorial Art Gallery, and the International Museum of Photography. A short distance from these are the Eastman Theatre, home of the city’s philharmonic orchestra, and the Strong Museum’s hands-on children’s exhibits and turn-of-the-century memorabilia.

The nearby mountains, Lake Ontario, and the Finger Lakes provide plentiful year-round recreational opportunities.

The Campus and Its Facilities

Conveniently located five miles from the Greater Rochester International Airport and the New York State Thruway (Interstate 90), the RIT campus is situated in the suburb of Henrietta, only a few minutes from downtown Rochester.

Less than 35 years old, the campus landscape has been undergoing several stages of growth and renewal recently: new college buildings, student apartments and Greek housing, walkways, plantings, and lighting. A variety of outdoor sculpture and wall tapestries, a Japanese garden, and masses of spring-flowering trees add further color and interest to a campus that is still growing into itself.

Excellent facilities and up-to-date equipment add to the quality of academic life. RIT is a leader in academic computing, and students work with state-of-the-art computer equipment regardless of their major. Central computer systems can be accessed via a high-speed data network connecting our library, academic facilities, and all residence hall rooms and on-campus apartments. Yahoo! Internet Life magazine has named RIT one of “America’s Most Wired Colleges.” RIT is also among a select group of institutions with access to the Internet 2 research network.
Students also have access to a laser optics laboratory, an observatory, an animal care facility, more than 150 color and black-and-white photography darkrooms, electronic prepress and publishing equipment, ceramic kilns, glass furnaces, a blacksmithing area, a student-operated restaurant, computer graphics and robotic labs, and some of the most up-to-date microelectronic, telecommunications, and computer engineering facilities in the United States.

Wallace Library is a multimedia resource center with access to more than 750,000 items. The library’s Web-based workstations provide access to a wide selection of resources. Users can access Wallace’s catalog, search many electronic commercial databases and surf the Internet. Both videotapes and DVDs can be checked out at the circulation desk. E-books, audio books, and wireless laptop computers are also available.

The VAX Internet Area (VIA) provides access to graphic interface workstations, image scanning and a host of interactive CD-ROM titles. Interlibrary loan services and in-house book requests are accessed on-line. Individual carrels and small-group rooms provide more than 1,000 study spaces.

A smaller library within Wallace Library, the Cary Library, contains more than 20,000 volumes of rare books illustrating fine printing and other materials detailing the history of printing, book design and illustration, papermaking, and other aspects of the graphic arts.

Student artwork and photographs are exhibited in library gallery areas. Outstanding student work is purchased and displayed permanently.

The latest enhancement to the library is Java Wally’s cafe. Serving a variety of beverages and treats, it has quickly become a popular gathering place.

Housing and Recreational Facilities

Serving approximately 3,000 students, RIT’s residence halls offer many living options to meet the diverse needs, interests and backgrounds of our students. Students may choose living arrangements according to their own lifestyles, including floor assignments by same gender, coeducational, wellness, nonsmoking, alcohol/substance free, intensified study, over 21 years of age, or mainstream (hearing and deaf students living on the same floor). Living options in Greek fraternities and sororities and Special Interest Houses such as Art House, Computer Science House, Engineering House, House of General Science, International House, Photo House and Unity House are also available. Internet and campus data network access is available in all residence hall rooms.

RIT’s Apartment Life program features one of the nation’s largest university-operated apartment systems, with approximately 3,000 students residing in nearly 1,000 individual townhouse and apartment units. Apartment housing is available to students in five RIT apartment complexes. Campus data network access is provided in each complex.

Approximately 300 upperclass and graduate students are housed at the university-operated RIT Inn and Conference Center located near the campus. Student inn residents enjoy many of the perks of a first-rate hotel, including a swimming pool and exercise facilities.

Our Student Life Center opened its doors in 1992, providing recreational facilities that include a gymnasium, fitness center, racquetball courts and an indoor track. Other indoor facilities include two more gyms, a swimming pool, an ice arena, wrestling rooms and a weight training room. Outdoor facilities include lighted tennis courts, an all-weather track, playing fields and a fitness trail.
Graduation Requirements

To earn any academic credential from RIT, you must satisfy a number of requirements. Graduation requirements may vary slightly from program to program, and all students are strongly encouraged to seek out and use the academic advising resources within their colleges. In general, students should expect to satisfy the following requirements before they can graduate from RIT:

A. Completion of academic curricula
1. Satisfactorily complete all of the courses in your academic program. General education requirements and specific course requirements for each program are identified in the following pages. This bulletin and careful consultation with your academic advisor provide the best resources for planning your academic program at RIT.
2. Your program curricula may include several types of courses, including cooperative education, field experience, practicum, thesis and research, and wellness. Most RIT students will need to satisfy a wellness requirement, and many academic programs require one or more quarters of cooperative education.
3. The curriculum in effect at the time of your admission into a program will normally be the one you must complete in order to graduate. Occasionally, with faculty approval, course substitutions and other minor curricular modifications may occur. Although there is no time limit within which you must complete your course requirements, the curriculum under which you are certified to graduate must be no more than seven years old.

B. Grade point average standard
1. Successful candidates for an undergraduate degree, diploma or certificate must have a program cumulative grade point average of at least 2.0.*
2. Graduation honors are conferred on associate and bachelor’s degree recipients who achieve a 3.40 or higher program cumulative GPA.

C. Residency and minimum earned hours
At least 45 of the credit hours used toward a degree program must be earned by successfully completing RIT courses. In addition, at least 30 of the final 45 hours of any program must be earned through RIT courses. Credit earned through transfer, credit by exam/ experience, CLEP, advanced placement or audit are excluded from these residency calculations.

RIT academic programs vary as to the total number of credit hours required; however, under no circumstances will a student be allowed to graduate with a bachelor’s degree with fewer than 180 cumulative earned hours (90 hours for associate degrees). Cumulative earned hours include RIT courses, transfer credit, credit by exam/experience, CLEP and advanced placement credit.

D. Demonstration of writing skills
Students must demonstrate, to the satisfaction of the dean of their college, that they have the writing skills needed for successful entry into their chosen careers. The criteria and standards for evaluating abilities are determined by each academic department.

E. Full payment of all financial obligations to RIT

The Liberal Arts General Education Curriculum

Although some baccalaureate degree programs and all associate degrees have modified general education requirements in the liberal arts, most RIT students in degree programs are required to complete the 54-credit-hour general education curriculum described below to earn their bachelor’s degree.

The basic curriculum is divided among introductory core courses, advanced course work and the capstone senior seminar in the liberal arts.

I. The introductory core totals 28 credit hours composed of the following 200- to 300-level courses:
- A two-course sequence in writing and literature combines composition and literature during two quarters (8 credits)
- Three courses in the humanities (12 credits)
 Fine arts: one course required from visual arts, or musical arts, or film arts or theater arts
 History: one course required from either Modern American or Modern European History
 Philosophy (ethics or critical thinking or selected issues in philosophy) or Science, Technology and Values
- Two courses from the four areas of social sciences (8 credits)
 Political Ideologies or American Politics
 Principles of Economics
 Introduction to Psychology
 Foundations of Sociology or Cultural Anthropology

II. Advanced course work totals 24 credit hours. Two options are available:

Option 1. Minor in the liberal arts
- Five courses designated by liberal arts departments (400- to 500-level) (20 credits)
- One liberal arts elective course selected by student (400- to 500-level) (4 credits)

Option 2. Concentration in the liberal arts
- Three liberal arts courses designated by liberal arts departments (400- to 500-level) (12 credits)
- Three liberal arts elective courses selected by student (400- to 500-level) (12 credits)

*The physician assistant program requires a program cumulative grade point average of 2.8 or better.
10 Graduation Requirements

Liberal Arts General Education Curriculum
(54 Credit Hours)

Required Core Courses
200- to 300-level courses (28 of 54 credit hours)

Writing & Literature I, II (4 cr. each)
History: Modern American or Modern European (4 cr.)
Fine Arts: Visual or Music or Film or Theater (4 cr.)
Philosophy or Science, Technology & Values (4 cr.)

Two courses from the following 4 areas in social science:

Political Ideologies or American Politics (4 cr.)
Principles of Economics I (4 cr.)
Introduction to Psychology (4 cr.)
Foundations of Sociology or Cultural Anthropology (4 cr.)

Required Advanced Study
(24 of 54 credit hours)

Two options: select either a minor or a concentration in liberal arts

Minor Option or Concentration Option (24 cr.)

Course I (4 cr.) Course I (4 cr.)
400- to 500-level 400- to 500-level

Course II (4 cr.) Course II (4 cr.)
400- to 500-level 400- to 500-level

Course III (4 cr.) Course III (4 cr.)
400- to 500-level 400- to 500-level

Course IV (4 cr.) 1 Elective (4 cr.)
400- to 500-level 400- to 500-level

Course V (4 cr.) 1 Elective (4 cr.)
400- to 500-level 400- to 500-level

1 Elective (4 cr.) 1 Elective (4 cr.)
400- to 500-level 400- to 500-level

Required Senior Seminar Course
(2 of 54 credit hours)

Total: 54 credit hours

Liberal arts minors require five liberal arts courses in the designated discipline and one liberal arts elective and are available in American history, American politics, applied communication, communication and culture, creative writing, criminal justice, economics, European history, Spanish, Japanese, French, German, history of the modern world, international relations, literature, mass media, philosophy, psychology, science, art history, and technology and environmental studies, sociology/anthropology, social welfare policy, art history, and women's studies.

Liberal arts concentrations require three liberal arts courses in the designated liberal arts discipline and three additional liberal arts electives. In addition to the areas listed above, concentrations are also available in American artistic experience, American English for ESL students, environmental studies, foreign language culture (Arabic, Chinese, French, German, Japanese, Russian, and Spanish), global studies, language communication, Latin/ Latin-Latin American, minority relations, music, peace studies, perspectives on religion, science and technology, social change and technology, and women's studies.

III. Senior Seminar in the liberal arts (2 credits) is a capstone experience that provides seniors the opportunity to synthesize their liberal arts experience in a small class through the examination of one topic that changes every few years. Past topics have included diversity and community, environment and citizenship, and the Constitution. The senior seminar offers the opportunity for service learning in the greater Rochester community. A series of guest lectures organized by the Caroline Werner Gannett Professor in the Humanities provides a common experience for all seniors. Senior Seminar is an interdisciplinary course taught by faculty from various liberal arts disciplines.

Academic advising
Liberal arts requirements vary within the individual degree programs on campus. Therefore, it is important that students carefully plan their liberal arts program to meet their specific degree requirements. Advising staff are available every day in the College of Liberal Arts’ Office of Student Services, on the second floor of the Liberal Arts Building, to provide assistance in planning and selecting appropriate liberal arts courses.

Through this office, the college provides academic worksheets for each degree program to help students maintain records of progress toward their degree.

The Mathematics and Science General Education Curriculum *

The general education curriculum in mathematics and science is a component of all RIT bachelor of science degree programs and is completed through one of the three options described below. These options offer a balance between mathematics and science. Students should consult with their individual program chairperson or academic adviser for specific course requirements and approved sequences.

(Required minimum number of credits in parentheses)

Plan A: Balanced (22)
1. Mathematics-One three-course sequence (10)
2. Science-One three-course sequence (9) and associated laboratories (3)
Wellness Education Requirements

RIT recognizes the need for wellness education in today's society. To meet this need, RIT offers an exceptional program of specifically designed courses to help students develop and maintain a well-balanced, healthy lifestyle and acquire a foundation for using free time enjoyably and constructively.

The wellness education requirement is designed to help students make healthy choices that support their academic and social interactions in college and beyond. The learning experiences provided through the wellness curriculum are an integral part of the total educational experience at RIT.

First-Year Enrichment: Center for Student Transition and Support

Freshmen only

All entering first-year students transitioning from high school to college are required to satisfactorily complete the First-Year Enrichment course. NTID students in AAS or AOS programs must successfully complete the Wellness for Life course and one wellness activity course to satisfy their graduation requirement.

Course Offerings

1105-051 First-Year Enrichment I
First part of the two-quarter version of the First-Year Enrichment course, designed to assist first-year students in making healthy decisions and choices to support their transition, adjustment, and social integration into college. Students must pass both FYE I and II to satisfy the wellness requirement for graduation. Offered fall quarter only.

1105-052 First-Year Enrichment II
Second part of the two-quarter version of the First-Year Enrichment course, designed to assist first-year students in making healthy decisions and choices to support their transition, adjustment, and social integration into college. Students must pass both FYE I and II to satisfy the wellness requirement for graduation. Offered winter quarter only.

1105-048 First-Year Enrichment 10 Week
A lo-week, one-quarter version of the First-Year Enrichment course, offered only in winter for first-year students entering the Institute at that time. Successful completion of First-Year Enrichment 10 Week satisfies the wellness requirement for graduation.

Wellness for Life: Center for Human Performance

Upperclass and transfer students only

All upperclass and transfer students must successfully complete the Wellness for Life course and two different wellness activity courses offered through the Center for Human Performance to satisfy their graduation requirement. Students are encouraged to take more than the two required wellness activity courses to maximize their leisure time at RIT and beyond.

In general, health, wellness, and / or activity courses taken at other colleges may be accepted in transfer at RIT. The associate director for wellness in the Center for Human Performance will review these courses for transfer consideration.

Permanent medical excuse A medical excuse may exempt a student from participation in the activity segment of the graduation requirement, but the student still must successfully complete the First-Year Enrichment and/or Wellness for Life course. The exemption will be granted only by RIT's Student Health Center. One copy of the medical excuse should be filed with the First-Year Enrichment Office/Center for Human Performance and the other copy taken to the student's academic department. Medical excuses from a family physician will not be accepted.

Intercollegiate athletics Students participating in the Institute's intercollegiate athletic programs will be granted wellness activity course credit for the season(s) of participation but must still successfully complete the First-Year Enrichment and/or Wellness for Life course. The Center for Human Performance encourages student athletes to enroll in wellness activity courses that differ from their intercollegiate sport to ensure full engagement in leisure-time pursuits.

Veterans Students who have completed six months or more of active military duty are not required to complete the wellness education program but are encouraged to enroll in any wellness course on a space-available basis.

Age Students who are 25 or older at the date of matriculation are exempt from all wellness education requirements but may enroll in any course on a space-available basis.

Nonmatriculated status Nonmatriculated students are exempt from the wellness education requirement.

NTID students NTID students enrolled in AAS or AOS programs are required to complete the Wellness for Life course and one wellness activity course to satisfy their graduation requirement.

Cooperative Education Requirements

Many academic programs at RIT require that students participate in the university's cooperative education program. Other academic programs may offer co-op as an option or provide other experiential education opportunities (e.g., internships). Cooperative education involves alternating quarters of classroom study and full-time paid employment in a position related to the student's academic program. Requirements, which may vary significantly, are included for each program in this bulletin.
Academic Programs of Study

The academic programs, course curricula, policies, and standards described in this Undergraduate Bulletin are in effect for students admitted to RIT during the 2002-2003 academic year. The purpose of this bulletin is to provide students with a comprehensive source of information to use in planning their undergraduate education. Enrollment in other than registered or approved programs may jeopardize a student’s eligibility for certain financial aid awards.

<table>
<thead>
<tr>
<th>Undergraduate Programs</th>
<th>College</th>
<th>Certificate</th>
<th>Diploma</th>
<th>AOS</th>
<th>AS</th>
<th>AAS</th>
<th>BFA</th>
<th>BS</th>
<th>Evening Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Technology</td>
<td>NTID</td>
<td></td>
<td>5007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>Administrative Support Technology</td>
<td>NTID</td>
<td></td>
<td>5005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>Applied Arts & Science</td>
<td>Applied Science & Technology</td>
<td>5699</td>
<td>5699</td>
<td>4999</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Applied Computer Technology</td>
<td>NTID</td>
<td>5101</td>
<td>5101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Art & Computer Design</td>
<td>NTID</td>
<td>5012</td>
<td>5012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>ASL-English Interpretation</td>
<td>NTID</td>
<td>5505</td>
<td>1199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Automation Technologies</td>
<td>NTID</td>
<td>5399</td>
<td>5399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>Biochemistry#</td>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Biology</td>
<td>Science</td>
<td></td>
<td>5604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Biomedical Photographic Communications</td>
<td>Imaging Arts & Sciences</td>
<td>5399</td>
<td>1217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Business Administration:</td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td>Business</td>
<td></td>
<td>5002</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Business Administration</td>
<td>Applied Science & Technology</td>
<td>5501</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Finance</td>
<td>Business</td>
<td></td>
<td>5004</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>International Business</td>
<td>Business</td>
<td></td>
<td>5013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Management</td>
<td>Business</td>
<td></td>
<td>5006</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Management Information Systems</td>
<td>Business</td>
<td></td>
<td>5099</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Web Systems Development</td>
<td>Business</td>
<td></td>
<td>6109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Marketing</td>
<td>Business, Applied Science & Technology</td>
<td>5004</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Photographic Marketing Management</td>
<td>Business</td>
<td></td>
<td>5004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Business Technology</td>
<td>NTID</td>
<td>5004</td>
<td>5004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>Ceramics & Ceramic Sculpture</td>
<td>Imaging Arts & Sciences</td>
<td>5610</td>
<td>1009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Chemistry#</td>
<td>Science</td>
<td></td>
<td>5619</td>
<td></td>
<td>1905</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Environmental Chemistry Option</td>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>Communication, Technical:</td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>Applied Science & Technology</td>
<td>5008</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Advanced</td>
<td>Applied Science & Technology</td>
<td>5008</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Communication, Professional & Technical</td>
<td>Liberal Arts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Communications, Public Relations:</td>
<td></td>
</tr>
<tr>
<td>Graphic Communication</td>
<td>Applied Science & Technology</td>
<td>5006</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Professional Writing</td>
<td>Applied Science & Technology</td>
<td>5008</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Computer Aided Drafting Technology</td>
<td>NTID</td>
<td>5303</td>
<td>5303</td>
<td>5303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>Computer Integrated Machining Technology</td>
<td>NTID</td>
<td>5312</td>
<td>5312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>Computer Science§</td>
<td>Computing & Information Sciences</td>
<td>5101</td>
<td></td>
<td>0701</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Computing, biomedical</td>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>Craft Major, Double**</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>1009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criminal Justice</td>
<td>Liberal Arts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Deaf Studies</td>
<td>NTID</td>
<td>5506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>Design:</td>
<td></td>
</tr>
<tr>
<td>Graphic</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5012</td>
<td>1009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Industrial</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5012</td>
<td>1009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Interior</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5012</td>
<td>1009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Diagnostic Medical Sonography</td>
<td>Science</td>
<td></td>
<td>5299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Digital Imaging & Publishing Technology</td>
<td>NTID</td>
<td>5007</td>
<td>5007</td>
<td>5007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>Economics</td>
<td>Liberal Arts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Emergency Management</td>
<td>Applied Science & Technology</td>
<td>5508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Engineering:</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering#</td>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Electrical Engineering#</td>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Industrial & Systems Engineering#</td>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Mechanical Engineering#</td>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>Microelectronic Engineering</td>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Undergraduate Programs</td>
<td>College</td>
<td>Certificate</td>
<td>Degree and HEGIS*</td>
<td>Evening</td>
<td>Option</td>
<td>Page</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Science</td>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Engineering Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical & Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical/Mechanical Engineering Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Engineering Technology (CIM)</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecommunications Engineering Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0925</td>
<td>Y</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Management & Technology</td>
<td>Applied Science & Technology</td>
<td></td>
<td>0420</td>
<td>Y</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science#</td>
<td>Science</td>
<td></td>
<td></td>
<td>0420</td>
<td></td>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film/Video/Animation</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5008</td>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine & Applied Arts</td>
<td>Imaging Arts & Sciences</td>
<td>5012</td>
<td></td>
<td>Y</td>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Arts Studio</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5610</td>
<td>1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Management</td>
<td>Applied Science & Technology</td>
<td></td>
<td>5404</td>
<td>1307</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Marketing & Distribution</td>
<td>Applied Science & Technology</td>
<td></td>
<td>1307</td>
<td>Y</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Management</td>
<td>Applied Science & Technology</td>
<td></td>
<td>5004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass & Glass Sculpture</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5012</td>
<td>1009</td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphic Communications+</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5009</td>
<td>0699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphic Media</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>0699</td>
<td></td>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare Billing & Coding Technology</td>
<td>NTID</td>
<td>1202</td>
<td>1202</td>
<td></td>
<td></td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Systems Administration</td>
<td>Applied Science & Technology</td>
<td>5299</td>
<td></td>
<td>Y</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotel and Resort Management</td>
<td>Applied Science & Technology</td>
<td></td>
<td>5010</td>
<td>0509</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Resources Administration</td>
<td>Applied Science & Technology</td>
<td></td>
<td>5004</td>
<td>Y</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustration</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5610</td>
<td>1002</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaging Science</td>
<td>Science</td>
<td></td>
<td></td>
<td>1011</td>
<td></td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaging & Photographic Technology</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5007</td>
<td>1011</td>
<td></td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaging Systems Management</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>0599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>Computing & Information Sciences</td>
<td></td>
<td>5101</td>
<td>0699</td>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Programming</td>
<td>NTID</td>
<td>5103</td>
<td></td>
<td></td>
<td></td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Science Technology</td>
<td>NTID</td>
<td>5407</td>
<td>5407</td>
<td></td>
<td></td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistics & Transportation Mgmt.</td>
<td>Applied Science & Technology</td>
<td></td>
<td>5004</td>
<td>Y</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Development</td>
<td>Applied Science & Technology</td>
<td>5004</td>
<td>5004</td>
<td>Y</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics:</td>
<td>Science</td>
<td></td>
<td></td>
<td>5617</td>
<td></td>
<td>1703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics#</td>
<td>Science</td>
<td></td>
<td></td>
<td>1703</td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Mathematics#</td>
<td>Science</td>
<td></td>
<td></td>
<td>1009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Illustration</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>1009</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Laboratory Technology</td>
<td>Science</td>
<td></td>
<td></td>
<td>1223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals & Jewelry Design</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>5612</td>
<td>1009</td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Media:</td>
<td>Imagining Arts & Sciences</td>
<td></td>
<td>0605</td>
<td></td>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Media--Design & Imaging</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>0605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Media--Information Technology</td>
<td>Computing & Information Sciences</td>
<td></td>
<td>0605</td>
<td></td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Media--Publishing</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>0605</td>
<td></td>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newspaper Operations Management+</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>0699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Technology</td>
<td>Science</td>
<td></td>
<td></td>
<td>5299</td>
<td>9</td>
<td>1299</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition Management</td>
<td>Applied Science & Technology</td>
<td></td>
<td>5004</td>
<td>1306</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophthalmic Optical Finishing Technology</td>
<td>NTID</td>
<td>5212</td>
<td>5212</td>
<td></td>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational Development</td>
<td>Applied Science & Technology</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Resource Development</td>
<td>Applied Science & Technology</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging Science</td>
<td>Applied Science & Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performing Arts</td>
<td>NTID</td>
<td>5610</td>
<td></td>
<td></td>
<td></td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
14 Introduction

Continued from prior page

<table>
<thead>
<tr>
<th>Undergraduate Programs</th>
<th>College</th>
<th>Degree and HEGIS*</th>
<th>Evening Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photographic Illustration, Professional</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Advertising Photography Option</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Fine Art Photography Option</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Photojournalism Option</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Physician Assistant</td>
<td>Science</td>
<td>122</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>Science</td>
<td>5019</td>
<td>122</td>
<td>124</td>
</tr>
<tr>
<td>Polymer Chemistry#</td>
<td>Science</td>
<td>1907</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Printing & Applied Computer Science+</td>
<td>Imaging Arts & Sciences</td>
<td></td>
<td>0669</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>Liberal Arts</td>
<td>6001</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Public Policy#</td>
<td>Liberal Arts</td>
<td>2102</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Quality, Basic</td>
<td>Applied Science & Technology</td>
<td>5004</td>
<td>Y</td>
<td>42</td>
</tr>
<tr>
<td>Quality Implementation</td>
<td>Applied Science & Technology</td>
<td>5004</td>
<td>Y</td>
<td>42</td>
</tr>
<tr>
<td>Safety Technology</td>
<td>Applied Science & Technology</td>
<td>5312</td>
<td>0420</td>
<td>36</td>
</tr>
<tr>
<td>Social Work</td>
<td>Liberal Arts</td>
<td>2104</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Computing & Information Sciences</td>
<td></td>
<td>0999</td>
<td>60</td>
</tr>
<tr>
<td>Statistics, Applied#</td>
<td>Science</td>
<td>1702</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Structural Design</td>
<td>Applied Science & Technology</td>
<td>5399</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Travel & Tourism Management</td>
<td>Applied Science & Technology</td>
<td>5011.1</td>
<td>0510.10</td>
<td>33</td>
</tr>
<tr>
<td>Woodworking & Furniture Design</td>
<td>Imaging Arts & Sciences</td>
<td>6211</td>
<td>6212</td>
<td>1014</td>
</tr>
</tbody>
</table>

* Higher Education General Information Survey
+ Upon approval of the School for American Crafts
§ Students in these programs may receive an AS in general science (HEGLS #5X49) upon successful completion of the first two years
Dual degrees (BUMS) option also available
+ This program has been approved for discontinuance. No new students will be admitted in 2002-2003.
The College of Applied Science and Technology (CAST) provides programs that stress technology in many environments, programs to enhance customer satisfaction in the service sector and programs that enhance the careers of traditional and nontraditional students. Modern technology, whether in the development, integration or implementation stages, is a focal point in each CAST program. This technology is used to provide the productive manufacture and distribution of durable and consumable goods, the proper flow of information worldwide, the proper protection of the environment and the enhancement of customer satisfaction in the service sector.

The college includes civil engineering technology; electrical, computer and telecommunications engineering technology; manufacturing, electrical/mechanical, and mechanical engineering technology; food, hotel, travel and nutrition management; packaging science; environmental management and technology; safety technology; health systems administration; and applied arts and science. The college has degree programs at the associate, baccalaureate and master’s degree levels, as well as a wide array of diplomas and certificates. The department of military science (Army ROTC) and the department of aerospace studies (Air Force ROTC) are also part of the college. The Center for Electronic Manufacturing Assembly (CEMA) and the National Technology Training Institute (NITI) are important components of CAST.

Resources
The experiential nature of all of the programs in the College of Applied Science and Technology requires excellent facilities and equipment. The Institute continually updates and adds equipment to all laboratories, including many academic laboratories housed in the Center for Integrated Manufacturing Studies. CIMS educational areas include state-of-the-art labs in CAD/CAM systems, electronics manufacturing, instrumentation, and packaging testing. A building completed in 1999 now houses the laboratories for electrical, computer and telecommunications engineering technology (electronics, electronic design, wide area networks, digital systems and telecommunications systems), and manufacturing and mechanical engineering technology (mechanical systems and materials). The soils and environmental laboratories from civil engineering technology have been upgraded and relocated to larger facilities.

The college’s student-run kitchen and restaurant contain some of the most sophisticated service equipment in the country. Newly remodeled food product development laboratories allow students to create menu items for the growing foodservice industry. Information laboratories provide data that enable students to assess the supply and demand for food commodities throughout the world.

A new environmental management and technology lab simulates many of the industrial and commercial environmental and safety issues of significance to students.

Acceptance of the associate degree
All units within CAST strongly encourage the transfer of students from two-year colleges. Most CAST programs give students with an appropriate associate degree full junior standing, and such students are eligible to graduate from RIT in two academic years, plus the required co-op experience. Students with a less appropriate academic background may have to complete additional course work. Part-time students have an extended schedule to meet the needs of their employers.

Program planning
Each student in CAST is considered individually when his or her program is planned. The variety of subject backgrounds from two-year colleges necessitates an almost tailor-made pattern of courses and knowledge. Every effort is made to ensure that associate degrees retain the integrity they deserve and to avoid repetition of previously studied material.

Faculty
Faculty members in CAST have had considerable experience in their respective industrial fields and/or teaching in two-year and four-year colleges and have completed graduate programs in their various specialties. While teaching is their primary concern, they serve as active industrial consultants and researchers to maintain current knowledge in their fields. The faculty are committed to student growth and development.
Advising
The College of Applied Science and Technology provides advising services throughout a student's academic career. The faculty adviser, the co-op adviser and the departmental offices each provide a part of that advising. In the departmental offices, all students are assured of the administrative support to effectively deal with registration, records and scheduling. A faculty adviser, who is uniquely prepared to offer career counseling in the major field of study, is assigned to each student. The Office of Cooperative Education and Career Services assigns each co-op student an adviser, who assists in the placement process. With a prearranged appointment, part-time students will find advisers available during the evening. Each of these advisers will also help to identify appropriate RIT support services for specific student needs.

In addition, students have the opportunity to develop a broad appreciation of computer applications and the effects of computers on society via computer science electives, liberal arts courses and a non-computer science concentration in another discipline.

Engineering Technology

RIT is a leader in the development of baccalaureate programs in engineering technology. The bachelor of science degree in engineering technology meets the growing need of business and industry for engineering technologists at the baccalaureate level.

Degree programs
Engineering technology at RIT offers five-year cooperative education programs leading to the bachelor of science (BS) degree in:
- civil engineering technology
- computer engineering technology
- computer integrated manufacturing engineering technology
- electrical engineering technology
- electrical/mechanical engineering technology
- mechanical engineering technology
- telecommunications engineering technology

The upper division of these programs is designed to accept graduates of associate degree programs in similar engineering technology fields and to provide continued study in the student's specialization. Each program consists of a balance of professional studies, liberal education, mathematics and on-the-job experience. Through the selection of technical electives, students can build and tailor their program based on previous knowledge and co-op experience to launch a career that best meets their needs and aspirations.

Part-time study

Upper division: Part-time study in all engineering technology upper-division programs is available during the day. The computer, electrical, computer integrated manufacturing, electrical/mechanical, mechanical and telecommunications engineering technology programs also offer courses in the evening for part-time students. These programs allow students with full-time jobs to obtain a BS degree on a part-time basis.

The upper-division programs in electrical/mechanical and telecommunications engineering technology are also offered through online learning.

The requirements for the part-time programs and graduation are the same as for the electrical, computer, and telecommunications engineering technology full-time day programs requiring co-op experience. The part-time mechanical, electrical/mechanical, and computer integrated manufacturing engineering technology programs do not require cooperative education.

Lower division: Engineering technology offers the following lower-division evening programs:
- electrical technology
- mechanical technology

These programs allow students with full-time jobs to obtain an AAS degree on a part-time basis.

Certificate programs are also available during the evening and some through online learning.

Information on these part-time, and certificate programs is available in the Part-time Online Guide.

Accreditation

The following baccalaureate programs are accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700: civil engineering technology, computer engineering technology, electrical engineering technology, electrical/mechanical engineering technology, computer integrated manufacturing engineering technology, manufacturing engineering technology, mechanical engineering technology, and telecommunications engineering technology. While RIT has not sought professional accreditation for the engineering technology associate programs, they have been designed to facilitate easy transfer for students to the BS programs. Students enrolled in the engineering technology associate degree programs may transfer all of their credits to the TAC of a ABET-accredited bachelor of science degree program in the appropriate field.

Careers

The graduate with a bachelor's degree in engineering technology is a distinct type of professional whose main concern and interest is with existing operation, maintenance, and management of products and processes. As such, the graduate qualifies for positions to fulfill a role within the broad engineering requirements of business, industry and government. Graduates find increasing acceptance in positions formerly filled by engineers in such fields as sales engineering, manufacturing engineering, field service engineering, process engineering, and product engineering.

The associate degree graduate-an engineering technician-works closely with engineers and technologists and is prepared for positions requiring skills in fabricating and producing equipment as well as maintaining and operating apparatus and systems.

Cooperative education plan

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RIT</td>
<td>RIT</td>
<td>co-op</td>
<td>co-op</td>
</tr>
<tr>
<td>4</td>
<td>RIT</td>
<td>co-op</td>
<td>RIT</td>
<td>co-op</td>
</tr>
<tr>
<td>5</td>
<td>co-op</td>
<td>RIT</td>
<td>RIT</td>
<td></td>
</tr>
</tbody>
</table>

An integral and significant part of each engineering technology program is on-the-job experience through RIT's cooperative education plan. This involves alternate periods of study and related industrial employment.

The co-op plan provides opportunity for students to learn and become familiar with direct application of techniques, skills and the latest developments in their fields. Students are encouraged to explore and test the wide range of opportunities available. Such things as the specific type of work, the size of the company, the location and familiarization with the industrial community and environment can and do affect an individual's decision on the direction of his or her career. Co-op can provide a suitable trial ground.
Co-op can also provide a significant income during work periods, which helps defray a major portion of one's educational expenses.

Cooperative education plan-engineering technology

Each student is helped to find work related to specific career goals. However, as is the case in any employment situation, the major impetus must come from the individual. The typical co-op schedule for engineering technology students is shown in the chart above.

Undeclared Engineering Technology Option

John A. Stratton, Program Chair

Students interested in engineering technology or packaging science but undecided about selecting a specific major should consider this option. It allows students to spend up to a year earning credits applicable to all programs while exploring the various options available at RIT. During the first quarter, students take basic technical skills courses in both electrical and mechanical disciplines. They also participate in an Engineering Technology Seminar in which they explore the unique characteristics of each discipline offered within the departments. After the first quarter, students are expected to select a specific major or to focus on either the electrical (computer, electrical, telecommunications) or mechanical (civil, manufacturing, mechanical, packaging) disciplines. During the spring quarter, they are required to select a specific major. In their first two years, students take some courses at different times than students who entered a specific program. In most cases, however, students who spend a full year in the undeclared option are able to start their junior year on track with other students in the same program.

Undeclared engineering technology, freshman year course sequence

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Writing & Literature I 0504-225</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Tools for Engineering Technology 0610-230</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Fabrication Techniques 0618-220</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>College Algebra & Trigonometry 1016-204</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Engineering Technology Seminar 0606-101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Option Students Writing & Literature II 0504-226</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>College Physics I 1017.211,271</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Programming I 0618-231</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DC Circuits 0609-201</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DC Circuits & Simulation 0609-221</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mechanical Option Students Writing & Literature II 0504-226</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>College Physics I 1017.211,271</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CAD for Mechanical Drafting & DES 0617-262</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electrical Principles for Design I 0609-411</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>Electrical Students</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AC Circuits 0609-202</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AC Circuits & Simulation 0609-222</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Digital Fundamentals 0618-301</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>College Physics II 1017-212,272</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mechanical Students</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Introduction to Statics 0610-302</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Data Analysis 1016-319</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>College Physics II 1017-212,272</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core) *</td>
<td>4</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

* See page 20 for liberal arts requirements.

Civil Engineering Technology

Maureen S. Valentine, Chair

Background

The engineering technologist translates the innovative concepts of the engineer into functioning systems and structures, using the language of codes, working drawings and specifications. Students may choose one of five elective paths that meet their specific interests. Combined with a broad-based civil engineering technology core curriculum, this approach provides a good entry-level foundation in the industry. Graduates have found extensive employment opportunities.

The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700 and is operated as a cooperative education program.

Transfer admission

The admission of transfer students at the third-year level is open to all students who have already received an appropriate associate degree, which should include:

- Technical math (2 semesters of college-level math with an introduction to calculus)
- Drafting (to include CAD)
- Technical physics (2 semesters)
- Soil Mechanics
- Plane Surveying
- Route Surveying
- Statics (mechanics)
- Strength of Materials
- Methods and Materials of Construction

Students lacking these courses are still admitted but are required to take the missing courses concurrently within the program or in addition to the program requirements.

Normally, an associate degree in science is acceptable from an engineering transfer program, with students taking courses they lack concurrently in the program. Typically these students graduate in the same six academic quarters as an engineering technology transfer student.

Cooperative education plan

Work experience gained while completing alternate work and study quarters is especially valuable. A typical co-op job at an engineering consulting firm might include assisting engineers in design drafting; feasibility and preliminary report writing; and inspecting, surveying, or investigating in the field. Other co-op students work in water and wastewater treatment plants, checking control panels, operating systems, pumps, and other equipment. Students in the construction field typically perform a wide range of duties, from craft supervision to assisting project superintendents, recording change orders, estimating, drafting, and surveying.

The scope of work accomplished varies with the interests of each student and increases in complexity with each succeeding job. Construction companies, facility departments of large corporations, engineering consultants, testing agencies, and all branches of government employ our students. Some students work all their co-op quarters with the same firm, while others choose from various work experiences. All are expected to use their education on the job and bring back innovative, new, and unusually successful technologies to share with classmates.
Technical electives

It is anticipated that a student will take at least two electives from one of the sequences shown. Other electives may be chosen from within that sequence, from another sequence, or from the other electives shown.

Water Resources

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology 0608-482</td>
<td>4</td>
</tr>
<tr>
<td>Hydraulic Structures 0608-485</td>
<td>4</td>
</tr>
<tr>
<td>Groundwater Hydraulics 0608-480</td>
<td>4</td>
</tr>
</tbody>
</table>

Environmental Controls

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of Water Treatment Facilities 0608-510</td>
<td>2</td>
</tr>
<tr>
<td>Land Use Planning 0608-514</td>
<td>4</td>
</tr>
<tr>
<td>Design of Wastewater Treatment Facilities 0608-520</td>
<td>4</td>
</tr>
<tr>
<td>Resource Recovery/ Waste Management 0608-525</td>
<td>4</td>
</tr>
</tbody>
</table>

Construction Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Relations 0608-500</td>
<td>2</td>
</tr>
<tr>
<td>Cost Estimating 0608-509</td>
<td>4</td>
</tr>
<tr>
<td>Construction Project Management 0608-560</td>
<td>4</td>
</tr>
</tbody>
</table>

Structures

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Design 0608-470</td>
<td>4</td>
</tr>
<tr>
<td>Reinforced Concrete Design 0608-496</td>
<td>4</td>
</tr>
<tr>
<td>Structural Steel Design 0608-497</td>
<td>4</td>
</tr>
</tbody>
</table>

Building and Heavy Construction

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Equipment 0608-460</td>
<td>2</td>
</tr>
<tr>
<td>Construction Safety 0608-505</td>
<td>2</td>
</tr>
<tr>
<td>Paving Design 0608-535</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Equipment 0608-444</td>
<td>2</td>
</tr>
</tbody>
</table>

Other Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analysis 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Applied Thermodynamics 0610-440</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Geology / Lab 0630-370172</td>
<td>4</td>
</tr>
</tbody>
</table>

With departmental approval, technical electives may be selected from existing courses in other RIT colleges. Also, independent study projects may be pursued for credit in cases where students demonstrate unusual ability and obtain sponsorship of a faculty adviser.

Students are encouraged to utilize the first-class computer facilities and to work with professors on additional applications of computer graphics. Evening classes and all-day college courses are open if schedules can be arranged and students have the capacity to handle additional credits.

Civil engineering technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
</tr>
<tr>
<td>Co-op</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
</tr>
<tr>
<td>Physical Education</td>
</tr>
<tr>
<td>Second Year</td>
</tr>
<tr>
<td>Co-op</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
</tr>
<tr>
<td>Third Year</td>
</tr>
<tr>
<td>Co-op</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
</tr>
<tr>
<td>Fourth Year</td>
</tr>
<tr>
<td>Co-op</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
</tr>
<tr>
<td>Fifth Year</td>
</tr>
<tr>
<td>Co-op</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
</tr>
</tbody>
</table>

* See page 11 for policy on physical education.
† See page 10 for liberal arts requirements.
Structural design certificate

This certificate is for those with an associate degree in civil engineering technology or a similar program who are employed in a design environment (consulting engineering firm or architecture-engineering firm) and need formal training in proper design techniques to better perform those preliminary design functions that may be allocated to them under the supervision and guidance of a professional engineer. The 20-credit certificate program in structural design consists of five four-credit courses listed below. The program is offered locally and online.

This certificate sequence includes the latest technique in steel design, designated “load and resistance factor design,” which is replacing the “allowable stress design” techniques still offered in many engineering and technology curricula.

Prospective students would be either those with an associate degree in civil engineering technology or a similar program employed in a design environment and needing additional training, or those with a bachelor’s degree in civil engineering, civil engineering technology, or architecture employed in a design environment.

Admissions requirements for either category would include an official transcript from the previous institution indicating successful completion of the courses equivalent to the program prerequisites.

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mechanics 0608-404</td>
<td>4</td>
</tr>
<tr>
<td>Structural Analysis 0608-490</td>
<td>4</td>
</tr>
<tr>
<td>Timber Design 0608-470</td>
<td>4</td>
</tr>
<tr>
<td>Reinforced Concrete Design 0608-496</td>
<td>4</td>
</tr>
<tr>
<td>Structural Steel Design 0608-497</td>
<td>4</td>
</tr>
</tbody>
</table>

Certificate Total 20

Electrical Engineering Technology

Carol Richardson, Chair

Thomas J. Dingman, Program Chair

The five-year bachelor of science program in electrical engineering technology includes more than a year of cooperative work experience for full-time students. The program also accepts transfer students (see Transfer admission, following). The upper-division feature of the program provides a viable option for students who have completed their associate degree and desire to continue their education in technology.

The bachelor of science degree program in electrical engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

A typical BS program is shown in the chart on the next page. The first two years provide basic courses in circuits, analog and digital electronics, physics, technical calculus and liberal arts. The third and fourth years of the program expand on basic courses with upper-level courses in applied differential equations, liberal arts, advanced circuits and electronics, transform methods, control systems, analog and digital electronics, and mechanical engineering technology. The program is completed with a choice of technical and professional electives. Professional elective sequences are available in electric power systems, electronic communications, computer design, and networking. Several electives also are available from other technical disciplines, and the student’s academic adviser will help to determine the best choices.

Students begin their cooperative work experience in the third year of the program and are required to complete five quarters of such experience. A co-op counselor is assigned to each student.

Transfer admission

Transfer admission is open to graduates of two-year associate degree electrical or electronic engineering technology programs. Students currently enrolled in engineering science associate degree programs also may apply and be assigned to a slightly different series of courses. Students from associate degree programs closely related to electrical technology and who have appropriate circuits and electronics course levels are also accepted, but may be required to complete some lower-level courses before starting the third year of the program.

Professional elective sequences

Computer Design

- Embedded Systems Design I 0618-561
- Embedded Systems Design II 0618-562

Power Systems

- Power Systems I 0609-550
- Power Systems II 0609-552

Electronic Communications

- Communications Systems I 0609-534
- Communications Systems II 0609-535

Networking

- Network Engineering 0614-571
- Network Planning and Design 0614-574

Possible Technical Electives

- Senior Project 0609-580
- Statistical Quality Control 0617-424
- Robots in Manufacturing 0617-485
- Value Analysis 0617-437
- Robust Design 0610-570
- Telecommunications Fundamentals 0614-271
- Voice Telecommunications 0614-465
- Electronic Optic Devices 0609-554
Electrical Engineering Technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>DC Circuits</td>
<td>0609 201</td>
</tr>
<tr>
<td>Electronic Fabrication Techniques</td>
<td>0618-220</td>
</tr>
<tr>
<td>DC Circuits & Simulation</td>
<td>0609-221</td>
</tr>
<tr>
<td>College Algebra & Trigonometry</td>
<td>1016-204</td>
</tr>
<tr>
<td>First-Year Orientation</td>
<td>0609-207</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td></td>
</tr>
<tr>
<td>AC Circuits</td>
<td>0609-202</td>
</tr>
<tr>
<td>AC Circuits & Simulation</td>
<td>0609-222</td>
</tr>
<tr>
<td>Technical Programming I</td>
<td>0618-231</td>
</tr>
<tr>
<td>College Physics I/II</td>
<td>1017-211, 271</td>
</tr>
<tr>
<td>College Physics III/IV</td>
<td>1017-212, 272</td>
</tr>
<tr>
<td>College Physics V/VI</td>
<td>1017-213, 273</td>
</tr>
<tr>
<td>Digital Fundamentals</td>
<td>0618-301</td>
</tr>
<tr>
<td>Physical Education †</td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Electronics I, II, III</td>
<td>0609-203,361,362</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>1016-319</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td></td>
</tr>
<tr>
<td>Machines & Transformers</td>
<td>0609-337</td>
</tr>
<tr>
<td>Calculus for Technologists I, II</td>
<td>1019-420,421</td>
</tr>
<tr>
<td>Electronics I</td>
<td>0609-203</td>
</tr>
<tr>
<td>Effective Technical Communications</td>
<td>0535-403</td>
</tr>
<tr>
<td>Microcomputers</td>
<td>0618-303</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>0618-339</td>
</tr>
<tr>
<td>Technical Programming II</td>
<td>0618-232</td>
</tr>
<tr>
<td>Physical Education †</td>
<td></td>
</tr>
<tr>
<td>(Or completion of an appropriate associate degree or equivalent)</td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Digital Systems Design</td>
<td>0618-438</td>
</tr>
<tr>
<td>Electronics IV</td>
<td>0609-363</td>
</tr>
<tr>
<td>Solutions to Engineering Programs</td>
<td>1019-422</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td></td>
</tr>
<tr>
<td>Career Orientation</td>
<td>0609-407</td>
</tr>
<tr>
<td>Math/Science Elective</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td></td>
</tr>
<tr>
<td>Principles of Electronic Design Automation</td>
<td>0618-320</td>
</tr>
<tr>
<td>Concepts in Systems & Signals</td>
<td>0609-333</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>General Education Elective</td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td></td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>0609-547</td>
</tr>
<tr>
<td>Advanced Circuit Theory</td>
<td>0609-403</td>
</tr>
<tr>
<td>Mechanical/Manufacturing ET Elective</td>
<td></td>
</tr>
<tr>
<td>Advanced Electronics</td>
<td>0609-442</td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>0609-408</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td></td>
</tr>
<tr>
<td>Fifth Year</td>
<td></td>
</tr>
<tr>
<td>Control Systems</td>
<td>0609-404</td>
</tr>
<tr>
<td>Engineering Economics</td>
<td>0617-436</td>
</tr>
<tr>
<td>Senior Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>8</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education (1 quarter)</td>
<td></td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

The program shown is that which would be taken by those who start at RIT as freshmen. Each transfer student will be given a program tailored to his or her particular needs upon acceptance. Graduates will have to meet a minimum of 36 quarter credit hours of mathematics and science (including credits transferred) and include mathematics 1019-422 or equivalent.

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

Computer Engineering Technology

Chair

George Zion, Program Chair

There is an increasing requirement in industry for graduates with an in-depth knowledge of both hardware and software design and development. The computer engineering technology program bridges the gap between hardware and software by providing a solid foundation in both and tying the disciplines together with a curriculum that has intensive classroom and laboratory components.

From a software perspective, students are provided with a strong background in leading edge development using programming languages that are fully entrenched in industry. Students learn industry standard approaches to application development as well as state-of-the-art problem solving techniques. Students learn techniques for developing both applications code and firmware, and they understand and appreciate the difference. Embedded "C" and assembly language programming are performed in numerous courses.

The hardware focus of the curriculum is on digital systems design and development. From low-level gate design to high-end microprocessors and current bus standards, students gain an architectural appreciation of computer systems. The curriculum includes in-depth design and analysis of combinational logic, sequential logic, and state machines, microcontroller systems, microprocessor systems, and state-of-the-art computer technology. Students perform schematic entry and programmable logic design in VHDL using industry standard computer aided engineering (CAE) tools.

Computer engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

Combined five-year BS/MS degree option

The computer engineering technology program, in conjunction with the department of computer science (B. Thomas Golisano College of Computing and Information Sciences) also offers a combined bachelor of science/master of science degree. This accelerated sequence provides an excellent opportunity for outstanding undergraduate students to earn both a bachelor's degree in computer engineering technology and a master's degree in computer science in a cohesive five-year curriculum.

Applications to this program option will be accepted from matriculated undergraduate computer engineering technology students who have completed all the courses in the first five quarters of the baccalaureate program and have maintained a cumulative grade point average of at least 3.4 out of 4.0. At least 55 of these credits must have been earned at RIT. Continuance in this program also requires the maintenance of at least a 3.0 cumulative grade point average and at least a 3.0 in the 45-quarter hours directly applicable to the master of science degree.

Transfer admission

Transfer admission is open to graduates of closely allied associate degree programs. Transfer students from such programs may normally expect to complete the requirements for the BS degree in three years, which includes six academic quarters and five quarters of cooperative work experience. Because no single program of study can effectively integrate all AAS transfer students into the curriculum, each qualified transfer student is evaluated on a course-by-course basis and is given a specific program of study that best meets his or her career goals, provides a meaningful cooperative work experience and permits the student to fulfill the degree requirements in a reasonable period of time.
Electives
Because of the need in the computer industry for graduates with diversified areas of expertise, the computer engineering technology program has a required three-course professional concentration sequence. This concentration can be taken in any area of computer science, systems administration, local area networks, wide area networks, or telecommunications systems. This professional concentration allows students to customize their education yet ensures depth of knowledge in a subject matter beyond the core curriculum.

In addition to the professional concentration, the computer engineering technology curriculum has two technical electives, one general education elective, and one math/science elective. These provide even greater breadth of knowledge in an already well-rounded curriculum.

Possible professional concentrations are:

Computer Science
- Computer Science for Transfers 4003-263
- Programming Language Concepts 4003-450
- Operating Systems I 4003-440

Systems Administration
- OS Scripting 4002-402
- Systems Administration I 4002-421
- Systems Administration II 4002-422

Local Area Networking
- Internetworking Lab I 4002-342
- Internetworking Lab II 4002-413
- Intro to Routing & Switching 4002-515

Wide Area Networking
- Telecommunications Fundamentals 0614-271
- Voice Communications 0614-465/ 0614-466
- Switching Technologies 0614-475

Communication Systems
- Electronics IV 0609-363
- Communication Systems I 0609-534
- Communication Systems II 0609-535

Computer engineering technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Systems Design I, II 0618-561,562</td>
<td>8</td>
</tr>
<tr>
<td>Concepts in Systems & Signals 0609.333</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Electronics 0609-442</td>
<td>4</td>
</tr>
<tr>
<td>Professional Concentration Elective</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts*</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Systems Design III 0618-563</td>
<td>4</td>
</tr>
<tr>
<td>Professional Concentration Elective</td>
<td>4</td>
</tr>
<tr>
<td>Electives t</td>
<td>16</td>
</tr>
<tr>
<td>Principles of Optics 1017-320</td>
<td>4</td>
</tr>
<tr>
<td>Senior Seminar 0520-501</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>192</td>
</tr>
</tbody>
</table>

Note: One physical education wellness and two different physical education activity courses need to be taken any time during the five years.
* See page 10 for liberal arts requirements
† The electives must include (1) math/Science, (1) general education and (1) technical

Telecommunications Engineering Technology

Carol Richardson, Chair
William Johnson, Program Chair

This program is designed to meet the ever-increasing need of the telecommunications industry for people who understand state-of-the-art principles, applications, equipment and regulatory policies. Telecommunications service providers, equipment manufacturers, and telecommunications users all need a cadre of those capable of utilizing equipment to its fullest, both from a technical and from a managerial perspective. The five-year BS program in telecommunications engineering technology includes more than a year of cooperative work experience for full-time students.

Two options are available to fulfill your educational goals. The technical option is designed for the person whose interests lie in the applications of equipment, while the management option is designed for the individual who wants to move into the management of telecommunications resources. The two options differ at the junior and senior levels by four courses, allowing students to choose after they have been introduced to the fundamentals of telecommunications, electronics, mathematics, science, and the liberal arts.

Both the technical and management options emphasize the application and understanding of technology required in the telecommunications industry. The technical option allows students to take courses from areas such as computer, electrical and information technology. The management option includes the following business courses: Financial and Managerial Accounting, Organizational Behavior, and Corporate Finance.

Students begin their cooperative work experience in the third year of the program and are required to complete five quarters of co-op. A cooperative education counselor is available for each program.

Telecommunications engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 1 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

Transfer admission

Transfer admission is open on a course-by-course evaluation to those who have attended two-year associate degree programs. Students from closely related programs, such as telecommunications technology or electrical/electronics technology, can normally expect to graduate in three years, which includes six academic quarters and five quarters of cooperative employment. Graduates of less closely related programs are also welcome to apply but may expect to take longer to complete the program.
Possible technical electives are:
- Microcontrollers 0618-339
- Principles of Electronic Design Automation 0618-320
- Internetworking Lab 4002-342
- Windows Programming 4002-570
- Control Systems 0609-404
- Digital Signal Processing 0609-547
- Embedded Systems Design I, II 0618-561,562
- Digital System Design I 0618-438
- Electronic Imaging 4002-320
- Communications II 0609-535
- Electronic Optic Devices 0609-554

Telecommunications engineering technology, BS degree, typical course sequence

First Year
- First-Year Orientation 0614-207 1
- College Algebra & Trigonometry 1016-204 4
- Data Analysis I 1016-319 4
- DC Circuits 0609-201 3
- DC Circuits & Simulation 0609-221 2
- Electronic Fabrication Techniques 0618-220 2
- College Physics I 1017-211 3
- College Physics I Laboratory 1017-271 1
- Telecommunications Fundamentals 0614-271 4
- AC Circuits 0609-202 3
- AC Circuits & Simulation 0609-222 2
- College Physics II 1017-212 3
- College Physics II Laboratory 1017-272 4
- Digital Fundamentals 0618-301 4
- Writing & Literature I, II 0502-225,226 8
- Liberal Arts (Core) * 4
- Quarter Credit Hours 49

Second Year
- Electronics I, II, III 0609-203, 361, 362 12
- Calculus for Technologists I, II 1019-420,421 8
- Technical Programming I, II 0618-231,232 8
- College Physics III 1017-213 3
- College Physics III Laboratory 1017-273 1
- Voice Telecommunications 0614.465,466 4
- Liberal Arts (Core) * 12
- Physical Education t 0
- Quarter Credit Hours 48

Technical option, upper division

Third Year
- Solutions to Engineering Problems 1019-422 4
- Concepts in Signals & Systems 0609-333 4
- Networking Technologies 0614-477 4
- Microcomputers 0618-303 4
- Electronics IV 0609-363 4
- Career Orientation 0609-407 1
- Technical Electives 8
- General Education Elective 4
- Cooperative Education (2 quarters) Co-op 33

Fourth Year
- Intro. to Telecommunications Policy 0614-480 4
- Effective Technical Communications 0535-403 4
- Telecommunications Transmission Systems & Lab 0614.483,484 4
- Network Management 0614-479 4
- Switching Technologies 0614-475 4
- Math/Science Elective 4
- Technical Elective 4
- Liberal Arts (Concentration) * 4
- Cooperative Education (2 quarters) Co-op 32

Fifth Year
- Telecommunications Network Engineering & Lab 0614-561.562 4
- Communication Systems I 0609-534 4
- Liberal Arts (Concentration) * 8
- Technical Elective 8
- Network Planning & Design 0614-574 4
- Engineering Economics 0617-436 4
- Senior Seminar 2
- Cooperative Education (1 quarter) Co-op 196
- Quarter Credit Hours (includes lower division) 196

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education

Telecommunications engineering technology majors may select from a technical option focusing on equipment-or a management option, preparing them to work for companies that use telecommunications equipment and services.
Management option, upper division

Third Year
Effective Technical Communications 0535-403 4
Solutions to Engineering Problems 1019-422 4
Financial Accounting 0101.301 4
Concepts in Signals & Systems 0609-333 4
Career Orientation 0609-407 1
Managerial Accounting 0101.302 1
Networking Technologies 0614.477 4
Microcomputers 0618.303 4
Electronics IV 0609-363 4
Cooperative Education (2 quarters) Co-op 33

Fourth Year
Intro. to Telecommunications Policy 0614.480 4
Telecommunications Transmission Systems & Lab 0614-483, 484 4
Principles of Economics 0511-301 4
Organizational Behavior 0102-430 4
Network Management 0614-479 4
Switching Technologies 0614-475 4
Technical Elective 4
Liberal Arts (Concentration) 4
Cooperative Education (2 quarters) Co-op 32

Fifth Year
Telecommunications Network Engineering & Lab 0614-561, 562 4
Communication Systems I 0609-534 4
Math/Science Elective 4
Liberal Arts (Concentration) * 8
Network Planning & Design 0614-574 4
Corporate Finance 0104-441 4
General Education Elective 4
Senior Seminar 0520-501 2
Cooperative Education (1 quarter) Co-op 34
Total Quarter Credit Hours (includes lower division) 196

* See page 10 for liberal arts requirements

Manufacturing and Mechanical Engineering Technology/Packaging Science

John A. Stratton, Chair

The manufacturing and mechanical engineering technology/packaging science department offers a variety of programs focusing on the disciplines of manufacturing, mechanical, and packaging. The bachelor of science in packaging science has three options: technical, management, and printing. The single associate degree program is in mechanical technology. The three BS programs in manufacturing engineering technology, electrical/mechanical engineering technology, and mechanical engineering technology are accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 1 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

Laboratories for each of the programs are in the new College of Applied Science and Technology building or the adjacent Center for Integrated Manufacturing Studies. Packaging laboratories include dynamics, materials, and environmental testing. Mechanical laboratories include mechanics and materials, thermofluids, plastics, instrumentation, and materials processing. Manufacturing laboratories include CAD, CIM/robotics, and surface-mount technology.

Electrical/Mechanical Engineering Technology

James F. Scudder, Program Chair

Baccalaureate program

With both the increased complexity of product design and the merger of mechanical and electrical aspects of design, there is a growing need for professionals who have a strong foundation in electrical, mechanical, and manufacturing disciplines. Graduates from the electrical/mechanical engineering technology program are able to effectively bridge the gap between coworkers with more specialized backgrounds.

The program is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 1 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

Objectives of the program

This program is designed to integrate the electrical, mechanical, and manufacturing disciplines in order to provide the breadth of knowledge required to integrate systems in an increasingly complex world. The graduate will be able to work effectively within a wide variety of disciplines. The program is designed so that transfer students from a wide variety of disciplines can complete the requirements and specialize in one of the many areas available through other engineering technology programs on campus.

Curriculum

The foundation of the program includes courses in mathematics through statistics, calculus, and differential equations as well as fundamental courses in physics and chemistry. The electrical core of the program includes courses in circuits, microprocessors, electrical machines, telecommunications, and programmable controllers. The mechanical/manufacturing core includes courses in materials, mechanics, CAD, pneumatics, hydraulics, manufacturing processes, and thermal science. Courses in engineering economics and production management round out the core. Once the student has completed this core, he or she is able to select three advanced courses to specialize in one of many disciplines offered by several engineering technology departments.

Transfer admission

Students with associate degrees in either electrical or mechanical engineering technology can generally transfer to the upper-division portion of the program with third-year status. Students with other backgrounds usually need additional core course work to achieve third-year status. Transfer students will more closely follow the requirements outlined in the upper-division part-time and extension course sequence, since some lower-division courses are replaced by parts of upper-division courses. The actual course sequence will be determined by advisement.

Evening and online learning program

The upper-division portion of this program may be taken part time during the evening and through online learning. This enables students who are employed full time to complete the program even if they reside some distance from campus. Some courses will require a trip to Rochester to complete the required laboratory exercises. These labs will be scheduled on either a single Saturday for the entire course or will be run on a single long weekend. The typical student with an associate degree will require approximately five years to complete the program requirements. Some courses may be available in online learning format only every other year.
Electrical/mechanical engineering technology-BS degree, lower-division course requirements for transfer students*

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Algebra & Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>College Physics I with lab 1017-211.271</td>
<td>4</td>
</tr>
<tr>
<td>College Physics II with lab 1017-212.272</td>
<td>4</td>
</tr>
<tr>
<td>Technical Programming I 0618-231</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core Courses †</td>
<td>16</td>
</tr>
<tr>
<td>General Education Electives</td>
<td>8</td>
</tr>
<tr>
<td>CAD for Mechanical Design 0617-262</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Materials 0610-511</td>
<td>3</td>
</tr>
<tr>
<td>Materials Testing 0610-304</td>
<td>1</td>
</tr>
<tr>
<td>Pneumatics & Hydraulics 0610-305</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing Processes 0617-220</td>
<td>4</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>24</td>
</tr>
<tr>
<td>Technical Core Courses</td>
<td>0-20</td>
</tr>
<tr>
<td>Typical Transfer Total (varies with background)</td>
<td>80-100</td>
</tr>
</tbody>
</table>

* Students should complete as many of these requirements as possible before taking advanced courses. Online learning students may take equivalent courses at local community colleges.
† See page 10 for liberal arts courses

Sample technical concentrations

After completing the core, a student selects, with adviser approval, a concentration sequence of three upper-division technical courses. This may be one of the following, or it may be tailored to meet the student’s specific needs.

Electrical Systems (select 3 courses)
- Power Systems I
- Power Systems II
- Advanced Circuit Theory
- Advanced Electronics

Control Systems
- Mechanical Design (select 3 courses)
- Robust Design
- Applied Mechanics of Materials
- Machine Design I
- Machine Design II

Manufacturing Management
- Robust Design
- Productions and Operations Management II
- Product Design

Telecommunications (select 3 courses)
- Voice Communications
- Telecommunications Policy and Issues
- Switching Technologies
- Networking Technologies
- Network Management

Electrical/mechanical engineering technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.

For the electrical/mechanical engineering technology, BS degree, upper-division evening and online learning program, typical course sequence, please see the Part-time Online Guide.
Manufacturing Engineering Technology
Louis Cennaro, Program Chair

Leaders in the manufacturing engineering profession estimate that the present shortage of qualified manufacturing engineers and technologists is between 50,000 and 100,000 people and the need is increasing. They also estimate that between 20,000 and 30,000 new jobs are created in manufacturing engineering every year. The two principal factors generating this demand are industrial productivity and technological innovations. The rate of increase of productivity in American industry is lagging behind most industrial nations.

Realizing that competitive positions in world and domestic markets are tied to the productivity of manufacturing units, there is considerable effort by industrial organizations to improve productivity. This nationwide effort is causing organizational and planning changes in many corporations that now recognize the manufacturing unit as the key to profits. For example, many corporations have placed manufacturing engineers in charge of new product design functions in an effort to ensure product manufacturability.

Efforts to improve productivity have led to the rapid introduction of new processes and equipment and in increased levels of automation. This has created a demand for personnel well versed in the new manufacturing technologies: computer aided design, computer numerical control, microprocessor controls, robotics, computer-aided manufacturing, flexible manufacturing systems, assembly automation, computer integrated manufacturing, and electronics manufacturing.

The manufacturing engineering technology program is designed to meet industry demands and is operated on the cooperative education plan. The BS in manufacturing engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 1 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

Program objectives
The primary objective of the manufacturing engineering technology program is to prepare individuals for professional employment in the manufacturing field. This program is designed to provide the skills necessary for applying both today’s and tomorrow’s manufacturing technologies. These skills are enhanced by a full co-op program in manufacturing industries. Throughout the academic program, a large measure of hands-on laboratory experiences related to manufacturing technology is provided.

Curriculum
The curriculum has been designed with the aid and consultation of professionals in the field. The program’s major emphasis is on computer integrated manufacturing. Subjects covered include traditional and nontraditional manufacturing processes, fundamentals of electronics and microprocessors, computer-aided design, computer numerical control, robotics, group technology, computer-aided process planning, materials requirements planning, surface-mount electronics design and assembly, flexible manufacturing systems, quality control, engineering economics, value analysis, plastics manufacturing, manufacturing management, and lean manufacturing.

Transfer admission
Transfer students from two-year colleges should have an AAS degree or equivalent in one of the following majors: manufacturing technology, mechanical technology, management engineering technology, engineering science, electrical technology, computer technology, quality control technology, design and drafting technology, or electromechanical technology. Students with other backgrounds may have to take additional courses to meet the entrance requirements.

Evening program
The upper division of this program may be taken on a part-time basis during the evening by those who are employed full time and desire to receive an accredited baccalaureate degree. Manufacturing engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 1 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

The typical evening student requires approximately 13 quarters to complete the upper-division course requirements. In the early quarters, the fundamentals of mathematics, science, engineering, electronics and processes are emphasized to provide the background for later courses in computer-integrated manufacturing and technical electives. Students also may elect certain courses from other programs.

Note: Some technical electives are offered only every other year. Please check with an adviser when planning your program technical elective content.

Manufacturing engineering technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0610-101</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Technical Mathematics I, II 0692-221,222</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Computing Tools in Engineering Technology 0610-230</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing Processes I 0617-220</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Machine Tool Lab</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Writing & Literature I, II 0502-225,226</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>College Physics I & Lab 1017-211, 271</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CAD for Mechanical Design & Drafting 0617-262</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Materials Technology 0610.211</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Materials Testing 0610-304</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Data Analysis 1016-319</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing Processes II 0617-420</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Design Drawing 0610-220</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)*</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Physics II & Lab 1017-212,272</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Strength of Materials 0610-303</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Statics 0610-302</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>College Physics III & Lab 1017-213, 273</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sophomore Seminar 0610-102</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pneumatics & Hydraulics 0610-305</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Principles for Design I 0609-411</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calculus for Technologists I 1019-420</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Mechanical Design I 0610-315</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Effective Technical Communication 0535-403</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Calculus for Technologists II 1019-421</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Educational</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-op Preparation 0606-099</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intro. to Electronics Packaging 0617-455</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Materials Technology 0610-416</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Computer Numerical Control 0617-471</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Engineering Tech. Lab II 0610-409</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Solutions to Engineering Problems 1019-422</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Controls for Manufacturing Automation 0617-470</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry & Chemistry Lab 1011-205,271</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electronics Packaging Lab 0617-457</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
<td>Co-op</td>
</tr>
</tbody>
</table>
Mechanical Engineering Technology

Robert Merrill, Program Chair

Baccalaureate program

Mechanical engineering technology involves understanding how products and machinery work and how to design, make or use them. From water wheels and steam engines to high-performance automobiles, air-conditioned environments, and jet aircraft, mechanical engineering technology has changed society for the better.

As a mechanical engineering technology student, you will study the foundations of mechanics, materials and energy. You will learn technical skills such as CADD, how to use computers, how to test materials, and how to make parts. You will learn to apply these principles and skills to the various fields of mechanical engineering technology—such as product and machine design, power generation, utilities, and manufacturing—through laboratories and design projects. Full-time students gain valuable industrial experience through the required cooperative education program.

The BS in mechanical engineering technology is accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology, 1 Market Place, Suite 1050, Baltimore, Maryland 21202, telephone 410-347-7700.

Program objectives

The program objectives are to prepare graduates for professional careers in machine design; manufacturing; test engineering; field service engineering; technical sales; thermal analysis; product design; utilities operations; heating, ventilating, and air conditioning design; or plant operations. The program emphasizes the development of a design methodology, and this is reinforced through the use of project-oriented assignments.

Curriculum

In the early quarters, students develop their skills in the fundamentals of mechanics, mathematics, materials technology, and computer-aided design. In later quarters, courses focus both on mechanical design and applied thermofluid engineering. Individuals may specialize by taking technical electives in such areas as product design, air conditioning, thermal power, plastics processing, and manufacturing.

A substantial amount of laboratory work is required, including the preparation of quality reports. Use of the computer is emphasized throughout the curriculum.

Transfer admission

Transfer students enter this program at the third-year level, having received an appropriate associate degree in mechanical technology, design-drafting technology, air conditioning technology, engineering science, or an acceptable equivalent. It is expected that these associate degree programs will have provided the student with background in the following:
Mechanical engineering technology, BS degree, typical course sequence

First Year
<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0610-101</td>
<td>1</td>
</tr>
<tr>
<td>Technical Mathematics I, II 0692-221, 222</td>
<td>8</td>
</tr>
<tr>
<td>Writing & Literature I, II 0502-225, 226 *</td>
<td>8</td>
</tr>
<tr>
<td>Computing Tools in Engineering Technology 0610-230</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing Processes I, II 0617-220,420</td>
<td>8</td>
</tr>
<tr>
<td>Solid Modeling & Design 0617-262</td>
<td>4</td>
</tr>
<tr>
<td>College Physics I & Lab 1017-211, 271</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Design, Dimensioning & Tolerancing 0610-220</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Materials Technology 0610-211</td>
<td>3</td>
</tr>
<tr>
<td>Materials Testing 0610-304</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year
<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Physics II, III & Labs 1017-212, 213, 272, 273</td>
<td>8</td>
</tr>
<tr>
<td>Pneumatic & Hydraulic Systems 0610-305</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Statics 0610-302</td>
<td>4</td>
</tr>
<tr>
<td>Sophomore Seminar 0610-102</td>
<td>1</td>
</tr>
<tr>
<td>Calculus for Technologists I 1019-420</td>
<td>4</td>
</tr>
<tr>
<td>Strength of Materials 0610-303</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Mechanical Design 0610-315</td>
<td>4</td>
</tr>
<tr>
<td>Lower-Division Technical Electives</td>
<td>8</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education (3 quarters) †</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year
<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus for Technologists II 1019-421</td>
<td>4</td>
</tr>
<tr>
<td>Applied Dynamics 0610-405</td>
<td>4</td>
</tr>
<tr>
<td>Fundamentals of Chemistry 1011-271</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry I Lab 1011-205</td>
<td>4</td>
</tr>
<tr>
<td>Effective Technical Communication 0535-403</td>
<td>4</td>
</tr>
<tr>
<td>Co-op Preparation 0606-099</td>
<td>0</td>
</tr>
<tr>
<td>Solutions to Engineering Problems 1019-422</td>
<td>4</td>
</tr>
<tr>
<td>Applied Thermodynamics I 0610-440</td>
<td>4</td>
</tr>
<tr>
<td>MET Lab I 0610-407</td>
<td>2</td>
</tr>
<tr>
<td>Intro. to Chemistry. of Materials. & Lab 1011-273, 277</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year
<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Technology 0610-416</td>
<td>4</td>
</tr>
<tr>
<td>MET Lab II 0610-409</td>
<td>2</td>
</tr>
<tr>
<td>Applied Mechanics of Materials 0610-404</td>
<td>4</td>
</tr>
<tr>
<td>Applied Fluid Mechanics 0610-460</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Principles for Design I 0609-411</td>
<td>4</td>
</tr>
<tr>
<td>Machine Design I 0610-506</td>
<td>4</td>
</tr>
<tr>
<td>Upper-Division Technical Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Fifth Year
<table>
<thead>
<tr>
<th>Course Sequence</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermofluids Lab 0610-465</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Elective</td>
<td>4</td>
</tr>
<tr>
<td>Upper-Division Technical Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>4</td>
</tr>
<tr>
<td>Upper-Division Technical Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) 0520-501 *</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 195

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

For mechanical engineering technology, BS degree, upper-division evening, and mechanical technology, evening, typical course sequences, please see the Part-time Online Guide.
Packaging Science

Karen Proctor, Program Chair

The interdisciplinary packaging science program, leading to the bachelor of science degree, provides educational opportunities for men and women seeking careers in the multifaceted packaging industry. Graduates are prepared for initial employment in such areas as package engineering, development, sales, purchasing, structural design, production, research, and marketing.

The program was developed as a result of a close and long-established relationship between the packaging industry and RIT. The multibillion-dollar industry exhibits dynamic growth and provides employment for many thousands of men and women with wide-rangings skills and expertise.

Packaging is increasingly related to total marketing concepts; it has even greater dependence on new developments in materials and processes. Therefore, the industry requires management personnel with creativity and strong backgrounds in business, engineering, and science.

Program characteristics

1. Career oriented—graduates are ready to enter directly into a position of responsibility
2. Interdisciplinary—students become familiar with the many facets of packaging through courses in several RIT colleges
3. Flexible-offering three options (management, technical and printing) with ample opportunity for electives according to interest
4. Representative of industry needs-content developed with the assistance of an industry advisory board, consultants from the industry and educational specialists
5. Adaptable to a modified cooperative plan-scheduled at the student’s convenience, following development of appropriate skills.

Transfer admission

Transferring into the program with advanced standing is particularly advantageous, since RIT has had many years of experience in assimilating graduates of two-year colleges into its programs and moving them directly into a chosen career field. Some candidates now in four-year colleges will find in the packaging science program a career opportunity with outstanding potential. Courses for associate degree holders (AA, AS, AAS) are arranged to meet program requirements and to correct deficiencies resulting from work taken at other institutions not offering the courses required for graduation. With a selective choice of electives, graduates of two-year colleges find it possible to complete the packaging science curriculum in two additional years at RIT.

Principal field of study

The principal field of study is defined to be all courses in the packaging science department, as well as the required courses in the College of Science (for the technical option), colleges of Business and Science (management option), and colleges of Science and Imaging Arts and Sciences (printing option). Matriculated students not maintaining a 2.0 cumulative grade point average in their principal field of study are subject to academic probation or suspension, according to Institute policy.

Packaging science-management option, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter Credits</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td>New Student Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Packaging</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Design Graphics 0607-301</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packaging Materials I 0607-311</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Applications 0607-341</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>College Physics & Lab 1017-311, 271</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algebra for Management Science 1016-225</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Economics I, II 0511-301,302</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberal Arts (Foundation) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Education †</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Quarter Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td>Packaging Materials II 0607-312</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methods of Evaluation 0607-313</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ried Containers 0607-321</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flexible Containers 0607-322</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Survey of General Chemistry & Lab 1011-201,221</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Survey of Organic Chemistry & Lab 1011-202,222</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foundations of Scientific Thinking 1017-341</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Analysis 1016-319</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intro. to Graphic Comm. Industry 2081-254</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Financial Accounting 0101-301</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberal Arts (Foundation) *</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Education †</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperative Education 0607-499</td>
<td>Co-op</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Quarter Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td>Career Seminar 0607-401</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Communication 0607-420</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packaging Production Systems 0607-431</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packaging for Distribution 0607-432</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packaging for Marketing 0607-433</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shock & Vibration 0607-485</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effective Speaking 0502-501</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooperative Education 0607-499</td>
<td>Co-op</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td>Packaging Regulations 0607-462</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional (Packaging) Electives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberal Arts (Electives & Senior Seminar) *</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management Electives</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Electives</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Quarter Credit Hours</td>
<td>192</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
Packaging science-technical option, BS degree, typical course sequence

First Year

New Student Seminar 0607-200	1
Principles of Packaging 0607-201	4
Engineering Design Graphics 0607-301	4
Packaging Materials I 0607-311	4
Modern Algebra 1016-204	4
Introduction to Calculus 1016-214,215	6
College Chemistry 1101-208,273	8
Effective Speaking 0502-501	4
Liberal Arts (Foundation) *	16
Physical Education †	0

Second Year

Packaging Materials II 0607-312	4
Methods of Evaluation 0607-313	4
Rigid Containers 0607-321	4
Flexible Containers 0607-322	4
Computer Applications 0607-341	4
Data Analysis 1016-319	4
Introduction to Organic Chemistry/Lab 1011-213,227	4
Introductions to Polymer Technology 1014-301	2
Liberal Arts (Foundation) *	12
Free Electives	8
Physical Education †	0
Cooperative Education 0607-499	Co-op

Third Year

Career Seminar 0607-401	1
Technical Communication 0607-420	4
Packaging Production Systems 0607-431	4
Packaging for Distribution 0607-432	4
Packaging for Marketing 0607-433	4
College Physics 1017-211,212,213	4
College Physics Lab 1017-271,272,273	3
Foundations of Scientific Thinking 1017-341	2
Intro. to Graphic Comm. Industry 2081-254	4
Liberal Arts (Concentration) *	12
Cooperative Education 0607-499	Co-op

Fourth Year

Packaging Regulations 0607-462	3
Professional (Packaging) Electives	12
Principles of Marketing 0105-363	4
Organizational Behavior 0102-430	4
Liberal Arts (Electives & Senior Seminar) *	14
Free Electives	6

Total Quarter Credit Hours 192

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

Packaging science-printing option, BS degree, typical course sequence

First Year

New Student Seminar 0607-200	1
Principles of Packaging 0607-201	4
Engineering Design Graphics 0607-301	4
Packaging Materials II 0607-312	4
Modular Algebra 1016-204	4
Calculus for Management Science 1016-226	4
Data Analysis 1016-319	4
College Physics & Lab 1017-211,212,271	4
Foundations of Scientific Thinking 1017-341	2
Liberal Arts (Foundation) *	16
Physical Education †	0

Second Year

Methods of Evaluation 0607-313	3
Rigid Containers 0607-321	4
Flexible Containers 0607-322	4
Computer Applications 0607-341	4
Technical Communication 0607-420	4
Survey of General Chemistry & Lab 1011-201,221	4
Survey of Organic Chemistry & Lab 1011-202,222	4
Intro. to Graphic Comm. Industry 2081-254	3
Principles of Copy Preparation 2081-256	3
Gravure Process 2081-386	3
Liberal Arts (Foundation) *	12
Physical Education †	0
Cooperative Education 0607-499	Co-op

Third Year

Career Seminar 0607-401	1
Packaging Production Systems 0607-431	4
Packaging for Distribution 0607-432	4
Packaging for Marketing 0607-433	4
Packaging Regulations 0607-462	3
Principles of Shock & Vibration 0607-485	4
Lithographic Process 2081-367	3
Flexographic Process 2081-364	3
Organizational Behavior 0105-430	4
Principles of Economics I, II 0511-301,302	8
Liberal Arts (Concentration) *	12
Cooperative Education 0607-499	Co-op

Fourth Year

Professional (Packaging) Electives	12
Effective Speaking 0502-501	4
Image Capture & Conversion 2081-401	3
Liberal Arts (Electives & Senior Seminar) *	14
Free Electives	11

Total Quarter Credit Hours 192

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

Hospitality and Service Management

Francis Domoy, Chair

The School of Hospitality and Service Management offers five programs: hotel and resort management, travel and tourism management, food management, nutrition management, and food marketing and distribution.

The programs prepare students for a wide variety of career choices that include, but are not limited to, food management, hotel/ resort management; health care; corporate travel management; and food marketing, sales, and distribution. A career in the hospitality industries has become highly specialized in today's business world, and RIT graduates are in demand.

The five programs provide a broadly based view of service management, hospitality, travel, and client care through a common core of courses. This approach promotes an understanding of the interrelationships among the food, lodging and travel service industries, focused on the underlying concept of quality service management, and allows students to retain the flexibility to switch majors or jobs if their career goals change.

These diverse and specialized fields require a common set of abilities: creative problem solving, technical knowledge, communication skills and leadership. The first priority is to equip students with these skills and qualities.

Now in their 11th year, RIT's hospitality and service management programs are among the nation's leading hospitality-travel management programs and have been recognized by Forbes, Travel Weekly, Nation's Restaurant News, and Corporate Travel magazines. Programs are accredited by the Council on Hotel, Restaurant and Institution Education and by the American Dietetic Association. Over the past eight years students from 38 countries have become alumni of the programs.

The curriculum is integrated, encompassing a broad base of competencies defined in partnership with faculty, students and industry. Students take courses that contribute to building a strong concept of the total industry by studying accounting, marketing, finance, economics, business management, behavioral science, service management, nutrition, food preparation, food and beverage service principles, hotel operations, travel, tourism, and other topics.

The goal is to offer students a rigorous, challenging, and interdisciplinary program of study in order to develop their talents. It provides them with the opportunity to develop their full potential in a managerial environment. Small classes promote a dynamic learning interaction among faculty, students and industry professionals.

Freshman students not sure of a career field can apply for an undeclared major within the school. Prior to fall enrollment...
of the sophomore year, a student must decide upon a major. This option allows the student to experience courses in all fields within the hospitality industry before selecting a specific major.

Vision statement
Hospitality and service management will be a leader in hospitality, nutrition, and service management education by creating an environment of both individualized and team-oriented learning, fusing the human values of hospitality, applying future technologies and innovation, and highlighting cultural diversity in a highly integrated global service economy.

Objectives
It is each program's mission to prepare students to excel in their chosen profession by developing:
1. Theoretical and service strategies essential to professional, executive-level management skills
2. The ability to apply knowledge and original thinking to solving management problems
3. The skills and techniques of leadership and teamwork
4. An awareness of and desire for a lifetime of learning
5. An intellectual spirit for constructive thought and action in building a good life and effective citizenship

Cooperative education
Hospitality and service management programs require each student to combine 1,600 hours of practical co-op experience with classroom theory in order to graduate.

Cooperative education (co-op) is one of the many ways students are introduced to hands-on learning and employment in the hospitality and travel industries. Co-op is usually taken in the summer following the freshman and sophomore years and during any quarter in the junior and senior years, except the final quarter of senior year, when students are required to be in residence on campus. Co-op is planned, monitored, and evaluated by the student, the co-op counselor, the faculty adviser, and the employing firm.

Many students find that their career goals take shape and become refined as they progress through co-op experiences. In general, co-op provides students with the opportunity to apply the theory of classroom instruction to an actual work setting.

Faculty
Faculty members have outstanding academic credentials and industry experience. They serve in professional and trade associations at the national level, are frequent guest speakers, and consult in their fields of expertise: travel, marketing, hospitality operations, nutrition, and health care, to name a few.

Advisory board
National industry leaders compose the National Advisory Board, contributing professional and technical expertise to undergraduate programs and strengthening the development of their future.

Two-year transfer program for foodservice management, hotel and resort management, and travel management
Students who have earned an appropriate associate degree or its equivalent before enrolling at RIT may normally expect to complete the requirements for the BS degree in two years, including six academic quarters and cooperative education.

Transfer students must complete a minimum of 85 to 90 quarter credit hours with an earned minimum grade point average of 2.3 and two quarters of approved cooperative education assignments.

Transfer students with less than two years of college or from other educational backgrounds also can be accommodated. The amount of transfer credit is determined by evaluating the individual's transcript.

In every instance it is the policy of the college to recognize as fully as possible the past academic accomplishments of each student.

Two-year transfer program for nutrition management
RIT makes every effort to facilitate transfer credit. Due to specific areas of study required by the American Dietetic Association and RIT, the amount of transferable credit and estimated time to complete work for the BS degree must be determined by evaluation of each individual's transcript.
However, a minimum grade point average of 2.75 is required for admittance into this program.

Facilities

State-of-the-art equipment and laboratories are available to enhance the educational experience of all students. Henry's, a full-service, licensed restaurant, provides an excellent training environment for students, who manage special luncheons and dinners with the help of computerized beverage and point-of-sale systems. The food lab is commercially equipped for developing, testing and evaluating new food products and evaluating equipment.

Information management is a critical element within food, hospitality and travel industries. Hospitality and service is fortunate to have for instruction the American Airlines SABRE computerized reservation and accounting systems in the live mode. A computer laboratory and training studio allow students to prepare for the technology they will encounter on the job. Database, spreadsheet, and numerous other software applications are used in conjunction with classroom activities.

Approximately 40 to 50 healthcare, corporate, and community-based facilities are used for practicum experience for nutrition management students.

International programs in Croatia

The American College of Management and Technology in Dubrovnik, Republic of Croatia, is a branch campus of RIT that enrolls approximately 600 undergraduate students. The college offers an associate of applied science degree program and a bachelor of science degree program in hotel/resort management. The Dubrovnik campus provides an exchange opportunity for Rochester campus students who may wish to spend a quarter studying abroad. Classes are taught by a combination of RIT faculty members and European instructors.

Food Management

The foodservice industry employs more people than any other industry in the nation and will continue to do so as the public demands more services. Foodservice offers an array of work places located far and wide: restaurants from full service to cafeteria; fast-food and special chain operations; hotel fine dining and catering; clubs; contract services for manufacturing; business firms; recreation and sports centers; education, health and life institutions; retail stores; governmental agencies; and food vending.

Students in foodservice management experience a sampling of these foodservice sectors during cooperative education. By graduation students will have accumulated more hours of work experience than in any other four-year hospitality management program in the country. It is because of this depth of exposure that RIT students are in demand by food and beverage operations.

The program prepares students for management through lab experience in Henry's, its full-service, beverage-licensed restaurant. In addition, students develop competencies in problem solving and decision making through individual and team-based class projects, computerized exercises and industry-related activities.

Students learn essential principles and procedures for quality in food production and presentation, sanitation, nutrition, menu planning and merchandising, purchasing, product development, cost control, and service management. The program requires several management topic courses, including accounting, computer science, statistics, leadership management, technology in service systems, and assessment of service quality. These professional and business courses are balanced by a strong component of liberal arts and science.

The first student chapter chartered by a state restaurant association is available to foodservice management students. The New York State Restaurant Association's goal is to foster interchange of ideas between industry and students and professional growth in organizational and social skills. Juniors are encouraged to attend the annual National Restaurant Association show in Chicago.

Food management, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary Nutrition 0620-213</td>
<td>4</td>
</tr>
<tr>
<td>Service Management Careers in Hospitality Ind. 0619-220</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Food Production 0621-225</td>
<td>4</td>
</tr>
<tr>
<td>Sanitation & Safety 0621-314</td>
<td>2</td>
</tr>
<tr>
<td>Purchasing & Inventory Control 0621-324</td>
<td>2</td>
</tr>
<tr>
<td>Orientation to Computers in Hospitality 0622-221</td>
<td>2</td>
</tr>
<tr>
<td>HSM Elective</td>
<td>4</td>
</tr>
<tr>
<td>Algebra for Management Sciences 1016-225</td>
<td>4</td>
</tr>
<tr>
<td>Science Electives with Lab</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education (3 quarters) t</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 0621-499</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Planning & Merchandising 0621-321</td>
<td>2</td>
</tr>
<tr>
<td>Restaurant Operations 0621-337</td>
<td>6</td>
</tr>
<tr>
<td>Financial Management Hospitality Industry 0622-355</td>
<td>4</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>8</td>
</tr>
<tr>
<td>Intro. Statistics Methods I, II, III & Lab 1016.301,302, 303</td>
<td>12</td>
</tr>
<tr>
<td>Financial Accounting 0101-301</td>
<td>4</td>
</tr>
<tr>
<td>Managerial Account&g 0101-302</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 0621-499</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of Service Quality 0619-410</td>
<td>4</td>
</tr>
<tr>
<td>Technology in Service Systems 0619-426</td>
<td>4</td>
</tr>
<tr>
<td>Food & Labor Cost Control 0621-424</td>
<td>4</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>16</td>
</tr>
<tr>
<td>Principles of Economics I 0511-301</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 0621-499</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership Management in Service Cultures 0619-470</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project 0619-490</td>
<td>4</td>
</tr>
<tr>
<td>Product Development 0621-416</td>
<td>6</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Upper-division electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 0621-499</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 180

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
Food Marketing and Distribution
This program prepares graduates for industry positions in food marketing, sales, and distribution and logistics. Graduates are uniquely qualified for positions in an array of food marketing and distribution industries worldwide. In particular, they understand a variety of issues–foodservice operations and food marketing, logistics, distribution, and packaging. Many of the normal food management course requirements remain in this option. Other curriculum topics include commodity analysis; food marketing, processing, packaging, distribution; national and global logistics; and quality assurance.
Specific course content is defined in the Course Descriptions portion of this bulletin. An outline of required courses is provided in the chart below.

Food marketing and distribution, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Packaging 0607-201</td>
<td>4</td>
</tr>
<tr>
<td>Service Management Careers in Hospitality Ind. 0619-220</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Food Production 0621-225</td>
<td>4</td>
</tr>
<tr>
<td>Sanitation & Safety 0621-314</td>
<td>2</td>
</tr>
<tr>
<td>Purchasing & Inventory Control 0621-324</td>
<td>2</td>
</tr>
<tr>
<td>Orientation to Commuters in Hospitality 0622-221</td>
<td>2</td>
</tr>
<tr>
<td>Distribution Systems 0623-206</td>
<td>4</td>
</tr>
<tr>
<td>Algebra for Management Science 1016-225</td>
<td>4</td>
</tr>
<tr>
<td>Science Electives with Lab</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core) (*)</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education (3 quarters)†</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity Market Analysis 0621-310</td>
</tr>
<tr>
<td>Restaurant Operations 0621-331</td>
</tr>
<tr>
<td>Financial Management for Hospitality Industry 0622-355</td>
</tr>
<tr>
<td>Intro. Statistics Methods I, II, III & Lab 1016-301, 302,303</td>
</tr>
<tr>
<td>Financial Accounting 0101-301</td>
</tr>
<tr>
<td>Managerial Accounting 0101-302</td>
</tr>
<tr>
<td>Principles of Economics I 0511-301</td>
</tr>
<tr>
<td>Liberal Arts (Core) (*)</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging for Distribution or Marketing 0607432 or 433</td>
</tr>
<tr>
<td>Assessment of Service Quality 0619-410</td>
</tr>
<tr>
<td>Technology in Service Systems 0619-426</td>
</tr>
<tr>
<td>Food Service Marketing 0621-315</td>
</tr>
<tr>
<td>Product Development 0621-416</td>
</tr>
<tr>
<td>HSM Electives</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) (*)</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership Management in Service Cultures 0619-470</td>
</tr>
<tr>
<td>Senior Project 0619-490</td>
</tr>
<tr>
<td>Food Processing/Quality Assurance 0621-410</td>
</tr>
<tr>
<td>HSM Elective</td>
</tr>
<tr>
<td>Free Elective</td>
</tr>
<tr>
<td>Liberal Arts (Upper-division elective) (*)</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) (*)</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
</tr>
</tbody>
</table>

| Total Quarter Credit Hours | 180 |

* See page 10 for liberal arts requirements.
† See page 2 for policy on physical education.

Hotel and Resort Management
This is a professionally oriented curriculum for students interested in careers involving the management and operation of hotel, resort, leisure-time and related enterprises. A composite of discipline areas allows students to understand the physical characteristics of the properties and to gain the business expertise necessary to manage and market them.

The program builds student skills with a balanced academic program of the basic principles of hotel and restaurant operations, tourism, resort development and management, business and financial management, and liberal arts, together with paid work experience (co-op) for four quarters, hands-on class projects, laboratories and school activities. Specialized courses include statistics, engineering systems and property management, housekeeping management, human resources management, assessment of service quality, technology in service systems, financial management for hotels, hotel marketing and sales, personnel and resort development, and casino management.

Industry professionals regularly offer their expertise in all of the program courses. Hotel students, in conjunction with a local Rochester general manager, can enroll in a mentorship program sponsored by the Rochester Hotel Association. This allows students to work closely with executive managers on assigned research projects within a hotel.

Hotel/resort students evaluate various technologies and service strategies in order to familiarize themselves with the best industry practices. International co-ops are highly encouraged to develop global linkage for these student majors. Students have the opportunity to concentrate in one of two minor program areas. They can choose from food management or travel management as well as approved specialized areas.

Students develop communication skills through participation in the student chapters of organizations and are encouraged to attend the annual International Hotel/Motel and Restaurant shows in New York City and Chicago.

Hotel and resort management, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Management Careers in Hospitality Ind. 0619-220</td>
<td>2</td>
</tr>
<tr>
<td>Hotel Operations 0621-200</td>
<td>4</td>
</tr>
<tr>
<td>Hospitality Industry Real Estate 0622-205</td>
<td>4</td>
</tr>
<tr>
<td>Hotel Marketing & Sales 0622-210</td>
<td>4</td>
</tr>
<tr>
<td>Orientation to Computers in Hospitality 0622-221</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Economics I 0511-301</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective with Lab</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core) (*)</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education (3 quarters)†</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resort Development & Management 0622-310</td>
</tr>
<tr>
<td>Financial Management for Hospitality Industry 0622-355</td>
</tr>
<tr>
<td>Minor Program Courses-Food or Travel (choose one)</td>
</tr>
<tr>
<td>Food-Principles of Food 0621-225</td>
</tr>
<tr>
<td>Sanitation & Safety 0621-314</td>
</tr>
<tr>
<td>Purchasing & Inventory Control 0621-324</td>
</tr>
<tr>
<td>Travel-Distribution Systems 0623-206</td>
</tr>
<tr>
<td>Intro. to SABLE 0632-210</td>
</tr>
<tr>
<td>Intro. Statistics Methods I, II, III & Lab 1016-301, 302,303</td>
</tr>
<tr>
<td>Financial Accounting 0101-301</td>
</tr>
<tr>
<td>Managerial Accounting 0101-302</td>
</tr>
<tr>
<td>Liberal Arts (Core) (*)</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
</tr>
</tbody>
</table>
Travel and Tourism Management

The growth of modern travel has created many technical challenges for the movement of individuals and groups in a global corporate environment and, with that, the need to consult highly qualified experts to plan, arrange and coordinate travel. Today, more than ever before, travelers are faced with many alternatives for transportation, accommodations, and other travel services and rely increasingly on the travel professional to guide them wisely and honestly. Travel agencies and corporate travel consultants have an important impact on the hospitality-travel economies, including foodservice, lodging and leisure, travel and transportation, meetings, and technology industries. Travel management combines a study of specialized courses in travel management with a sound general education that includes courses in accounting, management principles, marketing, business law, foreign languages, and computer science. The program is structured to provide students with a balance of hands-on experience and management theory. This is necessary to further their understanding of why the travel industry operates as it does in its business environment. This career orientation provides both the four-year and transfer student with a balance of theoretical classroom instruction and experiential opportunities that are furnished by cooperative education.

Equipped with this program, students in travel management prepare for careers in corporate travel, consulting, and professional meeting management. Employment opportunities are also excellent with hotels, resorts, retail travel agencies, major corporations, and other businesses.

American Airlines SABRE Systems

Available to hospitality and service management students in live mode are the automated reservation and accounting systems designed by American Airlines to allow corporate travel planners and meeting managers to serve the client faster while handling the complex details of their business more efficiently. The reservation system, SABRE, enables travel professionals to give their clients immediate confirmation for flights operated by airlines worldwide.

Students work at SABRE reservation sets, with video screens and keyboards, which are linked directly to American’s worldwide travel information system. This provides access to accommodations at hotels-domestic and international-major car rental firms and wholesale tour operators who design tours to such destinations as Hawaii, the Caribbean, Mexico, Canada, and the U.S. mainland.

SABRE provides the student with a view of a worldwide market distribution system. The system also performs fare quotations; currency conversions; and, with the aid of the Telenet printers, prepares a printed ticket, a comprehensive invoice, and a passenger itinerary.

Students are also versed in the use of communication technologies that allow them to conduct research via the Internet.

Travel and tourism management, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Management Careers in Hospitality</td>
<td>4</td>
</tr>
<tr>
<td>Orientation to Computers in Hospitality</td>
<td>2</td>
</tr>
<tr>
<td>Distribution Systems</td>
<td>4</td>
</tr>
<tr>
<td>Intro to AA SABRE</td>
<td>4</td>
</tr>
<tr>
<td>Algebra for Management Science</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective with Lab</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (3 quarters)</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resort Development & Management</td>
<td>4</td>
</tr>
<tr>
<td>Financial Management Hospitality Industry</td>
<td>4</td>
</tr>
<tr>
<td>Travel Reservation Procedures</td>
<td>2</td>
</tr>
<tr>
<td>Salesmanship Techniques in Travel</td>
<td>2</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>8</td>
</tr>
<tr>
<td>Intro. Statistics Methods I, II, III & Lab</td>
<td>12</td>
</tr>
<tr>
<td>Financial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics I</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Marketing</td>
<td>4</td>
</tr>
<tr>
<td>Assessment of Service Quality</td>
<td>4</td>
</tr>
<tr>
<td>Technology in Service Systems</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Travel Marketing & Sales</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Travel Planning</td>
<td>4</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership Management in Service Cultures</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>Meeting Management</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 180

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

American Airlines SABRE Systems

Available to hospitality and service management students in live mode are the automated reservation and accounting systems designed by American Airlines to allow corporate travel planners and meeting managers to serve the client faster while handling the complex details of their business more efficiently. The reservation system, SABRE, enables travel professionals to give their clients immediate confirmation for flights operated by airlines worldwide.

Students work at SABRE reservation sets, with video screens and keyboards, which are linked directly to American’s worldwide travel information system. This provides access to accommodations at hotels-domestic and international-major car rental firms and wholesale tour operators who design tours to such destinations as Hawaii, the Caribbean, Mexico, Canada, and the U.S. mainland.

SABRE provides the student with a view of a worldwide market distribution system. The system also performs fare quotations; currency conversions; and, with the aid of the Telenet printers, prepares a printed ticket, a comprehensive invoice, and a passenger itinerary.

Students are also versed in the use of communication technologies that allow them to conduct research via the Internet.

Travel and tourism management, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Management Careers in Hospitality</td>
<td>4</td>
</tr>
<tr>
<td>Orientation to Computers in Hospitality</td>
<td>2</td>
</tr>
<tr>
<td>Distribution Systems</td>
<td>4</td>
</tr>
<tr>
<td>Intro to AA SABRE</td>
<td>4</td>
</tr>
<tr>
<td>Algebra for Management Science</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective with Lab</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>24</td>
</tr>
<tr>
<td>Physical Education (3 quarters)</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resort Development & Management</td>
<td>4</td>
</tr>
<tr>
<td>Financial Management Hospitality Industry</td>
<td>4</td>
</tr>
<tr>
<td>Travel Reservation Procedures</td>
<td>2</td>
</tr>
<tr>
<td>Salesmanship Techniques in Travel</td>
<td>2</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>8</td>
</tr>
<tr>
<td>Intro. Statistics Methods I, II, III & Lab</td>
<td>12</td>
</tr>
<tr>
<td>Financial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics I</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Marketing</td>
<td>4</td>
</tr>
<tr>
<td>Assessment of Service Quality</td>
<td>4</td>
</tr>
<tr>
<td>Technology in Service Systems</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Travel Marketing & Sales</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Travel Planning</td>
<td>4</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership Management in Service Cultures</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>Meeting Management</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>HSM Electives</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 180

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
Nutrition Management

People are increasingly interested in nutrition requirements for good health and long life. They are concerned about balanced menus away from home and about the availability of special diet menus for those with serious ailments. Physical fitness centers seek educated advice about meal planning.

Dietitians are involved with people of all ages, cultures, and economic means. They enjoy people and learn to understand them as individuals, thereby helping to solve their nutritional needs. Dietitians are health professionals who apply the science and art of human nutrition.

The nutrition management program offers a challenging curriculum that prepares students for diverse career opportunities. From their base of knowledge about nutrition, registered dietitians practice in many settings. Possible career paths may be developed in private practice; community nutrition and public health, wellness, and fitness programs for sports; education and corporations; clinical dietetics or food management in hospitals and long-term care facilities; research for clinical, educational, or food manufacturing operations; nutrition education; restaurant consulting; and writing.

The nutrition management program leads to a BS degree that meets the education requirements of the American Dietetic Association (ADA). Four-year students must complete three quarters of approved cooperative work experience. To become credentialed as a registered dietitian, students also need to complete an ADA-accredited, supervised practice after graduation from RIT and pass the National Registration Examination for Dietitians.

Nutrition management, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Management Careers in Hospitality Ind.</td>
<td>0619-220 2</td>
</tr>
<tr>
<td>Contemporary Nutrition</td>
<td>0620-213 4</td>
</tr>
<tr>
<td>Principles of Food Production</td>
<td>0621-225 4</td>
</tr>
<tr>
<td>Orientation to Computers in Hospitality</td>
<td>0622-221 2</td>
</tr>
<tr>
<td>Survey of General Chemistry & Lab</td>
<td>1011-201, 205 6</td>
</tr>
<tr>
<td>Biochemistry I</td>
<td>1011-203 4</td>
</tr>
<tr>
<td>Algebra for Management Science</td>
<td>1016-225 4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>0511-301 4</td>
</tr>
<tr>
<td>Principles of Economics I</td>
<td>0511-301 4</td>
</tr>
<tr>
<td>Physical Education (3 quarters)</td>
<td>0511-301 4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>0511-301 4</td>
</tr>
<tr>
<td>Principles of Economics I (3 quarters)</td>
<td>0511-301 4</td>
</tr>
<tr>
<td>Health Care Administration</td>
<td>0635-320 4</td>
</tr>
<tr>
<td>Health Planning & Program Development</td>
<td>0635-423 4</td>
</tr>
<tr>
<td>Health Care Economics & Finance</td>
<td>0635-351 4</td>
</tr>
<tr>
<td>Legal Aspects of Health Care Administration</td>
<td>0635-421 4</td>
</tr>
<tr>
<td>Health Care Quality</td>
<td>0635-431 4</td>
</tr>
<tr>
<td>Health Planning & Program Development</td>
<td>0635-441 4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Planning & Merchandising</td>
<td>0621-321 2</td>
</tr>
<tr>
<td>Sanitation & Safety</td>
<td>0621-314 2</td>
</tr>
<tr>
<td>Purchasing & Inventory Control</td>
<td>0621-324 2</td>
</tr>
<tr>
<td>Microbiology 1000-210</td>
<td>4</td>
</tr>
<tr>
<td>Human Biology I & Lab</td>
<td>1004-211, 231 4</td>
</tr>
<tr>
<td>Human Biology II & Lab</td>
<td>1004-212, 232 4</td>
</tr>
<tr>
<td>Intro. Statistics Methods I</td>
<td>1016-301 4</td>
</tr>
<tr>
<td>Financial Accounting 0101-301</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (3 quarters)</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 0621-499 Co-op</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of Service Quality</td>
<td>0619-410 4</td>
</tr>
<tr>
<td>Technology in Service Systems</td>
<td>0619-426 4</td>
</tr>
<tr>
<td>Product Development</td>
<td>0621-416 6</td>
</tr>
<tr>
<td>Food & Labor Cost Control</td>
<td>0621-424 4</td>
</tr>
<tr>
<td>Design & Layout of Food Operations</td>
<td>0621-512 2</td>
</tr>
<tr>
<td>Nutrition in Life Cycle</td>
<td>0621-554 5</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>0621-499 Co-op</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques of Dietetics Education</td>
<td>0627-519 4</td>
</tr>
<tr>
<td>Leadership Management in Service Culture</td>
<td>0619-470 4</td>
</tr>
<tr>
<td>Senior Project 0619-490</td>
<td></td>
</tr>
<tr>
<td>Advanced Nutrition/Diet Therapy I</td>
<td>0620-525 5</td>
</tr>
<tr>
<td>Advanced Nutrition/Diet Therapy II</td>
<td>0620-526 4</td>
</tr>
<tr>
<td>Community Nutrition 0620-556</td>
<td>8</td>
</tr>
<tr>
<td>Free Electives</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Upper-division elective)</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 181

+See page 10 for liberal arts requirements
†See page 11 for policy on physical education.

Health Systems Administration

The health care industry has been transformed in recent years by advances in technology, new modalities of care, changes in financing and organization, greater demand for accountability and a general expansion as the population ages. These developments have led to increasing demand for administrators at all levels.

The concentration of courses in health systems administration is designed to equip students with the skills necessary to obtain entry-level positions in health administration. Such students are typically those with a clinical background in nursing or an allied profession desiring to change their professional emphasis. However, certain courses also may be of interest to administrators desiring to upgrade their skills in special areas.

The sequence of six courses consists of three survey courses (a systems overview, administration in the health care setting, and finance and budgeting), followed by three specialized courses (legal aspects of health care, quality assurance, and program planning and development). These courses are offered in the online learning format.

Health Systems Administration Certificate

This is an upper-level concentration generally requiring previous course work or experience and permission of the chair for enrollment. Students may earn the certificate and/or apply the courses to the professional concentration requirements for the degree in applied arts and science. The program has been developed with the assistance of Rochester-area health care administrators and subject matter experts, and courses are taught by experienced professionals. Students must achieve a program GPA of at least 2.0 in order to be certified. For further information regarding course content and admissions requirements, contact William Walence at 585-475-7359 or e-mail at wwcad@rit.edu.

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Health Care Systems</td>
<td>0635-310 4</td>
</tr>
<tr>
<td>Health Care Administration</td>
<td>0635-320 4</td>
</tr>
<tr>
<td>Health Care Economics & Finance</td>
<td>0635-351 4</td>
</tr>
<tr>
<td>Legal Aspects of Health Care Administration</td>
<td>0635-421 4</td>
</tr>
<tr>
<td>Health Care Quality</td>
<td>0635-431 4</td>
</tr>
<tr>
<td>Health Planning & Program Development</td>
<td>0635-441 4</td>
</tr>
</tbody>
</table>

Certificate Total 24
Environmental Management and Technology

Maureen S. Valentine, Chair

In its 1997 report, "Global Environment Outlook," the United Nations Environment Programme concludes that "during the last decade, the environment has continued to degrade, and significant problems still persist" and charges that "the pace at which the world is moving toward a sustainable future is simply too slow." Society is beginning to realize that environmental resources are finite, valuable and must not be used at a rate faster than that at which they can be replenished naturally. The question is, "How do we change our resource-intensive systems of production and consumption toward that end?"

Answering this question, in part, is the job of the environmental manager. It's a big job for sure, but while some of what we do to pursue a sustainable future will take significant time, involve research and require new knowledge, most of it involves caring about the environment, using common sense to prevent pollution from occurring in the first place and considering the environmental impacts of everything we do.

RIT's BS degree program in environmental management and technology prepares students to move the organizations in which they work toward a sustainable future. Activities range from simple tasks like keeping contaminated wastewater separated from clean water to helping determine how a product can be manufactured using less energy or without using toxic materials.

The most rewarding aspect of an environmental management and technology career is that you can start making a difference right away. There is just so much that can be done at every level that you'll feel good about your contribution from the first day on the job.

Cooperative Education

And you don't have to wait until graduation to begin helping the environment. Environmental management and technology students start their first co-op jobs in the spring of their third year. Our co-op students are especially helpful to the organizations for which they work because they are qualified and ready to take on some of the many interesting environmental projects that organizations seem never to have the time to get done otherwise. Co-op jobs and employers range from field research to office work and from government to industry. Typically the jobs are located in the Rochester area or near a student's hometown, but some more adventurous individuals seek jobs across the continent or overseas.

Electives

The ample allowance of electives in the curriculum permits students to pursue various competency areas and other areas of interest in greater depth.

Environmental management and technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Principles I/Lab 1001-211/205</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry Principles II/Lab 1011-212/206</td>
<td>4</td>
</tr>
<tr>
<td>Algebra for Management Science 1016-225</td>
<td>4</td>
</tr>
<tr>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Mgmt. Seminar 0630-200</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Environmental Management 0630-201</td>
<td>4</td>
</tr>
<tr>
<td>Survey of Computer Science 4002-200</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Organic Chemistry/Lab 1011-213/207</td>
<td>4</td>
</tr>
<tr>
<td>Field Biology 1005-210</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Communication 0688-227</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature I 0504-225</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature II 0504-226</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core*</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education t</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology/Lab 1001-2011205</td>
<td>4</td>
</tr>
<tr>
<td>Financial Accounting 0101-301</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis II 1016-320</td>
<td>4</td>
</tr>
<tr>
<td>Quantitative Methods I 0630-220</td>
<td>4</td>
</tr>
<tr>
<td>College Physics I & Lab 1017-211.271</td>
<td>4</td>
</tr>
<tr>
<td>College Physics II & Lab 1017-212.272</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Geology/Lab 0630-370/372</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts*</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education t</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational Health 0630-450</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Hydrology/Lab 0630.380/382</td>
<td>4</td>
</tr>
<tr>
<td>Solid & Hazardous Waste Management 0630-350</td>
<td>4</td>
</tr>
<tr>
<td>Co-op Preparation 0606-099</td>
<td>0</td>
</tr>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td>Air Emissions Management 0630-354</td>
<td>4</td>
</tr>
<tr>
<td>Industrial Wastewater Management 0630-352</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Monitoring & Measurement/Lab 0630-360/362</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts*</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Regulatory Law I 0630-480</td>
<td>4</td>
</tr>
<tr>
<td>Remedial Investigation & Corrective Action 0630-444</td>
<td>4</td>
</tr>
<tr>
<td>Project Management 0630-490</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Permitting 0630-440</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts*</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Reduction 0630-505</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Environmental Management 0630-515</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project Planning 0630.510</td>
<td>1</td>
</tr>
<tr>
<td>Senior Project 0630-511</td>
<td>3</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts*</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>191</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for physical education policy

Joshua Goldowitz, associate professor of environmental management, shows his students how to install and use ground water monitoring wells on campus.
Environmental Management Science Certificate
Since so many of our environmental concerns and problems involve subsurface contamination and contaminant migration via surface and groundwater systems, understanding the principles of environmental geology and hydrology are key to sound environmental management. The environmental science certificate program provides this valuable knowledge plus practitioner-oriented instruction on how to design and implement a successful environmental monitoring and measurement program. Prerequisites for this program include general and organic chemistry, college algebra, and trigonometry.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Monitoring & Measurement / Lab</td>
<td>0630-360 1362 (prereq. 380)</td>
</tr>
<tr>
<td>Environmental Geology</td>
<td>0630-370 / 372</td>
</tr>
<tr>
<td>Introduction to Hydrology/ Lab</td>
<td>0630-380/ 382 (prereq. 370)</td>
</tr>
<tr>
<td>Certificate Total</td>
<td></td>
</tr>
</tbody>
</table>

Industrial Environmental Management Certificate
This certificate program was designed and developed with the active participation of RIT’s Industrial Environmental Management Advisory Committee—all experienced, practicing environmental professionals from industry who have achieved the level of program manager or above. It covers all key elements of environmental management in industry. Waste minimization is emphasized as a major element of pollution control in each area of environmental management. Prerequisites include general and organic chemistry, college algebra, and trigonometry.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Environmental Management</td>
<td>0630-201</td>
</tr>
<tr>
<td>Solid & Hazardous Waste Management</td>
<td>0630-350 (prereq. 201)</td>
</tr>
<tr>
<td>Industrial Wastewater Management</td>
<td>0630-352 (prereq. 201)</td>
</tr>
<tr>
<td>Air Emissions Management</td>
<td>0630-354 (prereq. 201)</td>
</tr>
<tr>
<td>Project Management</td>
<td>0630-490</td>
</tr>
<tr>
<td>Corporate Environmental Management</td>
<td>0630-515 (prereq. 350, 352, 354)</td>
</tr>
<tr>
<td>Certificate Total</td>
<td></td>
</tr>
</tbody>
</table>

The industrial environmental management certificate is available in an online format for persons wishing to continue their education while working.

All the courses offered under these certificate programs can be applied to either full-time or part-time offerings of the bachelor of science in environmental management and technology or as part of a professional concentration in the BS degree for applied arts and science. Part-time tuition rates are charged for students who are matriculated in the part-time program. For more information regarding these certificates, contact the department at 585-475-7318. Students must achieve a program CPA of at least 2.5 in order to be certified.

Safety Technology
Maureen S. Valentine, Chair

Virtually every organization today depends on safety experts to ensure a safe, smooth, and effective operation. These professionals address their organizations’ immediate safety needs, which range from creating physically safer workplaces and modifying employee behaviors to implementing voluntary protection programs that go beyond legal standards. Safety professionals protect resources such as workers, buildings, equipment, intellectual capital, and corporate reputations. They perform their functions in a variety of settings, including manufacturing, construction, engineering, insurance, risk management, consulting, corporate business, government, education, and health care.

You may enter the upper-division safety technology BS program from a wide variety of associate degree programs or with the equivalent of two years of college, including appropriate courses in math, science, and liberal arts. In this program you will build on your foundation of science and math with specialized courses in a wide range of subjects, including occupational safety, fire protection, construction safety, incident investigation, ergonomics, and more. The safety technology curriculum emphasizes creative problem solving through challenging application-based courses, and you’ll have the opportunity to solve actual safety problems provided by industry.

The hallmark of professional capability in the field of safety is the certified safety professional (CSP) designation. In order to sit for the two exams leading to the CSP, an individual must have academic preparation in addition to work experience in the safety field. All students completing the BS degree program in safety technology will be eligible to take the associate safety professional examination upon graduation. Eligibility for the CSP examination occurs once the graduate has acquired enough appropriate work experience (usually three additional years for students who have completed a full year of appropriate co-op assignments). RIT has structured the safety technology program to be at the leading edge of this field, providing you with high quality academic preparation and relevant work experience.

The upper-division safety technology BS program is offered in an online format for persons wishing to continue their education while working. For further information, contact the department at 585-475-7318.

Cooperative education
Today’s employers are looking for ambitious graduates who have professional work experience in addition to a quality academic background. At RIT you’ll get both. Because the upper-division safety technology program requires a minimum of three quarters of cooperative education, you’ll get the chance to apply your skills in real-world situations before you graduate. Hundreds of employers recruit on campus each year because they know RIT graduates have professional abilities, technical skills, and work experience that are current with industry demands.
Safety technology, BS degree, typical course sequence

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Health & Safety Seminar 0630-200</td>
<td>1</td>
</tr>
<tr>
<td>Occupational Health & Lab 0630-450,451</td>
<td>5</td>
</tr>
<tr>
<td>Manufacturing Process 0617-220</td>
<td>4</td>
</tr>
<tr>
<td>Fire Protection 0633-401</td>
<td>4</td>
</tr>
<tr>
<td>Instructional Design Principles 0688-362</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Building Construction 0608-422</td>
<td>4</td>
</tr>
<tr>
<td>Basic Electrical Principles 0609-414</td>
<td>4</td>
</tr>
<tr>
<td>Occupational Safety 0630-454</td>
<td>4</td>
</tr>
<tr>
<td>Project Management 0630-490</td>
<td>4</td>
</tr>
<tr>
<td>Construction Safety & Lab 0608-505, 0633-506</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>4</td>
</tr>
<tr>
<td>Program Electives</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (Summer)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Cooperative Education (3 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. & Elec. Controls & Standards 0633-530</td>
<td>4</td>
</tr>
<tr>
<td>Occupational Health II 0633-526</td>
<td>4</td>
</tr>
<tr>
<td>Radiation Health Safety 1025-519</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (Summer)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Cooperative Education (3 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergonomics 0303-415</td>
<td>4</td>
</tr>
<tr>
<td>System Safety/Incident Investigation 0633-540</td>
<td>4</td>
</tr>
<tr>
<td>Safety & Health Program Management 0633-545</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Senior Seminar 0520-501 *</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project Planning 0630-509</td>
<td>1</td>
</tr>
<tr>
<td>Senior Project 0630-511</td>
<td>3</td>
</tr>
<tr>
<td>Cooperative Education (recommended---1 quarter)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 108

* See page 10 for liberal arts requirements.
† Total program with transfer credits applied is 187 quarter credit hours.

Safety and Health Technology Certificate

Designed for accessibility and convenience, this certificate program is offered in both campus-based and online learning formats and consists of the seven four-credit courses listed below. Transfer credits and course substitutions require the approval of the department chair. Upon approval, these courses also may be applied toward the BS program in safety technology. Prerequisites for this program include general chemistry, biology, college algebra, and trigonometry. Students must achieve a program GPA of at least 2.5 in order to be certified.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational Health 0630-450</td>
<td>4</td>
</tr>
<tr>
<td>Occupational Safety 0630-454</td>
<td>4</td>
</tr>
<tr>
<td>Fire Protection 0633-401</td>
<td>4</td>
</tr>
<tr>
<td>System Safety/Incident Investigation 0633-540 (prereq. 450,454)</td>
<td>4</td>
</tr>
<tr>
<td>Safety & Health Program Mgmt. 0633-545 (prereq. 540)</td>
<td>4</td>
</tr>
<tr>
<td>Risk Assessment, Mgmt. and Comm. 0630-500 (prereq. 450)</td>
<td>4</td>
</tr>
<tr>
<td>Professional Elective</td>
<td>4</td>
</tr>
<tr>
<td>Certificate Total</td>
<td>28</td>
</tr>
</tbody>
</table>

Disaster and Emergency Management

Heightened public and governmental awareness of the hazards associated with high technology has led to stringent new federal and state laws requiring communities to plan comprehensively for toxic chemical or radiation emergencies. In addition, there has always been a need to protect the public during natural emergencies such as floods, earthquakes, and tornadoes.

Emergency management practitioner organizations and the federal government are working to develop national standards for the accreditation of emergency managers. The center’s certificate in emergency management is intended to upgrade the skills of public safety planners, emergency officials in industry, and existing or aspiring emergency managers in police, fire, and ambulance work. The certificate program is also an excellent capstone program for individuals with associate degrees in fire science, environmental health and safety, or other areas of emergency response.

The five-course sequence is designed to provide students with knowledge of the physical phenomena underlying emergency situations, such as elementary meteorology, earthquake phenomena, toxic chemicals, and radiation; the legal aspect of emergency planning and operations; the theory and methodology of emergency planning, including evacuation planning and management; and the theory and practice of operations at a disaster scene. Up to four credits may be awarded to emergency response agency personnel for appropriate training or experience.

Courses are scheduled so that the certificate may be completed in as little as one year. The courses in this upper-level program also may be applied toward professional requirements for the BS degree in applied arts and science. Students must achieve a program GPA of at least 2.0 in order to be certified. These courses are offered in the online learning format. Certificate courses were developed with the assistance of local and state professionals in emergency management and are taught by such professionals. For advising and further information about this program, call 585-475-7318.

<table>
<thead>
<tr>
<th>Emergency management</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Science 0634-311</td>
<td>4</td>
</tr>
<tr>
<td>Mannmade Hazards 0634-321</td>
<td>4</td>
</tr>
<tr>
<td>Emergency Preparedness Laws & Regulations 0634-401</td>
<td>4</td>
</tr>
<tr>
<td>Emergency Planning & Methodology 0634-471</td>
<td>4</td>
</tr>
<tr>
<td>Emergency Operations 0634-481</td>
<td>4</td>
</tr>
<tr>
<td>Terrorism 0634-475</td>
<td>4</td>
</tr>
<tr>
<td>Certificate Total</td>
<td>24</td>
</tr>
</tbody>
</table>
Center for Multidisciplinary Studies

Traditional college programs and schedules are not always the answer. For the adult student juggling work, family, and social obligations, for the young adult seeking to upgrade basic skills for college or the job market, for the employee who wants to learn new skills, and for the traditional college student who wants a nontraditional degree, the Center for Multidisciplinary Studies may be the answer. Students can earn degrees, diplomas, and certificates through a number of CMS programs in a variety of ways.

The Center for Multidisciplinary Studies provides courses and programs specifically designed with the adult, part-time student in mind; but in addition, the center now serves students of all ages who are interested in multidisciplinary study.

The Center for Multidisciplinary Studies specializes in offering programs that are either very flexible and able to be tailored to the diverse multidisciplinary interests of students (or their employers) or that have unique content forged from multidisciplinary roots.

Through the center’s flexible multidisciplinary programs, students follow plans of study tailored to their individual interests that incorporate courses or sets of courses from the center or other RIT departments. The center’s flexible multidisciplinary programs include:

- **Applied arts and science undergraduate degree program**—a comprehensive undergraduate program with diploma, AAS and BS options that allows students to pursue unique and customized plans of study that include several areas of concentration
- **Cross-disciplinary professional studies graduate degree program**—a flexible master’s degree program through which graduate students design individual degree programs that incorporate several different areas of study from across RIT

Examples of integrated multidisciplinary programs include:

- **Quality** management-certificate programs that integrate information from the social sciences, management, finance, and applied statistics, preparing students to design and implement quality management systems
- **Technical communication and public relations** communications-certificate programs that bring together knowledge of written communication, instructional design, information technology, psychology and advertising, graphic design, and research methodology, preparing students to design and produce effective messages in a variety of forms

Along with these programs, the center offers the following academic programs and courses:

- **A wide variety of courses** and course combinations of special interest, including some of the general education courses (liberal arts, science, mathematics, computer literacy, and communication) required in all RIT undergraduate degree programs
- **Certificate programs**, applicable to the applied arts and science degree or other appropriate programs, in:
 - Management development
 - Organizational development
 - Small business management
 - Computer graphics
 - Exercise science
- **Diploma programs**, also applicable to the applied arts and science degree or other appropriate programs, in:
 - Management development, with concentrations in four areas
- **Associate degrees**:
 - AAS degrees in business administration and management (business administration, marketing, human resources administration, and logistics and transportation)
- **Graduate programs**

If you are interested in the center’s graduate programs, contact Thomas Moran at 585-475-4936 for the advanced certificate in technical information design or Dr. Richard Morales at 585-475-2234 for the MS in cross-disciplinary professional studies. For more information on any of the programs offered by CMS, call 585-475-2234.

Enrollment policies

The center allows a student to take any course for which he or she has sufficient background. Many courses have prerequisites that students are expected to meet before enrolling. Prerequisites are listed in the course descriptions. Academic advisers are available throughout the year to answer questions regarding course or program choices.

Students who wish to enroll in a CMS math or communications course are asked to take diagnostic tests that will assist in their placement in appropriate courses. Online learning students may be tested off campus. Call 585-475-2234 to arrange to take either on- or off-campus diagnostic exams. Students in Communication 220 (0688-220) are required to take an exit examination. Those who do not pass may work out a program with their instructors for mastering needed skills and may retake the exit test later. When they pass the test, students receive the grade they earned in the course.

In support of and in compliance with RIT’s policy of assuring competency in written communication, all students matriculated in a center’s BS degree program must satisfy a communication competency requirement. Information about this requirement and the various methods for satisfying it is available at the CMS office; it also may be obtained from an adviser or from the communication chair at 585-475-4936.

Students matriculated in the center’s bachelor’s degree programs are normally expected to complete their degrees within seven years.
Financial aid

Specially trained financial aid counselors can provide students with information about some of the grants and loans available for part-time students. In addition to federal, state and private programs, RIT has special financial aid funds for part-time students. Many companies have employer education benefits that will pay for some or all tuition costs. Active U.S. Army Reserve and National Guard members are eligible for benefits that pay up to 90 percent of tuition. Call 585-475-2958 for more information on financial aid.

Academic advising

The Center for Multidisciplinary Studies provides academic advising regarding educational and career goals. This service is available at no charge to all undergraduate students who are interested in CMS degree, diploma, and certificate programs and to all students who are enrolled in one or more of the center’s courses.

The faculty and academic advisers are experienced and trained across academic disciplines. They will help match educational and career goals with an appropriate program of study. The advising process ensures that the courses will lead to a certificate, diploma, or degree in the quickest, most direct manner. Call 585-475-2234 to schedule an advising session. The office is in room 2210 of the Eastman Building.

Course requirements, AAS and BS degrees in applied arts and science

<table>
<thead>
<tr>
<th>Math/Computer/Science</th>
<th>Qtr. Cr.</th>
<th>Liberal Arts</th>
<th>Qtr. Cr.</th>
<th>Concentration(s) * 1 or 2</th>
<th>Qtr. Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Mathematics</td>
<td>0692-221,222</td>
<td>Writing & Literature I, II §</td>
<td>8</td>
<td>To be developed by student with adviser</td>
<td>38</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>Communication It 0688-220</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0692-211,212</td>
<td>and Literature 0509-332</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0692-201</td>
<td>Communication Elective Humanities Electives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0692-202</td>
<td>Behavioral Science Electives</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0692-311,312</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intro. to Computers/ Prog.</td>
<td>0692-250</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0602-270</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0680-341</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Physics / Lab</td>
<td>1017-211,212</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>213 or 271, 272, 273</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0692-231, 232, 233, 234, 236, 331, 332, 333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>(3 of 8 courses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math/Science</td>
<td></td>
<td>Liberal Arts</td>
<td>8</td>
<td>To be developed by student with adviser</td>
<td>48</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>General Education</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>Liberal Arts Concentration</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>Liberal Arts Electives #</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>Senior Seminar</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A concentration = 20 (or more) quarter hours in one subject area (e.g., applied computing, communication, business).
† The communication courses require pretest; call 585-475-2234 for information. Students completing BS degree must also pass a communications competency test.
‡ Cannot be in the same area as professional concentration.
‡ Requires a diagnostic test. Contact humanities department at 585-475-6928.
‡ Students choosing a liberal arts area for a professional concentration must choose their “liberal arts concentration” and liberal arts electives” in other disciplines or interdisciplinary areas in the College of Liberal Arts.
(SOC), which is a consortium of more than 1,500 colleges and universities that provide educational opportunities for service members and their families. SOC is funded by the Department of Defense and managed by the Defense Activity for Non-Traditional Education Support (DANTES).

Faculty
Most courses in the Center for Multidisciplinary Studies are conducted by instructors who teach what they do professionally. Our faculty are selected for their professional competence, academic background, and teaching ability.

Course scheduling options
CMS courses and programs are offered during the day, at night, on Saturdays, through Weekend College, and even in online learning format so that students can take courses away from campus.

Online learning
Courses combine online learning with textbook readings, audio and computer conferencing, assignments, and exams. Students have access to instructors by mail, computer, telephone, or individual appointments. The center's new MS in cross-disciplinary professional studies and the popular applied arts and science program-RTI's flexible multidisciplinary programs-are now fully available nationwide through online learning technologies. For more information about these and other online learning programs, call 585-475-5089 for advising, call 585-475-2234.

Weekend College
Weekend College courses meet on Saturdays (leaving the rest of your weekend free), usually every other weekend, and a full course may be completed in five weekends. Students enjoy the schedule and the seminar-like environment. Through Weekend College, you can earn credits toward a degree or complete a certificate or diploma program. For more information, call 585-475-2234.

Applied Arts and Science Degrees
The Center for Multidisciplinary Studies offers students the opportunity to tailor individualized undergraduate programs of technical and professional study through its applied arts and science program. In this program, students work closely with faculty, advisers, and the program review committee to co-design unique, multidisciplinary plans of study that combine several areas of expertise. The center also will work with employers to design multidisciplinary programs that are specially suited to their employees' needs.

The applied arts and science program is particularly appropriate for individuals who have prior college-level learning, are interested in changing majors, or who want to prepare themselves for a career that requires skills and expertise in several areas of knowledge. There are three levels:

Diploma
36 credits; 1 area of concentration

Associate of applied science (AAS) degree
52 core credits in general education plus 38 credits in 1 to 2 areas of concentration

Bachelor of science (BS) degree
90 core credits in general education plus 90 credits in 2 to 4 areas of concentration

The AAS and BS degrees are available to both full-time day students and part-time evening students. The day program for full-time students is very flexible, includes physical education requirements, and contains a different set of math and science course options. (Full-time students should telephone 585-475-2234 for further information.)

Individualized concentrations
The associate and bachelor's degrees allow you to study several different professional and technical areas, selected specifically to meet your unique career and personal goals. The diploma focuses on one concentration. For your professional concentration, you can draw on a wealth of educational resources from across RIT colleges and departments, including quality management, information technology, engineering technologies, sciences, computing, photography, printing, business and management, liberal arts, physical and social sciences, mathematics, fine arts, technical communication, and public relations. Concentrations in health systems administration, business management, quality management, technical communication, applied computing, telecommunications, emergency management, and environmental management technology are now available through online delivery.

No two applied arts and science programs will be exactly alike because each takes into account the student's previous learning and brings together a special combination of courses that are right for his or her career and professional development. For example, one individualized program might lead to a bachelor's degree with concentrations in information technology, graphic arts, and management, while another could lead to a bachelor's degree that combines fields of technical communication and health systems administration.

As their career plans evolve and the demands of their technical and professional fields change, students meet regularly with advisers to review and update plans of study.

Common features
Every applied arts and science degree has certain features in common:
1. An approved program of study developed with faculty, an individual adviser, and the degree committee
2. General education courses in mathematics, computer literacy, science and liberal arts (52 credits for the AAS; 90 for the BS)
3. One or more professional concentrations that provide each student with the opportunity to develop a multidisciplinary program tailored to specific career and personal objectives
4. Students must achieve a program GPA of at least 2.0 in order to be certified.

Recognition for prior college-level learning
Each program begins by taking account of what the student already knows and has accomplished. For example, college credits earned at RIT or other accredited institutions will be reviewed to see how they might be applied to the program of study; professional certifications and experiences will be evaluated for the possibility of receiving credit; and credits may be earned (by examination, portfolio reviews, or other documentation) for college-level learning that was gained on the job or through other educational experiences.

Organizational Development Certificates
In these days of right-sizing, reengineering, restructuring, virtual organizing, and lifelong learning, knowing how to change and continually renew your organization, design new work patterns and structures, and enable your employees and colleagues to meet competitive challenges is more important than ever before. The center provides this knowledge through its certificate programs in three complementary areas of organizational development (OD): human resource development, training design, and organizational change. The certificate in human resource development, while providing general expertise in the field of human resource management, is designed to prepare students to work in benefits and compensation administration. The certificate in training design provides the essential skills and knowledge needed to plan and implement organizational training programs. Through
Core Requirements, All Business and Management AAS Programs

Below are the core requirements for all business and management degree programs. Professional program requirements are added to these core requirements.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Accounting</td>
<td>0680-201</td>
<td>4</td>
<td>Communication *</td>
<td>0688-220</td>
<td>Science Electives †</td>
</tr>
<tr>
<td>Managerial Accounting</td>
<td>0680-203</td>
<td>4</td>
<td>and</td>
<td></td>
<td>Math for Business</td>
</tr>
<tr>
<td>Organization & Mgmt. (I)</td>
<td>0681-205</td>
<td>4</td>
<td>Literature</td>
<td>0504-332</td>
<td>Statistics</td>
</tr>
<tr>
<td>Information Resources & Network Tools</td>
<td>0680-341</td>
<td>4</td>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Science</td>
<td>0680-353</td>
<td>4</td>
<td>Comm.</td>
<td>0688-220</td>
<td></td>
</tr>
<tr>
<td>Professional Concentration Courses (see below)</td>
<td>20</td>
<td></td>
<td>Economics</td>
<td>0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Psychology</td>
<td>0514-210</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sociology</td>
<td>0515-210</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>Total</td>
<td>24</td>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>

In sequentially numbered courses, the lower-number course is prerequisite.

(1) The Management Process (0681-200,201,202) may be substituted for the following:

- Dynamic Communication 0688-214 4
- Organization & Management 0681-205 4
- 1 business elective 4
- * These communication Courses require proof. Call 585-475-2234 for information.

[Students who take 0688-214 should also take 0688-220. Students who take 0688-220 should also take 0504-332.]

The certificate in organizational change, students will examine the processes and consequences of organizational change, learn how to develop contemporary organizations and teams, and study contemporary leadership theory.

Students may earn one or more of the certificates, and students not interested in taking an entire certificate program may take individual courses for which they have the proper prerequisites. Courses may be applied toward appropriate diploma and degree programs, such as the BS in applied arts and science. In each certificate program, up to four credits may be awarded by examination or for courses taken at another college. Students must achieve a program GPA of at least 2.0 in order to be certified.

Most courses in the certificate programs count as upper level, and students are expected to have had some prior college-level coursework and/or experience in the field. All students should have successfully completed at least one of the following courses (or equivalent) before enrolling:

- General prerequisite- Management Process I, II, III (0681-200,201,202) or Introduction to Psychology (0514-210) or Introduction to Sociology (0515-210) or obtain permission of program chair.
- The OD certificate programs share a common core of two courses; with the exception of these two courses, courses (or credits) used for one OD certificate may not be used to satisfy the requirements of other OD certificates.

<table>
<thead>
<tr>
<th>Core courses</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Corporate Culture</td>
<td>0697-431</td>
</tr>
<tr>
<td>The Learning Organization</td>
<td>0697-442</td>
</tr>
</tbody>
</table>

Certificate in Human Resource Development

Core courses	8	
Human Resources Administration	0681-239	4
Compensation Administration	0681-333	4
Benefits Administration	0681-433	4
Managing Change	0697-432	4
Certificate Total	24	

Certificate in Training Design

Core courses	8	
Self-Directed Learning	0697-444	4
Training Design & Delivery	0697-428	4
Approved electives in training design and OD e.g., Criterion Referenced Instruct. I (0627-755) (3 cr.) Criterion Referenced Instruct. II (0627-756) (3 cr.) Managing Learning & Knowledge (0697-448) (4 cr.)-	10	
Certificate Total	26	

Certificate in Organizational Change

Core courses	8	
Psychology: Behavior in Industry	0686-331	4
Managing Change	0697-432	4
Approved electives in leadership and OD e.g., Leadership Skills for Quality (0684-330) (4 cr.) Project Management (0681-410) (4 cr.) Empowered Leadership (0697-462) (4 cr.) Teams & Team Development (0697-433) (4 cr.)	8	
Certificate Total	24	

For more information about the certificate programs in organizational development, telephone 585-475-2234.
Business and Management Studies

Approximately 50 credit-bearing courses in business and management subjects are available through the center. Courses leading to an AAS degree and transferable to appropriate baccalaureate degree programs in RIT’s College of Business and other schools are available in business administration, marketing, human resources administration, and logistics and transportation.

For those interested in a short-term concentration in one of these fields, the center also offers a management development program leading to a management certificate and management diploma and a program in small business management. Courses also may be taken individually.

General requirements for an AAS degree, diploma, or certificate in business or management are:

- Completing the necessary quarter credits
- Following the program outline when selecting courses
- Achieving a program GPA of at least 2.0 in order to be certified

All of the programs offered in this area may also be used to satisfy requirements in either the AAS or BS in applied arts and science.

Small Business Management

The certificate program in small business management is designed for enterprising individuals who want to launch a new venture or improve an existing small business. It is especially appropriate for entrepreneurs, members of family-owned businesses, and key employees in companies with sales under $2 million.

The three courses in the program are tightly integrated, to provide a solid foundation in managing, marketing, and financing small businesses. The faculty include academically qualified entrepreneurs who have managed their own small companies. Courses may count as business electives in degree programs, may serve as foundation courses for the management diploma, and may be taken out of sequence. Students must achieve a program GPA of at least 2.0 in order to be certified.

Like most courses in the center, small business management courses may be taken on an audit basis (noncredit, without exams) at a reduced rate. For more information, call Janet Graham at 585-475-6141.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Venture Development 0681-221</td>
<td>4</td>
</tr>
<tr>
<td>Small Business Management & Finance 0681-222</td>
<td>4</td>
</tr>
<tr>
<td>Small Business Marketing & Planning 0681-223</td>
<td>4</td>
</tr>
<tr>
<td>Certificate Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Certificate in Basic Quality

Introduction to Quality 0684-310 4
Basic SQC Techniques 0684-320 4
Leadership Skills for Quality 0684-330 4
Certificate Total 12

Certificate in Quality Implementation

Statistics for Total Quality 0684-340 4
Costing for Quality 0684-410 4
Implementing Total Quality 0684-430 4
Certificate Total 12
The Management Development Program

The management development program has two components: the management certificate and the management diploma. By successfully completing The Management Process (0681-200,201,202), a 12-credit course in practical supervision, management and communication skills, students may earn the management certificate. To receive a management diploma, students must complete 16 additional credits in one of four business management concentrations.

The program is structured to provide a broad foundation in applied general management and focused study in a specialized field. It is specifically designed for new supervisors, emerging managers, those seeking supervisory and management positions, and for new and re-entering students. Both parts of the program are also appropriate for individuals with degrees in the liberal arts, sciences, or technologies who wish to acquire new professional skills and expand their career opportunities.

Students may take one or both parts of the program, and both may be completed in one academic year. Credits earned in the program can be applied to various degree programs. Management certificate courses are typically offered as part of our Weekend College and our regular schedule. Students must achieve a program GPA of at least 2.0 in order to be certified. For further information, call 585-475-2234.

Management Certificate

The management certificate is earned by successfully completing a unique three-quarter, 12-credit course, The Management Process. The course focuses on:
- practical applications of management theory
- management problems, solutions and ideas
- personal development as an effective manager.

The Management Process offers a comprehensive, integrated study of supervisory management. Topics covered include effective motivation, decision making, team building, conflict resolution, problem solving, time and stress management, communication techniques and strategies, planning, organizing, staffing, performance appraisal, and leadership.

In this program students associate with others who have similar career aspirations, job responsibilities, and challenging problems on the job. Through case studies, role plays, simulations, and other instructional methods, students learn effective supervisory and management practices. Instruction is usually guided by a team of management specialists, rather than by a single instructor. Students must achieve a program GPA of at least 2.0 in order to be certified. For further information, call 585-475-2234.

Management Diploma

In the management diploma program, students concentrate their studies in one of four specific areas of business and management that may be immediately relevant on the job.

A management diploma is earned by completing 16 quarter credits in addition to, typically, a management certificate. However, one of the following options may be substituted for the management certificate:
- the small business management certificate
- three foundation courses (Organization and Management, 0681-205; Communication, 0688-214 or 220; and one additional business elective)
- or approved equivalents

Courses applied toward a management diploma also may be counted as professional courses in appropriate degree programs. Students must achieve a program GPA of at least 2.0 in order to be certified. For further information, call Janet Graham at 585-475-6141.

<table>
<thead>
<tr>
<th>General Management</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Process</td>
<td>0681-200,201,202</td>
</tr>
<tr>
<td>or approved alternative</td>
<td></td>
</tr>
<tr>
<td>Financial Accounting</td>
<td>0680-201</td>
</tr>
<tr>
<td>Managerial Accounting</td>
<td>0680-203</td>
</tr>
<tr>
<td>Information Resources & Network Tools</td>
<td>0680-341</td>
</tr>
<tr>
<td>Marketing</td>
<td>0681-361</td>
</tr>
<tr>
<td>or Business Elective</td>
<td></td>
</tr>
<tr>
<td>Diploma Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marketing</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Process</td>
<td>0681-200,201,202</td>
</tr>
<tr>
<td>or approved alternative</td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td>0681-361</td>
</tr>
<tr>
<td>Effective Selling</td>
<td>0681-261</td>
</tr>
<tr>
<td>Advertising Principles</td>
<td>0681-263</td>
</tr>
<tr>
<td>Business Elective</td>
<td></td>
</tr>
<tr>
<td>Diploma Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Resources Administration</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Process</td>
<td>0681-200,201,202</td>
</tr>
<tr>
<td>or approved alternative</td>
<td></td>
</tr>
<tr>
<td>Human Resources Administration</td>
<td>0681-239</td>
</tr>
<tr>
<td>Interviewing Techniques</td>
<td>0681-234</td>
</tr>
<tr>
<td>Business Law I</td>
<td>0680-311</td>
</tr>
<tr>
<td>Business Elective</td>
<td></td>
</tr>
<tr>
<td>Diploma Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logistics and Transportation Management</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Process</td>
<td>0681-200,201,202</td>
</tr>
<tr>
<td>or approved alternative</td>
<td></td>
</tr>
<tr>
<td>Intro. to Logistics & Transportation</td>
<td>0681-251</td>
</tr>
<tr>
<td>Traffic & Transportation Law, Rates, Accounting & Control</td>
<td>0681-253</td>
</tr>
<tr>
<td>International Logistics & Transportation</td>
<td>0681-255</td>
</tr>
<tr>
<td>Marketing</td>
<td>0681-361</td>
</tr>
<tr>
<td>Diploma Total</td>
<td></td>
</tr>
</tbody>
</table>
Business and Management

AAS Degree Programs

Programs leading to an AAS degree in business administration are fully transferable to baccalaureate degree programs in RIT's College of Business or into the baccalaureate in applied arts and science.

Programs leading to an AAS degree in management are offered in marketing, human resources administration, production management, logistics, and transportation. Management programs are also transferable to a BS degree program in RIT's College of Business.

All business and management degree programs include a core group of business courses in organization and management, accounting, management, and business law. Approximately half of the credits in degree programs are earned through these professional courses, which may count in management diploma programs, as well as in AAS degrees. In addition, all business and management degree programs include a broad spectrum of courses in communication, behavioral/social sciences, humanities, math, and science. Students must achieve a program GPA of at least 2.0 in order to be certified.

For more information, call Janet Graham at 585-475-6141.

Professional concentration requirements, business and management AAS programs

<table>
<thead>
<tr>
<th>Business Administration</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>History or Fine Arts Elective</td>
<td>4</td>
</tr>
<tr>
<td>Legal Environment of Business</td>
<td>0680-315</td>
</tr>
<tr>
<td>3 Business Electives</td>
<td></td>
</tr>
<tr>
<td>Concentration Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marketing</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Selling</td>
<td>0681-261</td>
</tr>
<tr>
<td>Advertising Principles</td>
<td>0681-263</td>
</tr>
<tr>
<td>Business Law I</td>
<td>0680-311</td>
</tr>
<tr>
<td>2 Business Electives</td>
<td></td>
</tr>
<tr>
<td>Concentration Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Resources Administration</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Resources Administration</td>
<td>0681-239</td>
</tr>
<tr>
<td>Interviewing Techniques</td>
<td>0681-234</td>
</tr>
<tr>
<td>Business Law I</td>
<td>0680-311</td>
</tr>
<tr>
<td>2 Business Electives</td>
<td></td>
</tr>
<tr>
<td>Concentration Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logistics and Transportation Management</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro. to Logistics & Transportation</td>
<td>0681-251</td>
</tr>
<tr>
<td>Traffic & Transportation Law, Rates, Accounting & Control</td>
<td>0681-253</td>
</tr>
<tr>
<td>International Logistics & Transportation</td>
<td>0681-255</td>
</tr>
<tr>
<td>Business Law I</td>
<td>0680-311</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Concentration Total</td>
<td></td>
</tr>
</tbody>
</table>

Public Relations Communications

Public relations communications are vital to virtually every human endeavor. Almost every organization employs individuals, either in house or by contract through Public relations agencies, who can prepare press releases, brochures, newsletters, annual reports, point-of-purchase promotions, and other persuasive, informative materials in a variety of media.

Underlying successful public relations communications are skills in two key areas: writing and graphic communication. The center offers a certificate program in each of these specialties. Both programs share a core of courses that provides an introduction to public relations and teaches widely used principles and techniques of advertising, project management and persuasion. The professional writing program provides specialized instruction in writing marketing materials, inbound and outbound publications, corporate-level communications, and speeches and scripts. The graphic communication program (designed specifically to accommodate non-artists) focuses on understanding the components of the advertising process, the use of effective design principles in the preparation of layouts, and the combining of creative and technical skills to achieve design success.

These programs are intended for individuals who wish to enter the field of public relations or take on PR responsibilities, those who have been working in a particular aspect of public relations and wish to upgrade or broaden their skill, or those who have been performing PR tasks for which they have had little formal preparation.

Up to four credits may be awarded by examination or for courses taken at another college. Prerequisite for the core courses is demonstration (by examination, portfolio, or transcript) of a command of standard written English.

Courses are scheduled so that the core and one or both of the certificate options may be completed in four quarters of part-time study. Students may earn one or both certificates, and students not wishing to take an entire certificate program may take specific individual courses. Courses may be applied toward appropriate diploma, A.A.S., and BS degree programs. Students must achieve a program GPA of at least 2.0 in order to be certified. For advising and further information about this program, call Thomas Moran at 585-475-4936.

Core Courses

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Public Relations</td>
</tr>
<tr>
<td>Strategic Communications</td>
</tr>
<tr>
<td>Advertising Evaluation & Techniques</td>
</tr>
<tr>
<td>Managing the Project</td>
</tr>
<tr>
<td>Core Total</td>
</tr>
</tbody>
</table>

Professional Writing

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
</tr>
<tr>
<td>Writing for the Organization</td>
</tr>
<tr>
<td>Media Relations</td>
</tr>
<tr>
<td>Promotional Writing</td>
</tr>
<tr>
<td>Scripting for A/V & Video Presentations</td>
</tr>
<tr>
<td>Speechwriting</td>
</tr>
<tr>
<td>Certificate Total</td>
</tr>
</tbody>
</table>

Graphic Communication

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
</tr>
<tr>
<td>Coordinating Publication Production</td>
</tr>
<tr>
<td>and any three of the following courses*</td>
</tr>
<tr>
<td>Designing with Computers I</td>
</tr>
<tr>
<td>Designing with Computers II</td>
</tr>
<tr>
<td>Electronic Presentation Design</td>
</tr>
<tr>
<td>Photographic Imaging with Computers I</td>
</tr>
<tr>
<td>Photographic Imaging with Computers II</td>
</tr>
<tr>
<td>Introduction to Internet Design</td>
</tr>
<tr>
<td>Designing with Corel</td>
</tr>
<tr>
<td>Designing with QuarkXpress</td>
</tr>
<tr>
<td>Certificate Total</td>
</tr>
</tbody>
</table>

*With adviser’s approval
Technical Communication

In this age of rapidly expanding technologies, technical communication is an essential, challenging, and rewarding profession, one that can be practiced within an organization or outside, through independent contracting.

As the technologies grow, so does the need for communicators skilled in conveying many kinds of information in many different forms to many diverse audiences. Industrial, business, scientific, medical, and nonprofit sectors have recognized the importance of communication to their successes. The ability to present information effectively—in forms such as manuals, brochures, data sheets, promotional materials, systems documentation, reports, trade and professional journals, Web sites, and videos, among others—is a highly valued asset in the work place today.

The following sequence of courses, designed to be completed in three quarters of part-time study, provides a strong, practical foundation in technical communication skills for those wanting to work in the profession or those whose advancement in other careers is directly related to their ability to communicate clearly, correctly, and concisely.

Basic Technical Communication
Quarter Credit Hours
Technical Writing & Editing 0688-333 4
Technical Document Design 0688-363 4
and either
Research Techniques 0688-361 4
or
Instructional Design Principles 0688-362 4
Certificate Total 12

Up to four credits may be awarded by examination or for courses taken at another college. Prerequisite for the basic sequence is demonstration (by examination, portfolio, or transcript) of a command of standard written English. Students must achieve a program GPA of at least 2.0 in order to be certified.

For those interested in further professional development and instruction in more specialized topics, the following sequence of courses, designed to be completed in three quarters of study, is offered. Students may take courses in the advanced sequence simultaneously with those in the basic sequence.

Advanced Technical Communication
Quarter Credit Hours
Writing in the Sciences 0688-365 4
Managing Media Presentations 0688-366 4
Writing Software User Documentation 0688-367 4
Certificate Total 12

Up to four credits may be awarded by examination or for courses taken at another college. Research Techniques (0688-361) or Instructional Design Principles (0688-362) may be substituted for one of the required advanced courses with the permission of the program chair. In addition, various special topics courses (0688-398) offered in areas such as Technical Information Design, Technical Procedures, Usability and Proposal Writing may be substituted for one of the required courses with permission of the program chair. A course used as a substitute may not have been used to fulfill the requirements of the certificate in basic technical communication. Students must achieve a program GPA of at least 2.0 in order to be certified.

Courses in these sequences were developed with the assistance of working technical communicators and are taught by experienced professionals. For advising and further information about this program, call Thomas Moran at 585-475-4936.

Computer Graphics

Today’s graphic communicators rely on the computer for nearly every step of the creative process. The computer screen has replaced the sketch pad, the drawing table, the layout board, and other tools traditionally used to develop graphic artwork. With the ever-widening use of the Internet, graphics not only are created on the computer but also are distributed and displayed to huge on-line audiences via the computer.

The courses within this program develop and enhance the computer graphic skills of students who find that, with increased access to desktop publishing tools and corporate emphasis on multitasking, their job responsibilities have broadened to include aspects of graphic design. The program will benefit technical communicators, administrators, public relations practitioners, educators, sales and marketing staff, and technical and business professionals who are called upon to design and produce effective brochures, advertising materials, presentations, proposals, flyers, and other communications products. In addition, this program provides an excellent transition path for practicing graphic designers who need to upgrade their skills and move into the arena of computer design.

Students develop skill in the use of a number of popular graphic design, illustration, presentation, photo manipulation, and Internet software programs. They learn to combine typography, images, and graphic elements into striking designs for both printed and on-line use and can develop a portfolio of professional-quality computer design work.

Courses
Quarter Credit Hours
Basic Computer Graphics 0688-271 2
Designing with Computers I 0688-371 3
Designing with Computers II 0688-372 3
Electronic Presentation Design 0688-373 3
Photo-imaging with Computers I 0688-381 3
Photo-imaging with Computers II 0688-382 3
Introduction to Internet Design 0688383 3
Certificate Total 20

Up to four credits may be awarded by examination or for courses taken at another college. Elective courses offered through the program, such as Designing with Quark (0688-384) and Designing with Corel Draw (0688374), and Special Topics classes (0688-398) such as Advanced Internet Design also may be substituted with the permission of the program chair. For advising or further information about this program, call Tom Moran at 585-475-4936.
Department of Military Science-
Army Reserve Officer Training Corps (ROTC)

LTC Daniel Stafford, Professor of Military Science

The Army Reserve Officer Training Corps (ROTC) program prepares students for leadership in a civilian or military career. ROTC is a campus-based program that assists students in developing their full potential-intellectually, physically, and emotionally. The program consists of classroom instruction, physical training, and practical-application laboratories designed to enhance organizational leadership, decision making, and problem-solving skills.

ROTC classes are open to everyone, with no military obligations unless a student has received an ROTC scholarship or contract during the beginning of the junior year. Upon graduation from college and successful completion of Army ROTC, cadets are commissioned as second lieutenants and may serve in the active army, the Army Reserve, or Army National Guard. Veterans, members of the Army Reserve or National Guard, and junior ROTC graduates may be eligible for advanced placement in the program.

Those who join Army ROTC become cadets in a dynamic and challenging program. Throughout the year, we offer a variety of fun activities that reinforce leadership skills, teamwork, and confidence. Our cadets enjoy unique events such as the formal Military Ball and the formal yet light-hearted annual banquet called the “Dining-In.” They also have the opportunity to participate in high-adventure training weekends on U.S. military installations, where they learn skills such as navigating with a map and compass or rappelling as part of mountaineering instruction. Our clubs and activities also include the Ranger Challenge Team, the ROTC varsity sports. This team competes in military skills and physical stamina competitions with other colleges throughout the Northeast. We also may sponsor a team to compete in the prestigious Sandhurst Competition, a military skills and endurance event at which teams from the U.S. Military Academy, the British Military Academy at Sandhurst, and select ROTC teams from across the nation gather at West Point to determine who is the best. No other program on campus offers the same level of adventure and practical leadership experience that we offer through our many and diverse activities. Our cadets receive hands-on training from skilled military professionals that aids them in opening up doors they never knew existed. The Army ROTC program builds skills that will last a lifetime.

Scholarship opportunities

Army ROTC awards four-, three-, and two-year scholarships. A four-year ROTC scholarship is presently valued at $68,000. Students who have two or three years of college remaining are encouraged to compete for campus-based scholarships, which are worth $17,000 per year. Tied to four- and three-year Advanced Designee scholarships are university incentives. In previous years, those scholarship winners received a room and board incentive, bringing the total value of their four-year scholarship to over $100,000. Check with the Financial Aid Office for the latest incentive. In addition to the tuition award, the Army provides $600 annually for books and a monthly cash stipend of $250 for 10 months, which cadets may use as they like.

Scholarship competition is based on academic achievement coupled with an assessment of the applicant’s leadership potential. Both enrolled students and non-enrolled students may compete for a scholarship. Students preparing to enter graduate studies also may be eligible to apply for a scholarship. Visit our office, 3161 Eastman Building, for more information or visit the Cadet Command Web site at www.rotc.monroe.army.mil/scholarships/. Using the on-line application, incoming freshmen should apply during the fall semester of their senior year in high school for four-year scholarships.

Financial benefits

A subsistence allowance of $250400 per month is provided, tax free, directly to each contracted ROTC cadet throughout the school year. This, plus pay for attending Advanced Camp (the required summer camp between the third and fourth year of the program), amounts to more than $7,500 for the last two years of college. RIT also offers incentives to all Army ROTC scholarship winners, ranging from flat-rate monetary assistance to full room and board or the equivalent. To qualify for these incentives, file a Free Application for Federal Student Aid form by March 15 of each year (see pages 354, 359). For additional information, please contact the Office of Financial Aid at 585-475-2186.

Basic Course

The Army ROTC program is normally a four-year program and is divided into two components, the Basic Course and the Advanced Course. The Basic Course consists of the first two years of the Army ROTC program. This would normally be the freshman and sophomore years of college. During the Basic Course, non-scholarship students have absolutely no military obligation. Basic Course classes emphasize the development of academic and life skills necessary to ensure that cadets become better students and to increase their potential as future Army officers or leaders in tomorrow’s dynamic business environment. Under the Basic Course, students learn time management and study skills, basic military organization, military history, small-unit leadership, and problem-solving. Students in the Basic Course register for a class and lab, and if they also register for the Army Conditioning Drills, they will receive physical education credit from RIT while meeting the ROTC physical fitness requirements. Students may enroll in Basic Course classes at any time during their first two years of college. Upon completion of the Basic Course, eligible students can progress to the Advanced Course (the last two years of the program). Eligible Basic Course cadets also can compete to attend off-campus Army training opportunities such as the Army Airborne school or Air Assault school.

Leader Training Camp

Leader Training Camp (LTC) is the two-year option for students who are considering Army ROTC but who have not completed the Basic Course requirements and are entering their last two academic years (co-op excluded). At this paid 28-day summer camp, students obtain the necessary skills and training to qualify for entry into the last two years of the Army ROTC program. LTC teaches basic military skills while emphasizing leadership development. Participants who successfully complete the camp are offered the opportunity to formally contract into the Advanced Course for their last two years of college (co-op excluded). Interested students should contact the Army ROTC office as soon as possible but not later than the spring quarter. Successful graduates of LTC also may receive two-year scholarships valued at $34,000.

Veterans

Qualified students with prior military service and members of the Army National Guard and Army Reserve who have attended Basic Training may enroll directly into the Advanced Course. However, they must be academically aligned (i.e., must have two years of academic work remaining). Those who
have more than two years of academic work remaining but wish to participate in the Army ROTC program are encouraged to enroll in any of the Basic Course classes. Interested students should visit the department for more information.

Advanced Course
The Advanced Course is for students entering their last two academic years (co-op excluded) in college. The Advanced Course is similar to the Basic Course in organization and style, but the course content focuses more heavily on organizational leadership, decision making, and professional skills. Although instruction in military tactics is an integral part of the Advanced Course, it is designed to serve as a vehicle for enabling cadets to apply the full range of leadership skills they are learning in the classroom. Planning, organizing, and leading others through various training activities is the focus. Upon entering their last year in the program, Advanced Course cadets are ranked against their peers in academics, Advanced Camp performance, and general on-campus performance. Based on these factors, the Army makes duty placement and job selections. Advanced Course cadets also have the opportunity to participate in a myriad of off-campus Army training opportunities such as Airborne, Air Assault, Northern Warfare, and Mountain Warfare training courses. After completing Advanced Camp, cadets also may participate in the Cadet Troop Leadership Training Program, a paid, practical leadership experience where they are assigned for up to three weeks to serve as a leader in an Active Army unit in the United States or elsewhere around the world.

National Advanced Leaders Camp
The Advanced Course includes attendance at the ROTC National Advanced Leaders Camp (NALC) at Fort Lewis, Washington, which normally occurs between the third and fourth years of college. At NALC, Army ROTC cadets from across the nation gather for five weeks to demonstrate their leadership skills and potential. They are repeatedly placed in leadership positions and face problem-solving challenges that bring together all of the classroom and practical instruction they received on campus. Participants might be assigned to lead a 120-person cadet company as they prepare for training or to plan and lead a lo-person squad on a tactical night patrol. Regardless of the task, participants have the opportunity to demonstrate their leadership potential to their Army evaluators. Attendees are paid travel expenses and a salary for participating in this challenging and greatly rewarding experience.

Professional military education (PME)
In addition to the military science curriculum and Advanced Camp participation, each cadet must complete a credit-bearing course in the following fields of study at RIT:
- communication skills
- military history
- computer literacy
A list of the courses accredited by RIT and ROTC to fulfill these PME requirements is available at the department of military science office.

For more information
To learn more about career opportunities through Army ROTC, visit or call the department of military science, room 3161, Eastman Building. You also may contact us by e-mail at mmharm@ritvax.isc.rit.edu or by telephone at 585-475-2881. Visit our Web site at www.rit.edu/armyrotc.

Department of military science four-year program, typical course sequence

<table>
<thead>
<tr>
<th>First Year, MS I</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Military Science 0640-201 *</td>
<td>2</td>
</tr>
<tr>
<td>Applied Military Dynamics 0640-202 *</td>
<td>2</td>
</tr>
<tr>
<td>Military Heritage 0640-203 *</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year, MS II</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Geography 0640-301 *</td>
<td>2</td>
</tr>
<tr>
<td>Psychology & Leadership 0640-302 *</td>
<td>2</td>
</tr>
<tr>
<td>The Military & American Society 0640-303 *</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year, MS III</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Tactics 0640-401 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Communications 0640-402 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Operations 0640-403 *</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year, MS IV</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Training Systems 0640-501 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Administration & Logistics Management 0640-502 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Law & Ethics 0640-503 *</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 30

*R A Leadership Lab, which is conducted on a weekly basis for two hours, is an integral part of each course offered throughout the year. Class 1, Lab 1 = Credit 2, or Class 2, Lab 1 = Credit 3.

Department of military science two-year program, basic camp completion/advanced placement/summer compression, typical course sequence

<table>
<thead>
<tr>
<th>Third Year, MS III</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Tactics 0640-401 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Communications 0640-402 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Operations 0640-403 *</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year, MS IV</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Training Systems 0640-501 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Administration & Logistics Management 0640-502 *</td>
<td>3</td>
</tr>
<tr>
<td>Military Law & Ethics 0640-503 *</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 18

*R A Leadership Lab, which is conducted on a weekly basis for two hours, is an integral part of each course offered throughout the year. Class 1, Lab 1 = Credit 2, or Class 2, Lab 1 = Credit 3.

Rappel training is held on campus
Department of Aerospace Studies-
Air Force Reserve Officer Training Corps (AFROTC)

Col. Thomas J. Burgie, Professor of Aerospace Studies

Background
Air Force Reserve Officer Training Corps (AFROTC) opened at RIT in September 1985. Since 1947 AFROTC has afforded graduating college students an appointment as commissioned officers in the United States Air Force. There are three methods to obtain a commission: through the Air Force Academy, the Air Force Officer Training School and our Air Force ROTC program. Participation in ROTC allows college students a firsthand view of the Air Force while attending the college of their choice. Activities are extremely varied and enriching, encompassing classroom instruction, leadership experiences, visits to Air Force bases, summer field training, physical fitness, and more.

Characteristics
The department of aerospace studies at RIT has designed an approach to its curriculum totally compatible with the normal four-year curriculum in some RIT colleges and with the five-year cooperative education program in a larger number of colleges within the Institute. RIT and the department of aerospace studies believe the program will develop very well-rounded individuals fully prepared to enter into their chosen career fields and become future leaders in our society.

Four-year program
This program has three distinct parts: the General Military Course (GMC), the Professional Officer Course (POC), and the Summer Field Training.

Cadets normally enter the four-year program directly from high school. The GMC is taken by freshmen and sophomores. Air Doctrine, Air Force Mission Structure, Organization, the Nature of Conflict, Air Power Development, National Security, the Evolution of Air Power, and more are studied. Successful completion of the GMC requirements and the four-week field training exercise qualifies a student to apply for entry into the POC.

The POC is the advanced Aerospace Studies curriculum and is conducted during the junior and senior years at RIT. The curriculum prepares cadets for entry into the Air Force as commissioned second lieutenants. Fundamentals of leadership and management, ethics, staffing, planning, coordinating, the need for national security, policy direction and implementation, and actual leadership case studies are examined. Additionally, in both the GMC and POC curricula, several instructional blocks on written and oral communication skills are taught. Every cadet must complete a Summer Field Training encampment, normally between the sophomore and junior years. In the four-year program, the summer exercise is four weeks long. The curriculum and activities at summer field training educate and evaluate a student’s leadership potential and qualify the cadet for entry into the POC. The training program includes leadership evaluation exercises, orientation, survival training, officer training, confidence courses, aircraft and aircrew orientation, physical training, and more.

Leadership and management experience is gained in the Air Force ROTC curriculum through a series of Leadership Laboratories, conducted in the fall, winter, and spring quarters throughout the four- and five-year college curricula. The lab is managed by the cadet corps staff with a detachment officer overseeing all activities. Practical command and staff leadership experience, drill and ceremonies, customs and courtesies, and career decision making are all part of the Leadership Laboratory.

The four-year program is very comprehensive. Spirited and well-rounded Air Force officers are the result.

Two-year program
This program allows students to join the cadet corps with as little as two years remaining at college. The GMC material and leadership laboratories are obviously not taught, but instead cadets receive all GMC curriculum and laboratory experience in a five-week summer field training exercise, usually conducted between their sophomore and junior years. Successful completion of the summer camp qualifies cadets for entry into the POC (see “Four-year program”). Cadets then complete their remaining AFROTC requirements as members of the Professional Officer Corps.

Other programs
Several other programs and activities are afforded to cadets in both the two- and four-year Air Force ROTC programs. They are offered to highly competitive cadets to further develop the officer “whole person” concept. These programs include airborne training with the U.S. Army, Advanced Training Program (an on-the-job training program at selected air bases), base visitations, and Arnold Air Society.

Physical education graduation requirements
Physical education activity requirements can be satisfied by completion of the department of aerospace studies leadership laboratories. Students must be enrolled in Air Force ROTC (the two- or four-year program) to enroll in the leadership laboratories.

Qualifications and selection procedure
To become a member of the Air Force ROTC requires many different and varied qualifications. Some are very simple met; others are more complex, involving Air Force Officer Qualifying Testing, physicals, interviews, and selection boards. Please contact the Air Force ROTC office for complete details and learn how you may qualify. The phone number is 585-475-5196.

Scholarships
Air Force ROTC offers a variety of scholarships to qualified students in many academic disciplines. Four-year, three-year, and two-year scholarships are available in technical, non-technical, pilot, navigator, and missile career fields. The needs of the Air Force dictate which scholarships will be offered on a yearly basis. Competition is very keen. High-school students must complete their applications for a four-year scholarship very early in the senior year. Any student awarded a scholarship is entitled to numerous benefits. Most scholarships pay the majority of tuition and textbook expenses. Also, contract cadets receive a nontaxable monthly allowance during the school year.

Air Force ROTC specialized programs
The AFROTC also has several specialized career programs, pre-health being the most widely known. In addition, a number of graduate study programs are available. Certain specialties may be paid in full; the requirements are extremely varied, and contact with the AFROTC detachment at RIT is imperative.
Financial assistance
Every scholarship cadet and all POC cadets receive a monthly allowance. RIT augments three- and four-year ROTC scholarships with either free room and board or $5,000 per year, depending on scholarship type. In order to receive RIT’s room scholarship and tuition supplement, students must file a Free Application for Federal Student Aid form by March 15 (see pages 354, 359). Contact the Office of Financial Aid for further information. In addition, during field training, transportation and room and board are paid, and a salary is provided. Other student loan programs are available to cadets from both the Air Force and RIT.

Commissioning
The commissioning of cadets as second lieutenants takes place close to graduation day ceremonies. Prior to commissioning, each cadet must perform the following:
1. Complete all degree requirements
2. Complete the aerospace studies curriculum
3. Complete the applicable summer training
4. Complete one quarter of English composition (scholarship recipients only)
5. Complete one quarter of college mathematics

For more AFROTC information
Call the department at 585-475-5196 or visit us on campus, 3211 Eastman Building.
Department of aerospace studies-AFROTC,
typical course sequence *

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Air Force Today I, II, III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0650-210, 211, 212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership Lab I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0650-201, 202, 203</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>History of Air Power I, II, III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0519-201, 202, 203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership Lab II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0650-301, 302, 303</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>Air Force Leadership & Mgmt. I, II</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0102-310, 311</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership Lab III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0650-401, 402, 403</td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>National Security Forces I, II</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0513-401, 402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership Lab IV</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0650-404, 405, 406</td>
<td></td>
</tr>
<tr>
<td>Fifth</td>
<td>Leadership Lab V</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0650-501, 502, 503</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Quarter Credit Hours</td>
<td>41</td>
</tr>
</tbody>
</table>

*NOTE:
1. This is a typical flow. Certain degree programs may desire the Air Force junior- and senior-level courses to be taken in any one of the following combinations: years 3 and 5, years 4 and 5, or as printed in years 3 and 4.
2. While students are enrolled at RIT but not taking Air Force junior- or senior-level courses, they must be enrolled in a Leadership Lab.
3. Although the number of credit hours seem less than required, the contact hours actually meet or exceed those required by AFROTC/Hdqtrs.
College of Business

Thomas D. Hopkins, Dean

Success in today's business environment requires leadership and management attuned to rapid changes in technology and increasingly vigorous global competition. The mission of the College of Business is to produce leaders who excel at managing people, technology and quality in a global context. We will equip a diverse array of talented students with capabilities for strategic and critical thinking needed for effective leadership in a global economy where creative management of both people and technology is vital.

The College of Business offers a benchmarked portfolio of comprehensive, rigorous programs of study, including both degree and certificate programs. Our innovative, multidisciplinary curriculum-embedding the latest technology, quality principles and a global perspective throughout-produces graduates able to convert managerial learning into pragmatic business applications.

The College of Business is accredited by the AACSB International (Association to Advance Collegiate Schools of Business), which is the premier accrediting organization for business schools. Thus our programs operate at the highest international standards of excellence while still providing the applied focus for which RIT is famous.

Plan of education
To achieve the educational aims described above, the college has prepared a program that has four components: the liberal arts, the business core, the major and the cooperative work experience.

Representing 50 percent of the total program, the liberal arts component includes courses in humanities, math, science and social science. The student is also expected to display proficiency in both oral and written forms of communication and to choose a humanities or social science concentration or minor. The capstone course of the liberal arts program is a senior seminar in which a subject is explored in depth.

Integrated throughout the business core are themes of global competitiveness, technology management, quality management, customer satisfaction, ethics, diversity, and problem solving. Courses in economics, mathematics, data analysis, computers, and organizational behavior provide the fundamental knowledge and interpersonal analytical skills necessary for the pursuit of advanced study in a major. They also provide the foundation to consider career alternatives.

In the third component, the major, students concentrate their study in a specific business career field.

Majors offered by the college are as follows:

Accounting
Public accounting option (CPA)
Management accounting option (CMA)

Finance

International business
(Dual major, offered daytime only)

Management

Management information systems

Marketing
Photographic Marketing Management
(Majors offered daytime only)

Undeclared business option (first two years)

By building on the liberal arts and business core components, the major will provide mastery of marketable skills.

Students also can pursue an additional business focus area by completing three to five courses in any of the business majors listed. College of Business advisers are available to assist students in choosing these courses.

The final component, cooperative work experience, offers the chance to apply and question what has been learned in the classroom. These hands-on, paid work opportunities occur in the last two years so that a student will have prerequisite academic preparation to contribute to the work place.

The exciting and challenging programs in the college provide a unique level of competence as well as a foundation for continuous intellectual and career growth.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td>Co-op</td>
</tr>
<tr>
<td>4</td>
<td>Co-op</td>
<td>RIT</td>
<td>RIT</td>
<td>—</td>
</tr>
</tbody>
</table>

Typical cooperative education plan-College of Business *
* Co-op quarters will vary depending on major and educational preparation

Cooperative education

Cooperative education is an integral part of the program. Students obtain practical work experience in an area related to their chosen field of interest. This work experience is part of the student's career exploration and provides practical experience related to the student's course work. This experience should help the student develop a greater insight into his or her chosen field and provide a record of practical experience that may increase the student's opportunities for placement and more rapid career advancement upon graduation.

All College of Business students are required to complete two successful cooperative work experiences. These "work blocks" take place during the junior or senior year. While RIT and the College of Business cannot guarantee anyone cooperative employment, RIT's Office of Cooperative Education and Career Services is available to assist students in their job search efforts.
Advising
The College of Business is committed to providing advising services throughout a student’s academic program. In its Student Services Office, all students are assured administrative support to effectively deal with registration, records and scheduling. In addition, the administrative staff is prepared to provide students with information about other support areas within RIT such as career and personal counseling. Students also are assigned an individual faculty adviser. Faculty advisers are an integral part of the student’s advising network and are available for questions about courses and scheduling, as well as for cooperative education assessment and placement.

Transfer programs
The College of Business has, for many years, integrated transfer students into its baccalaureate degree programs. Students who have earned an associate degree in a business program prior to enrollment at RIT may normally expect to complete the requirements for the BS degree in two years, which includes six academic quarters and two required quarters of cooperative work experience.

In every instance, it is the policy of the college to recognize as fully as possible the past academic accomplishments of each student.

Part-time studies
The college offers evening classes for students who wish to pursue a baccalaureate degree in accounting, finance, management, management information systems and marketing.

RIT’s Center for Multidisciplinary Studies offers lower-division business courses for those students who are just beginning their college studies and who are interested in pursuing an associate degree. Upon successful completion of the associate degree, students may transfer to the College of Business.

Students who wish to pursue part-time studies during the day have the option of selecting one of the following baccalaureate degree programs: accounting, finance, international business, management, management information systems, marketing, and photographic marketing management.

MIS Certificate
The College of Business offers an upper division certificate in management information systems called Web systems development. This certificate program is seven courses in length and is designed to give students an understanding of the hardware, software, and programming “behind the scenes” of an Internet or Intranet system. This certificate can be completed on a day or evening basis and the courses can be completed in one year. The certificate is ideal for those students wishing to pursue a new or secondary interest area.

Resources
The College of Business is housed in the Max Lowenthal Building. In addition to modern classrooms, facilities include time-sharing terminals on line with RIT’s extensive computer systems and excellent software support. The college has two state-of-the-art personal computer labs.

The College of Business study area, affectionately called the “pit,” is now wireless, allowing students to conduct meetings, do homework, or peruse the Internet with the convenience of wireless access.

Business students especially benefit from RIT’s Wallace Library and its extensive collection of business texts, periodicals and references.

Accreditation
RIT is accredited by the nationally recognized Middle States Association of Colleges and Schools and by the Association to Advance Collegiate Schools of Business (AACSB International), a professional accreditation held by approximately 359 of the 1,100 undergraduate business programs in the United States.

Professional affiliations
The public accounting curriculum of the College of Business is registered with the New York State Education Department, and graduates meet the educational requirements for candidacy for the Certified Public Accountant (CPA) examination.

The college’s Center for Production and Inventory Management is affiliated with the American Production and Inventory Control Society (APICS) and operates an international information service for APICS.

Membership in professional organizations contributes to the quality of the college’s programs.

Graduate programs
The College of Business offers the master of business administration degree, the master of science degree in finance, and the master of science degree in international business. The College of Business and the College of Engineering offer a joint master of science degree in manufacturing management and leadership and a master of science degree in product development. An executive master of business administration is also offered. Most programs are available on a full- or part-time basis. The programs are professional in nature and prepare the student in all aspects of business management as well as offering a concentration in a field of specialization. Details are contained in the Graduate Bulletin, available from the Graduate Enrollment Services Office.

Undergraduate business students may want to consider the 1+1 program or the dual admit program, which allow completion of both a BS and MBA in five years. For more information, contact the College of Business graduate programs at 5X5-175-6221.
Honors Program
Students who demonstrate a high level of achievement at the high school level may be invited to join the College of Business Honors Program. These students will have the opportunity to participate in honors coursework throughout their program of study, experiential learning activities under the guidance of a faculty mentor. Honors students will be selected during the admissions process.

Study Abroad
An international experience can be an important part of your education and add to your resume. RIT's study abroad office offers a variety of opportunities for students in places such as England, Germany, Croatia, and more. Students should consult with their academic advisor to determine if a study abroad program fits their program and career choice.

The Core Curriculum
All students in the College of Business are required to take the business core courses described below (and later displayed in the sample four-year program charts). These courses provide students an understanding of all facets of business and serve as a foundation for advanced study in a specific area of interest.

Business core courses*
- Algebra for Management Science
- Calculus for Management Science
- Business Software Applications
- Economics I (Macro)
- Economics II (Micro)
- Financial Accounting
- Managerial Accounting
- Data Analysis
- Management Science
- Global Business: An Introduction
- Principles of Marketing
- Organizational Behavior
- Corporate Finance
- Operations Management
- Strategy and Policy
- The World of Business
- Survey of MIS
- Other Business Core Courses

* Core varies by major. See program outlines on following pages.

Additional requirements
- 2 laboratory science courses
- 7 lower-division liberal arts courses
- 6 upper-division liberal arts courses (combination of electives, concentration or minor)
- Senior Seminar
- 2 quarters cooperative education
- Proof of writing competency
- Physical education and a wellness course
- First-Year Experience

Accounting
The accounting major provides fundamental theory and practice in the required accounting core. Beyond this core, students choose an option that best fits their career interests.

Students wishing to become certified public accountants must choose the public accounting option and complete each course prescribed in this program. The program is registered by the New York State Board for Public Accountancy, and the prescribed course work satisfies the state's CPA examination educational requirements. Candidates must have earned at least a “C” grade point average in their accounting courses to be admitted to the CPA exam.

The management accounting option allows more flexibility in choice of courses. This flexibility permits students to tailor their program to meet the diverse opportunities for accounting graduates in industrial, commercial and municipal organizations. Completion of studies in this program prepares students to sit for the Certified Management Accountant examination, administered by the Institute of Management Accountants. Students should consult with an adviser before choosing electives in this option.

Accounting, BS degree, typical course sequence (CPA option)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Experience</td>
<td>1105-048</td>
</tr>
<tr>
<td>The World of Business</td>
<td>0102-250</td>
</tr>
<tr>
<td>Principles of Economics I & II</td>
<td>0511-301,401</td>
</tr>
<tr>
<td>Calculus for Management Science</td>
<td>1016-226</td>
</tr>
<tr>
<td>Data Analysis I</td>
<td>1016-319</td>
</tr>
<tr>
<td>Effective Communications</td>
<td>0102-225</td>
</tr>
<tr>
<td>Liberal Arts (lower-level core) *</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts</td>
<td></td>
</tr>
<tr>
<td>Physical Education †</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Software Applications</td>
<td>0112-270</td>
</tr>
<tr>
<td>Survey of MIS</td>
<td>0112-315</td>
</tr>
<tr>
<td>Data Analysis II</td>
<td>1016-320</td>
</tr>
<tr>
<td>Data Analysis II Lab</td>
<td>1016-380</td>
</tr>
<tr>
<td>Financial Accounting</td>
<td>0101-301</td>
</tr>
<tr>
<td>Legal Environment of Business</td>
<td>0101-319</td>
</tr>
<tr>
<td>Business Law</td>
<td>0101-320</td>
</tr>
<tr>
<td>Global Business: An Introduction</td>
<td>0102-360</td>
</tr>
<tr>
<td>Principles of Marketing</td>
<td>0105-363</td>
</tr>
<tr>
<td>Management Science</td>
<td>0106-334</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration elective or minor) *</td>
<td></td>
</tr>
<tr>
<td>Completion of College Writing Competency Requirement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Behavior</td>
<td>0102-430</td>
</tr>
<tr>
<td>Financial Reporting & Analysis I, II</td>
<td>0101-408, 409</td>
</tr>
<tr>
<td>Cost & Managerial Accounting</td>
<td>0101-431</td>
</tr>
<tr>
<td>Tax Accounting I, II</td>
<td>0101-522,523</td>
</tr>
<tr>
<td>Corporate Finance</td>
<td>0104-441</td>
</tr>
<tr>
<td>Managing Corporate Assets & Liabilities</td>
<td>0104-452</td>
</tr>
<tr>
<td>Operations Management</td>
<td>0106-401</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration elective or minor) *</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education (2 quarters required; must complete within third and fourth years)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy & Policy</td>
<td>0102-551</td>
</tr>
<tr>
<td>Auditing</td>
<td>0101-530</td>
</tr>
<tr>
<td>Advanced Accounting</td>
<td>0101-540</td>
</tr>
<tr>
<td>Seminar: Computer Applications in Accounting</td>
<td>0101-554</td>
</tr>
<tr>
<td>Financial Accounting & Reporting Issues</td>
<td>0101-550</td>
</tr>
<tr>
<td>Liberal Arts/Science Elective</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td></td>
</tr>
<tr>
<td>Senior Seminar</td>
<td>0520-501*</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 180

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education
Accounting Core
- Financial Reporting and Analysis I and II
- Cost and Managerial Accounting
- Business Law
- Advanced Accounting
- Analytical Skills in Accounting
- Financial Accounting and Reporting Issues
- Managing Corporate Assets and Liabilities
- Tax Accounting I
- Management Accounting Option
- Free Electives, 10 credits
- Liberal Arts/Science Elective, 4 credits

Public Accounting Option
- Tax Accounting II
- Auditing
- Free Electives, 2 credits
- Liberal Arts/Science Elective, 4 credits

Finance
The finance major prepares students for management positions in financial, commercial, industrial and governmental organizations. Students are taught the principles of financial decision making and given an understanding of the economic, legal and financial environment in which they must operate.

Finance, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
<th>First-Year Experience 1105-048</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The World of Business 0102-250</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Principles of Economics I & II 0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Effective Communications 0102-225</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (lower-level core) *</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Laboratory Science</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Physical Education t</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
<th>Business Software Applications 0112-270</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survey of MIS 0112-315</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Data Analysis II 1016-320</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Data Analysis II Lab 1016-380</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Financial & Managerial Accounting 0101-301,302</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Legal Environment of Business 0101-319</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Global Business: An Introduction 0102-360</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (lower-division core) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Completion of College Writing Competency Requirement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
<th>Organizational Behavior 0102-430</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corporate Finance 0104-441</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Managing Corporate Assets & Liabilities 0104-452</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Operations: Management 0106-401</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Cooperative Education (2 quarters required; must complete within third and fourth years)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
<th>Strategy & Policy 0102-551</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finance Electives</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts/Science Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Senior Seminar 0520.501*</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total Quarter Credit Hours | 180 |

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education

Finance Electives (minimum 3 of 4 must be 0104 courses)
- Finance in a Global Environment 0104-504
- Advanced Corporate Financial Planning and Analysis 0104-505
- Management of Financial Institutions 0104-510
- Seminar in Finance and Analysis I 0101-408
- Cost and Managerial Accounting 0101-431
Management

The management major prepares students for management and specialist careers in a variety of enterprises and organizations. Students examine issues of motivation, leadership, job design, group dynamics, and organization strategy. Many management majors are budding entrepreneurs with plans to start their own businesses whereas others plan to work in established organizations.

Management, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Experience 1105-048</td>
<td>0</td>
</tr>
<tr>
<td>The World of Business 1002-250</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics I & II 0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td>Algebra, Calculus for Management Science 1016-225, 226</td>
<td>8</td>
</tr>
<tr>
<td>Effective Communications 0102-225</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>16</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Software Applications 0112-270</td>
<td>2</td>
</tr>
<tr>
<td>Survey of MIS 0112-315</td>
<td>4</td>
</tr>
<tr>
<td>Financial & Managerial Accounting 1101-301,302</td>
<td>8</td>
</tr>
<tr>
<td>Data Analysis I 3016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I Lab 1016-379</td>
<td>2</td>
</tr>
<tr>
<td>Global Business: An Introduction 0102-360</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td>Management Science 0106-334</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor)</td>
<td>8</td>
</tr>
<tr>
<td>Completion of College Writing Competency Requirement</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td>Human Resources Management 0102-455</td>
<td>4</td>
</tr>
<tr>
<td>Operations Management 0106-401</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Final 0104-441</td>
<td>4</td>
</tr>
<tr>
<td>Leadership in Organizations 0102-460</td>
<td>4</td>
</tr>
<tr>
<td>Entrepreneurship 0102-490</td>
<td>4</td>
</tr>
<tr>
<td>Management Elective</td>
<td>4</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor)</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters required; must complete within third and fourth years)</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>8</td>
</tr>
<tr>
<td>Management Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts/Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Business, Government & Society 0102-507</td>
<td>4</td>
</tr>
<tr>
<td>Strategy & Policy 0102-551</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>8</td>
</tr>
<tr>
<td>Senior Seminar 0520-501*</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours | 180

* See page 10 for liberal arts requirements.
† See page 21 for policy on physical education.

Management Information Systems

The management information systems major prepares students for careers involving the development and management of computer-based information systems that support business activities. The curriculum provides students with a thorough understanding of the fundamentals of business, networks and computer technology. Students learn to design business processes and information processing systems that support the activities of organizations. They are introduced to the tools available for the analysis, design, and implementation of computer-based and manual information systems. As a result, they are able to design practical, cost-effective systems that help meet an organization's need for information. Major career directions for graduates of this program include network design and administration, applications programming, systems analysis and design, Web site development and administration, and the management of information systems design projects.

Management Information Systems, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Experience 1105-048</td>
<td>0</td>
</tr>
<tr>
<td>The World of Business 1002-250</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics I & II 0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td>Effective Communications 0102-225</td>
<td>2</td>
</tr>
<tr>
<td>Algebra, Calculus for Management Science 1016-225,226</td>
<td>8</td>
</tr>
<tr>
<td>Business Programming in Visual Basic 0112-330</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Software Applications 0112-270</td>
<td>2</td>
</tr>
<tr>
<td>Survey of MIS 0112-315</td>
<td>4</td>
</tr>
<tr>
<td>Financial & Managerial Accounting 1101-301,302</td>
<td>8</td>
</tr>
<tr>
<td>Data Analysis I 3016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I Lab 1016-379</td>
<td>2</td>
</tr>
<tr>
<td>Global Business: An Introduction 0102-360</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td>Management Science 0106-334</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>8</td>
</tr>
<tr>
<td>Completion of College Writing Competency Requirement</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td>Human Resources Management 0102-455</td>
<td>4</td>
</tr>
<tr>
<td>Operations Management 0106-401</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Final 0104-441</td>
<td>4</td>
</tr>
<tr>
<td>Leadership in Organizations 0102-460</td>
<td>4</td>
</tr>
<tr>
<td>Entrepreneurship 0102-490</td>
<td>4</td>
</tr>
<tr>
<td>Management Elective</td>
<td>4</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor)</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters required; must complete within third and fourth years)</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td>8</td>
</tr>
<tr>
<td>Management Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts/Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Business, Government & Society 0102-507</td>
<td>4</td>
</tr>
<tr>
<td>Strategy & Policy 0102-551</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>8</td>
</tr>
<tr>
<td>Senior Seminar 0520-501*</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours | 180

* See page 20 for liberal arts requirements.
† See page 21 for policy on physical education.
Management Information Systems Certificate Program

The College of Business offers an upper division certificate in Web systems development. This certificate program is seven courses in length and is designed to give students an understanding of the hardware, software, and programming "behind the scenes" of an Internet or Intranet system. This certificate can be completed on a day or part-time, evening basis and the courses can be completed in one year. The certificate is ideal for those students wishing to pursue a new or secondary interest area. Job possibilities include Web site manager/developer, or network applications specialist.

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Computer Applications 0112-300</td>
</tr>
<tr>
<td>Business Programming in Visual Basic 0112-330</td>
</tr>
<tr>
<td>Visual Basic with Graphical User Interface (GUI) Design 0112-335</td>
</tr>
<tr>
<td>MIS Hardware & Operating Systems 0112-360</td>
</tr>
<tr>
<td>Network Technology 0112-380</td>
</tr>
<tr>
<td>Network Applications Development 0112-430</td>
</tr>
<tr>
<td>Database Management Systems 0112-340</td>
</tr>
<tr>
<td>Certificate Total</td>
</tr>
</tbody>
</table>

Marketing

The marketing major prepares students for marketing management and sales positions. As marketing majors, students acquire knowledge of markets, marketing and consumer behavior through a combination of academic education and cooperative field education. Upon graduation, marketing majors are prepared to accept positions in career areas such as professional selling, advertising, marketing research, Internet marketing, and e-commerce.

With a marketing background, the student will find a wide variety of employment opportunities that center on understanding customer requirements and satisfaction, the main focus of any business. To develop this focus, the marketing curriculum provides students with the tools needed to analyze markets and solve marketing problems. The emphasis is on specific marketing functions such as: production development and management, marketing communications, pricing and distribution, and channel management.

Marketing, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Experience 1105-048</td>
<td>0</td>
</tr>
<tr>
<td>The World of Business 0102-250</td>
<td>4</td>
</tr>
<tr>
<td>Effective Communications 0102-225</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Economics I & II 0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td>Algebra, Calculus for Management Science 1016-225,226</td>
<td>8</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I Lab 1016-379</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core)</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education</td>
<td>8</td>
</tr>
<tr>
<td>Certificate Total</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

Business Software Applications 0112-270	2
Financial & Managerial Accounting 0101-301,302	8
Survey of MIS 0712-315	4
Global Business: An Introduction 0102-360	4
Principles of Marketing 0105-363	4
Management Science 0106-334	4
Liberal Arts (lower-division core)	12
Liberal Arts (upper-division concentration, elective or minor)	8
Free Elective	
Completion of College Writing Competency Requirement	

Third Year

Organizational Behavior 0102-430	4
Buyer Behavior 0105-505	4
Operations Management 0106-401	4
Corporate Finance 0104-441	4
Professional Selling 0105-559	4
Marketing Electives	
Liberal Arts (upper-division concentration, elective or minor)	16
Liberal Arts/Science Elective	
Cooperative Education (2 quarters required; must complete within third and fourth years)	

Fourth Year

Business, Government & Society 0102-507	4
Strategy & Policy 0102-551	4
Marketing Research 0105-551	4
Marketing Management 0105-550	4
Free Electives	12
Senior Seminar 0520.501*	2
Total Quarter Credit Hours	180

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

International Business

Designed to reflect the fast-globalization of marketing, the international business (IB) major has a complementary core major in one of the following functional streams: accounting, finance, management, management information systems, and marketing.

Students in the IB major develop the business and liberal arts foundations necessary to understand business and political and cultural diversity. Proficiency in a foreign language is an integral part of the program. Students are required to complete a college-level I-VI sequence of one chosen language. Students with proficiency at the college level may start the language sequence where appropriate. In most cases, three of the six courses will be used to fulfill part of the upper-level liberal arts requirement. In some cases, program credits will exceed the minimum required amount. The cooperative education requirement for the international business student may be satisfied through foreign work experience, international experience within a domestic corporation, or study abroad.

After obtaining valid on-the-job experience, graduates will be well equipped for positions such as international market managers, market entry strategy consultants, regional business analysts, etcetera.
International business, BS degree, typical course sequence*

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Experience 1105-048</td>
<td>0</td>
</tr>
<tr>
<td>The World of Business 0102-250</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics I & II 0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td>Algebra, Calculus for Management Science 1016-225,226</td>
<td>8</td>
</tr>
<tr>
<td>Effective Communications 0102-225</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>8</td>
</tr>
<tr>
<td>Language Levels I, II, III †</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Software Applications 0112-270</td>
<td>2</td>
</tr>
<tr>
<td>Survey of MIS 0115-315</td>
<td>4</td>
</tr>
<tr>
<td>Financial & Managerial Accounting 0101-301,302</td>
<td>8</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I Lab 1016-379</td>
<td>2</td>
</tr>
<tr>
<td>Global Business: An Introduction 0102-360</td>
<td>4</td>
</tr>
<tr>
<td>Management Science 0106-334</td>
<td>4</td>
</tr>
<tr>
<td>Legal Environment of Business 0101-319</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>8</td>
</tr>
<tr>
<td>Language Levels IV, V, VI</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td>Operations Management 0106-401</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Finance 0104-441</td>
<td>4</td>
</tr>
<tr>
<td>International Business Co-major course</td>
<td>8</td>
</tr>
<tr>
<td>Strategy in the Global Environment 0102-465</td>
<td>4</td>
</tr>
<tr>
<td>Co-major course</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>16</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters required; must fall within third and fourth years)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy & Policy 0102-551</td>
<td>4</td>
</tr>
<tr>
<td>International Business Co-major course</td>
<td>4</td>
</tr>
<tr>
<td>Strategy in the Global Environment 0102-465</td>
<td>4</td>
</tr>
<tr>
<td>Co-major course</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration or elective) *</td>
<td>12</td>
</tr>
<tr>
<td>Senior Seminar 0520-501*</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total Quarter Credit Hours | 184 |

* See page 10 for liberal arts requirements.
† Language credit may be used as liberal arts upper-division credit.
‡ See page 11 for policy on physical education.

Photographic Marketing Management

The program in photographic marketing management is an interdisciplinary major with requirements in marketing, imaging, graphic arts, information systems, and management. The program provides an overall assessment of the current and future state of the graphic communications industry. Students will focus on basic skills such as: image conversion from analog to digital, digital output in all forms, basic skills of photography, and basic understanding of digital output using ink, toner, and light on paper as well as the interaction of substrates and various printing technologies. This program is designed to meet the graphic imaging industry need for broadly educated marketing and management positions. This joint program between the College of Business and the College of Imaging Arts and Science is unique to RIT.

Photographic marketing management, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Experience 1105-048</td>
<td>0</td>
</tr>
<tr>
<td>The World of Business 0102-250</td>
<td>4</td>
</tr>
<tr>
<td>Effective Communications 0102-225</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Economics I & II 0511-301,401</td>
<td>8</td>
</tr>
<tr>
<td>Algebra, Calculus for Management Science 1016-225,226</td>
<td>8</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I Lab 1016-379</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>8</td>
</tr>
<tr>
<td>Language Levels I, II, III †</td>
<td>16</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Software Applications 0112-270</td>
<td>2</td>
</tr>
<tr>
<td>Financial & Managerial Accounting 0101-301,302</td>
<td>8</td>
</tr>
<tr>
<td>Survey of MIS 0115-315</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Marketing 0105-363</td>
<td>4</td>
</tr>
<tr>
<td>Management Science 0106-334</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Graphic Communications Industry 2081-254</td>
<td>3</td>
</tr>
<tr>
<td>Digital Printing & Publishing 2082-401</td>
<td>4</td>
</tr>
<tr>
<td>Digital Image Capture 2082-221</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (lower-division core) *</td>
<td>12</td>
</tr>
<tr>
<td>Completion of College Writing Competency Requirement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td>Buyer Behavior & Satisfaction 0105-505</td>
<td>4</td>
</tr>
<tr>
<td>or Marketing Research 0105-551</td>
<td>4</td>
</tr>
<tr>
<td>Professional Selling 0105-559</td>
<td>4</td>
</tr>
<tr>
<td>Operations Management 0106-401</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Finance 0104-441</td>
<td>4</td>
</tr>
<tr>
<td>Internet Marketing 0105-440</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>20</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters required; must fall Co-op within third and fourth years)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business, Government & Society 0102-507</td>
<td>4</td>
</tr>
<tr>
<td>Strategy & Policy 0102-551</td>
<td>4</td>
</tr>
<tr>
<td>Web Design Using Photography 2061-361</td>
<td>4</td>
</tr>
<tr>
<td>Choose two of the following: Digital Workflow 2002-208</td>
<td>4</td>
</tr>
<tr>
<td>Applied Typography & Design 2082-211</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Photography for Non-photo Majors 2067-264</td>
<td>4</td>
</tr>
<tr>
<td>Industry Issues & Trends 2082-501</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Marketing Management Problems 0105-550</td>
<td>4</td>
</tr>
<tr>
<td>Marketing/Management Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (upper-division concentration, elective or minor) *</td>
<td>4</td>
</tr>
<tr>
<td>Senior Seminar 0520-501*</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total Quarter Credit Hours | 180 |

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
The B. Thomas Golisano College of Computing and Information Sciences (GCCIS) includes the computer science, information technology, and software engineering departments and the Laboratory for Applied Computing. The departments offer the most current computing technology as well as extensive laboratory facilities. The Laboratory for Applied Computing offers a common meeting ground where students from various disciplines can work on cutting-edge projects supplied by industrial partners.

GCCIS is the newest college at RIT, having been formed in the summer of 2001. It focuses on the computing disciplines in the broadest sense. Interdepartmental and inter-college cooperation are basic to its function. The college has more than 60 faculty, 3,000 students, more than 20 technical and support staff, and extensive facilities dedicated to teaching and research and development.

The computer science (CS) and information technology (IT) departments have degree programs at the associate, baccalaureate, and master’s levels. Both offer evening courses that allow these degrees to be earned full or part time. Software engineering (SE) offers the bachelor of science degree. All departments require an extensive cooperative education experience.

Faculty
Any academic department or program can be only as strong as its faculty. In GCCIS the faculty is dedicated to teaching, applied research, and professional development, with an emphasis on student involvement and career preparation. Most have significant industrial experience in addition to outstanding academic credentials. Faculty members provide leadership in implementing innovative teaching techniques and in anticipating and meeting the needs of students and industrial partners.

Resources
The highly technical nature of the GCCIS programs demand excellent facilities and equipment. Each department has extensive laboratories dedicated to undergraduate education. These contain powerful PCs and workstations and appropriate, up-to-date software. The labs are available to students 1618 hours a day except when being used for designated course sections. Dial-up, network, and Web access is also provided, insuring that our students have the tools necessary to complete their assignments and projects.

To provide space for this equipment, a 25,000-square-foot building was erected in 1999 and is currently being expanded by 90,000 square feet. This allows for general use as well as specialized labs, such as home networking and computer vision. When the new building is completed, most of the college will be housed in it and a contiguous building that contains the Laboratory for Applied Computing. Their proximity will encourage joint projects as well as interaction among students in different programs.

Advising
GCCIS is committed to providing academic advising and career counseling. Students have access to the program coordinator or department chair of the program they are in, a faculty adviser, the academic advising office in Liberal Arts, and program coordinators from the Office of Cooperative Education and Career Services as well as other assistance available in the department offices. In addition, the department office staff will provide support for registration and help with records and scheduling. Part-time and evening students can arrange these services at night by appointment.

Cooperative education
All programs in the GCCIS have an extensive cooperative education requirement. Co-op generally starts after completing two years of the program and ends so that the last quarter attended is in residence. Co-ops may be one or two quarters in length and at any company that satisfies certain basic requirements.

Transfer and part-time students
All departments encourage transfer students. Students with an approved associate degree will obtain full junior standing and are eligible to graduate from RIT in two years plus the required co-op. Students with a less appropriate academic background may have to complete additional course work. Each transfer student (with or without a degree) is considered individually, and an appropriate course of study is designed for him or her.

The AS/AAS and BS degrees in CS and IT may be taken part time in the evening.
Computer Science

Margaret M. Reek, Acting Chair

The department of computer science offers programs leading to associate, bachelor and master of science degrees in computer science.

At the undergraduate level, the program is offered to high school and two-year college graduates, as first-year and upper-division students, respectively. In addition, the computer science program is offered to part-time students in an evening format.

The demands of industry and government require college graduates to have a mastery of both the fundamentals and the applied aspects of their profession. To meet this requirement, two applied educational experiences are woven into the program. Each student is required to complete a well-defined cooperative educational experience as well as an extensive set of “hands-on” laboratory experiences. The laboratories that support these experiences are limited to 16 students each and provide an effective means of student-faculty interaction.

Facilities dedicated exclusively to the support of undergraduate computer science (in addition to those provided by Information and Technology Services, listed in the Counseling and Academic Services section of this catalog) include:

- **Five teaching laboratories**, each with 16 SUN Ultra10 workstations to support formal, closed laboratory instruction, emphasized in the first two years of the curriculum;
- **Open computing laboratory** with 26 SUN Ultra10 workstations to support open computing and occasional formal, closed laboratory instruction for large groups;
- **Networking and distributing systems laboratory** focusing on the study of data communications and networking strategies utilizing workstations and file servers as networking tools;
- **Undergraduate computer science** has focused on the use of the UNIX operating system because of its applicability to software development. All of the above facilities support UNIX.

Computer science students also have access to the high-end PC and Macintosh machines in the information technology labs.

All computer science and information technology facilities are connected by a high-speed Ethernet network through which students also may access the Internet. Students have remote access to our computers and networks through direct network connections from the residence halls and through the Internet.

Bachelor of science degree program

The bachelor of science program, which is fully accredited by the Computing Accreditation Commission of ABET, attracts students who are interested in both the mathematical theory and technical applications of computer science. Most employers look for students who not only are good computer scientists, but also understand the tools and techniques of mathematics, science and industry and are able to communicate effectively. The BS program, then, is for the mathematically adept student who wishes to become a computing professional with knowledge of relevant applications areas.

The program also is attractive to students transferring to RIT with an associate degree in computer science or a non-computer science concentration in another discipline.

Cooperative education

All students in undergraduate computer science are required to obtain credit for one year (four quarters) of cooperative education prior to graduation. To help ensure that the goals of integrated academic and experiential education are attained, students must attend classes at RIT for at least one quarter after their final co-op block.

Combined BS/MS degree program

Computer science also offers a combined BS / MS program, which gives students the opportunity to receive both degrees in six years, including a year of co-op. A student accepted into this program will be able to take three graduate courses (12 credits) and apply them to both the BS and MS, reducing the total course work required for the two degrees. To be accepted into this program, a student must be actively pursuing a BS degree in computer science at RIT, be eligible for co-op, and have a grade point average of at least 3.3 overall and in the major.

An undergraduate computer science student is required to take a core of computer science courses that provides a solid foundation for advanced work. Building on this base, students can explore a variety of specializations in their junior and senior years, choosing one of eight specialty areas. In addition, students have the opportunity to develop a broad appreciation of computer applications and the effects of computers on society via computer science electives, liberal arts courses and a non-computer science concentration in another discipline.

Computer science covers a wide spectrum of the field of computing. A computer scientist can specialize in areas such as data communications and networking, software engineering, parallel computation, digital systems design and computer architecture, systems software, computing theory, computer graphics and artificial intelligence. It is important to note that programming is a necessary tool but is only a part of the vast field of computer science.
Computer science, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science 1, 2, 3</td>
<td>4003-231,232,233</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252,253</td>
</tr>
<tr>
<td>University Physics I, II & Lab</td>
<td>1017-311,312,375,376</td>
</tr>
<tr>
<td>Chemical Principles I, II & Lab</td>
<td>1011-211,212,205,206</td>
</tr>
<tr>
<td>Writing & Literature I, II</td>
<td>0504-225,226</td>
</tr>
<tr>
<td>Liberal Arts * [1]</td>
<td></td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science 4</td>
<td>4003-334</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>4010-361</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>4003-352</td>
</tr>
<tr>
<td>Professional Communication</td>
<td>4003-341</td>
</tr>
<tr>
<td>University Physics III & Lab</td>
<td>1017-313,377</td>
</tr>
<tr>
<td>Organic Chemistry & Lab</td>
<td>1011-213, 207</td>
</tr>
<tr>
<td>General Biology & Lab</td>
<td>4003-201, 202, 203, 205, 206, 207</td>
</tr>
<tr>
<td>Discrete Mathematics I, II</td>
<td>1016-265, 366</td>
</tr>
<tr>
<td>Probability & Statistics</td>
<td>1016-351</td>
</tr>
<tr>
<td>Liberal Arts * [1]</td>
<td></td>
</tr>
<tr>
<td>Free Elective [5]</td>
<td></td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td></td>
</tr>
</tbody>
</table>

Third, Fourth, Fifth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computer Science Theory</td>
<td>4003-380</td>
</tr>
<tr>
<td>Operating Systems I</td>
<td>4003-440</td>
</tr>
<tr>
<td>Data Communications & Networks I</td>
<td>4003-420</td>
</tr>
<tr>
<td>Programming Language Concepts</td>
<td>4003-450</td>
</tr>
<tr>
<td>Computer Science Related Electives [2]</td>
<td></td>
</tr>
<tr>
<td>Computer Science Electives [3]</td>
<td></td>
</tr>
<tr>
<td>Non-CS Concentration [4]</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts * [5]</td>
<td></td>
</tr>
<tr>
<td>Science Electives</td>
<td></td>
</tr>
<tr>
<td>Free Elective [5]</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education (4 quarters required)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>192-195</td>
</tr>
</tbody>
</table>

[1] Students electing physics or chemistry should take 12 credits of liberal arts the year and 8 the second. Those choosing biology should take 20 credits of liberal arts the first year and none the second year.

[2] The computer science related elective requirement requires that at least two courses are related according to department definitions. The general areas from which related electives may be selected are: systems programming, data communications, and artificial intelligence. The computer science undergraduate advising handbook has a complete list.

[3] Computer science and software engineering courses may be taken as computer science electives except as noted in the Course Descriptions portion of this bulletin.

[4] A non-CS concentration consists of a set of coherent courses giving the student significant expertise in an area other than computer science. Typical concentrations include mathematics, engineering technology, and business.

[5] Social Science Electives 8

Liberal Arts

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing & Literature I, II</td>
<td>0504-225, 226</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td></td>
</tr>
<tr>
<td>Social Science Electives</td>
<td></td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>94-97</td>
</tr>
</tbody>
</table>

Computer science, AS degree, evening program, typical course work

COMPUTER SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science 1, 2, 3, 4</td>
<td>4003-231,232,233,334</td>
</tr>
<tr>
<td>Professional Communication</td>
<td>4003-341</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>4010-361</td>
</tr>
<tr>
<td>Intro. to Digital Design</td>
<td>4003-351</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>4003-352</td>
</tr>
</tbody>
</table>

MATHEMATICS & SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>1016-351</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td>1016-265, 366</td>
</tr>
<tr>
<td>Physics I, II, III</td>
<td>1017-311, 312, 313, 375, 376, 377</td>
</tr>
<tr>
<td>or Chemistry I, II, III</td>
<td>1011-211, 212, 213, 205, 206, 207</td>
</tr>
<tr>
<td>or Biology I, II, III</td>
<td>1001-201, 202, 203, 205, 206, 207</td>
</tr>
</tbody>
</table>

Liberal Arts

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing & Literature I, II</td>
<td>0504-225, 226</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td></td>
</tr>
<tr>
<td>Social Science Electives</td>
<td></td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>94-97</td>
</tr>
</tbody>
</table>

Computer science, BS degree, evening program, typical course work

COMPUTER SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science 1, 2, 3, 4</td>
<td>4003-231,232,233,334</td>
</tr>
<tr>
<td>Professional Communication</td>
<td>4003-341</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>4010-361</td>
</tr>
<tr>
<td>Intro. to Digital Design</td>
<td>4003-351</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>4003-352</td>
</tr>
</tbody>
</table>

MATHEMATICS & SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>1016-351</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td>1016-265, 366</td>
</tr>
<tr>
<td>Statistics</td>
<td>1016-351</td>
</tr>
<tr>
<td>Physics I, II, III</td>
<td>1017-311, 312, 313, 375, 376, 377</td>
</tr>
<tr>
<td>or Chemistry I, II, III</td>
<td>1011-211, 212, 213, 205, 206, 207</td>
</tr>
<tr>
<td>or Biology I, II, III</td>
<td>1001-201, 202, 203, 205, 206, 207</td>
</tr>
</tbody>
</table>

Liberal Arts

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing & Literature I, II</td>
<td>0504-225, 226</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td></td>
</tr>
<tr>
<td>Social Science Electives</td>
<td></td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>94-97</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td>Non-CS Concentration [4]</td>
<td></td>
</tr>
<tr>
<td>Co-op Work Experience (4 quarters)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>192-195</td>
</tr>
</tbody>
</table>

[1] Students electing physics or chemistry should take 12 credits of liberal arts the year and 8 the second. Those choosing biology should take 20 credits of liberal arts the first year and none the second year.

[2] The computer science related elective requirement requires that at least two courses are related according to department definitions. The general areas from which related electives may be selected are systems programming, data communications, and parallel computing digital systems design, computer science theory, software engineering computer graphics, and artificial intelligence. The computer science undergraduate advising handbook has a complete list.

[3] Computer science and software engineering courses may be taken as computer science electives except as noted in the Course Descriptions portion of this bulletin.

[4] A non-CS concentration consists of a set of coherent courses giving the student significant expertise in an area other than computer science. Typical concentrations include mathematics, engineering technology, and business.

[5] Social Science Electives 8

* See page 10 for liberal arts requirements.
Software Engineering
J. Fernando Naveda, Chair

As software becomes ever more common in everything from airplanes to appliances, there has been increasing demand for engineering professionals who can develop high-quality, cost-effective software systems. RIT has created a unique program that combines traditional computer science and engineering with specialized course work in software engineering. Graduates of this program receive a bachelor of science degree in software engineering.

Students learn principles, methods, and techniques for the construction of complex and evolving software systems. The program encompasses both technical issues affecting software architecture, design, and implementation, as well as process issues that address project management, planning, quality assurance, and product maintenance. Students are prepared upon graduation for immediate employment and long-term professional growth in software development organizations.

An important component of the curriculum is complementary course work in related disciplines. As with other engineering fields, mathematics and natural science are fundamental. In addition, students must complete four courses in related fields of engineering. Three computer-engineering courses expose students to basic hardware design and computer architecture. A human factors course from industrial engineering introduces students to experimental and analytical techniques for evaluating computer-human interactions. Finally, a three-course sequence in an application domain helps connect software engineering principles to an area in which they are applied.

Software Engineering and Senior Projects
One of the hallmarks of RIT’s engineering program is a senior project sequence that each student completes before graduation. Software engineering students take this two-course sequence during the winter and spring quarter just prior to graduation. The goal of the course is to have seniors synthesize and apply the knowledge and experience they have gained at RIT and on co-op assignments.

Companies and other organizations with challenging technical problems frequently contact software engineering faculty, and in many cases these problems are appropriate for assignment to a senior project team. The following section describes activities that are commonly performed as part of the course.

Winter Quarter: At the start of the winter term, students enrolled in the senior projects course organize themselves into teams based on the number and complexity of the projects available. Assignment of teams to projects is handled in many ways, one of the most popular being “contract bidding.” In this approach, each team bids on one or more projects by outlining the project’s requirement, sketching a conceptual design for the solution, and assessing the risks involved in pursuing the project. On the basis of this work, teams are awarded “contracts” by the project sponsors.

The bulk of the winter quarter is primarily devoted to requirements elicitation and architectural design, but may also include detailed design, prototyping, and even production, depending on the nature of the project. In addition, teams are responsible for organizing their efforts and assigning specific roles to team members, as well as developing a project plan (including scheduled, concrete milestones). Typically the plan evolves along with the project, as teams learn more about the problem and aspects of the solution.

Spring Quarter: While the winter quarter typically addresses strategic issues of requirements, specification, design, and planning, most of spring is devoted to tactical issues of development and deployment. It is during this quarter that the careful planning and disciplined design from the winter quarter bear fruit in the construction, integration, testing, and demonstration of a complete system.

Sponsors: Companies and organizations that have sponsored senior projects include Nortel Networks, IBM Thomas Watson Research, PaeTec, and the RIT Laboratory for Applied Computing.

Laboratories
Students in software engineering have access to specialized computing facilities in the department as well as campus-wide facilities. Furthermore, they can make use of specialized laboratories housed in the departments of computer engineering and computer science. Software engineering freshmen are also encouraged to take advantage of the department’s freshman lab. Operated jointly by the departments of software engineering and computer engineering and staffed by advanced students from both programs, the freshman lab offers our newest students an environment where they can learn from those who have successfully fulfilled most of the academic requirements in software and computer engineering. All of these laboratories are connected to the campus-wide network and to the Internet.
Cooperative education

All students in the software engineering program must complete five quarters of cooperative education prior to graduation. Students typically begin co-op in their third year of study, alternating academic quarters and co-op blocks. To ensure that co-op is integrated with the academic program, students must complete their final co-op block prior to their last academic quarter.

Software engineering, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar</td>
<td>4010-101</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 1.2.3</td>
<td>4003-231,232,233</td>
<td>12</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>College Chemistry I</td>
<td>1011-208</td>
<td>4</td>
</tr>
<tr>
<td>University Physics I, II & Lab</td>
<td>1017-311,312, 375, 376</td>
<td>10</td>
</tr>
<tr>
<td>Writing & Literature I</td>
<td>0504-255</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature II</td>
<td>0504-226</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering of Software Subsystems</td>
<td>4010-362</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science 4</td>
<td>4003-334</td>
<td>4</td>
</tr>
<tr>
<td>Professional Communications</td>
<td>4003-341</td>
<td>4</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>4010-361</td>
<td>4</td>
</tr>
<tr>
<td>Assembly Language Programming</td>
<td>0306-250</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Digital Systems</td>
<td>0306-341</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations</td>
<td>1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Discrete Mathematics I, II</td>
<td>1016-265, 366</td>
<td>8</td>
</tr>
<tr>
<td>University Physics III & Lab</td>
<td>1017-313, 377</td>
<td>5</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third, Fourth, Fifth Years</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Software Architecture</td>
<td>4010-440</td>
<td>4</td>
</tr>
<tr>
<td>Formal Methods of Specification & Design</td>
<td>4010-420</td>
<td>4</td>
</tr>
<tr>
<td>Software Requirements & Specification</td>
<td>4010-465</td>
<td>4</td>
</tr>
<tr>
<td>Software Engineering Project 1, 2</td>
<td>4010-561,562</td>
<td>8</td>
</tr>
<tr>
<td>Software Engineering Electives ‡</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Scientific Programming</td>
<td>4003-318</td>
<td>3</td>
</tr>
<tr>
<td>Programming Language Concepts</td>
<td>4003-450</td>
<td>4</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>0306-550</td>
<td>4</td>
</tr>
<tr>
<td>Human Factors</td>
<td>0303-516</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics</td>
<td>1015-351</td>
<td>4</td>
</tr>
<tr>
<td>Application Domain Electives §</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education (5 quarters required)</td>
<td>Co-op</td>
<td>18</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for physical education policy.
‡ Students must choose from the following six courses:
 Principles of Concurrent Software Systems | 4010-441 |
 Principles of Distributed Software Systems | 4010-442 |
 Principles of Information Systems Design | 4020-443 |
 Software Process & Product Metrics | 4010-450 |
§ Each student must complete a three-course sequence in an application domain related to software engineering. Current domains include electrical engineering, industrial engineering, mechanical engineering, communications and networks, embedded systems, commercial applications, and imaging and publishing technology.

Information Technology

Edith A. Lawson, Chair

We are in the Information Age, but the supply of technically competent professionals is not meeting the demand. The explosive growth of the World Wide Web and its universal acceptance by society has irrevocably changed the computing landscape. For the first time in the history of computing, the typical computer user neither knows nor needs to know very much about how a computer works in order to use it. What these users desperately need, however, is a “user’s advocate” to help them decide which technology is appropriate for their needs and to help them deploy and use that technology.

To effectively address this situation, a new professional has emerged. The information technologist is the user’s advocate. From Web site designers to network administrators to multimedia developers to user support professionals, information technologists are in increasingly high demand.

The role of user’s advocate is diverse and multifaceted. In order to “make things work” for people in today’s (and tomorrow’s) sophisticated computing environments, information technologists need three general computer literacies: 1) facility with current tools and technologies for networking, databases, application development, digital media and electronic publishing; 2) experience with the process of technology deployment in a user community, including needs assessment, design, development, technology transfer and ongoing support; 3) an individual professional focus in some area like inter-networking, multimedia development, training and human performance, programming or technical communication.

Layered over the curriculum are two major themes: the importance of communication skills and the acceptance of multiplatform, distributed computing environments. As important as technological skills clearly are, an information technologist’s communication skills may be even more important in the long run. Specific technologies come and go, but the ability to communicate effectively remains critically important for IT professionals as they focus the technology that they command on real-world problems.

A cooperative education requirement enhances the academic requirements with real-world experience.

Program overview

The program of study in information technology consists of a core of computing courses, followed by advanced study in two concentration areas chosen by the student and approved by his or her academic adviser. The concentrations are intended to educate the student in areas in which he or she intends to work. Redefined concentration areas include data communications and networking, system administration, interactive multimedia design, training and human performance, database implementation and administration, and applications programming. In addition, students can elect to create a special topics sequence for one of their two concentrations. A special topics concentration can include a mix of upper-division IT courses and/or courses outside the IT department in areas like graphic arts, computer animation, telecommunications or computer science.

All of the components of this program, including cooperative education, are uniquely designed to produce an individual of value to industry in the Information Age.
Cooperative education
The BS in information technology requires that students complete three quarters of cooperative education prior to graduation. Students may schedule cooperative education after completion of second-year academic requirements.

A typical schedule might include cooperative education in the summer quarter following the second year and in spring and summer quarters of the third year.

Part-time study
There are two degrees available on a part-time basis in the information technology department—the AAS and the BS in information technology.

Courses in these programs are available both during the day and in the evening to accommodate those who work, regardless of their work schedules. The typical evening student requires approximately 12 quarters to complete all the course requirements for an associate-level degree and approximately 23 quarters for a BS degree (this assumes no previous course work). Students with a strong associate degree may be able to complete the BS degree requirements in 12 quarters.

Information technology, BS degree, full time, typical course sequence

First Year
- Freshman Seminar 4002-201 1
- Intro to Multimedia: Internet & Web 4002-320 4
- Programming for Info Technology I, II, III 4002-217, 218, 219 12
- Interactive Digital Media 4002-330 4
- Computer Concepts & Software Systems 4002-340 4
- Algebra & Trigonometry 1016-204 4
- Discrete Math for Tech I, II 1016-205,206 8
- Liberal Arts * 12
- Lab Science Elective 4

Second Year
- Data Communication & Computer Networks 4002-341 4
- Internetworking Lab 4002-342 4
- Intro to Database & Data Modeling 4002-360 4
- HCI I: Human Factors 4002-425 4
- Data Analysis 1016-319 4
- Liberal Arts * 16
- Lab Science Electives 4
- Professional electives 4

Third/Fourth Year
- Cooperative Education (3 quarters required after year 2) Co-op
- HCI 2: Interface Design and Development 4002-426 4
- Technology Transfer 4002-460 4
- Needs Assessment 4002-455 4
- IT Concentration Courses 1 24
- Liberal Arts * 26
- Professional Electives 8
- General Education Electives 12
- IT Senior Seminar 4002-595 1

Total Quarter Credit Hours 92

* See page 10 for liberal arts requirements.
† Two three-course concentrations me required. Concentrations are available in interactive multimedia design, data communications, and networking, system administration, database, Windows application development, learning and performance technology, Web content development, and special topics.

Information Technology, AAS degree

Intro to Multimedia: Internet & Web 4002-320 4
Programming for Info Technology I, II, III 4002-217, 218, 219 12
Computer Concepts & Software Systems 4002-340 4
Data Communication & Computer Networks 4002-341 4
Internetworking Lab 4002-342 4
Intro to Database & Data Modeling 4002-360 4
Technology Transfer 4002-460 4
IT Electives 4
Mathematics and Science
Algebra & Trigonometry 1016-204 4
Discrete Math for Tech I, II 1016-205,206 8
Lab Science Electives 8
Liberal Arts *
Writing & Literature I, II 0504-225,226 8
Social Science Electives 0510/0511/0513/0514/0515 8
Fine Arts 0505 4
History 0507 4
Philosophy 0508/0509 4

General Education Electives 18

Total Quarter Credit Hours 62

* See page 10 for liberal arts requirements.
† Two three-course concentrations required. Concentrations are available in interactive multimedia design, data communications, and networking, system administration, database, Windows application development, learning and performance technology, Web content development, and special topics.

Information Technology, New Media Option

Since the mid 1990s, we have witnessed the emergence of a major new communications medium built upon the foundations of computing and the Internet. For many years, the Internet was the semi-private domain of academics and researchers who exchanged text-based messages and software without fanfare or commercial interest. These pioneers of the Internet could not have realized that the simple addition of a graphical user interface to the Internet would launch a major communications revolution. In the years following the creation of the World Wide Web, millions of ordinary people all over the world have become regular users of the Internet, and Internet-based business has become a significant economic force in the marketplace.
The term “new media” encompasses Internet-based media, interactive television and non-network-based digital media such as CD-ROM and DVD. New media technologies are used by publishers, manufacturers, direct marketers, and information service providers to reach targeted audiences for purposes of teaching, advertising, marketing, information gathering, transacting business, and expressing creative ideas.

The successful deployment of new media requires the close collaboration of designers, information technologists, and business planners. Even more so than with traditional media, collaboration between professionals with these different skill sets has become the norm. To successfully navigate the waters of the new media marketplace, practitioners must have the ability to work and understand the needs of professionals from other disciplines.

Program overview

The BS in information technology/new media option (IT/new media) is one of three closely related programs at RIT that together offer a unique approach to new media education:

- BS in IT/new media
- BFA in new media design (from the College of Imaging Arts and Sciences)
- BS in new media publishing (from the College of Imaging Arts and Sciences)

This trio of programs enables students to learn and practice their respective disciplines in close collaboration with one another. Although each program has a unique emphasis, all of them share a common core of courses that introduce our new media students to technical, aesthetic, and business issues relevant across a broad range of professional career paths. The curriculum of the common core includes course work in graphic design, photographic imaging, video, publishing, programming, and information technology.

Students in the IT/new media program will complete most of their remaining course work in information technology, where they have the opportunity to pursue cutting-edge skills in multimedia and Web technologies.

As the new media environments become richer and more complex, the industry is moving away from displaying “one-size-fits-all” Web pages and CD-ROMS to new media that must:

- reformat themselves for display on computers, television sets, PDAs, and cell phones
- configure themselves to the interests of the individual viewer/subscriber
- mix broadcast media information with computer-based media
- allow multiple users to view and/or work on the same material at the same time
- create interactive entertainment spaces able to support thousands of simultaneous users
- drive the economy of information age with financial and product databases
- support the computer-based, network-backed training and education programs just emerging
- create a new marketplace of ideas

The IT/new media student will rejoin those from the other two programs in their senior year to complete a two-quarter, eight-credit new media team project that will tackle real-world new media projects. This culminating experience provides an opportunity for each student to hone his or her skills in collaboration with students from different disciplines in a setting much like that found in industry.

Cooperative education

In addition to the senior project, IT/new media students will complete three quarters of cooperative education. IT co-op students have found work in Web design, electronic commerce, human factors labs and other related businesses both in and outside of Rochester. These experiences have given our students a “real-world experience” edge when applying for jobs after graduation.

The design of this program had considerable input from new media industry leaders. They want employees who can work in interdisciplinary teams, and they were very excited about the senior project and co-op education portions of the program.
Information technology, BS degree, new media option, full time, typical course sequence:

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 4002-201</td>
<td>1</td>
</tr>
<tr>
<td>Ideation & Visualization 2009-211</td>
<td>4</td>
</tr>
<tr>
<td>Traditional Photography with Digital Technology 2061-221</td>
<td>4</td>
</tr>
<tr>
<td>New Media Perspectives 2065-253</td>
<td>3</td>
</tr>
<tr>
<td>Writing & Literature I, II 0502-225, 226</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Multimedia: The Web 4002-320</td>
<td>4</td>
</tr>
<tr>
<td>Time-Based Imaging 2009-411</td>
<td>3</td>
</tr>
<tr>
<td>New Media Publishing 2083-211</td>
<td>3</td>
</tr>
<tr>
<td>Elements of Graphic Design 2009-213</td>
<td>3</td>
</tr>
<tr>
<td>Digital Video for Multimedia 2065-217</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Programming for New Media 4002-230</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>4</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>45</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming II for New Media 4002-231</td>
<td>4</td>
</tr>
<tr>
<td>Typography for New Media 2083-311</td>
<td>3</td>
</tr>
<tr>
<td>Algebra & Trigonometry 1016-204</td>
<td>4</td>
</tr>
<tr>
<td>Discrete Math I, II 1016-204,205</td>
<td>8</td>
</tr>
<tr>
<td>Web Site Design & Implementation 4002-409</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Digital Animation 2065-362</td>
<td>4</td>
</tr>
<tr>
<td>Design of Graphical User Interface 2009-323</td>
<td>4</td>
</tr>
<tr>
<td>Computer Concepts & Software Systems 4002-340</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>47</td>
</tr>
</tbody>
</table>

Third/Fourth Years

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Education (3 quarters required after year 2) Co-op</td>
<td></td>
</tr>
<tr>
<td>Programming for Information Technology I 4002-217</td>
<td>4</td>
</tr>
<tr>
<td>Data Communications & Computer Networks 4002-341</td>
<td>4</td>
</tr>
<tr>
<td>Interface Design 4002-426</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Applied Database Management 4002-360</td>
<td>4</td>
</tr>
<tr>
<td>Technology Transfer 4002-460</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>6</td>
</tr>
<tr>
<td>New Media Concentration Courses **</td>
<td>12</td>
</tr>
<tr>
<td>New Media Team Project I, II 2065-582,583</td>
<td>8</td>
</tr>
<tr>
<td>Lab Science Elective</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>30</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>89</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
** One three-course concentration is required. Concentrations are available in content development Web programming, and virtual worlds development.
† See page 11 for physical education requirements.
Information technology students learn how to work on their own and as part of a project management team.
The programs offered by the Kate Gleason College of Engineering prepare students for careers in industry or for graduate study in engineering or related fields. The curricula emphasize fundamentals and, in the fourth and fifth years, provide courses that allow students to specialize in their chosen fields of study. To help ready students for life in the larger community, a balance among humanistic-social subjects, the physical sciences and professional studies is maintained.

Goals
The overarching goals of the engineering program are
- to prepare graduates to join the work force as sought-after engineering professionals;
- to provide graduates with the educational foundation to assist in entering graduate programs.
The college accomplishes these goals by
- integrating cooperative education into the program for all students;
- providing a strong foundation in mathematics and science as well as an appropriate balance between liberal studies and technical courses;
- establishing an appropriate balance between the engineering design and engineering science components of the program;
- incorporating a strong laboratory component in the program with outstanding laboratory facilities;
- having a diverse faculty committed to engineering education. The career orientation of all programs recognizes the changes in technology and engineering and works to establish in all students an appreciation and desire for lifelong learning.

Resources
The departments of computer, electrical, mechanical, and microelectronic engineering occupy the James E. Gleason Building and the Center for Microelectronic and Computer Engineering, an adjoining building that has more than 10,000 square feet of laboratory space for the fabrication of integrated circuits plus an integrated circuit design center. The industrial and systems engineering department is housed in the Center for Integrated Manufacturing Studies. All departments have laboratories with excellent facilities that include state-of-the-art computer workstations for discipline-specific engineering design. In addition, two general-purpose computer user centers housed in the engineering buildings are available to all engineering students. The laboratories are used for both instruction and research and are available to students at all levels of the program. The faculty pride themselves on having integrated engineering practice into the academic program. The overall program incorporates classroom and laboratory instruction, engineering research projects and special student projects to prepare students for their industrial work assignments or for advanced study in graduate school.

Five-year programs
The college offers five five-year cooperative education programs leading to the bachelor of science degree with majors in electrical, computer, industrial, mechanical, and microelectronic engineering. These programs include four years of academic study and five quarters of cooperative work experience.

Transfer programs
The college admits graduates from two-year community colleges in engineering science and engineering technology. Significant numbers of transfer students join the regular undergraduate program and give RIT's engineering programs a unique academic atmosphere.

The AS graduate in engineering science with above-average scholastic achievement can usually enter one of the five BS programs as a regular third-year student. It may be necessary to adjust a few courses to accommodate program differences in the first two years. Transfer credits are granted on the basis of course-by-course evaluation.

The AAS graduate in technology who has demonstrated outstanding achievement should consider transfer to a BS program in engineering as one alternative for continuing formal education. The exact number of transfer credits for which he or she may qualify varies widely, and the student should contact the department head of his or her chosen discipline for transfer credit evaluation.

The cooperative education plan
All students participate in the five-year cooperative education programs and attend classes during the fall, winter and spring quarters of their first and second years. Before beginning the third year, students are assigned to co-op block A or B. In any given quarter, students in one block are on their co-op assignments, while those in the other block attend classes.

Employment arrangements are made by each student through his or her co-op coordinator in the Office of Cooperative Education and Career Services.

Cooperative education plan-College of Engineering

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td>—</td>
</tr>
<tr>
<td>3 and 4</td>
<td>A</td>
<td>RIT</td>
<td>Co-op</td>
<td>RIT</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Co-op</td>
<td>RIT</td>
<td>Co-op</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>RIT</td>
<td>Co-op</td>
<td>RIT</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Co-op</td>
<td>RIT</td>
<td>RIT</td>
</tr>
</tbody>
</table>
Writing competency
All College of Engineering students are required to be proficient in writing the English language. This is accomplished through required courses in the liberal arts and through writing requirements established and monitored by the individual departments.

Academic advising
Upon entry into the college, each student is assigned an adviser. The adviser is available for both academic advising and career counseling.

Women and Minorities in Engineering Programs
Special programs led by the assistant dean for student services are in place to support female and minority engineering students.

Orientation
The engineering programs are strongly oriented toward mathematics and the physical sciences. Emphasis is placed on these subjects in the first two years to provide a foundation for the applied sciences and engineering subjects that follow later in the programs.

Careers
Graduates qualify for professional work in many aspects of engineering design and product development, systems engineering, research and development, supervision of technical projects, and managerial positions in large, medium, and small industries. In addition, an engineering education can provide a foundation for continued study in business, law, medicine, etc. Many graduates continue their education for the master of science or the doctor of philosophy degree.

Entrance requirements (BS)
Applicants for the engineering program must be high-school graduates and must have completed four years of high school math, including elementary and intermediate algebra, plane geometry, trigonometry, and both physics and chemistry in high school. Advanced algebra, solid geometry, and calculus, while not required, are highly desirable. The applicant should demonstrate proficiency in the required entrance subjects since these provide the basis for the more advanced courses in engineering and science.

Accreditation
All of the college’s programs of study leading to the bachelor of science degree are accredited by the Accreditation Board for Engineering and Technology (ABET). The college is a member of the American Society for Engineering Education. All graduating seniors are eligible and encouraged to sit for the intern engineer portion of the New York State Professional Engineering examination during their final quarter.

Graduate degrees
Programs leading to the master of science degree are offered in computer, electrical, industrial, mechanical and microelectronic engineering, and applied and mathematical statistics. The programs may be pursued part time or full time, since most courses are offered in the late afternoon and early evening.

In addition, the college offers post-baccalaureate professional programs leading to the master of engineering degree. Study may be pursued in such areas as manufacturing, industrial and mechanical engineering; engineering management; microelectronic manufacturing engineering; and systems engineering. The program is unique in that it extends the undergraduate cooperative work concept to the graduate level in an industrial internship for which academic credit is granted.

Designed as a full-time program, the master of engineering degree also may be pursued on a part-time basis by engineers employed locally.

The College of Engineering offers jointly with the College of Science a program leading to the master of science degree in materials science and engineering.

It also offers jointly with the College of Business two programs leading to the master of science degree: one is in manufacturing management and leadership and the other in product development.

Engineering science and part-time study
An increasing number of students desire to pursue engineering degrees part time while maintaining full-time employment. In response to their needs, the college offers several options. Those lacking the normal mathematics and science background to meet engineering program admission requirements are encouraged to seek the recommendation of the Learning Development Center relative to additional preparation. For those meeting the normal requirements, an associate degree in engineering science (AS) may be earned entirely through part-time evening study. The mathematics, science, liberal arts, and core engineering science courses included in this program prepare graduates for transfer into most ABET-accredited engineering programs at the third-year level.

Programs leading to the master of science degree are offered in computer, electrical, industrial, mechanical and microelectronic engineering, and applied and mathematical statistics. The programs may be pursued part time or full time, since most courses are offered in the late afternoon and early evening.

In addition, the college offers post-baccalaureate professional programs leading to the master of engineering degree. Study may be pursued in such areas as manufacturing, industrial and mechanical engineering; engineering management; microelectronic manufacturing engineering; and systems engineering. The program is unique in that it extends the undergraduate cooperative work concept to the graduate level in an industrial internship for which academic credit is granted.

Designed as a full-time program, the master of engineering degree also may be pursued on a part-time basis by engineers employed locally.

The College of Engineering offers jointly with the College of Science a program leading to the master of science degree in materials science and engineering.

It also offers jointly with the College of Business two programs leading to the master of science degree: one is in manufacturing management and leadership and the other in product development.

Engineering science and part-time study
An increasing number of students desire to pursue engineering degrees part time while maintaining full-time employment. In response to their needs, the college offers several options. Those lacking the normal mathematics and science background to meet engineering program admission requirements are encouraged to seek the recommendation of the Learning Development Center relative to additional preparation. For those meeting the normal requirements, an associate degree in engineering science (AS) may be earned entirely through part-time evening study. The mathematics, science, liberal arts, and core engineering science courses included in this program prepare graduates for transfer into most ABET-accredited engineering programs at the third-year level.
Engineering science graduates with appropriate professional elective courses will be accepted as third-year students in either the mechanical or electrical engineering departments. They will generally be required to complete upper-division courses during the normal day schedule. For transfer to other engineering departments, students are advised to contact the respective department head and arrange the appropriate course schedule before completing required courses.

As with full-time students, part-time students are required to complete the equivalent of five quarters of approved cooperative work experience. Arrangements can be made for part-time students to use approved portions of their regular employment to satisfy some or all of the co-op requirements.

Those wishing further information on part-time study in engineering should contact the College of Engineering Office of Student Services at 585-475-7994.

Engineering science, A.S degree, typical course work *

<table>
<thead>
<tr>
<th>Liberal Arts</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing & Literature I 0502-225</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature II 0502-226</td>
<td>4</td>
</tr>
<tr>
<td>Two of four social sciences choices</td>
<td>8</td>
</tr>
<tr>
<td>Introduction to Psychology 0514-210</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics 0511-301</td>
<td></td>
</tr>
<tr>
<td>American Politics 0513-211</td>
<td></td>
</tr>
<tr>
<td>Political Ideologies 0513-215</td>
<td></td>
</tr>
<tr>
<td>Foundations of Sociology 0515-210</td>
<td></td>
</tr>
<tr>
<td>Cultural Anthropology 0510-210</td>
<td></td>
</tr>
<tr>
<td>One humanities course i.e., History; Fine Arts; Philosophy; or Science, Technology & Values</td>
<td>4</td>
</tr>
<tr>
<td>Math and Science, Electrical Option</td>
<td></td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td></td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Matrix Algebra 1016-331</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Principles I 1011-211</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Principles I Lab 1011-205</td>
<td>1</td>
</tr>
<tr>
<td>Math and Science, Mechanical Option</td>
<td></td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Matrices & Boundary Value Problems 1016-318</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Principles I 1011-211</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry I Lab 1011-205</td>
<td></td>
</tr>
<tr>
<td>Chemistry of Materials 1011-273</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry of Materials Lab 1011-277</td>
<td>1</td>
</tr>
<tr>
<td>Physics, Electrical Option</td>
<td></td>
</tr>
<tr>
<td>University Physics I, II, III 1017-311, 312, 313</td>
<td>12</td>
</tr>
<tr>
<td>University Physics Lab I, II, III 1017-375, 376, 377</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Modern Physics 1017-314</td>
<td>4</td>
</tr>
<tr>
<td>Physics, Mechanical Option</td>
<td></td>
</tr>
<tr>
<td>University Physics I, II, III 1017-311, 312, 313</td>
<td>12</td>
</tr>
<tr>
<td>University Physics Lab I, II, III 1017-375, 376, 377</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Professional, Electrical Option</td>
<td></td>
</tr>
<tr>
<td>Statics 0304-336</td>
<td>4</td>
</tr>
<tr>
<td>Dynamics 0304-359</td>
<td>5</td>
</tr>
<tr>
<td>Introduction to Digital Systems 0301-240</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Programming for Engineers 0301-246</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to C Programming 0301-248</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Microcomputers 0301-365</td>
<td>4</td>
</tr>
<tr>
<td>Circuit Analysis I with Lab 0301-381</td>
<td>5</td>
</tr>
<tr>
<td>Professional, Mechanical Option</td>
<td></td>
</tr>
<tr>
<td>Statics 0304-336</td>
<td>4</td>
</tr>
<tr>
<td>Dynamics 0305-359</td>
<td>5</td>
</tr>
<tr>
<td>Engineering Design Graphics 0304-214</td>
<td>4</td>
</tr>
<tr>
<td>Problem Solving with Computers 0304-342</td>
<td>3</td>
</tr>
<tr>
<td>Mechanics of Materials 0304-347</td>
<td>4</td>
</tr>
<tr>
<td>Mechanics of Materials Laboratory 0304-348</td>
<td>1</td>
</tr>
<tr>
<td>Circuit Analysis I with Lab 0301-381</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 97

* For suggested quarterly schedule, consult with your academic adviser.

† See page 10 for liberal arts requirements.

See page II for policy on physical education.

Undeclared Engineering

The undeclared engineering program is an option for students who prefer additional time in which to decide their major in engineering. Students may choose a major at the end of fall, winter, or spring quarter of their first year.

During their first year, students take the foundation courses required by all the engineering disciplines. Course work taken as an undeclared engineering student will transfer into all engineering programs without any loss of credits toward graduation.

During the fall quarter undeclared engineering students take a one-credit course, Introduction to Engineering, that provides an overview of all five programs, the opportunity to learn about the course of study in each program, career opportunities in each of the engineering disciplines and an introduction to the faculty and students of each program. Other career-oriented activities available during the freshman year include participating in small group discussions with faculty and other students, observing classroom presentations of senior engineering design projects, exploring engineering laboratory facilities and consulting with an academic adviser one-on-one about engineering courses.

Undeclared engineering program, typical first-year schedule *

Fall Quarter Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus I 1016-251</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Principles I 11011-211</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Principles Lab I 1011-205</td>
<td>1</td>
</tr>
<tr>
<td>Computing for Engineers 0302-215</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Engineering 0302-210</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts †</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education *</td>
<td>0</td>
</tr>
</tbody>
</table>

Winter Quarter Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus II 1016-252</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Principles II 11011-212</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Principles Lab II 1011-205</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I 1017-311</td>
<td>4</td>
</tr>
<tr>
<td>University Physics Lab I 1017-375</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts †</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education *</td>
<td>0</td>
</tr>
</tbody>
</table>

Spring Quarter Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus III 1016-253</td>
<td>4</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>University Physics II 1017-312</td>
<td>4</td>
</tr>
<tr>
<td>University Physics Lab II 1017-376</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts †</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education *</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 55

* For suggested quarterly schedule, consult with your academic adviser.

† See page 10 for liberal arts requirements.

See page II for policy on physical education.
Computer Engineering

Andreas E. Savakis, Head

The computer engineering program focuses on the design and development of computer systems and computer-integrated systems, with due consideration to such engineering factors as function, performance, and cost. The objective of the computer engineer is to design and build these systems to meet application requirements with attention to the hardware/software interaction. The program strives to interweave and span the topics from formal specifications to heuristic algorithm development; from systems architecture to computer design; from interface electronics to software development, especially real-time applications; and from computer networking to VLSI implementation.

The goals of the program are enumerated in the introduction to the Kate Gleason College of Engineering in this bulletin. In addition, the BS degree program in computer engineering is designed to prepare its graduates to be effective integrators of hardware and software in the design and development of digital systems; to be able to design and implement computer systems architecture and networking; with the proper choice of electives, to specialize in areas such as software development (especially for real-time and embedded computer applications) and computer-aided design of very large scale integrated circuits; to facilitate lifelong career development by providing the proper educational foundation for appropriate graduate study and the skills and insight necessary for independent learning; and to produce graduates with an awareness and appreciation of the responsibilities required of a professional engineer.

As an engineering discipline, this program emphasizes the careful adoption of design methodology and the application of sophisticated engineering tools. The intensive laboratory work requirements ensure the graduate of significant experience with modern facilities and up-to-date design tools.

The cooperative education program enables students to apply the principles and techniques of computer engineering to real industrial problems and provides them with a stronger framework on which to build their academic courses. These co-op work periods alternate with academic quarters throughout the last three years of the program.

The faculty of the computer engineering department are committed to quality engineering education.

Combined BS/MS degree sequence in computer engineering

The department of computer engineering also offers a combined bachelor of science and master of science degree course sequence over five calendar years. This accelerated sequence provides an excellent opportunity for outstanding undergraduate students to pursue a graduate degree in a cohesive program. Applications to this special sequence will be accepted from matriculated undergraduate computer engineering students who have completed all the courses in the first two years of the baccalaureate program with a cumulative grade point average of at least 3.4 out of 4.0. At least 55 of these credits must have been earned at RIT. Continuance in this program also requires the maintenance of at least a 3.0 overall grade point average and at least 3.0 in the 45 quarter credits directly applicable to the master of science degree portion.

Bachelor of science degree in computer engineering with a concentration in software engineering

The department also offers a BS degree in computer engineering with a concentration in software engineering. This concentration targets the graduate to develop complex software systems, especially embedded systems, where at least one control processor is designed into a product. The curriculum is identical to that in the first four years of the regular BS degree program in computer engineering. In the fifth year, a cohesive pair of specified professional electives in software engineering (0306-661 and 0306-662) complements the material already presented to round out this concentration within the umbrella of an ABET-accredited computer engineering degree program.

Principal field of study

For students matriculated in the interdisciplinary computer engineering program, the principal field of study is defined to be all courses taken in the College of Engineering and the departments of computer science and information technology. Matriculated students not maintaining a 2.0 cumulative grade point average in their principal field of study are subject to academic probation and suspension according to Institute policy.
Computer engineering, BS degree, typical course sequence *

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computer Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Freshman Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Intro to Digital Systems for Computer Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science III</td>
<td>4</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>University Physics Lab I</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts t</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education *</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Language for Computer Engineering</td>
<td>5</td>
</tr>
<tr>
<td>Hardware Description Languages</td>
<td>4</td>
</tr>
<tr>
<td>Circuits Analysis I with Lab</td>
<td>5</td>
</tr>
<tr>
<td>Computer Science IV</td>
<td>4</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Foundations of Discrete Math</td>
<td>4</td>
</tr>
<tr>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Matrix Algebra</td>
<td>4</td>
</tr>
<tr>
<td>University Physics II, III</td>
<td>8</td>
</tr>
<tr>
<td>University Physics Lab II, III</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts t</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education *</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td>Modeling of Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>Digital Systems Design for Computer Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>Electronics I, II, with Labs</td>
<td>8</td>
</tr>
<tr>
<td>Scientific Programming</td>
<td>3</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts t</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>Digital Control Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>Interface & Digital Electronics</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to VLSI Design</td>
<td>4</td>
</tr>
<tr>
<td>Data & Computer Communications</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Computer Engineering Design Projects</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts t</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours

200

* For suggested quarterly schedule consult with your academic adviser.
† See page 10 for liberal arts requirements.
‡ See page 11 for policy on physical education.
§ Professional electives must have at least a 25-percent engineering design component.

Electrical Engineering

Robert J. Bowman, Head

Electrical engineering at RIT is addressing high-technology needs of high technology by offering a rich academic program that includes integrated circuits, digital signal processing, microwave electronics, optical electronics, bioelectronics, radiation and propagation, power electronics, control systems, communications and information theory, circuit theory, computer-aided design, solid-state devices, microelectromechanical systems (MEMs), robotics, and pattern recognition. Our nationally recognized program combines the rigor of theory with the reality of engineering practice and prepares students for exciting careers within the varied electric engineering and allied disciplines and for positions in business management. Our graduates also have the foundation to pursue advanced study at the most prestigious graduate schools. A degree in electrical engineering from RIT is your stepping-stone to entering and changing the future.

Our electrical engineering program has four primary educational objectives:

- The electrical engineering graduate is expected to possess the theoretical and applied knowledge of the profession so that he or she can immediately commence a productive engineering career in any of a variety of industries.
- The electrical engineering graduate is expected to be able to pursue graduate study in electrical engineering or a related field consistent with the professional goals and aspirations of most engineers.
- The electrical engineering graduate is expected to possess the knowledge and communication skills that will enable him or her to adapt or change in this singularly dynamic field via self-study or continuing education.
- The electrical engineering graduate is expected to attain a broader understanding and appreciation of global needs by devoting attention to the ethics and principles that produce engineers with a social conscience.

The electrical engineering department curriculum, co-op program, and facilities are carefully designed to accomplish these objectives. Since the ability to design is an essential part of electrical engineering, the student is presented with challenging problems of design in a number of courses beginning with the first hands-on course, Electrical Engineering Practicum, in the freshman year.

To strengthen students’ applied knowledge in electrical engineering, the laboratory is an integral part of many courses. The department offers a number of classes in studio-style lecture labs where the instructor presents the lecture in a fully instrumented room that allows immediate observation and implementation of important engineering ideas by the student. Many of our alumni report that the College of Engineering facilities are comparable to the best in the industry.

The highlight of the applied engineering experience is the Senior Project. Students work on a challenging project under the tutelage of an experienced faculty adviser. While experiencing the satisfaction of completing an interesting project and exploring the latest in technology they develop engineering management and project organization skills. They learn to communicate their ideas effectively within a multidisciplinary team and to present their project and ideas to a diverse audience of students, faculty, and industrial partners.

RIT’s co-op requirement enhances knowledge acquired in the classroom and the laboratory with on-the-job experience. The exposure acquaints students with the constraints imposed by the industrial environment on the solution to engineering problems. The co-op experience also helps the student decide which career path would be most rewarding. It produces a mature engineering graduate with well-developed academic and industrial perspectives.
In modern society, engineering decisions are rarely made without considering the ethical and socio-economic impacts. Because the ability to communicate clearly and effectively with others is indispensable to the engineer, a significant portion of the curriculum is devoted to the study of liberal arts throughout the five years of the program. These courses are aimed at sensitizing students to the factors that surround most decision-making situations, improving their ability to communicate with others, making their professional lives more meaningful, and encouraging their positive impact on society.

The first two years of the curriculum are devoted to establishing a foundation in mathematics and physical science essential to the study of electrical engineering. Courses involving electrical engineering principles and hands-on instrument and CAD tool experience introduce students to electrical engineering practice and tools that are used throughout the five-year program.

The third and fourth years build on this foundation and focus on the subjects that form the core of electrical engineering. Courses in circuits, electronics, linear systems, electromagnetic fields, physics of semiconductor devices, communication systems, control systems, and energy conversion are taught in these two years.

The fifth and final year allows the student to specialize in an area of his or her professional interest. Professional elective courses provide an opportunity to concentrate in an area of interest. Students are also expected to complete their capstone engineering project, the senior design project, as part of the graduation requirements.

Electrical engineering, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE Freshman Seminar 0301-203</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering Practicum 0301-204</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Digital Systems 0301-240</td>
<td>4</td>
</tr>
<tr>
<td>C Programming for Engineers 0301-345</td>
<td>4</td>
</tr>
<tr>
<td>College Chemistry I 1011-208</td>
<td>4</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I 1017-311</td>
<td>4</td>
</tr>
<tr>
<td>University Physics Lab I 1017-375</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>20</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adv. Programming for Engineers 0301-346</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Microcomputers 0301-365</td>
<td>4</td>
</tr>
<tr>
<td>Circuit Analysis I with Lab 0301-381</td>
<td>4</td>
</tr>
<tr>
<td>Statics & Dynamics 0304-330</td>
<td>5</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Mathematics 1016-328</td>
<td>4</td>
</tr>
<tr>
<td>University Physics II, III 1017-312, 313</td>
<td>8</td>
</tr>
<tr>
<td>University Physics Lab II, III 1017-376, 377</td>
<td>2</td>
</tr>
<tr>
<td>Modern Physics I 1017-334</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
<tr>
<td>Optional Free Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture &Data Structures 0301-347</td>
<td>4</td>
</tr>
<tr>
<td>Circuit Analysis II 0301-362</td>
<td>3</td>
</tr>
<tr>
<td>Linear Systems 10301-453</td>
<td>4</td>
</tr>
<tr>
<td>Electromagnetic Fields I 0301-473</td>
<td>4</td>
</tr>
<tr>
<td>Electronics I, II with Lab 0301-481, 482</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics 1016-351</td>
<td>4</td>
</tr>
<tr>
<td>Complex Variables 1016-402</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic Fields II 0301-474</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Automatic Control 0301-514</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Machines 0301-531</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Communication Systems 0301-534</td>
<td>4</td>
</tr>
<tr>
<td>Digital Electronics 0301-545</td>
<td>4</td>
</tr>
<tr>
<td>Linear Systems II 0301-554</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) †</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Electronics 0301-544</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>12</td>
</tr>
<tr>
<td>Senior Design Project Part I 0301-697</td>
<td>2</td>
</tr>
<tr>
<td>Senior Design Project Part II 0301-698</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) †</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) ‡</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter) Co-op</td>
<td></td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>196</td>
</tr>
</tbody>
</table>

* For suggested quarterly schedule, consult with your academic advisor.
† See page 10 for liberal arts requirements.
‡ See page 11 for policy on physical education.

Each of the listed professional electives includes significant design experience. For convenience the courses have been grouped by interest areas. Some courses apply to more than one area.

Professional electives

Electromagnetic Fields and Optics	0301-621
Microwave Engineering	0301-622
Antenna Design	0301-622
Optical Devices and Systems	0301-672
Fiber Optics: Theory and Applications	0301-674
Electro-Optics	0301-776
Control Systems	0301-605
Robotic Vision	0301-614
Design of Digital Control Systems	0301-646
Power Electronics	0301-650
Design of Digital Systems	0301-664
Embedded Microcontroller System Design	0301-664
BSEE with computer engineering option

The department of electrical engineering offers a BSEE degree with a computer engineering concentration. This is ideal for those who want to be educated within the framework of the traditional electrical engineering program but would also like to incorporate the skills required in designing modern computing systems. Students in this option meet all the requirements for the BSEE degree and receive instruction in areas ranging from C programming, object-oriented programming, assembly language, microprocessor interfacing, and logic design to data structures and computer operating systems.

Combined five-year BS/MS degree program

In addition to the bachelor of science and master of science degree programs, a combined BS/MS degree program is also available for the electrical engineering student. Enrollment in this program requires successful completion of at least 234 quarter credit hours. After completing this requirement, the student is awarded the BS and MS degrees simultaneously. A student may apply to this program in the second quarter of his or her second year, providing that a minimum cumulative grade point average of 3.4 has been obtained at the end of the previous quarter. Although admission requirements are stricter for this program, graduation requirements are consistent with Institute policies.

The first three years of the program are identical for the BSEE and the combined BS/MS program with the exception of the work period between the second and third years being used to earn early co-op credit. Further information can be obtained from the department of electrical engineering at 585-475-2165. A typical fourth- and fifth-year program sequence follows.
Industrial and Systems Engineering

Jacqueline R. Mozrall, Head

Industrial engineering differs from other branches of the engineering program in at least two ways. First, industrial engineering education is relevant to most types of industry and commercial activity. Second, it is that major branch of engineering concerned not only with machines, but also with people.

Specifically, industrial engineering is concerned with the design, improvement, and installation of integrated systems of people, materials, and equipment. It draws upon specialized knowledge and skills in the mathematical and physical sciences, together with the principles and methods of engineering analysis and design.

Because of the flexible nature of the program, the industrial and systems student can gain breadth in many different concentration in any areas of industrial engineering-information systems, manufacturing, safety, etc. Students may choose free and professional electives for this purpose.

Combined five-year BS/master's degree program

The ISE department offers honors-accelerated BS/MS and BS/ME degree programs within the department where select students may complete a BS and an MS or ME in industrial engineering in five years plus one additional quarter.

An arrangement with the College of Business allows for an accelerated BS/MBA option. For more information, contact the IME department at 585/475-2598.

The industrial engineering curriculum covers the principal concepts of human performance, mathematical modeling, applied statistics and quality, information management systems, and contemporary manufacturing processes. The curriculum stresses the application of computers in solving the engineering problems of today. For example:

1. The undergraduate industrial engineering student at RIT uses computer graphics to design the layout of manufacturing plants and to develop dynamic, animated computer simulation models.
2. He or she also uses computers to design Web-based data systems and to control flexible manufacturing systems involving robots, machines and conveyors.
3. The industrial engineering student uses the computer in conjunction with cognitive, physiological, biomechanical, and anthropometric modeling of human performance in the analysis and design of man/machine systems.

Facilities

The ISE department is located in the Center for Integrated Manufacturing Studies, which is a collaborative effort of the Institute, government and private industry and home to 50,000 square feet of high-tech research and development laboratories, 40,000 square feet of world-class manufacturing bays and 30,000 square feet of Industrial training space. ISE students and faculty actively participate in related research and training programs and operate four labs within CIMS.

The industrial and systems engineering faculty are committed to high-quality engineering education and the goals enumerated in the introduction to the Kate Gleason College of Engineering in this bulletin.

Careers

Some of the activities of industrial engineers include work measurement, operations research, applied statistics, human factors, plant layout, materials handling, production planning and control, manufacturing, management information systems, and management consulting.

Balance, rather than specialization, has allowed our graduates to pursue varied paths. Examples of the diversity, along with the roles in which an industrial engineer might function, are reflected in the following partial listing of industrial engineering co-op assignments:

In manufacturing: industries:

a. perform product life studies
b. lay out optimum new and improve existing work areas
c. design and implement an information system
d. investigate production processes involved in cleaning carbide dies
e. investigate and analyze the costs of purchasing new vs. repairing existing equipment
f. investigate waiting lines in connection with a product line
g. investigate delivery service, including scheduling, route modification and material handling
h. assist in setting up a production control monitoring board
i. create computer programs for pricing policies, blending problems and truck scheduling
j. perform downtime studies of various operations using time study and work sampling
k. develop and computerize a forecasting model
l. perform ergonomic studies and evaluations of workstations and product designs
m. participate in design process of new products and processes to ensure ease of manufacture and maintenance to maximize productivity while minimizing the human toll in terms of fatigue and workplace disorders

In service industries:

a. evaluate the ergonomics of workstation designs
b. design information systems
c. monitor safety and health programs
d. manage hazardous and toxic materials storage and disposal programs
e. do cost analyses of procedures
f. schedule operations, information flow
g. design supply-ordering systems
h. manage operations services at hospitals
i. evaluate waiting time and space utilization in amusement parks
Industrial engineering, BS degree, typical course sequence *

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Industrial Engineering 0303-201</td>
<td>4</td>
</tr>
<tr>
<td>Computer Tools for Increased Productivity 0303-204</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar 0303-203</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry I 1011-208</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry of Materials Lab 1011-273</td>
<td>4</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I 1017-311</td>
<td>8</td>
</tr>
<tr>
<td>University Physics Lab I 1017-375</td>
<td>2</td>
</tr>
<tr>
<td>Materials Processing 0304-343</td>
<td>4</td>
</tr>
<tr>
<td>Materials Science 304-344</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics I 0304-331</td>
<td>4</td>
</tr>
<tr>
<td>Mechanics II 0304-332</td>
<td>4</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Computing for Industrial Engineers 0303-302</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Matrix Algebra 1016-331</td>
<td>4</td>
</tr>
<tr>
<td>University Physics II, III 1017-312, 313</td>
<td>4</td>
</tr>
<tr>
<td>University Physics Lab II, III 1017-376, 377</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Engineering 0303-525</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Economics 0303-520</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Operations Research I 0303-401</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics I, II 1016-351, 352</td>
<td>8</td>
</tr>
<tr>
<td>Ergonomics 0303-413</td>
<td>4</td>
</tr>
<tr>
<td>Management Theory & Practice 0303-481</td>
<td>4</td>
</tr>
<tr>
<td>Systems & Facilities Planning 0303-422</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Statistical Quality Control 0303-510</td>
<td>4</td>
</tr>
<tr>
<td>Applied Linear Regression Analysis 0303-511</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Operations Research II 0303-402</td>
<td>4</td>
</tr>
<tr>
<td>Simulation 0303-503</td>
<td>4</td>
</tr>
<tr>
<td>Human Factors 0303-516</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Systems Integration 0303-630</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Design 0303-530</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) †</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Design 0303-560</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives (see list below)</td>
<td>20</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>12</td>
</tr>
<tr>
<td>Free Elective</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

| Total Quarter Credit Hours | 203 |

* For suggested quarterly schedule, consult with your academic adviser.
† See page 10 for liberal arts requirements.
‡ See page 11 for policy on physical education.

Professional Electives (partial list)

- Database Management 0303-765
- Safety Engineering 0303-734
- Value Analysis 0303-601
- Concepts in Manufacturing 0303-625
- Production Control 0303-720

Graduate level courses from ISE as well as the other engineering disciplines may be used as professional electives with the permission of the adviser and course instructor (see Graduate Bulletin for descriptions).

Mechanical Engineering

Edward C. Hensel, Head

Mechanical engineering is perhaps the most comprehensive of the engineering disciplines. The mechanical engineer's interests encompass the design of such diverse systems as missiles, power plants, robots, machine tools, and microelectromechanical devices. The spectrum of professional activity for the mechanical engineering graduate runs from research through design and development to manufacturing and sales. Because of their comprehensive training and education, mechanical engineers are often called upon to assume management positions.

The mechanical engineering department offers professional courses in the areas of thermal systems, applied mechanics, manufacturing, materials science, systems analysis, computer-aided graphics and design, robotics, automotive and aerospace engineering. The department's laboratories are equipped to provide extensive experimentation in these areas. For instance, they include a well-instrumented wind tunnel, advanced heat transfer systems, robotics, state-of-the-art studio laboratory, x-ray diffractometer, atomic force microscope, dynamic system simulators, a spectrum analyzer, and a machine shop.

Students have an opportunity to participate in regional and national design competitions such as the Formula SAE car, the SAE Aeronology, and the ASME Moonbuggy. They are also encouraged to participate in the student chapters of professional societies such as ASME, SWE, AIAA, and SAE.

The 197-quarter-credit-hour program provides students with a broad academic base complemented by hands-on laboratory activities and cooperative work experience. Students devote the first two years to the study of mathematics, physics, chemistry, and engineering mechanics, while the third and fourth years emphasize engineering science in solid body mechanics, thermal fluid sciences, and electrical engineering. A student may then specialize by choosing appropriate technical and free elective courses in his or her area of interest.

Each of the listed technical electives includes one significant design project. In the fifth year, each student is required to complete the capstone design courses, Senior Design I and II. The liberal arts component of the mechanical engineering program consists of six core courses, a three-course concentration and Senior Seminar. In the third year, all students must demonstrate writing competency in the English language by successfully completing a departmental writing exercise evaluated by faculty from the Institute Writing Committee. For some students, this may require work with the Learning Development Center or additional course work in the College of Liberal Arts.

The faculty in the mechanical engineering department are committed to providing high quality and state-of-the-art engineering education. The goals of this program are stated in the introduction to the Kate Gleason College of Engineering in this bulletin.

Aerospace engineering option

The mechanical engineering department offers a concentration in aerospace engineering for students majoring in mechanical engineering. This option is offered to extend aerospace career opportunities to our graduates.

The aerospace engineering option allows for specialized study in the upper-level undergraduate curriculum focusing on engineering aspects of air- and space-borne vehicles. The option starts with a course introducing students to the aerospace field. Then, building on the courses completed by all mechanical engineering students, a balanced exposure to the aerospace area is gained through a sequence of four technical electives in the areas of aerodynamics, aerospace structures,
Automotive engineering option
The mechanical engineering department offers an automotive engineering concentration for students majoring in mechanical engineering. This concentration is intended to increase the opportunities for students who want to work for the automotive industry both in co-op and upon graduation.

The concentration builds upon course work all mechanical engineering students take in mechanics, thermodynamics, heat transfer and system dynamics by offering a series of specialized technical and free elective courses during the fourth and fifth years. These specialized courses provide an introduction to vehicle power plants, dynamics and control systems. The sequence starts in the fourth year with an introductory course acquainting the student with the general field of automotive design and manufacturing. This is followed in the fourth and fifth years with advanced technical electives in vehicle dynamics, internal combustion engines and automotive control applications. In addition, all students choosing this concentration are expected to work on an approved automotive senior design project in Senior Design I and II.

Combined BS/MS degree program
In addition to the bachelor of science and master of science degree programs, a combined BS / MS degree program is also available for the mechanical engineering student. A student enrolled in this program is required to successfully complete at least 230 quarter credit hours, after which he or she is awarded the BS and MS degrees simultaneously. A student may apply for admission to this program in the winter quarter of the second year. A transfer student may apply after completing one quarter at RIT. Admission is based on the student's cumulative grade point average, which must be at least 3.2; three letters of recommendation from the faculty; and a personal interview with the program coordinator. All students in the program are required to maintain a cumulative grade point average of at least 3.0.

Mechanical engineering, BS degree, typical course sequence *

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Seminar 0304-203</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry I 1011-208</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry of Materials Lab 1011-273, 277</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Design Graphics 0304-214</td>
<td>3</td>
</tr>
<tr>
<td>Materials Processing 0304-340</td>
<td>4</td>
</tr>
<tr>
<td>University Physics I 1017-311</td>
<td>4</td>
</tr>
<tr>
<td>University Physics Lab I 1017-375</td>
<td>1</td>
</tr>
<tr>
<td>Problem Solving with Computers 0304-342</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core) 1, 2, 3 †</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Matrices & Boundary Value Problems 1016-318</td>
<td>4</td>
</tr>
<tr>
<td>University Physics II, III 1017-312, 313</td>
<td>8</td>
</tr>
<tr>
<td>University Physics Lab II, III 1017-376, 377</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Statistics 1016-314</td>
<td>4</td>
</tr>
<tr>
<td>Statics 03:4-336</td>
<td>4</td>
</tr>
<tr>
<td>Mechanics of Materials 0304-347</td>
<td>4</td>
</tr>
<tr>
<td>Mechanics of Materials Lab 0304-348</td>
<td>1</td>
</tr>
<tr>
<td>Materials Science 0304-344</td>
<td>4</td>
</tr>
<tr>
<td>Geometric Dimensioning & Tolerancing 0304-312</td>
<td>3</td>
</tr>
<tr>
<td>Dynamics 0304-359</td>
<td>5</td>
</tr>
<tr>
<td>Liberal Arts (Core) 4 †</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education *</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of Machine Elements 0304-437</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Methods 0304-440</td>
<td>4</td>
</tr>
<tr>
<td>Thermodynamics 0304-413</td>
<td>4</td>
</tr>
<tr>
<td>Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Fluid Mechanics 0304-415</td>
<td>4</td>
</tr>
<tr>
<td>Thermal Fluids Lab I 0304-416</td>
<td>1</td>
</tr>
<tr>
<td>Advanced Computational Techniques 0304-518</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Electrical Engineering 0301-362</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) 5 †</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Transfer 0304-514</td>
<td>4</td>
</tr>
<tr>
<td>Systems Dynamics 0304-543</td>
<td>5</td>
</tr>
<tr>
<td>Transport Phenomena 0304-550</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) 6 †</td>
<td>4</td>
</tr>
<tr>
<td>Thermal Fluids Lab II 0304-551</td>
<td>1</td>
</tr>
<tr>
<td>Technical Elective I, 2</td>
<td>8</td>
</tr>
<tr>
<td>Design for Manufacture 0304-464</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) †</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Design I & II 0304-630, 631</td>
<td>8</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective I, 2</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) 2, 3 †</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) †</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 197

* For suggested quarterly schedule, consult with your academic adviser
† See page 10 for liberal arts requirements.
‡ See page 11 for policy on physical education.
Microelectronic Engineering

Santosh K. Kurinec, Head

The College of Engineering is proud to offer a bachelor of science degree program in microelectronic engineering, the only program of its type in the United States. This ABET-accredited, five-year program provides the broad interdisciplinary background in electrical and computer engineering, materials science and chemical engineering, physics, solid state electronics, optics, applied math and statistics necessary for entry into the semiconductor industry.

The curriculum begins with introductory courses in microelectronic engineering and microlithography. The first two years of the program build a solid foundation in mathematics, physics and chemistry. The second and third years provide the electrical coursework necessary for understanding of integrated circuits. The fourth and fifth years are dedicated to semiconductor devices, VLSI design, microlithography, materials, semiconductor processing, professional electives, and a capstone senior project. The choice of professional electives and a senior project offers students an opportunity to build a concentration within this unique interdisciplinary program such as VLSI chip design, electronic materials science, and micro electro mechanical (MEM) devices.

Students gain hands-on experience in the design, fabrication and testing of integrated circuits (microchips), the vital component in almost every advanced electronic product manufactured today. The undergraduate microelectronic engineering laboratories at RIT are the best in the nation. The teamwork emphasized in laboratories and technical presentation opportunities in seminars prepare students for building team spirit and effective communication skills.

Students participate in the required co-op portion of the program after completion of their second year of school. Microelectronic engineering co-op students work for all of the major manufacturers of integrated circuits across the United States. Upon graduation students are well prepared to enter the industry immediately or to go on to advanced work in graduate school. This program also prepares students to work in emerging technologies such as nanotechnology, photonics, MEM devices, and microsystems.

Upon graduation, students are well prepared to enter the semiconductor industry immediately or go on to advanced work in prestigious graduate schools in related disciplines. This program also prepares students to work in emerging technologies such as nanotechnology, MEM devices, and microsystems.

As the worldwide semiconductor industry continues to grow at an astounding pace, RIT graduates will continue to be a valuable resource to the industry. For the students, this program offers an unparalleled opportunity to prepare for professional challenge and success in one of the leading areas of engineering of our time.
Microelectronic engineering, BS degree,
**typical course sequence * **

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Microelectronics 0305-201</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0305-202</td>
<td>0</td>
</tr>
<tr>
<td>Introduction to Microlithography 0305-221</td>
<td>4</td>
</tr>
<tr>
<td>College Chemistry I 1011-208</td>
<td>4</td>
</tr>
<tr>
<td>Linear Materials, Lab 1011-273, 277</td>
<td>4</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I, II 1017-311, 312</td>
<td>8</td>
</tr>
<tr>
<td>Physics Lab I 1017-375,376</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Analysis I with Lab 0301-381</td>
<td>5</td>
</tr>
<tr>
<td>Introduction to Digital Systems 0301-240</td>
<td>4</td>
</tr>
<tr>
<td>I.C. Technology 0305-350</td>
<td>4</td>
</tr>
<tr>
<td>C Language Programming 0602-207</td>
<td>4</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Mathematics 1016-328</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Statistics 1016-314</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III 1017-313</td>
<td>4</td>
</tr>
<tr>
<td>Physics Lab III 1017-377</td>
<td>1</td>
</tr>
<tr>
<td>Modern Physics 1017-314</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Analysis II 0301-382</td>
<td>3</td>
</tr>
<tr>
<td>Electronics I, II with Labs 0301-481, 482</td>
<td>8</td>
</tr>
<tr>
<td>Linear Systems 0301-495</td>
<td>4</td>
</tr>
<tr>
<td>Semiconductor Devices I 0305-460</td>
<td>4</td>
</tr>
<tr>
<td>Electromagnetic Fields I, II 0305-530,540</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of Experiments 0305-514</td>
<td>4</td>
</tr>
<tr>
<td>VLSI Design 0305-520</td>
<td>4</td>
</tr>
<tr>
<td>Semiconductor Devices II 0305-560</td>
<td>4</td>
</tr>
<tr>
<td>Microlithography I 0305-563</td>
<td>3</td>
</tr>
<tr>
<td>Microlithography I Lab 0305-573</td>
<td>1</td>
</tr>
<tr>
<td>Silicon Processes 0305-610</td>
<td>4</td>
</tr>
<tr>
<td>Thin Film Processes 0305-643</td>
<td>4</td>
</tr>
<tr>
<td>Optics for Microelectronics 0305-525</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) †</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (2 quarters) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Microelectronics 0305-645</td>
<td>4</td>
</tr>
<tr>
<td>LC Processing Lab 0305-650</td>
<td>4</td>
</tr>
<tr>
<td>Microlithography Materials & Processes 0305-666</td>
<td>3</td>
</tr>
<tr>
<td>Microlithography Materials & Processes Lab 0305-676</td>
<td>1</td>
</tr>
<tr>
<td>Seminar/Research 0305-680</td>
<td>2</td>
</tr>
<tr>
<td>Seminar/Research 0305-690</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) †</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) †</td>
<td>2</td>
</tr>
<tr>
<td>Two Professional Electives</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education (1 quarter) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 197

* For suggested quarterly schedule, consult with your academic adviser.
† See page 10 for liberal arts requirements.
‡ See page 11 for policy on physical education.
The College of Imaging Arts and Sciences encompasses the School of Art, the School of Design, the School for American Crafts, the School of Film and Animation, the School of Photographic Arts and Sciences, and the School of Print Media. Students from nearly every state and many foreign countries are enrolled in the six schools. Visits to the campus and the college are encouraged. Students are invited to attend the frequent Open Houses held by the Institute. Please contact the Admissions Office.

The School of Art
The School of Art enrolls approximately 250 students in programs leading to the following degrees.
- **Associate in applied science (AAS):** illustration and fine arts studio
- **Bachelor of fine arts (BFA):** illustration, medical illustration and fine arts studio (painting, printmaking, sculpture, new forms)
- **Master of science for teachers (MST):** art education and fine arts studio (painting, printmaking, sculpture, new forms)
- **Master of fine arts (MFA):** medical illustration and fine arts studio (painting, printmaking, sculpture, new forms)

The School of Design
The School of Design enrolls more than 650 students in programs leading to the following degrees.
- **Associate in applied science (AAS):** graphic design, interior design and industrial design
- **Bachelor of fine arts (BFA):** graphic design, interior design, industrial design and new media design and imaging
- **Master of science for teachers (MST):** industrial design
- **Master of fine arts (MFA):** computer graphics design, graphic design and industrial design

The School for American Crafts
The School for American Crafts offers crafts programs leading to the following degrees.
- **Associate in applied science (AAS):** ceramics and ceramic sculpture, glass and glass sculpture, metals and jewelry design, woodworking and furniture design
- **Associate in occupational studies (AOS):** woodworking and furniture design
- **Bachelor of fine arts (BFA):** ceramics and ceramic sculpture, glass and glass sculpture, metals and jewelry design, woodworking and furniture design
- **Master of science for teachers (MST):** ceramics and ceramic sculpture, glass and glass sculpture, metals and jewelry design, woodworking and furniture design
- **Master of fine arts (MFA):** ceramics and ceramic sculpture, glass and glass sculpture, metals and jewelry design, woodworking and furniture design

The School of Film and Animation
Approximately 250 are enrolled in this school’s programs.
- **Bachelor of fine arts (BFA):** film/video/animation
- **Master of fine arts (MFA):** imaging arts with concentrations in animation and film/video production

The School of Photographic Arts and Sciences
More than 800 students are enrolled in the School of Photographic Arts and Sciences, which offers programs leading to the following degrees.
- **Bachelor of science (BS):** biomedical photographic communications, imaging systems management, imaging and photographic technology
- **Bachelor of fine arts (BFA):** advertising photography, photojournalism and fine art photography
- **Master of fine arts (MFA):** imaging arts with concentrations in photography and museum studies

The School of Print Media
The School of Print Media has approximately 300 students enrolled in the following degree programs.
- **Bachelor of science (BS):** graphic media, new media publishing
- **Master of science (MS):** printing technology, graphic arts systems, graphic arts publishing, electronic publishing
College resources
The college's specialized laboratories, studios, advanced computer facilities, and wide range of equipment make it one of the most complete of any degree-granting institution in the fields of photography, printing, art, design, and crafts.

Photographic archives and a comprehensive art library are available for reference; instructional films and other aids are utilized. Exhibitions regularly feature the work of contemporary painters, designers, photographers, illustrators, and graphic artists, as well as faculty and student work. Opening receptions provide students with the opportunity to meet the artists and photographers.

Major resources available to students include:
- 160 fully ventilated darkrooms
- 50 studios
- More than $50 million worth of printing and publishing equipment in 17 laboratories
- Wallace Library, rich in photography, graphic arts publications and contemporary periodicals in design, arts and crafts for study and research; the Amico Library of online image collections; electronic reserve course material
- Cooperative efforts with the International Museum of Photography at the George Eastman House
- Library of the Kodak Research Laboratories
- The Melbert B. Cary Jr. Graphic Arts Collection, which contains more than 20,000 volumes of rare books illustrating fine printing as well as other materials detailing the history of printing, book design and illustrations, papermaking, binding and other aspects of the graphic arts
- Bevier Gallery
- Gallery r, RIT's student managed metro showcase
- Graphic design archives
- Numerous computer labs

Cooperative education
Students in the college may participate in cooperative education experiences or internships. Part of the student's career exploration, this work experience provides an opportunity to observe and perform work directly related to the student's major. Although there is no required co-op in art and design or crafts, many students co-op during summer quarter.

Co-op is required in the School of Print Media and in the BS programs in the School of Photographic Arts and Sciences. Co-op is optional in the BFA programs in the School of Art, School of Design, the School for American Crafts and the School of Photography. Students are responsible for finding their co-op positions and for performing productively. RIT's Office of Cooperative Education and Career Services offers many services to assist students, from one-on-one job search advisement to a Web-based jobs database. Co-op students have the opportunity to evaluate career goals before making employment decisions, develop insight into their chosen fields, gain professional experience for their resumes and increase their potential for placement and rapid career advancement after graduation.

Policy regarding student work
RIT assumes the right to make a record of student work for use in the classroom or for promotion. This may entail photography, slides or a variety of electronic imaging/recording.

Accreditation
The programs offered in the college are fully accredited and approved by the New York State Department of Education and the Middle States Association of Colleges and Secondary Schools. In addition, the School of Art, the School of Design, and the School for American Crafts are accredited by the National Association of Schools of Art and Design. The School of Design's interior design program is accredited by FIDER (Foundation for Interior Design Education Research).

Attendance regulations
Some of the programs in the college utilize experiential learning as an essential part of the educational program. Therefore, it is imperative that the student regularly attend all classes unless specifically excused for special projects or activities by the instructor. Failure to attend classes or to complete assignments will be taken into consideration in grading.

Guidelines for portfolio submission
Acceptance into RIT's School of Art, School of Design, and School for American Crafts requires a combination of academic and creative visual skills. The submission of a portfolio is required for admission. Faculty will review the work to evaluate creative visual skills as well as potential for likely success in the major of choice.

The following guidelines should be used in submitting freshman and transfer portfolios:

1. Portfolio work for acceptance is submitted as 35 mm slides. Submit 10 to 20 slides of your best work in an 8.5" x 11" pocketed vinyl/plastic slide protector page. There should be a minimum of five samples of drawings made from direct observations (not copied from photographs, comics, or "fantasy"). Other work could include painting, photography, page layout, computer images, two-dimensional design, three-dimensional design, sculpture, models, mechanical drawings, and marker renderings.

2. All slides and documents submitted should be clearly labeled. Each slide should be numbered in order in the slide page; this page must be accompanied by a separate sheet of paper with a correspondingly numbered, clear, typed description of the slides. Include information such as title, size, media, assignment or theme, if any, and any exhibition or awards received.

3. Portfolios will be evaluated on the basis of drawing and design ability, original ideas, and craftsmanship. The clarity of the slide images is of utmost importance.

4. Medical illustration applicants should include at least six samples of natural forms, such as shells, figures, or animals rendered in a single medium.

5. School for American Crafts applicants are encouraged, where possible, to include samples of work done in the medium of their intended major.

6. Transfer students should clearly represent their basic foundation experience, as well as any advanced or "applied" work. Students considering transfer should notify RIT at the earliest possible moment. Catalog course descriptions will always assist in transfer credit evaluation.

7. Slide portfolios can be returned only if proper postage is included with the application. A padded, self-addressed, stamped envelope is recommended.

8. While every precaution is taken to ensure proper handling, the Institute assumes no responsibility for loss of or damage to slides.

9. We recommend that you attend an RIT Open House. If you plan to visit campus or need Open House information, please call the Office of Undergraduate Admissions at 585-475-6631. The office can also provide general information about the Institute and its offerings.

10. Original work is reviewed for acceptance purposes at these events, please call the individual school office to make arrangements.

Send your slide portfolio and completed application to:
Rochester Institute of Technology
Office of Admissions
60 Lomb Memorial Drive
Rochester, N.Y. 14623-5604
585-475-6631
School of Art

The mission of the School of Art, through its nationally recognized programs, is to educate students to be fine artists and illustrators who contribute to their professions, communicate effectively within their disciplines, have a lifelong attitude of inquiry and make a positive impact on society. To this end, we promote an innovative educational community that balances expression, imaginative problem solving, aesthetic understanding, critical thinking and creativity within a studio environment. Gallery R, an art gallery in downtown Rochester operated by School of Art students, helps solidify the learning experience by bringing the work of our students to the greater Rochester community.

The educational objectives of the School of Art are to encourage imagination, creative ability and artistic discrimination; to develop the skills essential for professional competence; to relate the various arts and to help students find the means to enjoy them; and to incorporate studies in the College of Liberal Arts for social and cultural growth, inspiring students to make their maximum contributions as creative artists and citizens.

Programs

Major studies are offered in illustration, medical illustration and fine arts studio. Electives may be pursued, beginning in the second year, in painting, printmaking, sculpture, illustration, computer applications, industrial design, interior design, graphic design, and the crafts. The first year forms the foundation preparation for the major concentration with courses required in drawing, two- and three-dimensional design, and creative sources.

Illustration majors solve communication problems by translating concepts and ideas into images. They study traditional and electronic media and design to prepare themselves for their professional goals.

Fine arts studio serves the student who is interested in careers in the fine arts across a variety of two- and three-dimensional disciplines and media, both traditional and technological. While painting, printmaking, and sculpture are the areas of greatest emphasis, new forms of expression are encouraged through course discipline work.

Medical illustration students learn to provide visual support for communications and instruction in medicine and allied health sciences. Graduating students rely on their coursework in biology, anatomy, and art in their professional roles (see course chart, page 50).

Credit requirements

The credit requirements for students admitted to the School of Art (medical illustration, illustration, and fine arts studio) programs are as follows:

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Major</td>
</tr>
<tr>
<td>Professional Electives</td>
</tr>
<tr>
<td>Open Electives</td>
</tr>
<tr>
<td>Liberal Arts</td>
</tr>
<tr>
<td>Art History</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
</tr>
</tbody>
</table>

A Freshman Kit is suggested for art, design, and craft students; it costs approximately $400. Students are generally responsible for the cost of additional supplies.

Electives*

Graphic Design
Illustration (all sophomore-level courses)
Graphic Visualization
Industrial Design Elective
Interior Design Elective
Fine Arts Studio (all sophomore-level courses)
Environmental Design Elective
Ceramics Elective
Glass Elective
Metals Elective
Textiles Elective
Woodworking Elective
Introduction to Filmmaking
Still Photography I, II, III
Information Formatting
Imaging Technology

Art History (select two)

History of Architecture, Furniture and Interiors t 2039-xxx
History of Design 2039-300
History of Crafts 2039-310
Philosophy in Art 2039-330
Symbols and Symbol Making 2039-340
Asian Art 2039-350
18th and 19th Century Art 2039-360
20th Century Art 2039-370
American Art 2039-420
Dada and Surrealism 2039-430
Conceptual Art 2039-440
Pop Art and Pop Culture 2039-450
Media, Advertising and Consciousness 2039-460

* Electives prerequisite: Completion of foundation program or permission of instructor. Additional selections offered as special topics.
† Required for interior design majors, 3 qtrs. replaces history elective and Contemporary Art.
Illustration, medical illustration, fine arts studio, BFA degree, typical course sequences

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year (Foundation Studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Freshman Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Two-Dimensional Design 2013-231, 232, 233</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Three-Dimensional Design 2013-241, 242, 243</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Creative Sources 2013-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Drawing 2013-211, 212, 213</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Physical Education Elective †</td>
<td>0</td>
</tr>
<tr>
<td>Second Year ‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survey of Western Art & Architecture 2039-225, 226, 227</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Physical Education Elective †</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Major (one) (prerequisite: completion of foundation studies) Illustration majors must take the following courses (prerequisite: completion of foundation studies):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Computer Illustration</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Introduction to Illustration: Introduction to Painting; Reference Photography; Head, Hands, Facial Expressions and 3 studio electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Fine arts studio majors must take the following courses (prerequisite: completion of foundation studies):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Fine Arts Drawing; Introduction to Painting; Reference Photography; Head, Hands, Facial Expressions; Figure in Motion; Zoological and Botanical Illustration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 human biology</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1 general biology</td>
<td>4</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contemporary Art 2039-380 (one quarter required)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Art History Electives #</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Major (one) (prerequisite: sophomore core) Illustration majors must take</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 junior-level courses from major concentration</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2 courses related to major (with advisement)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>and 1 studio electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fine arts studio majors must take eight junior-level studio courses:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 junior-level courses from major concentration</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sculpture Ideation & Series; Figure Studies</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>and 3 studio electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Medical illustration majors must take</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 junior-level courses from major concentration</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>and Human Gross Anatomy 2020-431,432</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>and 3 studio electives</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Electives (one per quarter) §</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts *</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Major (one) (prerequisite: junior core) Illustration majors must take</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 senior-level courses from major concentration</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>and 3 open electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Fine arts studio majors must take</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 senior-level courses from major concentration</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>and 3 open electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Medical illustration majors must take</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 senior-level courses from major concentration</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>and 3 open electives</td>
<td>9</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>185-191</td>
<td></td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 21 for policy on physical education.
‡ Upon completion of the second year, the associate in applied science degree is awarded.
§ Additional intercollege studio courses are available by recommendation of the academic adviser and administrator. Electives are registered on a space-available basis and subject to change without prior notice. Consult the adviser when planning programs.
#Art electives listed on page 79.

School of Design

The mission of the School of Design is to provide quality design education and preparation for professional practice. Our internationally recognized programs educate students to be designers who make valuable contributions to their professions, communicate effectively, maintain a lifelong attitude of inquiry, and make a positive impact on society.

Within the School of Design programs, faculty and students form an inquisitive and dynamic educational community in which creativity, critical thinking, innovative problem solving, aesthetic understanding, cross-disciplinary study, professionalism, and social responsibility are explored, cultivated, and promoted.

Programs

The School of Design offers BFA degree programs in graphic design, interior design, industrial design, and new media design and imaging. All of these programs integrate major courses, studio and open electives, liberal arts, and area design history. Computer skills, design perspectives, career preparation, and exposure to the related areas of publishing, photography, engineering, and information technology are integrated into the curriculum.

Our full-time and adjunct faculty offer a variety of experiences and expertise to the curriculum. Students have the opportunity to supplement their academic experience with participation in internships, guest speaker presentations, seminars, special events, field trips, and student chapters of professional organizations.

The school maintains memberships in a variety of professional organizations, including Industrial Designers Society of America, ACM SIGGRAPH, Society of Environmental Graphic Designers, American Society of Interior Designers, American Institute of Architects, ICOGRADA, American Center for Design, and American Institute of Graphic Arts, and International Interior Design Association (IIDA).

Internet address

Additional information can be requested through the Internet.

E-mail: design@rit.edu
Site: www.rit.edu/design
Phone: 585-475-2668

Transfer admission

Transfer credits from accredited institutions are evaluated on a course-by-course basis. These are awarded on the basis of a required portfolio review and courses related to the major with a grade of C or better. (See portfolio guidelines on page 78.) A summer transfer program or series of summer courses and workshops may be required.

Electives

Students can take a variety of electives at the Institute. Studio/professional electives are offered within the college. Open electives are Institute wide, including this college.

Graphic design

Graphic design is the study and practice of communicating ideas and information through printed, environmental, and digital presentations. Typography and images are integrated to express messages that interest, inform, and persuade intended audiences. With the addition of visual movement, navigation and sound, digital presentations are also developed. Using research, critical thinking, creativity, and a range of problem-solving principles, graphic designers solve complex visual communication problems within the constraints of time, space, budget, and technology. Areas of study include publication design, signage and environmental design, corporate identity, interactive media, packaging, and information design.
Industral design

Industrial design involves the integration of form and function as products are designed and created by combining materials, process, computer aided design, and human factors. Blending technical instruction with studio assignments, studies also include package, exhibit, and furniture design. Aesthetic sensitivity, technical competence, and analytical thought are developed and applied to meet the challenge of designing products for human needs.

Interior design

Interior design is the creative integration of form, materials, function, and aesthetics within interior space. Students develop an understanding of-and sensitivity to-history, future technology, environment, economics, architecture, and societal needs by exploring projects that develop aesthetic understanding, technical proficiencies, and preparation for professional certification and licensing. (Accredited by the Foundation for Interior Design Education Research)

The mission of the interior design program is “to educate students to be designers who contribute to their professions, communicate effectively within their discipline, have a lifelong attitude of inquiry, and make a positive impact on society. To this end, we promote an innovative educational community that balances expression, imaginative problem solving, aesthetic understanding, professional responsibility, and creativity.”

Credit requirements

The credit requirements for students admitted to the School of Design programs are as follows:

<table>
<thead>
<tr>
<th>Graphic Design</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major (including freshman core)</td>
<td>90</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>18</td>
</tr>
<tr>
<td>Open Electives</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>50</td>
</tr>
<tr>
<td>Design and Art History</td>
<td>18</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrial Design</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major (including freshman core)</td>
<td>90</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>18</td>
</tr>
<tr>
<td>Open Electives</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>50</td>
</tr>
<tr>
<td>Design and Art History</td>
<td>18</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interior Design</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major (including freshman core)</td>
<td>93</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>18</td>
</tr>
<tr>
<td>Open Electives</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>50</td>
</tr>
<tr>
<td>Design and Art History</td>
<td>18</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>188</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Media Design & Imaging</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major (including freshman core)</td>
<td>112</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>3</td>
</tr>
<tr>
<td>Open Electives</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>50</td>
</tr>
<tr>
<td>Design and Art History</td>
<td>18</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>192</td>
</tr>
</tbody>
</table>

A Freshman Kit is suggested for art, design, and craft students; it costs approximately $400. Students are generally responsible for the cost of additional supplies.

Graphic design, BFA degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Electives</td>
<td>6</td>
</tr>
<tr>
<td>Freshman offerings of Computer Skills:</td>
<td></td>
</tr>
<tr>
<td>Vector Imaging, and Computer Skills: Raster Imaging</td>
<td></td>
</tr>
<tr>
<td>are required for graphic design freshmen; 2 credits each</td>
<td></td>
</tr>
<tr>
<td>Design Survey 2015-202</td>
<td>2</td>
</tr>
<tr>
<td>Creative Sources 2013-205</td>
<td>1</td>
</tr>
<tr>
<td>Drawing 2013-211,212,213</td>
<td>9</td>
</tr>
<tr>
<td>Two-Dimensional Design 2013-231, 232</td>
<td>6</td>
</tr>
<tr>
<td>Three-Dimensional Design 2013-241, 242, 243</td>
<td>9</td>
</tr>
<tr>
<td>Elements of Graphic Design (for freshmen) 2010-301</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Elective †</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td>9</td>
</tr>
<tr>
<td>Survey of Western Art & Architecture 2039-225, 226, 227</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education Elective †</td>
<td>0</td>
</tr>
<tr>
<td>Majors must take each of the following courses in sequence to complete sophomore year for current students</td>
<td></td>
</tr>
<tr>
<td>Type & Image 2010-303</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Time-Based Design 2010-313</td>
<td>3</td>
</tr>
<tr>
<td>Studio electives (one each quarter) ‡</td>
<td>9-12</td>
</tr>
<tr>
<td>Third Year</td>
<td>3</td>
</tr>
<tr>
<td>History of Graphic Design 2010-471</td>
<td>3</td>
</tr>
<tr>
<td>Art/Design History Electives</td>
<td>12</td>
</tr>
<tr>
<td>Majors must take each of these or approved Special Topics courses in sequence to complete junior year in graphic design</td>
<td></td>
</tr>
<tr>
<td>Typography I 2010-302</td>
<td>3</td>
</tr>
<tr>
<td>Imagery in Design 2010-402</td>
<td>3</td>
</tr>
<tr>
<td>Symbol & Icon Design 2010-403</td>
<td>3</td>
</tr>
<tr>
<td>Publication Design 2010-404</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Design 2010-406</td>
<td>3</td>
</tr>
<tr>
<td>Information Design 2010-405</td>
<td>3</td>
</tr>
<tr>
<td>Studio electives (average of one per quarter) §</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>14</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>14</td>
</tr>
<tr>
<td>Major must take nine of these senior-level courses or approved Special Topics for seniors (prerequisite completion of junior year):</td>
<td></td>
</tr>
<tr>
<td>Corporate Design 2010-502</td>
<td>3</td>
</tr>
<tr>
<td>Design Systems 2010-504</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project 2010-513</td>
<td>3</td>
</tr>
<tr>
<td>Advertising Design 2010-505</td>
<td>3</td>
</tr>
<tr>
<td>Concept & Symbolism 2010-506</td>
<td>3</td>
</tr>
<tr>
<td>Design for Marketing 2010-507</td>
<td>3</td>
</tr>
<tr>
<td>Design Specifications 2010-509</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Information Design 2010-511</td>
<td>3</td>
</tr>
<tr>
<td>Intro. to Interactive Media Design 2010-512</td>
<td>3</td>
</tr>
<tr>
<td>Editorial Design 2010-514</td>
<td>3</td>
</tr>
<tr>
<td>Public & Social Service Design 2010-518</td>
<td>3</td>
</tr>
<tr>
<td>Senior Internship 2010-523</td>
<td>3</td>
</tr>
<tr>
<td>Portfolio Development & Presentation 2010-524</td>
<td>3</td>
</tr>
<tr>
<td>Open electives (one per quarter) §</td>
<td>9</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>185-188</td>
</tr>
</tbody>
</table>

1 Seepage 10 for liberal arts requirements.
2 See page 11 for policy on physical education.
3 Upon completion of the second year, the associate in applied science degree is awarded.
4 Additional intercollege studio courses are available by recommendation of the academic adviser and administrator. Electives are registered on a space-available basis and subject to change without prior notice. Consult the adviser when planning programs.
82 Imaging Arts and Sciences

Interior design, BFA degree, typical course sequence

First Year
Freshman Electives
(Additional offerings of Design Survey and one of the Computer Skills courses at 2 credits each are required for interior design freshmen)
Design Survey 2015-222
Creative Sources 2013-205
Computer Aided Design 2015-306
Technical Drawing 2035-305
Interior Design Business Practices 2015-409
Open electives (one each quarter) §
Total Quarter Credit Hours 188-191

Second Year
Survey of Western Art & Architecture 2039-225, 226, 227
Liberal Arts *
Physical Education Elective †
Liberal Arts *
Majors must complete each of the following courses to complete sophomore year (prerequisite: completion of foundation studies):
Architectural Drawing 2015-305
Perspective Rendering 2035-306
Introduction to Interior Design 2015-307
Computer-Aided Design Applications 2015-308
Model Building & Human Dimension 2015-311
Studio elective (one each quarter) §
Total Quarter Credit Hours 188-191

Third Year
Art History 2039-XXX
Liberal Arts *
Majors must take each of these courses to complete junior year (prerequisite: completion of sophomore year):
Hospitality Design 2015-404
Applications of Color & Light 2015-402
Retail Design 2035-406
Building Construction Systems 2015-407
Office Design & Planning 2015-408
Interior Specifications 2015-409
Studio Electives (one per quarter) §
Total Quarter Credit Hours 188-191

Fourth Year
Liberal Arts*
Majors must take each of these courses to complete senior year (prerequisite: senior standing in interior design):
Multipurpose, Multistory Design 2015-504
Building Codes & Regulations 2015-505
Environmental Control Applications 2015-506
Healthcare Design 2015-507
Interior Design Business Practices 2015-508
Career Planning 2015-509
Working Drawings 2015-510
Special Projects 2015-511
Electives (one per quarter)
Total Quarter Credit Hours 188-191

Industrial design, BFA degree, typical course sequence

First Year
Freshman Electives
(Additional offerings of Design Survey and one of the Computer Skills courses at 2 credits each are required for industrial design freshmen)
Design Survey 2015-222
Creative Sources 2013-205
Drawing 2013-211, 212, 213
Two-Dimensional Design 2013-231, 232, 233
Interior Design 2013-241, 242, 243
Liberal Arts *
Physical Education Elective †
First-Year Enrichment 1105-051, 1105-052
Open electives (one each quarter) §
Total Quarter Credit Hours 188-188

Second Year
Survey of Western Art & Architecture 2039-225, 226, 227
Liberal Arts *
Physical Education Elective †
Liberal Arts *
Majors must take each of these courses to complete sophomore year (prerequisite: completion of foundation studies):
Layout Systems 2035-305
Technical Drawing 2035-306
Graphic Visualization 2035-307
Computer-Aided Design Applications I 2035-310
Model Making 2035-311
Concept Design Sketching 2035-312
Studio electives (one each quarter) §
Total Quarter Credit Hours 188-188

Third Year
Contemporary Art 2039-300 (one quarter required)
Liberal Arts *
Majors must take each of these courses to complete junior year (prerequisite: completion of sophomore industrial design):
Materials & Processes Applications 2035-405
Consumer Product Design I 2035-406
Human Factors Applications 2035-407
Equipment Design 2035-408
Consumer Product Design II 2035-410
History of Industrial Design 2035-442
CAD Applications II 2035-418
Studio electives (one each quarter) §
Total Quarter Credit Hours 188-188

Fourth Year
Liberal Arts*
As of fall 2000, majors must take 6 of the following courses to complete senior year (prerequisite: senior standing in industrial design):
Design Collaborative 2035-506
Furniture Design 2035-506
Professional Practice 2035-510
Advanced Product Design 2035-512
Career Planning 2035-513
Toy Design 2035-522
Package Design 2035-527
Exhibit Design 2035-533
Open electives (one each quarter) §
Total Quarter Credit Hours 188-188

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Upon completion of the second year, the associate in applied science degree is awarded.
§ A diditional intercollege studio courses are available by recommendation of the academic adviser and administrator. Electives are registered on a space-available basis and subject to change without prior notice. Consult the advisor when planning programs.
Art history electives listed on page 79.
New media design and imaging
This bachelor of fine arts degree was created in response to a growing demand for college graduates with strong digital imaging skills, highly refined design sensitivities, and the ability to visualize concepts. These students explore all forms of digital media as well as traditional imaging techniques to become creative and skilled multimedia designers. Students gain experience in concept development, design development, digital sound, animation, interactivity, programming, digital photography and video, multimedia project development, and digital imaging. They also explore gaming, entertainment multimedia, virtual reality, and other facets of new media. Students prepare and deliver projects executed in all of the major media, including CD-ROM, DVD, and the Web. This program shares courses with the BS in new media publishing, and the BS new media option in information technology. This is a truly dynamic interdisciplinary curriculum.

New media design and imaging, BFA degree, typical course sequence

First Year
- Ideation & Visualization 2009-211 4
- Traditional Photography with Digital Technology 2061-221 4
- New Media Perspectives 2005-211 3
- Time-Based Imaging 2009-411 3
- New Media Publishing 2003-211 3
- Intro to Programming for Digital Media 4002-230 4
- Elements of Graphic Design for New Media 2009-213 3
- Digital Video for Multimedia 2065-217 4
- Introduction to Multimedia 4002-320 4
- Liberal Arts 12
- First-Year Enrichment 1105-051,1105-052 0
- Physical Education Elective 0

Second Year
- Survey of Western Art & Architecture 2039-225, 226,227 9
- 3-D Form & Space 2009-212 3
- Typography 2009-311 3
- Web Site Design & Implementation 4002-409 4
- Intro. to Digital Animation 2065-382 4
- Information Design 2009-312 3
- Elective 3
- Design of Graphic User Interface 2065-383 4
- Programming for Digital Media 4002-434 4
- Web Programming 4002-539 4
- Intro. to Computer Imaging 2009-313 3
- Liberal Arts 12
- Physical Education Elective 0

Third Year
- Design/Photography/ or Art History elective 6/8
- Advanced Design for Networking 2009-401 3
- Writing Elective □ 3
- History of Computer Graphics 2009-422 3
- Emerging Multimedia Design & Imaging Tools 2009-402 3
- Dynamic Typography 2009-412 3
- Dynamic Information Design 2009-403 3
- Advanced 3-D Techniques 2009-413 3
- Studio Elective 3
- Open Elective 3/4
- Liberal Arts 12

Fourth Year
- Dynamic Persuasion Design 2009-501 3
- Career Skills 2010-501 3
- QTVR & Multimedia Design 2009-511 3
- New Media Team Project 1 § 2009-542 0-8
- New Media Team Project 2 § 2009-543 0-8
- Interactive Graphics 2009-512 3
- Virtual Entertainment 2009-502 3
- Open Elective 3/4
- Liberal Arts 12
- Senior Seminar (Liberal Arts) 3

Total Quarter Credit Hours 192-196

* See page 10 for liberal arts requirements.
See page 1 for policy on physical education.
W Writing elective can be taken from various departments. Consult with your faculty advisor.
$ Team Project 1 and 2 are taken for a total of 8 credits over two quarters, or all 8 credits can be taken in spring quarter.

School for American Crafts
As an internationally recognized school that merges art with craft, the School for American Crafts is a leader in crafts education. The School for American Crafts will provide an educational experience that balances technical expertise with aesthetic expression in the creative and technical understanding of wood, metal, clay, and glass. Our educational objectives seek to stimulate creative imagination and technical invention, develop knowledge of process and command of skills, and foster appreciation, not only of the crafts, but also the related arts. The programs strive to inspire the student to seek continual improvement through analysis and self-evaluation.

Programs of study
The School for American Crafts offers a full-time program of study with opportunity to major in one of four craft fields: ceramics and ceramic sculpture, glass and glass sculpture, metals and jewelry design, and woodworking and furniture design. After satisfactory completion of two years of study, the associate in applied science is granted. After successful completion of the four-year program, the bachelor of fine arts is awarded.

The credit requirements for the bachelor of fine arts are:

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
<th>Required Craft Major Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Required Electives 9</td>
</tr>
<tr>
<td>9</td>
<td>Business Practices 9</td>
</tr>
<tr>
<td>50</td>
<td>Liberal Arts 50</td>
</tr>
<tr>
<td>18</td>
<td>Art History 18</td>
</tr>
<tr>
<td>3</td>
<td>Creative Sources 3</td>
</tr>
<tr>
<td>6</td>
<td>Freshman Elective 6</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours

* See page 10 for liberal arts requirements.
A two-year associate in occupational studies also is offered in woodworking and furniture design. The credit requirements are:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Wood Major</td>
<td>36</td>
</tr>
<tr>
<td>Creative Sources</td>
<td>3</td>
</tr>
<tr>
<td>Drawing</td>
<td>9</td>
</tr>
<tr>
<td>Two-Dimensional Design</td>
<td>9</td>
</tr>
<tr>
<td>Three-Dimensional Design</td>
<td>9</td>
</tr>
<tr>
<td>Advanced Drawing</td>
<td>9</td>
</tr>
<tr>
<td>Art History Elective</td>
<td>9</td>
</tr>
<tr>
<td>Professional Business Practices</td>
<td>9</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>93</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirement
† Art electives listed on page 79.

The School for American Crafts offers a Crafts Residence Program. Participants will be accepted in the Ceramics, Glass, Metals, and Wood Studios.

Residence positions are limited and will be awarded on the basis of the submission of a portfolio, transcripts and references, etc. An interview is required. Accepted studio residents are required to register for at least two (2) credits of independent study during every quarter of residence. These two credits can be taken as an audit, thus reducing the tuition cost to the resident.

Accepted residents are expected to be present in their major studio during class hours and to contribute up to ten (10) hours of work per week in the major studio. These work hours will be coordinated and overseen by the major faculty in the area. In exchange the school will provide workspace, access to the facilities and supportive instruction. The resident is invited to participate in the full range of studio activities.

Participants may be people seeking additional studio experience prior to undergraduate or graduate study, early career professionals, or teachers on leave who wish to work again in an academic studio environment, etc. The major faculty in the area will make decisions concerning appropriate candidates.

Course descriptions
For a complete outline of courses, please refer to the course description section of this bulletin.

Extended Studies for the School of Art and School of Design

Fine and Applied Arts

Zerbe Sodervick, Director

Fine and applied arts and crafts courses are designed to contribute to the student’s personal growth and cultural enrichment. Individual courses are offered, or a diploma may be earned by following a program of study in fine and applied arts, advertising design or interior design.

Options begin with introductory courses that provide a basic exploration of the creative process and help students develop visual organization skills. After taking these courses, the student will be able to earn a fine and applied arts diploma by completing the requirements in any of three areas. Some courses are offered only in alternate years.

Students should consult with an adviser to plan their course of study and to clarify goals. The director can be consulted regarding course substitution.

Students must achieve a program GPA of at least 2.0 in order to be certified.

For more information on evening electives, call the coordinator at 585-475-4977.

Core requirements

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Drawing & Media</td>
<td>2012-211, 212, 213</td>
</tr>
<tr>
<td>Basic Design</td>
<td>2012-201, 202, 203</td>
</tr>
<tr>
<td>Fine Arts: Visual Arts</td>
<td>0505-213</td>
</tr>
<tr>
<td>Core Total</td>
<td>16</td>
</tr>
<tr>
<td>Fine arts</td>
<td></td>
</tr>
<tr>
<td>Core requirements</td>
<td>16</td>
</tr>
<tr>
<td>Basic Figure Drawing</td>
<td>2012-215</td>
</tr>
<tr>
<td>Figure Drawing (2 quarters)</td>
<td>2012-225</td>
</tr>
<tr>
<td>Rendering Techniques I, II</td>
<td>2012-266,267</td>
</tr>
<tr>
<td>Electives and sampling with adviser's approval and at least one course in each of painting, printmaking, and sculpture disciplines</td>
<td>22</td>
</tr>
<tr>
<td>Diploma Total</td>
<td>48</td>
</tr>
</tbody>
</table>

Advertising Design

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core requirements</td>
<td>16</td>
</tr>
<tr>
<td>Display Design</td>
<td>2012-256, 257, 258</td>
</tr>
<tr>
<td>Advanced Design & Typography</td>
<td>2012-246, 247, 248</td>
</tr>
<tr>
<td>Graphic Design</td>
<td>2012-231, 232, 233</td>
</tr>
<tr>
<td>Advertising Design</td>
<td>2012-241, 242, 243</td>
</tr>
<tr>
<td>Basic Figure Drawing</td>
<td>2012-215</td>
</tr>
<tr>
<td>Electives with adviser's approval</td>
<td>6</td>
</tr>
<tr>
<td>Diploma Total</td>
<td>48</td>
</tr>
</tbody>
</table>

Interior Design

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core requirements</td>
<td>16</td>
</tr>
<tr>
<td>Display Design</td>
<td>2012-256, 257, 258</td>
</tr>
<tr>
<td>Marketing</td>
<td>0681-361</td>
</tr>
<tr>
<td>Interior Design</td>
<td>2012-251, 252</td>
</tr>
<tr>
<td>History of Interior Design</td>
<td>2012-254</td>
</tr>
<tr>
<td>Environmental Design</td>
<td>2012-261, 262, 263</td>
</tr>
<tr>
<td>Electives with adviser’s approval</td>
<td>10</td>
</tr>
<tr>
<td>Diploma Total</td>
<td>48</td>
</tr>
</tbody>
</table>

* Core requirements are prerequisite all diploma programs.

For more information on evening electives offered by the School for American Crafts, call 585-475-4977.
School of Film and Animation
Howard Lester, Chair

The degree program in film, video, and animation is for students who recognize the moving image as an expressive force uniquely important to modern life. It will acquaint students with film, video, and animation as creative media and develop their production skills.

The curriculum emphasizes production. Freshmen begin working in 16mm film and animation their very first quarter, continue with actual production every quarter until they graduate and may specialize in motion pictures, video, or traditional or computer animation. Our goal is that all our graduates be able to produce, creatively and practically, their own independent work or to fulfill any production responsibility in any medium suitable to their interests and abilities.

Through lectures and laboratories students develop individual skills in moving-image communications and learn the aesthetic principles governing the art. Technology and technique are never taught as an end in themselves but in terms of learning to use the tools necessary to achieve a creative goal in relation to the audience. The curriculum also recognizes the increasing interrelationship between the technologies of film, video, animation, and computers. Other RIT students may enroll in film/ video courses with the permission of the instructor. There is also an active foreign-exchange program with colleges in Salisbury, England, and Rotterdam, Holland.

Students produce several short films or animations, working through all phases of production: scripting, production planning, budgeting, shooting, sound editing, and working with a laboratory. Students combine their learning of visual and sound artistry through hands-on experience with camera and sound equipment. Because film, video, and animation projects are designed by individual students, a wide variety of styles and intentions is expressed in the department’s work.

Graduate programs
The School of Film and Animation offers the MFA in imaging arts with two areas of concentration: film/ video production and animation. The MFA degree is described in the Graduate Bulletin, available from the Office of Graduate Enrollment Services.

Summer session
The School of Film and Animation offers a limited selection of courses in the summer session. These range from beginning courses to those requiring a substantial background. For detailed information, write the school.

Internet address
Additional information can be requested via e-mail to mqbpph@rit.edu.

Memberships
The school maintains memberships in a number of professional organizations: College Art Association, Professional Photographers of America, Society of Motion Picture and Television Engineers, Society for Photographic Education, University Film and Video Association, SIGGRAPH.

Transfer admission
Transfer credits from accredited institutions are evaluated on a course-by-course basis. Transfer credits for film animation courses are awarded on the basis of a portfolio in addition to course work with a grade of C or better. The portfolio will be reviewed by the department chair. (Portfolio guidelines are available from the Office of Undergraduate Admissions.)

Writing policy
The School of Film and Animation has a minimum requirement within each of its degree programs. A copy of the school’s official writing competency policy may be obtained from the department or from the Office of Academic Student Services.

Film/ video, animation, BFA degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film/ Video Production I</td>
<td>2</td>
</tr>
<tr>
<td>Film/ Video Production II</td>
<td>2</td>
</tr>
<tr>
<td>Film/ Video Production III</td>
<td>2</td>
</tr>
<tr>
<td>Production Emphasis</td>
<td>1</td>
</tr>
<tr>
<td>Video Tools & Technology</td>
<td>2</td>
</tr>
<tr>
<td>Intro. to 16mm Sync. Sound</td>
<td>2</td>
</tr>
<tr>
<td>Film/ Video History & Aesthetics</td>
<td>1</td>
</tr>
<tr>
<td>Film/Video Production Workshop</td>
<td>1</td>
</tr>
<tr>
<td>Animation Emphasis</td>
<td>1</td>
</tr>
<tr>
<td>Video Tools & Technology</td>
<td>2</td>
</tr>
<tr>
<td>Animation Pre-production</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Animation Tools</td>
<td>1</td>
</tr>
<tr>
<td>or Introduction to 2D Computer Animation</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to 3D Computer Animation</td>
<td>1</td>
</tr>
<tr>
<td>Animation Production Workshop</td>
<td>1</td>
</tr>
<tr>
<td>or Experimental Animation Workshop</td>
<td>1</td>
</tr>
<tr>
<td>Foundation Drawing</td>
<td>1</td>
</tr>
<tr>
<td>Sculpture</td>
<td>1</td>
</tr>
<tr>
<td>Design Elective</td>
<td>0</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>1</td>
</tr>
<tr>
<td>Physical Education</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing for Film/Video II</td>
<td>3</td>
</tr>
<tr>
<td>Film/Video Electives</td>
<td>3</td>
</tr>
<tr>
<td>Production Emphasis</td>
<td>2</td>
</tr>
<tr>
<td>Video Tools & Technology</td>
<td>5</td>
</tr>
<tr>
<td>Intro. to 16mm Sync. Sound</td>
<td>5</td>
</tr>
<tr>
<td>Film/ Video History & Aesthetics</td>
<td>12</td>
</tr>
<tr>
<td>Film/Video Production Workshop</td>
<td>4</td>
</tr>
<tr>
<td>Animation Emphasis</td>
<td>5</td>
</tr>
<tr>
<td>Video Tools & Technology</td>
<td>5</td>
</tr>
<tr>
<td>Animation Pre-production</td>
<td>5</td>
</tr>
<tr>
<td>Advanced Animation Tools</td>
<td>4</td>
</tr>
<tr>
<td>or Introduction to 2D Computer Animation</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to 3D Computer Animation</td>
<td>4</td>
</tr>
<tr>
<td>Animation Production Workshop</td>
<td>4</td>
</tr>
<tr>
<td>or Experimental Animation Workshop</td>
<td>4</td>
</tr>
<tr>
<td>Foundation Drawing</td>
<td>6</td>
</tr>
<tr>
<td>Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>Design Elective</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film/ Video History & Aesthetics</td>
<td>6-8</td>
</tr>
<tr>
<td>Senior Project Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Production Emphasis</td>
<td>1</td>
</tr>
<tr>
<td>Film/ Video Production Workshops</td>
<td>8</td>
</tr>
<tr>
<td>Film/ Video Electives</td>
<td>9-12</td>
</tr>
<tr>
<td>Advanced Scriptwriting</td>
<td>4</td>
</tr>
<tr>
<td>Animation Emphasis</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Animation Tools</td>
<td>4</td>
</tr>
<tr>
<td>or Introduction to 2D Computer Animation</td>
<td>5</td>
</tr>
<tr>
<td>or Introduction to 3D Computer Animation</td>
<td>5</td>
</tr>
<tr>
<td>3D Computer Animation</td>
<td>5</td>
</tr>
<tr>
<td>Advanced Animation Workshop I</td>
<td>5</td>
</tr>
<tr>
<td>Advanced Animation Workshop II</td>
<td>4</td>
</tr>
<tr>
<td>or Experimental Animation Workshop</td>
<td>4</td>
</tr>
<tr>
<td>Scriptwriting for Animation</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>12</td>
</tr>
<tr>
<td>Film/ Video Electives</td>
<td>6-8</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project I, II</td>
<td>10</td>
</tr>
<tr>
<td>Senior Project III</td>
<td>10</td>
</tr>
<tr>
<td>Senior Forum I, II</td>
<td>6</td>
</tr>
<tr>
<td>Film/ Animation Electives</td>
<td>12</td>
</tr>
<tr>
<td>Film/ Animation History & Aesthetics</td>
<td>6-8</td>
</tr>
<tr>
<td>Liberal Arts Electives</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours | 181-191 |

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
School of Photographic Arts and Sciences

The programs of the School of Photographic Arts and Sciences are designed to prepare students for a wide range of careers in photographic and other imaging fields. Studies in photographic arts involve both technical and creative experiences for visual problem solving. The science and technology division of the school emphasizes the physical principles of imaging through studies in image evaluation, unconventional imaging applications and computer applications, as well as other high-technology areas. All first-year BFA students in photography and students in biomedical photographic communications and technical photography are required to have their own handheld small- or medium-format camera and a professional light meter.

Students have the opportunity to supplement their course work with participation in internships, field trips, presentations by guest speakers, departmental student organizations and related activities.

We urge our students to take advantage of our school's location. Reflecting Rochester's historic connection with photography, a comprehensive schedule of programs, including exhibitions, lectures and seminars, is offered by the city's array of cultural institutions every year.

Degrees offered

- BFA degree in advertising photography-Denis Defibaugh, program chair;
- BFA degree in photojournalism-Doug Rea, program chair;
- BFA degree in fine art photography-Ken White, program chair;
- BS degree in imaging and photographic technology-Andrew Davidhazy, administrative chair;
- BS degree in biomedical photographic communications-Michael Peres, program chair;
- BS degree in imaging systems management-James E. McGhee Professor, William S. Fischer, program chair

Graduate programs

The School of Photographic Arts and Sciences offers the MFA in imaging arts. We also offer graduate-level courses of study in photographic preservation and archival practice. The MFA degree is described in the Graduate Bulletin, available from the Office of Graduate Enrollment Services.

Summer session

The School of Photographic Arts and Sciences offers a wide selection of photographic courses in the Summer Session. These range from beginning photography courses to those requiring a substantial photographic background. For detailed information, write the department of the school.

Internet address

Additional information can be requested through the Web site of the School of Photographic Arts and Sciences: photography@rit.edu.

Memberships

Transfer admission

Transfer credits from accredited institutions are evaluated on a course-by-course basis. Transfer credits for photography courses are awarded on the basis of a portfolio in addition to course work with a grade of C or better. The portfolio will be reviewed by the department chair. (Portfolio guidelines are available from the Office of Undergraduate Admissions.)
Writing Policy
The School of Photographic Arts and Sciences has a minimum requirement within each of its degree programs. A copy of the school’s official writing competency policy may be obtained from the department or from the Office of Academic Student Services.

Summer transfer programs
Students who meet the requirements for course work and portfolio work may be accepted into one of several summer transfer programs. These 10-week sessions of intensive study bring students to a second- or third-year technical level in their photography programs. Descriptions of the requirements for each program and year level follow.

Second-year transfer credit requirements
Imaging and photographic technology-To become a fall transfer into the sophomore year, candidates must complete a Summer Transfer Program and should have previously completed the following college-level course work: at least one year of mathematics, including an introductory calculus course; at least four liberal arts courses; and two courses in B&W photography. Additional photography courses may exempt a student from Photography I, a requirement in the Summer Transfer Program. Credit for this is evaluated by transcript and submission of a portfolio. Other credits earned also may be accepted for transfer to upper years. These include college physics, liberal arts, technical writing, computer programming, chemistry, and additional mathematics.

Biomedical photographic communications-To become a fall transfer into the sophomore year, it is suggested that candidates should complete a Summer Transfer Program and/or have previously completed the following college-level course work: 12 credits hours of liberal arts, 8 of science and 6 of photography. Students also must complete the 10-week intensive summer courses Photography I and Materials and Processes of Photography.

Applicants may submit a transcript of college courses completed and request a transfer credit audit. Transfer credit for Photography I is based on acceptable comprehensive portfolio review, satisfactory completion of an appropriate college photography course and/or evidence of appropriate work experience.

Advertising photography, fine art photography, or photojournalism-Normally a minimum of 30 quarter credits, of which there are 9 credits in design: 12 in liberal arts; and 18 in photography, photography and studio art, or an accepted equivalent. The student may be required to complete the 10-week intensive summer courses Photography I.

Third-year transfer credit requirements
Advertising photography, fine art photography, or photojournalism-Normally an applicant must have completed an associate degree or equivalent of two years of college with a major in photography (a minimum of 25 quarter credits of photography) plus studio art courses for a minimum of 9 quarter credits, liberal arts for 24 quarter credits, and art history for 9 quarter credits. The student also must complete the 10-week intensive summer course BFA Photography and must make up the courses Materials and Processes of Photography and History and Aesthetics of Photography. Portfolio required.

Entry into advertising photography, fine art photography, or photojournalism requires a portfolio review as well as evaluation of transfer credit.

If a student has completed two or more years of intensive study in photography at an accredited school, he or she may submit a portfolio for evaluation by the BFA faculty. A list of the requirements for submission of the portfolio may be obtained from the Office of Undergraduate Admissions, Bausch & Lomb Center, 60 Lomb Memorial Drive, Rochester, N.Y. 14623-5604.

Biomedical Photographic Communications
Michael Peres, Program Chair
RIT has the only program in the nation that grants a bachelor of science degree in this exciting area of visual communications that combines photography and biology. The program prepares students for photographic and imaging careers in various science institutions, such as forensic labs, pharmaceutical companies, and military bases as well as in the area of ophthalmic photography, which is the only form of photography that is diagnostic. In addition, because of the unique blend of courses, recent graduates have been very successful finding positions in the electronic imaging field as technical service representatives or producers of multimedia and Web publishing.

During the first two years of the program, students receive a solid foundation in analog and digital photography, desktop, and Web publishing as well as biology and general science courses. Included in these classes are topics such as close-up and high-magnification photography, studio lighting, ethics, ophthalmic photography, and imaging technologies. Desktop Publishing as well as computer graphics will be explored.

By the end of their second year, students will have been introduced to a wide variety of career options through the program’s interactive lecture series with professional biomedical and new media experts. This knowledge will help them identify and secure a summer co-op position. At least one co-op or internship is required for graduation. Co-ops are an opportunity for students to gain experience in their field and are generally undertaken between their second and third academic years. Most co-ops are paid positions and are typically 8 to 10 weeks long for 20 to 40 hours per week.

In the junior and senior years, the curriculum becomes very flexible, allowing students to choose elective courses and build a photographic concentration from a wide variety of courses taught in the College of Imaging Arts and Sciences, the College of Science or the College of Computing and Information Sciences. This flexibility coupled with the personal attention of faculty advising allows students to focus on their career and educational goals. It is not uncommon for graduates to continue their studies in graduate school programs in imaging, medicine, or information technology.

Since 1968 most of the nearly 500 graduates of the BPC program have been actively recruited by various companies that produce visual communications materials. Many of these graduates have become directors and leaders in their respective institutions and companies. Today the biomedical photographic communications program boasts a placement rate of well over 85 percent.

For more information, visit the department Web page at www.rit.edu/biomed.
Biomedical photographic communications, BS degree, typical course sequence

First Year Quarter Credit Hours

First-Year Enrichment 1105-051, 1105-052 0
Biomedical Photography I 2061-201, 202, 203 12
Materials & Processes of Photography 2076-211, 212, 213 9
Survey of Biomedical Photography 2061-213 1
Preparation of Biomedical Visuals I 2061-311 3
Human Biology I,II 1004-211, 212 6
Human Biology Lab I,II 1004-231, 232 2
Liberal Arts (Core) * 12
Physical Education † 0

Second YearQuarter Credit Hours

Biomedical Photography II 2061-301,302,303 15
Web Publishing 2061-362 4
Preparation of Biomedical Visuals III 2061-313 3
Digital Photography I,II 2061-316, 318 8
Medical Terminology 1026-301 3
Liberal Arts (Core) * 16
Physical Education † 0

Summer Co-op (10 weeks in a medical setting) †

Third YearQuarter Credit Hours

AV Production I 2061-401 4
Advanced Photography in Bio. Comm. 2061-402,403 8
Professional Electives § 9-12
Science Electives # 5-8
Liberal Arts (Concentration) * 12
Co-op (Optional) 0
Mathematics 8

Fourth YearQuarter Credit Hours

Photographic Concentration 2061-501, 502, 503 12
Business Electives 8
Professional Electives § 9-12
Liberal Arts (Elective) * 12
Liberal Arts (Senior Seminar) * 2
Total Quarter Credit Hours 189-198

* See page 10 for liberal arts requirements.
† See page 12 for policy on physical education.
§ A associate degree awarded upon successful completion of second year and the internship.
Possible professional electives: ophthalmic photography, portable video, holography.
Selected professional courses may be substituted for 4, 8 or 12 credits with written permission of adviser.
Options include electron microscopy, computer courses, advanced courses in the biological sciences, printing & electronic progress, multimedia, computer animation, ophthalmic photography.

Imaging and Photographic Technology

Andrew Davidhazy, Administrative Chair

The curriculum blends a contemporary professional photography program with specialized education in technical, industrial and scientific imaging applications.

It prepares students for entry into any of a variety of picture-making and non-picture-making positions by providing them with a background adaptable to a variety of fields. Students' technical skills are complemented by academic coursework in mathematics, computers, science and liberal arts, including technical writing.

At the same time, however, students develop expertise in a professional or technical field of their choice by taking at least six self-selected elective courses in any one of several available areas of concentration.

The picture-making aspects of photography are included in all four years of the program, with a transition from a comprehensive course in black-and-white photography through color photography and color printing and architectural or nature photography. The required technical courses include Photographic Sensitometry, Optics and Chemistry, Color Measurement and High-Speed Photography. Also available are a variety of technical and photographic electives such as Holography, Photonics, Scanning Electron Microscopy and Photoinstrumentation Applications. Computing and electronic imaging are emphasized from the first year in such courses as C++ Programming, Digital Image Processing and Introduction to Multimedia.

In their last two years, students may choose a field of concentration (see footnote **, next page). While every student's core program is similar, each graduate's background varies with his or her choice of concentration area.

Another unique feature of the program is that graduates complete at least two required cooperative education work blocks before graduation. Co-op is a definite asset to graduates of any program.

An employment survey conducted by the School of Photographic Arts and Sciences shows the need for graduates with imaging and photographic technology backgrounds well into the future. Recent graduates of this program are employed as photographic technicians, technologists or research associates in various industrial, scientific or business enterprises; as photographic engineers or junior engineers in a number of imaging-related disciplines; as technical and sales representatives; technical illustrators; high-speed photographers; and as corporate, industrial, advertising and commercial photographers. The department chairperson has a comprehensive list of graduates' careers available.

The Technical Photography Student Association promotes professionalism among students and interaction with the imaging and photographic technology industry. The association regularly invites professionals to campus for lectures and demonstrations.

If you would like specific information, a personal interview, tour or an opportunity to visit classes and talk with some of our students, call the administrative chair, Andrew Davidhazy, at 585-475-2592 or contact by e-mail at andpph@rit.edu.

For additional information, visit the departmental home page at www.rit.edu/-andpph/ipt.html.
Imaging Arts and Sciences

Imaging and photographic technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography I 2076-201, 202, 203</td>
<td>12</td>
</tr>
<tr>
<td>Materials & Processes of Photography 2076-211, 212, 213</td>
<td>9</td>
</tr>
<tr>
<td>Intro. to Programming * 0602-208</td>
<td>4</td>
</tr>
<tr>
<td>Programming with Classes 0602-210</td>
<td>4</td>
</tr>
<tr>
<td>System Design/ Graphic Presentations 2076-401</td>
<td>4</td>
</tr>
<tr>
<td>Elementary Calculus I, II 1016-214, 215 †</td>
<td>6</td>
</tr>
<tr>
<td>Liberal Arts (Core) ‡</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education §</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Photographic Chemistry 2076-302</td>
<td>4</td>
</tr>
<tr>
<td>Photographic Optics 2076-303</td>
<td>4</td>
</tr>
<tr>
<td>Color Printing Theory 2076-312</td>
<td>4</td>
</tr>
<tr>
<td>Color Measurement 2076-313</td>
<td>4</td>
</tr>
<tr>
<td>College Physics 1017-211, 212</td>
<td>9</td>
</tr>
<tr>
<td>College Physics Lab 2076-552</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education ‡</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education (Summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration Electives ¶</td>
<td>12</td>
</tr>
<tr>
<td>Color Photo/Design 2076-311</td>
<td>4</td>
</tr>
<tr>
<td>Nature Photography 2076-471</td>
<td>4</td>
</tr>
<tr>
<td>Architectural Photography 2067-478</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Digital Image Processing 2076-491</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Sensometry 2076-552</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Portable Video 2065-243</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Multimedia 3001-201</td>
<td>4</td>
</tr>
<tr>
<td>Technical Writing 0502-494</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts †</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education (Summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration Electives</td>
<td>12</td>
</tr>
<tr>
<td>High-Speed/Time-Lapse 2076-511</td>
<td>3</td>
</tr>
<tr>
<td>Intro. to Research 2076-501</td>
<td>3</td>
</tr>
<tr>
<td>Survey of Nonconventional Imaging 2076-503</td>
<td>3</td>
</tr>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>3</td>
</tr>
<tr>
<td>Statistics Elective</td>
<td>4</td>
</tr>
<tr>
<td>Business or Statistics Elective</td>
<td>4</td>
</tr>
<tr>
<td>Departmental Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration/Elective) †</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) †</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: Not less than 190

*Although the department recommends that IPT students take the C++ courses above, students may take 1 or 2 Programming in Visual Basics courses instead (two program courses or 6 credits are required).
† Can substitute Engineering Calculus or Calculus for Technologists; consult advisor.
‡ See page II for policy on physical education.
¶ Can substitute Engineering Calculus or Calculus for Technologists; consult advisor.
Students may substitute University Physics for College Physics. University Physics may not be taken towards program credits once College Physics has been completed; consult advisor.

Imaging Systems Management

William S. Fischer, James E. McGhee Professor

The imaging systems management major at RIT is interdisciplinary with photographic technology, printing technology, information technology and operations management requirements. This curriculum prepares students for management careers in imaging services businesses, imaging technology marketing in equipment and materials manufacturing companies, technical imaging systems specialists or to become imaging industry entrepreneurs.

Students may enroll in the program as freshmen or transfers from programs in the liberal arts, business (marketing, international business), photography, computer science, information technology, and telecommunications technology. Our curriculum intends to produce the imaging leaders of the future. Exceptionally well qualified and highly motivated students will best be able to take advantage of the unique interdisciplinary strengths of the curriculum. The imaging industry is among the most important global businesses.

Imaging Systems Management, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photographic Image Production Systems 2068-401</td>
<td>4</td>
</tr>
<tr>
<td>Digital Image Production Systems 2068-402</td>
<td>4</td>
</tr>
<tr>
<td>Color Measurement 2076-313</td>
<td>4</td>
</tr>
<tr>
<td>Photographic Systems Process Control 2068-421</td>
<td>4</td>
</tr>
<tr>
<td>Operations Management Imaging Services 2068-513</td>
<td>4</td>
</tr>
<tr>
<td>Image Capture & Analysis 2061-401</td>
<td>3</td>
</tr>
<tr>
<td>Materials & Processes of Photography 2076-211,212,213</td>
<td>9</td>
</tr>
<tr>
<td>Principles of Marketing 0105-463</td>
<td>4</td>
</tr>
<tr>
<td>Business Computer Applications 0106-320</td>
<td>4</td>
</tr>
<tr>
<td>Organizational Behavior 0102-430</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Multimedia Production 3001-201</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts*</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance for Imaging Management 2068-501</td>
<td>4</td>
</tr>
<tr>
<td>Image Marketing Production Project 2068-502</td>
<td>4</td>
</tr>
<tr>
<td>Imaging Technology Systems 2068-511</td>
<td>4</td>
</tr>
<tr>
<td>Financial Accounting 0101-301</td>
<td>4</td>
</tr>
<tr>
<td>Managerial Accounting 0101-302</td>
<td>4</td>
</tr>
<tr>
<td>Fundamentals of Information Systems 0106-325</td>
<td>4</td>
</tr>
<tr>
<td>Network Technology 0106-375</td>
<td>4</td>
</tr>
<tr>
<td>Color Separation Systems 2081-409</td>
<td>4</td>
</tr>
<tr>
<td>Managing Multimedia 3001-310</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 184

* See page 10 for policy on physical education.

Students not meeting the program requirements for two courses in mathematics and two courses in laboratory science should strongly consider summer quarter enrollment in the following courses: 4 credits of chemistry or physics with laboratory preferred and 4 credits of college algebra or, if that has been completed, statistics for business. Any student not meeting the mathematics and science requirements may need to complete the second summer quarter to complete the program in two years. All incoming transfer students should contact the program chair for advice on course selection.
Photographic Arts

William DuBois, Administrative Chair

Advertising Photography

Denis Defibaugh, Program Chair

RIT’s advertising photography program prepares students to utilize their skill and creativity in the challenging world of commercial photography. Whether creating images for advertising agencies, editorial magazines, or designer’s projects; students learn the technical and artistic skills necessary to create a successful photograph. Graduates receive a bachelor of fine arts degree in professional photographic illustration.

The advertising photography program is flexible enough to develop each student’s particular talents with the ultimate goal of providing art for commerce. During their junior and senior years students can choose from courses that include editorial, fashion, portrait, architectural, and digital photography. Additional courses include advanced studio and location photography, publication design and production, and collaborative courses with graphic design students. All advertising photography courses emphasize visual communications and professional business practices.

Professional photographic illustration, advertising photography option, BFA degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Photo I 2067-201,202</td>
<td>12</td>
</tr>
<tr>
<td>Applied Photo I 2067-XXX</td>
<td>6</td>
</tr>
<tr>
<td>Survey of Western Art & Architecture 2099-225, 226, 227</td>
<td>9</td>
</tr>
<tr>
<td>2-D Design 2013-231,232</td>
<td>6</td>
</tr>
<tr>
<td>Drawing 2013-211</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Photo II 2067-301,302</td>
<td>10</td>
</tr>
<tr>
<td>Applied Photo II 2067-XXX</td>
<td>5</td>
</tr>
<tr>
<td>History & Aesthetics of Photography 2060-301, 302, 303</td>
<td>9</td>
</tr>
<tr>
<td>Materials & Processes of Photography 2076-211, 212, 213</td>
<td>9</td>
</tr>
<tr>
<td>Career Seminar 2060-XXX</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising Photography I, II 2067-411, 412</td>
<td>10</td>
</tr>
<tr>
<td>Advertising Core</td>
<td>5</td>
</tr>
<tr>
<td>Electives</td>
<td>9-12</td>
</tr>
<tr>
<td>Photo Electives (minimum) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising Core</td>
<td>10</td>
</tr>
<tr>
<td>Photo Bus Management 0267-431</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>9-15</td>
</tr>
<tr>
<td>Liberal Arts (Electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Photo Electives (minimum) ‡</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours

183-186

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Minimum of 12 total elective credits required; may be any CIAS course (photo, art, printing, etc.)

Photojournalism

Douglas Ford Rea, Program Chair

World events today are often etched not by words but by photographs. RIT’s photojournalism program, which leads to a bachelor of fine arts degree in professional photographic illustration, provides the education both in photographic techniques and the artistry of capturing events on film or digitally for magazines, newspapers and independent projects. RIT graduates of this program are well respected: alumni have won nine Pulitzer Prizes in visual journalism since 1979. Students have the opportunity to explore related disciplines, such as electronic printing, newspaper production and other related topics within the College of Imaging Arts and Sciences.

Professional photographic illustration, photojournalism option, BFA degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Photo I 2067-201,202</td>
<td>12</td>
</tr>
<tr>
<td>Applied Photo I 2067-XXX</td>
<td>6</td>
</tr>
<tr>
<td>Survey of Western Art & Architecture 2099-225, 226, 227</td>
<td>9</td>
</tr>
<tr>
<td>2-D Design 2013-231,232</td>
<td>6</td>
</tr>
<tr>
<td>Drawing 2013-211</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Photo II 2067-301,302</td>
<td>10</td>
</tr>
<tr>
<td>Applied Photo II 2067-XXX</td>
<td>5</td>
</tr>
<tr>
<td>History & Aesthetics of Photography 2060-301, 302, 303</td>
<td>9</td>
</tr>
<tr>
<td>Materials & Processes of Photography 2076-211, 212, 213</td>
<td>9</td>
</tr>
<tr>
<td>Career Seminar 2060-XXX</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photojournalism I 2067-401, 402,403</td>
<td>15</td>
</tr>
<tr>
<td>Intro. to Electronic Photojournalism 2067-XXX</td>
<td>3</td>
</tr>
<tr>
<td>Photo Electives ‡</td>
<td>6-10</td>
</tr>
<tr>
<td>Photojournalism Ethics</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
<tr>
<td>Professional Writing 0535-532</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photojournalism II 2067-XXX</td>
<td>15</td>
</tr>
<tr>
<td>Advanced Electronic Photojournalalism 2067-XXX</td>
<td>3</td>
</tr>
<tr>
<td>Photojournalism Core</td>
<td>12-15</td>
</tr>
<tr>
<td>Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>Liberal Arts (Electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours

184-188

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Minimum of 12 total elective credits required; may be any CIAS course (photo, art, printing, etc.)
Fine Art Photography

Ken White, Program Chair

This program is designed to encourage and facilitate your artistic development, sensitivity and uniqueness as a visual artist. The department's objective is not to train you for a specific job in photography, but rather to provide you with a rich potential for growth and change and for a lifetime of interesting and challenging work in creative imaging and related fields. Students majoring in fine art photography receive the BFA degree in professional photographic illustration.

Career opportunities

Graduates of the program find careers in a variety of areas: exhibiting artists, teachers, picture editors, art directors, photographer's representatives, photographic archivists, museum and gallery staff, audiovisual specialists, self-employed photographers, custom color printers, and film/video artists or animators. Many students choose to pursue graduate work and earn an MFA degree in the arts.

Transfer students

College students who wish to transfer to the program can do so if they are studying photography or related imaging arts areas such as painting, graphic design, communication arts, audiovisual, film, and television.

Professional photographic illustration, BFA degree, fine art photography option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Photo I 2067-201, 202</td>
<td>12</td>
</tr>
<tr>
<td>Applied Photo I 2067-XXX</td>
<td>6</td>
</tr>
<tr>
<td>Survey of Western Art & Architecture 2039-225, 226, 227</td>
<td>9</td>
</tr>
<tr>
<td>2-D Design 2013-231, 252</td>
<td>6</td>
</tr>
<tr>
<td>Drawing 2013-211</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Photo II 2067-301, 302</td>
<td>10</td>
</tr>
<tr>
<td>Applied Photo II 2067-XXX</td>
<td>5</td>
</tr>
<tr>
<td>History & Aesthetics of Photography 2060-301, 302, 303</td>
<td>9</td>
</tr>
<tr>
<td>Career Seminar 2060-XXX</td>
<td>1</td>
</tr>
<tr>
<td>Materials & Processes of Photography 2076-211, 212, 213</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography as a Fine Art I 2060-401, 402,403</td>
<td>12</td>
</tr>
<tr>
<td>Contemporary Issues 2060-411, 412, 413</td>
<td>12</td>
</tr>
<tr>
<td>Modern Art History Elective</td>
<td>3</td>
</tr>
<tr>
<td>Studio Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>Art History/ Criticism Elective</td>
<td>3-4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography as a Fine Art II 2060-501, 502, 503</td>
<td>12</td>
</tr>
<tr>
<td>Studio Elective</td>
<td>12</td>
</tr>
<tr>
<td>Art History/ Criticism *</td>
<td>6</td>
</tr>
<tr>
<td>Liberal Arts (Electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 183-185

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Visual imaging electives may be any CIAS course (photo, art, printing, etc.)

School of Print Media

Barb Pellow, Administrative Chair

The School of Print Media offers a complete array of programs based on the concepts needed in all printing and publishing industry jobs and encourages customized study in other courses to develop individual talents and interests. The completeness of a student's professional education in the School of Print Media differentiates RIT's programs from those at other colleges.

The school's facilities are unsurpassed: students learn with more than $50 million worth of up-to-date equipment in 17 laboratories and 35,000 square feet of facilities.

Scholarships and financial aid

Our large number of successful graduates testifies to the value of RIT's printing programs. No student interested in attending the School of Print Media should consider another school without first discussing financial questions with an expert in either the Financial Aid or Admissions office.

The school enjoys substantial scholarship support from alumni and industry. More than 65 scholarships are available to School of Print Media students through the Financial Aid Office, and the school itself administers a number of other scholarships that are awarded to entering freshmen and upperclassmen on the basis of merit.

The Education Council of the Graphic Arts Industry also offers scholarships. Application should be made by high school students early in their senior year, because the scholarships involve competitive exams. If information is not available from the high school, candidates may write to:

National Scholarship Trust Fund
200 Deer Run Rd.
Sewickly, PA 15143

Students who have completed high school also should contact the council. Many types of scholarships are available for students pursuing an education in graphic arts.

In addition to scholarships and other financial aid, students frequently find part-time employment in various positions on campus. The school employs students as laboratory assistants. These positions are filled on the basis of merit, but many of them are restricted to students needing financial aid. Also, part-time work may be available in the Rochester area in private printing firms and in such RIT-affiliated organizations as the Printing Applications Lab. Finally, in addition to its educational benefits, cooperative education gives some students the ability to pay part of their college costs with money earned at work.

Cooperative education

The cooperative work/study program (co-op) is an important educational feature required in all programs for at least two quarters. Co-op work/study enlarges and improves a college education by combining formal classroom learning with practical work experience. Its main purpose is educational, but in many cases students also use it to help pay the cost of college. The Office of Cooperative Education and Career Services helps students find co-op and permanent placements with a large number of firms.
A wide range of opportunities is available. Students have been employed by federal agencies, industrial organizations, commercial printers, the publishing industry and service industries for the printing trade in all areas of production, customer service, and plant operations. There are no restrictions on geographic location as long as the position is related to the graphic arts area and approved by the school. Students have been employed all over the United States and in foreign countries. Two students each quarter co-op as printing specialists on the Queen Elizabeth II cruise ship.

Transfer credits
RIT encourages transfer students from other colleges and programs by granting the maximum possible transfer credit. Call the school at 585-475-7029 for up-to-date information, transfer recommendations and other details about transfer credit.

Graphic Media
Prospective students should look at both of the school's degree programs before making a choice. The graphic media program attracts 50 percent or more of students applying to the School of Print Media. It allows students excellent flexibility in customizing their programs for the careers they seek.

This program is based on a solid foundation in technical areas important to the various disciplines that make up the graphic media industry. In addition, it makes available a wide selection of electives in both traditional and emerging media.

Program of study
The curriculum includes a broad base of 15 core graphic media courses in the first two years plus a combination of nine required and a minimum of eight elective graphic media courses in the third and fourth years.

First-year graphic media courses include introductions to graphic media, new media and multimedia publishing, typography and design, image capture, document publishing software, digital publishing workflow, and a first course in leadership and group communication skills. Integral to these professional courses are three capstone projects (one per quarter) that are designed to let students use the skills developed in the course work on actual projects to the graphic media program. These are supplemented by a two-quarter sequence of a laboratory science and a liberal arts course. The science courses specified in the curriculum are minimum requirements. The liberal arts program is described in greater detail on pages 9 and 10.

In the sophomore year, the technology base established in the first year is extended by courses in digital media programming and in-depth exposure to materials and process for reproduction, publishing, and the distribution methods encountered in graphic media. A vigorous course in technical writing leads to a required professional-level research report. Two additional group capstone projects again require students to apply the skills learned in the classroom to real projects for real clients. Students with good backgrounds in science are encouraged to take higher-level courses to enhance their overall education. The professional work is enhanced by two math courses and four additional liberal arts courses. Students with extensive math backgrounds are encouraged to take engineering-level math courses to enhance their quantitative skills.

During the third year the student encounters digital printing and publishing technologies, including an introduction to customizing and personalizing graphic media messages and to database publishing as another means to provide added value. The theory and practice of color management is explored to provide the student with the necessary tools to insure predictable and consistent color across the whole spectrum of graphic media production. A course in digital media business management focuses on the skills needed in e-commerce. Three professional electives from a broad range of technical and management courses are augmented by two math courses in data analysis and four liberal arts courses.

In the senior year the students are required to participate in a significant capstone project with a group of their peers. In the fall quarter project management course, students interact with a client to develop a graphic media product that meets the client's specific needs. In the winter and spring quarters the group designs, schedules, and produces that product to the client's satisfaction. In addition, students meet with a series of industry leaders to discuss the latest issues and trends. The student also selects at least five additional professional electives that will help to meet his or her career goals. Five liberal arts courses round out the senior year.
Graphic media, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphic Media Perspectives 2082-201</td>
<td>3</td>
</tr>
<tr>
<td>Applied Typography & Design 2082-211</td>
<td>4</td>
</tr>
<tr>
<td>Digital Image Capture 2082-221</td>
<td>4</td>
</tr>
<tr>
<td>Design Parameters for Graphic Media 2082-207</td>
<td>4</td>
</tr>
<tr>
<td>Graphic Media Publishing 2082-217</td>
<td>3</td>
</tr>
<tr>
<td>Document Publishing Languages 2082-227</td>
<td>4</td>
</tr>
<tr>
<td>Digital Workflow 2082-208</td>
<td>4</td>
</tr>
<tr>
<td>Leadership & Interpersonal Communications 2082-218</td>
<td>3</td>
</tr>
<tr>
<td>Multimedia Publishing 2082-228</td>
<td>4</td>
</tr>
<tr>
<td>Algebra for Management Science 1016-225</td>
<td>4</td>
</tr>
<tr>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>4</td>
</tr>
<tr>
<td>First-Year Enrichment 1105-051, 1105-052</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Media Programming Concepts 2082-301</td>
<td>4</td>
</tr>
<tr>
<td>Materials & Processes I & II 2082-XXX</td>
<td>8</td>
</tr>
<tr>
<td>Web Site Design & Graphic Media 2082-317</td>
<td>4</td>
</tr>
<tr>
<td>Professional & Technical Writing 2082-303 *</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature I 0504-225</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature II 0504-226</td>
<td>4</td>
</tr>
<tr>
<td>Graph; Media & Distribution 2082-313</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science I and II 10XX-XXX, 10XX-XXX</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Printing & Publishing 2082-401</td>
<td>4</td>
</tr>
<tr>
<td>Color Management Systems 2082-407</td>
<td>4</td>
</tr>
<tr>
<td>Digital Video for Graphic Media 2082-412</td>
<td>4</td>
</tr>
<tr>
<td>Database Publishing 2082-417</td>
<td>3</td>
</tr>
<tr>
<td>Graphic Media Business Management 2082-408</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives 9-10</td>
<td></td>
</tr>
<tr>
<td>Data Analysis 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis Lab 1016-379</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Upper level) *</td>
<td>16</td>
</tr>
<tr>
<td>Cooperative Education Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Issues & Trends 2082-501</td>
<td>4</td>
</tr>
<tr>
<td>Graphic Media Project Management 2082-513</td>
<td>4</td>
</tr>
<tr>
<td>Group Production Workshop I, II 2082-518, 523</td>
<td>6</td>
</tr>
<tr>
<td>Professional Electives 15-18</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Upper level) *</td>
<td>16</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 190-194

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Students must satisfy the Writing Competency requirement prior to graduation, either by a grade of B or higher in Professional & Technical Writing or by passing the Writing Competency test given each quarter.

Accelerated BS/MBA in Graphic Media Dual Degree Program

Twyla Cummings, **Coordinator**

This is a joint program made available by the faculties of the School of Print Media and the College of Business that enables students to receive a BS in graphic media and a master of business administration in five years. Students who qualify for this joint program receive a waiver for up to six MBA core courses for specific undergraduate management courses completed with a grade of B or better.

Students interested in this two-degree program should notify their faculty advisers as early as possible during their undergraduate program. Detailed information on selecting courses that meet the program requirements will be provided at that time. Students should apply for admission to the MBA program near the end of their undergraduate program. They must meet the admission requirements for the College of Business MBA degree. Part of that requirement includes meeting minimum Graduate Management Admission Test scores and undergraduate grade standards. Students must satisfy all of the requirements for the BS in graphic media to be awarded that degree and all requirements of the MBA degree to receive that degree. Each degree will be awarded to the student as soon as all requirements for that degree have been satisfied.

Graphic media-AAS transfer option

This option allows students who have earned an associate degree from an accredited two- or four-year college to enter the School of Print Media with junior standing. Although these students will be given 90 quarter credit hours of transfer credit, they must still meet the math, science, and liberal arts requirements of the four-year program.
New Media Publishing

This BS degree was created in response to the demand for a cross-disciplinary program that would combine graphic media with a greater emphasis on design and information technology than our regular graphic media program. It shares courses with the BFA in new media design and imaging and the new media option (BS) in information technology.

New Media Publishing, BS degree, typical course sequence

First Year
- Quarter Credit Hours
- Instruction & Visualization \(2009-211 \)
- Elements of Graphic Design \(2009-213 \)
- Typography for New Media \(2009-311 \)
- Time-based Imaging \(2009-411 \)
- Digital Video for Multi-media \(2065-217 \)
- New Media Perspectives \(2003-201 \)
- Traditional Photo with Digital Tech \(2083-XXX \)
- Intro to Programming for New Media \(4002-230 \)
- Introduction to Multimedia \(4002-320 \)
- Writing & Literature \(I 0504-225 \)
- Writing & Literature \(II 0504-226 \)
- Liberal Arts Core
- First-Year Enrichment \(1105-051, 1105-052 \)
- Physical Education \(\dagger \)

Second Year
- Professional and Technical Writing \(2080-217 \)
- Dynamics of Personal Leadership \(2080-404 \)
- Digital Printing and Publishing \(2081-576 \)
- Digital Workflow \(2082-208 \)
- Database Publishing \(2082-417 \)
- New Media Publishing \(2083-211 \)
- Programming II for New Media \(4002-231 \)
- Algebra for Management Science \(1016-225 \)
- Calculus for Management Science \(1016-226 \)
- Liberal Arts Core
- Professional Elective
- Physical Education \(\dagger \)

Publishing Concentration (choose one of the following tracks)

Digital Media

- Third Year
 - Electronic Comm. In Printing & Publishing \(2080-319 \)
 - Print Financial Controls \(2080-301 \)
 - Desktop Prepress Systems \(2081-561 \)
 - Graphic Media Distribution Systems \(2082-313 \)
 - Media Law \(2083-402 \)
 - Digital News System Management \(2083-412 \)
 - Marketing Choice (listed below)
 - Mandatory Co-op Orientation \(2080-010 \)
 - Financial Accounting (or) \(1016-301 \)
 - Data Analysis I \(1016-319 \)
 - Data Analysis I Lab \(1016-379 \)
 - Laboratory Science I & II
 - Liberal Arts

Marketing Choice (Choose one of the following three):
- Print Planning Concepts \(2080-302 \)
- Multimedia & Marketing \(20XX-XXX \)
- Principles of Marketing \(0105-363 \)

Fourth Year
- Electronic Comm. Printing & Publishing \(2080-319 \)
- Printing Technology Choice (listed below)
- New Media Production Management \(2083-541 \)
- New Media Team Workshop I \(2083-542 \)
- New Media Team Workshop II \(2083-543 \)
- Professional Elective \(2XXX-XXX \)
- Professional Elective
- LA Senior Seminar* \(0520-501 \)
- Liberal Arts

Printing Technology Choice (Choose one of four):
- Flexography Process \(2081-364 \)
- Lithographic Process \(2081-367 \)
- Gravure Process \(2081-386 \)
- Material Process I & II \(2082-321, 322 \)

Management

Third Year
- Management Overview of Graphic Art Industry \(2080-323 \)
- Economics of Production Management \(2080-383 \)
- Marketing in the Graphic Art \(2080-592 \)
- Desktop Prepress Systems \(2081-561 \)
- Media Law \(2083-402 \)
- Mandatory Co-op Orientation \(2080-010 \)
- Professional Elective (listed below)
- Finance Choice (listed below)
- Data Analysis I \(1016-319 \)
- Data Analysis I Lab \(1016-379 \)
- Laboratory Science I & II
- Liberal Arts

Marketing Choice (Choose one of the following two):
- Print Planning Concepts \(2080-302 \)
- Principles of Marketing \(0105-363 \)

Finance Choice (Choose one of the following two):
- Theory and Applications in Basic Financial Concepts \(0104-420 \)
- Corporate Finance \(0104-441 \)

Fourth Year
- Electronic Communication Print/Publishing \(2080-319 \)
- New Media Production Management \(2083-541 \)
- New Media Team Workshop II \(2083-543 \)
- Printing Technology Choice (listed below)
- Professional Elective \(2XXX-XXX \)
- Professional Elective
- LA Senior Seminar* \(0520-501 \)
- Liberal Arts

Printing Technology Choice (Choose one of four):
- Flexography Process \(2081-364 \)
- Lithographic Process \(2081-367 \)
- Gravure Process \(2081-386 \)
- Material Process I & II \(2082-321, 322 \)

Print Media

Third Year
- Imaging Technology \(2081-321 \)
- Desktop Prepress Systems \(2081-561 \)
- Media Law \(2083-402 \)
- Professional Elective \(2081-XXX \)
- Marketing Choice (listed below)
- Color Choice (listed below)
- Mandatory Co-op Orientation \(2080-010 \)
- Theory & Application of Financial Control \(0104-420 \)
- Data Analysis I \(1016-319 \)
- Data Analysis I Lab \(1016-379 \)
- Laboratory Science I & II
- Liberal Arts

Marketing Choice (Choose one of the following two):
- Principles of Marketing \(0105-363 \)
- Print Planning Concepts \(2080-302 \)
- Multi Media Marketing \(20XX-XXX \)

Color Choice (Choose one of the following two):
- Color Separation Systems \(2081-409 \)
- Color Measurement & Perception \(2081-562 \)

Fourth Year
- Electronic Communication Print/Publishing \(2080-319 \)
- Print Financial Management \(2081-454 \)
- Printing Technology Choice (listed below)
- New Media Production Management \(2083-541 \)
- New Media Team Workshop I \(2083-542 \)
- New Media Team Workshop II \(2083-543 \)
- Professional Elective \(2XXX-XXX \)
- LA Senior Seminar* \(0520-501 \)
- Liberal Arts

Printing Technology Choice (Choose one of four):
- Flexography Process \(2081-364 \)
- Lithographic Process \(2081-367 \)
- Gravure Process \(2081-386 \)
- Material Process I & II \(2082-321, 322 \)

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
The College of Liberal Arts serves RIT in three ways. First, the college provides a required curriculum in general education for all candidates for baccalaureate and associate degrees; second, the college offers six undergraduate degree programs and three graduate degree programs; and third, the college provides opportunities for RIT students and the RIT community to participate in cultural experiences of theater, music, creative writing, public speaking, and special lecture series.

Recognizing that future leaders in business, government, science, and technology work in an increasingly interconnected and complex world, RIT provides students with a rigorous curriculum in the liberal arts. General education requirements for undergraduate students include introductory and upper-level courses in the humanities and social and behavioral sciences designed to provide educational opportunities for comprehensive links between career education, leadership, professional ethics, intercultural understanding, citizenship, and culture.

RIT degree programs are further distinguished by the requirement that students must select one of two options for advanced study in the liberal arts. Most students can choose to pursue either a minor or a concentration of advanced course work from many disciplinary and interdisciplinary options (see page 10 for details). Departments offering advanced work include communication, criminal justice, economics, fine arts, foreign language, history, language and literature, philosophy, political science, psychology, public policy, science, technology and society, social work, and sociology/anthropology. Four endowed professorships in communication, economics, humanities, and philosophy enrich the college by encouraging a wider variety of activities.

The required interdisciplinary Senior Seminar in the Liberal Arts is a capstone course that provides students with an opportunity to engage in service learning as part of the changing topic of study.

The College of Liberal Arts curriculum seeks to develop in students specific kinds of knowledge, understanding, and critical awareness:

- Understanding the connections among humanistic, professional and technological studies;
- Critical awareness of the interactions among society, culture, science, and technology;
- Understanding and appreciation of diverse social and cultural perspectives;
- Understanding local, national, international, and global forms of citizenship and community;
- Knowledge and critical understanding of the responsibilities and rights of living in a participatory democracy;
- Understanding human development and behavior;
- Critical awareness of the interactions between society and the environment;
- Ability to create, interpret, and evaluate artistic expression and to understand the aesthetic dimension of other forms of expression and experience;
- Understanding the nature and implications of work and career;
- Ability to reason critically and creatively;
- Ability to reason about ethical and value issues and to relate that reasoning to the student’s judgments and practice;
- Understanding and proficiency in written, oral, visual, and nonverbal forms of communication;
- Proficiency in the analysis and interpretation of quantitative and qualitative data.
The College of Liberal Arts offers undergraduate degree programs in communication, criminal justice, economics, psychology, public policy, and social work and master of science degrees in communication and media technologies, school psychology, and public policy. The degree programs are described in the following pages. The college also houses a one-year RIT Exploration program for students who are undecided about their choice of major at RIT.

The College of Liberal Arts provides opportunities for students to engage in creative activities and classes in theater, music, and creative writing. Faculty offer extracurricular leadership for student groups, recitals, productions, and for Signatures, the student literary magazine. In addition, the college sponsors special lecture series that bring speakers, poets, writers, and civic leaders to campus.

Faculty
The faculty of the college is selected nationally from candidates with advanced degrees in the social sciences and humanities. These men and women are dedicated to providing their students with rich and meaningful teaching and learning experiences and to continuing their engagement in their scholarly fields.

Liberal arts degree program advising
The College of Liberal Arts is committed to providing faculty academic advisers for students in the RIT Exploration program, communication, criminal justice, economics, psychology, public policy, and social work throughout their academic program. Upon arrival at RIT, each student is assigned a faculty adviser who helps formulate career goals in the related field of study and who offers support in dealing with registration and scheduling. In addition the administrative staff of the college can provide referrals to other support areas within RIT.

Liberal education advising
The advising staff in the Office of Student Services within the College of Liberal Arts offers support to all RIT students in the selection of the liberal education courses required for their degrees. The advising staff, located in rooms 2210-2222 in the Liberal Arts Building, provides advising that is consistent with the general education policies of the College of Liberal Arts (see page 10). Students are served on a walk-in basis Monday through Thursday, 8 a.m. to 5 p.m., and Friday, 8 a.m. to 4:30 p.m. The office also evaluates liberal arts courses offered during daytime hours if their schedules permit. Diploma or certificate courses will not normally be used toward completion of liberal arts requirements.

Part-time students and evening programs and courses
The College of Liberal Arts offers in the evening many of the upper-division humanities and social science courses, as well as the core courses, required in the baccalaureate programs of part-time evening students. These courses are part of the liberal arts curriculum expected of all RIT students pursuing a bachelor’s degree.

Courses are scheduled one or two nights a week, Monday through Thursday, or on Saturday. Each course is four academic quarter credits, except the Senior Seminar, which is two credits. Part-time students are welcome to register for liberal arts courses offered during daytime hours if their schedules permit. Diploma or certificate courses will not normally be used toward completion of liberal arts requirements.

It is not necessary to be enrolled in an RIT degree program to register for liberal arts courses on a part-time basis. Part-time and evening students are strongly encouraged to contact the Liberal Arts Office of Student Services (585-475-2444) for assistance in selecting and registering for courses. The office is located on the second floor of the Liberal Arts Building.

Summer
The College of Liberal Arts offers a number of courses each summer in language and literature, science and humanities, and social sciences, as well as degree program courses in communication, criminal justice, economics, psychology, public policy, and social work.

Information concerning summer courses can be obtained by contacting the college scheduling officer or by requesting the Summer Bulletin from the Office of Part-time Enrollment Services (585-475-2229), located in the Bausch & Lomb Center on campus.

Communication

Bruce A. Austin, Department Chairperson

The BS in professional and technical communication (PTC) unites advanced education in the theory and practice of spoken, written, and visual communication with extensive instruction in one of RIT’s professional or technical programs. This unique combination fosters an understanding of the central concepts and processes associated with the field of communication and a working familiarity with the central concepts and practices of a particular professional/technical field. PTC prepares its graduates to perform a number of functions as communication specialists within an area of personal interest.

Numerous studies highlight the importance of effective communication in the technical and specialized world of business and industry. Today employees use communication skills more than any others in their jobs, and the use of these skills becomes more frequent and more important with increasingly responsible positions. As knowledge becomes more technical and specialized, there is a growing need to communicate this knowledge to wide and diverse audiences. As communication media make the world more interdependent, college graduates need to be skilled in communication practices and equipped with an understanding of communication principles and the changing contexts in which they are applied.

Graduates of the program are qualified for a number of different functions as communication specialists within a specific professional area. Their career opportunities are numerous and varied. The degree also prepares them for graduate work in communication (www.rit.edu/cmt) and related academic disciplines.

Curriculum
PTC’s challenging curriculum, including its exciting co-op and professional core opportunities, provides students with a superior level of professional competence and the foundation of lifelong intellectual and career growth.

The following list displays the PTC course distribution by academic area. The accompanying chart provides a suggested plan of study.

Required communication courses
(60 total credit hours)
Computer Applications in Communication
Foundations of Communication
Interpersonal Communication
Effective Speaking
Written Argument
Mass Communications
Rhetoric and Public Discourse
Persuasion
Theories of Communication
Visual Communication
Technical Writing
Professional Writing
Qualitative Research Methods
Quantitative Research Methods
Senior Thesis in Communication

Communication electives 20

Other required courses

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Core</td>
</tr>
<tr>
<td>Science</td>
</tr>
<tr>
<td>Math</td>
</tr>
<tr>
<td>Computer Science</td>
</tr>
<tr>
<td>Statistics or Math or Science</td>
</tr>
<tr>
<td>Liberal Arts Courses</td>
</tr>
</tbody>
</table>

Communication electives
Students are required to take five communication electives. Of these, at least one must be a writing elective. Communication electives include:

- Newswriting 0502-454
- Creative Writing-Prose Fiction 0502-452
- Advanced Creative Writing 0502-453
- Organizational Communication 0535-415
- Argument and Discourse 0535-420
- Public Relations 0535-421
- Uses and Effects of Mass Media 0535-452
- Documentary Film 0502-524
- Persuasion and Social Change 0535-490
- Intercultural Communication 0535-520
- Special Topics in Communication (e.g., political communication, mediation, archival research, ethics in technical communication, propaganda, international media, crisis management) 0535-525

Writing Technical Manuals 0502-446
Film and Society 0535-550
Small Group Communication 0535-483
Speechwriting 0535-502
Writing for the Self and Others 0502-455

Professional and technical communication, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Arts Core *</td>
</tr>
<tr>
<td>Foundations of Communication 0535-200</td>
</tr>
<tr>
<td>Computer Science Requirement 0602-320</td>
</tr>
<tr>
<td>Math Requirement</td>
</tr>
<tr>
<td>Interpersonal Communication 0535-210</td>
</tr>
<tr>
<td>Math Requirement</td>
</tr>
<tr>
<td>Written Argument 0535-230</td>
</tr>
<tr>
<td>Rhetoric & Public Discourse 0535-311</td>
</tr>
<tr>
<td>Physical Education †</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Arts Core *</td>
</tr>
<tr>
<td>Persuasion 0535-481</td>
</tr>
<tr>
<td>Technical Writing 0502-444</td>
</tr>
<tr>
<td>Science Requirement 1004-XXX</td>
</tr>
<tr>
<td>Professional Core</td>
</tr>
<tr>
<td>Effective Speaking 0535-501</td>
</tr>
<tr>
<td>Computer Applications in Communication 0535-221</td>
</tr>
<tr>
<td>Science Requirement 1004-XXX</td>
</tr>
<tr>
<td>Visual Communication 0335-450</td>
</tr>
<tr>
<td>Mass Communications 0535-482</td>
</tr>
<tr>
<td>Math or Science Requirement</td>
</tr>
<tr>
<td>Physical Education †</td>
</tr>
</tbody>
</table>
The professional core

As part of their degree requirements, students enroll in a professional core—normally composed of six courses (for a total of 24 credit hours)—that focuses on a professional or technical area of interest. These courses may be taken from the College of Science, the College of Imaging Arts and Sciences, the College of Business, or another RIT program.

Alternatively, an individually designed professional core—one tailored to students with specific study and career interests—is available with the approval of an academic adviser and the program chairperson.

Cooperative education

PTC students take two quarters of cooperative education (co-op). Co-op gives students an opportunity to apply classroom knowledge to a professional work environment while acquiring practical experience applicable to their RIT education. Although co-op’s main purpose is educational, many students also find that it helps pay the cost of college.

RIT’s considerable experience with cooperative education—it is one of the oldest and largest programs in the country—demonstrates that it deepens students’ knowledge of their academic fields, allows them to determine their suitability for a particular professional position and increases their chances for advantageous placement upon graduation.

A broad range of co-op opportunities is available. There is no restriction on geographic location as long as the co-op position is related to communication. RIT’s Office of Cooperative Education and Career Services helps students find co-op and permanent placements with a large and diverse number of employers. PTC students have held co-ops across the United States at such organizations as Greenpeace, Bausch & Lomb, the Memorial Art Gallery, Eastman Kodak Company, and the U.S. House of Representatives.

Advisers

Every PTC student is assigned a faculty adviser, who is available for both academic advising and career counseling. Students report that frequent consultation with their adviser is helpful in planning course scheduling, co-ops, professional core areas, and post-graduation work. In addition to their faculty adviser, PTC students are assigned a co-op and placement adviser who is located in the Office of Cooperative Education and Career Services.

Faculty

Of the full-time PTC faculty, nine hold the Ph.D. in communication and one holds a Ph.D. in English. All have proven teaching ability and are committed to professional growth in their areas of expertise. In addition to their teaching, research, and other professional responsibilities, the faculty act as academic advisers for every PTC student. The department also is home to the William A. Kern Professor in Communications, an endowed chair, offering students an opportunity to participate in specialized course work and research.

Transfer admission

Many students transfer to PTC from other colleges and universities. And transferring is easy. PTC attracts transfer students from diverse liberal arts degree programs as well as such other professional programs as business, science, and computer science. Transfer students from most associate degree programs may normally expect to complete their requirements for the BS degree in PTC in two years. Transfer credit is evaluated on a course-by-course basis; that is, each course completed as part of a previous degree program is compared to a specific PTC program requirement. Transfer credit is assigned where most appropriate.

Careers

PTC students are prepared upon graduation for immediate employment and long-term professional growth within the broad field of communication. Graduates qualify for positions in business, government, and the not-for-profit sector. PTC graduates are currently employed as technical editors and writers, sales and marketing coordinators, document specialists, broadcast news and segment researchers, public relations practitioners, and staff members for various federal and state government officials.

Some PTC graduates have earned graduate degrees. The program prepares students for graduate study in law, public relations, communication, health services, and management.

Beginning in September 2001, the department of communication launched its master of science degree program in communication and media technologies. CMT is an interdisciplinary advanced program of study combining courses in communication with course work in an applied or professional program. Visit the Web site, www.rit.edu/cmt, or consult the RIT Graduate Bulletin.
Criminal Justice

John M. Klofas, Department Chairperson

The bachelor of science degree program in criminal justice offers students a broad education with a curriculum designed to prepare them for a wide range of careers in criminal justice, to provide continuing education for those professionals already employed in criminal justice and to offer a strong academic foundation for graduate school or law school.

RIT’s approach to the study of criminal justice combines theoretical perspectives with practical experience. As students study in the areas of crime, criminal behavior, social control mechanisms, administration, planning, and management, the emphasis is on problem-solving techniques based on the rapidly growing body of research in the field, as well as students’ own guided research.

The program is unique in its broad core curriculum, the scope of professional course offerings, and an intensive field experience, where students blend knowledge gained in required and elective courses with a career-oriented internship.

Career planning

Upon acceptance into the criminal justice program, each student is assigned a faculty adviser who assists in formulating career goals and planning a field of study in accordance with those goals.

Through core courses, students are exposed to the widest possible range of perspectives from which to view crime and the nature of criminal justice administration, thus broadening their career options.

During the junior and senior years, with faculty guidance, students select professional electives in a specific area of interest from courses offered within the program, within the college or in any of RIT’s other seven colleges. Criminal justice faculty offer concentrations in criminology, law enforcement, law corrections, and security. Other concentrations, planned according to individual career goals, may include courses in computer science, management, photography, liberal studies, and social work.

Career opportunities

Program alumni have entered a variety of careers in the criminal justice system directly following graduation or after completing graduate studies. Many graduates are engaged in law enforcement careers in agencies at all levels of government. A substantial number are employed by the Rochester Police Department, the Monroe County Sheriff’s Department, and suburban departments throughout the area. At the state and federal level, graduates are pursuing careers in such agencies as the Federal Bureau of Investigation, Secret Service, Marshall’s Service, Naval Intelligence Service, Customs, Border Patrol, Immigration and Naturalization Service, Centers for Disease Control, Department of the Interior, and National Park Service, among others. A number have advanced in rank to positions of command, including several chiefs and deputy chiefs.

Other alumni work as correctional officers, counselors, probation officers, and parole officers, and some have advanced to administrative positions. A significant number have completed law school and entered the legal profession as prosecutors, public defenders, in private practice, or in the state or the U.S. attorney generals’ offices. Others serve the legal profession as investigators or paralegals.

Consistent with the liberal arts/social science nature of the program, some graduates have attained advanced degrees in related areas and entered teaching careers at the secondary and college levels. Others have become psychologists, social workers, drug and alcoholism counselors, youth service specialists, and victim assistance and rape crisis counselors. Some have completed advanced degrees in business, public policy, public administration, criminology, and criminal justice.

Technology Information and Computer Crime

This program of study prepares students for employment in the emerging field of criminal justice technology development and administration, and for numerous generalist and specialty positions within the criminal justice system, the managed security industry, and the federal intelligence community for which a background in information technology is preferred. Courses completed by students in this concentration include criminal justice technology, computer crime, and investigative techniques. And because theories of crime and management—as well as independent research, critical thinking, and scholarly writing—are emphasized, students are also prepared upon graduation to undertake graduate study in a variety of fields including but not limited to information technology, criminology, public policy, and public or business administration.

Prelaw study

The criminal justice curriculum prepares students for law school by combining a broad liberal arts background with intensive study in criminal justice. Students work closely with a faculty adviser in selecting appropriate professional and liberal arts electives. During their senior year, prelaw students spend 10 weeks, 30 hours per week, as interns working with attorneys in the office of the district attorney, public defender or state attorney general; private law firms; or in any number of public or private organizations dealing with litigation. The Prelaw Association, comprising interested RIT students, publishes student research papers each year in Legal Research at RIT.

Field experience

During the senior year, students have the opportunity to choose an internship from a number of agencies and organizations in the areas of law, law enforcement, institutional and noninstitutional corrections, courts, juvenile advocacy and counseling programs, and security. For one quarter (10 weeks), 30 hours per week, students work under an agency field supervisor and meet regularly with an adviser and also with peers who are doing field placements in other agencies. Placements are individualized to fit a student’s career objectives.

Cooperative education

Students have the opportunity to participate in co-op as part of their undergraduate program. In general, they may apply for co-op employment after three quarters of full-time study in criminal justice at RIT. Cooperative education provides a working experience in a criminal justice-related field, but does not carry academic credit hours.

Departmental Honors Program

Students with a 3.0 grade point average at the end of their junior year may apply for admission to the Departmental Honors Program. The program requires completing Honors Research, which involves original research or problem solving under the direction of a faculty member. The program provides excellent experience and evidence of independent work for potential employers or for graduate or law schools.

The faculty

The seven full-time faculty in the criminal justice program hold advanced degrees, have had professional experience in criminal justice, have proven teaching ability, and are committed to continuing professional growth in their areas of expertise. Their offices are conveniently located, and they spend many nonteaching hours in their offices with an open-door policy in order to assist students with academic or personal concerns and questions.
Professional elective options

One of the strengths of the program is that students may elect to take professional electives from other designated colleges in the Institute and are thus able to develop a concentration in a professional area related to their career goals. The following courses illustrate those offered periodically within the program. A student selects professional elective courses with the advice of his or her faculty adviser.

Corrections
Constitutional Law
Legal Rights of Convict Criminal Offenders
Correctional Administration
Social Control of Deviant Behavior
Counseling in the Criminal Justice System
Alternatives to Incarceration
Sentencing Process

Criminology
Organized Crime
Social Control of Deviant Behavior
White-Collar Crime
Victimless Crime
Computer Crime
Women and Crime
Victimology

Law
Fundamentals of Legal Research
Constitutional Law
Legal Rights of Convict Criminal Offenders
Social Control of Deviant Behavior
Evidence
Court Administration
Comparative Criminal Law
Sentencing Process
Victimless Crime
Seminar in Law

Law Enforcement
Administrative Concepts of Law Enforcement
Organized Crime
Investigative Techniques
Constitutional Law
Civil Disobedience and Criminal Justice
White-Collar Crime
Evidence
Police Community Relations
Victimless Crime
Hostage Taking and Terrorism
Substance Abuse
Management in Criminal Justice
Computer Crime

Security
Organized Crime
Investigative Techniques
Physical Security and Safety
Computer Crime
Seminar in Security

Related professional areas
With the approval of the faculty adviser, a student may select an additional professional elective concentration from courses offered within the College of Liberal Arts or in any of the other colleges of the Institute. Many students develop special concentrations in accounting, computer science, management, or social work.

Criminal justice, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminology 0501-400</td>
<td>4</td>
</tr>
<tr>
<td>Seminar in Criminal Justice 0501-201</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>16</td>
</tr>
<tr>
<td>Technology in Criminal Justice 0501-406</td>
<td>4</td>
</tr>
<tr>
<td>Courts 0501-456</td>
<td>4</td>
</tr>
<tr>
<td>Corrections 0501-441</td>
<td>4</td>
</tr>
<tr>
<td>Law Enforcement in Society 0501-443</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics/Science</td>
<td>8</td>
</tr>
<tr>
<td>Current Issues in Criminal Justice 0501-460</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juvenile Justice 0501-440</td>
</tr>
<tr>
<td>Approved Electives (e.g., Liberal Arts: Social Science) 0501-444</td>
</tr>
<tr>
<td>Professional Elective (e.g., Investigative Techniques) 0501-445</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
</tr>
<tr>
<td>Mathematics/Science</td>
</tr>
<tr>
<td>Current Issues in Criminal Justice 0501-460</td>
</tr>
<tr>
<td>Physical Education</td>
</tr>
<tr>
<td>Cooperative Education (Optional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theories of Crime & Criminality 0501-528</td>
</tr>
<tr>
<td>Management in Criminal Justice 0501-410</td>
</tr>
<tr>
<td>Research Methods I, II 0501-401,541</td>
</tr>
<tr>
<td>Professional Elective (e.g., Terrorism) 0501-446</td>
</tr>
<tr>
<td>Approved Elective (e.g., Photography) 0501-447</td>
</tr>
<tr>
<td>Approved Elective (e.g., Technical Writing) 0501-448</td>
</tr>
<tr>
<td>Liberal Arts Electives/ Concentration/ Minor</td>
</tr>
<tr>
<td>Mathematics/Science</td>
</tr>
<tr>
<td>Cooperative Education (Optional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Experience (See C. J. Handbook) 0501-403</td>
</tr>
<tr>
<td>Interviewing & Counseling in Criminal Justice 0501-510</td>
</tr>
<tr>
<td>Professional Elective (e.g., Seminar in Law)</td>
</tr>
<tr>
<td>Professional Elective (e.g., Computer-Related Crime) 0501-511</td>
</tr>
<tr>
<td>Professional Elective (e.g., Seminar in Law) 0501-512</td>
</tr>
<tr>
<td>Seminar in CJ & Public Policy 0501-526</td>
</tr>
<tr>
<td>Liberal Arts Senior Seminar 0520-501 *</td>
</tr>
<tr>
<td>Liberal Arts Electives/ Concentration/ Minor</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 10 for mathematics/science requirements.
‡ See page 11 for policy on physical education.

Economics

Michael J. Vernarelli, Department Chairperson

The BS in economics emphasizes the quantitative analytical approach to dealing with economic problems in both the public and private sectors. This emphasis provides students with marketable skills and the intellectual foundation for career growth. The main feature that distinguishes RIT’s BS in economics from traditional economics degrees is that our curriculum prepares students for the world of work by developing communication, computer and management skills in addition to economic reasoning and quantitative abilities. Students in the program are involved in a wide variety of management and analytical positions both in co-op and after graduation.

Curriculum

Students take rigorous and challenging required courses specifically designed to develop the ability to apply economic analysis to real world problems. Communication courses enhance the student’s oral and written communication skills. Business courses include accounting and finance. Quantitative analytical skills are developed by a course sequence that includes computer science, mathematics, and statistics.
Professional electives allow students to pursue advanced study in their individual areas of interest. Along with finance, marketing, mathematics, statistics, or computer science are many other possibilities, limited only by the student’s creativity in designing a personalized program of study. The faculty adviser helps the student develop professional options that will assist him or her in attaining career goals.

Study environment
The economics faculty serve as mentors and are readily available to enhance students’ personal and professional growth. Students have the opportunity to work as research assistants for the faculty, learning about research techniques using a hands-on approach and receiving a stipend for their work.

Cooperative education
Students in the economics program have the option of participating in co-op at RIT and may be placed with financial and brokerage institutions, government offices and large corporations. Co-op can be taken during any quarter after the sophomore year, including summer.

Opportunities for graduates
Graduates with a BS degree in economics are prepared for a wide variety of entry-level positions in management and quantitative analysis. Students are further prepared for graduate study in economics, business, or law. Students can take advantage of a 4+1 program for the MBA in the College of Business and a 4 + 1 program in public policy in the College of Liberal Arts. Students who follow one of these programs will receive a bachelors degree in economics and a masters degree in either public policy or business administration in five years.

Economics, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Economics I, II 0511-301, 401</td>
<td>5</td>
</tr>
<tr>
<td>Managerial Economics 0511-459</td>
<td>4</td>
</tr>
<tr>
<td>Algebra & Calculus for Management Science 1016-225, 226 or Calculus I, II 1016-251, 252</td>
<td>8</td>
</tr>
<tr>
<td>Financial & Managerial Accounting 0101-301, 302</td>
<td>8</td>
</tr>
<tr>
<td>Survey of Computer Science 0602-200</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Monetary Analysis & Policy 0511-452</td>
<td>4</td>
</tr>
<tr>
<td>Applied Econometrics 0511-457</td>
<td>4</td>
</tr>
<tr>
<td>Economic Forecasting 0511-458</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Data Analysis/Statistics 0106-330</td>
<td>4</td>
</tr>
<tr>
<td>Math Elective</td>
<td>4</td>
</tr>
<tr>
<td>Professional Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Intermediate Microeconomic Theory 0511-453</td>
<td>4</td>
</tr>
<tr>
<td>Intermediate Macroeconomic Theory 0511-455</td>
<td>4</td>
</tr>
<tr>
<td>Mathematical Methods for Economics 0511-460</td>
<td>4</td>
</tr>
<tr>
<td>Corporate Finance 0104-441</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>12</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Concentration or Minor *</td>
<td>12</td>
</tr>
<tr>
<td>Programming Elective</td>
<td>4</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>International Trade & Finance 0511-454</td>
<td>4</td>
</tr>
<tr>
<td>Industrial Organization 0511-456</td>
<td>4</td>
</tr>
<tr>
<td>Benefit Cost Analysis 0511-460</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td>16</td>
</tr>
<tr>
<td>Liberal Arts Electives & Senior Seminar *</td>
<td>14</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>182</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

Psychology

Kathleen C. Chen, Department Chairperson

The bachelor of science degree program in psychology provides students with a strong grounding in the discipline of psychology integrated with a technological focus. Upon entry, each student is assigned a faculty adviser to mentor his or her progress throughout the entire duration of the program. Students also are provided with academic advising, discipline awareness, curriculum planning strategies and career counseling through the program's Freshman Seminar.

The curriculum
The BS degree program in psychology is unique due to the following key elements: 1) the technical/professional concentration requirement, 2) a choice of four interdisciplinary tracks, and 3) a cooperative education requirement.

Technical/professional concentration requirement
The program seeks students with an aptitude for technical and quantitative reasoning as well as an interest in psychology. Students are required to complete a technical concentration and may choose from the following areas: 1) science, 2) mathematics and statistics, 3) information technology, 4) imaging science, 5) business, or 6) an individualized concentration developed with the assistance of the adviser.
Four interdisciplinary tracks
Students choose one of the following interdisciplinary tracks: 1) visual perception, 2) information processing, 3) biopsychology, or 4) clinical psychology. Technology is integrated with psychology in these tracks to produce a nontraditional and career-oriented psychology major.

The visual perception track focuses on the human perceptual systems. Vision is presented as an integration of anatomy, physiology, and psychophysics. The track covers rapidly developing topics such as the retinal mosaic and the sensory system's amazing plasticity. It stresses the most recent work showing that visual perception is a living and growing field.

The information processing track uses an interdisciplinary approach to study cognitive processes such as judgment and decision making, memory, learning, language and problem solving, attention, and perception. The track explores the interaction of human factors, psychology, and technology.

The biopsychology track studies the brain as the biological basis of behavior. It focuses on topics such as the right and left brain with their specific functions, brain injury, and neuropsychological testing. Students perform laboratory work or quantify brain waves and their relationship to attention, memory, language, perception, and psychological disorders.

The clinical psychology track emphasizes the scientific and empirical foundations of clinical and applied work. Empirically based methods are introduced to understand and modify human problems. It prepares students for future graduate programs in mental health.

Co-op requirement
The program requires that students complete a cooperative education experience between the sophomore and senior years of course work. The co-op experience is in a psychology-related field and does not carry academic credit.

Transferability
The psychology program provides excellent transfer opportunities for students from other institutions since it requires a core of psychology courses for which transfer students may receive credit. The point of entry into the program is highly flexible since there is only one fixed sequence: a three-course sequence of Introduction to Psychology, Statistics, and Experimental Psychology. The technical concentration component shares a number of common courses with other programs and provides internal flexibility for students from other RIT programs who may retain credits from some of the technical courses they have completed previously.

Career opportunities
The unique requirements of this program ensure that each student should be well prepared for advanced study in psychology, employment in industry, or employment in a human service agency or other career opportunities.

<table>
<thead>
<tr>
<th>Psychology, BS degree, typical course sequence</th>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year Seminar 0514-201</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Introduction to Psychology 0514-210</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirement †</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Survey of Computer Science 0602-200</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tech. / Professional Concentration *</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Childhood & Adolescence 0514-440</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td>Experimental Psychology 0514-400</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tech. / Professional Concentration *</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Science Sequence Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Math/Science/Statistics †</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Course §</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Technical Writing 0502-444</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Social Psychology 0514-444</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td>Abnormal Psychology 0514-447</td>
<td>4</td>
</tr>
<tr>
<td>Ind./Organizational Psych. 0514-448</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts Concentration/Minor *</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tech. / Professional Concentration ‡</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Course §</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Psychology of Personality 0514-446</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Interdisciplinary course §</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts Concentration/Minor/Elective *</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tech. / Professional Concentration *</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Senior Seminar *</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Senior Project 0514-597</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Institute Electives</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>183</td>
<td></td>
</tr>
</tbody>
</table>

Students are expected to fulfill the co-op requirement between their second and fourth years.

* See page 10 for liberal arts requirements.
† Math/statistics courses are suggested by the mathematics department.
‡ Students are required to take 24-48 credits within one of the following options:
 1) Information technology
 2) Mathematics and statistics
 3) Science
 4) Imaging science
 5) Individualized
§ Students are required to take 16 credit hours within one of the following tracks:
 1) Visual perception
 2) Information processing
 3) Biopsychology
 4) Clinical psychology

Public Policy
James J. Winebrake, Department Chairperson

The College of Liberal Arts' innovative program in public policy puts students at the cutting edge of issues of particular importance to contemporary society. The program builds on RIT's strengths as a technological university, enabling students to interact with faculty and researchers who are working on scientific developments and technological innovations driving these new public policy considerations.

The public policy program is career oriented. By drawing upon the many strengths of other programs, it utilizes RIT's unique resources and approaches to education. The program includes a number of key features:

Science and technology-Graduates are trained in the vernacular, methodologies, and problem-solving approaches of the sciences and technologies relevant to their chosen policy study track, and they possess a well-grounded concentration (familiarity) in that area. Two concentrations presently offered are environmental policy and information and communications policy.
Interdisciplinarity-To ensure interdisciplinarity, the program provides integration of diverse disciplines through a sequence of five public policy courses. This sequence makes up the core of the curriculum and enables students to integrate diverse subjects and apply them to the analysis of public policy.

Integrated qualitative and quantitative skills-The program balances both qualitative and quantitative approaches to the analysis of public policy so that students are able to achieve a full systems-level grasp of policy issues.

Solid grounding in liberal arts-Good policy decision makers and analysts should not be narrow specialists who reduce the process and analysis to purely quantitative computations or to purely political processes. Rather, a solid grounding in the traditions of liberal arts will develop a vital intellectual dimension in the graduate. Thus, while our graduates will have solid quantitative and qualitative theoretical and methodological training, by the end of their academic career they will have taken several liberal arts courses with a broad disciplinary range. It is this grounding in humanistic values combined with technology and science that makes our program both balanced and unique.

The combination of these various dimensions into a fully integrated educational experience will produce the capacity in our graduates to engage in a holistic systems approach to policy decision making and analysis and to become innovative problem solvers in a variety of policy areas.

The strategy of the curriculum design is to train students to think and to analyze policy in terms of complex interconnected systems. The key to that design is a five-course sequence in public policy.

The emphasis is not placed upon students being trained in each of the various dimensions of the program as separate dimensions but upon a fully integrated educational experience. Integration through the core sequence is crucial. The program strives to produce integrative and innovative problem solvers by educating students to see:

- the interconnections of one policy area to another;
- the interconnection of all policy to science and technology;
- the interconnection between qualitative and quantitative analysis; and
- the interconnections that emerge when one possesses a solid sense of the social and historical conditions within which policy decisions and analysis take place.

Accelerated degree options
Students can choose a four-year BS degree or an accelerated five-year program leading to both a bachelor of science and a master of science degree. The five-year BS / MS option is strongly recommended, because it will provide students a considerable advantage since a master’s degree is considered the terminal degree for many policy analyst positions.

Cooperative education
After the third year and before the completion of the BS and/or MS degree, students complete a co-op or internship within the private, government, or nonprofit sector. By this time in their academic career, students will have completed the third-year analysis sequence and the senior thesis. This skill set, as well as the development of sophisticated systems thinking, will make our students attractive to a wide range of agencies, businesses, and organizations.

Track courses
Six track courses demand that students apply those skills acquired in the five public policy courses (plus prerequisites) and in the 11 core courses to specific policy areas. Students attain a level of specialization in one of these areas while understanding the interconnections among the various policy areas. Many track courses are offered through other programs and colleges of the Institute. This gives students an opportunity to interact and study with researchers and faculty from a broad range of disciplines.

Information and Communications Policy Track
Science and Technology Policy (required)
Information and Communication Policy (required)
A choice of four from the following:
- Theories of Communication
- Business Computer Applications
- MIS Hardware and Operating Systems
- Network Technology
- Mass Communications
- Telecommunications Fundamentals
- Introduction to Telecommunications Policy and Issues
- Networking Technologies
- Ethics and the Information Age
- Special Topics (with consent of adviser)

Environmental Policy Track
Environmental Policy (required)
Principles of Environmental Management (required)
A choice of four from the following:
- The Great Lakes Sequence Courses
- Environmental Science Introductory Sequence
- Environmental Economics
- Energy and the Environment
- American Environment and Character
- Principles of Packaging
- Packaging and the Environment
- Environmental Regulatory Law
- Environmental Communication
- Environmental Philosophy and Decision Making
- Special Topics (with consent of adviser)

Public Policy Colloquium
This required non-credit-bearing colloquium meets twice per quarter. The colloquium helps build and sustain a sense of community among the policy majors by providing a context in which current research by faculty and students is presented and case studies explored.

Employment opportunities
Exciting career opportunities await public policy professionals who can balance an understanding of science and technology with social and humanistic considerations. RIT graduates will be uniquely positioned to take advantage of the growing job market in public policy, with career options in a range of fields within the private, government, and nonprofit sectors.

The faculty
In addition to a full-time program chair, faculty from several departments in the College of Liberal Arts contribute to the public policy program in teaching and student advising. The participating departments include economics, history, political science, philosophy, professional and technical communication, science, technology and society, and sociology. All participating faculty have advanced degrees, and many have had professional experience in public policy and administration positions.
Public policy, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Arts Core</td>
<td>16</td>
</tr>
<tr>
<td>Math †</td>
<td>4</td>
</tr>
<tr>
<td>Science Core</td>
<td>8</td>
</tr>
<tr>
<td>Policy Core Principles of Economics I</td>
<td>0511-301</td>
</tr>
<tr>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Foundations of Public Policy</td>
<td>0521-400</td>
</tr>
<tr>
<td>Policy Core Human Communication</td>
<td>0525-480</td>
</tr>
<tr>
<td>Policy Core: Introduction to Environmental Studies</td>
<td>0508-481</td>
</tr>
<tr>
<td>Policy Core Principles of Economics II</td>
<td>0511-401</td>
</tr>
<tr>
<td>Physical Education+</td>
<td>0</td>
</tr>
<tr>
<td>Policy Colloquium</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Arts Core</td>
<td>12</td>
</tr>
<tr>
<td>Introduction to Data Analysis (Math and Science Core)</td>
<td>4</td>
</tr>
<tr>
<td>Policy Core Electives</td>
<td>12</td>
</tr>
<tr>
<td>Policy Core Required: American Political Thought</td>
<td>0513-458</td>
</tr>
<tr>
<td>Policy Core Required: Introduction to Qualitative Policy Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Math or Science Elective (Math/Science Core)</td>
<td>4</td>
</tr>
<tr>
<td>Policy Core Required: Applied Econometrics*</td>
<td>0511-457</td>
</tr>
<tr>
<td>Policy Core Required: Benefit Cost Analysis</td>
<td>0511-450</td>
</tr>
<tr>
<td>Policy Colloquium</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Analysis I 0521-402</td>
<td>4</td>
</tr>
<tr>
<td>Policy Track Courses</td>
<td>12</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td>Policy Analysis II 0521-403</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Concentration/ Minor*</td>
<td>12</td>
</tr>
<tr>
<td>Policy Analysis III 0521-404</td>
<td>4</td>
</tr>
<tr>
<td>Policy Colloquium</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education (Optional)</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberal Arts Concentration/ Minor/ Electives*</td>
<td>12</td>
</tr>
<tr>
<td>Policy Track Courses</td>
<td>12</td>
</tr>
<tr>
<td>Free Electives</td>
<td>8</td>
</tr>
<tr>
<td>Policy Electives (MS) §</td>
<td>12</td>
</tr>
<tr>
<td>Senior Seminar</td>
<td>2</td>
</tr>
<tr>
<td>The Senior Project 0521-405</td>
<td>4</td>
</tr>
<tr>
<td>Policy Colloquium</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education (Optional)</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 198

* See page 10 for liberal arts requirements.
† See page 10 for mathematics/science requirements.
See page 11 for policy on physical education.
§ Up to 12 quarter credit hours may be taken for graduate credit by students who are continuing on through the MS degree. The courses will be selected with the consent of both the adviser and instructor.

Social work

Roy W. Rodenhiser, Department Chairperson

RIT’s social work program, established in 1971, provides excellent educational and practical preparation for professional social work practice at one of the most technologically current educational institutions in the country, with a state-of-the-art computer network available to all students.

Accredited by the Council on Social Work Education, the mission of the baccalaureate social work program is the provision of quality educational preparation to a uniquely diverse student population in a highly technological environment for entry into generalist social work practice and graduate study. This is accomplished with special emphases on extensive field instruction, culturally integrated experiences between deaf and hearing cultures, the application of technology to practice, and enriched research practice evaluation.

The social work profession is dedicated to the improvement of the human condition. The curriculum emphasizes integration of practice and research skills; self-awareness; social welfare policy and services; practice with minority subcultures; knowledge of human development; and understanding individual families, groups, organizations, and communities. Infused throughout these major content areas are six additional themes: social work values and ethics, diversity, populations at risk, social and economic justice, deafness, and technology in a social work setting.

RIT’s social work program is known for an unusually wide selection of professional courses and a full-time intensive field instruction internship. Each social work student is assigned a faculty adviser to assist with academic planning and career guidance throughout the course of study.

We believe that social workers have a dual role in the process of social change: they directly serve the needs of individuals, families, groups, and communities, and they work on behalf of clients to effect change in policies, legislation, and society.

Personal growth

The social work curriculum encourages personal growth as an essential aspect of professional growth. In various courses students learn to increase their own self-awareness, to define their values, to understand and respect the values of others, and to develop the personal and professional strengths necessary for social work practice.

Curriculum

The social work curriculum aims to develop an understanding of society and people’s needs. Students learn how the institutions of society contribute toward resolving problems and may sometimes aggravate them.

Students become well grounded in human behavior and the social environment from psychological, sociological and biological perspectives. The understanding they gain of how people develop and interact with their environment gives them a base for their social work practice.

Students take courses that introduce them to the concepts of social work practice and teach fundamental skills needed to work successfully with individuals, families, groups, and the community to solve problems and resolve conflict. RIT’s program has a strong focus on research skills and the appropriate use of computers in analyzing data from social work practice.

Social work program and deafness: a unique opportunity

The National Technical Institute for the Deaf (NTID) at RIT provides a special opportunity for students and faculty in the social work program. Because of the close relationship with NTID, RIT’s social work program offers an unsurpassed education in working with the deaf community; preparing deaf students for social work careers; increasing sensitization and responsiveness of future professionals, hearing and deaf, to the needs of disabled persons; and offering deaf and hearing students the opportunity to study the applications of social work to the needs of deaf persons.

Professional electives

Elective courses offer social work students knowledge and preparation for work in the areas of family violence, services for children, families, and deaf individuals; and the professional use of the Internet.

Career and placement focus

Like all programs at RIT, our focus is on careers. We prepare students to enter directly into meaningful and rewarding positions in governmental and voluntary social agencies. Because program graduates receive advanced standing at most graduate schools of social work in the country, they can complete a two-year MSW program in only one year.

Graduates have found their RIT field placement experiences to be extremely helpful in making career decisions and in obtaining jobs. In addition, the resources of RIT’s Office of Cooperative Education and Career Services are available to all of our students.
Transfer students
Transfer students are evaluated and given credit for previous education wherever it is most appropriate. Transfer students with two-year degrees in human services or related programs are given credit for their studies and can expect to complete the social work program in two years.

Field instruction
Field instruction is an important part of the curriculum. During the senior year, students complete an internship in a social agency. Supervised by a professional social worker and supported with integrated academic courses, they learn to apply the knowledge and skills acquired in the classroom.

RIT social work students have an opportunity to provide direct services to clients during their field placements. Some have become involved in family support counseling, advising pregnant adolescents, helping children with emotional problems, intervening on behalf of clients in Family Court, and working with people who abuse alcohol and other substances.

As an alternative, some students have preferred to work in the planning and funding of social programs, evaluating program effectiveness and measuring the quality of services, organizing communities to bring about change in local problems, educating the public on a broad social issue, or researching a carefully coordinated social work effort.

In field placement, each student is taught by a social worker in the agency and is supervised by a faculty member. Each week students in field placement meet on campus to evaluate experiences and assess development of their professional skills.

Bilingual opportunities
The social work curriculum offers students the flexibility of acquiring skills in a second language, if they choose. The most popular and easiest to acquire is sign language with deaf individuals, since students participate in the living laboratory of affected individuals. Students acquire proficiency in Spanish through an appropriate liberal arts concentration or electives.

Social work, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Professional Social Work Role 0516-210</td>
<td>4</td>
</tr>
<tr>
<td>Self-Awareness in the Helping Role 0516-212</td>
<td>4</td>
</tr>
<tr>
<td>HBSE I: Pre-adolescence 0516-354</td>
<td>4</td>
</tr>
<tr>
<td>Technology & Social Work 0516-218</td>
<td>4</td>
</tr>
<tr>
<td>Cultural Immersion I (Deaf Culture)</td>
<td>4</td>
</tr>
<tr>
<td>Psychology</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts Elective</td>
<td>12</td>
</tr>
<tr>
<td>(ASLI, or Deaf Culture in America recommended)</td>
<td>4</td>
</tr>
<tr>
<td>College Mathematics: (College Algebra minimum)</td>
<td>4</td>
</tr>
<tr>
<td>Math: Intro Statistical Methods I & Lab (or Science)</td>
<td>4</td>
</tr>
<tr>
<td>Math: Intro Statistical Methods II & Lab (or Science)</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBSE II: Adolescence & Young Adulthood 0516-355</td>
<td>4</td>
</tr>
<tr>
<td>HBSE III: Adulthood & Aging 0516-358</td>
<td>4</td>
</tr>
<tr>
<td>SWPS: History of Social Welfare 0516-406</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective (Cultural Diversity recommended)</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Core *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts Elective, Concentration or Minor</td>
<td>8</td>
</tr>
<tr>
<td>Math: Intro Statistical Methods III & Lab (or Math)</td>
<td>4</td>
</tr>
<tr>
<td>Science: (Human Biology I recommended)</td>
<td>4</td>
</tr>
<tr>
<td>Science: (Human Biology II recommended)</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice I: Individuals 0516-475</td>
<td>4</td>
</tr>
<tr>
<td>Practice II: Groups 0516-456</td>
<td>4</td>
</tr>
<tr>
<td>Practice III: Families 0516-405</td>
<td>4</td>
</tr>
<tr>
<td>SWPS: Policy Advocacy 0516-408</td>
<td>4</td>
</tr>
<tr>
<td>Research I: Exploration & Description 0516-434</td>
<td>4</td>
</tr>
<tr>
<td>Practice IV: Organizations & Communities 0516-465</td>
<td>4</td>
</tr>
<tr>
<td>Open Elective (Statistics for Social Workers recommended)</td>
<td>4</td>
</tr>
<tr>
<td>Open Electives</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Concentration or Minor *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice V: Assessment & Intervention 0516-505</td>
<td>2</td>
</tr>
<tr>
<td>Research II: Practice Evaluation 0516-535</td>
<td>2</td>
</tr>
<tr>
<td>Field Instruction I 0516-506</td>
<td>6</td>
</tr>
<tr>
<td>Field Seminar I 0516-552</td>
<td>2</td>
</tr>
<tr>
<td>Practice VI: Assessment & Intervention 0516-550</td>
<td>2</td>
</tr>
<tr>
<td>Research III: Program Evaluation 0516-540</td>
<td>2</td>
</tr>
<tr>
<td>Field Instruction II 0516-551</td>
<td>6</td>
</tr>
<tr>
<td>Field Seminar II 0516-553</td>
<td>2</td>
</tr>
<tr>
<td>SWPS: Policy & Planning Processes 0516-595</td>
<td>4</td>
</tr>
<tr>
<td>Cultural Immersion II (Multi-Cultural)</td>
<td>2</td>
</tr>
<tr>
<td>Open Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts Senior Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>180</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

RIT Exploration Program

Andrea C. Walter, Program Director

Students often are attracted to RIT because of the opportunity to specialize in a career-oriented or technical program, but many freshmen and transfer students have not chosen a career area by the time they have been accepted for admission. They want an opportunity to explore different fields before making a decision. The RIT Exploration program gives these students a chance to formulate an educational and career plan during their first year at RIT.

In addition to sampling introductory and foundation courses in one or more of RIT’s departments, RIT Exploration program students enroll for liberal arts courses in the humanities and social sciences as well as courses in mathematics, science, and computer science. Most importantly, they also take a one-credit Career Exploration seminar, in which they explore both their own abilities, interests, and the array of programs offered at RIT.

As students identify a major suitable to their backgrounds, abilities, and interests, they take introductory courses in that area to ensure that the major is appropriate for them. They may take courses in most major areas represented by RIT departments. Once they have identified a major in their first year, RIT Exploration program students apply for a transfer to the new department.

Students who select the RIT Exploration program must meet the standards and requirements of the RIT schools and colleges to which they eventually apply. Occasionally, some additional time may be necessary to complete degree requirements because the RIT Exploration program student has spent time in preliminary exploration.

Each student is assisted by a faculty adviser in choosing courses and in selecting a career path and degree program. After one to four quarters in the RIT Exploration program, each student may reasonably anticipate:

- A clearer basis for making a decision regarding long-range career plans
- Credit for courses that would apply to RIT degree programs or to programs at other colleges
- Assistance in matriculating in the curriculum of the student’s choice at RIT, provided that relevant standards and requirements are met and that space in the program is available.

By special permission, a student may enroll for portions of this program on a part-time basis.
College of Science

Ian Gatley, Dean

Undergraduates in the College of Science receive a unique education, one that emphasizes the applications of science and mathematics in the professional world while providing a comprehensive liberal arts education in the humanities and social sciences. The College of Science curricula, under the direction of our faculty members, reflect modern trends in the application of science and mathematics while preparing students for graduate study, as well as immediate employment in business, industry, government, and the allied health professions.

Our emphasis is on the practical aspects of science and mathematics as found in science and computer laboratories; we are career oriented. At the same time we recognize the value of the social sciences, English composition, literature, history, philosophy, and fine arts for the intellectual enrichment of our students. In addition to technical competence, many of the skills acquired through the study of these liberal arts subjects are required by employers for promotion and career advancement.

Faculty and research
The College of Science has an ideal size and philosophy to provide a quality education. We have more than 100 faculty members in the sciences, health professions, and mathematics. All are committed to the education of undergraduate students; most hold the Ph.D. degree. They provide a variety of faculty expertise, so a student is likely to find a faculty member with similar interests to act as mentor.

Our faculty members are dedicated teachers who also practice their professions outside of the classroom in research and other professional activities. Our undergraduates are encouraged to work with faculty members as they pursue their research. Many joint student-faculty research projects have resulted in publication in professional literature.

Facilities and resources
College of Science programs are delivered in two major facilities on campus: the Gosnell Building and the Chester F. Carlson Center for Imaging Science. The Gosnell Building houses nine classrooms, 22 teaching laboratories, and 16 research laboratories that provide space for laboratory course work and student research projects. Some of the facilities within the science building have specialized purposes. For example, we have a thin films laboratory, an animal care facility, a diagnostic medical imaging laboratory, a plasma etching laboratory, an electronics laboratory, and a nuclear magnetic resonance laboratory. The Bates Science Study Center provides a comfortable environment for study groups and individual tutoring sessions with faculty. The study center is equipped for wireless computing. The 60,000-square-foot addition to the Carlson Center for Imaging Science houses research facilities and laboratories for visual perception, digital imaging, astronomical imaging, microdensitometry, optics, remote sensing, and color science. The College of Science also operates an observatory on campus. All of these facilities are used by our undergraduate students.

State-of-the-art computer facilities are available in the college as well as in labs throughout the Institute. Such facilities are a valuable resource for College of Science programs that use the computer as a tool in the applications of mathematics, health-related work, and science.

Academic advising
Each College of Science student is assigned an academic advisor who provides counsel on course selection, advice about careers, and information about RIT services. It is common for a science major to have several friends among the faculty who help with academic, career, and personal questions.

Our graduates
The best way to evaluate college programs is to look at the success of the graduates. In recent surveys of our graduates, more than 90 percent responded that they are employed in a field related to their degree, and the same percentage expressed satisfaction with their work.

Employers report that our graduates have good preparation for employment in business and industry and, because of their work experience, immediately fit into their jobs with a high degree of initiative and purpose.

About one-fourth of our graduates enter graduate or professional school directly after graduation. More will return for further education at the graduate level as part of their career development. We have found that they do exceedingly well. Many find that, because of their laboratory and co-op experience, they can move into their graduate research projects more easily than their classmates.

The cooperative education plan
In our cooperative education plan (co-op), a student alternates quarters of paid work with quarters on campus in academic study for two to four years. Co-op employment experience in a student's field of study has many advantages.

Through co-op, students often gain insights that help them with classroom work. Co-op gives them a chance to find out what working in their field is really like, and acquiring practical experience that is valuable in getting a job or into graduate school is another benefit. Income from this work-study program enables students to obtain a high-quality education at a cost often comparable to that of a public education.

Although co-op is not required in any of our programs, many students select this five-year plan, which works as follows: RIT's school year is divided into four 11-week quarters: fall, winter, spring, summer. Students in the five-year co-op programs in biology, biotechnology, applied mathematics, applied statistics, computational mathematics, biomedical computing, and physics attend classes during the fall, winter,
and spring of their first two years. During the last half of the second year, they work with the Office of Cooperative Education and Career Services to obtain a co-op position, possibly starting as early as the coming summer. At the beginning of the third year, students begin alternating quarters of work and study, as shown in the charts below. Students in the five-year chemistry, chemistry (environmental option), biochemistry, and polymer chemistry co-op plans follow the same kind of schedule, except that their co-op experience could start as early as the summer of the first year.

Cooperative education schedule for five-year programs in biology, biotechnology, computational and applied mathematics, applied statistics, biomedical computing (A and B block), and physics (C block)

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td>Vacation</td>
</tr>
<tr>
<td>3 and 4</td>
<td>A</td>
<td>RIT</td>
<td>Work</td>
<td>RIT</td>
</tr>
<tr>
<td>B</td>
<td>Work</td>
<td>RIT</td>
<td>Work</td>
<td>RIT</td>
</tr>
<tr>
<td>C</td>
<td>RIT</td>
<td>RIT</td>
<td>Work</td>
<td>Work</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>RIT</td>
<td>Work</td>
<td>RIT</td>
</tr>
<tr>
<td>B</td>
<td>Work</td>
<td>RIT</td>
<td>RIT</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>RIT</td>
<td>RIT</td>
<td>Work</td>
<td>—</td>
</tr>
</tbody>
</table>

Cooperative education schedule for five-year chemistry, chemistry (environmental option), biochemistry, and polymer chemistry programs*

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RIT</td>
<td>RIT</td>
<td>RIT</td>
<td>Vac/Work</td>
</tr>
<tr>
<td>2, 3 and 4</td>
<td>A</td>
<td>RIT</td>
<td>Work/RIT</td>
<td>RIT</td>
</tr>
<tr>
<td>B</td>
<td>Work</td>
<td>RIT</td>
<td>Work</td>
<td>RIT</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>RIT</td>
<td>Work</td>
<td>RIT</td>
</tr>
<tr>
<td>B</td>
<td>Work</td>
<td>RIT</td>
<td>RIT</td>
<td></td>
</tr>
</tbody>
</table>

*Some students may elect to co-op for a double block (i.e., winter and spring).

Students in the environmental science and imaging science programs are encouraged to participate in optional co-op blocks beginning the summer of the second year of their program.

The internship plan
Students in the medical technology, nuclear medicine technology, diagnostic medical sonography (ultrasound), and physician assistant programs do not participate in co-op. Instead they spend three years on campus in academic work and then gain invaluable clinical experience during the fourth year at a clinical training site.

The transfer plan
Students with associate degrees in a comparable program from other educational institutions normally can expect to transfer at the third-year level. Transfer credit is granted for studies that parallel Institute courses in the curriculum for which admission is sought.

Graduate degrees
The College of Science offers master of science degrees in chemistry, clinical chemistry, industrial and applied mathematics, imaging science, and color science. A master of science degree in materials science and engineering is offered jointly by the College of Science and the College of Engineering, and the nation’s only doctoral (Ph.D.) program in imaging science is offered through the college's Center for Imaging Science.

Premedical Studies Advisory Program

Kay C. Turner, Director

Premedical studies in the College of Science is an advisory program designed to provide guidance and assistance to all RIT students who want to become physicians, dentists, optometrists, podiatrists, and veterinarians. Faculty who participate in this program provide personalized advice on course selection, health-related experiences, and extracurricular activities, and they provide assistance with the application process. Although admission to medical school is a highly competitive process, 80 percent of our graduates have been admitted in the past decade, some into the most prestigious schools in the United States.

Enrollment in premedical studies
Students cannot apply directly to the premedical studies advisory program because it exists only to assist students who have been admitted to any one of the degree-granting programs offered at RIT or who are enrolled as nonmatriculated students to take the premedical core courses (see below). To enroll in the program, students must visit the premedical studies office, room 2102, in the College of Science or call 585-475-7105 for an appointment.

Premedical core courses and academic programs
To complete the academic requirements necessary to gain admission to doctoral programs in the health professions, a student may enroll in any BS program in the College of Science and combine that program's course requirements with the premedical "core courses." The way in which program requirements are combined with the premedical core courses varies according to the program in which the student is enrolled. The curricula of certain programs include all of the premedical core courses (see next page). Others require few, if any, so students in these programs will require additional time, perhaps summers, to complete all required courses. It is important that these courses be completed by the end of the third year or before the student expects to take the MCAT, DAT, OAT, GRE, or other standardized tests required for admission to medical school. Clearly, careful planning and scheduling, with the guidance of the premedical studies advisers, are crucial to success.

Premedical core

<table>
<thead>
<tr>
<th>Subject</th>
<th>Years</th>
<th>With/Without Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>1 year</td>
<td>With laboratory</td>
</tr>
<tr>
<td>Chemistry</td>
<td>2 years</td>
<td>General chemistry, 1 year Organic chemistry, 1 year (both years with laboratory)</td>
</tr>
<tr>
<td>Physics</td>
<td>1 year</td>
<td>With laboratory</td>
</tr>
<tr>
<td>English</td>
<td>1 year</td>
<td></td>
</tr>
</tbody>
</table>

Note: In addition to these courses, which are required by virtually all medical schools, courses in mathematics, psychology/behavioral sciences, or biology electives may be required by specific schools. The admissions requirements of each medical school are published and may be obtained from the premedical advising committee. Some medical schools refuse to accept Advanced Placement credit for these core courses.
Combining your program’s requirements with the premedical core courses

If you major in:	**You will need to take the courses**	**required for your major, plus:**
Applied mathematics | † |
Applied statistics | † |
Biochemistry | None |
Biology | None |
Biomedical computing | | Elect one year of organic chemistry
Biotechnology | | Elect one year of physics
Chemistry | | Elect one year of biology
Computational mathematics | † |
Diagnostic medical sonography | | Elect one year of general chemistry and one year of organic chemistry
Environmental science | | None
Imaging science | † |
Medical laboratory technology | | One quarter organic chemistry lab
Nuclear medicine technology | | Elect one year of organic chemistry
Physician assistant | | Elect one year of organic chemistry
Physics | | Elect one year of physics and one year of organic chemistry laboratory
Polymer chemistry | | Elect one year of biology

* Some rearrangement of the typical pattern of coursework within a program may be necessary.
† Course credits beyond the usual 12 quarters needed to complete degree requirements may be necessary.

Note: Students enrolled in other RIT programs should consult with premedical advisers for assistance in planning a curriculum that includes the premedical core courses.

Health-related experience

All students interested in the health professions should obtain as much experience as possible in their chosen field of medicine. This may take the form of volunteer activities, shadowing practitioners in the field, or actual employment in a health care setting. To help, RIT’s outstanding co-op program provides students with a host of employment opportunities, including an exclusive nursing assistant position at a local hospital for those who want direct patient care experience.

We believe very strongly that all premedical students should commit themselves to developing the greatest competency possible in the discipline in which they are enrolled. It is important, therefore, that students interested in premedical studies realize that, while their career objectives may include a professional school after graduation, they should select an academic program to which they are prepared to make a sincere and major commitment as an undergraduate. This approach will increase their career options after graduation.

More information about premedical studies at RIT can be found at www.rit.edu/-premedwww/.

Undeclared Science

Eileen D. Marron, Director

Many high school students do not know which major they prefer. We encourage such students to come to RIT if they have a strong interest in science, mathematics and statistics, or allied health careers.

A student may apply to the college as an undeclared science major without designating a specific major. The undeclared science option allows a student to postpone a commitment to a particular major in science, mathematics or allied health without any loss of time toward a degree. This option is often attractive to first-year students.

On the next page is a typical distribution of courses for the undeclared science option. A customized schedule of introductory college-level courses in science and mathematics is developed for each student based on the student’s ability, needs and goals. An academic team of advisors assists the student in selecting courses and identifying a major field of interest in which to enroll. In addition to the traditional science options of biology, chemistry, physics, and math, a student may select environmental science, imaging science, or an allied health career.

Before the end of the first year, most students are able to choose a specific major. Most students find the decision is easily made after only a quarter or two of course work.
Undeclared science option, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology Lecture *</td>
<td>9</td>
</tr>
<tr>
<td>General Biology Lab</td>
<td>3</td>
</tr>
<tr>
<td>General Chemistry Lecture I, II *</td>
<td>8</td>
</tr>
<tr>
<td>General Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Analysis Lecture</td>
<td>4</td>
</tr>
<tr>
<td>Quantitative Analysis Lab I, II</td>
<td>3</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>12</td>
</tr>
<tr>
<td>Physics Lecture I, II *</td>
<td>8</td>
</tr>
<tr>
<td>Physics Lab I, II</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar for Undeclared Science</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education Electives $</td>
<td>0</td>
</tr>
</tbody>
</table>

Approximately 16–18 credits per quarter

* Any two of these in a given quarter
† See page 10 for liberal arts requirements.
See page 11 for policy on physical education.

Biological Sciences

Douglas P. Merrill, Head

Biology

The department of biological sciences offers programs leading to the AS and BS degrees in biology. Graduates receiving the BS degree find rewarding positions in occupations related to the life sciences, including:
- biomedical research
- scientific management
- science journalism
- forensic science
- ecology and environmental science
- agriculture

The program also includes all of the course work and support services to prepare students to enter schools of medicine, dentistry, veterinary medicine, optometry, podiatry, and chiropractic medicine.

With proper scheduling of courses, biology majors also can earn a master of business administration degree in as little as one year after receiving their degree in biology. This combination (biology BS + MBA) prepares graduates to enter exciting and rewarding management positions in a wide range of scientific organizations.

Graduates are also well-prepared to pursue a master's or Ph.D. in a wide variety of fields in the life sciences.

Requirements of the BS degree in biology

The student must meet the minimum graduation requirements of the Institute as described on pages 9 to 11 of this bulletin. In addition, the program requires successful completion of all of the courses listed in the typical course schedule.

Co-op program

The biology degree curriculum provides opportunities for students to participate in our optional cooperative education program. More than 65 organizations in private industry, government and academia employ our students in short-term (10 to 20 weeks) full-time, paid positions directly related to the students’ academic areas of interest. Co-op positions can be held during the summer and/or during the regular academic year. No tuition is charged for any co-op participation. If a student elects to hold a co-op position during the regular academic year, he or she will take the same number of academic class terms, but may need to extend the date of graduation beyond the normal four years.

Biology, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Symposium 1001-200</td>
<td>2</td>
</tr>
<tr>
<td>Introductory Cell Biology 1001-251</td>
<td>4</td>
</tr>
<tr>
<td>Introductory Developmental Biology 1001-252</td>
<td>4</td>
</tr>
<tr>
<td>General Physiology 1001-253</td>
<td>4</td>
</tr>
<tr>
<td>General & Analytical Chemistry 1011-215,216,217</td>
<td>10</td>
</tr>
<tr>
<td>Chemical Principles Lab 101-205,206</td>
<td>2</td>
</tr>
<tr>
<td>General & Analytical Chemistry Lab 1011-227</td>
<td>2</td>
</tr>
<tr>
<td>Elementary Calculus I & II 1016-214,215</td>
<td>6</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Courses †</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertebrate Zoology 1001-301</td>
<td>4</td>
</tr>
<tr>
<td>Vertebrate Zoology 1001-302</td>
<td>4</td>
</tr>
<tr>
<td>Botany 1001-304</td>
<td>4</td>
</tr>
<tr>
<td>Cell Biology 1001-311</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry 1013-231,232,233</td>
<td>9</td>
</tr>
<tr>
<td>Organic Chemistry Lab 1013-235,236,237</td>
<td>3</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Biology Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>16</td>
</tr>
</tbody>
</table>

Third/Fourth Years #

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Ecology 1001-340</td>
<td>4</td>
</tr>
<tr>
<td>Molecular Biology 1001-350</td>
<td>4</td>
</tr>
<tr>
<td>Introductory Microbiology 1001-404</td>
<td>4</td>
</tr>
<tr>
<td>Genetics 1001-421</td>
<td>4</td>
</tr>
<tr>
<td>Biology Seminar 1001-550</td>
<td>2</td>
</tr>
<tr>
<td>College Physics 1017-211,212,213</td>
<td>9</td>
</tr>
<tr>
<td>College Physics Lab 1017-272,272,273</td>
<td>3</td>
</tr>
<tr>
<td>Biology Electives</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Advanced Electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>6520-501</td>
</tr>
<tr>
<td>Free Electives</td>
<td>13</td>
</tr>
<tr>
<td>Cooperative Education 1001-499 (Optional)</td>
<td>Co-op</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>180</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements
† See page 11 for policy on physical education.
‡ If a student elects to participate in our optional co-op program, she or he may be scheduling courses in fifth year but will be using the same number of academic quarters of classes to complete the degree.
Biotechnology

The department of biological sciences BS in biotechnology program is the most widely recognized four-year college degree program in genetic engineering in the United States. A graduate who earns this degree is prepared to immediately assume challenging positions in research, development and management activities in:

- human genetics
- human gene therapy
- auto-immune diseases
- vaccine development
- agriculture
- food products
- pharmaceuticals
- environment and energy
- biomedical research
- forensic science
- genetic counseling

The advanced nature of the senior-year courses and the opportunity to participate in faculty-sponsored undergraduate research during the entire four years also give a very sound foundation to those graduates wishing to pursue a master’s or Ph.D. degree.

With proper scheduling of courses, biotechnology majors also can earn a master of business administration degree in as little as one year after receiving their degree in biology. This combination (biotechnology BS + MBA) prepares graduates to enter exciting and rewarding management positions in a wide range of biotechnology organizations. The program can also be designed to include the education necessary for the pursuit of a career in a medical field.

Specialized areas of emphasis include recombinant DNA, genetic engineering, mammalian and plant tissue culture, monoclonal antibody production and purification, large-scale fermentation techniques (bacterial and mammalian cell), and methods for characterization and separation of proteins and nucleic acids.

Bioinformatics, one of the most rapidly growing fields of biotechnology, is an exciting new option within the biotechnology curriculum. The use of sophisticated computing and information technology to analyze biological data is emerging as a key component of success in the modern biotechnology workplace. Bioinformatics emphasizes the integration of basic and applied research in human gene mapping, molecular cloning, large-scale restriction mapping, DNA sequencing, and computational analysis. Although this field of biotechnology has been around for several years, the recent explosion of human genetic data has generated a flurry of job opportunities at all levels (BS through Ph.D.) in a wide range of life science settings.

Requirements for the BS degree in biotechnology

The student must meet the minimum graduation requirements of the Institute as described on pages 9 to 11 of this bulletin. In addition, the program requires successful completion of all of the courses listed in the following typical course schedule.

Co-op program

The biotechnology degree provides opportunities for students to participate in our optional cooperative education program. More than 65 organizations in industry, government and academia employ our students in short-term (10 to 20 weeks), full-time paid positions directly related to students’ academic areas of interest. Co-op positions can be held during the summer and/or during the regular academic year. Tuition is not charged while a student is on co-op. If a student elects to hold a co-op position during the regular academic year, he or she will take the same number of academic class terms but may need to extend the date of graduation beyond the normal four years.

Biotechnology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology Symposium 1001-200</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Introductory Cell Biology 1001-251</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Introductory Developmental Biology 1001-252</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General Physiology 1001-253</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General & Analytical Chemistry 1011-215, 216, 217</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Chemical Principles Lab. 1011-205, 206</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>General & Analytical Chemistry Lab 1011-227</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Elementary Calculus I & II 1016-214, 215</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Physical Education Courses †</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell Biology 1001-311</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Immunology 1001-402</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Tissue Culture 1001-445</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Molecular Biology 1001-350</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry 1013-231, 232, 233</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry Lab 1013-235, 236, 237</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
<tr>
<td>Third/Fourth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introductory Microbiology 1001-404</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Genetics 1001-421</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Analytical Chemistry: Separations 1008-312</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Analytical Chemistry: Separations Lab 1008-319</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Biochemistry: Conformation & Dynamics 1009-502</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Biochemistry: Metabolism 1009-503</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Biotechnology Electives §</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Advanced Electives) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Senior Seminar) * 0520-501</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Free Electives</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Cooperative Education 1001-499 (Optional) #</td>
<td>Co-op</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
§ If a student elects to participate in our optional co-op program, she or he may be scheduling courses in a fifth year but will be using the same number of academic quarters of classes to complete the degree.

Biotechnology electives (must take a minimum of 24 credits from course list below)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Physiology 1001-403</td>
<td>4</td>
</tr>
<tr>
<td>Microbial & Viral Genetics 1001-407</td>
<td>4</td>
</tr>
<tr>
<td>Plant Biotechnology 1001-416</td>
<td>5</td>
</tr>
<tr>
<td>Industrial Microbiology 1001-417</td>
<td>4</td>
</tr>
<tr>
<td>Hybidioma Techniques 1001-442</td>
<td>2</td>
</tr>
<tr>
<td>Genetic Engineering 1001-450</td>
<td>5</td>
</tr>
<tr>
<td>Microbial Pathogenesis 1001-452</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Fermentation 1001-467</td>
<td>4</td>
</tr>
<tr>
<td>Genomics 1001-492</td>
<td>4</td>
</tr>
<tr>
<td>Bioinformatics 1001493</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Immunology 1001-502</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Biology Research 1001-541, 542, 543</td>
<td>1-6</td>
</tr>
<tr>
<td>Independent Study 1001-599</td>
<td>1-3</td>
</tr>
</tbody>
</table>
Chemistry

Terence C. Merrill, Head

The department of chemistry offers programs leading to the AS and BS degrees in chemistry; the BS degree in chemistry (environmental option); the BS degree in biochemistry; the BS degree in polymer chemistry; the MS degree in chemistry; and five-year combined BS/MS chemistry, BS chemistry (environmental option) / MS chemistry, BS biochemistry/MS chemistry, and BS polymer chemistry/MS chemistry programs.

Requirements for the BS degree
The student must meet the minimum graduation requirements of the Institute as described on pages 9 to 11 and in addition must complete particular program requirements, or the equivalent, as determined and approved by the department of chemistry.

To meet the requirements leading to the BS degrees in chemistry, chemistry with environmental chemistry option, biochemistry, and polymer chemistry approved by the Committee on Professional Training of the American Chemical Society, the student must take specifically designated courses in chemistry and related sciences.

All students must meet the requirements for the Institute's writing policy, as specified by the department of chemistry.

Extended-day and part-time studies in chemistry
All BS degree options in chemistry, biochemistry, and polymer chemistry are designed to accommodate part-time students, beyond the associate degree, during day or evening (extended day) hours. Academic advising is available throughout, and the American Chemical Society-approved chemistry degrees are offered at extended-day hours.

This option is especially designed for transfer students who work full time, but it is flexible enough to meet the needs of any part-time student.

The chemistry department also offers a generous array of both general chemistry and biochemistry courses in distance learning format. These courses include all lectures available on videotape and quick contact with the instructor by computer. In some cases the course is augmented by a Web page. This mode of presentation allows for virtually complete schedule flexibility. For available courses consult the quarterly schedule or RIT’s online learning Web site at http://online.rit.edu/.

Five-year combined BS/MS programs
The existing BS programs may be combined with the MS chemistry program, allowing undergraduate majors to acquire both degrees in a total of five years. Undergraduate students with both an overall and professional field-of-study GPA of 3.0 or above may apply to the chemistry graduate committee for entry as early as the third year. Students in the combined programs will be advised to complete only three quarters of cooperative education and to take graduate-level chemistry elective courses, including two summers of full-time chemistry research and thesis guidance (1010-879) during the fourth and fifth years. Students will complete the undergraduate degree requirements and 45 quarter credit hours toward the MS chemistry degree.
Chemistry

The BS chemistry degree, which has been approved by the Committee on Professional Training of the American Chemical Society, may be completed in four or five years, depending on the amount of cooperative (co-op) experience the student elects. Co-op may begin as early as the summer of the first year. The five-year course schedule shown on the next page assumes that the student will co-op a total of eight academic quarters. Students may elect to complete the BS degree requirements in a traditional four-year program with three summers of cooperative work experience.

The program prepares graduates for positions in several fields of chemistry, including professional industrial work in processing and laboratory operations, research and experimental work, supervision of technical projects, and managerial positions. A substantial fraction of graduates continue their education for advanced degrees in chemistry or pursue careers in pharmacy, medicine, and dentistry.

The chemistry program allows for flexibility in the type and number of chemistry and Institute-wide elective courses taken by the student. For example, it is highly recommended that students take the undergraduate chemistry research courses as Institute-wide electives. The program also provides students with the option of planning an elective concentration in complementary fields such as imaging science, business, graphic arts, audiovisual communications, biology, criminal justice, engineering, environmental science, packaging science, printing, computer science, physics, or mathematics.

Chemistry (ACS certified), BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Safety 1010-200</td>
<td>1</td>
</tr>
<tr>
<td>New Student Seminar 1010-230</td>
<td>1</td>
</tr>
<tr>
<td>General Chemistry I, II 1010-251, 252</td>
<td>7</td>
</tr>
<tr>
<td>General Chemistry I Lab 1010-255</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Analysis I, II 1008-261, 262</td>
<td>7</td>
</tr>
<tr>
<td>Quantitative Analysis Lab I, II 1008-265, 266</td>
<td>3</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>Computer Programming Language 4002-207 (or 208)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental Analysis 1008-311</td>
<td>3</td>
</tr>
<tr>
<td>Instrumental Analysis Lab 1008-318</td>
<td>1</td>
</tr>
<tr>
<td>Separations Techniques 1008-312</td>
<td>3</td>
</tr>
<tr>
<td>Separations Techniques Lab 1008-319</td>
<td>1</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry I 1013-431</td>
<td>4</td>
</tr>
<tr>
<td>Preparation Organic Chemistry I Lab 1013-435</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I, II 1017-311, 312</td>
<td>8</td>
</tr>
<tr>
<td>University Physics I, II Lab 1017-375, 376</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III 1017-313</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III Lab 1017-377</td>
<td>1</td>
</tr>
<tr>
<td>Organic Chemistry II, III 1013-432, 433</td>
<td>5</td>
</tr>
<tr>
<td>Preparative Organic Chemistry II Lab 1013-436</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Biochemistry 1009-300</td>
<td>1</td>
</tr>
<tr>
<td>Systematic ID of Organic Compounds III Lab 1013-437</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Thermodynamics 1014-441</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Thermodynamics Lab 1014-445</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core Concentration/Electives) ‡§</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Chemistry 1014-442</td>
<td>4</td>
</tr>
<tr>
<td>Quantum Chemistry Lab 1014-446</td>
<td>1</td>
</tr>
<tr>
<td>Chemical Kinetics 1014-443</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Kinetics Lab 1014-447</td>
<td>1</td>
</tr>
<tr>
<td>Chemical Literature 1010-401</td>
<td>2</td>
</tr>
<tr>
<td>Inorganic Chemistry I, II 1012-562, 563</td>
<td>8</td>
</tr>
<tr>
<td>Biochemistry 1009-502</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Concentration/Elective) ‡§</td>
<td>16</td>
</tr>
<tr>
<td>Institute-wide Electives ‡</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparative Inorganic Chemistry Lab 1012-765</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Instrumental Analysis 1008-511</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Instrumental Analysis Lab 1008-621</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry Electives</td>
<td>6</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) ‡§</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) * 0520-501</td>
<td>2</td>
</tr>
<tr>
<td>Institute-wide Electives ‡</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 180

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ 1010-541, -542, -543, Chemistry Research, may be used as Institute-wide electives and are highly recommended. Electives we necessary to bring the total quarter credit hours to 180 for graduation. Twelve quarter credit hours are necessary for full-time status.
§ ACS (American Chemical Society) requirements highly recommend a foreign language (preferably German).

Chemistry, combined BS/MS degree, typical course sequence (BS is ACS certified)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Safety 1010-200</td>
<td>1</td>
</tr>
<tr>
<td>New Student Seminar 1010-230</td>
<td>1</td>
</tr>
<tr>
<td>General Chemistry I, II 1010-251, 252</td>
<td>7</td>
</tr>
<tr>
<td>General Chemistry Lab 1010-255</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Analysis I, II 1008-261, 262</td>
<td>7</td>
</tr>
<tr>
<td>Quantitative Analysis Lab I, II 1008-265, 266</td>
<td>3</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>Computer Programming Language 4002-207 (or 208)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental Analysis 1008-311</td>
<td>3</td>
</tr>
<tr>
<td>Instrumental Analysis Lab 1008-318</td>
<td>1</td>
</tr>
<tr>
<td>Separations Techniques 1008-312</td>
<td>3</td>
</tr>
<tr>
<td>Separations Techniques Lab 1008-319</td>
<td>1</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry I 1013-431</td>
<td>3</td>
</tr>
<tr>
<td>Preparation Organic Chemistry I Lab 1013-435</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I, II, II Lab 1017-375, 376</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III 1017-313</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III Lab 1017-377</td>
<td>1</td>
</tr>
<tr>
<td>Organic Chemistry II, III 1013-432, 433</td>
<td>6</td>
</tr>
<tr>
<td>Preparative Organic Chemistry II Lab 1013-436</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Biochemistry 1009-300</td>
<td>1</td>
</tr>
<tr>
<td>Systematic ID of Organic Compounds III Lab 1013-437</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Thermodynamics 1014-441</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Thermodynamics Lab 1014-445</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core Concentration/Electives) ‡§</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>
Fourth Year

Quantum Chemistry 1014442 4
Quantum Chemistry Lab 1014-446 1
Chemical Kinetics 1014-443 4
Chemical Kinetics Lab 1014-447 1
Biochemistry 1009-702 3
Advanced Instrumental Analysis 1008-711 3
Advanced Instrumental Analysis Lab 1008-621 2
Inorganic Chemistry I, II 1012-562,563 8
Preparative Inorganic Chemistry Lab 1012-765 2
Liberal Arts (Senior Seminar) * 0520-501 2
Liberal Arts (Concentration) * 12
Chemistry Electives § 6
Research & Thesis Guidance 1010-879¶ 3

Fifth Year

Chemistry Seminar 1012-870 2
Research & Thesis Guidance 1010-879¶ 6-13
Course work in this year will be determined by the Graduate Committee and will need to fulfill the requirement of 225 total credit hours §

Total Quarter Credit Hours 225

* See page 10 for liberal arts requirements
† See page 11 for policy on physical education.
‡ ACS requirements highly recommended a foreign language (preferably German).
§ A minimum of 36 hours of 700-level or higher chemistry courses is required to graduate with both a BS and MS degree in chemistry.
¶ A student will normally have 9-16 credit hours of Research & Thesis Guidance.

Environmental chemistry option (ACS certified)

The environmental chemistry option in the BS chemistry program requires the following courses: Biology (1001-201and 205), Microbiology (1004-210), Environmental Chemistry (1015-520), Atmospheric Chemistry (1015-521), and Aquatic Toxicology and Chemistry (1015-522) in place of chemistry electives, Institute-wide electives, and Inorganic Chemistry II.

The environmental studies concentration is recommended as part of the liberal arts upper-level electives.

In addition, environmentally related science courses may be selected according to the student's interest in areas such as field biology, ecology, oceanography, hydrology, environmental monitoring, geology, treatment of waste and sewage, packaging, polymer technology, and chemical research.

Chemistry, combined BS (environmental chemistry option)/MS degree, typical course sequence (BS is ACS certified)

First Year

Quarter Credit Hours

Chemical Safety 1010-200 1
New Student Seminar 1010-230 1
General Chemistry I, II 1010-251, 252 7
General Chemistry I Lab 1010-295 1
Quantitative Analysis I, II 1008-261, 262 7
Quantitative Analysis Lab I, II 1008-265, 266 3
Calculus I, II, III 1016-251, 252, 253 12
Computer Programming Language 4002-207 (or 208) 3
Chemical Safety 1010-200 1
Preparative Organic Chemistry I Lab 1013-435 3
Preparative Organic Chemistry I 1013-431 3
Preparative Organic Chemistry Lab I 1013-435 1
University Physics I, II 1017-311, 312 8
University Physics I, II Lab 1017-375, 376 2
Applied Microbiology 1004-210 4
Liberal Arts (Core) * 12

Second Year

Quarter Credit Hours

Instrumental Analysis 1008-311 3
Instrumental Analysis Lab 1008-318 1
Separations Techniques 1008-312 3
Separations Techniques Lab 1008-319 1
Calculus IV 1016-305 4
Organic Chemistry I 1013-431 3
Preparative Organic Chemistry I Lab 1013-435 1
University Physics I, II 1017-311, 312 8
University Physics I, II Lab 1017-375, 376 2
Applied Microbiology 1004-210 4
Liberal Arts (Core) * 12

Total Quarter Credit Hours 625

* See page 10 for liberal arts requirements
† See page 11 for policy on physical education.
‡ ACS requirements highly recommended a foreign language (preferably German).
§ A minimum of 36 hours of 700-level or higher chemistry courses is required to graduate with both a BS and MS degree.
¶ A student will normally have 9-16 credit hours of Research & Thesis Guidance.

Biochemistry

Biochemistry is an exciting variation of the BS chemistry program and may be completed in four or five years, depending on the amount of cooperative education. Co-op may begin as early as the summer of the first year. Students who enroll in the program often have an interest in combining the life and health sciences with a chemistry degree. Students take a year of general biology in addition to a typical chemistry curriculum during the first two or three years. During the upper-level years, students in the biochemistry program take a substantial core of biochemistry courses, physical chemistry, chemical literature, liberal arts and elective courses in biology, biotechnology, and clinical sciences. Students must take a minimum of two upper-division biology electives (300 or higher) that include laboratory for the biochemistry major.

The biochemistry program offers two tracks: one that follows the guidelines of the American Society of Biochemists and Molecular Biologists (ASBMB) and one that is certified by the American Chemical Society (ACS). The ASBMB program allows more science and institute-wide electives in such fields as biology while the ACS program is for students interested in a graduate chemistry program like BIT’s MS chemistry program.

Employment opportunities for biochemistry graduates exist in the chemical, pharmaceutical, agricultural, forensic and rapidly expanding biotechnological fields. Graduates also are well-prepared to enter advanced degree programs in biochemistry, medicine, dentistry, and veterinary medicine.
Biochemistry, BS degree, typical course sequence (Follows ASBM guidelines)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Safety 1010-200</td>
<td>1</td>
</tr>
<tr>
<td>New Student Seminar 1010-230</td>
<td>1</td>
</tr>
<tr>
<td>General Chemistry I, II 1010-251,252</td>
<td>7</td>
</tr>
<tr>
<td>General Chemistry I Lab 1010-255</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Analysis I, II 1008-261,262</td>
<td>7</td>
</tr>
<tr>
<td>Quantitative Analysis Lab I, II 1008-265,266</td>
<td>3</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>General Biology 1001-201; 202,203</td>
<td>9</td>
</tr>
<tr>
<td>General Biochem Lab 1001-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td>Computer Programming Language 4002-207 (or 208)</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental Analysis 1008-311</td>
<td>3</td>
</tr>
<tr>
<td>Instrumental Analysis Lab 1008-318</td>
<td>1</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry I 1013-431</td>
<td>3</td>
</tr>
<tr>
<td>Preparative Organic Chemistry I Lab 1013-435</td>
<td>1</td>
</tr>
<tr>
<td>Physics I, II 1017-311, 312 (or 1017-211, 212)</td>
<td>8 (10)</td>
</tr>
<tr>
<td>Physics I, II Lab 1017-375, 376 (or 1017-271, 272)</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>Institute-wide Electives *</td>
<td>*</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry 2009-300</td>
<td>1</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1017-313 (or 1017-213)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Physics Lab 1017-377 (or 1017-273)</td>
<td>1</td>
</tr>
<tr>
<td>Organic Chemistry II, III 1013-433, 434</td>
<td>6</td>
</tr>
<tr>
<td>Preparative Organic Chemistry II Lab 1013-436</td>
<td>1</td>
</tr>
<tr>
<td>Systematic ID of Organic Compounds III Lab 1013-437</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Thermodynamics 1014-441</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Thermodynamics Lab 1014-445</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Kinetics 1014-443</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Kinetics Lab 1014-447</td>
<td>1</td>
</tr>
<tr>
<td>Chemical Literature 1010-401</td>
<td>2</td>
</tr>
<tr>
<td>Biochemistry 1009-502</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry: Nucleic Acids 1009-504</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry: Experimental Techniques Lab 1009-505</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>*</td>
</tr>
<tr>
<td>Institute-wide Electives *</td>
<td>*</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry: Metabolism 1009-503</td>
<td>3</td>
</tr>
<tr>
<td>Science Electives *</td>
<td>†</td>
</tr>
<tr>
<td>Liberal Arts (Electives)</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>0520-501</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ 1008-541, 542, 543. Biochemistry Research, may be used as science electives and are highly recommended. Two electives must be upper-division biology course (300 or higher) that include laboratory, for a minimum of 8 credit hours. Electives are necessary to bring the total quarter credit hours to 180 for graduation.

Biochemistry, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Safety 1010-200</td>
<td>1</td>
</tr>
<tr>
<td>New Student Seminar 1010-230</td>
<td>1</td>
</tr>
<tr>
<td>General Chemistry I, II 1010-251,252</td>
<td>7</td>
</tr>
<tr>
<td>General Chemistry I Lab 1010-255</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Analysis I, II 1008-261,262</td>
<td>7</td>
</tr>
<tr>
<td>Quantitative Analysis Lab I, II 1008-265,266</td>
<td>3</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>General Biology 1001-201; 202,203</td>
<td>9</td>
</tr>
<tr>
<td>General Biochem Lab 1001-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td>Computer Programming Language 4002-207 (or 208)</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, summer)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental Analysis 1008-311</td>
<td>3</td>
</tr>
<tr>
<td>Instrumental Analysis Lab 1008-318</td>
<td>1</td>
</tr>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry I 1013-431</td>
<td>3</td>
</tr>
<tr>
<td>Preparative Organic Chemistry I Lab 1013-435</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I, II 1017-311, 312</td>
<td>8</td>
</tr>
<tr>
<td>University Physics I, II Lab 1017-375, 376</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>Science Electives †</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biochemistry 2009-300</td>
<td>1</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III 1017-313</td>
<td>4</td>
</tr>
<tr>
<td>University Physics III Lab 1017-377</td>
<td>1</td>
</tr>
<tr>
<td>Organic Chemistry II, III 1013-433, 434</td>
<td>6</td>
</tr>
<tr>
<td>Preparative Organic Chemistry II Lab 1013-436</td>
<td>1</td>
</tr>
<tr>
<td>Systematic ID of Organic Compounds III Lab 1013-437</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Thermodynamics 1014-441</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Thermodynamics Lab 1014-445</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Kinetics 1014-443</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Kinetics Lab 1014-447</td>
<td>1</td>
</tr>
<tr>
<td>Chemical Literature 1010-401</td>
<td>2</td>
</tr>
<tr>
<td>Biochemistry 1009-502</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry: Nucleic Acids 1009-504</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry: Experimental Techniques Lab 1009-505</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>*</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>*</td>
</tr>
<tr>
<td>Institute-wide Electives *</td>
<td>*</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry: Metabolism 1009-503</td>
<td>3</td>
</tr>
<tr>
<td>Science Electives *</td>
<td>†</td>
</tr>
<tr>
<td>Liberal Arts (Electives)</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>0520-501</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>

*See page 10 for liberal arts requirements. ACS certification recommends a foreign language (preferably German).
† See page 11 for policy on physical education.
Biochemistry, combined BS/MS degree, typical course sequence (BS degree is ACS certified)

First Year
Chemical Safety 1010-200
New Student Seminar 1010-230
General Chemistry I, II 1010-251,252
General Chemistry Lab 1010-255
Quantitative Analysis I, II 1008-261,262
Quantitative Analysis Lab I, II 1008-265,266
Calculus I, II, III 1016-251, 252, 253
General Biology 1001-201, 202, 203
General Biology Lab 1001-205,206,207
Computer Programming Language 4002-207 (or 208)
Liberal Arts (Core) *
First-Year Enrichment
Physical Education Electives †
Cooperative Education 1010-499 (Optional, summer)

Second Year
Instrumental Analysis 1008-311
Instrumental Analysis Lab 1008-318
Calculus IV 1016-305
Differential Equations 1016-306
Organic Chemistry I 1013-431
Preparative Organic Chemistry I Lab 1013-435
University Physics I, II, III 1017-311, 312, 313
University Physics I, II, III Lab 1017-375, 376, 377
Liberal Arts *
Cooperative Education 1010-499 (Optional, summer)

Third Year
Introduction to Biochemistry 1009-300
Organic Chemistry II, III 1013-432,433
Preparative Organic Chemistry II Lab 1013-436
Systematic ID of Organic Compounds III Lab 1013-437
Chemical Thermodynamics 1014-441
Chemical Thermodynamics Lab 1014-445
Chemical Literature 1010-401
Quantum Chemistry 1014-442
Quantum Chemistry Lab 1014-446
Chemical Kinetics 1014-443
Chemical Kinetics Lab 1014-447
Liberal Arts *
Cooperative Education 1010-499 (Optional, summer)

Fourth Year
Biochemistry 1009-702
Inorganic Chemistry I 1012-562
Advanced Instrumental Analysis 1008-711
Preparative Inorganic Chemistry Lab 1011-765
Biochemistry: Metabolism 1009-703
Biochemistry: Nucleic Acids 1009-704
Biochemistry: Experimental Techniques Lab 1009-705
Biological Electives *
Chemistry Electives §
Liberal Arts *
Liberal Arts (Senior Seminar) 0520-501 *
Research & Thesis Guidance 1010-879

Fifth Year
Chemistry Seminar 1010-870
Advanced Instrumental Analysis Lab 1008-621
Advanced Organic Chemistry 1013-737
Advanced Physical Chemistry 1014-741 or 1014-743
Chemistry Electives §
Research & Thesis Guidance 1010-879

Total Quarter Credit Hours 227

* See page 10 for liberal arts requirements. ACS certification recommends a foreign language (preferably German).
† See page 11 for policy on physical education.
‡ Two upper-division biology electives with laboratory. Biology electives may be either Cell Biology (1001-311), Molecular Biology (1001-350), Genetics (1001-421), or Genetic Engineering (1001-450).
§ A minimum of 36 hours of 700-level higher chemistry courses is required to graduate with a BS and MS degree.
¶ A student will be required to have 9-16 hours of Research & Thesis Guidance.

Polymer Chemistry

Polymer science is one of the increasingly important areas of modern science. The polymer chemistry program has been approved by the Committee on Professional Training of the American Chemical Society when the program includes the Preparative Inorganic Chemistry Lab (1012-765). The program is one of a handful in the nation and provides students with a solid background in the traditional areas of chemistry (general, analytical, organic, physical, and inorganic) supplemented with advanced courses and intensive laboratory experiences in polymer science. The polymer program may be completed in four or five years, depending on the amount of cooperative education, which may begin as early as the summer of the first year. It is highly recommended that students take the undergraduate polymer research courses as Institute-wide electives in this program. Because two-thirds of all chemists work with polymers during their professional lives, this program provides the background important for success in many industrial research areas and also enables graduates to pursue further education in chemistry, polymer chemistry or materials science and engineering.

Polymer chemistry, BS degree, typical course sequence (ACS certified)

First Year
Chemical Safety 1010-200
New Student Seminar 1010-230
General Chemistry I, II 1010-251,252
General Chemistry Lab 1010-255
Quantitative Analysis I, II 1008-261,262
Quantitative Analysis Lab I, II 1008-265,266
Calculus I, II, III 1016-251, 252, 253
General Biology 1001-201, 202, 203
General Biology Lab 1001-205,206,207
Computer Programming Language 4002-207 (or 208)
Liberal Arts (Core) *
First-Year Enrichment
Physical Education Electives †
Cooperative Education 1010-499 (Optional, summer)

Second Year
Instrumental Analysis 1008-311
Instrumental Analysis Lab 1008-318
Calculus IV 1016-305
Differential Equations 1016-306
Organic Chemistry I 1013-431
Preparative Organic Chemistry I Lab 1013-435
University Physics I, II, III 1017-311, 312, 313
University Physics I, II, III Lab 1017-375, 376, 377
Liberal Arts *
Cooperative Education 1010-499 (Optional, summer)

Third Year
Introduction to Biochemistry 1009-300
Organic Chemistry II, III 1013-432,433
Preparative Organic Chemistry II Lab 1013-436
Systematic ID of Organic Compounds III Lab 1013-437
Chemical Thermodynamics 1014-441
Chemical Thermodynamics Lab 1014-445
Chemical Literature 1010-401
Quantum Chemistry 1014-442
Quantum Chemistry Lab 1014-446
Chemical Kinetics 1014-443
Chemical Kinetics Lab 1014-447
Liberal Arts *
Cooperative Education 1010-499 (Optional, summer)

Fourth Year
Biochemistry 1009-702
Inorganic Chemistry I 1012-562
Advanced Instrumental Analysis 1008-711
Preparative Inorganic Chemistry Lab 1011-765
Biochemistry: Metabolism 1009-703
Biochemistry: Nucleic Acids 1009-704
Biochemistry: Experimental Techniques Lab 1009-705
Biological Electives *
Chemistry Electives §
Liberal Arts *
Liberal Arts (Senior Seminar) 0520-501 *
Research & Thesis Guidance 1010-879

Fifth Year
Chemistry Seminar 1010-870
Advanced Instrumental Analysis Lab 1008-621
Advanced Organic Chemistry 1013-737
Advanced Physical Chemistry 1014-741 or 1014-743
Chemistry Electives §
Research & Thesis Guidance 1010-879

Total Quarter Credit Hours 227

* See page 10 for liberal arts requirements. ACS certification recommends a foreign language (preferably German).
† See page 11 for policy on physical education.
‡ Two upper-division biology electives with laboratory. Biology electives may be either Cell Biology (1001-311), Molecular Biology (1001-350), Genetics (1001-421), or Genetic Engineering (1001-450).
§ A minimum of 36 hours of 700-level higher chemistry courses is required to graduate with a BS and MS degree.
¶ A student will be required to have 9-16 hours of Research & Thesis Guidance.

Science 115
Environmental Science

John M. Waud, Program Director

The 21st century promises to be both an exciting time and a challenging one in which to live. Many of the most complex challenges will be environmental. To meet these challenges will require problem-solving abilities based in science, mathematics, the social sciences, and other disciplines. The BS and BS/MS environmental science programs will provide you with the education and experiences you need to be successful in meeting these challenges.

Environmental scientists solve problems relating to power generation, waste reduction, recycling, land use, manufacturing, packaging, transportation, forestry, agriculture, economics, and a wide range of other areas. They study our relationship to nature and to each other. Using the tools of science and mathematics, as well as principles from other disciplines, they develop solutions that prevent or reverse environmental deterioration and result in sustainability.

A graduate of the environmental science program is prepared for a challenging and rewarding career in positions such as:
- environmental consultant
- air quality inspector
- energy auditor
- wetlands ecologist
- water pollution investigator
- solar energy research scientist
- water conservation consultant
- recycling coordinator

Innovative features and accelerated degree options

The environmental science program is unique because it is designed and implemented jointly by the College of Science and College of Liberal Arts. You can choose a four-year BS degree or an accelerated five-year program leading to both a bachelor of science and a master of science degree. The five-year BS/MS option is strongly recommended because it provides you with a considerable advantage over other environmental science graduates in the job market. The curriculum was developed in conjunction with an advisory board of environmental leaders to ensure that your education meets the future needs of the industry.

In order to function as an environmental scientist, an individual must have an extensive background in mathematics, physical science and life science. In fact, the BS/MS program at RIT is one of the strongest programs available with respect to mathematics and science.

An environmental scientist must be able to communicate effectively and must understand economics and the law. The liberal arts portion of the curriculum provides this key group of skills.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Safety 1010-200</td>
<td>1</td>
</tr>
<tr>
<td>Instrumental Analysis Lab 1008-311</td>
<td>1</td>
</tr>
<tr>
<td>Separations Techniques 1008-312</td>
<td>1</td>
</tr>
<tr>
<td>Separations Techniques Lab 1008-319</td>
<td>1</td>
</tr>
<tr>
<td>Organic Chemistry I 1012-401</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Preparative Organic Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I, II, III 1017-311</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I, II, III Lab 1017-375, 376, 377</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, Summer)</td>
<td>8</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry I 1013-431</td>
<td>3</td>
</tr>
<tr>
<td>Preparative Organic Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I, II, III 1017-311</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, Summer)</td>
<td>8</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparative Organic Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>University Physics I, II, III Lab 1017-375, 376, 377</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td>12</td>
</tr>
<tr>
<td>Chemistry Electives §</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 1010-499 (Optional, Summer)</td>
<td>8</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Chemistry 1014-442</td>
<td>4</td>
</tr>
<tr>
<td>Quantum Chemistry Lab 1014-446</td>
<td>2</td>
</tr>
<tr>
<td>Organic Chemistry of Polymers 1029-703</td>
<td>4</td>
</tr>
<tr>
<td>Polymer Chemistry: Chains & Solutions</td>
<td>4</td>
</tr>
<tr>
<td>Polymer Characterization Lab 1029-704</td>
<td>2</td>
</tr>
<tr>
<td>Preparative Polymer Chemistry 1029-705</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Kinetics I 1014-442</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Kinetics Lab 1014-447</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Instrumental Analysis 1008-711</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Instrumental Analysis Lab 1008-621</td>
<td>2</td>
</tr>
<tr>
<td>Inorganic Chemistry I 1012-562</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td>0520-501</td>
</tr>
<tr>
<td>Preparative Inorganic Chemistry Lab 1012-765</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry Electives §</td>
<td>12</td>
</tr>
<tr>
<td>Research & Thesis Guidance 3010-879 #</td>
<td>3</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 1009-702</td>
<td>3</td>
</tr>
<tr>
<td>Polymer Chemistry: Properties of Bulk Materials 1029-703</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry Seminar 1010-870</td>
<td>2</td>
</tr>
<tr>
<td>Research & Thesis Guidance 1010-879 #</td>
<td>6-13</td>
</tr>
</tbody>
</table>

Course work in this year will be determined by the Graduate Committee and will need to fulfill the requirement of 225 total credit hours.

Total Quarter Credit Hours 225

* See page 10 for liberal arts requirements.
† See page 12 for policy on physical education.
‡ ACS requirements highly recommend a foreign language (preferably German).
§ A minimum of 36 hours of 700-level or higher chemistry courses is required in meeting these challenges.

Environmental science graduates in the job market. The curriculum was developed in conjunction with an advisory board of environmental leaders to ensure that your education meets the future needs of the industry.

In order to function as an environmental scientist, an individual must have an extensive background in mathematics, physical science and life science. In fact, the BS/MS program at RIT is one of the strongest programs available with respect to mathematics and science.

An environmental scientist must be able to communicate effectively and must understand economics and the law. The liberal arts portion of the curriculum provides this key group of skills.
We are flooded with information in every aspect of our lives. Successful environmental scientists must be able to assess the validity of information and to evaluate the design of experiments found in the literature. These critical thinking skills are woven into the environmental science curriculum.

Due to the interdisciplinary nature of environmental science, it is essential that environmental science professionals have a solid foundation of knowledge from a variety of academic fields. This foundation supports the understanding of interrelationships among the various disciplines with respect to environmental issues. The courses in our core curriculum teach you how environmental science fits into the “big picture.” In a single class meeting, for example, faculty from several disciplines may present different aspects of one environmental topic. Environmental professionals from the community may also bring the latest “real-world” information directly into the classroom.

Environmental science is an action-oriented problem-solving profession. In order to learn and understand environmental science, you must do environmental science. Our program incorporates extensive fieldwork, research, and meaningful long-term problem-solving exercises. You and your professors will work closely with members of the environmental community (government and private organizations and industry) to develop and implement workable solutions.

Environmental science concentration/track requirement

The practice of environmental science demands that you be a well-rounded specialist. To accomplish this, each student is required to select an aspect of environmental science in which he or she specializes. Students in the BS program are required to take a minimum of 20 quarter credit hours, and students enrolled in the BS/MS program are required to take a minimum of 28 quarter credit hours in a specified concentration. The available concentrations are:

- environmental chemistry
- digital imaging
- remote sensing
- civil engineering technology
- environmental management and technology
- environmental biology
- mathematics and statistics

The environmental science concentrations are outlined in detail beginning on page 118. Assistance in selecting an appropriate concentration can be obtained from the program director.

Cooperative education

Cooperative education gives you a competitive edge. Although co-op is optional for environmental science majors, it’s a great way to get a head start on your career with paid professional work experience. You can participate in cooperative education as soon as your sophomore year. Assignments are typically with governmental regulatory agencies, private environmental organizations, and a host of engineering and manufacturing firms.

Employment opportunities

Today, there is a great need for individuals who have both a strong background in environmental science and the ability to participate in an interdisciplinary problem-solving team. Upon graduation, you’ll be valued for your broad understanding of environmental science, for your depth of knowledge in a particular aspect of environmental science and for your ability to attack and solve tough environmental problems.

Transfer

For admission to the environmental science program as a transfer student, a minimum grade point average of 3.0 (overall and in science/math) is expected. Specific requirements will be determined for each transfer student by the program director.

For more information on the BS or BS/MS degree requirements, contact the program director for environmental science or visit our Web site: www.rit.edu/-envsci/ .

Requirements for the BS degree

The student must meet the minimum requirements of the Institute as described on pages 9 to 11. In addition, the program requires successful completion of all of the courses listed in the typical course schedule below.

Environmental science, BS degree, typical course sequence

First Year	Environmental Science Freshman Seminar 1031-200	1
Introduction to Environmental Science I, II, III 1031-201, 202, 203	12	
General & Analytical Chemistry I, II, III 1011-215, 216, 217	10	
Chemistry Lab 1011-205, 206, 227	4	
Calculus I, II, III 1016-251, 252, 253	12	
Introduction to Programming (or 4002-207)	4	
Liberal Arts (Core) *	8	
First-Year Enrichment	0	
Physical Education Electives †	0	

| Second Year |
General Biology 1001-201, 202, 203	9
General Biology Lab 1001-205, 206, 207	3
University Physics 1017-311, 312, 313	12
University Physics Lab 1017-371, 372, 373	3
or College Physics 1017-211, 212, 213	9
College Physics Lab 1017-271, 272, 273	3
Liberal Arts (Core) *	16
Engineering Statistics 1016-414	4
or Probability & Statistics I 1016-351	4
Environmental Geology 0620-370	3
Environmental Geology Lab 0630-372	1
Summer Co-op Experience (Optional) 1031-499	Co-op

| Third Year |
Organic Chemistry 1013-231, 232, 233	9
Organic Chemistry Lab 1013-235, 236,237	3
General Ecology 1001-340	4
Applied Ecology 1001-475	4
Introduction to Hydrology 0630-380	3
Introduction to Hydrology Lab 0630-382	1
Environmental Science Concentration §	4
Great Lakes I, II, III (LA concentration)* 0508-463,464,465	12
Liberal Arts (Core) *	4
Summer Co-op Experience (Optional) 1031-499	Co-op

| Fourth Year |
Introduction to Microbiology 1001-404	5
Environmental Applications of Remote Sensing 1051-420	4
Liberal Arts Elective *	12
Environmental Science Concentration §	16
Senior Seminar* 0520-501	2

| Total Quarter Credit Hours | 183-186 |

* See page 10 for liberal arts requirements.
† See page 11 for physical education requirements.
§ See environmental science concentrations on following pages.
It is highly recommended that students, in consultation with their faculty adviser, take additional environmental science electives during the fourth year.
118 Science

Requirements for the BS/MS degree
The student must meet the minimum requirements of the Institute as described on pages 9 to 11 and the requirements contained in the program shown here or its equivalent as determined and approved by the environmental science program director. Undergraduate students with an overall and professional field-of-study GPA of 3.0 or greater may apply to the program director for entry into the program.

Environmental science, BS/MS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
<th>Fourth Year</th>
<th>Fifth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Lab 1011-205, 206, 227</td>
<td>Environmental Geology 0630-370</td>
<td>Environmental Geology Lab 0630-372</td>
<td>Environmental Chemistry 1015-720</td>
<td>Environmental Geology Concentration 8</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>Liberal Arts Electives 4</td>
<td>Summer Co-op Experience (Optional) 1031-499</td>
<td>Liberal Arts Elective 4</td>
<td>Survey of Physical Chemistry 1014-742</td>
</tr>
<tr>
<td>Introduction to Programming 4002-208</td>
<td>Engineering Statistics 1016-314</td>
<td>Co-op</td>
<td>Environmental Chemistry Concentration</td>
<td>Analytical Chemistry Separations 1008-313</td>
</tr>
<tr>
<td>Liberal Arts (core) 4</td>
<td>Probability & Statistics II 1016-352</td>
<td>Digital Image Processing I 1051-461</td>
<td>Environmental Chemistry Instrumental Analysis 1008-311</td>
<td>Separations Lab 1008-319</td>
</tr>
<tr>
<td>First-Year Enrichment 0</td>
<td>Probability & Statistics I 1016-351</td>
<td>Digital Image Processing II 1051-462</td>
<td>Instrumental Analysis Lab 1008-318</td>
<td>Analytical Chemistry Instrumental Analysis 1008-311</td>
</tr>
<tr>
<td>Physical Education Electives†</td>
<td>Environmental Science Research 1031-879</td>
<td>Total quarter credit hours 21/22</td>
<td>Inorganic Chemistry I 1012-562</td>
<td>Advanced Instrumental Analysis 1008-711</td>
</tr>
<tr>
<td></td>
<td>Environmental Science Graduate Seminar 1031-870</td>
<td></td>
<td>4/5</td>
<td>(BS degree only)</td>
</tr>
<tr>
<td></td>
<td>Total quarter credit hours 18</td>
<td></td>
<td></td>
<td>Digital Imaging Concentration</td>
</tr>
</tbody>
</table>
| | Note University Physics I, II, III with labs (1017-311, 322, 323 & 1017-371, 372, 373) | | Calculus IV 1016-305 | are required as prerequisites for digital imaging concentration.
| | are required as prerequisites for remote sensing concentration. | | Programming for Imaging Science 1051-211 | Remote Sensing Concentration (BS/MS degree only) |
| | | | Radimetry 1051-401 | Calculus IV 1016-305 |
| | | | Digital Image Processing I 1051-461 | 4 |
| | | | Digital Image Processing II 1051-462 | Programming for Imaging Science |
| | | | Principles of Remote Sensing & Image Analysis 1051-761 | \(\text{BS degree only} \) |
| | | | Remote Sensing & Image Analysis II 1051-762 | Calculus IV 1016-305 |
| | | | Total quarter credit hours 18 | 4 |
| | | | Digital Imaging Concentration (BS degree only) | Programming for Imaging Science 1051-211 |
| | | | Radimetry 1051-401 | Calculus IV 1016-305 |
| | | | Digital Image Processing I 1051-461 | Programming for Imaging Science 1051-211 |
| | | | Digital Image Processing II 1051-462 | Radimetry 1051-401 |
| | | | Principles of Remote Sensing & Image Analysis 1051-761 | Digital Image Processing I 1051-461 |
| | | | Remote Sensing & Image Analysis II 1051-762 | Digital Image Processing II 1051-462 |
| | | | Total quarter credit hours 18 | Principles of Remote Sensing & Image Analysis 1051-761 |
| | | | Note University Physics I, II, III with labs (1017-311, 322, 323 & 1017-371, 372, 373) | are required as prerequisites for digital imaging concentration.
| | | | are required as prerequisites for remote sensing concentration. | Remote Sensing & Image Analysis II 1051-762 |

Environmental Science Concentrations/Tracks
Several concentration courses have prerequisites. In order to ensure timely completion of your concentration, it is imperative for you to work with the ES program office when enrolling in concentration courses.

Environmental Chemistry Concentration
Survey of Physical Chemistry 1014-742
Analytical Chemistry Separations 1008-313
Environmental Chemistry Instrumental Analysis 1008-311
Instrumental Analysis Lab 1008-318
Inorganic Chemistry I 1012-562
Advanced Instrumental Analysis 1008-711
Advanced Instrumental Analysis Lab 1008-621
Atmospheric Chemistry 1015-721
Aquatic Chemistry 1015-722

Remote Sensing Concentration (BS/MS degree only)
Calculus IV 1016-305
Programming for Imaging Science 1051-211
Radimetry 1051-401
Digital Image Processing I 1051-461
Digital Image Processing II 1051-462
Principles of Remote Sensing & Image Analysis 1051-761
Remote Sensing & Image Analysis II 1051-762

Note: The articulation of the BS and the MS curriculum is accomplished by the inclusion of 15 quarter credit hours of graduate work in the fourth year of the curriculum (courses in italics).
Civil Environmental Engineering Technology Concentration

- *Hydraulics 0608-420 3
- *Hydraulics Laboratory 0608-421 1
- *Principles of Treatment Water 0608-438 4
- *Resource Recovery and Waste Management 0608-525 4
- Plane Surveying 0608-320 4
- Elementary Soil Mechanics 0608-360 4
- Elementary Structures 0608-380 4
- Water and Wastewater Transport Systems 0608-432 2
- Groundwater Hydraulics 0608-480 4
- Hydraulic Structures 0608-485 4
- Design of Water Treatment 0608-510 2
- Design of Wastewater Facilities 0608-520 4

Total quarter credit hours 20/28

Note: BS degree 5 courses required = 20 qtr. credit hrs.
BS/MS degree 7 courses required = 28 qtr. credit hrs.

* Required courses for concentration. Must be taken before other concentration courses in order given.

Environmental Management and Technology Concentration

- Solid & Hazardous Waste Management 0630-350 4
- Industrial Wastewater Management 0630-352 4
- Air Emissions Management 0630-354 4
- Environmental Monitoring & Measurement 0630-360 4
- Environmental Monitoring & Measurement Lab 0630-362 1
- Remedial Investigation 0630-444 4
- Environmental Law 0630-480 4
- Contaminant Hydrology 0630-520 4
- Project Management 0630-490 4

Total quarter credit hours 28

Note: BS degree 5 courses required = 20 qtr. credit hrs.
BS/MS degree 7 courses required = 28 qtr. credit hrs.

Environmental Biology Concentration

- Invertebrate Zoology 1001-301 4
- Vertebrate Zoology 1001-302 4
- Botany 1001-304 4
- Galapagos: Ecology & Evolution 1005-250 4
- Physiology & Anatomy I 1001-305 5
- Physiology & Anatomy II 1001-306 5
- Cell Biology 1001-311 4
- Plant Ecology 1001-420 4
- Developmental Biology 1001-422 4
- Freshwater Ecology 1001-471 4

Special Topics:

- Wildlife Rehabilitation 3
- Neurobiology 1-5
- Biology of Birds 2
- Bird Banding Training Course 3
- Identification of Wetland Vegetation I 2
- Identification of Wetland Vegetation II 1

Total quarter credit hours 20/28

Note: BS degree 5 courses required = 20 qtr. credit hrs.
BS/MS degree 7 courses required = 28 qtr. credit hrs.

Mathematics Concentration

- Matrices & Boundary Value Problems 1016-318 4
- Engineering Mathematics 1016-328 4
- Matrix Algebra 1016-331 4
- Discrete Mathematics II 1016-366 4
- Dynamical Systems 1016-407 4
- Real Variables I 1016-411 4
- Real Variables II 1016-412 4
- Complex Variables 1016-420 4
- Linear Algebra 1016-432 4
- Computer Methods in Applied Mathematics 1016-437 4
- Mathematical Statistics I 1016-451 4
- Mathematical Statistics II 1016-452 4
- Mathematical Modeling 1016-461 4
- Linear Programming 1016-465 4
- Advanced Math Programming 1016-466 4
- Theory of Graphs & Networks 1016-467 4
- Number Theory I 1016-485 4
- Abstract Algebra 1016-511 5

Total quarter credit hours 20/28

Note: BS degree 5 courses required = 20 qtr. credit hrs.
BS/MS degree 7 courses required = 28 qtr. credit hrs.

Prerequisites required for specific courses vary. Consult with advisor and refer to course descriptions.

Statistics Concentration

- Applied Statistics 1016-353 4
- Intro to Regression Analysis 1016-354 4
- Design of Experiments 1016-355 4
- Statistical Quality Control 1016-358 4
- Mathematical Statistics I 1016-451 4
- Mathematical Statistics II 1016-452 4
- SAS Programming 1016-453 4
- Non-parametric Statistics 1016-454 4
- Research Sampling Techniques 1016-457 4
- Introduction to Time Series 1016-524 4

Total quarter credit hours 20/28

Note: BS degree 5 courses required = 20 qtr. credit hrs.
BS/MS degree 7 courses required = 28 qtr. credit hrs.

Prerequisites required for specific courses vary. Consult with advisor and refer to course descriptions.

Additional concentrations in mathematics or statistics may be designed under advisement of the environmental science program director and the mathematics department.

Mathematics and Statistics

Sophia A. Maggelakis, Head

Over the past several years a growing demand has developed for mathematicians and statisticians with broad-based quantitative backgrounds and extensive computer skills. Indeed, mathematical and statistical theory is the basis for many fields of practical application, and employers need people whose education merges mathematics with another field of study: computer science, statistics, chemistry, physics, engineering, or business, to name a few.

The department of mathematics and statistics has established three BS degree programs in response to these long-term industry needs: applied mathematics, computational mathematics, and applied statistics. Each has been carefully designed to meet the needs of both students and their potential employers. Constant feedback from industry has enabled the department to continuously update its courses, programs and equipment in order to make sure students are well-trained in current techniques, equipment, and applications.

Students utilize symbolic computation software in many of their courses. Our specially equipped classrooms for multimedia presentations and symbolic computation and statistics labs lend support to all of our programs. Industrial needs and trends are carefully discussed with employers in order to update the curricula, and graduates find that their RIT backgrounds seem tailor-made for their professional careers.

Many exciting career opportunities exist for mathematics majors. Students typically become involved in research, consulting, or using computers for statistical analyses or to analyze complex mathematically modeled physical problems. Examples of co-op and permanent jobs typically obtained by department of mathematics and statistics majors include the following:

- actuary
- analyst for mathematical modeling
- statistician
- mathematical statistician
- demographics analyst
- software designer
- scientific programmer
- systems analyst
- cryptographic mathematician
- manufacturing engineering consultant
- biological systems analyst
- computer modeling consultant
- graphic modeling consultant
- simulations programmer
- reliability analyst
- statistical forecaster
- robotics software specialist
- database programmer
- data analyst
telecommunications analyst
software engineer
marketing analyst
aerospace systems analyst

Students in all three programs enjoy small classes and opportunities to get to know their teachers outside the classroom. Job prospects for graduates are plentiful, and the department is proud of its outstanding record in placing students in both co-op and permanent jobs.

Actuarial studies
A plan of study has been designed to assist students seeking a career in the actuarial sciences. These courses not only provide a foundation for students who will work as actuaries, but also prepare students to take the first actuarial exams. These courses may count for credit in any of the three major programs in the department of mathematics and statistics or may be taken independently.

BS/MS programs
Each of the three BS degree programs has a complementary master’s degree program that can be completed in one additional year. Students in all three BS programs are also eligible for the combined BS/MS in the department of mathematics and statistics’ master of science in industrial and applied mathematics.

Transfer programs
Transfer programs are arranged on an individual basis.

Requirements for the BS degree
The student must meet the minimum requirements of the Institute as described on pages 9 to 11. In addition he or she must complete the requirements contained in one of the particular programs listed here, or its equivalent, as determined and approved by the department of mathematics and statistics. In conjunction with a faculty adviser, individual student programs will be established to meet particular needs, interests, and goals.

Applied Mathematics

The applied mathematics program focuses upon the study and solution of problems that can be mathematically analyzed. Industry has a great need for individuals with this type of education. Students choose a sequence of courses from one of more than 20 application areas that provide them with the knowledge and skills to collaborate on complex problems with scientists, engineers, computer specialists, or other analysts. Some application minors are applied statistics; biology; business; economics; chemistry; electrical, industrial or mechanical engineering; operations research; and imaging science.

Graduates typically are employed in scientific, engineering and business environments, applying their mathematics background to the analysis and solution of real-world problems.

Applied mathematics students who minor in business can accelerate the MBA degree from RIT through careful choice of undergraduate courses. With one year of additional study, a student can earn the MBA degree.

Applied mathematics, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Freshman Seminar 1016-210, 211</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Calculus I, II, III 1016-251,252, 253</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Discrete Math 1 1016-265</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 1 4003-231</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Computer Science 2 4003-232</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Institute-wide Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Science Electives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Differential Equations I 1016-306</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Probability & Statistics I, II 1016-351,352</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Co-op Seminar 1016-399</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dynamical Systems 1016-407</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Matrices & boundary Value Problems 1016-318</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Applied Statistics 1016-353</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Matrix Algebra 1016-331</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Institute-wide Electives †</td>
<td>8</td>
</tr>
<tr>
<td>Third Year</td>
<td>Computer Methods in Applied Math 1016-437</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Numerical Analysis I 1016-511 or</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Numerical Analysis II 1016-512</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Linear Algebra 1016-432</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematical Modeling 1016-461</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics Electives</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Core) Concentration) *</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Cooperative Education 1016-499 (Optional)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Co-op</td>
<td>8</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Real Variables I, II 1016-411, 412</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Mathematics Electives</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Applications Minor</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Concentration/ Electives) *</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Cooperative Education 1016-499 (Optional)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Co-op</td>
<td>8</td>
</tr>
<tr>
<td>Fifth Year</td>
<td>Abstract Algebra I, II 1016-531, 532</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Application: Minor</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Electives) *</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts (Senior Seminar) * 0520-501</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cooperative Education 1016-499 (Optional)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Co-op</td>
<td>8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ This program can be completed in four years if co-op option is omitted.
Computational Mathematics

Computational mathematics prepares students for a mathematical career that incorporates extensive computer science skills. In this program, much emphasis is given to use of the computer as a tool to solve mathematically modeled physical problems. Graduates of the program often choose positions as mathematical analysts, scientific programmers, software engineers, or systems analysts. Job opportunities in private industry and government literally abound in this field.

The BS in computational mathematics can be joined with the MS in computer science. An accelerated program of study allows students who choose this option to receive both the BS and MS degrees following one year of graduate study.

Computational mathematics, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 1016-210, 211</td>
<td>2</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>Discrete Math I 1016-265</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science I 4003-231</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science II 4003-232</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science III 4003-233</td>
<td>4</td>
</tr>
<tr>
<td>Science Electives</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations I 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics I, II 1016-351, 352</td>
<td>8</td>
</tr>
<tr>
<td>Co-op Seminar 1016-399</td>
<td>0</td>
</tr>
<tr>
<td>Matrix Algebra 1016-331</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science IV 4003-334</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Digital Design 4003-351</td>
<td>3</td>
</tr>
<tr>
<td>Computer Organization 4003-352</td>
<td>3</td>
</tr>
<tr>
<td>Institute-wide Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Algebra 1016-432</td>
<td>4</td>
</tr>
<tr>
<td>Theory of Graphs & Networks 1016-467</td>
<td>4</td>
</tr>
<tr>
<td>Mathematical Modeling 1016-461</td>
<td>4</td>
</tr>
<tr>
<td>Software Engineering 3010-361</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1016-499 (Optional) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Variables I 1016-411</td>
<td>4</td>
</tr>
<tr>
<td>Two any of:</td>
<td></td>
</tr>
<tr>
<td>Numerical Analysis I 1016-511</td>
<td>8</td>
</tr>
<tr>
<td>Numerical Analysis II 1016-512</td>
<td></td>
</tr>
<tr>
<td>Computer Methods in Applied Math 1016-437</td>
<td></td>
</tr>
<tr>
<td>Mathematics Electives</td>
<td>4</td>
</tr>
<tr>
<td>Institute-wide Elective</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 1016-499 (Optional) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Algebra I, II 1016-531, 532</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) * 0520-501</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education 1016-499 (Optional) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 189

* See page 10 for liberal arts requirements.
† See page 12 for policy on physical education.
‡ This program can be completed in four years if co-op option is omitted.

Applied Statistics

The applied statistics program provides the student with a solid foundation in mathematical and statistical principles, experience in the application of statistics, thorough knowledge of computers and statistical software, and the skills to communicate the results of a statistical analysis. The demand for graduates with this type of preparation is precipitated from the recognition by business, industry, and government that a large number of problems can be effectively analyzed and solved using statistical methodology.

Graduates of the program collaborate with specialists in both scientific as well as nontechnical areas to design, experiment, and interpret the results. Application areas include product design, quality control, marketing, customer satisfaction, and actuarial sciences.

The BS in applied statistics may be combined with an MS in applied and mathematical statistics. An accelerated program of study allows the student who chooses this option to receive both the BS and MS degrees following one year of graduate study.

Applied statistics, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 1016-210, 211</td>
<td>2</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>Discrete Math I 1016-265</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science I 4003-231</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science II 4003-232</td>
<td>4</td>
</tr>
<tr>
<td>Statistical Computing with Excel & Minitab 1016-260</td>
<td>2</td>
</tr>
<tr>
<td>Co-op Seminar 1016-399</td>
<td>0</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>8</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus IV 1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations I 1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics I, II 1016-351, 352</td>
<td>8</td>
</tr>
<tr>
<td>Co-op Seminar 1016-399</td>
<td>0</td>
</tr>
<tr>
<td>Matrix Algebra 1016-331</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science IV 4003-334</td>
<td>4</td>
</tr>
<tr>
<td>Intro. to Digital Design 4003-351</td>
<td>3</td>
</tr>
<tr>
<td>Computer Organization 4003-352</td>
<td>3</td>
</tr>
<tr>
<td>Institute-wide Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>Science Electives</td>
<td>12</td>
</tr>
<tr>
<td>Applied Statistics 1016-353</td>
<td>4</td>
</tr>
<tr>
<td>Linear Algebra 1016-331</td>
<td>4</td>
</tr>
<tr>
<td>Statistical Quality Control 1016-358</td>
<td>4</td>
</tr>
<tr>
<td>Research Sampling Techniques 1016-457</td>
<td>4</td>
</tr>
<tr>
<td>Institute-wide Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Algebra 1016-432</td>
<td>4</td>
</tr>
<tr>
<td>Regression Analysis 1016-354</td>
<td>4</td>
</tr>
<tr>
<td>Design of Experiments 1016-355</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics Elective †</td>
<td>4</td>
</tr>
<tr>
<td>Institute-wide Electives</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core/Concentration) *</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1016-499 (Optional) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonparametric Statistics 1016-454</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics Electives *</td>
<td>12</td>
</tr>
<tr>
<td>Institute-wide Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration/Electives) *</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 1016-499 (Optional) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Statistics I, II 1016-451,452</td>
<td>8</td>
</tr>
<tr>
<td>Statistics Seminar 1016-555</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics Elective *</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Electives) *</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 1016-499 (Optional) Co-op</td>
<td></td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 188

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Up to 18 quarter credits of mathematics electives may be chosen from the applied mathematics minor courses.
§ This program can be completed in four years if co-op option is omitted.
Physics

David J. Axon, Head

The department of physics offers programs leading to the AS and BS degrees in physics. The BS degree is a five-year program with cooperative work experience beginning as early as the summer of the second year. Graduates find employment opportunities with industrial, academic, and governmental agencies or continue their education in MS or Ph.D. programs in physics or physics-related areas such as astrophysics, biophysics, geophysics, atmospheric science, imaging science, and engineering. Students may also prepare for entry into medical, law, or business schools.

Requirements for the BS degree in physics

The student must meet the minimum requirements of the Institute as described on pages 9 to 11. In addition, he or she must complete the requirements contained in the program shown here or its equivalent as determined and approved by the department of physics. In conjunction with a faculty adviser, individual student programs will be established to meet particular needs, interests, and goals. A planned elective concentration in another field such as biology, chemistry, mathematics, computer science, business, or imaging science is possible.

Students may elect to take a concentration in optical physics as part of their BS degree in physics. The concentration includes, in part, three courses: Optical Physics II, Laser Physics, and Experimental Optics. These can be taken as physics, technical, or free electives during the fourth and fifth years with no additional credit hours to obtain a BS degree.

For additional information on AS and BS degree requirements, contact the head of the department of physics.

Physics, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Orientation I, II</td>
<td>1017-201, 202</td>
</tr>
<tr>
<td>University Physics I, II</td>
<td>1017-311, 312</td>
</tr>
<tr>
<td>University Physics Lab I, II</td>
<td>1017-371, 372</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253</td>
</tr>
<tr>
<td>Chemical Principles I, II</td>
<td>1011-211, 212</td>
</tr>
<tr>
<td>Chemistry Lab I, II</td>
<td>1011-205, 206</td>
</tr>
<tr>
<td>Intro. to Computational Physics & Programming</td>
<td>1017-317</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td></td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td></td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Physics III</td>
<td>1017-313</td>
</tr>
<tr>
<td>University Physics Lab III</td>
<td>1017-373</td>
</tr>
<tr>
<td>Introduction to Modern Physics</td>
<td>1017-314</td>
</tr>
<tr>
<td>Introduction to Semiconductor Physics</td>
<td>1017-315</td>
</tr>
<tr>
<td>Introduction to Laboratory Techniques</td>
<td>1017-321</td>
</tr>
<tr>
<td>Modern Physics Lab</td>
<td>1017-374</td>
</tr>
<tr>
<td>Sophomore Physics Seminar</td>
<td>1017-350</td>
</tr>
<tr>
<td>Calculus IV</td>
<td>1016-305</td>
</tr>
<tr>
<td>Differential Equations</td>
<td>1016-306</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td></td>
</tr>
<tr>
<td>(Free Electives) (Optional)</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>1017-499 (Optional)</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate Mechanics I, II</td>
<td>1017-401, 402</td>
</tr>
<tr>
<td>Thermal Physics</td>
<td>1017-415</td>
</tr>
<tr>
<td>Electronic Measurements</td>
<td>1017-431</td>
</tr>
<tr>
<td>Theoretical Physics I, II</td>
<td>1017-480, 481</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>1017-499 (Optional)</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity & Magnetism I, II</td>
<td>1017-411, 412</td>
</tr>
<tr>
<td>Experimental Physics I</td>
<td>1017-421</td>
</tr>
<tr>
<td>Optical Physics</td>
<td>1017-455</td>
</tr>
<tr>
<td>Introduction to Quantum Mechanics</td>
<td>1017-522</td>
</tr>
<tr>
<td>Physics Elective (400-500-level)</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Concentration)</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Elective)</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>1017-499 (Optional)</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Physics</td>
<td>1017-531</td>
</tr>
<tr>
<td>Senior Physics Seminar</td>
<td>1017-550</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Elective)</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar)</td>
<td></td>
</tr>
<tr>
<td>(Free Electives) (Optional)</td>
<td></td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>1017-499 (Optional)</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 184

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
Allied Health Sciences

Richard L. Doolittle, Head

The department of allied health sciences includes programs of study in biomedical computing, medical technology, physician assistant and two medical imaging technologies: diagnostic medical sonography (ultrasound) and nuclear medicine technology. Each is designed to prepare students for entry into careers in the health sciences. Graduates find employment opportunities in hospitals and clinics, in research facilities, in industry, and with many governmental agencies. Some continue their education in graduate and professional schools.

All of the BS programs offered by the department can serve as preprofessional programs for schools of medicine, veterinary medicine, or dentistry.

In addition to the BS programs, there is a certificate option in diagnostic medical sonography and nuclear medicine technology as well as an MS degree program in clinical chemistry.

Biomedical Computing

Nicolas A. Thireos, Program Director

BIT’s BS degree curriculum in biomedical computing is one of only a few similar programs in the United States. It was developed by the College of Science and the department of computer science because of the increasing use of computers in every aspect of health care as well as biomedical research and education. Students receive training in the basic sciences, medical sciences, and computer science/information technology with emphasis on clinical and laboratory applications. This array of courses provides graduates with the ability to communicate with medical personnel and trains them to develop computer applications for the solution of clinical problems, laboratory analyses, medical information systems, medical research, and education. It also trains them to provide computing support to medical professionals in the above areas.

There are two tracks students can follow in this program: computer science (CS track) or information technology (IT track).

Students interested primarily in developing computer software for medicine will follow the CS track, while those interested in providing computing support for databases, networks, and Web applications will follow the IT track.

Students are strongly encouraged to obtain experiential biomedical computing education by participation in the cooperative education program (co-op). Co-op allows them to alternate quarters in school with quarters in paid employment, starting with the summer at the end of the second year. It also provides the opportunity to practice new skills in real-life situations and to test their chosen field before making a lifelong commitment. The experiences students acquire not only make their education more relevant, but also make them more valuable to prospective employers.

Students consult with faculty advisers in order to tailor their academic programs to individual career goals. Upper-level electives are used to prepare graduates for specialized employment opportunities within biomedical computing, for graduate school in the sciences or computer science/information technology, or for postgraduate professional school.

Requirements for the BS in biomedical computing

The student must meet the minimum requirements of the Institute as described on pages 9 to 11 and, in addition, must complete the requirements contained in this program or its equivalent, as determined and approved by the department of allied health sciences. Transfer students may be required to take additional course work, depending on the program they attended at their previous school. Specific requirements will be determined for each transfer student by the department.

BS/MS option

The BS degree in biomedical computing can be obtained in four years. With one additional year (four quarters) of study, students have the option to earn an MS degree in computer science. Students must declare their intention to pursue the MS degree by the third year of undergraduate study. Some assistantships and scholarships are available to deserving students for graduate study.

For more information on BS degree requirements, contact the program director or head of the department of allied health sciences.

Biomedical computing, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Computer Science (CS track)</th>
<th>Information Technology (IT track)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Quarter Credit Hours</td>
</tr>
<tr>
<td>General Biology 1001-201</td>
<td>9</td>
</tr>
<tr>
<td>General Biology Lab 1001-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td>General & Analytical Chemistry 1011-215, 216, 217</td>
<td>10</td>
</tr>
<tr>
<td>General & Analytical Chemistry Lab 1011-205, 206, 227</td>
<td>4</td>
</tr>
<tr>
<td>Computers in Medicine 1026-230</td>
<td>4</td>
</tr>
<tr>
<td>M Programming 1027-305</td>
<td>4</td>
</tr>
<tr>
<td>Internet, Java & Health Care 1027-315</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 1026-203</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts (Core) †</td>
<td>8</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Calculus I, II 1016-251</td>
<td>8</td>
</tr>
<tr>
<td>Introduction to Calculus I, II 1016-214, 215</td>
<td>(6)</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Program Electives</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
<tr>
<td>Computer Science 3 4003-233 (CS track)</td>
<td>4</td>
</tr>
<tr>
<td>or Programming with Classes (C++) 4002-210 (IT track)</td>
<td>4</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Required for both tracks:</td>
<td></td>
</tr>
<tr>
<td>Clinical Lab Instrumentation 1024-432</td>
<td>4</td>
</tr>
<tr>
<td>Physiology & Anatomy I, II 1001-305,306</td>
<td>10</td>
</tr>
<tr>
<td>Program Elective</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core/Concentration) *</td>
<td>16</td>
</tr>
<tr>
<td>and CS track</td>
<td></td>
</tr>
<tr>
<td>Discrete Mathematics I 1016-265</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Digital Design 4003-351</td>
<td>3</td>
</tr>
<tr>
<td>Computer Organization 4003-352</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science 4 4003-334</td>
<td>3</td>
</tr>
<tr>
<td>or IT track</td>
<td></td>
</tr>
<tr>
<td>Visual Basic for Programmers 4002-317</td>
<td>4</td>
</tr>
<tr>
<td>Computer Concepts & Software Systems 4002-340</td>
<td>4</td>
</tr>
<tr>
<td>Data Communications, & Comp. Networks 4002-341</td>
<td>4</td>
</tr>
<tr>
<td>Information Technology Elective</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education 1026-409 (Optional CS or IT track)</td>
<td>Co-op</td>
</tr>
</tbody>
</table>
Fourth Year
Required for both tracks:
College Physics I, II 1017-211, 212
College Physics I, II Lab 1017-271, 272
or
University Physics I, II 1017-311, 312
University Physics Lab I, II 1017-375, 376
Electricity & Electronics 1017-331
Liberal Arts (Elected/Concentration) * 16
Program Elective † 4
Liberal Arts (Senior Seminar) 2
and
Computer Science Electives (CS track) 8

Information Technology Electives (IT track) 8
Cooperative Education 1026-499 (Optional CS or IT track) Co-op

Total Quarter Credit Hours 185 (CS track) 187 (IT track)

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
‡ Needed only if lower-level courses were selected
NOTE: Cooperative education (co-op) can be any quarter beginning with the summer at the end of the second year.

Medical laboratory Technology

James C. Aumer, Program Director

The medical laboratory technology program prepares students for employment in hospital laboratories; industrial, medical, or research laboratories; and pharmaceutical companies. As medical laboratory technologists, they will perform analyses that aid in the diagnosis and treatment of disease. They must be able to carry out complex test determinations, operate sophisticated instrumentation, and detect and correct errors. The program leads to a bachelor of science degree and prepares students for employment in hospital laboratories; industrial, or research laboratories; and pharmaceutical companies. Transfer students will be required to complete the requirements contained in this program or its equivalent, as determined and approved by the department of allied health sciences. Transfer students will be required to complete a minimum of 45 quarter credit hours on campus and to complete all program requirements before beginning the clinical training experience. Specific requirements will be determined for each transfer student by the program director.

For more information on BS degree requirements, contact the program director or head of the department of allied health sciences.

Medical laboratory technology, BS degree, typical course sequence

First Year Quarter Credit Hours
General Biology 1001-201, 202, 203 9
General Biology Lab 1001-204, 205, 206 3
General & Analytical Chemistry 1011-215, 216,217 10
Chemistry I, II Lab 1011-201, 204 2
Chemistry II Lab 1011-202, 206 2
General & Analytical Chemistry III Lab 1011-227 2
Freshman Seminar 1026-203 1
Computers in Medicine 1026-230 4
Calculus for Management Science 1016-226 4
Liberal Arts (Core) * 12
First-Year Enrichment 0
Physical Education Electives † 0

Second Year Quarter Credit Hours
Medical Laboratory Technology Seminar 1024-210 1
Physiology & Anatomy 1001-305, 306 10
Organic Chemistry 1013-231, 232, 233 9
Organic Chemistry Lab 1013-235, 236 2
College Physics I 1017-211, 212, 213 9
College Physics Lab 1017-271, 272, 273 3
Medical Genetics 1004-315 2
Liberal Arts (Core) * 16

Third Year
Clinical Laboratory Topics 1026-351, 352, 353 3
Hematology/Immunohematology 1024-401 4
Microbiology 1001-404 4
Biochemistry 1009-502 3
Clinical Lab Instruments; Clinical Chemistry 1024-432, 433 8
Data Analysis I 1016-319 4
Immunology 1001-402 3
Microbial Pathogenesis 1001-451 4
Liberal Arts (Concentration) * Elective 4

Fourth year taken at a hospital approved for training medical laboratory technologists

Total Quarter Credit Hours 147

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.

Physician Assistant

Heidi Miller, Program Director
Nancy Valentage, Associate Director/Clinical Coordinator
Thomas Richardson, Academic Coordinator
John Oliphant, Clinical Coordinator

The RIT physician assistant program is a four-year curriculum focusing on primary care and awarding a bachelor of science (BS) degree upon completion. The first two years involve core courses in basic sciences, mathematics, and liberal arts. The third and fourth years, considered the upper division of the program, encompass 21 months. (Students participate in the program during the summer between these last two years.) This includes nine months of clinical course work and 12 months of clinical rotations. Qualified transfer students are accepted into any one of the first three years of the program.

Physician assistants provide diagnostic and therapeutic health care in conjunction with a supervising physician. They perform tasks that have, in the past, been performed by physicians, such as:
- eliciting medical histories
- conducting physical examinations
- ordering laboratory and radiological testing
- diagnosing common illnesses
- determining treatment
- giving medical advice
- counseling and educating patients
- promoting "wellness" and disease prevention
- assisting in surgery
- casting and suturing
Physician assistants' duties vary depending on the state and the specialty in which they practice. In most states, PAs also prescribe medications. Specialties include internal medicine, family medicine, emergency medicine, geriatrics, pediatrics, obstetrics/gynecology, general surgery, orthopedic surgery, neurosurgery, neonatology, etc. The clinical rotations during the upper division provide the student with an opportunity to explore these specialty areas.

In addition to RIT's general admission procedures (see page 347), the physician assistant program requires completion of a supplemental data packet, application, and successful completion of an admission interview (by invitation). For details of the admission procedure utilized by the physician assistant program, please contact the RIT Office of Admissions (585-475-6631). It is also important to note that the minimum grade point average for acceptance into the physician assistant program is 3.0 (on the basis of a 4.0 maximum) for both high school and transfer students. In order to graduate from the program, a GPA of 2.8 or better must be maintained.

Physician assistant, BS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar</td>
<td>1</td>
</tr>
<tr>
<td>General Biology 1001-201, 202, 203</td>
<td>9</td>
</tr>
<tr>
<td>General Biology Lab 1001-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td>General & Analytical Chemistry I, II, III 1011-215, 216, 217</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry I, II Lab 1011-205,206</td>
<td>2</td>
</tr>
<tr>
<td>General & Analytical Chemistry III Lab 1011-227</td>
<td>2</td>
</tr>
<tr>
<td>Computers in Medicine 1026-230</td>
<td>4</td>
</tr>
<tr>
<td>Early Clinical Experience 1032-201,202</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>16</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology & Anatomy 1001-305,306</td>
<td>10</td>
</tr>
<tr>
<td>Organic Chemistry 1013-231, 232,233</td>
<td>9</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Early Clinical Experience 1032-203</td>
<td>1</td>
</tr>
<tr>
<td>Physician Assistant Seminar 1032-210</td>
<td>1</td>
</tr>
<tr>
<td>Medical Microbiology 1032-406</td>
<td>4</td>
</tr>
<tr>
<td>Program Elective</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>20</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Pathophysiology 1026-415</td>
<td>4</td>
</tr>
<tr>
<td>Medical Lab Testing 1024-450</td>
<td>4</td>
</tr>
<tr>
<td>Law & Medicine 1032-330</td>
<td>2</td>
</tr>
<tr>
<td>Behavioral Medicine 1032-200</td>
<td>2</td>
</tr>
<tr>
<td>Patient History and Physical Exam I, II, III 1032-401, 402, 403</td>
<td>6</td>
</tr>
<tr>
<td>Clinical Skills 1032-410</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Pharmacology I, II, III 1032-420, 421, 422</td>
<td>8</td>
</tr>
<tr>
<td>Clinical Diagnostic Imaging 1032-430</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Medicine I, II, III 1032-440, 441, 442</td>
<td>12</td>
</tr>
<tr>
<td>Clinical Rotation I 1032-490 †</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Core) *</td>
<td>4</td>
</tr>
</tbody>
</table>

* Fourth year taken at an approved hospital for training physician assistants

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Rotation II, III, IV 1032-491, 492, 493</td>
<td>36</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours

197

* See page 10 for liberal arts requirements.
† See page 111 for policy on physical education.
‡ Mandatory rotations are fields of general clinical practice that build a solid basic understanding and groundwork. These required rotations are Internal Medicine, Family Medicine, Orthopedics, Emergency Medicine, OB/GYN, Pediatrics, General Surgery, and Psychiatry. Students also will be provided with two elective rotations. These latter rotations allow students to individualize their experiences according to their own areas of interest.

Medical Imaging Technologies

Nuclear Medicine Technology

Kristen M. Waterstram-Rich, Program Director
Nancy H. Herbert, Clinical Coordinator

Nuclear medicine is an exciting, people-oriented allied health career for individuals interested in blending health sciences, computers and advanced technologies. A nuclear medicine technologist (NW) uses radioactive materials to perform imaging examinations and laboratory tests involved in the diagnosis and treatment of disease. A nuclear medicine study can provide unique information regarding the structure and function of organ systems and is safe for the technologist and the patient. A nuclear medicine technologist can advance from a staff position to that of chief technologist within a department or pursue other career paths: education, technical sales representative, applications specialist, radio-pharmaceutical sales, hospital administration, or radiation health physics.

The program leading to a BS degree in nuclear medicine technology spans four years, the first three of which are spent on campus. The fourth year consists of clinical education at one or more approved hospitals in addition to classes at RIT that reinforce the clinical education.
The program also prepares students for professions in medicine or research. With the addition of a few courses and without extending the student’s stay at RIT, the nuclear medicine technology program can prepare students for medical, dental, veterinary, or graduate school. A pre-medical advisory committee assists students in preparing for professional school.

Clinical training

Students who have successfully completed all required courses of the first three years of the program with a minimum overall and principal field of study GPA of 2.0 are eligible to begin clinical training in August of their fourth year. During the spring quarter of the third year and one week prior to internship, there is an intensive introduction to the theory and practice of nuclear medicine technology. Classes during this time are held on the RIT campus, and laboratory sessions may take place at affiliated hospitals. Before students are allowed to begin their clinical education, they must be certified in community CPR (cardiopulmonary resuscitation).

Most of the clinical education is provided in nuclear medicine departments of the program’s hospital affiliates. Each student is assigned (subject to the hospital’s approval) a particular combination of three hospitals and trains approximately three months in each. The teaching is done primarily by physicians and technologists on the hospital staffs. Student progress and performance are monitored by the RIT nuclear medicine technology clinical coordinator, who makes periodic visits to the hospital departments.

The RIT nuclear medicine technology program has affiliations with hospitals in the Syracuse, Rochester, Buffalo, Albany, Binghamton, and Elmira areas of upstate New York.

Requirements for the BS degree

The student must meet the minimum requirements of the Institute as described on pages 9 to 11 and, in addition, must complete the requirements contained in this program or its equivalent, as determined and approved by the department of allied health sciences. In conjunction with a faculty adviser, individual student programs will be established to meet particular needs, interests, and goals. A planned elective concentration in another field such as biology, chemistry, mathematics, computer science, business, or general medical imaging is possible.

For further information on degree requirements, contact the program director or the head of the department of allied health sciences.

Requirements for the certificate program

The student must meet the Institute requirements and prerequisites course requirements. The certificate in nuclear medicine technology is available to associate and baccalaureate degree graduates and licensed or certified allied health practitioners with equivalent education and experience.

Contact the program director or clinical coordinator for further information.

Accreditation

The nuclear medicine technology program is accredited through the Joint Review Commission on Educational Programs in Nuclear Medicine.

Nuclear medicine technology, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>General Biology 1001-01, 202, 203</td>
<td>9</td>
</tr>
<tr>
<td>General Biology Lab 1001-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td>General & Analytical Chemistry 1011-215, 216, 217</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry I, II Lab 1011-205, 206</td>
<td>2</td>
</tr>
<tr>
<td>General & Analytical Chemistry III Lab 1011-227</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar 1026-203</td>
<td>1</td>
</tr>
<tr>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td>Computers in Medicine 1026-230</td>
<td>4</td>
</tr>
<tr>
<td>or Survey of Computer Science 4003-200</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)*</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)*</td>
<td>16</td>
</tr>
<tr>
<td>Liberal Arts (Core)*</td>
<td>0</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Introduction to Diagnostic Medical Imaging 1026-205</td>
<td>2</td>
</tr>
<tr>
<td>Medical Terminology 1026-301</td>
<td>3</td>
</tr>
<tr>
<td>College Physics 1017-213</td>
<td>9</td>
</tr>
<tr>
<td>College Physics Lab 1017-271, 272, 273</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Organic & Biological Chemistry 1011-202</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Organic Chemistry Lab 1011-207</td>
<td>1</td>
</tr>
<tr>
<td>Biochemistry I 1011-203</td>
<td>4</td>
</tr>
<tr>
<td>Physiology & Anatomy 1000-305, 306</td>
<td>10</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)*</td>
<td>12</td>
</tr>
<tr>
<td>Program Electives</td>
<td>0</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Radiation Physics 1017-351, 352, 353</td>
<td>15</td>
</tr>
<tr>
<td>Radiation Biology 1001-430</td>
<td>4</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Concentration)*</td>
<td>12</td>
</tr>
<tr>
<td>Program Electives</td>
<td>10</td>
</tr>
<tr>
<td>Introduction to Clinical Nuclear Medicine 1025-401‡</td>
<td>2</td>
</tr>
<tr>
<td>Patient Care 1026-333</td>
<td>2</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Procedures-Central Nervous System 1025-402</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Skeletal System 1025-502</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Respiratory System 1025-503</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Urinary System 1025-510</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Endocrine System 1025-511</td>
<td>2</td>
</tr>
<tr>
<td>NM Procedures-Cardiovascular System 1025-512</td>
<td>2</td>
</tr>
<tr>
<td>NM Procedures-Digestive System 1025-513</td>
<td>2</td>
</tr>
<tr>
<td>NM Procedures-Special Studies 1025-514</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Hematological & In Vitro Studies 1025-515</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation & Computers in Nuclear Medicine 1025-516</td>
<td>2</td>
</tr>
<tr>
<td>Radiopharmacy & Radiopharmacology 1025-517</td>
<td>2</td>
</tr>
<tr>
<td>Radionuclide Therapy 1025-518</td>
<td>1</td>
</tr>
<tr>
<td>Radiation Health Safety 1025-519</td>
<td>2</td>
</tr>
<tr>
<td>Review in Nuclear Medicine 1025-521</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Nuclear Medicine I 1025-522§</td>
<td>7</td>
</tr>
<tr>
<td>Clinical Nuclear Medicine II 1025-523§</td>
<td>7</td>
</tr>
<tr>
<td>Clinical Nuclear Medicine III 1025-524§</td>
<td>7</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>192</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 13 for policy on physical education.
‡ Students should be certified in CPR before taking this course.
§ Clinical internships-affiliated hospitals.
Nuclear medicine technology, certificate program, typical course sequence

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Diagnostic Medical Imaging</td>
<td>1026-205</td>
<td>2</td>
</tr>
<tr>
<td>Data Analysis I</td>
<td>1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Radiation & the Human Body</td>
<td>1025-310</td>
<td>2</td>
</tr>
<tr>
<td>Nuclear Medicine Physics & Instrumentation</td>
<td>1017-358</td>
<td>6</td>
</tr>
<tr>
<td>Introduction to Nuclear Medicine</td>
<td>1025-401</td>
<td>2</td>
</tr>
<tr>
<td>Patient Care</td>
<td>1026-333</td>
<td>2</td>
</tr>
<tr>
<td>Nuclear Medicine Procedures-Central Nervous System</td>
<td>1025-402</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Skeletal System</td>
<td>1025-502</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Respiratory System</td>
<td>1025-503</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Urinary System</td>
<td>1025-510</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Endocrine System</td>
<td>1025-511</td>
<td>2</td>
</tr>
<tr>
<td>NM Procedures-Cardiovascular System</td>
<td>1025-512</td>
<td>2</td>
</tr>
<tr>
<td>NM Procedures-Digestive System</td>
<td>1025-513</td>
<td>2</td>
</tr>
<tr>
<td>NM Procedures-Special Studies</td>
<td>1025-514</td>
<td>1</td>
</tr>
<tr>
<td>NM Procedures-Hematological & In Vitro Studies</td>
<td>1025-515</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation & Computers in Nuclear Medicine</td>
<td>1025-516</td>
<td>2</td>
</tr>
<tr>
<td>Radiochemistry & Radiopharmacology</td>
<td>1025-517</td>
<td>2</td>
</tr>
<tr>
<td>Radionuclide Therapy</td>
<td>1025-518</td>
<td>1</td>
</tr>
<tr>
<td>Radiation Health Safety</td>
<td>1025-519</td>
<td>2</td>
</tr>
<tr>
<td>Review in Nuclear Medicine</td>
<td>1025-521</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Nuclear Medicine I</td>
<td>1025-522*</td>
<td>7</td>
</tr>
<tr>
<td>Clinical Nuclear Medicine II</td>
<td>1025-523*</td>
<td>7</td>
</tr>
<tr>
<td>Clinical Nuclear Medicine III</td>
<td>1025-524*</td>
<td>7</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td></td>
<td>61</td>
</tr>
</tbody>
</table>

* Clinical internships-affiliated hospitals

Diagnostic Medical Sonography (Ultrasound)

Hamad Ghazle, Program Director
Stephen Guida, Clinical Coordinator

Diagnostic medical sonography, one of the fastest-growing areas in diagnostic medicine, is a noninvasive, nontoxic diagnostic medical imaging modality in which high-frequency sound waves are used to produce images of many different areas of the human body. Ultrasound is readily used to image the heart, blood flow, abdominal organs (kidneys, pancreas, liver, spleen, etc.), the developing fetus, and male/female reproductive organs. The profession has grown rapidly in the last twenty years and is expected to continue to grow well into the twenty-first century. Evaluation of the market and survey of employers indicate the strong demand for and shortage of well-trained sonographers.

RIT’s program is one of only a few such degree programs in the nation. It offers both a bachelor of science degree and a certificate option. With proper scheduling of courses and without extending the date of graduation beyond the normal four years, the program prepares students for application to schools of medicine, dentistry, veterinary medicine, podiatry, and chiropractic medicine. Students can also earn a certificate in health systems administration while completing their requirements. Additionally, graduates may choose to pursue a master’s or Ph.D. degree in a variety of fields.

The intent of the program is to prepare leaders in the field of ultrasound. Skills in administration and research are emphasized in addition to the development of scanning and diagnostic abilities. Upon successful completion of the program requirements, the student is eligible to take a national certifying examination for abdominal, small parts, obstetrical, and gynecological ultrasound. Each candidate is also introduced to vascular ultrasound.

Graduates are prepared to pursue a variety of career options in medical, industrial, and educational settings both nationally and internationally. Our graduates can be found in a wide range of positions, including supervisory or administrative positions in hospitals, clinics, private physician’s offices, teaching, research, sales, and industry. Graduates can also choose to work freelance or for mobile services.

Requirements for the BS degree

The student must meet the minimum requirements of the Institute as described on pages 9 to 11 and, in addition, must complete the curriculum requirements listed here or the equivalent, as determined and approved by the department of allied health sciences. The BS degree is typically a four-year program, including clinical internship, unless the student has transfer credit from another institution. Associate degree holders may be able to complete a BS degree in two years; additional course work may be required. Contact the program director or the head of the department of allied health sciences for further information on BS degree requirements.
Requirements for the certificate option
The student must meet the Institute requirements as well as the specific requirements listed here. The certificate option is a one-year course of study that includes lectures integrated with the clinical internship. Certain prerequisite courses must be completed before entering the certificate option. Contact the program director for further information on prerequisite course work. The certificate option is available to all registered allied health practitioners, as well as to those holding an associate or a bachelor's degree in a relevant discipline.

Clinical internship
The clinical internship year (completed with a 20-percent tuition discount) provides hands-on experiences in two or more medical facilities primarily in upstate New York. All students begin the internship by attending an intensive five-week experience on campus. During this time, they learn how to perform complete sonographic examinations and recognize anatomy and disease states using equipment in the ultrasound laboratory. Students also learn about hospital departmental and administrative operations. After completing the requirements, candidates are assigned to a medical training site for clinical experience. At the medical facility students work side by side with sonographers, physicians, and other health care professionals to learn, develop, apply, and sharpen the necessary skills to perform general ultrasound examinations. The students' clinical progress and performance are monitored by the RIT program clinical coordinator who makes periodic visits to the hospital ultrasound departments. Additionally, students return to campus each month for three days of lectures, presentations, projects, and testing.

Accreditation
The program is accredited by the Joint Review Committee on Education in Diagnostic Medical Sonography of the Commission on Accreditation of Allied Health Education Programs.

Diagnostic medical sonography, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology 1001-201, 202, 203</td>
<td>9</td>
</tr>
<tr>
<td>General Biology Lab 1001-205, 206, 207</td>
<td>3</td>
</tr>
<tr>
<td>General & Analytical Chemistry 1011-215, 216, 217</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry I, II Lab 1011-205,206</td>
<td>2</td>
</tr>
<tr>
<td>General & Analytical Chemistry III Lab 1011-227</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar 1026-203</td>
<td>1</td>
</tr>
<tr>
<td>Computers in Medicine 1026-230</td>
<td>4</td>
</tr>
<tr>
<td>Calculus for Management Science 1016-226</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (core)*</td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education Electives †</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Physics 1017-211, 212, 213</td>
<td>9</td>
</tr>
<tr>
<td>College Physics Lab 1017-271, 272, 273</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Diagnostic Medical Imaging 1026-205</td>
<td>2</td>
</tr>
<tr>
<td>Medical Terminology 1026-301</td>
<td>3</td>
</tr>
<tr>
<td>Physiology & Anatomy 1001-305,306</td>
<td>10</td>
</tr>
<tr>
<td>Data Analysis I 1016-319</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (core)*</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Sectional Anatomy 1030-412</td>
<td>4</td>
</tr>
<tr>
<td>Ultrasound Instrumentation 1030-413</td>
<td>4</td>
</tr>
<tr>
<td>Pathophysiology 1026-415</td>
<td>4</td>
</tr>
<tr>
<td>Medical Genetics 1004-315</td>
<td>2</td>
</tr>
<tr>
<td>Patient Care 1026-333</td>
<td>2</td>
</tr>
<tr>
<td>Ultrasonic Physics 1017-361</td>
<td>5</td>
</tr>
<tr>
<td>Program Electives</td>
<td>16</td>
</tr>
<tr>
<td>Liberal Arts (Concentration) *</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year (Internship)</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Obstetrical Ultrasound 1030-552</td>
<td>3</td>
</tr>
<tr>
<td>Gynecologic Ultrasound 1030-553</td>
<td>3</td>
</tr>
<tr>
<td>Abdominal Ultrasound I 1030-556</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Ultrasound I 1030-570</td>
<td>7</td>
</tr>
<tr>
<td>Advanced Obstetrical Ultrasound 1030-554</td>
<td>4</td>
</tr>
<tr>
<td>Abdominal Ultrasound II 1030-557</td>
<td>3</td>
</tr>
<tr>
<td>Ultrasound Seminar 1030-560</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Ultrasound II 1030-571</td>
<td>7</td>
</tr>
<tr>
<td>Small Parts Ultrasound 1030-558</td>
<td>3</td>
</tr>
<tr>
<td>General Vascular Evaluation 1030-414</td>
<td>4</td>
</tr>
<tr>
<td>Research Seminar 1030-561</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Ultrasound III 1030-572</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 191

* See page 10 for liberal arts requirements.
† See page 21 for policy on physical education.

Diagnostic medical sonography, certificate program, typical course sequence

Must be completed before entering certificate program *

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Diagnostic Medical Imaging 1026-205</td>
<td>2</td>
</tr>
<tr>
<td>Cross-Sectional Anatomy 1030-412</td>
<td>4</td>
</tr>
<tr>
<td>Ultrasound Instrumentation 1030-413</td>
<td>4</td>
</tr>
<tr>
<td>Pathophysiology 1026-415</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internship</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Obstetrical Ultrasound 1030-552</td>
<td>3</td>
</tr>
<tr>
<td>Gynecologic Ultrasound 1030-553</td>
<td>3</td>
</tr>
<tr>
<td>Abdominal Ultrasound I 1030-556</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Ultrasound I 1030-570</td>
<td>7</td>
</tr>
<tr>
<td>Advanced Obstetrical Ultrasound 1030-554</td>
<td>4</td>
</tr>
<tr>
<td>Abdominal Ultrasound II 1030-557</td>
<td>3</td>
</tr>
<tr>
<td>Ultrasound Seminar 1030-560</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Ultrasound II 1030-571</td>
<td>7</td>
</tr>
<tr>
<td>Small Parts Ultrasound 1030-558</td>
<td>3</td>
</tr>
<tr>
<td>General Vascular Evaluation 1030-414</td>
<td>4</td>
</tr>
<tr>
<td>Research Seminar 1030-561</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Ultrasound III 1030-572</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 62

* Other prerequisites may apply.
Chester F. Carlson
Center for Imaging Science

Ian Gatley, Director

Students in imaging science study the applications of physics, computer science, chemistry, and mathematics to the formation, recording, manipulation, and perception of images. Design of imaging systems, evaluation of the images they produce, and the improvement of those systems are all part of the imaging science curriculum. Concepts presented in the classroom are reinforced through laboratory experiments and by a capstone senior research project. Both theoretical studies and practical application of technologies are integral parts of the program.

The physical and mathematical sciences provide a foundation for advanced studies in imaging principles, chemistry, optics and optical instrumentation, visual and color perception, microscopic structure of images, measurements of radiant energy, digital image processing, and remote sensing.

Career opportunities exist around the country in areas such as aerospace technology, office information systems, information handling, microelectronics, scientific and optical instrumentation, graphic arts, and photographic materials and systems. Graduates are employed in industrial and governmental research and development.

The imaging science faculty are deeply committed professionals who divide their time between teaching and the pursuit of scientific advances.

The center conducts funded research sponsored by both industry and government. This research support ensures that students are exposed to the latest developments in a rapidly expanding field.

The Chester F. Carlson Center for Imaging Science also offers graduate programs in imaging science leading to MS and Ph.D. degrees as well as an MS degree in color science.

Requirements for the BS degree in imaging science

The student must meet the minimum requirements of the Institute as described on pages 9 to 11. In addition, he or she must complete the requirements contained in the program shown here or its equivalent, as determined and approved by the imaging science faculty. Cooperative work experience is not required but is recommended for the summers following the second and third year of the program. In consultation with a faculty adviser, a two-quarter co-op block is possible. Opportunities also exist to participate in research work with faculty during summer quarter.

Imaging science, BS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th></th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Science First-year Seminar</td>
<td>1051-200</td>
<td>1</td>
</tr>
<tr>
<td>Survey of Imaging Science</td>
<td>1051-201</td>
<td>2</td>
</tr>
<tr>
<td>Survey of Imaging Science Lab</td>
<td>1051-221</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Imaging Science I</td>
<td>1051-202</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Imaging Science II</td>
<td>1051-203</td>
<td>4</td>
</tr>
<tr>
<td>Programming for Imaging Science</td>
<td>1051-211</td>
<td>4</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I</td>
<td>1017-311</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (Core)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>First-Year Enrichment</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Physical Education †</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Systems Lab I</td>
<td>1051-231</td>
<td>2</td>
</tr>
<tr>
<td>Imaging Systems Lab II</td>
<td>1051-232</td>
<td>2</td>
</tr>
<tr>
<td>Optics for Imaging</td>
<td>1051-303</td>
<td>4</td>
</tr>
<tr>
<td>Chemical Principles I, II</td>
<td>1011-211,212</td>
<td>6</td>
</tr>
<tr>
<td>Chemical Principles Lab I</td>
<td>1011-205</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Organic Chemistry</td>
<td>1011-213</td>
<td>3</td>
</tr>
<tr>
<td>Calculus IV</td>
<td>1016-305</td>
<td>4</td>
</tr>
<tr>
<td>Differential Equations</td>
<td>1016-306</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics I</td>
<td>1016-351</td>
<td>4</td>
</tr>
<tr>
<td>Probability & Statistics II</td>
<td>1016-352</td>
<td>4</td>
</tr>
<tr>
<td>University Physics II, III</td>
<td>1017-312, 313</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts (Core)*</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Physical Education †</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td>Quarter Credit Hours</td>
</tr>
<tr>
<td>Interaction Between Light & Matter</td>
<td>1051-313</td>
<td>4</td>
</tr>
<tr>
<td>Digital Image Processing I, II</td>
<td>1051-461,462</td>
<td>6</td>
</tr>
<tr>
<td>Programming</td>
<td>1051-411</td>
<td>2</td>
</tr>
<tr>
<td>Vision & Psychophysics</td>
<td>1051-400</td>
<td>3</td>
</tr>
<tr>
<td>Radiometry</td>
<td>1051-401</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Modern Physics</td>
<td>1017-314</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Measurements</td>
<td>1017-431</td>
<td>4</td>
</tr>
<tr>
<td>Professional Electives</td>
<td></td>
<td>credit varies</td>
</tr>
<tr>
<td>Liberal Arts (Core/Concentration) *</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year</td>
<td></td>
<td>Quarter Credit Hours</td>
</tr>
<tr>
<td>Imaging Systems Analysis I, II</td>
<td>1051-511, 512</td>
<td>8</td>
</tr>
<tr>
<td>Colorimetry</td>
<td>1051-402</td>
<td>3</td>
</tr>
<tr>
<td>Tone & Color Reproduction</td>
<td>1051-403</td>
<td>4</td>
</tr>
<tr>
<td>Image Microstructure</td>
<td>1051-513</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project 1051-501, 502, 503</td>
<td></td>
<td>5-9</td>
</tr>
<tr>
<td>Professional Electives</td>
<td></td>
<td>credit varies</td>
</tr>
<tr>
<td>Liberal Arts (Electives) *</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts (Senior Seminar) *</td>
<td>0520-501</td>
<td>2</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>

* See page 10 for liberal arts requirements.
† See page 11 for policy on physical education.
The National Technical Institute for the Deaf (NTID), one of RIT’s eight colleges, provides deaf and hard-of-hearing students with educational programs that lead to meaningful employment in business, industry, government, and education. NTID represents the world’s first effort to educate large numbers of deaf and hard-of-hearing students within a college campus planned principally for hearing students. NTID’s location benefits both deaf and hearing students’ academic, personal, social, and communication development.

Nearly 1,100 deaf and hard-of-hearing students from across the United States as well as from several U.S. territories and other countries study and reside at RIT.

NTID provides RIT’s deaf and hard-of-hearing students with technical and pre-professional training in more than 23 programs. An NTID education prepares students for technical careers in areas such as accounting technology, administrative support technology, art and computer design, applied computer technology, automation technologies, business occupations, computer aided drafting technology, computer integrated machining technology, digital imaging and publishing technology, healthcare billing and coding technology, laboratory science technology, and ophthalmic optical finishing technology. Traditionally, 95 percent of NTID graduates who enter the work force find employment in their fields of study.

Deaf and hard-of-hearing students who take courses or matriculate into one of RIT’s seven other colleges may request educational access services, which may include sign language interpreting in classrooms and laboratories and notetaking. Students also may request educational support services such as tutoring, personal and career counseling, and academic advising.

NTID also offers an associate degree in ASL-English interpretation.

NTID’s centers

To serve its students, NTID is organized into four academic units, or centers. Each center has a major programmatic focus. Through collaboration across the centers, a rich, coherent set of educational experiences is made available to students.

Center for Technical Studies

This center is a comprehensive student-oriented academic unit of NTID that serves students with declared majors and those students who affiliate with a major. The center offers a variety of diploma and associate degree programs and courses in a variety of technical fields. Numerous options/concentrations are available within the following technical areas: accounting technology, administrative support technology, art and computer design, applied computer technology, automation technologies, business technology, computer aided drafting technology, computer integrated machining technology, digital imaging and publishing technology, healthcare billing and coding technology, industrial computer electronics, laboratory science technology, and ophthalmic optical finishing technology. Program laboratories are equipped with the latest technology and maintain a curriculum that represents current industry trends and technology, based on routine feedback from business and industry advisory groups. In addition, several of our associate in applied science (AAS) degrees will provide students with the necessary skills to transfer within the other RIT colleges.

Center for Arts and Sciences

This center is a comprehensive student-oriented academic area that offers an array of arts and science curricular and co-curricular experiences to a broad-based population of NTID students, including those who have matriculated into a program underprepared or undecided. In addition, the center offers associate and baccalaureate degrees in American Sign Language-English interpretation and provides a comprehensive sign language education program for students and faculty and staff members.
Center for Baccalaureate and Graduate Studies

This center is a student-oriented academic and service area that provides comprehensive programs in support of students enrolled in more than 250 baccalaureate or graduate programs in RIT’s seven other colleges. The educational support services available include academic advising, tutoring, audiological, personal and career counseling. In addition, the center provides access services through the department of interpreting services as well as notetaking services through supports departments for deaf and hard-of-hearing students, faculty and staff to be able to participate in all aspects of the RIT community. The center also offers a Pre-baccalaureate Studies Program and a master of science in secondary education for students who are deaf and hard of hearing.

Center for Research, Teaching and Learning

Activities within this center focus on understanding and enhancing the educational, social, and communication opportunities for deaf and hard-of-hearing individuals. The center provides services and programs that enhance teaching and learning within the NTID community and beyond via broad-based research activities and dissemination strategies, curriculum development, instructional design and evaluation, and instructional media services.

Educational opportunities through NTID

Technical Studies Programs

The technical programs offered through NTID lead to a diploma, associate in occupational studies, or associate in applied science degree from RIT.

Diploma: Certification at this level requires 36-45 total credit hours of technical instruction. Students attain a maximum level of technical competency for entry-level positions. In addition to satisfactorily completing technical courses, students must complete a specific number of credit hours determined by the program of study-in the NTID arts and sciences curriculum.

Associate in occupational studies degree (AOS): Certification at this level requires 57-69 credit hours of technical instruction. These programs permit students, upon completion, to enter their careers directly. In addition to satisfactorily completing technical courses, students must complete a specific number of credit hours determined by the program of study-in the NTID arts and sciences curriculum.

Associate in applied science degree (AAS): Certification at this level requires 57-69 credit hours of technical instruction. These programs permit students, upon completion, to enter their careers directly, or, in certain cases, to transfer to upper-division programs at a college of their choice. In addition to satisfactorily completing technical courses, students must complete 20 credit hours in liberal arts courses, offered through RIT’s College of Liberal Arts, and other required credit hours as determined by the program of study.

Career Exploration Studies Program

The NTID Career Exploration Studies Program offers opportunities for students to collect information about NTID majors and career paths before deciding on a program of study. It also assists students who need additional academic preparation and study in order to be ready for their chosen major.

The program allows students the opportunity to do an intensive career search while they develop a better understanding of themselves through career and personal counseling; decision-making classes; intensive sampling of various majors at RIT/NTID; use of a computer guidance program in the Career Resource and Testing Center; interest testing; and interpretation of aptitude, ability, and achievement tests. In addition, students take courses in mathematics, English, social and physical sciences, humanities and deaf studies/ASL as well as technical sampling courses or experiences. Some students also may take introductory courses in specific technical departments and liberal arts and be involved in extracurricular or other college-oriented activities. A career development counselor is assigned to assist students in evaluating the information and making a career decision. Students can remain in the Career Exploration Studies Program for one to three academic quarters. Additional quarters in the program are possible with the approval of the program coordinator.

Pre-baccalaureate Studies Program

The Pre-baccalaureate Studies Program is available as a bridge into baccalaureate degree programs for students who are accepted by NTID and are close to, but not fully ready for, direct entry into a baccalaureate-level program. The Pre-baccalaureate Studies Career Exploration option is available to students who are undecided as to their program of study.

Pre-baccalaureate Studies is appropriate for students who need to further develop mathematics, English, or discipline-related skills. The academic program is flexible and individualized and enables students to focus on needed skills while concurrently progressing toward their chosen field of study. Students take courses taught by support department faculty and other NTID faculty, along with entry-level courses taught in other RIT colleges. (See program description on pages 158-161.)

College Skills Restoration Program

There are times when students experience such serious academic difficulties that they fail to achieve the grade point average required to continue at the college. Whether a student does poorly due to an inappropriate choice of major, a lack of academic skills, or an inability to balance the academic and social aspects of college life, the College Skills Restoration Program offers an option to suspension. The primary goal of the program is to help students determine the factors that contributed to academic failure and design a plan of action for gaining the skills, attitudes, and habits necessary for future academic success.

To enter the program, students are required to complete a comprehensive application and participate in an interview process designed to evaluate their potential to improve. If accepted, students are required to enroll in courses and planned activities. At the conclusion of the quarter, students apply to return to their original major or to be accepted into a new major. Counselors will provide an individualized report and recommendations to students’ departments upon request. For more information or an application, call 585-475-2876 (voice/TTY).

Educational opportunities in other RIT colleges

In addition to NTID’s programs, qualified deaf and hard-of-hearing students also may enroll as baccalaureate or master’s degree students in one of the more than 250 professional programs offered through RIT’s other seven colleges: Applied Science and Technology, Business, Computing and Information Sciences, Engineering, Imaging Arts and Sciences, Liberal Arts, and Science or may take classes in other RIT colleges. This process is called cross registration.

Each RIT college has an affiliated NTID support and access department that provides services for deaf and hard-of-hearing students. These services may include sign language interpreting, notetaking, tutoring, advising, and personal and career counseling. The policies and procedures for requesting support services are outlined in “The Student Handbook: Your Guide to Support Services at RIT through NTID.”

Deaf and hard-of-hearing students who wish to enroll in a program in another RIT college must meet its admission standards. Furthermore, deaf and hard-of-hearing students supported by NTID also must meet NTID admission requirements.
listed on page 134 and complete both the NTID Supplemental Admission Application and standard RIT admission forms. (For admission information, see pages 134, 347.)

Qualified students may choose to enroll in courses taught through the other seven colleges of RIT for several reasons: they may take selected courses at other RIT colleges as part of the elective requirements in their NTID programs; complete their programs of study at NTID, then continue their education at another RIT college; enter a program at another RIT college directly from high school; or transfer directly into a program in one of RIT’s colleges from another postsecondary program.

First-Year Experiences Program

NTID programs

Beginning with summer orientation programming, NTID provides a special array of curricular and cocurricular activities to help maximize each student's potential for success in the first year. These experiences are designed to enhance students' bonding with the community while providing time and support to enter into a major, select a major and/or progress within a career program.

First-year students qualified to enter NTID participate in a summer orientation program called Summer Vestibule Program (SVP), which includes:

- placement testing in English and mathematics
- orientation/transition to college
- career sampling
- counseling
- application to technical program, Career Exploration Studies or Pre-baccalaureate Studies (See program description on page 131).

This summer program is followed by additional first-year experiences that allow students to work with a counselor to select courses and activities that meet individual goals and needs.

Components of first-year experience include:

- enrollment in Freshman Seminar course during the first quarter
- completion of preparatory courses as needed
- work with an academic adviser and counselor
- participation in career exploration and introductory courses, when and if appropriate
- completion of degree requirements, as appropriate
- participation in cocurricular and mentoring activities of choice
- declaring a major and degree level by the end of the first year

Other colleges of RIT

Students who qualify to enter baccalaureate programs in other colleges of RIT participate in the first-year programming and activities designed by the affiliated support department and by the colleges. Most first-year students enrolled in colleges other than NTID are required to:

- participate in summer orientation options:
 - Summer Orientation Services (SOS)
 - Student Orientation Assessment and Registration (SOAR)
 - enrol in First-Year Enrichment program
- participate in opportunities to explore and select a major, if needed
- work with an academic adviser and counselor.

Arts and Sciences Curriculum

Technical education and preparation for a career at NTID and in the other colleges of RIT are complemented by study in the arts and sciences. The arts and sciences curriculum fosters a spirit of lifelong learning and inquiry. Courses in science, mathematics, English, social science, humanities, and Deaf Studies/American Sign Language are designed to provide students with the opportunity to develop knowledge, intellectual and communication skills, and an understanding of the creative process that will enable them to actively shape their personal, professional and community lives.

The arts and sciences curriculum at NTID satisfies the arts and sciences requirements for the AOS and diploma programs offered at NTID, prepares students for completing the College of Liberal Arts courses required for AAS programs, and along with curricula offered by the Center for Baccalaureate Studies and the Center for Technical Studies prepares qualified students to pursue course work and degrees in other RIT colleges.

- Degree requirements

Students must complete a minimum number of arts and sciences credits for each degree. The chart on page 133 shows the credit hour and distribution requirements for the certificate, diploma, AOS, and AAS. (See the course sequences for individual technical programs.)

- Level of courses in the curriculum

Degree requirements must be completed at the appropriate level in the curriculum. There are four levels of courses in the arts and sciences curriculum: introductory (A), fundamental (B), intermediate (C), and bridging (D). Students not yet prepared for courses required for their degree begin with courses at a lower level and enter required courses when they have completed the prerequisites.

- Course placement

The goal of assessment for course placement is to ensure that each student begins his or her study in the appropriate course. Assessment for initial course placement will be made in the following areas during summer orientation: mathematics, American Sign Language, writing, and reading.

Course Requirements

- Freshman Seminar

Freshman Seminar is required for all students entering the first year of college. This course helps students to identify personal, social and academic skills that lead to a successful college experience.

- Science and mathematics

Students take math and science courses that foster the reasoning and problem-solving skills that are a part of the foundation of their technical studies. In addition, the curriculum provides an opportunity to develop the mathematical and scientific literacy demanded in today's society.

Students are required to complete three credits in mathematics and three credits in science at the fundamental (B) level or higher. Some students will have additional requirements established by their technical programs. (See the course sequences for individual technical programs.)
Arts and sciences distribution requirements

<table>
<thead>
<tr>
<th>Degree</th>
<th>Freshman Seminar</th>
<th>Math & Science</th>
<th>Deaf Studies (Interdisciplinary)</th>
<th>Humanities</th>
<th>Other Humanities (Including foreign languages)</th>
<th>Social Science</th>
<th>Capstone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASL</td>
<td>College of Liberal Arts—8</td>
<td>College of Liberal Arts—4 (lower division)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>English</td>
<td>College of Liberal Arts—8</td>
<td>College of Liberal Arts—8 (lower division)</td>
<td>6</td>
</tr>
<tr>
<td>AAS</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>(3)</td>
<td>12</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>AOS</td>
<td>2</td>
<td>6</td>
<td></td>
<td>(3)</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Diploma</td>
<td>2</td>
<td>6</td>
<td></td>
<td>(3)</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

*The Deaf Studies/ASL requirement can be satisfied by taking three credits in American Sign Language or an identified Deaf Studies course.
*The three-credit course taken to fulfill the Deaf Studies/ASL requirement also fulfills three credits in either humanities or social sciences, depending upon which discipline offers the course selected.

- **English language and literature**
 The English program is designed to enable students to develop English literacy skills. There are three developmental strands of courses in academic writing, nonfiction reading, and literature. The academic writing and nonfiction reading strand each have courses at four levels (A-D), while the literature strand has courses at three levels (B-D). There is also a two-course integrated sequence at Level A for students who enter with weaker skills. This program provides the English literacy skills required for AOS and diploma programs at NTID while at the same time providing access to the College of Liberal Arts language and literature curriculum required for AAS and baccalaureate degrees.
 Students who plan to graduate with a diploma are required to complete 12 credits of English courses at Level B. Students who plan to graduate with an AOS degree are required to complete 12 credits of English at Level C. Students who enter NTID with English skills below the level required for their degree of choice will need to successfully complete additional courses before taking the English courses required for their degree of choice.

- **Social science and humanities**
 The social science courses provide students with a broad exposure to key concepts and issues in anthropology, sociology, psychology, economics, and political science.
 The humanities curriculum includes courses in communication studies, history, fine arts, performing arts, philosophy, and religion. Students also have the opportunity to study foreign languages in the College of Liberal Arts.
 The communication studies curriculum offers courses to enhance students’ understanding of the communication process and develop effective individual, group, professional, and cross-cultural communication skills based on linguistic background, communication preferences, and needs of a variety of audiences.
 The performing arts curriculum includes performance and technical components and makes use of Panara Theatre and a smaller experimental theater where students stage plays and performances and create their own works in American Sign Language and English. This curriculum provides a bridge to the BFA program in film/video in the College of Imaging Arts and Sciences.
 Students are required to take credits in humanities and in social sciences for AOS degrees, diplomas, and certificates (see chart, above).

- **Deaf Studies/American Sign Language**
 Students have an opportunity to study American Sign Language (ASL) and learn about their heritage as deaf people through the Deaf Studies/ASL curriculum. All students are required to complete one three-credit course in Deaf Studies or ASL at the fundamental (B) level or higher. Students who are not skilled in sign language are strongly encouraged to take additional ASL courses, and students proficient in ASL are encouraged to take advanced courses in ASL and Deaf Studies. Deaf Studies courses also satisfy the social science and humanities requirements.

- **Capstone**
 All students at the AAS and AOS level are required to complete the Capstone Seminar. This is an interdisciplinary course that applies the knowledge and skills acquired in the technical and arts and science courses to the study of social, cultural, and technological issues.

- **Liberal arts requirements**
 Deaf and hard-of-hearing students enrolled in AAS or baccalaureate degree programs take required courses in language and literature, behavioral and social sciences, and science and humanities through the College of Liberal Arts. At the lower division, students can choose between course sections taught by either NTID or College of Liberal Arts faculty members.
 Liberal arts courses taught by NTID faculty members are designed especially for deaf students. Instructors use simultaneous communication and provide students with additional study guides and materials.
 Liberal arts courses taught by College of Liberal Arts faculty members include both deaf and hearing students. Educational access services, such as sign language interpreting and notetaking, may be requested by students. Students also may request educational support services such as tutoring and academic advising.
 Deaf and hard-of-hearing students are advised to earn a passing grade in Writing and Literature I before taking any additional liberal arts courses. Students studying in colleges other than NTID should consult with their program departments about required liberal arts courses.
 Placement in Writing and Literature I is based on the Liberal Arts Placement Test (LAPT) or upon satisfactory completion of Written Communication II.
 Students seeking an AAS degree also are required to take courses in behavioral science, social science, and science and humanities.
Writing program
The College of Liberal Arts, through the NTID Department of Liberal Arts Support, offers a two-course writing sequence (Writing Communication I and II) as preparation for Writing and Literature I and II. These courses provide additional experience with writing, reading, and critical thinking techniques needed for success in Writing and Literature I and II. Eligible students must meet with the liberal arts support writing coordinator before registering for these courses.

Admissions Information

Costs of attending RIT through NTID
The total cost of attending RIT under NTID sponsorship includes tuition, room, board, and fees. Charges to NTID-sponsored students are updated each year. Fixed charges for 2002-03 are listed on page 135.

The cost of books and supplies is the students’ responsibility. These costs also vary depending on the program of study. Annual costs for books and supplies for the 2002-03 academic year range from $450-$800.

New students accepted to the Summer Vestibule Program will be charged according to the fee schedule on page 135.

Students on co-op are not charged tuition or fees for that particular quarter and are charged room and board and residence hall fees only if they live on campus while they work.

All students are required to carry accident and sickness insurance. Students may choose coverage through RIT or they may waive this coverage if they provide evidence of other coverage. Waiver cards will be sent to all accepted students during the summer and will be available at registration. The fee for health insurance for 2002-03 is approximately $415.

Deaf and Hard-of-Hearing Applicants
Deaf or hard-of-hearing students may apply for admission to programs offered at the National Technical Institute for the Deaf (NTID) or to any other college of RIT. All applicants with a hearing loss should check the appropriate box on Part I of the Application and complete NTID’s Part 2 application in order to qualify for educational access and support services (such as sign language interpreters, notetakers, tutors), as well as NTID’s federally supported tuition rate. Send application materials to the NTID Office of Admissions. For further details regarding application requirements, refer to the information on Admission for Undergraduate Study (see page 347).

Transfer Credit
Deaf and hard-of-hearing students may transfer into an NTID program, or they may qualify for transfer directly into a program in another RIT college with NTID sponsorship. Deaf students accepted to the Summer Vestibule Program will have their transfer credit evaluated in the fall when they are accepted into a specific program.

Campus visits
Deaf and hard-of-hearing students who wish to enter NTID or another RIT college may contact NTID’s Department of Recruitment and Admissions, Lyndon Baines Johnson Building, 52 Lomb Memorial Drive, Rochester, NY 14623-5604, or call 585-475-6700 (voice/TTY).

Deaf and hard-of-hearing students may take tours offered at NTID and arrange personal interviews. Both of these are optional and are not required for admission.

Facilities
A modern academic/residential building complex on the campus is designed to meet the specific needs of deaf and hard-of-hearing students. The Lyndon Baines Johnson Building—NTID’s main academic facility—and the Hugh L. Carey Building—located on the west end of the RIT campus—house laboratories, offices, speech and hearing areas, classrooms, and a 500-seat theater with closed-circuit television.

Most classrooms and laboratories have been remodeled to support the delivery of instruction using the latest technologies (large-screen projection, Internet access, various video sources, and other computer-based delivery services). In addition, classrooms have been designed to reduce distractions to the students and teachers.

All dormitory rooms, campus apartments, classrooms, laboratories, and administrative areas are equipped with high-speed (Ethernet) computer connections. These provide all members of the community with access to the campus-wide computer networks and the Internet. In addition, most classrooms are now equipped with high-technology lecture/presentation capabilities, including high-resolution projection displays, digital document displays, VCRs, and assistive listening systems.

NTID’s main academic building, the Lyndon B. Johnson Building, boasts a state-of-the-art Learning Center. Using the latest technologies available, this center provides academic experiences, tutorial services, and course enrichment opportunities for all students. It provides students with access to networked computer workstations, videoconferencing capability, and use of “smart” classroom technology.

All RIT and NTID residence halls have undergone recent major renovations and provide students with an appealing and highly functional living environment. Special rooms have been created to serve physically challenged students.

Students are encouraged to bring their own computers for
connecting to the campus network and Internet from their rooms. A mixture of older and new apartment units is also available. Visual emergency strobe lights and visual doorbells are present throughout residence halls, apartments, and academic buildings.

Television, a basic part of the college’s communication network, is used for both education and entertainment. Campus cable connections are provided in each residence hall room, classrooms, and various other locations. The system supports 22 channels of basic service, which include ABC, CBS, Fox, WB, PBS, a local news channel, a local public access channel, and several channels used on campus for distribution of educational programming. In addition to these “free” cable channels, students may elect to purchase full cable channel services from the Rochester cable system provider.

A well-equipped television facility provides studio services to produce class and self-instruction media for use within the Institute.

Telecommunications
Deaf, hard-of-hearing, and speech-impaired students can access telephone services through the New York Relay Service. This relay service operates 24 hours every day, seven days a week, and can be used to make and receive campus, local, long-distance, and international calls. While there is no charge for using the N.Y. Relay Service, students are responsible for their personal phone bills.

Communication skills
The attainment of communication competence is considered an important component of the student’s educational experience at NTID. Students have opportunities to develop skills through a wide range of curricular and cocurricular activities that promote communication success in educational, social, and work situations. The Department of Speech and Language, the Audiology Department, the Department of American Sign Language and Interpreting Education, and the Department of Cultural and Creative Studies provide intensive support and instruction for the development of communication skills. Faculty conduct assessments and provide course work, workshops, and individualized instruction. They also work in collaboration with the Center for Technical Studies and the Center for Baccalaureate and Graduate Studies. (See Speech and Language Department services on page 332, Audiology Department services on page 332, Deaf Studies’ ASL-English Interpretation curriculum on page 136, and Deaf Studies on page 157.)

Hearing Aid Shop
The NTID Hearing Aid Shop provides students with services related to hearing and amplification. Students may access the shop to schedule clinical appointments, obtain earmolds and other hearing aid supplies as well as hearing aid repairs, and receive information concerning hearing loss and various aspects of amplification use. The shop is located in room 3130 in the Lyndon Baines Johnson Building and can be contacted by calling 585-475-6473 (voice/TTY).

NTID Counseling Services Department
Every NTID-supported student is assigned to a counselor in the NTID Counseling Services Department. Counselors can provide individual personal/social, career, and academic counseling services to their students. In addition, the counselors work closely with students and the faculty in the students’ academic programs to help students make academic progress.

Career Resource and Testing Center
The Career Resource and Testing Center (CRTC) provides students with materials and information on careers and college programs with special services for deaf and hard-of-hearing students. Services include access to the computerized guidance system; aptitude, interest, and personality testing; as well as noncredit skill-building workshops on study skills, learning styles, and stress management. The CRTC is staffed and administered by the NTID Counseling Services Department.

The CRTC is staffed by a professional counselor with the help of student assistants and is open daily with evening hours available upon request. For additional information or an appointment, call 585-475-2876 (voice/TTY).

Mental health/psychological counseling
Mental health counseling services for deaf and hard-of-hearing students are part of a continuum of personal and social counseling services at the RIT Counseling Center. Mental health counseling and crisis intervention are provided by the RIT Counseling Center on a 24-hour basis in collaboration with other campus service providers.

Direct counseling and psychotherapy are provided for students on a walk-in or referral basis. Examples of concerns students may need help with include depression, anxiety, family conflicts, interpersonal and intimate relationships, and personal identity.

Through consultations within and outside the RIT community, Counseling Center representatives share expertise and information about mental health and deafness on campus, locally, nationally, and internationally.

Cooperative work experience
A feature of most RIT academic programs, including those offered through NTID, is cooperative (co-op) work education that stresses “learning by doing.” All NTID programs require a co-op work experience, which introduces students to the world of work. Co-op experiences usually occur during the summer so that students’ courses of study are uninterrupted during the school year. The number of co-ops required varies from program to program within NTID.

Placement
Employment of RIT’s deaf and hard-of-hearing graduates is a high priority. To help ensure that graduates obtain program-related employment, NTID’s Center on Employment (NCE) assigns to each new student an advisor experienced in employment assistance in the different academic concentrations. To help prepare students for obtaining cooperative work experiences and permanent employment, students take a required course, Job Search Process.
ACADEMIC PREPARATION:
- Applicants are required to have at least a high school diploma or equivalent.
- High school preparation should include a college preparatory program with a minimum two years of mathematics, one year of science, two years of a foreign language, and a minimum of a B average in English.
- SAT-I results should be at least 1050; Verbal score should be at least 550 (or ACT equivalent results).

For those applicants who have had college experience:
- College transcripts should document a GPA of 3.0 or better with evidence of very good performance in English courses.

APPLICATION ESSAY:
- The writing sample will be judged on vocabulary, grammar, mechanics, style, and creativity.

INTERVIEW:
- Qualified applicants will be judged on general knowledge of the field of interpreting, general knowledge of deaf people and the deaf community, goal to become an interpreter, and overall poise and maturity.

AMERICAN SIGN LANGUAGE:
- Applicants must demonstrate proficiency in ASL at an intermediate level as measured by the departmental skill assessment. This assessment will occur on the same day as the interview.

For more information on application requirements and procedures, contact the Department of American Sign Language and Interpreting Education (ASLIE) at 585-475-6809 (voice/TTY).

ASL-English interpretation, AAS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Sign Language IV, V, VI 0875-301,302,303</td>
<td>12</td>
</tr>
<tr>
<td>Intercultural Communication for Interpreters 0875-211</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Culture & Community 0875-212</td>
<td>4</td>
</tr>
<tr>
<td>Discourse Analysis for Interpreters 0875-310</td>
<td>4</td>
</tr>
<tr>
<td>Processing Skills Development 0875-311</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to the Field of Interpreting 0875-213</td>
<td>4</td>
</tr>
<tr>
<td>Voice to Sign Interpreting I 0875-315</td>
<td>4</td>
</tr>
<tr>
<td>Sign to Voice Interpreting I 0875-316</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature I, II 0502-225, 226</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>48</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice to Sign Interpreting II 0875-325</td>
<td>4</td>
</tr>
<tr>
<td>Sign to Voice Interpreting II 0875-326</td>
<td>4</td>
</tr>
<tr>
<td>Practical & Ethical Applications 0875-320</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Transliteration 0875-330</td>
<td>4</td>
</tr>
<tr>
<td>Practicum & Seminar 0875-350</td>
<td>4</td>
</tr>
<tr>
<td>Science (College of Science)</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (College of Science)</td>
<td>4</td>
</tr>
<tr>
<td>Philosophy (College of Liberal Arts)</td>
<td>4</td>
</tr>
<tr>
<td>History (College of Liberal Arts)</td>
<td>4</td>
</tr>
<tr>
<td>Fine Arts (College of Liberal Arts)</td>
<td>4</td>
</tr>
<tr>
<td>Social Science (College of Liberal Arts)</td>
<td>8</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>48</td>
</tr>
</tbody>
</table>

Total Credit Hours: 96

NCE employment advisers are in contact daily by telephone with potential employers throughout the United States. Such services have contributed to a high employment rate of deaf NTID / RIT graduates.

Research
NTID faculty members conduct research to understand and support the education of deaf and hard-of-hearing students in a variety of contexts. In conducting this research, researchers hope to promote the personal, educational, and career success of RIT students. Students are invited to help in research efforts; this can mean taking tests and being part of research studies or conducting research themselves in collaboration with NTID professionals. Researchers sometimes contact graduates to see how well their education has prepared them for work and other aspects of their lives.

ASL-English Interpretation
Rico Peterson, Chairperson

AAS Degree Program
On-the-job responsibilities
The AAS degree program in ASL-English interpretation prepares entry-level sign language interpreters for work in settings where deaf and hard-of-hearing people can use interpretation.

Places of employment
Elementary, secondary, and post-secondary educational institutions; community service organizations; vocational rehabilitation agencies; business/industry; and government agencies

Special entrance requirements
In addition to RIT’s general admissions procedures (see page 347), the ASL-English interpretation program requires completion of additional admission materials obtained from the Department of American Sign Language and Interpreting Education.

Academic preparation:
- Applicants are required to have at least a high school diploma or equivalent.
- High school preparation should include a college preparatory program with a minimum two years of mathematics, one year of science, two years of a foreign language, and a minimum of a B average in English.
- SAT-I results should be at least 1050; Verbal score should be at least 550 (or ACT equivalent results).

For those applicants who have had college experience:
- College transcripts should document a GPA of 3.0 or better with evidence of very good performance in English courses.

Application essay:
- The writing sample will be judged on vocabulary, grammar, mechanics, style, and creativity.

Interview:
- Qualified applicants will be judged on general knowledge of the field of interpreting, general knowledge of deaf people and the deaf community, goal to become an interpreter, and overall poise and maturity.

American Sign Language:
- Applicants must demonstrate proficiency in ASL at an intermediate level as measured by the departmental skill assessment. This assessment will occur on the same day as the interview.

For more information on application requirements and procedures, contact the Department of American Sign Language and Interpreting Education (ASLIE) at 585-475-6809 (voice/TTY).

ASL-English interpretation, AAS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Sign Language IV, V, VI 0875-301,302,303</td>
<td>12</td>
</tr>
<tr>
<td>Intercultural Communication for Interpreters 0875-211</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Culture & Community 0875-212</td>
<td>4</td>
</tr>
<tr>
<td>Discourse Analysis for Interpreters 0875-310</td>
<td>4</td>
</tr>
<tr>
<td>Processing Skills Development 0875-311</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to the Field of Interpreting 0875-213</td>
<td>4</td>
</tr>
<tr>
<td>Voice to Sign Interpreting I 0875-315</td>
<td>4</td>
</tr>
<tr>
<td>Sign to Voice Interpreting I 0875-316</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature I, II 0502-225, 226</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>48</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice to Sign Interpreting II 0875-325</td>
<td>4</td>
</tr>
<tr>
<td>Sign to Voice Interpreting II 0875-326</td>
<td>4</td>
</tr>
<tr>
<td>Practical & Ethical Applications 0875-320</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Transliteration 0875-330</td>
<td>4</td>
</tr>
<tr>
<td>Practicum & Seminar 0875-350</td>
<td>4</td>
</tr>
<tr>
<td>Science (College of Science)</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (College of Science)</td>
<td>4</td>
</tr>
<tr>
<td>Philosophy (College of Liberal Arts)</td>
<td>4</td>
</tr>
<tr>
<td>History (College of Liberal Arts)</td>
<td>4</td>
</tr>
<tr>
<td>Fine Arts (College of Liberal Arts)</td>
<td>4</td>
</tr>
<tr>
<td>Social Science (College of Liberal Arts)</td>
<td>8</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>48</td>
</tr>
</tbody>
</table>

Total Credit Hours: 96
PROGRAMS OF NTID
(Leading to diploma or associate degrees)

NTID Programs
Applied Computer Technology
- Industrial Computer Electronics
- Computer Support

Art and Computer Design
- College of Imaging Arts and Sciences

Business Careers
- Accounting Technology
- Business Technology
- Administrative Support Technology
- Healthcare Billing and Coding Technology

Computer Aided Drafting Technology
- College of Applied Science and Technology

Computer Integrated Machining Technology
- College of Applied Science and Technology
- College of Engineering

Digital Imaging and Publishing Technology
- College of Imaging Arts and Sciences

Laboratory Science Technology
- College of Applied Science and Technology

Other RIT Colleges
- College of Applied Science and Technology
- Golisano College of Computing and Information Sciences
- College of Business
- College of Imaging Arts and Sciences

Other RIT Programs
- Business Administration-Management Information Systems
- Business Administration-Accounting
- Business Administration-Marketing
- Business Administration-Management
- Business Administration-Finance
- Business Administration-Management
- Business Administration-Management
- Industrial and Interior Design
- Metal and Jewelry Design
- New Media Design and Imaging
- Woodworking and Furniture Design
- Graphic Design
- Nuclear Medicine Technology
- Computer Integrated Manufacturing Engineering Technology
- Imaging Systems Management
- New Media Publishing
- Professional Photographic Illustration
- Imaging and Photographic Technology
- Biotechnology
- Environmental Management and Technology
- Civil Engineering Technology
- Mechanical Engineering Technology
- Computer Integrated Manufacturing Engineering Technology
- Industrial Engineering
- Mechanical Engineering
- Biomedical Photographic Communications
- Film/Video/Animation
- Graphic Communications
- Graphic Media
- Imaging Arts
- Environmental Management and Technology
- Nuclear Medicine Technology

Note: In addition to the technical programs noted above, NTID also offers Pre-baccalaureate Studies. This program is available as a bridge for qualified students accepted by NTID and interested in enrolling in another RIT college, but not yet ready to enter a baccalaureate-level program.

BS Degree Program

On-the-job responsibilities
The BS degree program in ASL-English interpretation prepares advanced-level sign language interpreters for work in settings where deaf and hard-of-hearing people can use interpretation. This degree allows students to develop a specialty in working in education (elementary, middle, secondary, or post-secondary) or with special populations, e.g., deaf-blind or oral.

Places of employment
Elementary, secondary, and post-secondary educational institutions; community service organizations; hospitals and mental health agencies; vocational rehabilitation agencies; business/industry; and government agencies

Special entrance requirements
In addition to RIT’s general admissions procedures (see page 347), the ASL-English interpretation program requires completion of additional admission materials obtained from the department of American sign language and interpreting education.

Academic preparation:
Applicants are required to have successfully completed an associate degree in ASL-English interpretation or a related area. A bachelor degree should include at least one science course (with a lab), one math course, 8 quarter credits in writing and literature (with a grade of B or better), three courses in humanities (4 quarter credits each), and two courses in the social sciences (8 quarter credits).
- College GPA with 3.0 or better out of a 4.0 system
Interpreting portfolio:
- A 10-15-minute videotape demonstrating the applicant discussing an issue using American Sign Language
- A 10-15-minute videotape demonstrating an unrehearsed sample of the applicant’s sign-to-voice interpreting ability
- A 10-15-minute videotape demonstrating an unrehearsed sample of the applicant’s voice-to-sign interpreting ability
- A documented term paper written for a college-level course
- At least three letters of recommendation from deaf consumers, employers, and/or the applicant’s past practicum/internship supervisor(s), indicating the applicant’s potential as an interpreter and contributor to the profession. The applicant’s final practicum/internship evaluation may also be included in lieu of a letter.

Interview
Applicants will be judged on knowledge of the field of interpreting and of the deaf community, goal to become an interpreter, and overall poise and maturity.

For more information on application requirements and procedures, contact the department of American Sign Language and interpreting education (ASLIE) at 585-475-6809 (voice/TTY).

ASL-English interpretation, BS degree, typical course sequence

First Year
- Quarter Credit Hours
- Advanced Interactive Interpreting 0875-325,326 6
- Interpreting Frozen & Literary Texts 0875-400 4
- Professional Electives 8
- Practicum & Seminar 0875-400 4
- Liberal Arts Concentration or Minor (College of Liberal Arts) 12
- Liberal Arts Elective (College of Liberal Arts) 4
- Mathematics Elective (College of Science) 6
- Science (College of Science) 4
- Physical Education (Activity Course) 0
- Physical Education (Wellness Component) 0

Total Credit Hours 90

Second Year
- Quarter Credit Hours
- Advanced Sign to Voice 0875-400 4
- Advanced Voice to Sign 0875-400 4
- Issues in Interpreting 0875-515 4
- Professional Elective 4
- Liberal Arts Elective (College of Liberal Arts) 8
- Senior Seminar (College of Liberal Arts) 2
- Science (College of Science) 4

Total Credit Hours 90

Applied Computer Technology
Elissa M. Olsen, Chairperson

Careers that involve work with computers increase daily. Computers are an important part of business, industry and other parts of the economy. Computer careers involve operating computers, maintaining the software and hardware of microcomputers, and networking computers so that they can communicate with one another.

Students may choose from diploma, AOS, or AAS degree programs in applied computer technology.

Students in the applied computer technology program receive a foundation in computer hardware, networking, and computer applications. They also have the option of choosing to concentrate in one of two areas: computer support or industrial computer electronics.

Students who desire to work in computer support positions in a business environment may choose to take the computer support option in the diploma, AOS, or AAS in applied computer technology programs. This option gives students a background in systems administration and midrange computer operations, Internet and database applications.

Students who desire to work in computer support positions in a manufacturing/industrial environment may choose to take the industrial computer electronics option in the AAS and AOS applied computer technology programs. This option gives students a background in electronics and a more advanced skill set in computer hardware than the computer support option.

On-the-job responsibilities
Diploma: Work in either the computer operations area controlling computers in a variety of operations-related support areas or in hardware and networking.

AAS and AOS degrees: Work as computer technician, personal computer support specialist, or network technician or operate mainframe computer systems or remote computers.

Places of employment
Banks, insurance companies, large stores, manufacturing companies, public utilities, government agencies, and other computer centers

Diploma Program
Positions for which graduates qualify
Computer operator and peripheral equipment operator

Prerequisites
Successful completion of a sampling experience in the applied computer technology area, either through the Summer Vestibule Program or a Career Exploration course

English-Diploma: Placement into level B English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing a diploma typically enter with reading scores equivalent to 7.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.
Applied computer technology, diploma, typical course sequence

First Year
Applications Software 0805-201 3
Introduction to Midrange 3
Computer Operations 0805-205 3
Command Language Utilities for Midrange Computers 0805-206 3
Multiprogramming & Spooling for Midrange Computers 0805-207 3
PC Operating Systems 0805-215 3
PC Hardware I 0805-216 3
PC Hardware II 0805-217 3
Internet Technologies I 0805-251 3
Orientation to Business 0804-101 3
Mathematics Elective (Level B or above) * 3
Freshman Seminar 0887-200 2
Job Search Process 0806-101 2
Science (Level B) 3
English (Level B or above) 8
Cooperative Education 0805-299 0

Quarter Credit Hours 71

Second Year
Introduction to UNIX 0805-220 3
Networking I 0805-224 3
Networking II 0805-225 3
Programming I 0805-230 3
Technical Elective † 3
Employment Seminar 0806-201 1
Humanities 3
Social Science 3
English (Level B or above) 4
Deaf Studies / ASL * 4

Quarter Credit Hours (3) 10
Total Quarter Credit Hours 81

* The following courses cannot be used as a math elective: 0884-100 Introduction to College Mathematics; 0884-220 Preparation for Algebra.
† Student may select from ACT department electives or approved electives from: business occupations, electronic publishing & printing technology, or imaging technology departments.
This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.

AOS Degree Program-Computer Support Option
Positions for which graduates qualify
Computer operator, trainee or network technician and personal computer specialist

Prerequisites
Successful completion of a sampling experience in the applied computer technology area, either through the Summer Vestibule Program or equivalent Career Exploration course

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0884-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into any level B science course numbered 130 or higher. Typically, students entering this program will have completed at least two years of high school science.

Applied computer technology, AOS degree, typical course sequence

First Year
Applications Software 0805-201 3
Introduction to Midrange 3
Computer Operations 0805-205 3
Command Language Utilities for Midrange Computers 0805-206 3
Multiprogramming & Spooling for Midrange Computers 0805-207 3
PC Operating Systems 0805-215 3
PC Hardware I 0805-216 3
PC Hardware II 0805-217 3
Internet Technologies I 0805-251 3
Orientation to Business 0804-101 3
Mathematics Elective (Level B or above) * 3
Freshman Seminar 0887-200 2
Job Search Process 0806-101 2
Science (Level B) 3
English (Level C or above) 6
Physical Education (Wellness Component) 0

Quarter Credit Hours 10

Second Year
Introduction to UNIX 0805-220 3
Networking I 0805-224 3
Networking II 0805-225 3
Networking III 0805-226 3
Programming I 0805-230 3
Programming II 0805-231 3
Internet Technologies II 0805-252 3
Technical Elective † 6
Employment Seminar 0806-201 1
Social Science 6
English (Level C or above) 4
Deaf Studies / ASL # 4
Science (Level B) 3
Cooperative Education 0805-299 0

Quarter Credit Hours (3) 10
Total Quarter Credit Hours 103

* The following courses cannot be used as a math elective: 0884-100 Introduction to College Mathematics; 0884-220 Preparation for Algebra.
† Student may select from ACT department electives or approved electives from: business occupations, electronic publishing & printing technology, or imaging technology departments.
This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
§ Student must select Microcomputer Database Software (0805-310) or Database Systems (0805-325).
AAS Degree Program-Computer Support Option

Positions for which graduates qualify
Computer operator, trainee or network technician and personal computer specialist

Prerequisites
Successful completion of a sampling experience in the applied computer technology area, either through the Summer Vestibule Program or equivalent Career Exploration course.

English-AAS: Placement into the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Applied computer technology, AAS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications Software 0805-201</td>
<td>3</td>
<td>Introduction to UNIX 0805-220</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Midrange Computer Operations 0805-205</td>
<td>3</td>
<td>Networking I 0805-224</td>
<td>3</td>
</tr>
<tr>
<td>Command Language/Utilities for Midrange Computers 0805-206</td>
<td>3</td>
<td>Networking II 0805-225</td>
<td>3</td>
</tr>
<tr>
<td>Multiprogramming & Spooling for Midrange Computers 0805-207</td>
<td>3</td>
<td>Programming I 0805-226</td>
<td>3</td>
</tr>
<tr>
<td>PC Operating Systems 0805-215</td>
<td>3</td>
<td>Programming II 0805-230</td>
<td>3</td>
</tr>
<tr>
<td>PC Hardware I 0805-216</td>
<td>3</td>
<td>Internet Technologies I 0805-217</td>
<td>3</td>
</tr>
<tr>
<td>PC Hardware II 0805-218</td>
<td>3</td>
<td>Internet Technologies I 0805-251</td>
<td>3</td>
</tr>
<tr>
<td>Internet Technologies I 0805-251</td>
<td>3</td>
<td>Orientation to Business 0804-101</td>
<td>3</td>
</tr>
<tr>
<td>Orientation to Business 0804-101</td>
<td>3</td>
<td>Foundations of Algebra 0884-180</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics Elective (Level B or above)</td>
<td>4</td>
<td>Mathematics Elective (Level B or above)</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>8</td>
<td>English (Level C or above)</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative Education 0805-299</td>
<td>0</td>
<td>Cooperative Education 0805-299</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

Database Elective 0805	3
Technical Elective	3
Capstone Seminar 0882-296	4
Humanities	4

Total Quarter Credit Hours

107

* The following courses cannot be used as a math elective: 0884-100 Introduction to College Mathematics or 0884-120 Preparation for Algebra or 0884-150 Concepts of Measurement and 0884-755 Mathematics Applications for the Business Technologies.
† Student may select from ACT department electives or approved electives from other NTID or CAST departments.
‡ Student must select Microcomputer Database Software (0805-310) or Database Systems (0805-325).
Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to UNIX 0805-220</td>
<td>3</td>
</tr>
<tr>
<td>Networking I 0805-224</td>
<td>3</td>
</tr>
<tr>
<td>Networking II 0805-225</td>
<td>3</td>
</tr>
<tr>
<td>Networking III 0805-226</td>
<td>3</td>
</tr>
<tr>
<td>Programming I 0805-230</td>
<td>3</td>
</tr>
<tr>
<td>Programming II 0805-231</td>
<td>3</td>
</tr>
<tr>
<td>Microprocessor I 0805-330</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective †</td>
<td>6</td>
</tr>
<tr>
<td>Employment Seminar 0906-330</td>
<td>1</td>
</tr>
<tr>
<td>Social Science</td>
<td>6</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Studies ASL †</td>
<td>(3)</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>Cooperative Education 0805-299</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 104

* The following courses cannot be used as a math elective: 0884-100 Introduction to College Mathematics; 0884-120 Preparation for Algebra.
† Student may select from ACT department electives or approved electives from: business occupations, electronic publishing & printing technology, or imaging technology departments.
‡ This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
§ Student must select Microprocessor II (0805-332) or Industrial Controls (0805-355).

AAS Degree Program—Industrial Computer Electronics Option

Positions for which graduates qualify

Computer operator, trainee or network technician and personal computer specialist in an industrial/manufacturing environment.

Prerequisites

Successful completion of a sampling experience in the applied computer technology area, either through the Summer Program or equivalent Career Exploration course.

English-AAS Placement into the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 100 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Applications of Algebra (0884-210) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Applied computer technology, AAS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Software 0805-201</td>
</tr>
<tr>
<td>Applied Circuits I 0805-212</td>
</tr>
<tr>
<td>Applied Circuits II 0805-213</td>
</tr>
<tr>
<td>Fundamentals of Digital Logic 0805-240</td>
</tr>
<tr>
<td>PC Operating Systems 0805-215</td>
</tr>
<tr>
<td>PC Hardware I 0805-216</td>
</tr>
<tr>
<td>PC Hardware II 0805-217</td>
</tr>
<tr>
<td>Internet Technologies I 0805-251</td>
</tr>
<tr>
<td>Fundamentals of IT Electronics 0805-245</td>
</tr>
<tr>
<td>Applications of Algebra 0884-210</td>
</tr>
<tr>
<td>Mathematics Elective (Level B or above) *</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
</tr>
<tr>
<td>Cooperative Education 0805-299</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to UNIX 0805-220</td>
<td>3</td>
</tr>
<tr>
<td>Networking I 0805-224</td>
<td>3</td>
</tr>
<tr>
<td>Networking II 0805-225</td>
<td>3</td>
</tr>
<tr>
<td>Networking III 0805-226</td>
<td>3</td>
</tr>
<tr>
<td>Programming I 0805-230</td>
<td>3</td>
</tr>
<tr>
<td>Programming II 0805-231</td>
<td>3</td>
</tr>
<tr>
<td>Microprocessor I 0805-330</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective †</td>
<td>6</td>
</tr>
<tr>
<td>Employment Seminar 0906-201</td>
<td>1</td>
</tr>
<tr>
<td>Social Science</td>
<td>6</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Studies ASL †</td>
<td>(3)</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>Cooperative Education 0805-299</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 104

* The following courses cannot be used as a math elective: 0884-100 Introduction to College Mathematics; 0884-120 Preparation for Algebra; 0884-150 Concepts of Measurement; and 0884-155 Mathematics Applications for the Business Technologies
† Student may select from ACT department electives or approved electives from other NTID or CAST departments
‡ Student must select Microprocessor II (0805-332) or Industrial Controls (0805-355).

Art and Computer Design

John W. Cox, Chairperson

Becoming a professional artist requires various kinds of computer-based and traditional art skills. The art and computer design department offers programs for students who wish to develop these skills and enter the field directly or continue on for further studies.

Introductory courses

Several introductory courses are available each quarter for students who have not yet matriculated in the art and computer design major (as well as for students in the major). Students can take these courses as part of the process of selecting a major, and all credits count toward degree requirements in art and computer design.

First-year courses

Major courses in the first year provide basic skills in both computer-based and traditional media. These courses prepare the student for either advanced courses in art and computer design or continued study toward a bachelor’s degree in the College of Imaging Arts and Sciences.

Work experience

All NTID art and computer design students gain work experience through a required one-quarter external co-op. In addition, two advanced courses provide experience in completing real work assignments for various on-campus and off-campus clients.

AOS and AAS degree programs

NTID art and computer design programs prepare students for careers in the art field. Students may choose from AOS or AAS programs. The AOS degree is designed for students who wish to pursue employment after graduation. The AAS degree is for students who intend to continue their education toward a bachelor’s degree in art.

In addition, students may take courses in related fields such as computer technology, imaging, and publishing.
On-the-job responsibilities
Graduates use computer-based and traditional methods to produce drawings, layouts and production art for advertising, sales promotion, public relations, and corporate communications; create visual materials for brochures, pamphlets, instructional media, magazines, newspapers, newsletters, and posters; prepare artwork for printing; use computer hardware and software and other art studio equipment.

Places of employment
Graduates are usually placed in computer graphics studios; advertising agencies; commercial art studios; newspapers; manufacturing, printing, and publishing firms; educational institutions; and government agencies.

Positions for which graduates qualify
Computer graphics artist, desktop publishing artist, layout artist, and production artist are typical job titles.

Prerequisites
Successful completion of a sampling experience in art, either through the Summer Vestibule Program or the Career Exploration course, offered during the academic year. Through this sampling experience, students must demonstrate basic skills in the following areas: program career information, freehand drawing, design, and layout. Students' work is assessed by faculty members using a skill checklist.

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

English-AAS: Placement into College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Concepts of Measurement (0884-150). Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Placement into level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Art and computer design, AOS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Idea Development 0825-105</td>
<td>2</td>
</tr>
<tr>
<td>Concepts of Computer Graphics 0825-109</td>
<td>1</td>
</tr>
<tr>
<td>Bit-Map Graphics 0825-110</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Perspective Drawing 0825-204</td>
<td>2</td>
</tr>
<tr>
<td>Figure Drawing 0825-206</td>
<td>2</td>
</tr>
<tr>
<td>Drawing Composition 0825-208</td>
<td>2</td>
</tr>
<tr>
<td>Vector Graphics 0825-210</td>
<td>2</td>
</tr>
<tr>
<td>Basic Design 0825-211</td>
<td>2</td>
</tr>
<tr>
<td>Color in Design 0825-212</td>
<td>2</td>
</tr>
<tr>
<td>Design for Graphics 0825-213</td>
<td>2</td>
</tr>
<tr>
<td>Art Career Seminar 0825-215</td>
<td>2</td>
</tr>
<tr>
<td>Basic Typography 0825-221</td>
<td>2</td>
</tr>
<tr>
<td>Electronic Layout Programs 0825-230</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>12</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Graphics for Communication 0825-301</td>
<td>3</td>
</tr>
<tr>
<td>Digital Illustration 0825-310</td>
<td>2</td>
</tr>
<tr>
<td>Art History I, II 0825-315, 316</td>
<td>6</td>
</tr>
<tr>
<td>History of Graphic Design 0825-317</td>
<td>3</td>
</tr>
<tr>
<td>Type in Design 0825-321</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Print Design 0825-324</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Production 0825-334</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Web Design 0825-344</td>
<td>2</td>
</tr>
<tr>
<td>Concentrations: choose one</td>
<td></td>
</tr>
<tr>
<td>Print Design</td>
<td></td>
</tr>
<tr>
<td>Grid Systems 0825-326</td>
<td>2</td>
</tr>
<tr>
<td>Identity Systems Design 0825-327</td>
<td>3</td>
</tr>
<tr>
<td>Multi-page Design 0825-328</td>
<td>3</td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Production Applications 0825-336</td>
<td>3</td>
</tr>
<tr>
<td>Color Management Systems 0878-318</td>
<td>3</td>
</tr>
<tr>
<td>Preflight Procedures 0878-330</td>
<td>3</td>
</tr>
<tr>
<td>Web Design</td>
<td></td>
</tr>
<tr>
<td>Creating Web Graphics 0825-346</td>
<td>2</td>
</tr>
<tr>
<td>Internet Technologies I, II 0805-251, 252</td>
<td>6</td>
</tr>
<tr>
<td>Designing Web Sites 0825-347</td>
<td>2</td>
</tr>
<tr>
<td>Cooperative Education 0825-299</td>
<td>0</td>
</tr>
<tr>
<td>Graphics Studio 0825-351</td>
<td>4</td>
</tr>
<tr>
<td>Open Electives †</td>
<td>2</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>Deaf Studies/ASL*</td>
<td>(3)</td>
</tr>
<tr>
<td>Social Science</td>
<td>6</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment Seminar 0806-201</td>
<td>1</td>
</tr>
<tr>
<td>Portfolio Presentation 0825-352</td>
<td>4</td>
</tr>
<tr>
<td>Open Electives †</td>
<td>2</td>
</tr>
<tr>
<td>Capstone 0882-295</td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>105</td>
</tr>
</tbody>
</table>

* Satisfied by Concepts of Measurement (0884-150)
† Concentration plus electives must total 12 quarter credit hours
‡ This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
Business Careers

William J. Rudnicki, Chairperson

Employment opportunities in business and industry increase daily. Business careers programs respond to industry's need for people skilled in operating office equipment, maintaining financial records, performing administrative duties and using computers.

Students may choose an AOS program in business technology as well as diploma and AAS degree programs in accounting technology and/or administrative support technology.

Accounting Technology

This program offers a diploma and an AAS degree and prepares students for entry-level employment in accounting-related occupations. Students learn the functions of the complete accounting cycle for service, merchandising, and manufacturing businesses.

On-the-job responsibilities

Use computers to maintain and reconcile various financial records, verify business records, and perform other clerical and administrative duties.

Places of employment

- Business
- Industry
- Government
- Self-employment

Diploma Program

Positions for which graduates qualify

- Accounts receivable/payable clerk
- Payroll clerk
- General office clerk
- File clerk
- Recordkeeping clerk
- Data-entry clerk

Prerequisites

- **English-Diploma:** Placement into level B English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing a diploma typically enter with reading scores equivalent to 7.0 on the California Reading Test.
- **Mathematics:** Mathematics Applications for Business Technology required. Typically, students entering this program will have completed at least two years of high school mathematics.
- **Science:** Placement into any level B science course numbered 1.50 or higher. Typically, students entering this program will have completed at least two years of high school science.

Accounting technology, diploma, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement into any level B science course numbered 1.50 or higher. Typically, students entering this program will have completed at least two years of high school science.</td>
<td>1.50</td>
</tr>
<tr>
<td>Principles of Accounting I, II 0801-201, 202</td>
<td>8</td>
</tr>
<tr>
<td>Orientation to Business 0804-101</td>
<td>3</td>
</tr>
<tr>
<td>Business English 0804-110</td>
<td>3</td>
</tr>
<tr>
<td>Keyboarding 0804-111</td>
<td>2</td>
</tr>
<tr>
<td>OAS Formatting 0804-112</td>
<td>2</td>
</tr>
<tr>
<td>OAS Document Production I 0804-113</td>
<td>3</td>
</tr>
<tr>
<td>Records Management/Business Calculations 0804-211</td>
<td>4</td>
</tr>
<tr>
<td>Payroll/Spreadsheet Applications 0804-212</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics requirement *</td>
<td>3</td>
</tr>
<tr>
<td>Student Seminar 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>8</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>3</td>
</tr>
</tbody>
</table>

Art and computer design, AAS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0825-105</td>
<td>Visual Idea Development</td>
<td>2</td>
</tr>
<tr>
<td>0825-109</td>
<td>Concepts of Computer Graphics</td>
<td>1</td>
</tr>
<tr>
<td>0825-110</td>
<td>Bit-Map Graphics</td>
<td>2</td>
</tr>
<tr>
<td>0887-200</td>
<td>Freshman Seminar</td>
<td>2</td>
</tr>
<tr>
<td>0825-204</td>
<td>Perspective Drawing</td>
<td>2</td>
</tr>
<tr>
<td>0825-206</td>
<td>Figure Drawing</td>
<td>2</td>
</tr>
<tr>
<td>0825-208</td>
<td>Drawing Composition</td>
<td>2</td>
</tr>
<tr>
<td>0825-210</td>
<td>Vector Graphics</td>
<td>2</td>
</tr>
<tr>
<td>0825-211</td>
<td>Basic Design</td>
<td>2</td>
</tr>
<tr>
<td>0825-212</td>
<td>Color in Design</td>
<td>2</td>
</tr>
<tr>
<td>0825-213</td>
<td>Design for Graphics</td>
<td>2</td>
</tr>
<tr>
<td>0825-215</td>
<td>Art Career Seminar</td>
<td>2</td>
</tr>
<tr>
<td>0825-221</td>
<td>Basic Typography</td>
<td>2</td>
</tr>
<tr>
<td>0825-230</td>
<td>Electronic Layout Programs</td>
<td>2</td>
</tr>
<tr>
<td>0825-315</td>
<td>Mathematics (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>0825-316</td>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>6</td>
</tr>
<tr>
<td>0825-317</td>
<td>Science (Level B)</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0806-101</td>
<td>Job Search Process</td>
<td>2</td>
</tr>
<tr>
<td>0825-301</td>
<td>Graphics for Communication</td>
<td>3</td>
</tr>
<tr>
<td>0825-310</td>
<td>Digital Illustration</td>
<td>2</td>
</tr>
<tr>
<td>0825-315</td>
<td>Art History I</td>
<td>6</td>
</tr>
<tr>
<td>0825-316</td>
<td>Art History II</td>
<td>3</td>
</tr>
<tr>
<td>0825-317</td>
<td>History of Graphic Design</td>
<td>3</td>
</tr>
<tr>
<td>0825-321</td>
<td>Type in Design</td>
<td>3</td>
</tr>
<tr>
<td>0825-324</td>
<td>Introduction to Design</td>
<td>2</td>
</tr>
<tr>
<td>0825-334</td>
<td>Introduction to Production</td>
<td>2</td>
</tr>
<tr>
<td>0825-344</td>
<td>Introduction to Web Design</td>
<td>2</td>
</tr>
<tr>
<td>Open Electives †</td>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0806-201</td>
<td>Employment Seminar</td>
<td>1</td>
</tr>
<tr>
<td>0825-351</td>
<td>Graphics Studio</td>
<td>4</td>
</tr>
<tr>
<td>0825-352</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-354</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-356</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-361</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-370</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-380</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-390</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-400</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-410</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-420</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-430</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-440</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-450</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-460</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-470</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-480</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-490</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-500</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-510</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-520</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-530</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-540</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-550</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-560</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-570</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-580</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-590</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-600</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-610</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-620</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-630</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-640</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-650</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-660</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-670</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-680</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-690</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-700</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-710</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-720</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-730</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-740</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-750</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-760</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-770</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-780</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-790</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-800</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-810</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-820</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-830</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-840</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-850</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-860</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-870</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-880</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-890</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-900</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-910</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-920</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-930</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-940</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-950</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-960</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-970</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-980</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
<tr>
<td>0825-990</td>
<td>OAS Formatting</td>
<td>2</td>
</tr>
<tr>
<td>0825-1000</td>
<td>OAS Document Production</td>
<td>4</td>
</tr>
</tbody>
</table>

* Satisfied by Concepts of Measurement (0884-150)

† Concentration plus electives must total 12 quarter credit hours
Second Year

Principles of Accounting III 0801-203 4
Data Processing for Business Occupations 0802-210 3
OAS Document Production II 0804-221 4
Fundamentals of Management 0804-284 3
Employment Seminar 0806-201 1
Law & Society 0882-242 3
OR
Marketing 0804-286 3
Humanities 3
Social Science 3
Deaf Studies/ASL † 3
English (Level B or above) 4
Job Search Process 0806-101 4
Cooperative Education 0801-299 0
Total Quarter Credit Hours 74

‡ This requirement also fulfills three credits in either humanities or social sciences, depending on which discipline offers the course selected.

AAS Degree Program
Positions for which graduates qualify
Junior accounting technician, cost accounting clerk, accounts receivable/payable clerk, payroll clerk, general accounting clerk, and microcomputer accounting clerk

Prerequisites

English-AAS: Placement into the College of Liberal Arts Writing & Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically need to pass the English course with a reading score equivalent to 9.0 on the California Reading Test.

Mathematics: Mathematics Applications for Business Technology required. Typically, students entering this program will have completed at least two years of high school mathematics. Science: Placement into any level B science course number 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Accounting technology, AAS degree, typical course sequence

First Year

Principles of Accounting I, II 0801-201, 202 8
Orientation to Business 0804-101 3
Business English 0804-110 3
Keyboarding 0804-111 2
OAS Formatting 0804-112 2
OAS Document Production I 0804-113 2
Records Management/Business Calculations 0804-211 3
Payroll/Spreadsheet Applications 0804-212 3
Fundamentals of Marketing 0804-286 3
Mathematics requirement * 7
Freshman Seminar 0887-200 2
Deaf Studies/ASL 3
Liberal Arts (College of Liberal Arts) 12
Science (Level B) 3
Physical Education (Wellness Component) 0

Second Year

Principles of Accounting III 0801-203 4
Cost Accounting I, II 0801-252, 253 8
Data Processing for Business Occupations 0802-210 3
OAS Document Production I 0804-221 4
Fundamentals of Management 0804-284 3
Liberal Arts (College of Liberal Arts) 8
Capstone Seminar 0882-296 4
Economics I, II 0801-231, 232 6
Job Search Process 0806-101 4
Principles of Accounting IV 0801-204 4
Applied Accounting Techniques 0801-260 2
Law & Society 0882-242 3
Employment Seminar 0806-201 1
Cooperative Education 0804-299 0
Physical Education (Activity Course) 0
Total Quarter Credit Hours 110

‡ This requirement also fulfills three credits in either humanities or social sciences, depending on which discipline offers the course selected.

Administrative Support Technology
This program offers a diploma and an AAS degree. It provides students with opportunities for developing needed processing information using a variety of integrated office software applications and developing appropriate professional interpersonal and human relations skills.

On-the-job responsibilities
Input, manipulate and retrieve data; use interactive office software, electronic mail and information processing skills for applications such as word processing, spreadsheet presentation and database; and performing other office duties.

Places of employment
Business, industry, government and schools

Diploma Program
Positions for which graduates qualify
General office clerk, accounts receivable/payable clerk, records management clerk, and payroll records clerk

Prerequisites

English-Diploma: Placement into level B English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing a diploma typically enter this degree program with reading test scores equivalent to 7.0 on the California Reading Test.

Mathematics: Mathematics Applications for Business Technology required. Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Placement into any level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Administrative support technology, diploma, typical course sequence

First Year

Orientation to Business 0804-101 3
Business English 0804-110 3
Keyboarding 0804-111 2
OAS Formatting 0804-112 2
OAS Document Production I 0804-113 4
OAS Document Production II 0804-221 3
Office Technologies Seminar 0804-230 3
Records Management/Business Calculations 0804-211 3
Payroll/Spreadsheet Applications 0804-212 3
Mathematics Elective (Level B or above) * 3
Freshman Seminar 0887-200 2
English (Level B or above) 12
Deaf Studies/ASL † (3)

Second Year

Principles of Accounting I, II 0801-201, 202 8
Data Processing for Business Occupations 0802-210 3
Fundamentals of Management 0804-284 3
Applied Business Techniques 0804-291 2
Advanced Applications for Word Processing 0804-302 4
Job Search Process 0806-101 2
Employment Seminar 0806-202 1
Business Elective † 3/4
Humanities 3
Social Science 3
Science (Level B) 3
Cooperative Education 0804-299 0
Total Quarter Credit Hours 79/80

‡ Satisfied by Foundations of Algebra (0884-1801) or Mathematics Applications for Business Technology (0884-153).
† Satisfied by Marketing (0804-296), Business Graphics (0804.303), Database Applications (0804-304).

* Mathematics Applications for Business Technology (0884-153) and a mathematics elective at a Level B or higher is required.
AAS Degree Program

Positions for which graduates qualify

Administrative assistant, office assistant, word processor, and secretary

Prerequisites

English-AAS: Placement into the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Mathematics Applications for Business Technology required. Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Placement into any level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Administrative support technology, AAS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation to Business 0804-101</td>
<td>3</td>
</tr>
<tr>
<td>Business English 0804-110</td>
<td>3</td>
</tr>
<tr>
<td>Keyboarding 0804-111</td>
<td>2</td>
</tr>
<tr>
<td>OAS Formatting 0804-112</td>
<td>2</td>
</tr>
<tr>
<td>OAS Document Production I 0804-113</td>
<td>4</td>
</tr>
<tr>
<td>OAS Document Production II 0804-221</td>
<td>4</td>
</tr>
<tr>
<td>Records Management/ Business Calculations 0804-211</td>
<td>3</td>
</tr>
<tr>
<td>Payroll/Spreadsheet Applications 0804-212</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Marketing 0804-286</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics Elective *</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>12</td>
</tr>
<tr>
<td>Deaf Studies/ASL</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

Principles of Accounting I, II 0801-201, 202	8
Data Processing for Business Occupations 0802-210	3
Office Technologies Seminar 0804-230	3
Fundamentals of Management 0804-284	3
Advanced Applications for Word Processing 0804-302	4
Business Graphics 0804-303	4
Database Applications for Business 0804-304	4
Liberal Arts	4
Capstone 0882-296	4
Applied Business Techniques 0804-291	2
Desktop Publishing Concepts & Applications 0804-310	3
Liberal Arts (College of Liberal Arts)	3
Communication Studies Elective	3
Science (Level B)	3
Cooperative Education 0804-299	0
Physical Education (Activity Course)	0
Total Quarter Credit Hours	104

* Satisfied by Foundations of Algebra (0884-180) or Mathematics Applications for Business Technology (0884-155).

Business Technology

AOS Degree Program

This AOS degree program includes technical course work in accounting, computers, payroll, general office skills and word processing/ information processing skills. Students elect to complete a sequence of courses that provide either an applied accounting technology or administrative support technology concentration.

This is a nontransfer occupational program with primary emphasis on preparation for immediate employment.

Places of employment

Business, industry, government, and schools

On-the-job responsibilities

Input, manipulate, and retrieve data; use interactive software, electronic mail, and information processing skills; use computers to maintain and reconcile various financial records

Positions for which graduates qualify

General office clerk, accounts receivable/ payable clerk, payroll records clerk, word processing technician, cost accounting clerk, and microcomputer accounting clerk

Prerequisites

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Mathematics Applications for Business Technology required. Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Placement into any level B science course numbered 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Business technology, AOS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Accounting I, II 0801-201, 202</td>
<td>3</td>
</tr>
<tr>
<td>Orientation to Business 0804-101</td>
<td>3</td>
</tr>
<tr>
<td>Business English 0804-110</td>
<td>3</td>
</tr>
<tr>
<td>Keyboarding 0804-111</td>
<td>2</td>
</tr>
<tr>
<td>OAS Formatting 0804-112</td>
<td>2</td>
</tr>
<tr>
<td>OAS Document Production I 0804-113</td>
<td>4</td>
</tr>
<tr>
<td>OAS Document Production II 0804-221</td>
<td>4</td>
</tr>
<tr>
<td>Records Management/ Business Calculations 0804-211</td>
<td>3</td>
</tr>
<tr>
<td>Payroll/Spreadsheet Applications 0804-212</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Marketing 0804-286</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics Elective *</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>12</td>
</tr>
<tr>
<td>Deaf Studies/ASL</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

Principles of Accounting III 0801-203	4
Cost Accounting I, II t 0801-252, 253	8
O.R.	
Database Applications for Business † 0804-304	4
A.N.D.	
Office Technologies Seminar † 0804-230	3
OAS Document Production II 0804-221	3
Fundamentals of Management 0804-284	3
Fundamentals of Marketing 0804-286	3
Advanced Applications for Word Processing 0804-302	4
Business Graphics 0804-303	4
Humanities	6
Science (Level B)	3
Social Science	6
Job Search Process 0806-101	2
Deaf Studies/ASL §	(3)
Cooperative Education 0804-299	0
Physical Education (Activity Course)	0
Total Quarter Credit Hours	104

* Satisfied by Foundations of Algebra (0884-180) or Mathematics Applications for Business Technology (0884-155).
† Courses required for accounting technology option
‡ Courses required for administrative support technology option
§ This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
Healthcare Billing and Coding Technology

William J. Rudnicki, Chairperson

Students interested in science, allied health, and medical office procedures may combine these interests and prepare for a career in healthcare billing and coding.

Healthcare billing and coding technologists work with patient information to perform such medical office tasks as third-party billing, word and data processing, and basic medical information coding, as well as other computer application tasks.

Students may choose from diploma and AOS degree programs. Technical courses for the first four quarters are the same for diploma and associate degree options.

The healthcare billing and coding technology programs include one cooperative work experience for the diploma level and two cooperative work experiences for the associate degrees. Cooperative work experience is usually taken in the student’s home areas, and it is the student’s responsibility to obtain transportation to the practice sites.

Diploma Program

On-the-job responsibilities

Analyze and use patient information to prepare billing and insurance claims following established procedures. Workers perform routine medical office tasks utilizing skills in computer database and word processing applications.

Places of employment

Physician and dentist offices, medical group practices, acute and long-term care agencies, healthcare billing departments, and insurance companies.

Graduates qualify for positions requiring these skills: medical terminology, keyboarding, patient information analysis, word and data processing, billing procedures, and insurance claim preparation.

Prerequisites

Fundamentals of Human Biology I and II (0885-161,162)
Medical Word Analysis (0820-105)

English-Diploma: Students successfully completing a diploma typically enter with reading scores equivalent to 7.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Completion of Human Biology I and II (0885-161,162) or direct placement into Medical Terms with Human Anatomy I (0820-211). Typically, students entering this major will have completed at least two years of high school science, including biology.

Successful completion of a sampling experience in healthcare billing and coding, either through the Summer Vestibule Program or first-year programming.

AOS Degree Program

On-the-job responsibilities

Analyze and use patient information to prepare billing and insurance claims, perform tasks in ambulatory care coding and outpatient reimbursement procedures. Graduates of the AOS program perform cancer registry procedures using established protocols.

Places of employment

Physician and dentist offices, medical group practices, acute and long-term care agencies, ambulatory-care centers, local/ regional/ state tumor registries, healthcare billing departments, and insurance companies.

Graduates qualify for positions requiring these skills: medical terminology, keyboarding, patient information analysis, word and data processing, billing procedures, insurance claim preparation, ambulatory care coding, and tumor registry.

Prerequisites

Fundamentals of Human Biology I and II (0885-161,162)
Medical Word Analysis (0820-105)

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees, typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Completion of Human Biology I and II (0885-161,162) or direct placement into Medical Terms with Human Anatomy I (0820-211). Typically, students entering this major will have completed at least two years of high school science, including biology.

Successful completion of a sampling experience in healthcare billing and coding, either through the Summer Vestibule Program or first-year programming.

Healthcare billing and coding technology, diploma, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Healthcare Billing & Coding Technology 0820-115</td>
<td>2</td>
</tr>
<tr>
<td>Records Management/ Business Calculations 0804-211</td>
<td>3</td>
</tr>
<tr>
<td>Office Automation Skills Formatting 0804-112</td>
<td>2</td>
</tr>
<tr>
<td>Office Automation Skills Document Production I 0804-113</td>
<td>4</td>
</tr>
<tr>
<td>Medical Terms with Human Anatomy I, II, III 0820-211, 212, 213</td>
<td>12</td>
</tr>
<tr>
<td>Medical Office & Billing Procedures I, II 0820-221, 222</td>
<td>6</td>
</tr>
<tr>
<td>Foundations of Algebra 0884-180</td>
<td>4</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>8</td>
</tr>
<tr>
<td>Freshmen Seminar 0807-200</td>
<td>2</td>
</tr>
<tr>
<td>Humanities †</td>
<td>3</td>
</tr>
<tr>
<td>Communication Technologies 0880-160</td>
<td>(3)</td>
</tr>
<tr>
<td>Cooperative Education 0820-299</td>
<td>0</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>65</td>
</tr>
</tbody>
</table>

† This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.

‡ This requirement is satisfied by Communication Technologies (0880-160)

* Satisfies science requirement

‡ This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
Healthcare billing and coding technology, AOS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Healthcare Billing & Coding Technology 0820-115</td>
<td>4</td>
</tr>
<tr>
<td>Records Management/ Business Calculations 0804-211</td>
<td>3</td>
</tr>
<tr>
<td>Office Automation Skills Formatting 0804-112</td>
<td>2</td>
</tr>
<tr>
<td>Office Automation Skills Document Production I 0804-113</td>
<td>4</td>
</tr>
<tr>
<td>Medical Terms with Human Anatomy I, II, III 0820-211, 212, 213</td>
<td>12</td>
</tr>
<tr>
<td>Medical Office & Billing Procedures I, II 0820-221, 222</td>
<td>6</td>
</tr>
<tr>
<td>Foundations of Algebra 0884-180</td>
<td>4</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>8</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Communication Technologies * 0880-160</td>
<td>(3)</td>
</tr>
<tr>
<td>Cooperative Education 0820-299</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation to Business 0804-101</td>
<td>3</td>
</tr>
<tr>
<td>Medical Terms with Human Anatomy IV 0820-214</td>
<td>4</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>4</td>
</tr>
<tr>
<td>Social Science</td>
<td>6</td>
</tr>
<tr>
<td>Deaf Studies ASL †</td>
<td>(3)</td>
</tr>
<tr>
<td>Ambulatory Disease Surgery Process 0820-250</td>
<td>4</td>
</tr>
<tr>
<td>Ambulatory Care Coding 0820-251</td>
<td>4</td>
</tr>
<tr>
<td>Cancer Registry I, II 0820-261, 262</td>
<td>8</td>
</tr>
<tr>
<td>Outpatient Reimbursement 0820-270</td>
<td>4</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>3</td>
</tr>
<tr>
<td>Capstone Seminar 0882-295</td>
<td>3</td>
</tr>
<tr>
<td>Cooperative Education II 0820-299</td>
<td>0</td>
</tr>
<tr>
<td>Employment Seminar 0806-201</td>
<td>1</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>94</td>
</tr>
</tbody>
</table>

* satisfies science requirement
† This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
‡ This requirement is satisfied by Communication Technologies (0880-160)

Digital Imaging and Publishing Technology

Jean-Guy Naud, Chairperson

People who work in digital imaging and publishing careers produce the millions of photographs, print and digital media products used every day by individuals and businesses. Digital imaging and publishing technology enables data, text and graphics to meet the demand for producing through a wide variety of information dissemination and communication strategies, including printed pages, Web pages and CD-ROMs. This program can get you ready for an exciting and challenging career in the nation’s second largest and fastest growing manufacturing industry.

Diploma, AOS and AAS degree programs

Students may choose from diploma, AOS or AAS degree programs. All three options in digital imaging and publishing technology require students to complete a common core of courses that provide the necessary foundation for careers in the imaging and publishing industry. Students in the AOS and AAS degree programs will complete at least one career concentration: computer publishing, digital media publishing, digital image manipulation, digital prepress production, offset lithography, and custom color lab. Technical elective courses may be taken from DI&PT concentrations and from other related NTID technical programs. Significant program flexibility is available for each student to elect courses based on career interest and aptitude. A 10-week cooperative work experience is required for students in the AOS and AAS degree programs.

Students who qualify for the AAS degree program may elect specific mathematics and science courses and technical courses from related bachelor’s degree programs, as available per enrollment guidelines, in preparation for application to the related bachelor’s degree programs.

On-the-job responsibilities

Depending on specific career preparation and placement, students will produce and prepare documents, illustrations, and photographic images for print reproduction, digital display, and digital distribution; produce presentation graphics; produce special-effects images for film and digital formats; perform digital retouching and restoration of photographic images; produce composite digital images; operate a variety of analog and digital video equipment to edit and produce programs; operate a variety of prepress proofing and platemaking systems; operate digital printing systems; operate offset printing presses; operate simple bindery and finishing equipment; operate film and paper processors; produce images on a variety of photographic materials; use a variety of quality control procedures to monitor image production, processing, and printing.

Places of employment

Graduates of the DI&PT program will have employment opportunities in commercial, corporate, and government settings. They may work in commercial printing plants, prepress and color trade shop companies, in-plant printing departments, book and magazine publishers, newspaper facilities, government printing facilities, custom or commercial photographic labs, in-house industrial photographic labs, industrial training or media departments, imaging production houses, or school or university media centers.

Positions for which graduates qualify

Technician in digital image capture and image preparation, digital prepress, film processing, media production, presentation graphics, or basic video production; photographic laboratory technician, custom copy technician, custom color printer, custom color print inspector/evaluator; operator of digital printing systems, offset lithographic printing press

Prerequisites

Successful completion of an orientation/sampling experience offered during the Summer Vestibule Program and also during the academic year. The sampling activities provide opportunities for students to learn about the digital imaging and publishing industry, identify career opportunities, and evaluate their interest and aptitude for the imaging and publishing field.

English-Diploma: Placement into level B English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing a diploma typically enter with reading test scores equivalent to 7.0 on the California Reading Test.

English-AOS: Placement into level C English or higher (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading test scores equivalent to 8.0 on the California Reading Test.

English-AAS: Placement into the College of Liberal Arts Writing and Literature course. Students typically enter the Writing and Literature course with reading test scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading test scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Concepts of Measurement (0884-150). Typically, students entering this program will have completed at least two years of high school mathematics.

Science: Placement into level B science course numbers 150 or higher. Typically, students entering this program will have completed at least two years of high school mathematics.
Digital imaging and publishing technology, diploma, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of DI&P Software 0878-200</td>
<td>3</td>
</tr>
<tr>
<td>Digital Design & Typography 0878-210</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Image Acquisition 0878-215</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Image Manipulation 0878-220</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Vector Graph Illustration 0878-225</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Desktop Publishing 0878-230</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Digital Media Publishing 0878-235</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Network Publishing 0878-240</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Digital Output 0878-245</td>
<td>3</td>
</tr>
<tr>
<td>Color Theory & Practice 0878-250</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics* (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Seminar 0882-100</td>
<td>2</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>8</td>
</tr>
<tr>
<td>Social Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Processes & Markets 0878-255</td>
<td>3</td>
</tr>
<tr>
<td>DI&PT Technical elective courses</td>
<td>9</td>
</tr>
<tr>
<td>Production Procedures & Quality Control 0878-361</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Science (Level B or above)</td>
<td>3</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Studies/ASL †</td>
<td>(3)</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>’70’</td>
</tr>
</tbody>
</table>

* Satisfied by Concepts of Measurement (0884-150)

† This requirement also fulfills 3 credits in either Humanities or Social Science, depending on which discipline offers the course selected.

Digital imaging and publishing technology, AOS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Design & Typography 0878-210</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Image Acquisition 0878-215</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Image Manipulation 0878-220</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Vector Graph Illustration 0878-225</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Desktop Publishing 0878-230</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Digital Media Publishing 0878-235</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Network Publishing 0878-240</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Digital Output 0878-245</td>
<td>3</td>
</tr>
<tr>
<td>Color Theory & Practice 0878-250</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics* (Level B)</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Seminar 0882-100</td>
<td>2</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>8</td>
</tr>
<tr>
<td>Social Science</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Processes & Markets 0878-255</td>
<td>3</td>
</tr>
<tr>
<td>DI&PT Technical Concentration Courses</td>
<td>12</td>
</tr>
<tr>
<td>DI&PT Technical Electives</td>
<td>9</td>
</tr>
<tr>
<td>Production Procedures & Quality Control 0878-361</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Humanities</td>
<td>6</td>
</tr>
<tr>
<td>Science (Level B or above)</td>
<td>3</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>4</td>
</tr>
<tr>
<td>Social Science</td>
<td>3</td>
</tr>
<tr>
<td>Deaf Studies/ASL †</td>
<td>(3)</td>
</tr>
<tr>
<td>Cooperative Education 0878-299</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI&PT Technical Concentration Courses</td>
<td>6</td>
</tr>
<tr>
<td>DI&PT Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Capstone Seminar 0882-295</td>
<td>3</td>
</tr>
<tr>
<td>Employment Seminar 0806-201</td>
<td>3</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>104</td>
</tr>
</tbody>
</table>

* Satisfied by Concepts of Measurement (0884-150) or higher level

† This requirement also fulfills 3 credits in either Humanities or Social Science, depending on which discipline offers the course selected.
Digital imaging and publishing technology, AAS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Design & Typography 0878-210</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Image Acquisition 0878-215</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Image Manipulation 0878-220</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Vector Graphics Illustration 0878-225</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Desktop Publishing 0878-230</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Digital Media Publishing 0878-235</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Network Publishing 0878-240</td>
<td>3</td>
</tr>
<tr>
<td>Fund. of Digital Output 0878-245</td>
<td>3</td>
</tr>
<tr>
<td>Color Theory & Practice 0875-250</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics* (Level 8)</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Seminar 0882-100</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Processes & Markets 0878-255</td>
<td>3</td>
</tr>
<tr>
<td>DI&PT Technical Concentration Courses</td>
<td>12</td>
</tr>
<tr>
<td>DI&PT Technical Electives</td>
<td>9</td>
</tr>
<tr>
<td>Production Procedures & Quality Control 0878-361</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Science (Level B or above)</td>
<td>3</td>
</tr>
<tr>
<td>Deaf Studies/ASL</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 0878-299</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI&PT Technical Concentration Courses</td>
<td>6</td>
</tr>
<tr>
<td>DI&PT Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Capstone Seminar 0882-295</td>
<td>4</td>
</tr>
<tr>
<td>Employment Seminar 0806-201</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 101

* Satisfied by Concepts of Measurement (0884-150) or higher level

Industrial and Science Technologies

Industrial and Science Technologies

Annie Macleod, Chairperson

Employment opportunities within industrial and science technology fields increase daily. NTID programs respond to industry’s need for people with knowledge and skills in the areas of robotics and semiconductor fabrication; computer aided drafting; precision machining; food quality and environmental testing and instrumentation; and ophthalmic optical finishing.

Automation Technologies

The automation technologies (AT) program prepares graduates to function in complex automated system environments. Graduates will be particularly well suited in two areas, robotics and semiconductor fabrication, thus, taking advantage of growing employment opportunities in these expanding industries. The AT program will promote core skill development in electrical/electronic, mechanical, and computer technologies.

On-the-job responsibilities

Automation technologies technicians have as their primary responsibility to install, troubleshoot, repair, upgrade, and maintain automated systems and their components.

Places of employment

The program prepares graduates for technical jobs in the robotics and semiconductor industries.

AOS Degree Program-Applied Robotics Option

Positions for which graduates qualify

Robotics technician; semiconductor maintenance technician; semiconductor process technician; automation systems technician; electromechanical technician; instrumentation technician; engineering technician; fluid power controls/system technician; quality control technician; process control technician

Prerequisites

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Applications of Algebra (0884-210) or Elements of Trigonometry (0884-220) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics is beneficial.

Automation technologies, AOS degree, applied robotics option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Automation Technologies 0890-201</td>
<td>3</td>
</tr>
<tr>
<td>Applied Circuits 0805-212</td>
<td>4</td>
</tr>
<tr>
<td>Vocabulary Development 0860-003</td>
<td>0</td>
</tr>
<tr>
<td>Digital Logic 0805-240</td>
<td>3</td>
</tr>
<tr>
<td>Pneumatic & Hydraulic Systems 0891-210</td>
<td>3</td>
</tr>
<tr>
<td>Electronics 0805-245</td>
<td>3</td>
</tr>
<tr>
<td>Electromechanical Devices 0891-214</td>
<td>4</td>
</tr>
<tr>
<td>Applications of Algebra 0884-210</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Trigonometry 0884-220</td>
<td>4</td>
</tr>
<tr>
<td>Physics I 0885-201</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Writing III 0883-211</td>
<td>4</td>
</tr>
<tr>
<td>Non Fiction Reading 0883-210</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Job Search 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated Systems I, II 0891-220, 320</td>
<td>8</td>
</tr>
<tr>
<td>Programming Concepts 0891-216</td>
<td>4</td>
</tr>
<tr>
<td>Programmable Logic Controllers (PLC) Programming 0891-314</td>
<td>4</td>
</tr>
<tr>
<td>Robotics Fundamentals 0891-218</td>
<td>1</td>
</tr>
<tr>
<td>Applied Robotics 0891-318</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Devices & Systems 0891-316</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Statistics 0894-235</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Math 0884-275</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Topics in Mechanics 0885-203</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Studies/ASL *</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated Systems Troubleshooting 0891-330</td>
<td>4</td>
</tr>
<tr>
<td>Capstone AOS 0882-295</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours 107

* This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
AOS Degree Program-Semiconductor Technology Option

Positions for which graduates qualify

Robotics technician; semiconductor maintenance technician; semiconductor process technician; automation systems technician; electromechanical technician; instrumentation technician; engineering technician; fluid power controls/system technician; quality control technician; process control technician

Prerequisites

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Applications of Algebra (0884-210) or Elements of Trigonometry (0884-220) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics is beneficial.

Automation technologies, AOS degree, semiconductor technology option, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>Survey of Automation Technologies 0891-201</td>
<td>3</td>
</tr>
<tr>
<td>Applied Circuits 0805-212</td>
<td>4</td>
</tr>
<tr>
<td>Vocabulary Development 0860-003</td>
<td>0</td>
</tr>
<tr>
<td>Digital Logic 0805-240</td>
<td>0</td>
</tr>
<tr>
<td>Pneumatic & Hydraulic Systems 0891-210</td>
<td>3</td>
</tr>
<tr>
<td>Electronics 0865-245</td>
<td>3</td>
</tr>
<tr>
<td>Electromechanical Devices 0891-214</td>
<td>4</td>
</tr>
<tr>
<td>Applications of Algebra 0894-210</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Trigonometry 0884-220</td>
<td>4</td>
</tr>
<tr>
<td>Physics I 0885-201</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Writing III 0883-211</td>
<td>4</td>
</tr>
<tr>
<td>Non Fiction Reading (0883-201)</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Job Search 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (Activity Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year	
Automated Systems I, II 0891-220, 320	8
Automated Systems Troubleshooting 0891-230	4
Vacuum and RF 0891-344	3
Programming Concepts 0891-216	4
Robotics Fundamentals 0891-218	4
Industrial Statistics 0884-235	1
Advanced Topics in Mechanics 0885-203	4
Principles of Chemistry I, II 0885-211,212	8
Deaf Studies/ASL	(3)
Humanities/Social Science	3
Analyzing Literature 0883-200	4
Cooperative Education 0813-299	0

Third Year	
Semiconductor Tooling 0891-350	4
Capstone AOS 0882-295	4
Advanced Math 0884-275	4
Humanities/Social Science	9

| **Total Quarter Credit Hours** | 107 |

This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.

AAS Degree Program- Applied Robotics Option

Positions for which graduates qualify

Robotics technician; semiconductor maintenance technician; semiconductor process technician; automation systems technician; electromechanical technician; instrumentation technician; engineering technician; fluid power controls/system technician; quality control technician; process control technician

Prerequisites

English-AAS: Placement into the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Applications of Algebra (0884-210) or Elements of Trigonometry (0884-220) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics is beneficial.

Automation technologies, AAS degree, applied robotics option, typical course sequence

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>Survey of Automation Technologies 0891-201</td>
<td>3</td>
</tr>
<tr>
<td>Applied Circuits 0805-212</td>
<td>4</td>
</tr>
<tr>
<td>Vocabulary Development 0860-003</td>
<td>0</td>
</tr>
<tr>
<td>Digital Logic 0805-240</td>
<td>0</td>
</tr>
<tr>
<td>Pneumatic & Hydraulic Systems 0891-210</td>
<td>3</td>
</tr>
<tr>
<td>Electronics 0865-245</td>
<td>3</td>
</tr>
<tr>
<td>Electromechanical Devices 0891-214</td>
<td>4</td>
</tr>
<tr>
<td>Applications of Algebra 0894-210</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Trigonometry 0884-220</td>
<td>4</td>
</tr>
<tr>
<td>Physics I 0885-201</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Writing III 0883-211</td>
<td>4</td>
</tr>
<tr>
<td>Non Fiction Reading (0883-201)</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Job Search 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (Activity Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year	
Automated Systems I, II 0891-220, 320	8
Automated Systems Troubleshooting 0891-230	4
Vacuum and RF 0891-344	3
Programming Concepts 0891-216	4
Robotics Fundamentals 0891-218	4
Industrial Statistics 0884-235	1
Advanced Topics in Mechanics 0885-203	4
Principles of Chemistry I, II 0885-211,212	8
Deaf Studies/ASL	(3)
Humanities/Social Science	3
Analyzing Literature 0883-200	4
Cooperative Education 0813-299	0

Third Year	
Automated Systems Troubleshooting 0891-330	4
Capstone AAS 0882-296	4
Liberal Arts (College of Liberal Arts)	8

| **Total Quarter Credit Hours** | 107 |
AAS Degree Program—Semiconductor Technology Option

Positions for which graduates qualify

Robotics technician; semiconductor maintenance technician; semiconductor process technician; automation systems technician; electromechanical technician; instrumentation technician; engineering technician; fluid power controls/system technician; quality control technician; process control technician

Prerequisites

English-AAS: Placement into the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 100 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Placement into Applications of Algebra (0884-210) or Elements of Trigonometry (0884-220) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics is beneficial.

Automation technologies, AAS degree, semiconductor technology option, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Automation Technologies</td>
<td>3</td>
</tr>
<tr>
<td>Applied Circuits</td>
<td>4</td>
</tr>
<tr>
<td>Vocabulary Development</td>
<td>0</td>
</tr>
<tr>
<td>Digital Logic</td>
<td>3</td>
</tr>
<tr>
<td>Pneumatic & Hydraulic Systems</td>
<td>3</td>
</tr>
<tr>
<td>Electronics</td>
<td>4</td>
</tr>
<tr>
<td>Electromechanical Devices</td>
<td>4</td>
</tr>
<tr>
<td>Applications of Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
<tr>
<td>Job Search</td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated Systems I, II</td>
<td>8</td>
</tr>
<tr>
<td>Automated Systems Troubleshooting</td>
<td>4</td>
</tr>
<tr>
<td>Programming Concepts</td>
<td>4</td>
</tr>
<tr>
<td>Robotics Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>Vacuum and RF</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Topics in Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Chemistry I, II</td>
<td>8</td>
</tr>
<tr>
<td>Deaf Studies/ASL</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Tooling</td>
<td>4</td>
</tr>
<tr>
<td>Capstone AAS</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Math</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 107

Computer Aided Drafting Technology

People who work in computer-aided drafting technology use their skills to create two- and three-dimensional drawings on the computer. These drawings are used to visually describe buildings, bridges, canals, automobiles, airplanes, mechanical parts, and electronic circuit boards. CAD operators (technicians) take an engineer’s, architect’s, or designer’s sketches and produce a set of technical drawings.

Manufacturing option

Students who wish to work in manufacturing settings may choose to enter the manufacturing option in the diploma, AOS, or AAS degree programs. In addition to a strong emphasis on computer-aided drafting, this option gives students a background in mathematics, manufacturing systems, tolerance systems, engineering materials and methods, circuit boards, components, and mechanical assembly.

Architecture/engineering/construction (A/E/C) option

Students who wish to work in the architectural, engineering, or construction fields may choose to enter the A/E/C option in the diploma, AOS, or AAS degree program. In addition to a strong emphasis on computer-aided drafting, this option gives students a background in mathematics, building systems, construction regulations, site utilities, and materials and methods used in the A/E/C industry.

Diploma Program

On-the-job responsibilities

Graduates will enter businesses and industries that need technical employees with skills in computer-aided drafting technology and a broad knowledge of applications and procedures. Graduates will work in manufacturing and A/E/C firms creating engineering CAD drawings.

On-the-job responsibilities

Input, manipulate, and retrieve data; use interactive software, electronic mail, and information processing skills; use computers to maintain and reconcile various financial records.

Places of employment

Manufacturing firms, government agencies, architectural, engineering, and construction firms.

Positions for which graduates qualify

Civil, mechanical and electrical (electronic) environments

Prerequisites

English-Diploma: Placement into level B English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing a diploma typically enter with reading scores equivalent to 7.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0885-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics would be beneficial.
Computer aided drafting technology manufacturing, diploma, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD I, II 0890-201, 202</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing CAD I 0890-215</td>
<td>4</td>
</tr>
<tr>
<td>Applications Software 0805-201</td>
<td>3</td>
</tr>
<tr>
<td>CADT Seminar 0890-204</td>
<td>3</td>
</tr>
<tr>
<td>Manufacturing Measurement Systems 0890-206</td>
<td>2</td>
</tr>
<tr>
<td>Foundations of Algebra 0884-180</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Geometry 0884-170</td>
<td>4</td>
</tr>
<tr>
<td>Trigonometry for Coordinate Analysis I 0884-205</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Processes of Science: Physics of Matter 0885-154</td>
<td>3</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

Manufacturing CAD II 0890-225	4
Electrical CAD 0890-235	4
Cooperative Education 0890-299	0
Geometric Dimensioning & Tolerancing 0890-260	3
Intro. to Manufacturing Materials 0890-270	3
Electrical Components 0890-250	3
Social Science	3
Job Search Process 0806-101	2
Deaf Studies/ ASL *	(3)
Humanities	3
Making Formal Presentations 0890-008	0
Communication Technologies 0880-160	3

Total Quarter Credit Hours 72

* This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.

AOS Degree Program

On-the-job responsibilities

Graduates will enter businesses and industries that need technical employees with skills in computer drafting technology and a broad knowledge of applications and procedures. Graduates will work in manufacturing and A/E/C firms creating engineering CAD drawings.

Places of employment

Engineering and manufacturing firms, government agencies, architectural and construction firms

Positions for which graduates qualify

CAD drafters/technicians: architectural, highway design, civil, mechanical and electrical and (electronic) environments

Prerequisites

Successful completion of a sampling experience either through the Summer Vestibule Program or equivalent Career Exploration course.

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing an AOS degree typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0884-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics would be beneficial.

Computer aided drafting technology manufacturing, AOS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD I, II 0890-201, 202</td>
<td>4</td>
</tr>
<tr>
<td>Construction CAD I 0890-210</td>
<td>4</td>
</tr>
<tr>
<td>Applications Software 0805-201</td>
<td>3</td>
</tr>
<tr>
<td>CADT Seminar 0890-204</td>
<td>3</td>
</tr>
<tr>
<td>A/E/C Measurements Systems 0890-208</td>
<td>2</td>
</tr>
<tr>
<td>Foundations of Algebra 0884-180</td>
<td>4</td>
</tr>
<tr>
<td>Elements of Geometry 0884-170</td>
<td>4</td>
</tr>
<tr>
<td>Trigonometry for Coordinate Analysis I 0884-205</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>3</td>
</tr>
<tr>
<td>Processes of Science: Physics of Matter 0885-154</td>
<td>3</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Year

Construction CAD II, III 0890-220, 230	8
Construction Materials & Methods I, II 0890-255, 265	6
Principles of Structural Systems 0890-275	3
Cooperative Education 0890-299	0
Social Science	3
Job Search Process 0806-101	2
Deaf Studies/ASL *	(3)
Humanities	3
Making Formal Presentations 0890-008	0
Communication Technologies 0880-160	3

Total Quarter Credit Hours 72

* This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
Computer aided drafting technology, A/E/C, AOS degree,
typical course sequence

First Year Quarter Credit Hours
CAD I, II 0890-201, 202 4
Construction CAD I 0890-210 4
Applications Software 0895-201 3
CADT Seminar 0890-204 3
A/E/C Measurement Systems 0890-208 2
Foundations of Algebra 0884-180 4
Applications of Algebra 0884-210 4
Job Search Process 0885-101 2
Freshman Seminar 0897-200 2
Processes of Science: Physics of Matter 0885-154 3
Physics I 0885-201 4
English (Level C or above) 12
Physical Education (Activity Course) 0 0
Physical Education (Wellness Component) 0 0

Second Year Quarter Credit Hours
Construction CAD II, III 0890-220, 230 6
Advanced Construction CAD 0890-310 4
Construction Materials & Methods I, II 0890-255, 265 6
Internet Technologies I 0805-251 3
Principles of Structural Systems 0890-275 3
Deaf Studies/ASL * 3
Site Utilities, Mechanical/Electrical Systems 0890-355 3
Humanities 6
Social Science 6
Making Formal Presentations 0890-008 3
Group Dynamics & Effective Teams 0880-206 3
Elements of Trigonometry 0884-220 4
Cooperative Education 0890-299 0

Third Year Quarter Credit Hours
Presentation Graphics 0890-220 5
Internet CAD Applications 0890-360 3
Construction Regulations 0890-375 3
Capstone Seminar 0882-295 3

Total Quarter Credit Hours 108

* This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.

AAS Degree Program

On-the-job responsibilities
Graduates will enter businesses and industries that need technical employees with skills in computer drafting technology and a broad knowledge of applications and procedures. Graduates will work in manufacturing and A/E/C firms creating engineering CAD drawings.

Places of employment
Manufacturing firms; government agencies; architectural, construction, and engineering firms

Positions for which graduates qualify
CAD drafters/technicians: architectural, highway design, civil, mechanical, and electrical (electronic) environments.

Prerequisites

English-AAS: Placement in the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.

Mathematics: Completion of Foundations of Algebra (0884-180) or placement in Applications of Algebra (0884-210). Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Physics I (0885-201) or a higher level course. Typically, students entering this program will have completed at least three years of high school science. High school physics would be beneficial.

Computer aided drafting technology manufacturing, AAS degree, typical course sequence

First Year Quarter Credit Hours
CAD I, II 0890-201, 202 4
Manufacturing CAD I 0890-210 4
Applications Software 0895-201 3
CADT Seminar 0890-204 3
Manufacturing Measurement Systems 0890-208 2
Applications of Algebra 0884-210 4
Elements of Trigonometry 0890-220 4
Job Search Process 0885-101 2
Freshman Seminar 0897-200 2
Processes of Science: Physics of Matter 0885-154 3
Physics I 0885-201 4
Writing & Literature I, II 0502-225, 226 8
Humanities (College of Liberal Arts) 4
Physical Education (Activity Course) 0 0
Physical Education (Wellness Component) 0 0

Second Year Quarter Credit Hours
Manufacturing CAD II, III 0890-220,230 8
Advanced Construction CAD 0890-310 5
Manufacturing Materials & Methods I, II 0890-255, 265 6
Internet Technologies I 0805-251 3
Principles of Structural Systems 0890-275 3
Principles of Structural Systems 0890-275 3
Internet Technologies I 0805-251 3
Principles of Structural Systems 0890-275 3
Site Utilities, Mechanical/Electrical Systems 0890-355 3
Making Formal Presentations 0880-008 3
Group Dynamics & Effective Teams 0880-206 3
Deaf Studies/ASL * 3
Social Science (College of Liberal Arts) 8
Advanced Mathematics 0884-271 4
Cooperative Education 0890-299 0

Third Year Quarter Credit Hours
Presentation Graphics 0890-220 5
Internet CAD Applications 0890-360 3
Construction Regulations 0890-375 3
Capstone Seminar 0882-296 4

Total Quarter Credit Hours 108
Computer integrated Machining Technology

Computer integrated machining technology students prepare for employment in precision machining occupations. These include tool and die making, mold making, instrument making, and computer-numerical-control machining. Graduates are successfully employed in both large manufacturing corporations and small contract manufacturing shops. In addition, graduates can continue their education in manufacturing and engineering technology programs.

Diploma Program

On-the-job responsibilities

Set up and operate such machine tools as lathes and milling machines, shape metal into precision parts by conventional and nonconventional processes, follow blueprints and use special instruments to inspect work.

Places of employment

Manufacturing industries, metal-working industries, engineering firms, and engineering research firms

Positions for which graduates qualify

Entry-level and apprenticeship programs: tool and die maker, instrument maker, mold maker, pattern maker, model maker, machinist, CNC operator

Prerequisites

Successful completion of a sampling experience either through the Summer Vestibule Program or equivalent Career Exploration courses.

English-Diploma: Placement into level B English or above (Nonfiction Reading, Academic Writing, and Literature).

Students successfully completing a diploma typically enter with reading scores equivalent to 7.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0884-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into any level B science course numbered 150 or above. Typically, students entering this program will have completed at least two years of high school science.

Computer integrated machining technology, diploma, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Processes I, II, III</td>
<td>0813-131, 132, 133</td>
</tr>
<tr>
<td>Blueprint Reading I, II</td>
<td>0813-139, 140</td>
</tr>
<tr>
<td>Precision Measurement</td>
<td>0813-154</td>
</tr>
<tr>
<td>Elements of Geometry</td>
<td>0884-170</td>
</tr>
<tr>
<td>Foundations of Algebra</td>
<td>0884-180</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td></td>
</tr>
<tr>
<td>Freshman Seminar</td>
<td>0887-200</td>
</tr>
<tr>
<td>Job Search Process</td>
<td>0806-101</td>
</tr>
<tr>
<td>English (Level B or above)</td>
<td>0813-180</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>0813-299</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Numerical Control</td>
<td>0812-150</td>
</tr>
<tr>
<td>Basic Drafting I, II</td>
<td>0813-101, 102</td>
</tr>
<tr>
<td>Manufacturing Processes IV, V, VI</td>
<td>0813-134, 135, 136</td>
</tr>
<tr>
<td>Industrial Materials</td>
<td>0813-151</td>
</tr>
<tr>
<td>Manufacturing Analysis</td>
<td>0813-152</td>
</tr>
<tr>
<td>Applications of Algebra</td>
<td>0894-210</td>
</tr>
<tr>
<td>Trigonometry for Coordinate Analysis I, II</td>
<td>0894-205, 206</td>
</tr>
<tr>
<td>Social Science</td>
<td>0813-153</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>0813-154</td>
</tr>
<tr>
<td>Deaf Studies/ASL *</td>
<td></td>
</tr>
<tr>
<td>Humanities</td>
<td>0813-155</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 87

AOS Degree Program

On-the-job responsibilities

Set up and operate such machine tools as lathes and milling machines, set up and operate computer-numerical-controlled machine tools, shape material into precision parts by conventional and nonconventional processes, follow blueprints, and use advanced measuring techniques to inspect work.

Places of employment

Manufacturing industries, metal-working industries, engineering firms, and engineering research firms

Positions for which graduates qualify

Entry-level and apprenticeship programs: tool and die maker, instrument maker, mold maker, pattern maker, model maker, machinist, CNC operator, and CNC programmer trainee.

Prerequisites

Successful completion of a sampling experience either through the Summer Vestibule Program or equivalent Career Exploration course.

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature).

Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0884-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into any level B science course numbered 150 or above. Typically, students entering this program will have completed at least two years of high school science.

Computer integrated machining technology, AOS degree, typical course sequence

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Processes I, II, III</td>
<td>0813-131, 132, 133</td>
</tr>
<tr>
<td>Blueprint Reading I, II</td>
<td>0813-139, 140</td>
</tr>
<tr>
<td>Precision Measurement</td>
<td>0813-154</td>
</tr>
<tr>
<td>Elements of Geometry</td>
<td>0884-170</td>
</tr>
<tr>
<td>Foundations of Algebra</td>
<td>0884-180</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td></td>
</tr>
<tr>
<td>Freshman Seminar</td>
<td>0887-200</td>
</tr>
<tr>
<td>Job Search Process</td>
<td>0806-101</td>
</tr>
<tr>
<td>English (Level C or above)</td>
<td>0813-180</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>0813-299</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0813-300</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computer Numerical Control</td>
<td>0812-150</td>
</tr>
<tr>
<td>Basic Drafting I, II</td>
<td>0813-101, 102</td>
</tr>
<tr>
<td>Manufacturing Processes IV, V, VI</td>
<td>0813-134, 135, 136</td>
</tr>
<tr>
<td>Industrial Materials</td>
<td>0813-151</td>
</tr>
<tr>
<td>Manufacturing Analysis</td>
<td>0813-152</td>
</tr>
<tr>
<td>Applications of Algebra</td>
<td>0894-210</td>
</tr>
<tr>
<td>Trigonometry for Coordinate Analysis I, II</td>
<td>0894-205, 206</td>
</tr>
<tr>
<td>Social Science</td>
<td>0813-153</td>
</tr>
<tr>
<td>Science (Level B)</td>
<td>0813-154</td>
</tr>
<tr>
<td>Deaf Studies/ASL *</td>
<td></td>
</tr>
<tr>
<td>Humanities</td>
<td>0813-155</td>
</tr>
<tr>
<td>Science (Level C)</td>
<td>0813-156</td>
</tr>
<tr>
<td>Cooperative Education</td>
<td>0813-299</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0813-300</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Numerical Control</td>
<td>0812-150</td>
</tr>
<tr>
<td>Advanced Machining Processes</td>
<td>0813-151, 152, 153</td>
</tr>
<tr>
<td>Welding I</td>
<td>0813-153</td>
</tr>
<tr>
<td>Advanced Precision Measurement</td>
<td>0813-237</td>
</tr>
<tr>
<td>Senior Seminar</td>
<td>0813-260</td>
</tr>
<tr>
<td>Capstone Seminar</td>
<td>0892-295</td>
</tr>
<tr>
<td>Deaf Studies/ASL †</td>
<td></td>
</tr>
<tr>
<td>Social Science</td>
<td>0813-296</td>
</tr>
<tr>
<td>Technical Elective *</td>
<td></td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 121

† This requirement also fulfills three credits in either humanities or social science, depending on which discipline offers the course selected.
‡ Technical electives with department approval.
Laboratory Science Technology

The laboratory science technology program prepares graduates for employment in analytical testing laboratories with an emphasis on food quality assessment and environmental testing. Graduates also gain general knowledge and skills in analytical laboratory test procedures and instrumentation for employment in related areas of laboratory science. Technicians may work in the research, design, development, and manufacturing of scientific products and equipment, testing of raw materials, processes, and finished products. Students may choose from AOS and AAS degree programs.

AOS and AAS Degree Programs

On-the-job responsibilities

Prerequisites

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

English-AAS: Placement into College of Liberal Arts Writing and Literature I course. Students typically enter Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores of 9.0 on the California Reading Test.

Mathematics: Placement into Applications of Algebra (0844-210) or higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into level B science course numbering 150 or higher. Typically, students entering this program will have completed at least two years of high school science.

Laboratory Science Technology, AOS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to LST 0879-200</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Human Biology I 0885-161</td>
<td>4</td>
</tr>
<tr>
<td>English (Level C or above) 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>LST Lab Applications I 0879-201</td>
<td>2</td>
</tr>
<tr>
<td>Intro. to LST Microbiology 0879-218</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Chemistry I 0885-181</td>
<td>4</td>
</tr>
<tr>
<td>Applications of Algebra 0884-210</td>
<td>4</td>
</tr>
<tr>
<td>LST Lab Applications II 0879-202</td>
<td>2</td>
</tr>
<tr>
<td>LST Microbiology 0879-241</td>
<td>4</td>
</tr>
<tr>
<td>Fundamentals of Chemistry II 0885-182</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory Math I 0884-231</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST Lab Applications III 0879-203</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation I 0879-301</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Chemistry I 0885-211</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory Math II 0884-232</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>LST Lab Applications IV 0879-204</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation II 0879-302</td>
<td>2</td>
</tr>
<tr>
<td>Food Laboratory Science I 0879-311</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Environmental Laboratory Science I 0879-321</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Chemistry II 0885-212</td>
<td>4</td>
</tr>
<tr>
<td>Social Science (College of Liberal Arts) 0879-342</td>
<td>3</td>
</tr>
<tr>
<td>LST Lab Applications V 0879-205</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation III 0879-303</td>
<td>4</td>
</tr>
<tr>
<td>Food Laboratory Science II 0879-312</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Environmental Laboratory Science II 0879-322</td>
<td>4</td>
</tr>
<tr>
<td>Deaf Studies/ ASL *</td>
<td>(3)</td>
</tr>
<tr>
<td>Physical Education (Activity Course) 0879-250</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component) 0884-232</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 0890-299</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST Lab Applications VI 0879-206</td>
<td>2</td>
</tr>
<tr>
<td>Senior Seminar 0879-250</td>
<td>2</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Capstone Seminar 0882-295</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 106

*Students must choose one technical elective from the following list:
- Applied Microbiology 0879-341
- Sampling & Testing of Soils & Groundwater 0879-280
- Concepts of Surveying & Mapping 0879-270

Laboratory science technology, AAS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to LST 0879-200</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Human Biology I 0885-161</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature I 0502-225 (College of Liberal Arts) 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>LST Lab Applications I 0879-201</td>
<td>2</td>
</tr>
<tr>
<td>Intro. to LST Microbiology 0879-218</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Chemistry I 0885-181</td>
<td>4</td>
</tr>
<tr>
<td>Applications of Algebra 0884-210</td>
<td>4</td>
</tr>
<tr>
<td>Writing & Literature II 0502-226 (College of Liberal Arts) 0879-202</td>
<td>2</td>
</tr>
<tr>
<td>LST Lab Applications II 0879-202</td>
<td>2</td>
</tr>
<tr>
<td>LST Microbiology 0879-241</td>
<td>4</td>
</tr>
<tr>
<td>Fundamentals of Chemistry II 0885-182</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory Math I 0884-231</td>
<td>3</td>
</tr>
<tr>
<td>Humanities (College of Liberal Arts) 0879-311</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST Lab Applications III 0879-203</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation I 0879-301</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Chemistry I 0885-211</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory Math II 0884-232</td>
<td>3</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>LST Lab Applications IV 0879-204</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation II 0879-302</td>
<td>2</td>
</tr>
<tr>
<td>Food Laboratory Science I 0879-311</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Environmental Laboratory Science I 0879-321</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Chemistry II 0885-212</td>
<td>4</td>
</tr>
<tr>
<td>Social Science (College of Liberal Arts) 0879-342</td>
<td>3</td>
</tr>
<tr>
<td>LST Lab Applications V 0879-205</td>
<td>2</td>
</tr>
<tr>
<td>Instrumentation III 0879-303</td>
<td>4</td>
</tr>
<tr>
<td>Food Laboratory Science II 0879-312</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Environmental Laboratory Science II 0879-322</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (Activity Course) 0879-250</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component) 0884-232</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Education 0890-299</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST Lab Applications VI 0879-206</td>
<td>2</td>
</tr>
<tr>
<td>Senior Seminar 0879-250</td>
<td>2</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>4</td>
</tr>
<tr>
<td>Capstone Seminar 0882-296</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Quarter Credit Hours: 106

*Students must choose one technical elective from the following list:
- Applied Microbiology 0879-341
- Sampling & Testing of Soils & Groundwater 0879-280
- Concepts of Surveying & Mapping 0879-270

Environmental Laboratory Science II 0879-322
Deaf Studies/ ASL * (3)
Physical Education (Activity Course) 0879-250
Physical Education (Wellness Component) 0884-232
Cooperative Education 0890-299
Ophthalmic Optical Finishing Technology

An ophthalmic optical finishing technologist makes eyeglasses prescribed by physicians and optometrists. Technologists refine lenses to prescription specifications as ordered by vision care specialists. Students may choose from AOS and AAS degree programs.

The ophthalmic optical finishing technology programs include an optical laboratory affiliation in Rochester during one of the academic quarters. A cooperative work experience is taken in students’ home areas during the summer quarter between the first and second years in the program. Students are responsible for obtaining their own transportation to these practice sites.

More than 90 percent of those applying for the ophthalmic optical finishing technology programs need to satisfy specific prerequisites noted below. These prerequisites can be taken at the same time as first-year course work in English, mathematics, and science.

Accreditation

Ophthalmic optical finishing technology programs are accredited by the Commission on Opticianry Accreditation. This accreditation recognizes the high standards of program quality provided to NTID students. Graduates of the AOS and AAS degree programs in ophthalmic optical finishing technology are eligible to take the American Board of Opticianry (ABO) National Examination.

AOS Degree Program

On-the-job responsibilities

Ophthalmic laboratory technicians are individuals who transcribe prescriptions, select appropriate lens forms, cut, polish, shape, and edge lenses. They also apply cosmetic lens features and assemble lenses and frames. All work is done according to specifications provided by ophthalmologists, optometrists, and dispensing opticians.

Places of employment

Wholesale and retail optical laboratories and offices of ophthalmologists, optometrists, and dispensing opticians

Graduates qualify for positions requiring these skills

Vertometric evaluation, single vision / multifocal layout, lens blocking, automatic edging, hand beveling, lens heat treatment, rimless/ notching / drilling, lens dying, final inspection, and evaluation

Prerequisites

Introduction to Optical Finishing Technology I, II, III (0827.105, 106, 107) or by department approval.

Successful completion of a sampling experience in ophthalmic optical finishing technology, either through the Summer Vestibule Program or a departmental sampling program.

English-AOS: Placement into level C English or above (Nonfiction Reading, Academic Writing, and Literature). Students successfully completing AOS degrees typically enter with reading scores equivalent to 8.0 on the California Reading Test.

Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0884-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science: Placement into Optical Finishing Physics (0885-200) or a higher level course. Typically, students entering this program will have completed at least two years of high school science.

AAS Degree Program

On-the-job responsibilities

Ophthalmic laboratory technicians are individuals who transcribe prescriptions, select appropriate lens forms, cut, polish, shape, and edge lenses. They also apply cosmetic lens features and assemble lenses and frames. All work is done according to specifications provided by ophthalmologists, optometrists, and dispensing opticians.

Places of employment

Wholesale and retail optical laboratories and offices of ophthalmologists, optometrists, and dispensing opticians

Graduates qualify for positions requiring these skills

Vertometric evaluation, single vision / multifocal layout, lens blocking, automatic edging, hand beveling, lens heat treatment, rimless/ notching / drilling, lens dying, final inspection, and evaluation

Prerequisites

Successful completion of a sampling experience in ophthalmic optical finishing technology, either through the Summer Vestibule Program or a departmental sampling program.

English-AAS: Placement into the College of Liberal Arts Writing and Literature I course. Students typically enter the Writing and Literature I course with reading scores equivalent to 10.0 on the California Reading Test. However, students who complete AAS degrees typically enter NTID with reading scores equivalent to 9.0 on the California Reading Test.
Mathematics: Placement into Foundations of Algebra (0884-180) or Elements of Geometry (0884-170) or a higher level course. Typically, students entering this program will have completed at least three years of high school mathematics.

Science-OFT: Placement into Optical Finishing Physics (0885-200) or a higher level course. Typically, students entering this program have completed at least two years of high school science.

Ophthalmic optical finishing technology, AAS degree, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF Mathematics I, II 0827-111, 112</td>
<td>6</td>
</tr>
<tr>
<td>Prescription Analysis I 0827-115</td>
<td>3</td>
</tr>
<tr>
<td>Optical Finishing Techniques I, II, III 0827-121, 122, 123</td>
<td>12</td>
</tr>
<tr>
<td>Optical Finishing Terminology I, II, III 0827-161, 162, 163</td>
<td>9</td>
</tr>
<tr>
<td>Job Search Process 0806-101</td>
<td>2</td>
</tr>
<tr>
<td>Foundations of Algebra 0884-180</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Seminar 0887-200</td>
<td>2</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>12</td>
</tr>
<tr>
<td>Cooperative Education 0827-200</td>
<td>0</td>
</tr>
<tr>
<td>Physical Education (Wellness Component)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Finishing Techniques IV 0827-224</td>
<td>5</td>
</tr>
<tr>
<td>Lab Simulation I 0827-225</td>
<td>5</td>
</tr>
<tr>
<td>Orientation to Lens Surfacing 0827-270</td>
<td>3</td>
</tr>
<tr>
<td>Applications of Lens Surfacing 0827-280</td>
<td>4</td>
</tr>
<tr>
<td>Lens Design 0827-117</td>
<td>3</td>
</tr>
<tr>
<td>Internet Communication † 0880-210</td>
<td>3</td>
</tr>
<tr>
<td>Elements of Geometry 0884-170</td>
<td>4</td>
</tr>
<tr>
<td>Optical Finishing Technology Physics 0885-200*</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts (College of Liberal Arts)</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capstone 0882-296</td>
<td>4</td>
</tr>
<tr>
<td>Lab Simulation II 0827-226</td>
<td>5</td>
</tr>
<tr>
<td>Employment Seminar 0806-201</td>
<td>1</td>
</tr>
<tr>
<td>Deaf Studies / ASL ‡</td>
<td>3</td>
</tr>
<tr>
<td>Optical Finishing Technology Seminar 0827-251</td>
<td>2</td>
</tr>
<tr>
<td>Technical Elective ‡</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (Activity Course)</td>
<td>0</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>107</td>
</tr>
</tbody>
</table>

* Satisfies science requirement
† This requirement fulfills three credits in the humanities.
‡ Students may choose Orientation to Business (0304-101) or Medical Word Analysis (0820-105).

Special Certificates

Deaf Studies

The deaf studies certificate is intended primarily to achieve two purposes: first, to permit employees and volunteers in the private and public sectors to prepare themselves to communicate more effectively with deaf clientele, students, fellow professionals or employees in business, industries, schools, colleges, and hospitals; and, second, to provide a stimulating foundation for those who wish to pursue further education in the fields of interpreting for the deaf or deaf education.

Rochester has the second-highest population per capita of deaf and hard-of-hearing individuals in the United States, a fact that has led to extensive community and educational resources for them.

The 16-credit curriculum is composed of the seven courses listed below. Although a primary emphasis in the curriculum is learning both Basic Sign Language and American Sign Language, students also develop their understanding of the phenomenon of deafness through courses related to the physical, psychological, social, and linguistic aspects of deafness.

Although substitution of one course for another generally is not permitted, students are able to challenge course content in any of the courses listed. Students must achieve a program GPA of at least 2.0 in order to be certified.

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Sign Language I, II, III 0876-211, 212, 213</td>
<td>6</td>
</tr>
<tr>
<td>American Sign Language IV, V 0876-311, 312</td>
<td>4</td>
</tr>
<tr>
<td>Aspects & Issues of Deafness I, II 0876-241, 242</td>
<td>6</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

For advising or further information about this program, call 585-475-6809 (v/TTY), or 585-475-6851 (TTY).

Introductory Programming Certificate

The demands of the computing and information technology fields require that college graduates have a broad background in the fundamentals of programming languages. This four-course certificate is designed to provide skill development in two of the most popular and sought after programming languages used today-Visual Basic and C++. Current full-time students within the applied computing technology program can add to their skill portfolio by choosing this certificate option en route to obtaining an AOS or AAS degree. Students from other NTID majors who satisfy the certificate prerequisites can enhance their skill set in programming and apply it to other fields and careers. In addition, this certificate provides an excellent transition path for individuals currently in the computer technology field who need to upgrade their programming skills.

Prerequisites

Applicants for the introductory programming certificate program must meet NTID admissions requirements. Applicants may be either matriculated or non-matriculated students. Applicants must demonstrate fundamental computer skills and a familiarity with the Microsoft Windows operating system, including knowledge of how to create folders, move and copy files, and access the World Wide Web using a browser such as Internet Explorer or Netscape Navigator. These skills can be demonstrated through successful completion of the prerequisite course for Programming I (0805-215 PC Operating Systems) or an equivalent course or experience.

Required Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming I (Visual Basic) 0805-230</td>
<td>3</td>
</tr>
<tr>
<td>Programming II (Visual Basic) 0805-231</td>
<td>3</td>
</tr>
<tr>
<td>C++ Programming 10805-301</td>
<td>4</td>
</tr>
<tr>
<td>C++ Programming II 0805-302</td>
<td>4</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Candidates will be granted the introductory programming certificate upon successful completion of the core courses. All of the required courses are currently offered as part of the associate programs in applied computer technology.

Performing Arts Certificate

The performing arts certificate is designed to provide students currently matriculated in a technical or professional program at RIT/NTID with an additional set of marketable skills.

Students develop knowledge of standard theatrical operating procedures, as well as principles and practices of theater accessibility for deaf people allowing them to work in professional, regional, and community theater. The program also provides a solid foundation for both deaf and hearing students who wish to pursue further education in film, video, theater, and related forms of performing arts.

The certificate includes knowledge of theater terminology, practices and protocols; issues in script analysis; ASL translation and accessibility; and experience in performance and technical theater. Students may take four three-credit courses in the performance/script track (for those students interested in acting, dramaturgy, translation, and dance/movement) or the technical theater track (for those students interested in scenic design and technology, lighting, costume, and stage
management). A three-credit production practicum is also required for both tracks. Students will be granted the performing arts certificate in either performance/script or technical theater upon successful completion of 15 credits. This program is not intended as a stand-alone certification.

Prerequisites
Applicants for the performing arts certificates (either performance/script or technical theater) must be currently matriculated and in good standing in an undergraduate program at RIT/NTID or graduates holding an undergraduate degree from one of those programs. Introduction to Performing Arts (0881-250) is a prerequisite.

Performance/script emphasis: required courses
(Select 12 credits from the following)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script Analysis 0881-256</td>
<td>3</td>
</tr>
<tr>
<td>Acting I 0881-210</td>
<td>3</td>
</tr>
<tr>
<td>Acting II 0881-290</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Play Creating 0881-258</td>
<td>3</td>
</tr>
<tr>
<td>Jazz 0881-168</td>
<td>3</td>
</tr>
<tr>
<td>Ballet 0881-266</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Choreography 0881-267</td>
<td>3</td>
</tr>
<tr>
<td>History of Theatre 0881-201</td>
<td>3</td>
</tr>
<tr>
<td>Deaf Theatre History 0881-204</td>
<td>3</td>
</tr>
<tr>
<td>Stage Combat 0881-217</td>
<td>3</td>
</tr>
<tr>
<td>Dance History 0881-218</td>
<td>3</td>
</tr>
<tr>
<td>Sign Mime & Creative Movement 0881-166</td>
<td>3</td>
</tr>
<tr>
<td>Arts Management 0881-253</td>
<td>3</td>
</tr>
<tr>
<td>Creative Translation 0881-259</td>
<td>3</td>
</tr>
<tr>
<td>Audition Technique 0881-261</td>
<td>3</td>
</tr>
<tr>
<td>Dance Performance 0881-167</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Dramatic Literature 0881-257</td>
<td>3</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
</tr>
<tr>
<td>Performing Arts Practicum 0881-298</td>
<td>3</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Technical theater emphasis: required courses
(Select 12 credits from the following)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Script Analysis 0881-256</td>
<td>3</td>
</tr>
<tr>
<td>Scenic Technology I 0881-222</td>
<td>3</td>
</tr>
<tr>
<td>Scenic Technology II 0881-223</td>
<td>3</td>
</tr>
<tr>
<td>Scene Painting 0881-224</td>
<td>3</td>
</tr>
<tr>
<td>Costume Technology 10881-231</td>
<td>3</td>
</tr>
<tr>
<td>Costume Technology II 0881-232</td>
<td>3</td>
</tr>
<tr>
<td>Stage Make-up 0881-233</td>
<td>3</td>
</tr>
<tr>
<td>Lighting Technology 10881-241</td>
<td>3</td>
</tr>
<tr>
<td>Lighting Technology 110881-242</td>
<td>3</td>
</tr>
<tr>
<td>Lighting Studio 0881-291</td>
<td>3</td>
</tr>
<tr>
<td>Arts Management 0881-253</td>
<td>3</td>
</tr>
<tr>
<td>Stage Management 0881-272</td>
<td>3</td>
</tr>
<tr>
<td>PLUS</td>
<td></td>
</tr>
<tr>
<td>Performing Arts Practicum 0881-298</td>
<td>3</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Pre-baccalaureate Studies

Business, Computer Science and Information Technology

James Biser, Chairperson, Business and Computing Technologies

Criminal Justice

Linda Rubel, Chairperson, Liberal Arts Support

Imaging Arts and Science

Michael White, Chairperson, Imaging Arts and Science Support

Science and Engineering

Thomas Callaghan, Interim Chairperson, Science and Engineering Support

Social Work

Dean Santos, Staff Chairperson, Social Work Support

Pre-baccalaureate studies is available as a bridge into baccalaureate degree programs for students who are accepted by NTID and are close to but not fully ready for direct entry into an RIT baccalaureate-level program. Students who qualify for pre-baccalaureate studies are those who have academic transcripts, scores on admissions tests,* and other evidence that support reasonable expectation of success in baccalaureate course work. Qualified students who are undecided as to program of study may choose the pre-baccalaureate studies career exploration option.

Pre-baccalaureate studies is appropriate for students who need to further develop mathematics, English or discipline-related skills. The academic program is flexible and individualized and enables students to focus on needed skills while concurrently progressing toward their chosen field of study. Students take courses taught by support department faculty and other NTID faculty, along with entry-level courses taught in other RIT colleges. While in the program, students receive academic advising as well as career counseling.

Students do not receive a degree in pre-baccalaureate studies. They apply for admission into a baccalaureate program as soon as they are academically ready and the college offering their chosen baccalaureate program reviews their application for admission. After completing an entire academic year in the program, a student must transfer to either an RIT baccalaureate- or an NTID associate-level program.

Eke-baccalaureate studies in information technology, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>Computing Fundamentals 0853-310</td>
<td>4</td>
</tr>
<tr>
<td>Programming I 4002-217</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Multimedia 4002-320</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Algebra & Trigonometry 1016-204 †</td>
<td>4</td>
</tr>
<tr>
<td>Discrete Math for Technology I, II 1016-205.206 †</td>
<td>8</td>
</tr>
<tr>
<td>Pre-baccalaureate courses ‡</td>
<td>2-4</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>4042</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (10502-110). Written Communication II (10502-111) or Writing & Literature I (10502-221), Writing & Literature II (10502-226), depending on placement. See page 10 for liberal arts requirements.

† NTID mathematics courses may be required as prerequisites, depending on placement.

‡ Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.
Pre-baccalaureate studies in computer science, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>Computing Fundamentals 0853-310</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science I, II & III 4003-231, 232, 233</td>
<td>12</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Calculus I, II & III 1016-251, 252, 253 †</td>
<td>12</td>
</tr>
<tr>
<td>Pre-baccalaureate courses ‡</td>
<td>2-4</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>4446</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
† NTID mathematics courses may be required as prerequisites, depending on placement.
‡ Pre-baccalaureate courses are available to strengthen students’ skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.

Pre-baccalaureate studies in business, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>Business Computer Applications 0106-320</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory Science</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Algebra, Calculus for Management Science 1016-225, 226 †</td>
<td>8</td>
</tr>
<tr>
<td>Pre-baccalaureate courses *</td>
<td>6-8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>36-38</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-2101), Written Communication II (0502-111) or Writing & Literature I (0502-2251), Writing & Literature II (0502-2261), depending on placement. See page 10 for liberal arts requirements.
† NTID mathematics courses may be required as prerequisites, depending on placement.
‡ Pre-baccalaureate courses are available to strengthen students’ skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.

Pre-baccalaureate studies in criminal justice, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>Computer Applications in Criminal Justice 0501-406</td>
<td>4</td>
</tr>
<tr>
<td>Criminology 0501-203</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>NTID Humanities & Social Science courses</td>
<td>4</td>
</tr>
<tr>
<td>Pre-baccalaureate courses ‡</td>
<td>6-8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>36-38</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
† NTID mathematics courses may be required as prerequisites, depending on placement.
‡ Pre-baccalaureate courses are available to strengthen students’ skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.

Pre-baccalaureate studies in School of Art (illustration, medical illustration, fine arts studio) and School of Design (graphic design, industrial design, interior design) programs and program options in School for American Crafts programs (ceramics/ceramic sculpture, glass/glass sculpture, metal and jewelry design, woodworking/furniture design), typical course sequence*

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Design I, II, III 0223-201, 202, 203</td>
<td>6</td>
</tr>
<tr>
<td>Basic Drawing Media I, II, III 0224-201, 202, 203</td>
<td>6</td>
</tr>
<tr>
<td>Basic in Computer Graphics 0223-220</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Photography for Non-Photo Majors 2067-552</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Pre-baccalaureate courses ‡</td>
<td>2-4</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>36-38</td>
</tr>
</tbody>
</table>

* Portfolio of original artwork is required to determine admission. See the College of Imaging Arts and Sciences Support Department for further information.
† Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
‡ Pre-baccalaureate courses are available to strengthen students’ skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.

Pre-baccalaureate studies in School of Photographic Arts and Sciences in imaging arts and science, professional photographic illustration option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still Photography I, II, III 2060-257, 258, 259</td>
<td>3</td>
</tr>
<tr>
<td>History & Aesthetics of Photography 2060-301, 302, 303</td>
<td>12</td>
</tr>
<tr>
<td>Intro. to Photography for Non-majors 2067-264</td>
<td>4</td>
</tr>
<tr>
<td>Two-dimensional Design 2013-231, 232, 233</td>
<td>9</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Pre-baccalaureate courses ‡</td>
<td>6-8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>38-40</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing C Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
† Pre-baccalaureate courses are available to strengthen students’ skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.

Pre-baccalaureate studies in imaging arts and science, biomedical photography option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro. to Photography for Non-majors 2067-264</td>
<td>4</td>
</tr>
<tr>
<td>Still Photography I, II, III 2060-257, 258, 259</td>
<td>3</td>
</tr>
<tr>
<td>Medical Terminology 1026-301</td>
<td>3</td>
</tr>
<tr>
<td>Human Biology 1004-211</td>
<td>3</td>
</tr>
<tr>
<td>Medical Terminology Lab 1005-231</td>
<td>1</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Pre-baccalaureate courses ‡</td>
<td>6-8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>32-34</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
† Pre-baccalaureate courses are available to strengthen students’ skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.
Pre-baccalaureate studies in imaging arts and science, film and video option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro. to Portable Video</td>
<td>2065-243, 244</td>
</tr>
<tr>
<td>Writing for Film/Video I, II</td>
<td>2065-342, 343</td>
</tr>
<tr>
<td>Film Language</td>
<td>2065-222</td>
</tr>
<tr>
<td>Theater electives *</td>
<td>2-8</td>
</tr>
<tr>
<td>Liberal Arts t</td>
<td>12</td>
</tr>
<tr>
<td>Pre-baccalaureate courses #</td>
<td>6-8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>26-34</td>
</tr>
</tbody>
</table>

* See CIAS Support Department adviser for current information regarding theater electives.
† Writing sequence beginning with Written Communication I (0502-710), Written Communication II (0502-1111), or Writing & Literature I (0502-2251), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
‡ Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. See page 319 for available courses.

Pre-baccalaureate studies in imaging arts and science, printing option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphic Software Tools I, II</td>
<td>2081-216, 217</td>
</tr>
<tr>
<td>Intro. to Graphic Communication</td>
<td>2081-254</td>
</tr>
<tr>
<td>Ink & Substrates</td>
<td>2081-316</td>
</tr>
<tr>
<td>Lithographic Processes</td>
<td>2081-367</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>12</td>
</tr>
<tr>
<td>Algebra for Management Science</td>
<td>1016-225†</td>
</tr>
<tr>
<td>Pre-baccalaureate courses †</td>
<td>6-8</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>32-34</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-1201), Written Communication II (0502-1211), Written Communication III (0502-2251), Writing & Literature I (0502-226), depending on placement. See page 10 for liberal arts requirements.
† Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. See page 329 for available courses.

Pre-baccalaureate studies in biology, biotechnology, allied health, or environmental management, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar</td>
<td>0853-200</td>
</tr>
<tr>
<td>Learning Strategies</td>
<td>0853-210</td>
</tr>
<tr>
<td>Biological Concepts I & II</td>
<td>0814-398</td>
</tr>
<tr>
<td>Survey of Computer Science</td>
<td>0602-200</td>
</tr>
<tr>
<td>General Biology I, II, III</td>
<td>1001-201, 202, 203</td>
</tr>
<tr>
<td>General Biology Lab</td>
<td>1001-205, 206, 207</td>
</tr>
<tr>
<td>Chemical Principles I, II, III</td>
<td>1011-211, 212, 213 †</td>
</tr>
<tr>
<td>AND</td>
<td>13</td>
</tr>
<tr>
<td>Chemical Lab</td>
<td>1011-205, 206, 207</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12</td>
</tr>
<tr>
<td>Introduction to Calculus</td>
<td>1016-214 §</td>
</tr>
<tr>
<td>Calculus for Management Science</td>
<td>1016-2264</td>
</tr>
<tr>
<td>Pre-baccalaureate courses *</td>
<td>3-5</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>42-45</td>
</tr>
</tbody>
</table>

* Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. See page 319 for available courses.
† Chemical Principles I, II and III option only for environmental management.
‡ Writing sequence beginning with Written Communication I (0502-1101), Written Communication II (0502-1111), or Writing & Literature I (0502-2251), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
§ Alternative mathematics courses may be required as prerequisites, depending on placement.

Eke-baccalaureate studies in science, chemistry option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar</td>
<td>0853-200</td>
</tr>
<tr>
<td>Learning Strategies</td>
<td>0853-210</td>
</tr>
<tr>
<td>Processes of Science</td>
<td>0853-220 *</td>
</tr>
<tr>
<td>AND</td>
<td>13</td>
</tr>
<tr>
<td>Chemistry Labs</td>
<td>1011-205, 206, 207</td>
</tr>
<tr>
<td>General Chemistry I, II</td>
<td>1010-251, 252</td>
</tr>
<tr>
<td>AND</td>
<td>8</td>
</tr>
<tr>
<td>General Chemistry Lab</td>
<td>1010-255</td>
</tr>
<tr>
<td>AND</td>
<td>4</td>
</tr>
<tr>
<td>Quantitative Analysis</td>
<td>1008-261</td>
</tr>
<tr>
<td>AND</td>
<td>8</td>
</tr>
<tr>
<td>Quantitative Analysis Lab</td>
<td>1010-265</td>
</tr>
<tr>
<td>Liberal Arts t</td>
<td>12</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253 #</td>
</tr>
<tr>
<td>Pre-baccalaureate courses *</td>
<td>3-5</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>46-49</td>
</tr>
</tbody>
</table>

* Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. See page 319 for available courses.
† Writing sequence beginning with Written Communication I (0502-1201), Written Communication II (0502-1211), Written Communication III (0502-2251), Writing & Literature I (0502-226), depending on placement. See page 10 for liberal arts requirements.
‡ Alternative mathematics courses may be required as prerequisites, depending on placement.

Pre-baccalaureate studies in science, math or physics options, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar</td>
<td>0853-200</td>
</tr>
<tr>
<td>Learning Strategies</td>
<td>0853-210</td>
</tr>
<tr>
<td>Processes of Science</td>
<td>0853-220 *</td>
</tr>
<tr>
<td>General Biology I, II, III</td>
<td>1001-201, 202, 203</td>
</tr>
<tr>
<td>AND</td>
<td>12</td>
</tr>
<tr>
<td>General Biology I, II, III Lab</td>
<td>1001-205, 206, 207</td>
</tr>
<tr>
<td>OR</td>
<td>12</td>
</tr>
<tr>
<td>General & Analytical Chemistry I, II, III</td>
<td>1011-215, 216, 217</td>
</tr>
<tr>
<td>AND</td>
<td>12</td>
</tr>
<tr>
<td>Chemistry Labs</td>
<td>1011-205, 206, 207</td>
</tr>
<tr>
<td>OR</td>
<td>12</td>
</tr>
<tr>
<td>College Physics I, II, III</td>
<td>1017-211, 212, 213 †</td>
</tr>
<tr>
<td>AND</td>
<td>12</td>
</tr>
<tr>
<td>General Physics Labs</td>
<td>1017-271, 272, 273</td>
</tr>
<tr>
<td>OR</td>
<td>12</td>
</tr>
<tr>
<td>University Physics I, II, III</td>
<td>1017-311, 312, 313 †</td>
</tr>
<tr>
<td>AND</td>
<td>12</td>
</tr>
<tr>
<td>University Physics Labs</td>
<td>1017-371, 372, 373</td>
</tr>
<tr>
<td>Liberal Arts §</td>
<td>12</td>
</tr>
<tr>
<td>Calculus I, II, III</td>
<td>1016-251, 252, 253 †</td>
</tr>
<tr>
<td>Pre-baccalaureate courses *</td>
<td>3-5</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>46-48</td>
</tr>
</tbody>
</table>

* Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies, and specific discipline areas. See page 319 for available courses.
† Alternate mathematics courses may be required as prerequisites, depending on placement.
‡ Students must choose one of the two physics sequences for the physics option.
§ Writing sequence beginning with Written Communication I (0502-1101), Written Communication II (0502-212), or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
Pre-baccalaureate studies in engineering option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>Learning Strategies 0853-210</td>
<td>2</td>
</tr>
<tr>
<td>Major-related courses depending on area of interest</td>
<td>16</td>
</tr>
<tr>
<td>College Chemistry 1011-008</td>
<td>4</td>
</tr>
<tr>
<td>University Physics I, II 1017-311, 312</td>
<td>8</td>
</tr>
<tr>
<td>Liberal Arts †</td>
<td>12</td>
</tr>
<tr>
<td>Calculus I, II, III 1016-251, 252, 253 *</td>
<td>12</td>
</tr>
<tr>
<td>Pre-baccalaureate courses *</td>
<td>3-5</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>43-45</td>
</tr>
</tbody>
</table>

* Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies and specific discipline areas. See page 329 for available courses.
† Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
‡ Alternative mathematics courses may be required as prerequisites, depending on placement.

Pre-baccalaureate studies in engineering technology option, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>Learning Strategies 0853-210</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Technology Seminar 0606-101</td>
<td>2</td>
</tr>
<tr>
<td>Major-related courses depending on area of interest</td>
<td>16</td>
</tr>
<tr>
<td>Liberal Arts †</td>
<td>12</td>
</tr>
<tr>
<td>Technical Math I 0692-221*</td>
<td>4</td>
</tr>
<tr>
<td>Technical Math II 0692-221‡</td>
<td>4</td>
</tr>
<tr>
<td>Calculus for Technology 1019-420 *</td>
<td>4</td>
</tr>
<tr>
<td>Pre-baccalaureate courses *</td>
<td>3-5</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>49-51</td>
</tr>
</tbody>
</table>

* Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies and specific discipline areas. See page 329 for available courses.
† Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing & Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 10 for liberal arts requirements.
‡ Alternative mathematics courses may be required as prerequisites, depending on placement.

Pre-baccalaureate studies in social work, typical course sequence

<table>
<thead>
<tr>
<th>First Year</th>
<th>Quarter Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Seminar 0853-200</td>
<td>2</td>
</tr>
<tr>
<td>The Professional Social Work Role 0516-210</td>
<td>4</td>
</tr>
<tr>
<td>Self-Awareness in the Helping Role 0516-212</td>
<td>4</td>
</tr>
<tr>
<td>Liberal Arts *</td>
<td>12-16</td>
</tr>
<tr>
<td>Mathematics †</td>
<td>8</td>
</tr>
<tr>
<td>NTID Humanities & Social Science ‡ AND/ OR</td>
<td></td>
</tr>
<tr>
<td>Pre-baccalaureate courses §</td>
<td>4-12</td>
</tr>
<tr>
<td>Total Quarter Credit Hours</td>
<td>42-46</td>
</tr>
</tbody>
</table>

* Writing sequence beginning with Written Communication I (0502-110), Written Communication II (0502-111) or Writing b Literature I (0502-225), Writing & Literature II (0502-226), depending on placement. See page 20 for liberal arts requirements.
† NTID algebra sequence; specific courses dependent on placement.
‡ Courses in communication studies and sign communication, as recommended.
§ Pre-baccalaureate courses are available to strengthen students' skills in critical thinking, learning strategies and specific discipline areas. See page 319 for available courses.
Course Number Index

RIT course numbering: Throughout this bulletin and in registration materials that are published quarterly, courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

<table>
<thead>
<tr>
<th>College of Business</th>
<th>0101</th>
<th>Accounting</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0102</td>
<td>Management</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>0104</td>
<td>Finance</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>0105</td>
<td>Marketing</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>0106</td>
<td>Decision Sciences</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>0112</td>
<td>Management Info. Systems</td>
<td>192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Engineering</th>
<th>0301</th>
<th>Electrical Engineering</th>
<th>202</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0302</td>
<td>General Engineering</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>0303</td>
<td>General Engineering</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>0304</td>
<td>Industrial & Systems Engineering</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>0306</td>
<td>Computer Engineering</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>0307</td>
<td>Quality & Applied Statistics</td>
<td>212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Liberal Arts</th>
<th>0501</th>
<th>Criminal Justice</th>
<th>244</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0502</td>
<td>Language</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>0503</td>
<td>Foreign Languages</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>0504</td>
<td>Literature</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>0505</td>
<td>Fine Arts</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>0506</td>
<td>Humanities</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>0507</td>
<td>History</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>0508</td>
<td>Science, Technology & Society</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>0509</td>
<td>Philosophy</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>0510</td>
<td>Anthropology</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>0511</td>
<td>Economics</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>0513</td>
<td>Political Science</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>0514</td>
<td>Psychology</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>0515</td>
<td>Sociology</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>0516</td>
<td>Social Work</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>0519</td>
<td>Interdisciplinary-Aerospace</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>0520</td>
<td>Interdisciplinary/Liberal Arts</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>0521</td>
<td>Public Policy</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>0522</td>
<td>Women's Studies</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>0535</td>
<td>Communication</td>
<td>273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Applied Science and Technology</th>
<th>0606</th>
<th>Electrical/Mechanical Engineering Technology</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0607</td>
<td>Packaging Science</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>0608</td>
<td>Civil Engineering Technology</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>0609</td>
<td>Electrical Engineering Technology</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>0610</td>
<td>Mechanical Engineering Technology</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>0614</td>
<td>Telecommunications Engineering Technology</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>0617</td>
<td>Manufacturing Engineering Technology</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>0618</td>
<td>Computer Engineering Technology</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>0619</td>
<td>Hospitality Service Management</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>0620</td>
<td>Nutrition Management</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>0621</td>
<td>Food Management</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>0622</td>
<td>Hotel & Resort Management</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>0623</td>
<td>Travel & Tourism Management</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>0630</td>
<td>Environmental Management & Safety</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>0633</td>
<td>Safety Technology</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>0634</td>
<td>Disaster & Emergency Management</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>0635</td>
<td>Health Systems Administration</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>0640</td>
<td>Reserve Officer Training Corps</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>0650</td>
<td>Reserve Officer Training Corps</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>0660</td>
<td>Accounting & Business Systems</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>0661</td>
<td>Business Administration Management</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>0664</td>
<td>Quality Management</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>0668</td>
<td>Humanities & Social Sciences</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>0668</td>
<td>Technical Communication</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>0669</td>
<td>Math & Science</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>0697</td>
<td>Multi/Interdisciplinary Studies</td>
<td>188</td>
</tr>
</tbody>
</table>

National Technical Institute for the Deaf	0801	Accounting Technology	298
	0804	Business Technology/ Administrative Support	301
	0805	Applied Computer Technology	301
	0806	Interdisciplinary Studies	296
	0812	Computer Integrated Machining Technology	306
	0813	Computer Integrated Machining Technology	306
	0820	Healthcare Billing & Coding Technology	311
	0825	Art & Computer Design	299
	0827	Ophthalmic Optical Finishing Technology	318
	0853	Pre-baccalaureate Studies	319
	0860	Speech & Language	322
	0875	ASL-English Interpretation	296
	0876	Deaf Studies Certificate	322
	0878	Digital Imaging & Publishing Technology	308
	0879	Laboratory Science Technology	315
	0880	Communication Studies and Humanities	312
	0881	Performing Arts	314
	0882	Social Science	321
	0883	English	310
	0884	Mathematics	317
	0885	Science	319
	0886	American Sign Language	313
	0887	Career Exploration	296
	0890	Computer Aided Drafting Technology	305
	0891	Automation Technologies	303
	1001	Biology	275
	1004	General Biology	278
	1005	Field Biology	278
	1008	Analytical Chemistry	278
	1009	Biochemistry	278
	1010	Chemistry	279
	1011	General Chemistry	279
	1012	Inorganic Chemistry	280
	1013	Organic Chemistry	281
	1014	Physical Chemistry	281
	1015	Environmental Chemistry	281
	1016	Mathematics & Statistics	282
	1017	Physics	287
	1018	Contemporary Science-General	290
	1019	Technology Mathematics	286
	1024	Medical Laboratory Technology	290
	1025	Nuclear Medicine Technology	290
	1026	Clinical Science-General	291
	1027	Biomedical Computing	292
	1029	Polymer Chemistry	281
	1030	Diagnostic Medical Sonography	292
	1031	Environmental Science	282
	1032	Physician Assistant	293
	1051	Imaging Science	294

College of Imaging Arts and Sciences	2011	Interdisciplinary Imaging Arts	213
	2019	New Media Design	218
	2010	Graphic Design	219
	2012	Art & Design Extended Studies	214
	2013	Foundation Courses	213
	2015	Interior Design	221
	2019	Illustration	215
	2020	Medical Illustration	217
	2021	Fine Arts Studio	218
	2035	Industrial Design	222
	2039	Art History	213
	2040	Ceramics & Ceramic Sculpture	223
	2041	Glass & Glass Sculpture	223
	2042	Metalcrafts & Jewelry	224
	2043	Weaving & Textile Design	224
	2044	Woodworking & Furniture Design	224
	2045	General Crafts Studies	225
	2046	Crafts Extended Studies	225
	2060	Fine Art Photography	230
	2061	Biomedical Photography	231
	2065	Film/Video/Animation	226
	2067	Photographic Arts	232
	2068	Imaging Systems Management	236
	2076	Imaging & Photographic Technology	237
	2080	Printing Management	239
	2081	Printing Technology	240
	2082	Graphic Media	242
	2083	New Media Publishing	243

B. Thomas Golisano College of Computing and Information Sciences

College of Computing and Information Sciences	4002	Information Technology	194
	4003	Computer Science	198
	4010	Software Engineering	200
Course Descriptions

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses at the end of the course description.

College of Applied Science & Technology

Index

0606 Electrical/Mechanical Engineering Technology 164
0607 Packaging Science ... 164
0608 Civil Engineering Technology .. 166
0609 Electrical Engineering Technology 168
0610 Mechanical Engineering Technology 169
0614 Telecommunications Engineering Technology 171
0617 Manufacturing Engineering Technology 172
0618 Computer Engineering Technology 173
0619 Hospitality & Service Management 175
0620 Nutrition Management .. 175
0621 Food Management ... 175
0622 Hotel & Resort Management .. 176
0623 Travel &Tourism Management 177
0630 Environmental Management & Safety 178
0633 Safety Technology ... 180
0634 Emergency Management ... 180
0635 Health Systems Administration 180
0640 Reserve Officer Training Corps-Army 181
0650 Reserve Officer Training Corps-Air Force 181
0680 Accounting & Business Systems 182
0681 Business Administration-Management 183
0684 Quality Management .. 184
0686 Humanities & Social Sciences ... 184
0688 Technical Communication ... 185
0692 Math &Science ... 187
0697 Multi/Interdisciplinary Studies .. 188

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Electrical/Mechanical Engineering Technology

0606-099 Co-op Preparation Course
This course is intended for third-year set students. It introduces the concept of cooperative education and the services of the office of cooperative education and placement, and provides the student with basic job search skills; research and identification of potential employers; resume writing and correspondence; interviewing techniques. Ethics of the job search and expectations of employers will also be covered. This course is required for all set students before registering for co-op and using the services of the office of cooperative education and placement. Class 1, Credit 0

0606-101 Engineering Tech Seminar
A seminar course for incoming freshmen in the Electrical/Mechanical Engineering Technology program. Course includes discussions and presentations that help students become familiar with RIT resources, and to adjust to college and college-level coursework. Students practice communication skills, work in teams, and discuss issues related to college life. Class 3, Credit 2

Packaging Science

0607-200 New Student Seminar
An introduction to the RIT system and the department of packaging science. Course covers the basics of the packaging profession. Credit 1

0607-201 Principles of Packaging
An overview of packaging: the historical development of packaging; the functions of packaging; and the materials, processes and technology employed to protect goods during handling, shipment and storage. A brief review of container types, package design and development, and research and testing are presented, along with information about economic importance, social implications and packaging as a profession. Credit 4, Lab 4

0607 202 Freshman Seminar II Continuation of New Student Seminar
Credit 1

0607-210 TM&D Skills Seminar
A beginning course for students interested in pursuing a career in technical sales. The student is introduced to seasoned technical sales professionals, traditional and TQM sales organizations, and different styles of selling. Students learn what strategies are important for a successful career in technical sales. Class 2, Credit 2

0607-301 Engineering Design Graphics
A basic course in engineering drawing. Topics include, but are not limited to, lettering, line quality, use of instruments, free-hand sketching, orthographic projections, pictorials, sections, auxiliary views and dimensioning. Class 1, Credit 1, Lab 1

0607-302 CAD Drawing
A course in computer-aided drafting (CAD). Students learn how drawing is accomplished using a CAD application package. Begins with basics and progresses to advanced CAD practices. Drawing assignments required, concentrating on packaging applications. (0607-301) Class 1, Credit 3, Lab 3

0607-311 Packaging Materials I
The manufacture, physical and chemical properties, and uses of common packaging materials. Emphasis is on metals and plastics used in packaging and on adhesives, propellants and other component materials. (0607-201) Class 4, Credit 4

0607-312 Packaging Materials II
The manufacture, physical and chemical properties, and uses of common packaging materials. Emphasis is on paper, paperboard, wood and glass used in packaging applications. (0607-201) Class 4, Credit 4

0607-313 Methods of Evaluation
Information about recognized standard testing procedures is presented, and students gain practical experience in the operation of various commonly used testing instruments that determine physical properties of fibre, metal, plastic and glass packaging materials. (0607-201) Class 1, Credit 3, Lab 4

0607-321 Rigid Containers
A detailed study of primary packages. History, manufacturing processes characteristics and applications for containers in direct contact with the product. Structural design, chemical compatibility and suitability of container for intended use are analyzed for basic container types. Students practice structural design and testing of prototype containers. Primary emphasis is on rigid paperboard, glass, plastic and metal containers. (0607-301, 311, 312) Class 2, Credit 4, Lab 2

0607-322 Flexible Containers
Corollary course for 0607-321. Primary emphasis is on flexible paper, foil, plastic and laminated materials and on selected packaging techniques. (0607-301, 311, 312) Class 2, Credit 4, Lab 2
0607-341 Computer Applications
Application of computer techniques and data processing for packaging. Review and analysis of current computer software packages for packaging, including optimum sizing, process control, simulation and specification preparation. Computer program development and coding projects associated with packaging are assigned. Class 2, Credit 4, Lab 4

0607-401 Career Seminar
Career opportunities in packaging science; methods and procedures used in obtaining co-op and entry-level positions. Career advancement within the corporate organization; job changes. Class 1, Credit 1

0607-420 Technical Communication
Introduction to the principles of effective written technical communication for the packaging professional. Topics include memos, business letters, summary activity reports, technical proposals and research papers. Open only to packaging majors and required as part of the writing skills certification process under the RIT policy. (0504-225, 226) Credit 4, Lab 4

0607-431 Packaging Production Systems
A study of package forming and filling, closing, product/package identification, inspection and other machinery commonly used in packaging, plus consideration of handling and storage/retrieval systems. The characteristics of such equipment and maintenance programs are considered. Students gain practice in setting up complete production lines for packaging various products. (0607-321, 322) Class 2, Credit 4

0607-432 Packaging for Distribution
An exploration of different shipping, storage and use environments common to various products and packages. Structural design of shipping containers for product physical protection and methods for testing and predicting package performance are studied. (0607-301, 321, 322) Class 2, Credit 4, Lab 4

0607-433 Packaging for Marketing
The interrelationship between packaging and marketing, detailing how the retail consumer package can be used as a marketing tool. Concentrates on a systematic approach to developing an optimum package for a given product to meet the demands of the retail market. Advertising, marketing demographics and the impact of color upon packaging are considered. Students gain practice in the development of a complete package system. (0607-431, 432) Class 2, Credit 4, Lab 4

0607-462 Packaging Regulations
A detailed study of federal, state and local regulations that affect packaging. History of the development of packaging law; detailed study of recent packaging regulations, including the Fair Packaging and Labeling Act and the Poison Prevention Packaging Act; consideration of Food and Drug Administration regulation of packaging, including requirements for tamper-evident packaging; hazardous materials packaging regulations administered by the Department of Transportation; freight classifications, freight claims and the Interstate Commerce Act as it applies to shipment of goods in packages; weights and measures law; consumer product safety law; environmental law; and patent, trademark and copyright law as they apply to packaging. Class 3, Credit 3

0607-485 Principles of Shock & Vibration
A study of the factors involved in analyzing potential damage to packaged items resulting from impact or vibration forces. Students are expected to master basic mathematical and physical concepts and to use various pieces of testing equipment. (0607-432) Class 2, Credit 4, Lab 4

0607-499 Packaging Co-op Work Block
One quarter of appropriate work experience in industry. Two quarters of co-op experience are required. Credit 0

0607-510 Introduction to Electrostatics
An introduction to the factors involved in understanding and controlling electrostatic phenomena and protecting sensitive devices from ESD and other waveforms. Evaluation and analysis of protective materials and performance standards are taught, as well as equipment operation and evaluation procedures. (0607-322, 1017-211; professional elective) Class 4, Credit 4

0607-520 Packaging Management
A study of packaging organization in the contemporary corporation and project management techniques available to the packaging manager. Organization theory is discussed and compared with typical industry practice. Other topics include PERT, value analysis and the impact of regulatory agencies upon packaging from a management standpoint. (Professional elective) Class 3, Credit 4

0607-524 Packaging Economics
A study of firm behavior with concentration on production costs and revenues. Market structures are analyzed in order to develop an understanding of how packaging fits into the general economy. Students are instructed in the use of basic economic reference materials for research purposes. A paper is required. (Professional elective) Class 4, Credit 4

0607-530 Packaging and the Environment
Consideration of packaging in a social context. Factors that enhance secondary use, recycling, recovery of resources and proper disposal are discussed. Package design in relation to solid waste disposal and materials and energy shortages is considered. Other topics of current social interest are discussed. Primarily a discussion class for senior students. Open to nonmajors. (Professional elective) Class 4, Credit 4

0607-531 Packaging Process Control
An advanced course designed to give packaging students instruction in design, process and quality control techniques for packaging applications. Topics include the concepts of zero defects, computer applications for control charts and acceptance sampling. (0607-431, 1016-309; or equivalent; professional elective) Class 3, Credit 4

0607-536 Medical Products Packaging Study of unique requirements for packaging materials and containers for sterilized medical devices. Current sterilization techniques, impacts on materials properties and distribution requirements are considered for this specialized product group. (0607-433; professional elective) Class 2, Credit 4, Lab 2

0607-555 Military & Export Packaging
Study of the particular forms and requirements for packaging for the military and export environments. Preservation techniques, military specifications, crates and large export containers, construction techniques, the export handling and transportation environment, and related topics. (0607-432; professional elective) Class 3, Credit 4, Lab 4

0607-568 Food Preservation & Packaging
Study of food products, common methods of processing and preservation, impact on quality and nutritional value of the product, and the relationships with common packaging methods and distribution practices. (0607-432; professional elective) Class 3, Credit 4, Lab 2

0607-570 Point-of-Purchase Display
An interdisciplinary course considering the unique requirements for display packaging at the retail point of purchase. The retail store environment, display techniques, customer motivation, product tie-ins, construction techniques, production and distribution requirements, product promotion and point-of-purchase support materials and activities, design, and printing of point-of-purchase displays. (An interdisciplinary, senior elective for students in packaging, packaging design, marketing, retailing, and printing) (Professional elective) Class 2, Credit 4, Lab 2

0607-575 Technical Skills for Professional Sales
Introduction to a systematic problem-solving methodology in the sales profession. The core of the course explains the systematic 13 steps that lead to professional sales success. The rationale for each step is thoroughly explained, as are the procedures for implementing it. This course is required for all entering TM&D students. Class 4, Credit 4

0607-577 Packaging Internship
This course number is used by students in the packaging science program for earning internship credits. The number of credits and the nature of on-location experience is determined by the student’s adviser, subject to approval of the department. Credit 1-8

0607-590 Senior Thesis
An in-depth study of a selected phase of packaging that enables the student to make use of the knowledge and skills acquired during the course of the program. Credit 4

0607-598 Independent Study
Independent study, in consultation with the instructor, on any packaging-related topic. (Independent study total credit allowed is limited to a maximum of 8 credits) Credit 14

0607-599 Independent Study
Independent study, in consultation with the instructor, on any Packaging-related topic. (Independent Study total credit allowed is limited to a maximum of 8 credits) Credit 1-4
Civil Engineering Technology

0608-198 Introduction to CET Freshman
Introduces students to the CET program in order to ease the college transition. Information is provided on cooperative education, technical electives, liberal arts core and concentration courses, and prerequisite procedures. Discussion of topics may include PE registration and NICET certification. Credit 1

0608-199 Introduction to CET, Transfer
Introduces students to the CET program in order to ease the transition from their previous colleges. Information is provided on cooperative education, technical electives, liberal arts core and concentration courses, and prerequisite procedures. Discussion of topics may include PE registration and NICET certification. Class 1, Credit 1

0608-211 Engineering Graphics with CAD
An introduction to engineering graphics as a means of communication in the fields of manufacturing and mechanical design. The course is laboratory oriented and provides the student with basic skills in print reading, spatial visualization, instrument drafting, freehand sketching and computer-aided drafting. Prior knowledge of engineering drawing or CAD is not required. Class 2, Credit 4, Lab 4

0608-220 Civil Engineering Graphics
The objective of this course is to develop in the student an understanding of plans and drawings in civil engineering projects as well as in related disciplines: architecture, mechanical and electrical engineering, and landscape architecture. This understanding is implemented by requiring certain drafting exercises relating to these drawings, incorporating pertinent lectures, making field visits to civil engineering works in order to make the connection between plans and actual structures, and by requiring the application of drafting in the use and interpretation of plans. Civil engineering works include site development, structures, hydraulic structures, water and wastewater transport and treatment facilities, and transportation facilities. Students develop an understanding of the technical and legal purpose of plans and how to assemble them. Class 2, Credit 4, Lab 4

0608-310 Computer Applications II
Introduction to various computer applications used in civil engineering practice. Examples include STAAD-III structural analysis software, and the civil engineering application package in AUTODESK Land Development (AutoCAD 2000). (0610-302, 0610-303, 0608-211, 0608-320, 0608-340, 0608-380, 0608-420) Class 1, Credit 2, Lab 2

0608-320 Plane Surveying
An introduction to surveying. Topics include note keeping, leveling, vertical and horizontal measurement, traverses, and topographic mapping. Students apply lecture lessons to assignments in the field using modern survey equipment. Class 3, Credit 4, Lab 2

0608-330 Materials of Construction
A study of Portland cement concrete and asphalt cement concrete. Aggregates, Portland cement and asphalt cement (each an ingredient in the concrete) are studied extensively. Mass-volume relationships are explored. Laboratory work focuses on testing aggregates, designing Portland cement concrete mixes, and testing Portland cement concrete cylinders using ASTM standards. Students also test mortar (ASTM standard) and asphalt concrete (NYSDOT standards) in the laboratory. Class 3, Credit 4, Lab 2

0608-340 Route Surveying
Introduction to the fundamentals of route surveying and earthwork. Topics include simple horizontal curves, reverse curves, compound curves, trans- tional spiral curves, and vertical curves. Techniques for estimating earthwork volume quantities are covered, along with development of drawing profiles and cross sections. Mass-haul diagrams are explored. Laboratory exercises include designing and laying out various types of curves in the field. (0608% 320 Plane Surveying) Class 3, Credit 4, Lab 2

0608-360 Elementary Soil Mechanics
Introduction to soil mechanics and its application to problems encountered in civil engineering. Major topics include soil classification, strength and compressibility analysis, effect of water on soil characteristics, and modern and traditional soil improvement techniques. Laboratory tests commonly used to evaluate engineering properties of soils are performed. (0610-302, 303 or equivalent) Class 3, Credit 4, Lab 2

0608-380 Elementary Structures
Applications of the principles of statics and strength of materials to the design and analysis of basic structural elements such as beams, T-beams, columns, slabs and footings. The available time is split evenly between structural steel (allowable stress design using AISC guidelines) and reinforced concrete (strength design using ACI code). Design and analysis of steel connections is also covered. (0610-302, 0610-303) Class 4, Credit 4

0608-404 Applied Mechanics of Materials
Basic strength of materials and statics are reviewed. Advanced topics are covered to include stress and strain, Mohr’s circle concept, transversely loaded members, statically indeterminate problems, Euler’s equations and column design principles. (0610-302, 303) Class 3, Recitation 2, Credit 4

0608-420 Hydraulics
Study of principal physical and mechanical properties of liquids, hydrostatic pressure and forces; pressure-measuring devices; buoyancy and flotation; principles of kinematics and dynamics; Bernoulli Law; concept of momentum. Flow of liquids in closed conduits, and introductory principles of piping systems. Class 3, Credit 3

0608-421 Hydraulics Laboratory
Experimental study of principal physical properties of liquids and major laws of fluid mechanics. Operating various laboratory equipment and devices along with concurrently taking 0608-420, Hydraulics, for principal theoretical studies of physical and mechanical properties of liquids, hydrostatics, fluid kinematics and dynamics, hydraulic machinery and their operation. Class 3, Credit 1

0608-422 Elements of Building Construction
Elements and details of building construction, both residential and commercial, are explored. The course does not focus on design, but rather on specific building components, and on how these components work together to create a functional building. Some of the topics include foundations, wood light frame, heavy timber frame, steel, concrete, masonry, glass, roof, curtain wall systems and interior finishes. The role of building codes in design and construction is introduced. Class 4, Credit 4

0608-432 Water & Wastewater Transport Systems
Brief overview of surface and groundwater sources. Hydraulic design of sewers, storm drains and potable water systems, including piping and pumping systems, storage and ancillary facilities. Class 1, Recitation 1, Credit 2

0608-438 Principles of Treatment Water and Wastewater
An introduction to water and wastewater treatment, interpretation of analyzed physical, chemical and biological water quality parameters associated with the design and operation of treatment processes. Fundamental principles and applications of physical, chemical and biological processes employed in water and waste-water treatment and the analysis of waste assimilative capacity of streams are introduced. (1011-272, 276, 0608-420) Class 3, Credit 4, Lab 2

0608-444 Mechanical Equipment for Building
Presentation of mechanical and electrical equipment used in both residential and commercial building construction. The course investigates HVAC, plumbing, and electrical systems/equipment with an emphasis on function rather than design. Heat loss, psychrometrics, duct sizing and refrigeration systems are among the topics covered. Class 2, Credit 2

0608-460 Construction Equipment
The fundamentals of equipment characteristics, uses and earthwork productivity are explored. The course investigates excavators, loaders, scrapers, off-highway trucks, bulldozers and other earthmoving machines, as well as cranes. Students gain practice in machine selection and equipment fleet assembly using productivity, operating costs and owning costs as criteria. Class 2, Credit 2
0608-470 Timber Design & Construction
Discussion of the properties of structural lumber including grades, sizes and design properties. Design of beams, columns, trusses, plywood diaphragms, shear walls and glued-laminated timber. The provisions of various building codes are investigated, and the specification of the American Forest and Paper Association is followed. A comprehensive group design project is assigned, and some computer work using a spreadsheet program is involved. (0608-404) Class 4, Credit 4

0608-480 Groundwater Hydraulics
Groundwater movement and engineering applications. Topics include construction dewatering, groundwater remediation, flow-net analysis, flow analysis to wells and trenches, design of groundwater collection systems, pump selection, and groundwater’s interaction with engineered structures. Application of elementary groundwater computer software. (0608-420) Class 4, Credit 4

0608-482 Hydrology
Presents the concept of the hydrologic cycle and the evaluation of its components. Course concentration on the analysis of stream and surface water hydraulics, management of storm water runoff, practical engineering procedures (e.g., TR-55 methodology) and hydrologic computer software. (0608-404) Class 4, Credit 4

0608-485 Hydraulic Structures
Analysis and design of engineered systems in lakes and streams. Topics may include drainage channels, erosion protection, bridge piers and scour, dam spillways and ancillary structures, docks, breakwaters, harbor structures and roadway systems. Many of these hydraulic systems will be evaluated using USCOE and USDOT design manuals. Approximately one half of the course work involves the application of various computer software in analysis and design. (0608-420) Class 3, Recitation 2, Credit 4

0608-490 Structural Analysis
Introduction to loads, and the analysis of statically determinate and indeterminate structures by classical and modern techniques. The types of structures covered include beams, trusses and frames that are loaded in the plane of the structure. Topics include introduction to cables and arches, influence lines and the effect of moving loads, determination of the degree of indeterminacy, approximate methods (including the Portal Method), moment distribution and an introduction to matrix methods. Some computer work using a popular structural analysis software is involved. (0608-404) Class 4, Credit 4

0608-496 Reinforced Concrete Design
Design of members and frames of reinforced concrete. Topics include principles of structural design; loads; properties of concrete and reinforcement; design of slabs, beams, columns and footings; and introduction to prestressed concrete. Emphasis is on the use of the ACI code, and a comprehensive group design project is assigned. Some computer work using a spreadsheet program is involved. (0608-310, 404, 490) Class 4, Credit 4

0608-497 Structural Steel Design
Design of members and frames of structural steel and their connections. Topics include principles of structural design, loads, types of steels, tension members, columns, noncomposite and composite beams, beam-columns, column base plates, and simple bolted and welded connections. The use of the AISC LRFD specification is emphasized and a comprehensive group design project is assigned. Some computer work using a spreadsheet program is involved. (0608-310, 404, 490) Class 4, Credit 4

0608-499 Civil Engineering Technology Co-op
One quarter of appropriate work experience in industry. (0606-099) Credit 0

0608-500 Labor Relations
Introduction to the fundamentals of labor laws as well as the understanding that good workplace relations depend upon interpersonal skills on a one-on-one basis. Topical legislative and regulatory subjects include the Fair Labor Standards Act, National Labor Relations Act, Davis-Bacon Act, Americans with Disability Act, Civil Rights Act and other requirements of the workplace. In addition, time is devoted to an understanding of conflict resolution, sexual harassment, age-in-hiring, family leave, and other managerial requirements and considerations that make the work place effective and productive. Course content applies to conduct in engineering offices, construction firms and public works agencies and authorities. Several speakers from open shop and union backgrounds share their views and experiences with the class. The assumption is that graduates of the program will assume managerial positions. Class 2, Credit 2

0608-505 Construction Safety
General safe practices in construction operations are explored. The OSHA standards addressing trench excavation, scaffolding, temporary electric circuits, fall protection, HAZWOPER, OSHA regulations, and other topics are studied. The course also investigates workers compensation insurance and costs associated with job-site accidents. Class 2, Credit 2

0608-509 Cost Estimating
An introduction to direct cost estimating for construction projects. The estimating techniques covered include quantity take-off, labor productivity and pricing (labor, material and equipment). Drawings, sketches and specifications are used as a basis for developing quantities involving site work, concrete, masonry, steel and carpentry. Students also gain experience using Timberline Inc.’s Precision Estimating, an application software package used as a tool in the development of cost estimates. (0608-422) Class 4, Credit 4

0608-510 Design of Water Treatment Facilities
Principles of water treatment plant design. The course emphasizes the components of common municipal treatment works, although some industrial treatment processes may also be covered. (0608-420,438) Class 2, Credit 2

0608-514 Land Use Planning
The environmental and social aspects as well as the engineering and cost considerations of land-use planning are covered. Topics included are zoning concepts, master plans, subdivision regulations and design criteria, flood plains, environmentally sensitive areas, wetlands, other planning and control tools, solar access planning, and urban revitalization. Students are involved in an independent project consisting of a design concept for a subdivision or other land-use project. Extensive use is made of field trips and attendance at appropriate meetings or work sessions. (Drafting, surveying, and 0608-432) Class 4, Credit 4

0608-520 Design of Wastewater Treatment Facilities
Principles of wastewater treatment plant design, conceptual and hydraulic design of activated sludge and trickling filter plants are studied. Tertiary treatment processes, such as nitrogen and phosphorous removal, are discussed. (0608-420,438) Class 3, Recitation 2, Credit 4

0608-525 Civil Engineering in Resource Recovery & Waste Management
An introduction to the civil engineering aspects of dealing with resource recovery and ‘waste’ management, with a focus on source reduction and beneficial resource recovery. Topics covered are the history of the problems, the resulting societal reaction and legislation, and present day handling, minimizing, and recovering or disposing of materials historically treated as “wastes.” Emphasis is placed on those aspects in which the civil engineer plays a prominent role such as municipal solid waste landfills and hazardous waste permanent storage facilities, land application of municipal wastewater biosolids, composting, and other resource recovery and environmental protection engineering projects, including reclaiming of urban lands under the “brownfields” program: Use is made of lectures reading materials, outside speakers, field trips and certain projects. (0608-438) Class 4, Credit 4

0608-527 Soil Mechanics & Foundation
Study of physical, mechanical and engineering properties of soils; methods of determination of bearing capacity; stress distribution within soil mass and settlement; spread footing analysis and design; lateral earth pressure and retaining walls analysis and design; pile foundation analysis and design principles; slope stability. (0608-360, 404; 0608-528, Soil Mechanics Laboratory, must be taken concurrently) Class 3, Credit 3

0608-528 Soil Mechanics Laboratory
The soil mechanics laboratory is to be taken concurrently with 0608-527. Exercises include tests in internal friction by direct shear, unconfined compression, triaxial compression and consolidation. In addition, a class design project is completed to combine class work and laboratory work. Credit 1, Lab 2

0608-530 Transportation Engineering
Exposes students to the fields of highway, airport and rail engineering. The areas of administration, planning, design, construction, maintenance and operation are covered. After the introductory material is presented, stress is put on specific skills needed in these fields, including highway, rail and airport standards; geometry and alignment; drainage; earthwork; safety standards; and structures. Ample field exposure to all elements is part of the formal structured program. Each student is required to perform an independent project consisting of the design of a section of highway. (Route Surveying) Class 3, Credit 4, Lab 2
This course works in conjunction with Transportation Engineering, providing detailed engineering knowledge on asphalt and portland cement concrete pavement design. Included with the theoretical knowledge will be the development of, and practice in, the necessary design skill. The course includes the design of new pavements and also addresses the very active programs in pavement recycling, bridge and pavement rehabilitation, and strengthening. Problems are attacked in a practical manner, utilizing the expertise of national organizations and state highway departments involved in this work. Class 4, Credit 4

Contracts & Specifications
Includes a fundamental overview of contract law, followed by the application of this material in the contracts for construction. Subsequently, the student is exposed to construction specifications. Substantial use is made of actual documents such as those of the New York State Department of Transportation, the Construction Specification Institute and trade standards such as ANSI, ASTM and others. Students are required to develop and assemble a mock-up set of contract documents. Arbitration, design-build, and partnering are discussed. Class 2, Credit 2

Projects Management I
An introduction to construction management. Topics include the various project delivery systems for building construction, along with planning, project organization, bonds, insurance: change orders, submittals and contract documents. CPM scheduling is covered in detail. Students gain experience using Primavera Inc’s Suretrak, a Windows-based application software package used for construction project planning and scheduling. (0608509) Class 4, Credit 4

Principles of Dynamics in CET
Study of the basic principles of engineering dynamics. Topics include kinematics of particles, force, mass, and acceleration, work and energy, force-impulse and momentum, and an introduction to vibrations and structural dynamics. Applications to practical engineering problems are emphasized. (0608-404,490) Class 4, Credit 4

A supervised investigation within a civil engineering technology area of student interest. Consent of the sponsor and departmental approval are required. Students are limited to a maximum of four quarter credit hours of independent study projects and two sections in any -quarter, plus a maximum of eight quarter credit hours of independent study credits earned toward degree requirements. Credit 1-4

Electrical Engineering Technology
An introduction to DC circuit analysis techniques. Topics include resistance, inductance and capacitance, with circuit techniques of Ohm’s law, current-voltage division; simplification of series, parallel, bridge, and ladder networks; Kirchoff’s Laws; Thevenin’s and Norton’s theorems; mesh and nodal analysis and superposition. (Corequisite 1016-204) Class 2, Credit 3

An introduction to AC circuits, including the topics of phasor algebra, reactance, impedance, AC power and power-factor, resonance, maximum power transfer, frequency, band width and three-phase circuits. (0609-201; corequisite 1019-420) Class 2, Credit 3

An introduction to electronic circuits using semiconductor diodes and bipolar junction transistors. Emphasis is placed on device characteristics and specifications, biasing circuits, transistor modeling and applications in small signal amplifiers. (0609-202) Class 3, Credit 4, Lab 3

First-Year Orientation
Introduction to electrical engineering technology. Topics include engineering technology versus engineering, registration system, learning styles, cooperative education, time organization and management, and electives in electrical engineering technology. (Enrollment as a freshman in the electrical engineering technology program) Credit 1

DC Circuits & Simulation
This course complements the lecture material of 0609-201, DC Circuits. It introduces students to d-c measurements, data recording, technical report writing and to modern schematic capture and simulation tools. (Corequisite 0609-201) Class 1, Credit 2, Lab 2

AC Circuits & Simulation
This course complements the lecture material of 0609-202, AC Circuits. It introduces students to a-c measurements, data recording, technical report writing and to modern schematic capture and simulation tools. (0609-201, 0609-221; corequisite 0609-202) Class 1, Credit 2, Lab 2

Concepts in Systems & Signals
Continuous-time and discrete-time linear, time-invariant, and casual systems are examined throughout the course. Theoretical concepts covered are: the Fourier representation of a periodic waveform; the LaPlace transform; convolution and correlation; signal sampling; and the z-transform. MATLAB is presented and used extensively. (0609-202; corequisite 1019-421) Class 3, Credit 4

Electric Machines &Transformers
Topics include power concepts, magnetism, electro-magnetic force, fields, armature, commutators, rotors, stators, brushes, starters, controllers, DC machines, AC motors, alternators, single-phase three-phase dynamos, three-phase circuits, transistors, transformer properties, isolation, efficiency and voltage regulation. (0609-202 or 0609-411) Class 3, Credit 4, Lab 2

A continuing course in the analysis and design of electronic circuits. Emphasis will be on the characteristics, operation and biasing of both insulated gate field effect transistors, and the use of small signal parameters. Students are introduced to frequency response of circuits, differential amplifiers and power electronics, including class A, B, and D amplifiers. (0609-203) Class 3, Credit 4, Lab 2

The operational amplifier is covered in detail. A wide range of its application are explained and explored, including many amplifiers and comparators. DC and AC characteristics are studied. Frequency responses of RC and op-amp circuits are covered. (0609-361 and 1019-420) Class 3, Credit 4, Lab 2

This course applies the concepts of circuits and electronics to basic analog communication circuits for amplitude and frequency modulation. Topics studied are Fourier Analysis, AM and FM transmission and reception, phase-locked loops, synthesizers, oscillators, and DBS and SSB communication systems. (0609-362) Class 3, Credit 4, Lab 2

Advanced Circuit Theory
An introduction to advanced circuit analysis techniques, including signal decomposition by Fourier Series, circuit characterization in the s plane using Bode straight line approximation or pole-zero plots, Laplace transform methods for solution of circuit transients, and investigations of active circuit stability. (1019-422; 0609-333,202 or equivalent w/Pspice or other simulation software) Class 4, Credit 4

Control Systems I
Closed-loop control systems are analyzed with respect to their stability, steady-state accuracy and transient response. The design of compensation to improve system performance is included. (0609-403; 1019-422) Class 3, Credit 4, Lab 2

Career Orientation
This course is an introduction to the cooperative educational placement process at RIT, the programs in the department and RIT resources. Topics include engineering technology vs. engineering, review of resources available at RIT, the cooperative education placement process and team building activities. Class 1, Credit 1

Transmission Lines
Development and application of the general transmission line equation starting from the distributed lumped LC model. Topics include the propagation of electromagnetic waves in a coaxial line; voltage, current and impedance; graphical methods for analysis; transmission lines as circuit elements. (1019-422; 0609-202; 0609-403) Class 3, Credit 4, Lab 2
0609-411 Electrical Principles for Design I
A service course offered to non-electrical majors studying in the technical disciplines. Topics covered include basic electrical circuits, network theorems, power and energy concepts, power factor correction, and basics of transformers. The laboratory is an integral part of the course, where the experiments complement lecture material. (1016-204 or equivalent) Class 3, Credit 4, Lab 2

0609-412 Electrical Principles for Design II
An introductory survey course in the basics of analog and digital electronics. Analog topics include basic semiconductors, transistor circuits, and operational amplifiers. Fundamental digital logic concepts include an introduction to combinational and sequential logic. Various transducers and associated circuits are introduced. (0609-411) Class 3, Credit 4, Lab 2

0609-413 Applied Microprocessors
Applications of a contemporary microcontroller will be used to teach engineering technology students digital logic, assembly programming and microprocessor interfacing. This course is intended as a service course for non-electrical majors who have not taken digital fundamentals. (0609-411) Class 3, Credit 4, Lab 2

0609-414 Basic Electrical Principles
This is a basic study of important electrical concepts for both AC and DC circuits. Topics covered include AC/DC circuit theory, single and three-phase power distribution, power factor, line losses, efficiency, AC motors and transformers, energy costs, wiring methods, instrumentation and circuit protection (1019-421) Class 3, Credit 4, Lab 2

0609-416 Auto Data Acquisition
This course is an introduction to automated data acquisition and analysis, the LabVIEW software package is introduced and used to perform data acquisition, analysis of data, and control of instrumentation. (0609-202 or 0609-411) Class 3, Credit 4, Lab 2

0609-426 Analog Simulation Seminar
An introductory course in schematic entry, simulation and simulation results interpretation of analog circuit designs. The analog simulation tool will be used to perform DC, time domain and frequency domain analysis of both passive and active analog circuits. (0609-202) Class 1, Credit 2, Lab 2

0609-442 Advanced Electronics
A review of basic operational amplifier circuits is supplemented by applications of special-purpose amplifiers. Use of op amps in signal generation, regulation and active filtering is examined. Use of discrete transistors to augment power capabilities of integrated devices is included. (0609-403; 0609-362 or equivalent) Class 3, Credit 4, Lab 2

0609-445 Integrated Electronic Packaging Design
This course provides an overview of the design of multi-layer printed circuit boards for both surface mount and through hole electronic components. An emphasis will be placed on the design of products for efficient manufacturing. This course is intended as a service course for non-electrical majors. (0617-455 and 0609-411) Class 2, Credit 3, Lab 2

0609-499 Electrical Engineering Technology Co-op
One quarter of appropriate work experience in industry. (0609-362,0618-438, 0609-407 or permission of adviser) Credit 0

0609-534 Communication Systems I
Analog modulation schemes and systems are reviewed. The Fourier Transform is introduced. The noise figure, noise temperature and signal-to-noise ratio of a system are introduced. Phase-locked loop concepts and applications to communications systems and an introduction to digital communication signals and systems are presented. (0609-363, 0609-333) Class 3, Credit 4, Lab 2

0609-535 Communication Systems II
The study of various types of digital and data communication systems and their components is continued. Digital communication modulation schemes and transmission techniques are introduced. Data communication concepts such as protocols, error control, transmission methods, coding and circuit configurations are explained. Microwave radio, satellite communication, and fiber optic systems concepts are studied. Applications including cellular and wireless communications are introduced. (0609-534) Class 4, Credit 4, Lab 2

0609-547 Digital Signal Processing
Basic concepts of linear systems are covered, followed by an introduction to digital signal processing. Emphasis is placed on digital filter design and digital spectral analysis. (1019-422) Class 4, Credit 4

0609-550 Power Systems I
Basic elements of a power system, energy sources, substation configuration, load cycles, balanced and unbalanced three-phase circuits, power factor correction, transmission line configurations and impedance, voltage regulation of transformers and the per unit system are studied. Load flow and economic operation are introduced. (0609-337 or 0609-411 for Mechanical Engineering Tech. students with permission of instructor) Class 3, Credit 4

0609-552 Power Systems II
Load Flow and economic operation of power systems are studied. The symmetrical component method of three phase circuit analysis is used for fault analysis. Power system relay protection, supervisory control, power quality and system stability are introduced. (0609-550) Class 3, Credit 4

0609-554 Electronic Optic Devices
An introductory course in the basics of Optoelectronics. Basic optics is reviewed. Topics to be covered include the introduction to optics, lenses and optical systems; light sources and transmitters; modulation; light detectors and receivers; fiber optics and lasers. (0609-362) Class 4, Credit 4

0609-580 Senior Project
Selected independent study of design project by electrical technology students with the approval of the department. Approval must be granted first week of fall or winter quarter for spring quarter registration. Class/Lab as required. Credit 4

0609-599 Independent Study
A supervised investigation within an electrical engineering technology area of student interest. Consent of the instructor and the student’s academic adviser is required. Credit 2-4

Mechanical Engineering Technology

0610-101 Freshman Seminar
A seminar course for incoming freshmen in the mechanical engineering technology and manufacturing engineering technology programs. Course includes discussions; presentations by upperclassmen, alumni, and faculty; and student activities concerned with helping students become familiar with RIT resources, adjusting to college and college level course work, and identifying career interests. Students practice communication skills, work in teams, and discuss issues such as values, diversity of cultures, and stress. Class 1.5

0610-102 Sophomore Seminar
A seminar course for sophomores in the mechanical engineering technology and manufacturing engineering technology programs. Consists of panel discussions with professionals in career areas such as manufacturing, design, construction, facilities, and technical sales. There will be panel discussions with fifth-year students about co-op and career opportunities. Students will become more familiar with career paths open to them and will be able to visit potential work environments and develop co-op interests. Class 1.5, Credit 1

0610-211 Introduction to Materials Technology
A survey of engineering material and how these materials are matched to the service requirements of the component. Emphasis is on metals; their structure, properties, and applications. (0610-304 concurrently) Class 3, Credit 3

0610-220 Design Dimensioning & Tolerancing
This course focuses on dimensioning and tolerancing of parts and assemblies. Geometric dimensioning and tolerancing is emphasized through lectures, CAD/CAM exercises and physical measurement of parts. The course is project-based where the students examine an assembly to produce freehand sketches, 3-D models of the assembly and the parts, 2D prints, and a bill of materials. (0617.262, 220, corequisite 1016-319) Class 3, Lab 2, Credit 4

0610-230 Computing Tools for Engineering Technology
The computer is one of the fundamental tools of mechanical technologists. This course instills a basic level of computer competency that is regarded by the faculty and industrial employers as essential for success. The course introduces a wide range of applications, including word processing, spreadsheets, making graphs, presentations, basic Web page design and posting, and technical calculations. The course also teaches computer-related topics such as file management, antivirus protection, e-mail and Web use as an educational resource and means to post information. A unit on basic computer set-up and repair is included. Class 3, Lab 2, Credit 4
0610-302 Introduction to Statics
An introduction to statics covering forces, moments, vectors, equilibrium, friction, areas, volumes and masses. (1017-211) Class 3, Lab 1, Credit 4

0610-303 Strength of Materials
The study of strength of materials and how forces affect axial, shear, and bending stresses and deflections of structural and machine members. Relationships between stress and strain, for both axial and torsional loading, are explored. Beams, shafts, bolted or pinned joints, and columns are analyzed and designed based on stress and deformations. Combined stress states are analyzed, including using Mohr’s circle. Applications are drawn from the fields of mechanical and civil engineering technology. (0610-302) Class 3, Lab 1, Credit 4

0610-304 Materials Testing
A laboratory course dealing with standard physical tests of various materials, instrumentation used in these tests and the preparation of laboratory reports. (Corequisite: 0610-211) Class 0, Lab 2, Credit 1

0610-305 Pneumatic & Hydraulic Systems
The study of the basics of fluid power. Areas of study are pressure, viscosity, turbulence, flow, thermal properties and displacement. Hydraulic/pneumatic components such as pumps, actuators, valves, accumulators, lines, directional controls, sealing devices, servomechanisms, hydraulic fluids and fluid containers are studied. (0610-302) Class 3, Lab 2, Credit 4

0610-315 Principles of Mechanical Design I
Mechanics of materials as applied to mechanical design. Principles of deflection, stress, bending and torsion in parts. Working stresses and failure in parts. Design shafts, springs, and screws. (0610-303) Class 3, Lab 1, Credit 4

0610-316 Principles of Mechanical Design II
Mechanical design of machine components-clutches, brakes, lubrication ball and roller bearings, spur gears. (0610-315) Class 4, Credit 4

0610-399 Independent Study
A supervised investigation within a mechanical technology area of student interest. Consent of the instructor and departmental approval are required. Credit 1-8

0610-404 Applied Mechanics of Materials
The basic concepts of strength of materials as applied to mechanical design are reviewed in depth. Includes the study of the concepts of stress and strain, the stress-strain relationship and combined stress. Fatigue and properties of materials and analysis of mechanical fatigue, theories of failure. Application of these concepts to the analysis of machine members. (0610-303, 1019-420 concurrently) Class 3, Recitation 2, Credit 4

0610-405 Applied Dynamics
This is a course in the fundamentals of kinematics and kinetics of motion. Kinematics is the study of geometry of motion. Kinetics relates the forces of objects to their resulting motion. This includes the study of Newton’s Laws of Motion, energy methods, and impulse and momentum. (1019-421 concurrently) Class 3, Recitation 2, Credit 4

0610-406 Dynamics of Machinery
A study of the kinematics and kinetics of machine elements. Applications in robotics mechanisms are studied. Both graphical and computer methods are used. (0610-405 and 432) Class 3, Lab 2, Credit 4

0610-407 Mechanical Engineering Technology Lab I
A course in mechanical laboratory techniques and the preparation of laboratory reports; experimental work in statics, strength of materials, experimental stress analysis and dynamics. Instruction in the preparation of laboratory reports. (0610-405 and 0610-230 or 432 concurrently) Class 1, Lab 2, Credit 2

0610-408 Applied Mechanics I
Elements of statics and strength of materials. Topics include plane equilibrium, friction, stress, strain torsion and the bending of beams. Offered as a service course to Electrical Engineering Technology students and Electrical/Mechanical Engineering Technology students. (1017-211) Class 3, Recitation 1, Credit 4

0610-409 Mechanical Engineering Technology Lab II
A course in laboratory techniques, the analysis of experimental results and the preparation of laboratory reports. Experimental work in materials science and plastics technology will be conducted with special emphasis on plastics technology. (1011-273; corequisite: 0610-416) Class 1, Lab 2, Credit 2

0610-410 Applied Mechanics II
The basic concepts of statics and strength of materials are briefly reviewed. Additional strength of materials topics are introduced with the view of developing basic analytical procedures for the preliminary design of engineering structures and machine components. Topics include combined stress, transformation of plane stress, principal stresses and maximum shear stress, Mohr’s circle, thin-walled pressure vessels, columns and structure stability. The fundamentals of kinematics and kinetics of particle motion are developed, including the study of Newton’s Laws of Motion, energy methods, and impulse and momentum. Offered as a service course to electrical engineering technology and electrical/mechanical technology students. (0610-408, 1016-421 concurrently) Class 3, Recitation 1, Credit 4

0610-416 Materials Technology
Topical areas of study include corrosion reactions, corrosion prevention, properties and structure of plastics, an overview of plastics processing, the nature of adhesives and adhesive bonding, properties of composite systems and ceramics properties and structure. (1011-273, 0610-211) Class 4, Credit 4

0610-432 Computers in Mechanical Technology
This course introduces several software applications and the use of the Microsoft Windows (Windows 95) operating system. Basic use of the PC computer is taught: file management, setting up file systems, formatting floppy disks, virus protection. Students learn the fundamental operations of Windows such as file copying, drag-and-drop operations, using the “clipboard,” saving files. Students are given a thorough grounding in the use of Microsoft Office: Word for word processing, Excel for spreadsheets, and PowerPoint for presentations. Special features of the applications are covered such as equation writing, preparing charts and graphs, drawing figures, use of clip art, and object linking and embedding (OLE). All instruction and testing are done in the PC laboratory with one student per computer. Class 1, Lab 2, Credit 2

0610-440 Applied Thermodynamics I
The first and second laws of thermodynamics and their applications in mechanical engineering technology. Thermodynamic properties of fluids including ideal gasses and pure substances are studied. Thermodynamic processes and applications of thermodynamic principles to steam cycles and refrigeration cycles. (1019-421 or permission of adviser) Class 3, Recitation 2, Credit 4

0610-441 Thermodynamics & Heat Transfer
The first and second laws of thermodynamics and their applications. Thermodynamic properties of fluids, including ideal gases and pure substances, are studied. Introduction to heat transfer by conduction, radiation and convection. Selection of heat exchangers. (0610-421 or permission of adviser) Class 3, Recitation 2, Credit 4

0610-442 Heat Transfer
The first course in heat transfer. The theory and application of the fundamentals of heat conduction, convection and radiation. The design and application of heat transfer apparatus. (0610-440, corequisite 0610-460) Class 3, Lab/Recitation 2, Credit 4

0610-451 Vibration & Noise
A study of the basic concepts of vibration and noise. Designing equipment for survival in vibration and shock environments. Methods of reducing noise in machinery structures. Environmental tests for vibration and shock. Methods of vibration and noise analysis will be demonstrated. (1019-422, 0610-405) Class 4, Credit 4

0610-460 Applied Fluid Mechanics
A study of the fundamentals of fluid statics and dynamics. Principles and applications of fluid statics, fluid kinematics, fluid kinetics, the energy conservation principle, dimensional analysis and fluid momentum. Also covered are laminar and turbulent flow in pipes and products, fluid machinery, fluid meters and lifting vanes. (1019-422 or permission of adviser) Class 3, Recitation 2, Credit 4

0610-465 Thermodynamics/Fluids Lab
Laboratory experiments in thermodynamics, fluid mechanics and heat transfer. Special emphasis is placed on report preparation and computer-aided data reduction. (0610-440,460) Class 1, Lab 3, Credit 3

0610-499 Mechanical Technology Co-op
One quarter of appropriate work experience in industry. (0606-099) Credit 0
0610-506 Machine Design I
The static theories of failure and mechanical fatigue analysis are reviewed. These concepts are applied to the selection, analysis and design of power transmission shafts, power screws, fasteners, springs and spurs. The design and selection of both hydrodynamic and rolling element bearings are studied. (0610-404, 230 or equivalent) Class 3, Studio 2, Credit 4

0610-508 Machine Design II
A study of the machine design principles in a design term environment to conceptualize design, build, and test a product or mechanical system. Group projects from industry or school laboratory are emphasized. (0610-405, 506) Class 3, Lab Project 2, Credit 4

0610-509 Product Design
Integrates the product development and design process with establishing a need for the product; developing concepts; generating and evaluating the product concepts; developing specifications and design reviews; considering production, service and retirement. Special emphasis is placed on team work (concurrent engineering), determining customer requirements (quality function deployment), design for manufacturing and assembly (DFMA) and quality/reliability. Students learn how to reduce material and part costs, assembly time and the number of parts in the product. (0610-506) Class 4, Credit 4

0610-512 Computer Integrated Mechanical Design
The use of computer simulation and finite element method in solving mechanical design problems, such as stress concentration, dynamic impact, thermal stresses. Industrial projects are emphasized. (0610-405, 506) Class 2, Lab 3, Credit 4

0610-515 Plastics Processing Technology
Various methods used to manufacture plastics products. Topics include compression molding, rotational molding, extrusion, injection molding, blow molding and thermoforming. (Fourth-year status) Class 4, Credit 4

0610-516 Plastic Products Design & Materials Selection
The study of design guidelines for plastics products based on the interrelationships between product design, the material selected, the manufacturing process selected and the tooling to be used. (0610-515 or permission of the adviser) Class 4, Credit 4

0610-510 Instrumentation
The design and use of force, torque, pressure, flow, temperature, acceleration, velocity and displacement instrument transducers. Laboratory experiments demonstrate calibration and set-up techniques and analysis of data. Principles of uncertainty, dynamic response, signal conditioning and computerized data acquisition are examined. (0609-411, 460, 1019-422) Class 4, Credit 4

0610-540 Applied Thermodynamics II
Application of thermodynamics to vapor power cycles, internal combustion engines, compressors, refrigeration, air conditioning, psychrometrics and combustion processes. Field trips are taken to representative energy facilities. (0610-440, 460) Class 4, Credit 4

0610-541 HVAC System Engineering
Principles and applications of refrigeration, air conditioning, comfort heating and ventilating. Thermodynamics of air conditioning, psychrometrics, moisture calculations; also related heat-transfer topics. (0610-440, 0610-460 concurrently) Class 4, Credit 4

0610-543 Energy Management
Technical, management and cost aspects of energy conservation. Technical aspects of reducing energy consumption in utilities, processes, buildings, heating, air conditioning and ventilation systems. Special topics such as furnace efficiency, heat recovery, heat pumps, pumping and piping, and architectural considerations. (0610-542 or permission of instructor) Class 4, Credit 4

0610-570 Robust Design
The fundamental principles of robust design are developed. The history of the robust design engineering methodology is presented. The concepts of the loss function, concept selection, parameter design and tolerance design are covered in detail. A structured design engineering methodology is taught with strict attention to the importance of linking engineering knowledge to Taguchi’s approach to designed experiments. Metrics and analysis techniques are developed to optimize the performance of product or process components in spite of the variability of their design, manufacturing or customer use environments. Specific attention is paid to a number of case studies to reinforce the students’ conceptualization of the methods and their focus on engineering of optimized products and processes. (Fifth-year student or department approval) Class 4, Credit 4

0610-599 Mechanical Technology Independent Study
A supervised investigation within a mechanical technology area of student interest. Consent of the instructor and departmental approval are required. Credit 1-8

Telecommunications Engineering Technology

0614-207 TET First-Year Orientation
This course is designed to be an introduction to telecommunications engineering technology and the skills students need to be successful at RTT. (Freshman in the telecommunications engineering technology program) Class 1, Credit 1

0614-271 Telecommunications Fundamentals
A survey of and introduction to the structure and regulation of the telecommunications industry. The basics of data communications, telephony, switching systems, ISDN, multiplexing and networks are introduced. Data communication components, codes and techniques are identified. Methods for selecting, implementing and managing a computer network or telephone system are reviewed. Class 4, Credit 4

0614-440 Management Topics for Engineers
This course provides future Engineers and Engineering Technologists with a sound foundation in Business Principles. It will encompass three main topics in one course (3-in-one). The selected major topics are: Engineering Economics, Ethics and Project Management with business principles covered as part of each topic. It is envisioned that the course will quickly lay a foundation in Project Management basics and utilize a contemporary PC based Project Management tool. This topic will primarily be covered in one two-hour lab each week. The first half of the “traditional” lecture series of the course will introduce and develop Business and Engineering Ethics. (Prerequisite: students must be upper level (years 3-5) and must have successfully completed at least one Co-Op block. Also, knowledge of a PC spreadsheet application like Excel and knowledge of algebra) Class 3, Lab 2, Credit 4

0614-464 Signaling, Transmission & Switching in Voice Communications
This distance learning course provides a technical understanding of the local and interexchange carrier environments with respect to analog and digital signaling principles, transmission equipment, services and subscriber loop engineering. Private and public telephone systems and networks are studied with respect to POTS, ISDN, digital loop carrier, cellular and traffic analysis. This course covers many of the topics in Voice Communications (0614.465) course without the associated laboratory. Additional topics included in this course are voice-over IP networks, computer-telephone integration, digital network signaling and digital transmission principles. Students are also required to write a research paper. (0614-271 and 4002-200 or equivalent) Class 4, Credit 4

0614-465 Voice Telecommunications
This course provides a technical understanding of the local and interexchange carrier environments with respect to analog and digital signaling principles, transmission equipment, services and subscriber loop engineering. Private and public telephone systems and networks are studied with respect to POTS, ISDN, digital loop carrier, cellular and traffic analysis. Students may not take both this course and 0614-464 for credit. This course is a replacement for 474 lecture. (0614-271 and 4002-200 or equivalent) Class 3, Credit 3
0614-466 Voice Telecommunications Laboratory
This course is offered only on-site at RIT and provides the laboratory compo-
ment for material presented in 0614-465 and 0614-464. Day and evening sec-
tions are offered in sequence with offerings of course 0614-465. Distance
learning sections are offered as an intensive weekend lab in conjunction with
distance learning sections of 0614-465 or 0614-464. (Distance learning stu-
dents must have completed either prerequisite prior to attending the sched-
uled RIT intensive weekend lab.) On-campus day and evening students may
register concurrently with on-campus offerings of 0614-465. Credit 1, Lab 2

0614-475 Switching Technologies
This course covers narrowband and broadband switching, protocol, trans-
mission, signaling and transport concept used in public and private telecom-
munications networks. Signaling System #7, frame relay, ATM, SONET,
packet and circuit switching fabrics are studied. (0614-465, and 0614-466,
0614-477) Class 4, Credit 4

0614-477 Networking Technologies
Provides a practical overview of data communications from the point of the
OSI seven-layer and the TCP/IP five-layer protocol model. This course covers
the operation of the lower four layers in detail by examining various protocols.
Special emphasis is placed on internetworking, local-area networking and
wide-area networking. A laboratory ensures a level of networking competency
and provides reinforcement of some of the concepts developed in the lecture.
(1016-319 or equivalent, 1019-420 and 0614-271 or permission of instructor)
Credit 4

0614-479 Network Management
This course provides an intensive overview of the art and science of manage-
ment of emerged and emerging telecommunications networks. It integrates
technical, management and financial aspects of network management with
emphasis on defining requirements, identifying methods of proactive meas-
urement as well as providing specific study of the telecommunications man-
agement network (TMN) architecture model and interface specifications. The
OSI- and TMN-compliant network management package, Netexpert, is used as
a real-world reference. Where possible, other real-world examples are uti-
lized to illustrate lecture topics. A case study/team project is researched and
presented. (0614-474 or 0614-465 and 0614-466 or 0614-464, 0614-477) Class 4,
Credit 4

0614-480 Introduction to Telecommunications Policy & Issues
This course provides an introductory overview of domestic and international
telecommunications policy and issues with special emphasis on domestic
policy, regulation and law. Current issues, trends and standards will also be
discussed. The course starts off with a basic definition of telecommunications
and why policy, regulation/deregulation and law are important to under-
stand. It then moves to the history of U.S. telecommunications development
with emphasis on the regulatory environment and continues with discus-
sions of current U.S. regulatory policy at the state and federal levels. Current
sweeping changes in the regulatory and legal arenas and the move to a new
U.S. and worked model will be discussed. The importance of standards for
domestic and international telecommunications will be studied along with a
description of the standards definition process. Other issues will be raised
including privacy, security and the likely future issues and trends. This
course involves much reading, discovery as well as collaborative (group)
projects. (0614-271) Class 4, Credit 4

0614-483 Telecommunications Transmission Systems
Fundamentals of transmission systems are introduced. Different types of
transmission systems such as coaxial, fiber optic, microwave, and satellite
systems are studied and compared. At the end of this course students will be
able to apply transmission system theory to the analysis and design of cop-
er, fiber optic, and wireless transmission systems. This course is a replace-
ment for 473 lecture (0609-333, 1019-422, 0609-363) Class 3, Credit 3

0614-484 Telecommunications Transmissions Systems Lab
Laboratory and applications experience with transmission system concepts
and analysis is provided to complement the lecture material in 0614-483
Telecommunication Transmission Systems. Students will use circuit simulation
software, spreadsheet software, and laboratory equipment to analyze, measure
and characterize transmission system hardware components. (0614-483; on-
campus offerings allow concurrent registration in 0614-483) Credit 1, Lab 2

0614-499 Telecommunications Engineering Technology Co-op
One quarter of appropriate work experience in a telecommunications related
industry. (0609-363, 407, 0614-474 or 0614-465 and 0614-466, 477 or permis-
son of academic advisor) Credit 0

0614-561 Telecommunications Network Engineering
This course considers the design of PSTN backbone carrier networks with
respect to loss, delay timing and synchronization. Data networks are considered
with respect to router placement, addressing space and capacity in the face of
various types of modeled traffic. (0614-475, 0614-477, 1019-422) Class 3, Credit 3

0614-562 Telecommunications Network Engineering Laboratory
This course provides the laboratory experience to complement 0614-561
Telecommunications Network Engineering. Routers are configured for IP,
various frame relay, and routing protocols over various LAN, WAN and syn-
chronous facilities (0614-561; on-campus offerings permit concurrent regis-
tration in 0614-561) Credit 1, Lab 2

0614-574 Network Planning & Design
This course provides participants with an introduction to the art and science
of wide area network design. Various design approaches are introduced and
several heuristic design algorithms are utilized. Blocking networks (tele-
phone voice circuit networks) and delay networks (packet) are studied; greater
emphasis is placed on delay networks. A design tool called Delite (design
“lite” version) is utilized. The course is taught in a collaborative par-
ticipatory manner with considerable student interaction as opposed to
straight lecture. Whenever possible, real-world examples are utilized to illus-
trate topics. (0614-479, 0614-571) Class 4, Credit 4

0614-599 Independent Study
The student is required to research or work in laboratory as dictated by the
requirements/nature of the independent study. (Must be a fifth-year student
in terms of credits earned and have the approval of the telecommunications
engineering technology program chair) Credit 2-4

Manufacturing Engineering Technology

0617-220 Manufacturing Processes I
This course will focus on the basic understanding and application of tradi-
tional manufacturing processes. Students will be challenged to discover and
learn how typical industrial piece parts and assemblies are constructed.
Topics include material properties, powder metal processes, bulk deforma-
tion processes, metal removal processes and sheet metal forming processes.
Class 3, Credit 4, Lab 3

0617-261 Introduction to CAD-A
This is an introductory course in computer aided design. It teaches the basic
concepts of automated design and drafting including two and three dimen-
sional model creation, automatic dimensioning and text generation. The
course will be taught with the aid of a PC-based CAD system (Auto-CAD).
(0608-210) Class 3, Credit 4, Lab 2

0617-262 Solid Modeling & Design
This course introduces students to the engineering design process and solid
modeling. Students learn visualization skills, parametric solid modeling, and
creation of engineering drawings which meet industrial drafting standards.
Design projects are used to reinforce concepts and provide practical design
experience. Class 3, Credit 4, Lab 2

0617-271 Fundamentals of Solid Modeling
This course is intended for transfer students who have a background in a
solid modeling package other than is used in 0610-220. Students will learn
the fundamentals of Mechanical Desktop, in preparation for taking 0610-220.
Credit 3, Lab 2

0617-410 Computers in Manufacturing
A course dealing with concepts in data acquisition & control and applica-
tion of computers for manufacturing process integration. This course will intro-
duce the concepts in digital and hexadecimal number systems, digital logic,
parallel and serial communication, microcomputer architecture, sensors &
actuators and real-time programming. Concepts in networking and dis-
tributed systems will also be introduced. Students will use C or C++ pro-
gramming language to control experimental setups in the laboratory. (C or
C++ programming language) Class 3, Credit 4, Lab 2

0617-420 Manufacturing Processes II
This course will focus on the basic understanding and application of non-
manufacturing processes. Students will be challenged to discover and learn
how typical industrial piece parts and assemblies are constructed. Topics
include: plastics fundamentals, joining processes electro-discharge machin-
ing, water jet cutting, ultrasonic machining, laser beam machining and
review of rapid prototype manufacturing processes. (Manufacturing
Processes I) Class 4, Credit 4
0617-436 Engineering Economics
A study of techniques required to make economic decisions. Topics covered in the course include cash flow analysis, present worth analysis, annual worth analysis, rate of return evaluations, benefit cost analysis, break even analysis, replacement analysis, bonds, the effect of tax on cash flows, and sensitivity analysis. (1016-319) Class 4, Credit 4

0617-440 Production & Operations Management I
This course is designed to provide the student with knowledge of statistical quality control (SQC) and value analysis/value engineering (VAVE). (1016-319) Class 4, Credit 4

0617-441 Production & Operations Management II
This course is designed to provide the student with knowledge of the latest theories and practices of operations management employed by world class manufacturing organizations. Topics include TQM, MRP, JIT, synchronous manufacturing, theory of constraints, work simplification, and operations research. The theories of Goldratt, Dening, Schonberger, Suzuki, Shingo, Black and other current authors will be introduced. (0617-436) Class 4, Credit 4

0617-455 Introduction to Surface Mount Electronics Packaging
This course will provide a thorough understanding of the technology, components, equipment, design and manufacturing process for surface mount electronics manufacturing. As an introductory course, it will provide students with a strong foundation needed for advanced work in surface mount technology (SMT). The laboratory demonstrations will provide the students an orientation and familiarization of the manufacturing equipment and processes for printed circuit board assembly. (0609-411) Class 4, Credit 4

0617-456 Advanced Concepts in Electronics Packaging
This course provides an in-depth study of materials, analytical procedures and manufacturing processes related to surface mount electronics manufacturing. The lecture topics will include design and manufacturing standards, stencil printing, component placement, soldering, cleaning, testing inspection, real-time process control, and CAD/CAM integration. The laboratory projects for this course will include analytical analysis of raw materials, solder joint reliability, substrate inspection and a detailed process study of stencil printing, component placement, soldering, post-solder inspection and rework & repair. (0617-455 or prior work experience in the field) Class 2, Credit 4, Lab 2

0617-457 Electronics Packaging Lab
This laboratory class will provide the hands-on training in surface mount electronics packaging. Students will learn to set-up and operate production scale equipment, understand process parameters and their influence and characterize the entire PCB assembly process. Laboratory experiments will also include analytical evaluation of raw materials, such as, solder paste viscosity, tackiness, wetting, component & board solderability, solder balling, etc. Credit 1

0617-460 Computer-Aided Design CAD is introduced as an integral part of the computer integrated manufacturing process. Basic concepts of CAD software and hardware, interactive graphics, CAD Applications, CAD economics and the interrelationship of CAD and CAM are discussed. The course work gives the student the skills needed to create 3D solid models using an industry leading hybrid parametric 3D solid modeling application. Emphasis is placed on laboratory work such as creating solid models and assemblies containing solid models with limited view creation and dimensioning. (0608-210, 0617-262) Class 4, Credit 4

0617-470 Controls for Manufacturing Automation
This course deals with the principles and application of programmable logic controllers (PLC). Topics include PLC hardware, programming and application of PLCs in a computer integrated manufacturing (CIM) environment. Students will also be exposed to man machine interface (MMI) and PLC networks. (0609-411) Class 3, Lab 2, Credit 4

0617-471 Computer Numerical Control
An advanced course in computer numerical control. Emphasis is placed on machine language and computer aided parts program generation, tool path verification and program editing. Students create three axis programs for CAD, generate models, then modify their instructions to CNC machine tools to actually cut the finished part from raw stock. CAD/CAM integration concepts are presented. (0617-220,261, or 460) Class 3, Lab 2, Credit 4

0617-472 Tool Engineering
This course teaches the principles of design for industrial tooling. The course discusses the concepts of jig, fixture, measurement, die and automated equipment design, engineering analysis and manufacture. Workplace locating, supporting and clamping systems are emphasized. (0617-420, 261) Class 3, Lab 2, Credit 4

0617-475 Computer-Aided Manufacturing
This course deals with the use of computers for the various aspects of manufacturing. These aspects include group technology, process planning, automated CNC part programming, shop floor control, concurrent engineering and flexible manufacturing systems. The course also deals with CAD/CAM integration and the importance of CAD database in manufacturing. It introduces the relationship of CAM with the various elements of computer integrated manufacturing (CIM). Emphasis is on the design and development of a real-world CAM system in the laboratory. (0617.410, 470, 471, 485) Class 3, Credit 4, Lab 2

0617-485 Robots in Manufacturing
This course deals with the technology and application of robots in a computer integrated manufacturing (CIM) environment. It will provide a thorough understanding of robotic hardware and software. The hardware aspects include robot configurations, drive mechanisms, power systems (hydraulic, pneumatic and servo actuators), end-effectors, sensors and control systems. The software aspect deals with the various methods of textual and lead through programming. Digital interfacing of robots with other CIM components such as programmable logic controllers, computer-controlled machines, conveyors, etc. will be introduced. Robotic cell design and the socio-economic impact of robotics will also be discussed. A strong laboratory hands-on training component is part of the course. (0617-410, 470) Class 3, Credit 4, Lab 2

0617-499 Manufacturing Technology Co-op
One quarter of appropriate work experience in industry. (0606-099) Credit 0

0617-510 Process Design
A project oriented capstone course to enable students to design, develop, implement and test a CIM cell. The students are required to work in teams and identify suitable product and process concepts that fit into a CIM environment. The students must demonstrate successful operation of the cell to receive a satisfactory grade. (0617-436, 0617-440, and 0617-441, 0617-475, 0617-485) Class 1, Credit 3-4

0617-530 Special Topics in Computer Integrated Manufacturing
This course is designed as a technical elective offered to enable students to pursue subjects of special interest to themselves. Subject matter is limited to the area of CIM. Students will be given the opportunity to present a proposal outlining their goals for the course. Upon approval by the course instructor students will be given wide latitude to investigate their CIM area of interest to a breadth and depth not available in a structured course. Students will be expected to work in areas and on problems of concern to the manufacturing industry. Acceptable projects will include those undertaken in response to specific requirements of an industry contact, individual research or research in conjunction with faculty or fellow students, library research, intercollege competitions, or investigative or original (innovative) papers suitable for publication. Credit 2-5

0617-599 Independent Study
A supervised investigation within a manufacturing technology area of student interest. Consent of the instructor and department approval are required. Credit 1-8

Computer Engineering Technology
0618-101 Freshman Seminar
This course provides first-year students an opportunity to develop skills necessary to succeed in the computer engineering technology program. Through interactions in a small group environment, students will make friends with other students in their major, create a stronger bond with RIT, and develop a working relationship with their academic adviser. The students will become more knowledgeable about the computer engineering technology discipline, career options and ethical issues. (Enrollment as a freshman in the computer engineering technology program) Class 1, Credit 1

0618-200 Digital Fundamentals Advanced Placement
This course is used ONLY for the purpose of transferring advanced placement (AP) credit for Digital Fundamentals (0618-301). Transfer credit will be granted only to students who receive a letter grade of B or better in Project Lead the Way’s digital electronics course.
An introductory course involving the hardware and structure of a basic microprocessor based microcomputer. Emphasis will center on the hardware characteristics, design considerations, trouble shooting skills and interfacing principles. (0618-301 and a formal, structured programming course) Class 3, Lab 2, Credit 4

0618-320 Principles of Electronic Design Automation
An introductory course in the VHSLC hardware descriptive language (VHDL). The course provides in-depth coverage of the language and describes the VHDL design environments that will used for synthesis and verification. Topics include the behavior, data-flow and structural modeling of both combinational and sequential logic, design methodologies, synthesis and optimization. An IEEE-1076 standard VHDL development system will be extensively utilized to synthesis VHDL for PLD, CPLD, and FPGA applications. (0618-438 and a formal, structured programming course) Class 3, Credit 4, Lab 2

0618-339 Microcontrollers
An advanced course in interfacing microcontrollers to sensors, actuators, and input/output devices. Topics include measurement of light and temperature levels, interfacing issues related to keypads, LCD panels and LED display modules, concepts of analog to digital conversion, pulse width modulation and serial communications. It is assumed that the student is already familiar with assembly and machine language programming of microprocessors. (0618-301, 0618-303) Class 3, Credit 4, Lab 2

0618-371 Special Topics
Special Topics is an experimental lower-division course intended as a means for offering innovative topics not reflected in the current curriculum. Class 4, Credit 4

0618-438 Digital Systems Design I
An advanced course in the design techniques of complex combinational and sequential logic circuits and subsystems. Emphasis is on the use of system-atic design procedures for implementing state machine designs. The internal structure and functions of various logic gates and families are analyzed. The problems of interfacing various logic families are discussed. (0618-303, 0609-203) Class 3, Credit 4, Lab 2

0618-372 Technical Programming II
The second course of a three-course sequence in developing software for the solution of technical applications. Specifically, object-oriented programming of the C++ language will be employed to develop software solutions for engineering and scientific applications. Fundamental data structures (arrays, pointers, records) will be introduced. (0618-231) Class 3, Lab 2, Credit 4

0618-323 Technical Programming III
The final course of a three-course sequence in developing software for the solution of technical applications. Specifically, classical data structures and advanced data types (lists, strings, stacks, queues, trees and graphs) will be studied and employed to develop software solutions for engineering and scien-tific applications. These applications will include an introduction to numerical methods (root finding, bisection method, secant method, numerical integration, trapezoidal rule, and Simpson’s rule). (0618-232) Class 3, Lab 2, Credit 4

0618-303 Digital Fundamentals
A first course in digital fundamentals. Topics include binary arithmetic, Boolean algebra, logic gates, Karnaugh mapping, sequential and combinato-rial logic circuits, and an introduction to state machines. (0609-201, 0609-221; corequisite 0609-222) Class 3, Lab 2, Credit 4

0618-301 Microcomputers
An introductory course involving the hardware and structure of a basic microprocessor based microcomputer. Emphasis on the hardware characteristics, design considerations, trouble shooting skills and interfacing principles. (0618-301 and a formal, structured programming course) Class 3, Lab 3, Credit 4

This is the second of a three-course embedded systems sequence. General hardware and software principles are expanded upon as students build their own 32-bit microprocessor based system from the ground up. Debugging techniques unique to a new system design are explored in detail as students bring to life a completely untested system. Concepts such as dynamic bus sizing, burst accesses, interfacing to a standard bus, and design for test and manufacture are covered in detail. (0618-561 and a formal, structured C or C++ programming course) Class 3, Credit 4, Lab 2

0618-562 Embedded Systems Design II
This is the second of a three-course embedded systems sequence. General hardware and software principles are expanded upon as students build their own 32-bit microprocessor based system from the ground up. Debugging techniques unique to a new system design are explored in detail as students bring to life a completely untested system. Concepts such as dynamic bus sizing, burst accesses, interfacing to a standard bus, and design for test and manufacture are covered in detail. (0618-561 and a formal, structured C or C++ programming course) Class 3, Credit 4, Lab 2

0618-563 Embedded Systems Design III
This is the final of a three-course embedded systems sequence. Students expand upon the 32-bit microprocessor based system they build in 0618-562. More complex peripherals, cache principles, multi-master systems, arbitration and resource sharing, and bus standards are covered in detail. (0618-562 and a formal, structured C or C++ programming course) Class 3, Credit 4, Lab 2

0618-571 Topics in Computer Engineering Technology
A project-based capstone course for computer engineering technology pro-gram students. Working in design teams of two to four students each, they will specify, design, manage and implement a complete design project. The specific projects will be based on the students’ and faculty’s professional/ personal interest, but it is required that the design projects emphasize the product development cycle of an embedded system design. (Fifth-year status) Class 3, Credit 4, Lab 2

0618-580 Senior Project
A course that provides the motivated student with an opportunity to pursue a supervised design project of mutual interest to him/herself and the spon-soring faculty. The design project must be within the computer engineering technology discipline. (Fifth-year status in the computer engineering technol-ogy program) Credit 4

0618-599 Independent Study
A supervised investigation that provides the student with a vehicle to pursue areas of study not currently offered in the program. (Approval of the computer engineering technology program chair) Credit 2-4
Hospitality Management

0619-220 Service Management Career: Hospitality Industry Seminar designed to define career opportunities in the hospitality, nutrition, and service management industries. Students receive guidance in developing career objectives. Leading industry executives participate. Class 2, Credit 2

0619-410 Assessing Service Quality Excellence in customer service is the hallmark of success in service industries. But what exactly is service excellence? This course surveys the various issues related to measuring customer satisfaction. It examines those issues that cause service quality problems and what service organizations can do to solve these problems and improve service. Guidelines for developing questionnaires are discussed, with emphasis on issues of reliability and validity. The role and mechanisms associated with focus groups are addressed. (1016-301 or permission of instructor) Class 4, Credit 4

0619-426 Technology in Service Systems Predicting the future, adapting to change, connecting and communicating lifelong learning. A fundamental societal revolution has begun that is changing the nature of work and leisure. Explore the emerging and future work worlds, consumer trends, and the technologies that are changing the way society works. Emphasis is on technologies impacting the food, nutrition, hotel and travel service industries. Technologies explored may include those associated with communication, information retrieval, imaging, marketing, employee training, product quality, product customization, customer service, security, health, entertainment, and customer interface, as time permits. Student teams will chart the flow of product/service systems and identify technologies to enhance them to meet customer needs. Individual (personal) and team (business) Web sites will be constructed. Credit 4

0619-470 Leadership in Service Culture The leadership and executive development course prepares you to assume leadership and management roles as you prepare to enter the work force. Principles, applications and exercises specifically designed around hospitality and tourism industry examples will enable you to more effectively progress as future leaders and managers in the hospitality and tourism industries. You also will begin to establish your own personal leadership and management style based on these examples and exercises. The course makes extensive use of lectures, laboratories and industry expertise. Class 4, Credit 4

0619-490 Senior Project A capstone course that explores the integration of disciplines in addressing problems and issues facing the service/hospitality industries. Students have the opportunity to identify and investigate (as individual projects) challenges to these industries. Various modes of research, problem-solving techniques and presentation styles are utilized. Students also have the opportunity to select a faculty mentor. The class culminates with a presentation made by the student to peers and faculty. Class 4, Credit 4

Nutrition Management

0620-213 Contemporary Nutrition The study of specific nutrients and their functions: physiological, psychological and sociological needs of humans for food; development of dietary standards and guides; application of nutritional principles in planning and analyzing menus for individuals of all ages; survey of current health nutrition problems and food misinformation. Class 4, Credit 4

0620-402 Dietetic Environment Introductory supervised practice course. Students interact with a representative sampling of personnel in all areas of food and nutrition. Supervised observations are planned in food management systems, health care facilities and community nutrition programs. Practicum hours by arrangement. Class 1, Credit 4

0620-510 Understanding Nutrition in Complementary & Alternative Medicine This class offers an overview of controversial and accepted alternative diet therapies, basic medicine guidelines, and vitamin/mineral supplementation. Class 2, Credit 2

0620-525 Advanced Nutrition/Diet Therapy I The applied study of metabolism and the interrelationships between nutrients and other biochemical substances in humans. Etiology, symptoms, treatment and prevention of nutritional diseases; evaluation of nutritional status; role of the diet in gastrointestinal, renal, musculoskeletal, cardiac, endocrine, surgical and other diseases. Class 5, Credit 5

0620-526 Advanced Nutrition/Diet Therapy II The applied study of metabolism and the interrelationships between nutrients and other biochemical substances in humans. Etiology, symptoms, treatment, and prevention of nutritional diseases; evaluation of nutritional status; role of the diet in gastrointestinal, renal, musculoskeletal, cardiac, endocrine, surgical, and other diseases. Class 4, Credit 4

0620-550 Community Nutrition Study of current nutrition problems and delivery of nutrition information and service in the community. Survey of facilities involved in giving nutrition information or nutritional care. Emphasis on acquiring skills necessary for delivering nutrition information and services in traditional and nontraditional markets. Independent practicums involving nutrition care in community facilities are required. Assignments are arranged by the instructor. Practicum hours by arrangement. Class 3, Credit 8

0620-554 Nutrition in Life Cycle An applied course in nutritional needs throughout the life cycle. Emphasis is given to nutrition during pregnancy, infancy, early childhood, adolescence, young and middle adulthood, and the elderly. Practicum in facilities delivering nutrition services to these age groups is required. Practicum hours by arrangement. Class 4, Credit 5

0620-560 Clinical Dietetics I An intensive integrated study and application of advanced nutrition and diet therapy theories and principles. Primarily structured to integrate class lectures with practicum experience in a hospital setting. Practicum hours by arrangement. Class 4, Credit 4

0620-561 Clinical Dietetics II An intensive integrated study and application of advanced nutrition and diet therapy theories and principles. The course is primarily structured to integrate class lectures with practicum experience in a hospital setting. Designed for senior students in the coordinated dietetics program. Practicum hours by arrangement. Credit 4

0620-562 Clinical Dietetics III A continuation of 0620-560, 561 in the succeeding quarter, with the practicum experience being conducted primarily in the hospital. Practicum hours by arrangement. Class 4, Credit 4

0620-563 Clinical Dietetics IV A continuation of 0620-560, 561 in the succeeding quarter with the Practicum experience being conducted primarily in the hospital. Practicum hours by arrangement. Credit 8

Food Management

0621-225 Principles of Food Production Introduction to the basic principles involved in the preparation of high-quality food. Topics include product identification, market forms, varieties availability, composition, standards of quality, preparation techniques, and function of foods and ingredients. Standard methods of preparation will be introduced. Professionalism in appearance and work habits, self-organization, sanitation, management, teamwork, and techniques for efficient food production are stressed. Uniform and professional knife and pastry kits are required. Class 2, Credit 4, Lab 4

0621-310 Commodity Market Analysis An overview of the commodity futures and options markets. Special emphasis is placed on the fundamental economic factors affecting agricultural and energy-based futures prices. The economic principles and policies supporting hedging and speculating strategies are analyzed. Students are introduced to technical price analysis, basis analysis and the global economics of food-service commodities. Class 4, Credit 4
0621-314 Sanitation & Safety
Survey of micro-organisms of importance to the food industry; emphasis on
causes and prevention of food spoilage and poisoning. Responsibilities of
management to provide and establish safe working conditions and policies;
discussion of current problems confronting the industry as a result of recent
legislative developments as they relate to safety and health. Class 2, Credit 2

0621-315 Foodservice Marketing
Provides students with a business-to-business perspective of the marketing of
products to the foodservice industry. Also provides an understanding of dis-
tribution systems and foodservice marketing environments. Both macro and
micro marketing environments and issues are explored. The class considers
various marketing mix elements as they relate to segments of the foodservice
industry. Case studies and readings are utilized to give students realistic
opportunities to analyze and develop practical solutions. Class 4, Credit 4

0621-321 Menu Planning & Merchandising
The menu is the main focus of the foodservice operation, and its relationship
to efficient operation, merchandising, theme and customer satisfaction is con-
sidered. Truth in menu issues, layout, copyrighting, standardized recipes and
pricing techniques are explored. A wide variety of menus are critiqued. The
student plans and produces a menu for a theme restaurant and also creates a
dish or menu for a specific customer and situation. Class 2, Credit 2

0621-324 Food Purchasing
Principles of foodservice purchasing; selection and procurement, distribution
systems and the purchasing function and activities. Topics include measure-
ment, foodservice purchasing terminology, organization, specifications,
recipe standardization, recipe conversion, optimal purchasing practices and
purchasing principles for major food commodity categories including gov-
ernment and industry standards. Class 2, Credit 2

0621-331 Restaurant Operations
Entry-level production and service skills for line positions currently used in
the hospitality industry. Laboratory assignments are in the operation and
maintenance of Henry’s, a full-service restaurant modeled after industrial,
hotel and restaurant operations. Students are assigned to defined job descrip-
tions in production and service on a rotating basis. (0621-225, 314) Class 3,
Credit 6, Lab 10

0621-410 Food Processing & Quality Assurance
An introduction to traditional and contemporary food processing method
with emphasis on applications to foodservice operations. The effect of these
technologies on the storage life and sensory qualities of the products is exam-
ined along with common modes of quality loss in foods. Students are intro-
duced to industry-standard quality assurance measures. Class 4, Credit 4

0621-416 Product Development
Students will explore their creativity through instructor and student-planned
experiments involving sensory and objective evaluation of food quality, recipe
development, problem-solving, experimental design, written and oral
communication of research. Individual research projects focus on assessing
new ingredients or technologies, creating new products, and/or evaluating
the marketability of new product. (0621-225) Class 2, Credit 6, Lab 6

0621-424 Food & Labor Cost Control
Deals with industry-related problems. Combines classroom study of the fun-
damental principles of costs and controls, as applied by management, with
on-location application of financial practices and specialized methods and
techniques utilized in solving cost and management problems in the hotel/
motel and food services industry. Class 4, Credit 4

0621-499 Cooperative Education
Career-related work experience. Employment within the hospitality, nutrition
and service industry monitored by the Office of Cooperative Education
and Career Services and the hospitality and service management program.
Designed for the student to experience progressive training on the job as
related to the academic option. Freshmen begin co-op in the summer follow-
ing their first-year studies. Graduation requirement. Credit 0

0621-501 Wines of the World
An introduction to wines: history, points of origin, production, handling
practices, flavor characteristics and commercial value. Includes guest
speakers and sampling of products. Lab fee required. Class 2, Credit 2

0621-503 International Protocol & Cuisine
This course introduces etiquette and protocol considerations for the interna-
tional business and social environment. Topics include hosting and building
relationships with international associates as well as successful cross-cultural
communication and negotiations. Class 2, Credit 2

0621-511 Banquet & Catering Management
Designed to give students management experience in planning, organizing,
supervising, preparing and serving foods for specially booked functions.
Students plan catered events for 80 people and invite the public to attend.
Class 1, Credit 4, Lab 12

0621-512 Design & Layout of Food Operations
Evaluation of different foodservice facilities with regard to design and lay-
out. Review of layouts in operating full-service facilities and suggestions for
innovative ways to utilize the space to its fullest potential. (0621-331 or per-
mission of instructor) Class 2, Credit 2

0621-515 Foodservice Concepts Development & Planning
Provides students with the theoretical basis for developing and implement-
ing sound foodservice plans and theme concepts. Gives consideration to the
variety of financial, economic and demographic factors influencing concept
planning. Special emphasis is placed on developing foodservice business
plans, budgets, site selection and understanding the importance of these
variables on the theme, atmosphere, style of service, menu prices and labor
costs of the operation. Class 4, Credit 4

0621-525 Restaurant Management
Students develop entry-level management competence through the opera-
tion of a full-service restaurant with beverage operations. Students rotate
through various management positions for exposure to four major areas:
planning, organization, leadership and control. Use of the school’s computer
lab in planning is an integral part of the course. Class 2, Credit 6, Lab 10

0621-531 Foodservice Commodity Assessment
Technical and economic analysis of common foodservice commodities.
Special emphasis is placed on examining product value relative to price, cost
savings, service enhancement, nutritional value and overall customer prefer-
ence. Both fresh and processed commodities are examined. Extensive expo-
sure to industry representatives. Class 4, Credit 4

0621-532 International Food Distribution Seminar
Presentation and discussion of current and relevant issues in foodservice
marketing and distribution. Discussion topics compare and contrast domestic
and international distribution and marketing systems as well as monetary,
cultural and political/legal issues. Class 4, Credit 4

0621-545 Beverage Operations
A study of the principles, methods and practical applications of bar manage-
ment as they apply to the commercial beverage industry. Emphasis is on
administrative objectives, operational procedures and internal control. Class 2,
Credit 2

0621-554 Senior Career Seminar
A variety of courses are offered under this course number. Titles will appear
in the course listing each quarter. The course may be taken more than once as
the topics change. Contact the department for a course description of a spe-
cific title. Credit 1-4

Hotel and Resort Management

0622-200 Hotel Operations
Introduction to the distinctive nature of hotel operations through identifying
the standard functions that interrelate to produce the whole hotel service.
The hotel’s principal product, the guest room, is given detailed study, as well as
the various forms of business organization that comprise the accommoda-
tion sector of the hospitality industry. Class 4, Credit 4

0622-205 Hospitality Industry Real Estate
Provides the student with insight into the development of hospitality real
estate and the elements that contribute to decisions on construction, develop-
ment and expansion of properties. Attention is given to site selection and
development processes as they relate to the commercial hotel, resort, food-
service and travel locations. Contributing elements of market conditions,
financial feasibility, construction needs and property sizing are explored.
Class 4, Credit 4
0622-210 Hotel Marketing & Sales Management
Introduces the student to the application of the marketing concepts in hotel operations and the visitor industry. Included are conventions and visitors, bureaus, hotels and convention centers. This is accomplished by defining the marketing function, situation analysis, marketing organization, sales office work flow, customer contact methods and servicing procedures generally practiced in the hotel industry. Class 4, Credit 4

0622-221 Orientation to Computers in Hospitality
Students gain experience in computer programs used in the hospitality industry, including word processing, spreadsheets, E-mail, internet access, specialized industry programs, databases and electronic presentation software. Required projects utilize packages individually and in an integrated fashion. Class 1, Credit 2, Lab 2

0622-310 Resort Development & Management
Gives the student an understanding of how resort and hotel properties are developed as tourist and business destinations. Focus is on the planning, development, operation, design and special needs of recreational surfaces and financing of such properties. As part of this study, students select a specific type of property and analyze the methods used to develop it. Class 4, Credit 4

0622-315 Facilities & Property Management
Provides the student with information on the maintenance and engineering discipline in hotel and resort facilities. Management and administrative practices, life safety concepts, energy monitoring, computer applications and budgeting in the realm of hotel maintenance are studied. Class 4, Credit 4

0622-355 Financial Management for Hotels
Presents hospitality and service management students with an understanding of accounting and finance concepts that are essential in hospitality management. Hotel accounting principles, income statement analysis, industry-accepted ratio analysis, operational forecasting and budgeting, and capital budgeting strategies are examined. (0101-301 or permission of instructor) Class 4, Credit 4

0622-480 Human Resources Management
This course presents hospitality and service management students with a complete repertoire of human resource management (HRM) issues. It addresses all the current HRM topics and is designed to enhance the student’s ability to deal effectively with HRM topics. The laboratories attempt to develop conceptual thinking abilities. The course also focuses on HRM training techniques—an area of specific concern in the hospitality industry by emphasizing various training techniques and practices, highly skilled graduates can immediately employ one of the hospitality industry’s most valuable tools—training-to aid in the retention and management of human resources. The course makes extensive use of lectures and laboratory exercises. Class 4, Credit 4

0622-510 Convention Management
Provides the student an opportunity to explore the function of conventions from the point of view of the convention center manager. Consideration is given to various methods used to sell a location to a planner and the servicing of large groups. Also included are the identification of vocabulary and the role of the meeting planner as a force in the marketing of conventions. Trade shows, floor layouts and local codes affecting conventions also are reviewed. Class 4, Credit 4

0622-530 Hotel Law
Policies, laws and liabilities are examined as they pertain to the innkeeper. Focus is on current management problems and on the legal responsibilities of management. The rights of innkeepers also are discussed. Class 4, Credit 4

0622-532 International Hotel Development
This course will focus on the impact and importance of political, social, cultural and economic aspects, as it influences hospitality development on an international level. This course aims to enhance perceptions and skills of global developments and trends in the competitive and growing global industry of hospitality and tourism. Credit 4

0622-534 Space Tourism Development
This course extends the boundaries of the traditional hospitality and tourism planning and management. Students will explore the unusual, unique factors of hospitality and tourism management in an earth orbit habitat (like the International Space Station) or other celestial bodies (like moon or an asteroid). Students will investigate market demand for tourism and business and compare them with the plans and objectives of organizational already developing space tourism. Students will make recommendations for future development in one or more areas in the earth terrestrial habitation and tourism. Class 2, Credit 2

0622-536 Legislative Policy Analysis in the Hospitality Industry
This course is designed for the student to examine the impact of federal, state and local legislation on the hospitality industry, managers, convention/visitor bureaus and corporations involved in the hospitality industry or with regard to certain related legislation that is passed into law. These are federal, state, and local laws that would subject the above groups to compliance. Students will research case studies from a variety of issues pertinent to the hospitality industry and analyze the positive and negative affects to those concerned. Credit 4

0622-540 Risk Management for Hotels
An examination of the environment in which the hospitality manager functions. Focus is on the management of risk as part of operations. The implications of tort and contract law specifically relating to the industry are undertaken, and an explanation of how persons may avoid exposure to risk is made. This includes forms of insurance, hold-harmless clauses and management decisions on the importance of coverage given different degrees of risk. Class 4, Credit 4

0622-550 Casino Management I
This course gives students an advanced introduction to the casino environment. After satisfactorily completing this course, students will have a strong working knowledge of casino operations and the interrelationship of the casino with other major departments (lodging, food, beverage, entertainment, etc.). Topics include the history of gaming in America, recent trends that impact growth and acceptance rates of legalized gaming, the rules and protection of table games, the various types of "slots," the role of computerized information systems, layout and design within a casino operation, surveillance in a casino environment, casino accounting and back-office procedures, Consumer behavior, casino marketing strategies, gaming regulations and economic impact issues. Class 4, Credit 4

0622-552 Casino Management II
This course gives students an advanced introduction to the casino environment. After satisfactorily completing this course, students will have a strong working knowledge of casino operations and the interrelationship of the casino with other major departments (lodging, food, beverage, entertainment, etc.). Topics include casino marketing strategies, gaming regulations and economic impact issues. Class 4, Credit 4

0622-560 Tourism Concepts
Emphasizes tourism as a system and develops its interrelated and interdependent elements. Major economic, environmental and socio-cultural concepts are discussed, including interactions between visitors and host communities. The role of private and public sector tourism organizations is introduced by examining tourism destinations throughout the world. Class 4, Credit 4

0622-570 Tourism Planning & Development
Examines the processes involved in planning and developing a tourism destination, including the required infrastructure. A major focus is on benefits and impacts associated with tourism development, as well as the strategies for maximizing benefits and minimizing adverse effects. Class 4, Credit 4

0622-580 Destination Marketing
The processes and techniques used to promote tourism destinations such as resorts, attractions and individual communities. Emphasis is on the role that destination marketing organizations such as convention centers, visitors, bureaus and tourism-promotion agencies play in marketing a destination. The development of tourism marketing plans and management of inquiry-fulfillment-referral processes are discussed. Class 4, Credit 4

0623-206 Distribution Systems
A functional approach is used to discuss the market distribution channels for service industry inputs and products/services. The role of retail and business travel agents, tour wholesalers and operators, and specialty channelers such as meeting planners, convention bureaus and corporate travel buyers, food processors, producers, distributors and transportation suppliers are discussed. Various economic models are examined in order to analyze the pricing structure associated with the selling and distribution of service industry inputs and outputs. The service philosophy and its application to distribution in the travel/tourism and foodservice industry are explored. Class 4, Credit 4

Travel and Tourism
0623-210 Introduction to American Airlines SAERE
Students acquire operational proficiency with American Airlines, SABRE reservation system. Using SABRE’s live and training modes, they address topics such as creating passenger name records, itinerary pricing, fare quotes, queues and flight information. This course is equally divided between lecture and Travel Lab simulations. Class 4, Credit 4

0623-312 Travel Reservation Procedures
Reservation procedures and documentation sourcing for each of the various modes of passenger transportation are examined. Particular attention is given to hotel reservation guide books, cruise ship deck plans and reservation procedures, and interpreting travel brochures. Emphasis is on the various forms used in travel documentation. Class 2, Credit 2

0623-314 Salesman Technology for Travel
The role of personal selling as persuasive communication and part of the partnering relationship is examined. Topics include qualifying clients, identifying buying motives; making the presentation, handling objectives, closing the sale and sale follow-up. Role-play scenarios are used to reinforce selling concepts. Class 2, Credit 2

0623-375 Travel Destinations
Geographers are concerned with the physical, political and cultural composition of the world. Geography is a field in which the concerns of both the social and physical sciences converge in the study of specific places. Touristic geography applies these themes to the travel, tourism and transportation industries. It is also concerned with the social, cultural and economic environmental aspects of places. The identification of major touristic locations as attractors of people’s leisure time, energies and interests, is the basis of this course. Class 4, Credit 4

0623-410 Meeting Management
Introduces the student to the field of meeting management. We take the point of view of a corporate or independent meeting planner in examining the various phases of meeting planning. Students also examine the formulation of goals and how meetings may be evaluated from both a return on investment perspective and the satisfaction of the attendees. Computer programs are investigated and tested, and a variety of budget strategies are examined. Class 4, Credit 4

0623-413 Corporate Travel Marketing & Sales
The processes and techniques used to promote tourism attractions and communities to the corporate buyer. Emphasis is on the role that corporate travel plays in marketing the corporation. How promotional organizations can be used by the corporate meeting planning and travel manager to compare sites is discussed. Class 4, Credit 4

0623-420 Corporate Travel Planning
The specific travel goals, accounting policies and informational requirements of corporate (commercial-business) travel. Three major orientations of corporate travel are examined: corporate travel operated through the firm’s travel coordinator, corporate travel provided by the retail travel agency and incentive travel. Major topics include corporate travel policy and procedures, exhibition marketing, requests for proposal (RFP), house organs and newsletters, and the sales blitz. Class 4, Credit 4

0623-520 Exhibit Marketing
Examination of the budgeting process associated with developing and marketing corporate exhibits. A major focus of the course is the evaluation of exhibits based on cost-to-revenue ratios. Class 2, Credit 2

0623-522 Negotiation & Conflict Management
Examines the negotiation process within the hospitality/tourism industry by exploring the nature and sources of interpersonal conflict and its dynamics. Collaborative versus competitive approaches to managing conflict are discussed. Role-play situations are used to differentiate and reinforce negotiation strategies. Class 2, Credit 2

0623-530 Intermediate SABRE Applications
Enables students to progress to the total automation level associate with SABRE. The focus is to provide an overall picture of how the SABRE system provides accurate invoicing and readable itineraries. Topics include Phase IV ticketing, queues, currency conversions, segments and accounting data entry. Most of the course work is done in SABRE’s live mode. Class 4, Credit 4

0623-535 SABRE Non-Air Applications
Uses SABRE’s direct reference system (DRS) as a basis for information concerning non-airline-oriented information. Designed to accommodate non-travel and tourism majors. Topics include car sales options, hotel index descriptions, hotel availability, tour index, immigrations and customs guide, and FAACTS reports. Class 4, Credit 4

Environmental Management & Safety
0630-200 Environmental Management Seminar
This is an introductory course for all Environmental Management and Safety Technology students. It explores the origins and history of the fields of environmental management, occupational health and occupational safety; governmental processes with respect to the creation of laws and regulation; and it looks at the health effects of exposure to hazardous materials. Class 1, Credit 1

0630-201 Principles of Environmental Management
This course presents a comprehensive overview of the sciences, technologies, and strategies used to reduce the threat to the environmental resulting from discharges of pollutants to the air, water, and land. It also introduces the federal laws and regulations that govern such discharges. Class 2, Credit 4

0630-220 Quantitative Methods
Basic principles of work, force, hydraulics, statics and shear strength; properties of materials; unit conversions; mass balances; and engineering problem solving techniques. (1016-204, 1011-211) Class 4, Credit 4

0630-350 Solid & Hazardous Waste Management
An examination of strategies and technologies currently in use for reducing, recycling, handling, treating, storing and disposing of solid and hazardous waste in industry. Associated environmental impacts, regulatory concerns, technical feasibility and costs are considered. Students learn to identify applicable environmental regulations and monitoring and measurement requirements, and develop strategies for managing wastes and protecting human health and the environment. (0630-201, 1011-211) Class 4, Credit 4

0630-352 Industrial Wastewater Management
Investigates characteristics and sources of industrial wastewaters, related environmental impacts, regulatory implications, and technical and cost considerations of current treatment and disposal methodologies. Students learn to identify appropriate methods, technologies and sequences for source reduction, treatment and pretreatment, direct discharge and management of associated industrial wastewater treatment plant sludges. (0630-201, 1011-211) Class 4, Credit 4

0630-354 Air Emissions Management
This course will provide an overview of industrial air pollution and its sources. Subjects covered will include the history of air pollution, the chemistry and effects of pollutants, regulations and standards, control technologies, air quality management and global concerns and trends. (0630-201) Class 4, Credit 4

0630-360 Environmental Monitoring & Measurements
An in-depth view of environmental monitoring and measurements, giving the student the knowledge to plan, execute and interpret a sampling project. Covers techniques for sampling air, soil, surface water and groundwater with an emphasis on remedial investigations and contaminated sites. Students learn to plan sampling events, collect quality assurance/quality control samples, determine correct sampling technique and specify analysis. (1011-211, 213; 1001-201; 0630-380, 382) Class 3, Credit 3

0630-361 Environmental Monitoring & Measurement - DL
Provides an in-depth view of environmental monitoring and measurement, giving students the knowledge to plan, execute, and interpret a sampling project. The course will cover techniques for sampling air, soil, surface water and groundwater. Students learn to plan sampling events, determine the number and type of samples needed, collect quality assurance/quality control samples, determine correct sampling techniques and document sampling. (Offered periodically) Credit 4

0630-362 Environmental Monitoring & Measurement Lab
Laboratory to accompany 0630-360. Environmental Monitoring and Measurement. (Credit or coregistration in 0630-360) Class 2, Credit 1
0630-370 Environmental Geology
An introduction to environmental geology, including a survey of basic geology and topics applicable to environmental management. Basic geology topics include earth materials and the earth’s internal and external processes. Environmental geology topics include erosion and slope stability, soil properties, glacial geology of Monroe County and fossil fuel resources. Class 3, Credit 3

0630-371 Environmental Geology-DL
An introduction to environmental geology including a survey of basic geology and topics applicable to environmental management. Basic geology topics include earth materials, and the earth’s internal and external processes. Environmental geology topics include erosion and slope stability, soil properties, glacial geology of Monroe County. (Offered periodically) Credit 4

0630-372 Environmental Geology Lab
Laboratory to accompany 0630-370, Environmental Geology. Lab includes field trips to significant local geologic features and mines. (Credit or coregistration in 0630-370) Class 2, Credit 1

0630-380 Introduction to Hydrology
An introduction to hydrology, covering surface water, groundwater and water chemistry. Students learn theoretical background as well as practical applications of the science to environmental management. Topics include the hydrologic cycle, surface water, vadose zone, groundwater flow, groundwater monitoring, normal and polluted water chemistry, landfill hydrology and hydrology of Monroe County. (0630-370,372) Class 3, Credit 3

0630-381 Introduction to Hydrology-DL
Students learn theoretical background as well as practical application of hydrology to environmental management. Topics include the hydrologic cycle, surface water, vadose zone, groundwater flow, groundwater monitoring, normal and polluted water chemistry, landfill hydrology, and hydrology of Monroe County. Credit 4

0630-382 Introduction to Hydrology Lab
Laboratory to accompany 0630-380, Introduction to Hydrology. The lab focuses on field and computational techniques. (Credit for or coregistration in 0630-380) Class 2, Credit 1

0630-440 Environmental Permitting
This course will provide a practical knowledge of federal and state environmental permitting processes and procedures. Regulatory requirements will be reviewed with emphasis placed on the major programs in New York state, including water, air, and solid and hazardous waste. Students will become familiar with the environmental review and audit as a part of the application process. Discussion will introduce the environmental permit as a management tool for the environmental professional. The use of facility audits, development of proper information for permit applications and negotiation of permit terms and conditions will be explored as means to assure compliance with state and federal statutes. The course will also explore the consequences of non-compliance with regulations by presenting enforcement options available to government agencies. (Open only to fourth-year environmental management majors or with departmental approval) Class 4, Credit 4

0630-444 Remedial Investigation/Corrective Action
Delineates and describes the sequence of events required in remedial investigations (RI), feasibility studies and corrective actions at hazardous waste sites. Explains the process flow logistics, concepts and rationale behind each RI action. Investigates the strategies, technologies and methodologies commonly in use for site investigation and characterization and corrective action. Explores current issues of “how clean is clean?” and “Superfund” liability. Students learn to develop conceptual site characterization plans; effective solicitations for RI proposals; review and evaluate work plans, procedures and operations plans, and contingency plans. (Open only to fourth-year environmental management majors or with departmental approval) Class 4, Credit 4

0630-450 Occupational Health
This course will provide students with an overview of the fundamentals of Industrial Hygiene. Emphasis will be placed on the toxicological effects of various industrial substances on the body; monitoring and personal sampling for these substances and personal protection against such substances. (College chemistry, physics, and general biology) Class 4, Credit 4

0630-451 Occupational Health Lab
Hands-on practical hazardous material response. Must be taken in conjunction with 0630-450 or with permission of the instructor. Credit 1

0630-454 Occupational Safety
This course is an overview of the safety management tools utilized in today’s industry. Students are expected to have a foundational knowledge of safety management techniques upon completion of this course. Topics examined include recordability and safety indices; incident investigation; guarding; electrical and material handling; welding, fire prevention; excavation; medical surveillance and worker’s compensation; inspection techniques and auditing; committees; incentives, and voluntary programs. Class 4, Credit 4

0630-480 Environmental Regulatory Law
An overview of environmental law and regulatory activities at the federal and state levels, with emphasis on New York State. Topics include a review of the historical and modern sources for environmental protection and regulation, including federal and state roles, the responsibilities of the separate branches of government and the emergency of administrative law. The class will discuss how the current enthusiasm for private property concepts, state’s rights and deregulation are being used to limit or revise existing environmental programs. In addition, the environmental review and permitting process will be discussed, using New York State and DEC procedures as representative models. (Open only to fourth- or fifth-year students) Class 4, Credit 4

0630-490 Project Management
This course has been designed to give the student an overview of the fundamental concepts of modern project management. Areas of focus include: the Project Life Cycle (PLC), the Project Management Body of Knowledge (PMBOK), Review Technique (PERT), Critical Path Method (CPM), and various budgeting and resource allocation techniques. Discussion of project management organizations, negotiation and conflict resolution and project termination will be included, along with an introduction to Project Management Institute (PMI) and Microsoft Project for Windows. (Open only to fourth- or fifth-year students) Credit 4

0630-505 Resource Reduction
This course will focus on strategies for reducing the use of material and environmental resources. It builds upon environmental management and technology courses for controlling air emissions, wastewater and solid and hazardous waste and moves upstream into the production process to reduce or eliminate waste by not producing it in the first place. Students learn how to conduct resource reduction assessments and identify opportunities to reduce or conserve resources. This course will take you beyond end-of-the-pipe controls and look at life-cycle assessment as an environmental management tool. Class 4, Credit 4

0630-509 Senior Project Planning
This individualized course prepares the student for the senior project 0630. (Open only to fifth-year environmental management majors) Credit 1

0630-511 Senior Project
Consists of independent work demonstrating the ability to solve a significant solid waste or industrial environmental management problem in a comprehensive fashion. The project will focus on future or emerging technologies as well as current techniques. (0630-509) Credit 3

0630-515 Corporate Environmental Management
Presents the fundamentals of how companies manage their environmental issues. Explores regulatory and environmental motivations and strategies for corporate environmental management. Includes organizational considerations in managing corporate environmental programs. Introduces concepts of total quality management and its applications to corporate environmental problems. The course focuses on elements of environmental management systems including: environmental policies, codes of conduct, setting objectives and targets, implementing programs, and evaluating and auditing environmental performance. The course also addresses the environmental manager’s role in training and corporate environmental reporting. (Open only to fifth-year environmental management majors) Class 4, Credit 4

0630-445 Organic Chemistry
This course is a preparatory course in organic chemistry necessary for the study of the biochemical processes of living organisms. The course will include an introduction to the fundamental concepts of organic chemistry. Students will be expected to develop a working knowledge of the structure and properties of organic compounds, as well as their synthesis and analysis. (College chemistry, physics, and general biology) Class 4, Credit 4
Safety Technology

0633-401 Fire Protection
Introduces fundamental concepts in protection of industrial workers and property from fire and explosion. Fire chemistry, control of ignition sources in industry, and properties of combustible materials are discussed. Fire detection and extinguishment are covered along with building construction for fire prevention, life safety, fire codes and related topics. (Engineering technology and safety technology students only or permission of department) 0630-454 Credit 4

0633-506 Construction Safety Lab
The objective of this class is to introduce students to the practice and management of construction safety. Students will learn basic engineering and terminology for the construction industry. They will learn the OSHA requirements for construction standards (29CFR1926). Finally, students will learn management and safety analysis techniques and write a project safety plan for a simulated construction project. The laboratory is done in addition to civil engineering technology’s 2-credit course, allowing students to earn an OSHA 30-hr. construction outreach training card. (Corequisite: Construction Safety 0608-505 or permission of dept.) Class 2, Credit 1

0633-526 Occupational Health II with Laboratory
A lecture/laboratory course which provides a basic understanding of techniques used in measuring and evaluating the magnitude of health hazards in industry. Laboratory sessions provide experience in air sampling, noise measurements, heat measurement, particle size analysis, chemical analysis and evaluation of industrial ventilation. (0630-450) Class 4, Credit 4

0633-530 Mechanical & Electrical Controls & Standards
Discussion of OSHA standards relating design and analysis for safety, including electrical circuit controls and mechanical guarding. Particular attention will be paid to OSHA, ANSI and NEC standards as they relate to wood, metal, films and automation. A portion of the course will change regularly to reflect emerging issues in industry. (Engineer technology and safety technology students only or permission of department) (0630-454) Credit 4

0633-540 Systems Safety/Incident Investigation
Focuses on the evaluation of systems designs using detailed system analysis techniques. Topics covered include system definition, economics of system safety, systems safety methodology, ergonomic approaches, mathematics of system analysis, including statistical methods, boolean algebra and reliability, preliminary hazard analysis and exercises in the application of fault tree analysis to hardware and man/machine systems. Practical work is accomplished in analysis sessions, with an emphasis on incident investigation. Credit 4

0633-545 Safety & Health Program Management
An in-depth examination of the concepts, methods and techniques involved in total safety management. This course discusses at length the strengths and weaknesses of existing corporate programs, performance management techniques, behavioral based safety, legal, process safety, product safety and emerging trends in safety management, and expands on concepts presented in introductory topics. Case studies are utilized in order to foster application of management techniques. (Fourth- or fifth-year IEMS or 0630-450 and 454 or permission of instructor) Credit 4

Emergency Management

0634-311 Earth Science
Applied meteorology and crustal dynamics (earthquakes, volcanic activity, hurricanes, tornadoes, floods, etc). Credit 4

0634-321 Man-made Hazards
Chemistry of hazardous materials, including toxics, caustics, flammables, and reactives, and their effects on humans. Also, the physics of radiation, the design of commercial power reactors, and reactor disaster scenarios. Credit 4

0634-401 Emergency Preparedness Law
Principle statues, regulations, and court cases governing emergency preparedness. (0634-313 or 321) Credit 4

0634-471 Emergency Planning & Methodology
Comprehensive emergency planning and methods of risk and hazard analysis. Also, turf problems with multi-agency plans, command structures, and the role of new technologies in disaster response. Preparation of hazard analyses and sections of plans for actual communities. (0634-311 or 321 and 401) Credit 4

0634-475 Terrorism
This advanced course in the emergency and disaster management certificate program uses a technical approach. The course examines the issues of terrorism as they relate to the planners and responders at the local level. The history and patterns of terrorism are examined by reviewing specific incidents. The technical aspects of terrorism are presented for the participants. Concepts of planning for a terrorist incident are presented with emphasis on integrating emergency operation plans. The course will also discuss preparations and guidelines for terrorist attacks focusing on planning problems, countermeasures, response actions and the roles of local, state, and federal government agencies. Policy development related to the media and critical incident stress will be presented. Additionally, a significant emphasis will be placed on examining incident management tools such as the incident command system. (0634-321 or substantial field experience or permission of the instructor) Credit 4

0634-481 Emergency Operations
Roles of the police, EMS, and volunteer agencies like Red Cross on disaster sites. Also, command posts and off-site operations centers, the Incident Command System, and how to critique incidents. (0634-311 or 321 and 401) Credit 4

Health Systems Administration

0635-310 Survey of Health Care Systems
An overview of the development, structure and current forces transforming the health care system. Topics include the status of the national and regional populations, physician practice and payment, private and government health insurance, the impact of medical technology, manpower issues, hospital services and reimbursement systems, ambulatory care and alternative delivery systems, mental health and long term care. (Offered on campus and online) (Previous experience or course work in health care and permission of chair) Credit 4

0635-320 Health Systems Administration
A survey of administration in health care facilities focusing on the application of general management principles in the unique health care environment. Issues such as organizational structures, planning and performance monitoring, personnel management, finance and the respective roles of medical professional and administrator in managing the facility are discussed. (0635-310, previous experience, course work in health care and permission of chair) Credit 4

0635-351 Health Care Economics & Finance I
Introduction to the efficiency, effectiveness and equity of the new economics of health care; a conceptual and practical knowledge of health care finance, including sources of funding, accounting and reporting; and the influence of third-party payers. No previous work in economics is assumed. (0635-310 or 320) Credit 4

0635-421 Legal Aspects of Health Care Administration
An overview of the law and regulation they apply to the health care field. Topics include an overview of the American legal system, licensure of institutions, licensure and discipline of practitioners, physician-patient relationship, reproductive issues, the right to die, organ donations, medical records, legal liability, malpractice and labor law. (0635-310 or 320) Credit 4

0635-431 Health Care Quality Assurance
An introduction to quality assurance in health care. Course explores past and current definitions of quality and competing concepts of quality assurance; reviews existing quality assurance requirements and accrediting organizations, federal and state agencies, and third-party payers; describes and explains quality assurance methods and tools and their application in various settings. (0635-310 or 320) Credit 4

0635-441 Health Planning & Programming Development
A review of the methodology of planning effectively for health care services. The use of data systems, forecasting, and identifying and analyzing problems are explored, along with the process of strategic planning, setting priorities, developing projects and allocating resources. Students prepare actual applications for new programs to regulatory agencies. (0635-310 or 320) Credit 4
Survey of Complementary & Alternative Medicine

As the use of alternative and complementary medical treatments grows rapidly among the public and is increasingly found among the therapeutic services offered in conventional medical settings, it is important that the professional health systems administrator and also the lay consumer of medical services have a basic understanding of these alternate treatments and treatment systems. This course will not teach the application of particular techniques or therapies. This course is a descriptive and analytic survey and comparison of different approaches to health and healing, the research bearing their effectiveness and to what extent, clinically and administratively, they can be integrated into conventional medical practice and settings. Credit 4

Energetic Therapy in Communication

This course is a descriptive and analytic survey of complementary medicine therapies that involve principles of individual energetic manipulation or cognitive therapies. The course will focus on therapies that are most likely to be integrated into western medical care or have the highest utilization rates among consumers. This course is part of a series of courses in the complementary/integrated medicine certificate program. A portion of the class will be devoted to direct clinical observation experience. Included in course content are: Fundamental principles that support the therapeutic effects of particular energetic or cognitive therapies; clinical research into the use of selected therapies; integration of treatment with these energetic or cognitive therapies; where to find reliable sources of information for these therapies; and simple case studies for illustrative purposes. Class/Lecture 4, Credit 4

Department of Military Science, Reserve Officer Training Corps ARMY (ROTC)

Introduction to Military Science/Master Student

Provides a practical introduction to the United States Army, its organization and rank structure; the historical basis for customs and traditions found in the military, discussions of military history, and the impact of the military on American society. Class 2, Lab 2, Credit 2

Applied Military Dynamics

Gives the student an introduction to the dynamic capabilities of the United States Army. Topics of primary interest include Code of Conduct, Army Writing Style, Operational Terms and Graphics, and Military Briefings. Students must register for lab under the Department of Physical Education. Class 2, Lab 2, Credit 2

Military Heritage

Provides a continuation of the dynamics of the United States Army. Topics of primary interest include Army Writing Style, Counseling, Operational Terms and Graphics, Orders, U. S. Military History, and Military Briefings. Students must register for lab under the Department of Physical Education. Class 2, Lab 2, Credit 2

Military Geography

A study of military land navigation with special emphasis given to navigation using a map and compass. Geographic concepts and realities are studied as they apply to the solution of military problems. Major topics for discussion include identification of terrain features, use of grid coordinates, polar coordinates, military correspondence and first aid tasks. Stresses practical application rather than theory; leadership lab. Students must register for lab under the department of physical education. Class 2, Lab 2, Credit 2

Psychology & Leadership

Provides the student with the basic principles of leadership and management of human resources; motivation, morale and communication. Special emphasis is on applying the theories and models of the behavioral sciences and personnel management to leadership as it functions in a military environment; leadership laboratory. Students must register for lab under the department of physical education. Class 2, Lab 2, Credit 2

Military & American Society

An introduction to the principles of war and the study of their application to Army decision making process. To use this process to analyze problems can come up with a courses of actions. To understand the command and staff functions. Class 2, Lab 2, Credit 2

Military Tactics

Stresses practical exercises on basic map-reading skills and provides working knowledge of fundamentals and principles of combat operation as planned for and executed at light infantry squad level; leadership laboratory. Students must register for lab under the department of physical education. Required for all Army ROTC scholarship and contracted students. Class 2, Lab 2, Credit 3

Military Communications

Provides knowledge and training of basic military skills essential as junior officer; an introduction to military communication equipment and techniques; the leadership communication process; develop military briefings. Leadership laboratory. Students must register for lab under the department of physical education. Class 2, Lab 2, Credit 3

Military Operations

A continuation of military skills training with emphasis on military intelligence/security; operations at the platoon level; staff functions and leadership laboratory; field training exercise. Students must register for lab under the department of physical education. Required for all Army ROTC scholarship and contracted students. Class 2, Lab 2, Credit 3

Army Training System

An introduction to the U. S. Army’s training philosophy and training system. Students learn how to assess, develop, plan and evaluate training. Provides instruction in how to plan, conduct and assess a training meeting. Both short- and long-range training plans are developed. The importance and use of the After Action Review process is stressed, and continued refinement of proper military briefing techniques is emphasized. Students must register for lab under the department of physical education. Required for Army ROTC scholarship and contracted students. Class 2, Lab 2, Credit 3

Military Administration & Logistics

Includes discussions and seminars on the Army logistics and processes including: supply and property accountability, maintenance management, officer-enlisted personnel management systems: leadership laboratory. Students must register for lab under the department of physical education. Required for Army ROTC scholarship and contracted students. Class 2, Lab 2, Credit 3

Military Ethics

Examines the ideas and issues that define the role of the military in our society. Emphasis is on the professional and ethical standards required of the military officer and military justice system. Other topics include planning and conducting meetings, teaching and counseling, active-duty orientation, preparations for commissioning; leadership laboratory; field training exercise. Students must register for lab under the department of physical education. Required for Army ROTC scholarship and contracted students. Class 2, Lab 2, Credit 3

Senior Seminar/Project

For military science students who have completed their junior year of military study. The seminar is directly related to military science projects that students are working on and consists of written and/or oral presentations given during the quarter. Students also may be required to present this material to other students in a classroom environment. Students must register for lab under the department of physical education. Class 2, Credit 2

Survey American Military History

A study of American military history from the 1700s to the present day. Discussions will show how military actions affected U.S. history; how developing technologies impacted U.S. military doctrine, tactics and strategy; and the change of the military from a part-time civilian volunteer militia to a professional full-time force. Class 4, Credit 4

Department of Aerospace Studies, Reserve Officer Training Corps AIR FORCE (ROTC)

Leadership Lab I

Leadership Laboratory I focuses on benefits, opportunities, privileges and responsibilities associated with an Air Force commission. AF customs and courtesies, AF environment, drill and ceremonies also are covered. Demonstrates flight movement procedures. Responsibility of base units to mission accomplishment. Credit 1
Leadership Laboratory I focuses on benefits, opportunities, privileges and responsibilities associated with an air force commission. AF customs and courtesies, AF environment drill and ceremonies are also covered. Demonstrates flight movement procedures. Responsibility of base units to mission accomplishment. Credit 1

Leadership Laboratory I focuses on benefits, opportunities, privileges and responsibilities associated with an air force commission. AF customs and courtesies, AF environment, drill, and ceremonies are also covered. Demonstrates flight movement procedures. Responsibility of base units to mission accomplishment. Credit 1

The Air Force Today I Course series on the basic characteristics of air doctrine; U.S. Air Force mission and organization; functions of U.S. strategic offensive, general purpose, and aerospace support forces; officerfship; and assessment of written communicative skills. Credit 1

The Air Force Today II Course series on the basic characteristics of air doctrine; U.S. Air Force mission and organization; functions of U.S. strategic offensive, general purpose, and aerospace support forces; officerfship; and assessment of written communicative skills. Credit 1

The Air Force Today III Course series on the basic characteristics of air doctrine; U.S. Air Force mission and organization; functions of U.S. strategic offensive, general purpose, and aerospace support forces; officerfship; and assessment of written communicative skills. Credit 1

Leadership Lab II Demonstrates commanding effectively in individual drill positions and flight formations, effective execution of cadet officer functions within parade ceremonies and squadron drill movements. Application of personal leadership to both military and civilian activities and comprehension of field training are covered. Credit 1

Leadership Lab II Demonstrates commanding effectively in individual drill positions and flight formations, effective execution of cadet officer functions within parade ceremonies and squadron drill movements. Application of personal leadership to both military and civilian activities and comprehension of field training are covered. Credit 1

Leadership Lab II Demonstrates commanding effectively in individual drill positions and flight formations, effective execution of cadet officer functions within parade ceremonies and squadron drill movements. Application of personal leadership to both military and civilian activities and comprehension of field training are covered. Credit 1

Leadership Lab III Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab III Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab III Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab IV Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab IV Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab V Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab V Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Leadership Lab V Advanced leadership experiences in officer activities give students opportunity to apply principles learned in labs and courses. Orientation for active duty. Credit 1

Note: Other AFROTC courses can be found under the College of Liberal Arts and College of Business course listings.

Accounting & Business Systems

Financial Accounting Emphasis is on analyzing and recording business transactions and understanding the results of these transactions. Preparation of basic financial statements required by any business are included. Credit 4

Managerial Accounting The functions and uses of accounting information are presented. Emphasis is on the preparation and operation of dynamic budgets and the use of accounting data for control and profit planning. (0680-201) Credit 4

Personal Financial Management Manage your personal finances more effectively: personal budgeting, protection of personal assets, consumer credit, investments and estate planning are presented. Credit 4

Business Law I Introductory course in business law including basic legal principles and procedures, criminal law, torts, contracts, sales and real property. Credit 4

Business Law II Continuation of 0680-311 includes law agency, partnerships, Corporations, insurance and bankruptcy. Also presents survey of Commercial paper, secured transactions and bank deposits. Credit 4

Legal Environment of Business This course will deal primarily with the substantive areas set forth above, to enable the student to obtain a comprehensive knowledge of said topics, as well as an appreciation for how the law functions in a complex society. Credit 4

Information Resources/Network Tools An overview of the evolution and structure of the computing environment and information networks. Topics include the evolution of the computer; personal computers, workstations and local area networks; tools for managing information; systems design and analysis tools; electronic mail; and using the Internet. Labs explore information resources and data communication tools available on the RIT computer network and the Internet. Credit 4

Management Science Foundation course, which introduces mathematical model building and the use of management science in the decision-making process. Mathematical techniques include linear programming, the assignment model, the transportation model, inventory control models, critical-path models (PERT/CPM) and computer simulation. Homework assignments include running “canned” computer application programs. (0692-211, 212, 311, 312 and 0680-341) Credit 4

Applied Science and Technology
0681-200 Management Process I
A comprehensive three-quarter course in effective supervision and management for supervisors and potential supervisors. Approximately 50 topics of current importance to supervisors are presented, as well as essential management principles, business communication and practical supervision techniques. Specific supervisory problems of course participants are discussed in informal sessions and through projects conducted outside the classroom. Instruction is usually guided by a team of management specialists. Lecture discussion, panel presentations, audiovisual presentation, simulation exercises and case studies. (Course extends over three consecutive quarters and should be taken in sequence, Part I of a Management Certificate) Credit 4

0681-201 Management Process II
A comprehensive three-quarter course in effective supervision and management for supervisors and potential supervisors. Approximately 50 topics of current importance to supervisors are presented, as well as essential management principles, business communication and practical supervision techniques. Specific supervisory problems of course participants are discussed in informal sessions and through projects conducted outside the classroom. Instruction is usually guided by a team of management specialists. Lecture discussion, panel presentations, audiovisual presentation, simulation exercises and case studies. (Course extends over three consecutive quarters and should be taken in sequence, Part II of a Management Certificate) Credit 4

0681-202 Management Process III
A comprehensive three-quarter course in effective supervision and management for supervisors and potential supervisors. Approximately 50 topics of current importance to supervisors are presented, as well as essential management principles, business communication and practical supervision techniques. Specific supervisory problems of course participants are discussed in informal sessions and through projects conducted outside the classroom. Instruction is usually guided by a team of management specialists. Lecture discussion, panel presentations, audiovisual presentation, simulation exercises and case studies. (Course extends over three consecutive quarters and should be taken in sequence, Part III of a Management Certificate) Credit 4

0681-205 Organization & Management
A general introduction to the major management functions and the organization of business. Topics include business and personal planning, organizing, staffing, implementing, directing, control, time management, appraisal, compensation, organization theories, decision making, problem solving, influences on managerial decision making, communication, management styles and motivation. Extensive use is made of learning groups in which students work together to discuss and apply concepts. Some out-of-class time is required to prepare for a learning group presentation. Credit 4

0681-221 New Venture Development
Course presents factors to be considered by those interested in the ownership and management of small business enterprises. Includes who should be an entrepreneur, guidelines for starting a new business, basic legal consideration, and approaches for obtaining capital and credit. Credit 4

0681-222 Small Business Management
The functions required to successfully manage and finance a small business are presented. A variety of topics include staffing a small business, purchasing and supplier relations, consumer credit policies, and the financial and administrative controls necessary to minimize business risk. Credit 4

0681-223 Small Business Marketing & Planning
Presents various successful planning and marketing approaches (including market determination, distribution, and pricing strategies). The regulatory environment facing small business is included along with techniques for planning growth. Credit 4

0681-234 Interviewing Techniques
A practical approach to interviewing techniques with emphasis on role plays and case studies. Coverage includes employment, disciplinary, counseling, and performance appraisal interviews. Credit 4

0681-239 Human Resources Administration
An introduction to personnel administration including an overview and discussion of employment, equal employment opportunity, job evaluation, training, performance appraisal, compensation, benefits, personnel planning, labor relations, and other related topics. Credit 4

0681-251 Introduction to Logistics & Transportation
Overview of the transportation and logistics industry as a vital part of the nation’s social and economic structure. Introduces basic understanding of the functional areas of logistics management and their interrelationships. The purchase and use of transportation services as related to the firm’s logistical mission is emphasized. Credit 4

0681-253 Traffic & Transportation Law, Rates, Accounting & Control
Introduces the role of government in the transportation industry. The evolution of past and current regulatory and promotional policies is explored. The determination and utilization of freight rates are examined. Various methods to forecast and control transportation Costs also are discussed. Credit 4

0681-255 International Logistics & Transportation
Introduces the basic skills required to move materials in support of the logistics function internationally. Includes discussions of duties, customs regulations and the various instruments used to facilitate international trade. Credit 4

0681-261 Effective Selling
Investigates the importance of the sales function within the overall marketing organization and the necessary general characteristics of a successful sales person. The various steps of the sales process and the practical applications of effective sales presentation are discussed. Credit 4

0681-262 Advertising Principles
Social, economic and mass communication aspects of advertising with special emphasis on the role of advertising in the marketing mix. Special topics include agency/client relationship, radio and TV ratings, history of advertising, the creative process and psychographics. Guest lecturers discuss corporate campaigns. Credit 4

0681-264 Advertising Evaluation & Technology
Course presents basic approaches used in planning, preparation and evaluation of advertising and sales promotional materials. A number of projects involving writing/layout/production for print, broadcast and specialized media advertising are incorporated. Credit 4

0681-271 Basic Real Estate Principles
Comprehensive study of real estate principles, including law of agency, human rights and fair housing, real estate instruments, financing, valuation and listing, contracts, license law and ethics, closings, land use regulations and real estate math. Completion of this course satisfies the NYS educational requirement for a real estate salesperson’s license. For licensure, participants must meet 90 percent attendance (40 1/2 hours) requirement and pass the final exam. Individuals interested in license only should call 475-5027. Credit 4

0681-272 Advanced Real Estate Principles
A study of topics related to real estate, including operation of a broker’s office, construction, general business law, subdivision and development, leases, taxes, assessments, investment property management, condominiums and cooperatives, rent regulations, appraisals and advertising. Completion of this course and Basic Real Estate Principles satisfies the educational requirement for a real estate broker’s license. For licensure, participants must meet 90 percent attendance (40 1/2 hours) requirement and pass the final exam. Individuals interested in license only should call 475-5027. Credit 4

0681-273 Real Estate Investment & Finance
An introduction to real estate investment with emphasis on the purchase and sale of real estate, the acquisition of financing, the selection of appropriate ownership forms and the use of statistical data in making real estate decisions. For license renewal, this course is approved by NYS Department of State as a 30-hour course with exam. Credit 4

0681-333 Compensation Administration
The course is designed to acquaint the student with the practical problems of employee compensation. Topics covered include compensation issues and theory, compensation as a motivator, wage and salary levels and structures, individual wage determination, and indirect compensation. (0681-239) Credit 4

0681-341 Fundamentals of Industrial Engineering
An overview of industrial engineering problems and techniques is presented, including facilities selection and layout, methods analysis, work measurement, operations planning and control, materials handling and an introduction to operations research. Credit 4
An introductory course in marketing that provides a better awareness of the function of marketing and how it relates to other areas of business. Topics include the marketing concept, developing a product strategy, behavioral aspects of consumer marketing, the marketing mix, segmentation and current marketing issues. Credit 4

6081-398 Special Topics
Special topics are experimental courses offered quarterly. Watch for titles in the course listing each quarter. Credit 4

6081-433 Benefits Administration
A study of the theory, design, and practical administration of employee benefit plans including paid excused-time, health care, capital accumulation plans, life insurance, retirement, Social Security and other related benefits. Government regulations as well as issues and trends will also be covered. (0681-239) Credit 4

6081-434 Advanced Human Resources Administration
Study of application of advanced principles and techniques of personnel administration to particular firms and special personnel problems. Extensive use of both individual and group projects as well as case studies. (0681-239 or equivalent) Credit 4

6081-598 Career Development

Quality Management

6084-310 Introduction to Quality
An introduction to the fundamental concepts of total quality management. Includes an overview of the competitive environment, the cost of non-quality, and the history of quality; a systematic examination of the leading definitions of quality and models of quality management; and an exploration of the implications of quality management concepts for organizational structure and roles, decision making and interpersonal relations. Credit 4

6084-320 Basic Statistical Quality Control Techniques
An introductory course in Statistical Quality Control techniques used in determining operating quality levels and recognizing degrees of process control and capability in a service industry or a manufacturing process. Topics include tools for diagnosing sources of variation; construction and interpretation of charts for variables-and attributes; tolerances, specifications and process capability. Product quality (i.e., high yield) and product reliability also are addressed. (High school algebra or equivalent) Credit 4

6084-330 Leadership Skills/Quality
Analytical and behavioral strategies and techniques for providing leadership in quality management. Includes examination of problem-solving models and processes; personal values related to leadership; and behavioral, conceptual and communication skills for successful team building and team working, conferencing, negotiating, and assessing and promoting quality behavior. Case studies, interactive simulations and assessment of individual leadership characteristics. (0684-310 or approval of department) Credit 4

6084-340 Statistics for Total Quality
An introductory course in statistics and probability that emphasizes the analysis and interpretation of variation in quality control. Topics include descriptive statistics (statistical tables and graphs, measures of central tendency and dispersion), a brief overview of probability theory, probability distributions, sampling distributions, confidence interval estimates, and one and two sample hypotheses tests of means and proportions. The statistical package MINITAB is used extensively by the instructor to illustrate statistical procedures and by students to complete assignments. (Certificate in basic quality or approval of department) Credit 4

6084-370 Reliability I
Reliability I introduces the students to the concepts embodied in maintenance strategies—mainly reactive maintenance, preventive maintenance, predictive maintenance and proactive maintenance—and in reliability based maintenance. These strategies will be defined and their goals set forth. Reliability concepts and tools will be introduced that will form the foundation of a reliability based maintenance program. Credit 4

6084-375 Problem Investigation Isolation & Analysis
An introduction to problem solving methodologies and tools used in reliability based maintenance. Topics include: root cause analysis, fault tree analysis, FMEA, FRACAS, mechanical system failure processes, diagnostic systems/devices, RCM, and multi-variant analysis. (0692-211 or permission of department chair and 0684-370) Credit 4

6084-376 Reliability II
This course examines the underlying probability distributions and statistical tests that are used in reliability based/centered maintenance. Included are: the exponential distribution, curve fitting techniques, the normal distribution, the lognormal distribution, extreme value statistics, the Weibull distribution, and reliability analyses of repairable systems. Graphical techniques will be emphasized along with data analysis musings the statistical package MINITAB and reliability software programs provided by the instructor. (0692-221 or equivalent and 0684-370,375) Credit 4

6084-377 Reliability III
A continuation of the Reliability III course, which focuses on the theoretical and practical applications of reliability, availability, and maintainability. Topics include: parts selection and control, reliability analysis, reliability test and evaluation, equipment production and usage, spare parts forecasting, reliability/maintainability trade-offs and improvement techniques. (0692-212 or equivalent; 0684-370, 0684-375, 0684-376) Credit 4

6084-378 Reliability IV
This course is a continuation of Reliability III and deals with the theoretical and practical applications of reliability, availability, and maintainability. Topics include: reliability test and evaluation, equipment production and usage, spare parts forecasting, reliability/maintainability trade-offs and improvement techniques. Reliability software is used extensively by the instructor to illustrate analytical procedures and by students to complete assignments and a term project. Credit 4

6084-410 Costing for Quality
An introductory course in the decision-making process used for determining and evaluating the cost of quality in support of manufacturing, government or service industries. Topics include a review of basic accounting, an analysis of items that are directly and indirectly affected by conformance or non-conformance to customer requirements. (Certificate in basic quality or approval of department) Credit 4

6084-430 Implementing Total Quality Theory and techniques for introducing and institutionalizing quality management concepts and practices in all areas of organizational activity. Includes fundamental principles of organizational development, model programs for improving quality throughout the organization, and techniques for analyzing organizational culture and identifying and remediating barriers to quality management. Introduces benchmarking and identifying and translating customer requirements as the foundations of the implementation process. (Certificate in basic quality) Credit 4

Humanities & Social Sciences

6086-298 Special Topics: Humanities
Experimental lower-division courses are offered under this number; titles appear in each quarter’s course listing. Credit 1-5

6086-331 Psychology: Behavior in Industry
Industry presents one environment for understanding human behavior. This course applies psychological and social concepts to the industrial setting. Topics covered are motivation, performance, assessment quality of work life, group behavior, leadership, organizational structure, communication and decision making. (0514-210 recommended) Credit 4

6086-332 Psychology of Stress & Adjustment
Physiological, psychological, and social stress can have serious consequences on one’s daily life. This course familiarizes students with basic concepts, the positive and negative ramifications of stress and strategies for stress management. (0514-210 or equivalent) Credit 4

6086-333 Psychology of Persuasion
Examines important research on persuasive communication: What causes people to respond to persuasive communication in different ways; how can the communicator predict group responses to a given persuasive message? Projects require students to use theory in designing effective strategies for various purposes and audiences. Required for the public relations communications certificate. Credit 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0686-341</td>
<td>Values & Experience</td>
<td>A study of the interaction between values and experience. Focuses on the impact of social institutions (religion, family, education, government) and technological developments on values and beliefs (including the definition of reality). This is a science, technology and humanities elective. Credit 4</td>
</tr>
<tr>
<td>0686-342</td>
<td>Contemporary Moral Problems</td>
<td>A one-semester course that presents moral issues that arise in the professions and other vocations of technical expertise. These problems in applied ethics are studied through contemporary literature by moral philosophers (e.g., Habermas, Singer) as well as key classical texts (e.g., Plato, Locke, Hume, etc.) Credit 4</td>
</tr>
<tr>
<td>0686-351</td>
<td>African American Film</td>
<td>Five thematic periods of African American filmmaking are explored through the lenses of history, theme type and sociological content. Special emphasis is given to the evolution of roles played by African American actors and to the achievements of African American directors. Credit 4</td>
</tr>
</tbody>
</table>

Technical Communication

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0688-214</td>
<td>Dynamic Communication</td>
<td>Dynamic Communication focuses on developing and improving writing skills. The achievement of clarity, coherence, logical development of ideas and effective use of language is emphasized. Basic research techniques are included. (Requires pretest; see note below) Credit 4</td>
</tr>
<tr>
<td>0688-220</td>
<td>Communication</td>
<td>Focuses on refining writing skills emphasizing organization, support and effective expression of ideas in multi-paragraph papers. The major exercise is preparation of a position paper and an oral defense of the paper’s thesis. Research methods and principles of effective argumentation are studied. (Requires pretest or completion of 0688-214; see note below) Credit 4</td>
</tr>
<tr>
<td>0688-225</td>
<td>Interpersonal Communications</td>
<td>Knowing when to speak, what to say and how to say it is a prime asset for achieving success in many areas of our lives. This course focuses on techniques for communicating successfully in career, social and personal interactions. Topics include assessing communication situations, clarifying ideas, listening, persuading and managing conflicting viewpoints. Credit 2</td>
</tr>
<tr>
<td>0688-230</td>
<td>Professional Presentations</td>
<td>Focuses on the principles of preparing and delivering oral presentations. Students deliver a variety of speech types representative of those commonly occurring in business, industrial, community and social settings. Self, peer, and instructor critiquing are used for evaluation of in-class and videotaped speeches. Credit 4</td>
</tr>
<tr>
<td>0688-321</td>
<td>Discussion Skills & Leadership</td>
<td>Students study the theory of leadership in small groups and the dynamics of group behavior. The major exercises of the course are leading and participating as members in conferences that stimulate those of civic, business and industrial settings. Peer critiquing and videotaping allow students to apply theory as they learn to recognize the elements of successful conferences. Credit 4</td>
</tr>
<tr>
<td>0688-322</td>
<td>Interpersonal Communication for Customer Service</td>
<td>Examines key dimensions of interpersonal communication, focusing on effective message styles and listening strategies to improve customer satisfaction. Techniques and actions that lead to positive outcomes such as conflict resolution, problem solving and goal attainment are stressed. Organizational policy, management and ethical issues are considered. Through simulation and role playing, skills are developed that may be applied to a variety of work, social, and other situations. Credit 4</td>
</tr>
<tr>
<td>0688-325</td>
<td>Communicating in Business</td>
<td>Focuses on the development of those communication skills essential to functioning effectively in the business world. Students learn the process of analyzing communication situations and responding to them appropriately. Topics include reports, memos, letters, oral presentations and interpersonal skills. (0688-220 or equivalent) Credit 4</td>
</tr>
<tr>
<td>0688-327</td>
<td>Environmental Communication</td>
<td>Communication of environmental information and issues is critical for awareness, information, and action. Students develop skill in reporting and conveying environmental and scientific information as well as an understanding of the role of the media and public relations in the environmental communication process. Writing and speaking skills are sharpened for successful business and media communication. (0688-220 or 0504-225 or equivalent) Credit 4</td>
</tr>
<tr>
<td>0688-330</td>
<td>Technical Report Writing</td>
<td>Students learn to prepare reports of the sort required by practicing engineers and managers in industry and business. Focus is on developing the ability to analyze audiences and purposes, state problems, design reports, and write and edit them. Assigned reports are discussed and critiqued by peers and instructor. (0688-220 or equivalent) Credit 4</td>
</tr>
<tr>
<td>0688-331</td>
<td>Report Writing</td>
<td>Principles of organizing information into clear, concise reports. Techniques for oral reports, formal reports, and informal letter and memo reports. Also includes proposals, project status and progress reports. Credit 2</td>
</tr>
<tr>
<td>0688-333</td>
<td>Technical Writing & Editing</td>
<td>Focuses on the writing skills required for preparing technical documents. Adapting material and language for audience and purpose and conventions of technical writing style are emphasized. Strategies for evaluating technical discourse are studied and applied. Prior to enrolling in this course, students must demonstrate command of standard written English prose. Credit 4</td>
</tr>
<tr>
<td>0688-345</td>
<td>Oral Skills for Technical Communications</td>
<td>Focuses on effective techniques for oral presentation of technical material and participation, both as leader and member, in formal and informal meetings. Credit 2</td>
</tr>
<tr>
<td>0688-347</td>
<td>Promotional Writing</td>
<td>Focuses on practical guidelines for preparing marketing materials including brochures, data sheets, trade press articles, press kits and advertising copy. (0688-220 or equivalent) Credit 2</td>
</tr>
<tr>
<td>0688-348</td>
<td>Managing the Project</td>
<td>Principles of project management are studied and applied in cases and examples taken from the fields of public relations and communication. Major topics include planning, organizing, scheduling, budgeting, controlling, monitoring and reporting. Conflict resolution, team building and motivation are also covered. Use of project management software is introduced. Credit 2</td>
</tr>
<tr>
<td>0688-350</td>
<td>Introduction to Public Relations</td>
<td>An overview of the public relations function, covering tasks, responsibilities and roles of the PR practitioner as researcher, image-developer, designer, editor, coordinator, marketer, and advertiser; as adviser to management; and as spokesperson, media manager and services purchaser and provider. Course may be counted as either a business or communication elective (consult with adviser). Credit 2</td>
</tr>
<tr>
<td>0688-352</td>
<td>Writing for the Organization</td>
<td>Introduction to public relations writing at the corporate level, including planning, writing and producing documents and presentations intended to interpret the organization both internally and externally. Provides practice in writing a variety of news and feature copy, including crisis communication, adapting interviews for print and statements for various media. Credit 2</td>
</tr>
<tr>
<td>0688-353</td>
<td>Scripting AV & Video Presentations</td>
<td>Introduces writing and production techniques for audiovisual, multimedia and video presentations. Scripting prepares students to write a specificized form of communication-dialogue that is to be spoken and heard. Instruction on enhancing the verbal message with visuals is presented. Dimensions of wording, voice characterization, sound, motion and color are explored. Includes story-boarding and an introduction to traditional and emerging production methods. (0688-220 or equivalent) Credit 2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>0688-354</td>
<td>Speechwriting</td>
<td>Introduces principles of speechwriting, a highly specialized form of professional communications. Speechwriting covers techniques for preparing a speech in the “voice” of another. Writing for the “ear” and adapting the message, wording, body language and tone to the speaker are included. Techniques for enhancing message retention are studied. (0688-220 or equivalent) Credit 2</td>
</tr>
<tr>
<td>0688-355</td>
<td>Coordinating Publication Production</td>
<td>A survey course for professional communicators. Provides an overview of major phases of print production and general understanding of the factors that must be considered in purchasing print production such as estimating schedules, paper and binding options, colorization, print trade customs and illustrations; and guidelines for coordinating the stages of production. Credit 2</td>
</tr>
<tr>
<td>0688-356</td>
<td>Strategic Communications</td>
<td>This is a survey of strategic reactions to organizational communication problems. Case studies are used to analyze how communications research, planning, implementation, and evaluation are used to contribute to organizational goals and respond to needs and crises. Students study real cases where organizations have developed strategies for communication with consumers, employers, investors, government bodies, communities, and other publics.</td>
</tr>
<tr>
<td>0688-357</td>
<td>Media Relations</td>
<td>Designed for writers whose positions frequently require preparation of public relations correspondence as well as copy for inbound and outbound company publications. Emphasis is on developing clarity, precise use of language, and style in writing media letters and news releases, reporting information and creating feature articles. (0688-220 or equivalent) Credit 2</td>
</tr>
<tr>
<td>0688-361</td>
<td>Research Techniques</td>
<td>This course offers exposure to and experience with electronic and traditional resources for information generation. Student assignments simulate workplace fact-finding assignments and culminate in an extended feasibility project of the student’s choice. Students work in teams and use problem-solving strategies, assess project requirements, collect data, report periodically on their progress, and formally present their results. A variety of research methodologies are introduced, including interviewing skills, developing and using questionnaires, testing procedures, review and use of literature, and blueprint and specification reading. Credit 4</td>
</tr>
<tr>
<td>0688-362</td>
<td>Instructional Design Principles</td>
<td>This course presents an overview of the process of designing instructional packages from need and task analysis through identifying goals and objectives, media selection, program development and validation testing. Credit 4</td>
</tr>
<tr>
<td>0688-363</td>
<td>Technical Document Design</td>
<td>This course presents an overview of the principles and contemporary techniques involved in document design and provides the student with an opportunity to exercise them in the preparation of a technical manual. Topics include the basic principles of graphic design and visual communication, use of computer graphics and page layout programs, typography and its role in document design and reproduction and distribution methods. Students will plan, research, design, write, format, edit and produce a finished technical manual. Credit 4</td>
</tr>
<tr>
<td>0688-365</td>
<td>Writing for the Sciences</td>
<td>Course introduces students to the writing requirements for describing scientific and technological subject matter for presentation to general audiences. Students will learn to write and edit material for professional, in-house, trade, and popular publications that cover developments in the scientific and technical areas. The editing of scientific writing is also introduced. Credit 4</td>
</tr>
<tr>
<td>0688-366</td>
<td>Managing Media Presentations</td>
<td>An introduction to design principles and software applications for creating and organizing media presentations on technical topics. Includes principles of Web page design, the development of computer-based illustrations and electronic presentations. Covers the use of PowerPoint, HTML editors and other software applications. Project management skills are introduced. Credit 4</td>
</tr>
<tr>
<td>0688-367</td>
<td>Writing Software User Documentation</td>
<td>An introduction to the creation of end-user documentation for software products. This course defines the audiences, content, structures, and language of software user manuals and identifies typical problems with them. Practice is provided in writing step-by-step procedures, defining system and software concepts, and describing end user needs. Other types of software documentation as well as usability testing and online help information are introduced. Credit 4</td>
</tr>
<tr>
<td>0688-371</td>
<td>Designing with Computers I</td>
<td>An introduction to the computer as a design tool. Created for people just beginning to apply their design skills to a computer. In a hands-on lab over two quarters, the software application Freehand (vector-based program) for illustrative techniques is introduced. Discussions on a variety of related topics, such as design concepts, other software, computer needs and misconceptions. Previous design experience is necessary. (0688-271 or equivalent) Credit 3</td>
</tr>
<tr>
<td>0688-372</td>
<td>Designing with Computers II</td>
<td>In a hands-on lab the basic software application Pagemaker (page-layout program) for layout techniques is introduced. Discussions on a variety of related topics, such as design concepts, other software, computer needs and misconceptions. Previous design experience is necessary. (0688-271 or equivalent) Credit 3</td>
</tr>
<tr>
<td>0688-373</td>
<td>Electronic Presentation Design</td>
<td>This course introduces basic techniques for the creation of electronic presentations using computer software. Students learn to design individual slides and transparencies and dynamic and effective assembled presentations. The software application Power Point is used. Credit 3</td>
</tr>
<tr>
<td>0688-374</td>
<td>Designing with Corel Draw</td>
<td>The second course of a two-course sequence, this provides a foundation in raster and vector-based computer graphics. Students design text and graphics for press and internet using the Corel DRAW suite. Skills and information gained will carry into other software applications. (0688-271 or permission of the instructor) Credit 3</td>
</tr>
<tr>
<td>0688-381</td>
<td>Photo Imaging with Computers I</td>
<td>An introduction to the computer as a photographic tool for people just beginning to apply their photography or photo-design skills to a computer. Adobe Photoshop is presented in a hands-on, two-quarter lab sequence. In the first quarter lab, students explore traditional photographic techniques using a computer with an electronic camera. (0688-271 or permission of the instructor) Credit 3</td>
</tr>
<tr>
<td>0688-382</td>
<td>Photo Imaging with Computers II</td>
<td>Adobe Photoshop is presented in a hands-on, two-quarter lab sequence. In the second-quarter lab, students explore photographic manipulation using a computer with a flatbed scanner. (0688-381 or permission of the instructor) Credit 3</td>
</tr>
<tr>
<td>0688-383</td>
<td>Introduction to Internet Design</td>
<td>This course introduces basic techniques for the creation and design of electronic sites and pages for the Internet and Web. Students learn the graphic techniques and tools to construct a well-designed and effective home page and site. Credit 3</td>
</tr>
<tr>
<td>0688-384</td>
<td>Designing with Quark XPress</td>
<td>In-class lecture, instructor demonstration and guided practice are used to familiarize students with the techniques of using Quark XPress, a sophisticated desktop publishing program. Students are instructed in basic document design principles, including such topics as layout and typography, and using Quark to implement them. Credit 3</td>
</tr>
<tr>
<td>0688-398</td>
<td>Special Topics: Communications</td>
<td>Special topics are experimental courses announced quarterly. Credit 1-8</td>
</tr>
<tr>
<td>0688-465</td>
<td>Designing with Computers I</td>
<td>An introduction to the computer as a design tool. Created for people just beginning to apply their design skills to a computer. In a hands-on lab over two quarters, the software application Freehand (vector-based program) for illustrative techniques is introduced. Discussions on a variety of related topics, such as design concepts, other software, computer needs and misconceptions. Previous design experience is necessary. (0688-271 or equivalent) Credit 3</td>
</tr>
<tr>
<td>0688-500</td>
<td>Communications Elective</td>
<td>This course covers special communication topics and subject areas and is offered on demand. Variable credit</td>
</tr>
</tbody>
</table>
Math & Science

0692-201 Mathematical Thought & Processes
An examination of mathematical thought and processes through a study of elementary mathematical concepts. This course will acquaint the student with the “mathematical way of thinking.” Topics include sets, numeration systems, number theory, real numbers and finite systems. (A math assessment is required) Credit 4

0692-202 Modern Math Methods
A continuation of 0692-201 with an examination of selected modern mathematical methods used in today’s society. This examination includes a study of equations, inequalities, problem solving, graphs and functions, probability, statistics and the usefulness of these methods in today’s society. Credit 4

0692-211 College Math for Business I
An introduction to mathematical concepts and quantitative methods required in business management. Included are sets and real number system; linear, nonlinear and exponential functions; and system of equations and inequalities. Differential and integrated calculus is introduced, as well as some special topics in quantitative analysis such as linear programming and simulation. (Intermediate algebra) Credit 4

0692-212 College Math for Business II
An introduction to mathematical concepts and quantitative methods required in business management. Included are sets and real number system; linear, nonlinear and exponential functions; and system of equations and inequalities. Differential and integrated calculus is introduced, as well as some special topics in quantitative analysis such as linear programming and simulation. Credit 4

0692-221 Technical Math I
A two-quarter sequence introducing college algebra and trigonometry, Covering basic algebraic concepts and operations, algebraic and transcendental (trigonometric, logarithmic and exponential) functions. (Three years high school math or equivalent; requires pretest) Credit 4

0692-222 Technical Math II
A two-quarter sequence introducing college algebra and trigonometry, covering basic algebraic concepts and operations, algebraic and transcendental (trigonometric, logarithmic and exponential) functions. (Three years high school math or equivalent; requires pretest) Credit 4

0692-223 Technical Calculus
An elementary applied calculus course covering the basic differential and integral calculus of algebraic and transcendental functions with applications. (0692-222 or equivalent) Credit 4

0692-231 Contemporary Science: Biology
An introduction to the fundamental principles of biology for non-science majors and the application of these concepts to areas of interest in our contemporary technological society. Topics discussed include the cell as a biological unit, the biogenesis-abiogenesis controversy, genetic coding and introduction to plant and animal biology. The course is presented in a lecture-demonstration format. Credit 4

0692-232 Contemporary Science: Chemistry
An introduction to the fundamental principles of chemistry for non-science majors and the application of those concepts to areas of interest and concern in our contemporary technological society. The conceptual basis for the phenomena of heat, light, sound, mechanics, electricity and magnetism is discussed and related to such topics as astronomy, space exploration, lasers and environmental concerns. The course is presented in a lecture-demonstration format. (0692-221 or 0692-201 or 0692-211 or equivalent) Credit 4

0692-233 Contemporary Science: Physics
An introduction to the fundamental principles of physics for non-science majors, and the application of these concepts to areas of interest and concern in our contemporary technological society. The conceptual basis for the phenomena of heat, light, sound, mechanics, electricity and magnetism is discussed and related to such topics as astronomy, space exploration, lasers and environmental concerns. The course is presented in a lecture-demonstration format. (0692-221 or 0692-201 or 0692-211 or equivalent) Credit 4

Oceanus

0692-234 Oceanus
An introduction to the fundamental principles of oceanography for non-science majors, and the application of those concepts to areas of interest and concern in our contemporary technological society. The marine environment is investigated in terms of basic scientific concepts and topics discussed include plate tectonics, earthquake prediction, the impact of ocean pollutants, climate fluctuations, cetacean intelligence and resources from the sea. (Distance Learning offering) (High school algebra) Credit 4

0692-236 Contemporary Science: Astronomy
An introduction to the fundamentals of astronomy for non-science majors. After learning to locate and identify visible objects in the night sky, students are introduced to the scientific instruments and techniques used to investigate celestial phenomena. Subsequent discussions show how observational data reveals the physical nature and evolution of planets, stars, and galaxies. Requires proficiency in algebra and a familiarity with simple trigonometric relationships. This is a distance learning offering. (High school algebra) Credit 4

0692-250 Introduction to Computers & Programming
Basic concepts and overview of computer science. The topics include historical development, algorithms, flowcharting and programming in BASIC. Exposure to hardware concepts, software concepts, binary and hex numbers and logic. Application of the computer to various disciplines. Not for computer science majors. (Distance learning offering) (High school intermediate algebra) Credit 4

0692-311 Statistics I
An introduction to the basic tools of statistical analysis used in business, including charts, frequency distribution, averages, dispersion, probability theory, sampling. Logical procedures for making business decisions under conditions of uncertainty are emphasized. Hypothesis testing including one, two and k-sample test means, proportions, regression and correlation analyses are also included. (0692-212) Credit 4

0692-312 Statistics II
An introduction to the basic tools of statistical analysis used in business, including charts, frequency distribution, averages, dispersion, probability theory, sampling. Logical procedures for making business decisions under conditions of uncertainty are emphasized. Hypothesis testing including one, two and k-sample test means, proportions, regression and correlation analyses are also included. (0692-212) Credit 4

0692-331 Sport Physiology/Fitness
A contemporary science course that provides a foundation for understanding the importance of nutrition and energy transfer in maximizing the potential for exercise and training. In addition to the basic principles of exercise physiology, a variety of contemporary issues are covered, including use of legal and illegal aids, cardiovascular fitness and disease prevention, training methodologies and fitness assessment. Particularly appropriate for individuals interested in maintaining their level of physical fitness and wellness, participating in competitive athletics or working in recreation or physical therapy. (Distance Learning offering) Credit 4

0692-332 Fitness Prescription Programming
This course is designed to help students develop the skills and knowledge necessary to provide safe and appropriate fitness assessments and exercise programs. The American College of Sports Medicine objectives for health fitness instructor certification serve as the core learning objectives. Students will practice exercise testing and prescription skills at various points throughout the course. (1001-313 or 0692-331) Credit 4

0692-333 Exercise Program
This course is designed for those who work in the field of exercise/fitness or medical health care who work with individuals and patients with diagnosed disease states or other significant limitations that would benefit from appropriately designed and prescribed exercise programs. The course will review theoretical and diagnostic value of testing, create exercise prescriptions, and understand the therapeutic benefit exercise will have on specific conditions. Some of the topics to be addressed include: rheumatoid arthritis, diabetes, high blood cholesterol, obesity, pulmonary disorders, coronary heart disease, cystic fibrosis, hypertension, low functional capacity and aging. (1001-313 or 0692-331, 0692-332) Credit 4
Multi/Interdisciplinary Studies

0697-201 Student Seminar
Students focus on the essential college and life success skills. Utilizing individual active learning activities, group work, role plays, and class discussion, students explore topics such as personal responsibility, success, career goals, learning and personal style, academic performance and expectations, and time and stress management. Specific college success skills such as test taking, textbook reading, using the library and information/communication systems, note taking and study systems, are reviewed. Credit 2

0697-240 Methods of Learning
Provides students with analytical thinking skills and strategies that are effective across academic disciplines. The process of “learning to learn” considers an individual’s natural learning skills and how to apply them to academic work. The importance of questioning in the active learning process is established through guided instruction. The application of skills to current academic course work is reinforced through small group sessions and carefully monitored independent student self-assessment. Credit 4

0697-428 Training Design & Delivery
The new workplace requires new solutions. In this environment, training that is well-planned, presented, and meets organization needs takes on a critical strategic role. This course is aimed at managers team leaders, HR specialists, and those involved in the continuous, self-directed, formal and informal learning needed to help their organizations improve their business success. Core topics include design and delivery of training, the needs assessment process, job and core competencies analysis, targeting learner populations and learner needs, training program design and program development issues. Credit 4

0697-431 Understanding Corporate Culture
An introduction to the concepts of organizational/corporate culture and the methods of analyzing it. Focuses on the development of skills required to assess corporate culture in terms of such constituent parts as ritual, symbol, structure, language and identity. Also included are a history of the study of corporate culture, an analysis of leadership styles and communication patterns in the workplace, an overview of strategies for managing corporate and organizational change and an orientation to leadership styles appropriate to the successful manipulation of cultural elements. Emphasis is both on individual and interactive learning processes. (0510-210 and either 0514-210 or 0515-210) Credit 4

0697-432 Managing Change
At a time when America is learning that change-and not stability-is at the heart of business and organizational vitality, this course offers students insight into theories of organizational dynamics and change as well as an introduction to skills for managing change. The strategies covered include, but are not limited to, community building, managing change, identifying resistance, negotiation/mediation. Teaching strategies include case studies, experience logs, organization assessment inventories, and assigned readings. Credit 4

0697-433 Teams & Team Development
Meets the increasing need to understand and participate in teams in the workplace. Students establish a strong framework of group theory through topics that include current group and team theory research, individual functions in a team and team leadership, mission and global development, evaluating team effectiveness, negotiating persuasion and conflict resolution. This course is highly interactive, with projects that require the student to use the theory in constructing and observing cross-functional work teams, self-directed teams and integrated work teams. Learning takes place through lectures, case studies, simulations and group projects that develop strong team skills and reinforce team theory. Credit 4

0697-441 Creative Thinking & Problem Solving
An interdisciplinary approach to the generation and evaluation of ideas and solutions. Includes analysis of the conditions limiting creativity and the development of a “tool kit” of strategies and techniques for discovering, inventing and assessing new, unique and useful ideas, applications and solutions. Applicable to a range of life and work situations, from complex environmental concerns to competitive business challenges to family disputes. Credit 4

0697-442 Learning Organization
This interdisciplinary course combines management thought, control theory psychology and systems thinking. It focuses on theory and techniques for building and sustaining an efficient, creative organization that promotes problem solving and collaborative learning. Learning organization principles of systems thinking, personal mastery, mental models, shared vision, team learning. Provides an introduction to control theory psychology with applications for improved personal interaction and a non-coercive approach for lead managing. Includes analysis of the conditions limiting an organization’s capacity to learn and remediation of organizational “learning disabilities.” Credit 4

0697-444 Self-Directed Learning in the Workplace
This multidisciplinary course provides a practical overview of self-directed learning: theory, design, development and implementation. Students examine self-directed learning from personal and organizational perspectives that include individual learning differences. Students projects focus on identifying learning objectives and utilizing a systematic approach for promoting active learning in the workplace. Credit 4

0697-448 Managing Learning & Knowledge
The new workplace requires new solutions. In this environment, training that is well-planned, presented, and meets organization needs takes on a critical strategic role. This course is aimed at managers, team leaders, HR specialists, and those involved in the continuous, self-directed, formal and informal learning needed to help their organizations improve their business success. Core topics include design and delivery of training, the needs assessment process, job and core competencies analysis, targeting learner populations and learner needs, training program design, and program development issues. Credit 4

0697-451 Preparing for the 21st Century
An interactive seminar for advanced students that focuses on interdisciplinary issues of wide interest and application. Course theme and content change periodically, ranging from Negotiation and Conflict Resolution to Microeconomic Battle Plans and Organizational Culture. Limited to qualified applied arts and science BS degree students. (Approval of adviser) Credit 4

0697-452 Special Topics
Special Topics Courses are announced quarterly. Credit 4

0697-462 Empowered Leadership
This multidisciplinary course has a three-tier structure: a fundamental look at the theories and practices of leadership; a study of leadership styles and their impact on the work environment; and a reflection and self-analysis by the students of their leadership styles. Course work will include extensive readings, case studies, written reports and reflections. Much of the course will operate in a team manner.
College of Business

Index

0101 Accounting .. 189
0102 Management .. 189
0104 Finance ... 191
0105 Marketing .. 191
0106 Decision Sciences 192
0112 Management Information Systems 192

Course numbers: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 0991); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Accounting

0101-301 Financial Accounting
Accounting as an information system for investors and creditors making economic decisions. The accounting cycle, accounting theory and interpretation of major financial statements are discussed. Current issues in applying generally accepted accounting principles are explored through relevant cases and current corporate annual reports. (Sophomore status) Credit 4

0101-302 Managerial Accounting
Introduction to the use of accounting information by managers within a business. Explores the value of accounting information for the planning and controlling of operations, assessing the cost of a product/service, evaluating the performance of managers, activity-based accounting, measuring costs of quality and strategic decision making. (0101-301) Credit 4

0101-303 Ethics & Accounting
Introduction to major philosophies of ethical behavior and theories of justice. The focus is on developing skills for solving ethical problems facing professionals such as accountants. Several specific accounting cases, current and “classic,” are analyzed. (0101-301) Credit 2

0101-319 Legal Environment of Business
An introduction to legal principles and their relationships to business organizations. Includes a review of the laws and regulations that govern their operations. Explores the background and origin of the U.S. legal system, its law enforcement agencies and the legal procedures used by the government to enforce its laws. Representative topics include constitutional, antitrust, consumer protection, torts, bankruptcy and regulatory law. A substantial portion of the course deals with contract law. A legal research project is an important aspect of this course. Credit 4

0101-320 Business Law
Explores in depth the implications of the Uniform Commercial Code to business operations. Topics covered include sales, commercial paper, corporations, partnerships, joint ventures, sole proprietorships, bailment and agency. Topical cases and examples are used to help the student grasp the business implications of the law and its nomenclature. A legal research project is an important aspect of this course. (0101-319) Credit 4

0101-335 Cost & Managerial Accounting
An extensive introduction to the use of accounting information by managers within a business. It explores the value of accounting information in planning and controlling operations, assessing the cost of a product/service, activity-based costing, evaluating the performance of managers, measuring costs of quality and strategic decision making. (0101-301, junior status) Credit 4

0101-408 Financial Reporting & Analysis I
Extensive exposure to the accounting cycle with full integration of the data flow in an accounting information system. Accounting theory developed by accounting standard-setting bodies is covered in depth. Generally accepted accounting principles are discussed as they apply to the preparation of financial statements and the recognition and measurement of current assets. (0101-301, prior or concurrent registration in 0104-441, junior status) Credit 4

0101-409 Financial Reporting & Analysis II
In-depth consideration of generally accepted accounting principles and theory as they apply to the recognition and measurement of all non-current assets, current and non-current liabilities, and owner equities, including partnerships. Issues related to convertible securities and the computation of earnings per share are discussed. (0101-408, junior status) Credit 4

0101-435 Role of Accounting in Organizations
Gives students an understanding of how accounting is used to help organizations achieve their goals. Students learn how to account and the reasons why we account as we do. Special emphasis is placed on the resolution of controversial accounting issues within the context of the firm’s goals. Positive accounting theory and agency theory are discussed throughout. (Distance Learning course, not for College of Business majors) Credit 4

0101-522 Tax Accounting I
A basic introductory course in federal income taxation. Emphasis is on taxation of individuals and sole proprietorships. Topics include income measurement and deductibility of personal and business expenses. (0101-301, junior status) Credit 4

0101-523 Tax Accounting II
A continuation of Tax Accounting I. Emphasis is on tax treatment of property transactions and taxation of business entities. Also covers the use of technology to prepare complex returns and to research tax issues. (0101-522, junior status) Credit 4

0101-530 Auditing
A study of the legal, ethical and technical environment in which the auditor works. Current auditing theory, standards, procedures and techniques are studied. The audit process is studied to ascertain how it leads to the development of an audit opinion. (0101-409, junior status) Credit 4

0101-540 Advanced Accounting
This course investigates the application of generally accepted accounting principles to corporations with investments in subsidiaries. Issues involving consolidated financial statements, including international topics, are considered. Also examined are objectives for not-for-profit and governmental entities, and how these objectives affect their financial accounting and reporting. (0101-409, junior status) Credit 4

0101-541 Analytical Skills in Accounting
Integrates knowledge obtained in earlier accounting courses. Uses cases to consider such topics as financial reporting and managerial accounting projects with uncertainty, incomplete information and errors in the underlying data. (0101-409, senior status) Credit 2

0101-550 Financial Accounting & Reporting Issues
A study of complex issues facing preparers and users of financial statements and how these issues are resolved. Topics include revenue recognition, accounting changes, deferred taxes, pensions, post-employment benefits, leasing, cash flows, price level statements, interim reporting and segment disclosures. (0101-409, senior status) Credit 4

0101-554 Seminar in Accounting
Designed by individual instructor. (Varies by instructor) Credit 4

Management

0102-225 Effective Communications
Organization and structure of communications are discussed, with focus on oral presentations, meeting skills, listening strategies and summarization techniques. Research skills and library usage also are covered. Credit 2

0102-231 Quality Concepts
Introduction to quality and to career planning. Topics include total quality management, the quality gurus, diversity in the work place and self assessment career goals. Faculty present information on career areas of concentration in the college. Credit 2
0102-232 Quality Applications I
A continuation of TOM. Topics include teamwork and empowerment; the use of quality tools to organize, present, and understand data; and problem solving. Students work in teams to solve problems, using the quality tools, and present their results to the class. Credit 2

0102-233 Quality Applications II
In this final course of the sequence, students use the Xerox Quality Improvement Process as a vehicle to study customer satisfaction, the relationship between customer requirements and supplier specifications, benchmarking and continuous improvement. Meeting skills are reinforced through practice of the skills developed in previous quarters and extended through development of a code of conduct. Tools from the 7 Management Tools are introduced as needed. Focus on the individual student’s success culminates in discussion of the cooperative education process and generation of a resume. Credit 2

0102-235 Quality Concepts for Transfers
Required for incoming transfer students. Exposes students to the current total quality management (TQM) movement and considers its implications for personal, academic and career goals. Emphasis is on the history and underlying principles of TQM. At the completion of this course, the student should recognize those factors that have created the need for change in American business practices; be capable of identifying and articulating the underlying principles of the current TQM movement; and demonstrate an ability to analyze the impact the TQM movement may have on personal, academic and career decisions. Credit 2

0102-250 The World of Business
This is a course designed for first year business students as an overview of the processes and functional inter-relationships of business. Topics include the role and responsibility of the manager, the processes and functions of business, the impact of technology, delivering quality products and services, doing business in global environments, and career exploration. Credit 4

0102-310 Air Force Management & Leadership I
Integrated management and leadership courses emphasize the concepts and skills required of the successful young officer, manager and leader. The first course includes applied written and oral communication techniques, coordination, history of management theory, analytic methods of decision-making, strategic and tactical planning, various leadership theories and followership. The second course stresses organizing, staffing, controlling, counseling, human motivation and group dynamics, ethics, managerial power and politics, managing change, career development and performance appraisal. Actual Air Force case studies are used to enhance the learning process. (ROTC) Credit 5

0102-311 Air Force Management & Leadership II
Integrated management and leadership courses emphasize the concepts and skills required of the successful young officer, manager, and leader. The first course includes applied written and oral communication techniques, coordination, history of management theory, analytic methods of decision-making, strategic and tactical planning, various leadership theories and followership. The second course stresses organizing, staffing, controlling, counseling, human motivation and group dynamics, ethics, managerial power and politics, managing change, career development, and performance appraisal. Actual Air Force case studies are used to enhance the learning process. Credit 5

Note: Other Air Force ROTC course Listings can be found under the College of Applied Science and Technology

0102-350 Management for Printers
Familiarizes printing management students with basic principles and techniques of managerial leadership and organizational behavior. Organized around the key management functions of planning, organizing, leading and controlling, with an emphasis on the human aspects of management, and achieving high productivity and total quality. Case preparation about a problem relevant to the printing industry is required. (Service course for printing majors only) Credit 4

0102-360 Global Business: An Introduction
A comprehensive review of critical international business issues is offered. The hot political issue of globalization is dealt with in detail. An analysis of the opportunities and threats, such as China and foreign exchange movements, faced both by enterprises and individuals is presented. There is focus on the politics of international trade and the strategies executed by multinational enterprises (MNEs). (0511-301, 0105-363, sophomore status) Credit 4

0102-405 Introduction to Work Organizations
Introduction to the concept of work organizations and how they function. Students learn of the different industries in which work organizations fall and how to become and help others become effective members of organization through motivation, leadership, interpersonal conflict management and stress handling. Additionally, the student learns about the diverse work force, social issues and government regulation of work. (Distance Learning course, not for College of Business majors) Credit 4

0102-406 Management Concepts
Introduction to the four functions of management planning, organizing, staffing and controlling. In addition, topics such as organizational change, stress, productivity and decision making are covered. (Distance Learning course, not for College of Business majors) Credit 4

0102-430 Organizational Behavior
An overview of human behavior in organizations with respect to enhancing individual and organizational effectiveness. Emphasizes individual differences, teamwork, work teams, motivation, communication, leadership, conflict resolution and organizational change. Concepts of organizational behavior such as creative problem solving are applied to improving organizational performance. (Junior status) Credit 4

0102-432 Managing in the Global Environment
An analysis of the key implementation issues facing firms conducting business around the globe. Emphasis is placed on the pervasive topic of culture. We examine its impact on management, individuals, groups and how they affect organizational performance. Leadership styles, in the cross cultural context, will be deconstructed as will communication, negotiation, risk tolerance and motivation. (0102-360, junior status) Credit 4

0102-438 Business Ethics
Examines major western society ethical theories and moral traditions and their business applications. Students have an opportunity to bring theories and traditions to bear on specific issues. These issues will be related to case studies: equal opportunity and affirmative action, product liability, introduction of new technologies (such as bioengineering) and also to business practices in other cultures. (0102-430, junior status) Credit 4

0102-455 Human Resources Management
An overview of the human resource function in both large and small organizations. Major topics studied include employee selection, compensation, training and development, performance evaluation and managing diversity. Emphasis is on how human resources management influences and enables the achievement of organizational goals. (0102-430, junior status) Credit 4

0102-460 Leadership in Organizations
A comprehensive explanation of how managerial leadership guides employees towards attaining organizational goals. The personal attributes of leaders are described, along with the leader’s contribution to teamwork, achieving cultural diversity, and knowledge management. Emphasis is placed on the development of leadership skills. (0102-430, junior status) Credit 4

0102-462 Management & Career Development
Emphasizes the acquisition of management skills such as communicating, resolving conflict, motivating, creative problem solving, and coaching. Students receive feedback on their management skills. An overview of management development and training techniques is also presented, along with basic aspects of career development. (0102-430, junior status) Credit 4

0102-465 Strategy in the Global Environment
This course concentrates on the strategic challenges faced by management of multinational enterprises (MNEs) when operating, as they do, in a global environment. It deals with the critical issues of international business strategy development and the realities of translating plans into action. (0102-360, senior status) Credit 4

0102-490 Entrepreneurship
Focus is the creation and growth of new ventures. Major topics include evaluating business opportunities, franchising, the role of small business and entrepreneurship in the economy, problems associated with family firms, sources of financing and the psychology of the entrepreneur. An integral part of the course is the development, writing and presentation of a business plan. (Junior status) Credit 4
Business, Government & Society
An analysis of society’s changing expectations of business; the means by which business can deal with these expectations; ethical reasoning, which can be used to determine the responsibility for meeting these expectations; the manner in which public policy is formulated to impose these expectations on business; and the manner in which business can influence the formulation of public policy. (Senior status) Credit 4

Technology & Quality Management
This course will focus on a number of special topics within the broad area of technology and quality management: Managing technology and quality within the firm requires the deliberate coordination of the research, production, and service functions with the marketing, finance, and human resource functions of the organization. The emphasis of the course is on customer satisfaction, quality improvement, problem solving, team building, benchmarking, and the development and marketing of new products. (Junior status) Credit 4

Organizational Performance & Design
Applications of organizational design and theory of organizational performance. Traditional and emerging concepts that affect work organization performance. Characteristics of high performance organizations. Interaction of organization and environment. May include a strengths/weaknesses analysis of an existing organization. (0102-430, junior status) Credit 4

Field Experience in Business Consulting
Students nearing the completion of their studies work in consulting teams to assist local small firms and entrepreneurs. Problems are isolated and solutions then developed. A team consultant’s report is prepared for the firms/entrepreneurs. (Senior status) Credit 4

Strategy & Policy
A capstone course drawing upon a variety of functional areas including accounting, finance, marketing, production operations, organizational theory and international business to provide an integrated perspective of business organizations. Focuses on how corporations can achieve superior profitability through establishment of a sustainable competitive advantage. Topics include the analysis of general environmental trends, industry attractiveness, competition and knowledge management. Students learn how to formulate and implement effective business and corporate-level strategies. Extensive use is made of complex cases and/or a computer simulation of decision making in a highly competitive industry environment. (0102-430, 0105-363, 0104-441, 0106-401, senior status) Credit 4

Seminar in Management
Designed by individual instructor. (Varies by seminar content) (Permission of instructor, junior status) Credit 4

Global Business: Special Issues
A variety of contemporary special interest topics in the context of international business will be covered. Sample topics may be foreign direct investment strategies, regions of the world: Asia, Europe, China, Japan, Korea, etc., the role of multinational enterprises (MNEs), transformation of transitional economies. (0102-360, junior status) Credit 4

Theory & Application in Basic Financial Concepts
Develops some of the basic principles of finance and shows some of the ways in which they can be applied to business decisions and problems. Concepts and applications include time value of money, ratio analysis, cash budgeting and pro forma forecasting, credit decisions, capital budgeting techniques, forms of borrowing and capital structure decisions. (Distance Learning course, not for College of Business majors) Credit 4

Corporate Finance
Basic course in financial management Covers business organization, time value of money, valuation of securities, capital budgeting decision rules, financial ratios, financial planning and working capital management. (1016-319, 0101-301, 0511-301, junior status) Credit 4

Managing Corporate Assets & Liabilities
Advanced course in financial management. Covers project cash-flow analysis, risk, cost of capital, market efficiency, issuance of securities, debt policy and dividend policy. (0104441, junior status) Credit 4

Intermediate Investments
Focuses on the financial investment problems faced by individuals and institutions. Theoretical topics include asset pricing, hedging and arbitrage. Application topics include risk management in bond and stock portfolio construction. A discussion of options, futures and swaps also is included. (0104-441, junior status) Credit 4

Finance in the Global Environment
Discusses problems posed by the international financial environment in which corporations operate. In particular, students learn to quantify and manage risks arising from shifting exchange rates. Other topics include exchange rate systems, international trade finance, international capital budgeting, country risk analysis and long-term international financing. (0104-441, junior status) Credit 4

Advanced Corporate Financial Planning
Focuses on the strategic management of the corporation. Topics include forecasting models for critical variables such as sales; budgeting; strategic decisions such as mergers, divestitures and executive compensation; and working capital management. (0104-452, junior status) Credit 4

Management of Financial Institutions
Analysis of the different kinds of financial institutions, such as commercial banks, savings institutions, insurance companies, pension funds and others. Central emphasis is on interest rate risk exposure. Special focus is on institutions’ products as represented in their liability structures and the consequent asset decisions. (0104-441, junior status) Credit 4

Seminar in Finance
Designed by individual instructor. (Varies by seminar content) (Permission of instructor, junior status) Credit 4

Marketing
Principles of Marketing
An introduction to the field of marketing, stressing its role in the organization and society. Emphasis is on determining customer needs and wants and how the marketer can satisfy those needs through the controllable marketing variables of product, price, promotion and distribution. (Sophomore status) Credit 4

Introduction to Marketing
Review of the fundamentals of marketing: formulating marketing strategy (segmentation and positioning) and the marketing mix (price, product, promotion and distribution decisions). The mechanisms of delivering total customer satisfaction throughout the marketing mix are emphasized through applying quality management principles to the marketing function. (Distance Learning course, not for College of Business majors) Credit 4

Internet Marketing
The course examines the impact of the Internet on traditional marketing and the new form of marketing. It explores the impact of the Internet on marketing strategy and tactics. It explicitly considers using the Internet to increase the value delivered to customers and improve a firm’s competitiveness. (0105-363 or equivalent) Credit 4

Business to Business E-Commerce
The focus of this course is on the effective integration and coordination of various operations in e-business to business transactions. The course includes organizational and financial issues related to successful e-business operation and it explores the e-commerce and sales relationships among the supplier and buyer in this type of business. The course looks at the strategies and tactics that organizations can use to build and/or enhance their business development and marketing strategies using electronic business tools and strategies. (0105-363 or equivalent, 0112-310 or equivalent) Credit 4

Buyer Behavior
A study of the determinants of consumer and business buying behaviors. Emphasis is on identifying customer needs, understanding the buying decision process, and maintaining customer satisfaction. (0105-363, junior status) Credit 4
Marketing Channels
Focuses on the problems and techniques of marketing by and through channel members (i.e., retailers, distributors, agents, and independent reps). Customer satisfaction depends not only on the decisions that manufacturers make, but also on what happens in the channel; therefore, this course addresses how to plan, develop, and maintain effective interorganizational partnerships in distribution so that sustainable competitive advantages can be achieved. (0105-363, junior status) Credit 4

Marketing Management
A capstone course that gives the student an in-depth knowledge of middle- and upper-management-level marketing problems and processes. Topics include tools used by marketing managers and the role of total quality in the development, implementation and control of marketing plans. (0105-363, prior or concurrent registration with 0105-551, senior status and one completed block of co-op) Credit 4

Marketing Research
A study of research methods used to understand the changing needs of markets and customers in order to guide the decision making of marketing managers. Students will use projects and cases to learn topics including problem formulation, sources of marketing data, research design, data collection, and analysis. (0105-363, 1016-319, junior status) Credit 4

Sales Management
A study of the role, activities, and tools employed by sales managers. Topics include account management, sales planning, territory design and deployment of sales reps, organization, recruitment and selection, training, supervision, performance appraisals and motivating the sales force. (0105-363, junior status) Credit 4

Seminar in Marketing
Current issues in marketing are the focus of the course. Topics have included direct and database marketing, pricing, advanced marketing research, and other current issues in marketing, based on student and faculty interest. (0105-363, junior status) Credit 4

Marketing in the Global Environment
A study of the management challenges of marketing in foreign countries. Topics include the assessment of foreign markets, foreign customer requirements, entry strategies, foreign channel management, promoting internationally, transfer pricing, and world-class quality. (0105-363, junior status) Credit 4

Professional Selling
Selling concepts, tools, strategies, and tactics are discussed as they apply to both external and internal customers. Students learn and experience some of the problems faced and rewards earned by those in professional sales. Selling in a total quality environment is emphasized. Customer relationship management/partnering with customers and truly seeking to meet their requirements are discussed as key to long-term success. (0105-363, junior status) Credit 4

Integrated Marketing Communications
An in-depth view of tools of advertising, sales promotion, and public relations. Students develop a comprehensive promotion plan, beginning with the marketing strategy and ending with implementation and evaluation. (0105-363, junior status) Credit 4

Management Science
A survey of quantitative approaches to decision making. Topics include formulation and solution of linear programming models, decision analysis, and simulation. Involves use of computer software. (1016-319 or equivalent) Credit 4

Operations Management
A survey of production/operations management. Topics include quality control, total quality management, project management, forecasting, production planning, material requirements and capacity planning, inventory management, just-in-time, international operations, impact of technology, and strategic considerations. (1016-319, junior status) Credit 4

Statistical Methods of Quality Control
A course in statistical quality control. Topics include statistical process control (SPC) techniques (such as control charts, process capability analysis, etc.), acceptance sampling plans, and some examples of reliability and design of experiment techniques. (1016-319 or equivalent) Credit 4

Tools for Total Quality Management
Examines the concepts of quality. Perspectives include quality planning, control and improvement. Addresses what tools and techniques including quality function deployment (QFD), six sigma, check sheets, Pareto diagrams, flow charts, histograms, run charts, statistical control charts, and benchmarking. (Some background in statistics recommended) (Distance Learning course, not for College of Business majors) Credit 4

Management Information Systems
Business Software Applications
This course provides students with hands-on experience with the software tools and techniques that are in use today. Emphasis will be placed on the analysis and charting of different types of business data. Credit 2

Business Computer Applications
Information systems in organizations and the use of personal computers to enhance personal productivity. Extensive hands-on experience with PC spreadsheets and presentation graphics. Credit 4

Introduction to E-Business Technologies
This course gives students both a conceptual and hands-on understanding of the technology that supports today’s e-business revolution. Students will study the technical infrastructure that enables business online, and will also create business Web sites that interact with “back-end” databases to allow customer transactions. Students who complete this course will be able to approach technical decisions about e-business in an informed and effective manner. (Not for College of Business MIS majors) Credit 4

Survey of MIS
In this course, the students obtain a comprehensive overview of what management information systems are, their tactical, operational, and strategic importance, and how they affect and relate to other areas of the organization. The students are exposed to many different types of information systems, related state-of-the-art technologies, and management practices. Credit 4

Microsoft Access Basics
This course is designed to make the student proficient in the use of the various features of Microsoft Access. Topics include the basics of relational databases, the relationship between the results desired and the data gathered and developing effective business reports. (0112-300) Credit 4

Business Programming in Visual Basic
Programming concepts and practice are covered in this course along with the basics of good graphical user interface (GUI) design. Students who successfully complete this course will know the fundamentals of computer programming, as well as how to create graphical interfaces that are intuitively usable for specific tasks. (0112-300) Credit 4

Visual Basic & GUI Design
Advanced programming concepts and practices are covered in this course. Students who successfully complete this course will be able to write programs that interact with spreadsheets and databases. Advanced concepts in graphical user interface (GUI) design are also covered, along with a survey of more advanced data structures and object design. (0112-330 or programming language) Credit 4

Database Management Systems
This course focuses on requirements, design and the development of databases that facilitate easy storage and access of information to aid decision making. It covers data modeling including ER diagramming, normalization, database architectures, query design using SQL and QBE, distributed databases, database concepts and data administration. A database engine such as Access or Oracle will provide students with hands-on experience. (Programming language, sophomore status) Credit 4

MIS Hardware & Operating Systems
The basic principles of computer technology are covered. Students who successfully complete this course can distinguish between commonly used computer architectures and components. They learn about various operating systems concepts including multiprocessing, multitasking, multithreading, virtual memory management, registries, and file organizations. Students will be able to intelligently and effectively evaluate and select computer technologies that are most appropriate for the systems they design. (0112-300, sophomore status) Credit 4
Business

0112-370 Systems Analysis & Design I
Students who complete this course will be able to design, redesign, and model business processes. They will know how to conduct interviews; approach the design or redesign of business processes; model system designs; effectively communicate systems designs to various levels of management; approach the implementation of a new or redesigned system. (Programming language, sophomore status) Credit 4

0112-380 Network Technology
This course stresses a top-down, business-oriented approach to evaluating and selecting network technology. Concepts, principles and standards are explored. The students gain practical knowledge of network and telecommunications technology, including hardware and software. Students who successfully complete this course will understand the technical language and concepts associated with local area networks (LAN) and wide area networks (WAN). They learn enough to allow them to help design systems that include network components. (0112-360, sophomore status) Credit 4

0112-405 Object Oriented Business Programming
This course will prepare students to plan and implement systems using the object oriented approach. The course will build on earlier programming classes and will emphasize the programming practices of polymorphism, inheritance and data hiding. (0112-330) Credit 4

0112-420 Business Network Design
This course is intended to develop an understanding of how network design affects managerial decision making with respect to networks and their total cost of ownership. The course will explore the topics of connectivity, modern communications links, and network infrastructure with a heavy emphasis on matching the appropriate networking technology to the business directives of management. (0112-380, junior status) Credit 4

0112-430 Network Applications Development
This course is intended to lay the underpinnings for electronic commerce applications. Students will learn Web page design for business, data validation and how to create Internet interfaces for databases. Students will also learn the techniques to interact with multiple distributed databases from a single Web interface. (0112-330, 0112-335, 0112-340 or equivalent, junior status) Credit 4

0112-410 Systems Analysis & Design II
Computer-aided software engineering (CASE) software is introduced to model system designs. Software quality metrics are also introduced in this course as a means to understanding software engineering practices that lead to better systems design. Finally, object-oriented systems analysis and design concepts and techniques are covered. Students who successfully complete this course and the prerequisite Systems Analysis & Design I course will have acquired knowledge of the full range of systems analysis and design concepts currently used in systems development. (0112-370, junior status) Credit 4

0112-500 Designing the E-Business Organization
Students in this capstone course are required to propose and, to the extent possible, develop an e-business. The primary method for learning is the student’s own pursuit of the problem solutions. The role of the faculty is to facilitate the interaction of the students; mentor student teams toward complete e-business solutions; and provide some additional knowledge. Most of the work for this course will involve research and analysis of electronic marketplaces and, ultimately, the design and development of competitive e-businesses. (0112-310, 0105-440, 0105-445) Credit 4

0112-520 Project Management & Practice
The course emphasizes concepts, techniques, methods, principles, problems and issues that are associated with project management. Students who complete this course will be able to plan, schedule, budget, estimate, control and monitor projects. In addition, they will also become familiar with resource allocation, resource loading, CPM, CMM, GANTT and PERT. The use of project management software will be a major part of the course. (0112-370, junior status) Credit 4
Index

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4002</td>
<td>Information Technology</td>
<td>194</td>
</tr>
<tr>
<td>4003</td>
<td>Computer Science</td>
<td>198</td>
</tr>
<tr>
<td>4010</td>
<td>Software Engineering</td>
<td>200</td>
</tr>
</tbody>
</table>

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Information Technology

4002-200 Survey of Computer Science
Survey of computers and problem solving by using general-purpose application software. Students use several general purpose software tools, such as a spreadsheet, database package, word processor, and graphics software to complete a series of required projects. Emphasis is on using software for personal productivity and to enhance effectiveness and communication. Required projects utilize packages individually and in an integrated fashion. Class 2, Credit 4

4002-201 Freshman Seminar in Information Technology
An orientation seminar taken by first-year students in information technology. Topics covered include a curriculum overview, co-op and career alternatives in information technology, and orientation to RIT and college life. Class 1, Credit 1

4002-205 Computer Techniques-FORTRAN Language
Students are introduced to computer systems, learn problem-solving techniques, and learn to program in the FORTRAN language. Topics available for study include straight line programming, decision and repetition capabilities, input/output, data structuring, and the use of subprograms. Programming projects are required. (Precalculus) Class 3, Credit 34

4002-207 Computer Techniques-C Language
Students are introduced to computer systems, learn problem-solving techniques, and learn to program in the C programming language. Topics available for study include straight line programming, decision and repetition capabilities, input/output, data structuring, and the use of subprograms. Programming projects are required. (Precalculus) Class 3, Credit 34

4002-208 Introduction to Programming
A first course in programming using C++ in writing modular, well-documented programs. Topics include an overview of problem-solving methods, C++ control structures and their uses, procedures and functions with parameters, elementary data types, arrays, records and modular programming. Weekly programming assignments stress features of structured programming and C++. (4002-200 or computer literacy; corequisite: 4002-208 Lab) Class 3, Credit 4

4002-210 Programming with Classes
A second course in programming with emphasis on object-oriented programming. Student will first use classes and then build classes. Topics include information hiding through classes, construction of classes, operator overloading, friend functions, constructor functions, and destructor functions. Inheritance and templates are also covered. Scheduled laboratory section and programming projects are required. (4002-208 or 4002-215 or 4002-217; corequisite: 4002-210 Lab) Class 3, Credit 4

4002-219 Programming for Information Technology III
This is the third course in the introductory programming sequence required for all students majoring in information technology. Topics include advanced interface concepts, traditional programming data structures, programming utilities and reusability, introductory project design and management concepts, and other concepts as time permits. Emphasis is placed on the development of problem-solving skills. Large programming assignments are required. (4002-217) Class 5, Credit 4

4002-220 Programming for Information Technology II
This is the second course in the introductory programming sequence required for all students majoring in information technology. Topics include further exploration of classes and objects, programming through composition and inheritance, reusability, input/output, and object-oriented design. Emphasis is placed on the development of problem-solving skills. Moderately large programming assignments are required. (4002-220 or computer literacy) Class 5, Credit 4

4002-230 Programming for New Media
This course provides an introductory programming experience to student of new media. Students will write scripts to implement navigational strategies and control the display of graphics, text, audio and video. The course will look at both event-driven and time-driven models of interaction. Students will employ the fundamental structures of computer programming such as loops, variables, parameters and function in their scripts. They will learn iterative user-centered strategies for program design and implementation. (4002-320 or equivalent) Class 4, Credit 4

4002-231 Programming for New Media II
As the second course in programming for New Media students, this course continues an object-oriented approach to programming for interaction. Topics will include reusability, lists and other data structures, strategies for event-driven programming, object design and inheritance, and media synchronization. Emphasis is placed on the development of problem-solving skills as students develop moderately complex applications. Programming projects are required. (4002-230) Class 4, Credit 4

4002-300 Business Applications Using COBOL
A study of elementary COBOL programming, using structured design and programming concepts developed in 4002-210. Emphasizes the use of COBOL in solving common business, commercial and managerial problems. Topics include COBOL program organization, sequential file I/O, COBOL control structures, arithmetic operations and report editing, control break processing and table handling. Students write programs that adhere to specific programming and documentation standards. (4002-210) Class 4, Credit 4

4002-317 Visual Basic for Programmers
This course is intended for students with previous programming experience in a language other than Visual Basic and some background in object oriented programming. It is not to be taken as an information technology elective. The first half of the course covers Visual Basic syntax. Topics include elementary data types, control structures, procedures and functions, arrays, user defined types, external files and intrinsic controls. The second half focuses on the fundamentals of object oriented programming. Topics include classes, objects, composition, inheritance, collections, object-oriented design and the application of these concepts to solve problems of intermediate complexity. Programming projects are required. (A two-course programming sequence in any language except Visual Basic) Class 5, Credit 4

4002-318 Java for Programmers
This course is intended for students with previous programming experience in a language other than Java and who also have some background in object oriented programming. It is a rapid deployment of the introductory information technology programming sequence and may not be taken as an information technology elective or concentration course. The course covers both applets and application programs. Topics include: basic language concepts (declaring and evaluating values, statements, expressions, debugging, control flow, and input/output), the development environment, Internet concepts, applet programming essentials, classes and objects, error handling, event handling, and threads. Programming assignments are required. Two-course programming sequence in any language except Java. Class 5, Credit 4
4002-320 Introduction to Multimedia: The Internet & the Web This class provides an introduction to key Internet, Web, and multimedia technologies as well as familiarity with the Macintosh computer platform. Topics covered include computer-mediated communication, basic Internet applications such as telnet, FTP, and the WWW, basic digital image, audio, and video techniques, and Web page development and publishing. (4002-200 or computer literacy) Class 4, Credit 4

4002-330 Interactive Digital Media Students will create interactive multimedia content for CD-Rom and the World Wide Web. They will capture, combine control and synchronize video, audio, text, and images using authoring environments such as Macromedia Director. Students will write event handlers to control interactive applications. Programming will be required. (4002-320 & 4002-215 OR 4002-217 (or equivalent)) Class 4, Credit 4

4002-340 Computer Concepts & Software Systems An introduction to the concepts of computer hardware design, hardware organization, and computer operating systems. Topics can include: Boolean algebra, digital logic design, integrated circuit logic families, central processing unit design, buses and addressing, interrupts and direct memory access, memory models and processor modes computer peripherals and interfacing techniques, operating system, system performance, evaluation, and discussions of historical and current technological developments and commercially available computers. (4002-216 or 4002-218 or 4002-317 or 4002-318) Class 3, Credit 4

4002-341 Data Communication & Computer Networks An introduction to data communications hardware and software, and use of these components in computer networks. Topics include communication system components, communications software, packet switching, network control, common carrier issues, long-haul vs. local area networks, and performance considerations. (4002-340) Class 4, Credit 4

4002-342 Internetworking Lab This course is a laboratory-based course on the interconnection of digital devices for the purpose of enabling data communication. The focus is on the hardware for peripheral communication and network communication, with a substantial laboratory component. Accessing computers and networks from a remote site will also be studied. Students will be required to construct cables, install network cards, configure modern and establish a working connection between digital devices. Problems will be introduced into working systems and students will be required to use diagnostic tools (both software and hardware) to determine and repair the problem. The use of remote access techniques to control and diagnose computers and network will also be introduced. (4002-340 and 4002-341; corequisite: 4002-342 Lab) Class 3, Credit 4

4002-360 Introduction to Database & Data Modeling A presentation of the data modeling process and database implementation fundamentals. Data modeling, fundamental relational concepts, the process of normalization, relational algebra, and guidelines for mapping a data model into a relational database will be covered. Students will model a multimedia or text-only information problem and implement it with a commercially available database package on a single machine. (4002-216 or 4002-218 or 4002-317 OR 4002-318) Class 4, Credit 4

4002-402 OS Scripting This course is a survey of tools and techniques used to script common tasks in operating system environments. It will focus on Unix shell script programming. Students will gain experience in writing scripts for Unix and will be challenged to bend traditional programming paradigms to the writing of effective scripts in the OS environment. Programming projects will be required. (4002-216 or 4002-218 or 4002-317; corequisite: 4002-402 Lab) Class 3, Credit 4

4002-409 Web Site Design & Implementation This course builds on the basic aspects of HTML and multimedia programming that are presented in 4002-320 and 4002-330. An overview of Web design concepts, including usability, accessibility, information design, and graphic design in the context of the Web. Introduction to Web site technologies, including cascading style sheets and dynamic HTML. (4002-330 and a two-course programming sequence) Class 4, Credit 4

4002-413 Internetworking Lab II This course explores advanced local area networking technologies, concepts and equipment. As its basis it uses the fundamental concepts and technologies learned in 4002-342 and expands upon them to include other contemporary and emerging systems. In this course we will discuss topics such as wireless communications, cable distribution and xDSL. Finally, we will the concepts of network integration, construction and basic design principles. (4002.342; corequisite: 4002-413 Lab) Class 3, Credit 4

4002-421 Systems Administration I This course is a survey of tools and techniques used in the administration of computing systems. Included will be system installation, halting and booting the system, file systems and file and directory permission structures, print and disk quotas, device configuration and management, and user account administration. Unix and Windows NT will be among the systems studied. A laboratory section is a corequisite of this course. (4002-402; corequisite: 4002-421 Lab) Class 3, Credit 4

4002-422 Systems Administration II This course is a survey of tools and techniques used in the administration of computing systems. Included will be client administration, disk maintenance, remote access, remote administration security, the use of schedulers, and the use of advanced scripting to ease system administration tasks. (4002-421; corequisite: 4002-422 Lab) Class 3, Credit 4

4002-425 HCI 1: Human Factors Human Computer Interaction (HCI) is a multidisciplinary field of study concerned with how humans interact with software and hardware interfaces. This course will focus on theories of human information processing, human behavior and their implications for user-centered design of interfaces. Topics include: HCI history, cognitive psychology, user analysis, task analysis, and requirements analysis in the usability engineering process. (Second-year standing) Class 4, Credit 4

4002-426 HCI 2: Interface Design & Development The design of usable interfaces is based on the principles and theories of human computer interaction. This project-based course is focused on the application of the usability engineering process, including analysis, design, prototyping and testing. Additional topics include: what is usability, heuristic evaluation, usability goal setting, interaction design and styles, assessment methods and international user interfaces. Team projects are required. (4002-425 or 2009-3231 and 14002-330 or 4002-2301 and preferably co-op) Class 4, Credit 4

4002-434 Programming for Digital Media Scripting is a major tool for digital media development. In this course, students will write programs starting from simple navigational scripts and evolving toward interactive object-oriented solutions to problems from domains such as simulation, gaming, instruction and artificial life. Students will build data structures, lists and implement classes to navigate through screens, implement interfaces and control media. Some projects may require working in groups. The class or instructor may create low level routines and classes which will be used by students to complete programs of their own design. (4002-330 or 4002-230) Class 4, Credit 4

4002-455 Needs Assessment Complex problems in modern organizations require an information technologist to systematically analyze problems and determine the most effective and cost-efficient solutions. This course builds student skills in two different yet interacting areas: needs assessment (requirements analysis) and group problem solving. Students use interview and problem-solving techniques to uncover the constraints that surround problem areas. Students learn the questions to ask during needs assessment, along with developing the interpersonal skills to conduct these meetings. Emphasis is on the steps in creative problem solving, the basics of meeting planning to maximize group effectiveness and helping a client to focus concerns into a clearly defined problem. (Third-year standing) Class 4, Credit 4
Technology Transfer

Technology transfer is an umbrella term that refers to the creation, adoption, and consequences of new technologies in a variety of settings. For example, how does a new idea become implemented in an organization? What are some of the factors that contribute to one new idea being accepted while another is rejected? How do individuals within an organization influence the acceptance of new ideas? When is it wise to “go out on a limb” for a new idea, and when is it wise to wait? How accurately can we predict the success of new technologies? These are the topics that we will explore in this course.

(Third-year standing) Class 4, Credit 4

Concepts of Distributed Interactive Multimedia

This introductory class is designed to provide the student with a comprehensive overview of the technologies and applications that support distributed multimedia network environments. The course emphasizes concepts in switching, transmission, and design of distributed interactive multimedia systems. Highlights include ATM, frame relay, ISDN, and cable modem technology. Class 4, Credit 4

Fundamentals of Database Client/Server Connectivity

Students will configure, test, and establish client-server communication and server-server communication with single or multiple database servers. Students will configure and demonstrate successful communication between a database file server and multiple external clients. Similarities and differences among commercially available connectivity packages will be explored. Low-level data and file structures used in the implementation of databases and database indexing will be explored. Programming exercises are required.

(4002-360 and 4002-219 or 4002-318; corequisite: 4002-484 Lab) Class 3, Credit 4

Fundamentals of DBMS Architecture & Implementation

Students will be introduced to issues in client/server database implementation and administration. Students will configure, test, and establish client-server communication and server-server communication with single or multiple database servers. Topics such as schema implementation, storage allocation and management, user creation and access security, backup and recovery, and performance measurement and enhancement, will be presented in lecture and experienced in a laboratory environment. Students will configure and demonstrate successful communication between a database file server and multiple clients. (4002-360; corequisite: 4002-485 Lab) Class 3, Credit 4

Implementation of Three-Tier DBMS Applications

Students will implement a three-tier DBMS application. Using a standard DBMS product, students will design and implement a database backend. Students will construct a Web server and implement client/Web server connectivity. Tools to monitor and measure such an implementation will be developed. Client-side, database server-side, and Web server issues associated with such a three-tier implementation will be investigated. Programming assignments are required. (4002-484 and 4002-485) Class 3, Credit 4

Information Technology Co-op

Class, Credit 0

Fundamentals of Instructional Technology

The world of information technology offers the possibility of transforming the way that instruction is designed and delivered. However, few information technology professionals understand the methods and materials of instructional design. As a professional in information technology, a student may be responsible for designing instruction—either in a business or an educational context. This course enables the student to be able to plan, organize, and systematically develop instructional materials. The course uses an Instructional Systems Design (ISD) model to analyze, design, deliver, and evaluate instruction. (Third-year standing) Class 4, Credit 4

Interactive Courseware

Computer software that teaches is referred to as courseware. This course was designed to help you make the transition from “general” Instructional Design (4002-722/510) into the actual application of these principles in a computer-based environment. Although the basic principles of instructional design hold true in all media environments, using these teaching and learning principles is somewhat different when developing instruction that will be delivered by computer. This course teaches procedures that have already been successful in the design and development of courseware. (4002-510 and 4002-216 or 4002-218 or equivalent) Class 4, Credit 4

Introduction to Routing & Switching

This course is a laboratory-based course on the establishment of a data stream across the Internet. The focus is on providing a TCP/IP data stream for higher-level services to operate over. It is primarily concerned with the transport and layer below. TCP/IP will be the predominant protocols suite studied. Others (such as Novell Netware) may be studied to learn how to implement TCP/IP in concert with, or over the top of other protocols. Students will learn how to connect computers in a network and then how to connect the separate networks to form an internetwork. Monitoring and diagnosis of an operational network plus administration of the infrastructure are studied. Routing is the major topic of this course. (4002-342; corequisite: 4002-515 Lab) Class 3, Credit 4

Introduction to Network Administration

An investigation of the tasks of selecting, configuring and administering services in an internetworking environment. Topics include service administration, user administration, and security and privacy issues. Students completing this course have experience in administering an internetwork of computers with a variety of services, including file service, print service, application service, name service, anonymous FTP service, Web service, and others. (4002-342 and 4002-402; corequisite: 4002-516 Lab) Class 3, Credit 4

Visual Basic for Programmers

An introduction to the Visual Basic programming language for experienced programmers. Introductory topics include: the Visual Basic development environment, intrinsic controls, data types, control structures, procedures and functions, arrays, user-defined types, and file handling. Object-oriented programming and design topics are covered, including classes and objects, composition, inheritance, and collections. Programming exercises are required. (4002-219 or 4002-318) Class 5, Credit 4

Introduction to Network Programming

Network Programming is a course in the writing of simple client/server programs, using the TCP/IP network protocol stack. It works through the establishment of simple connectionless communications, through connection-oriented communications and to multi-client connection-oriented communications. The objective is to expose the low-level workings of TCP/IP at the transport layer, and provide the student with experience in writing simple network applications. (4002-219 or 4002-318, and 4002-515; corequisite: 4002-522 Lab) Class 3, Credit 4

Performance Support Systems Design

An electronic performance support system (EPSS) is a software technology, designed to give each user what he or she needs when he or she needs it. It is designed to enable skilled performance without training. An EPSS can be defined functionally, by what it does. The job of an EPSS is to help a worker perform his or her job better. Typical components of an EPSS encompass tutorials, drills, simulations, and hypertext, but often include expert systems, help systems, and intelligent job aids. This course examines some of the relevant literature supporting EPSS and provides students with the opportunity to design and develop several different components of a performance support system. (4002-510, and 4002-216 or 4002-218 or equivalent) Class 4, Credit 4

Simulations & Learning Environments

A learning environment is an electronic environment in which students are provided resources from which to learn. These resources may include tutorials, but are generally far more experiential in nature. A valuable component within a learning environment is an instructional simulation, which provides an opportunity for learners to interact with a safe, virtual world. Kolbs experiential learning theory is a theoretical framework that can be used for designing learning environments. This course provides theoretical background along with hands-on development. (4002-510, 4002-216 or equivalent programming experience) Class 4, Credit 4
4002-527 Digital Audio & Computer Music Technologies and techniques for producing and manipulating digital audio and computer music are explored. Topics include digital representation of sound, synthesis techniques, digital audio recording and processing, MIDI and real-time performance issues, algorithmic composition, and application of digital audio to multimedia and Web production. (4002-330 and third-year standing) Class 4, Credit 4

4002-528 Writing for Interactive Media As more of our communications are delivered on interactive, non-linear platforms, the information should be developed in ways that take advantage of these technologies. This course will focus on the creation of a variety of different hypermedia/multimedia documents designed, drafted and delivered in hard copy and/or digital form. (4002-409) Class 4, Credit 4

4002-529 Introduction to VRML This course will focus on basic and advanced concepts of 3D environment creation and implementation within the virtual reality markup language (VRML) implemented on the Web. Students will work individually and in groups to create VRML environments on their own home pages and in a large scale group environment. (4002-409) Class 4, Credit 4

4002-535 Network-Based Multimedia This course presents fundamental topics of designing and implementing multimedia on the Internet. Each topic is presented along with the underlying computer technology that supports it and hands-on projects incorporating the concepts. As the technology of interactive multimedia on the Internet changes, this course will present the current practice in preparing multimedia for cross-platform delivery to the growing audience of Internet users. Using the capabilities of current Web browser client and http server technology, students will implement interactive multimedia for a variety of applications. (4002-409) Class 4, Credit 4

4002-537 Design of Interactive Media To give students a working knowledge of the content development and information design process in multimedia development. Students will look at examples of information delivery in a variety of deployment environments. They will perform market analysis and audience evaluations and develop flowcharts, storyboards, user testing, and prototypes for an interactive media application. (4002-330) Class 4, Credit 4

4002-538 Multi-user Media Spaces The course will focus on the development of interactive applications that use network connectivity to allow multiple users to interact with each other in real time and in a persistent virtual community. The course will integrate multiple technologies dealing with connectivity, database access, server-side logic and object oriented programming environments. Important human-computer interaction issues will be raised around the design and processing of messages and the traffic patterns generated by multi-user messaging. (4002-434 and third-year standing) Class 4, Credit 4

4002-539 Programming for the Web The Web is no longer just linked, static html documents. Web pages can be generated dynamically and can interact with a user to modify pages on-the-fly, validate user inputs and entertain. This course is an overview of several forms of programming that are used in the creation of interactive and dynamic Web content. This course provides a practical overview of programming in the context of the World Wide Web. It will enable students to develop Web pages and Web sites that incorporate both client-side and server-side programming by installing and modifying existing scripts as well as writing new scripts. (4002-409) Class 4, Credit 4

4002-540 Network Design & Performance This course will examine the design and performance of enterprise wide networks. Students will learn to design a network based on identified needs and analyze the performance of that network. Simulation tools will be used to model network design alternatives and evaluate their performance. WAN technologies such as ATM and Frame Relay will be combined with LAN technologies in the design of an enterprise internetwork. (4002-455 and 4002-515) Class 4, Credit 4

4002-545 Advanced Routing & Switching Advanced Routing and Switching is a course in how core services are provided to build the Internet, and the technologies available to large enterprises to build a large intranet infrastructure. The topology of the Internet is discussed, along with current and emerging technologies for the implementation of that backbone. Topics include: core routers and routing protocols, queuing, layer 2 and layer 3 switching, multicast routing and the MBONE, and accommodating IPv6 and the 6BONE, enterprise-wide backbone routers, VLANs and their use in enterprise-wide networking, special-purpose protocols (e.g., VTP). (4002-515) Class 3, Credit 4

4002-547 Usability Testing This project-based course will focus on the formal evaluation of user interfaces. Topics include: usability test goal setting, recruitment of appropriate users, design of test tasks, design of the test environment, test plan development and implementation, analysis and interpretation of the results, and documentation and presentation of results and recommendations. (4002-426 and 4002-455) Class 4, Credit 4

4002-550 Windows Programming The theme of this course is Windows programming with what has become the premier application development language in the PC world, Visual Basic. Students will learn how to write and develop stand-alone applications with windows, dialog boxes, option buttons, check boxes, menus, Windows-style help facilities, and installation (or set-up) programs; how to use built-in Windows DLLs (dynamic link libraries) such as USER KERNAL and GDI; and how to use the Windows API (application program interface). They will also experiment with DDE (dynamic data exchange), OLE (object linking and embedding), and simple multimedia applications. In the latter part of the course, students will be introduced to JavaScript and VBScript, two examples of a new class of scripting languages for creating dynamic Web pages. (4002-210 or 4002-216 or 4002-218 or 402-317 or 4002-318) Class 4, Credit 4

4002-552 Advanced Applications Programming In this capstone course, students build a substantial Windows application. They explore advanced topics in areas of interest and can expand upon concepts introduced in the earlier courses in the concentration. Additional topics include a comparative analysis of event-driven programming in the Windows environment, the limits of development tools such as Visual Basic and porting applications between platforms. (4002-570) Class 4, Credit 4

4002-554 Computer System Security The most common approach to system and network security recently has been to attempt to obscure, hide or deny the existence of any security breach or the availability of tools to hack or crack the defenses of a site. That approach worked well for most administrators until the Internet accelerated the exchange of information about security holes and techniques and facilitated the distribution of tools to take advantage of such lapses. The best defense is to understand the opportunities that interlopers take advantage of, find them in your own environment and plug them up. A system administrator also needs to follow up by monitoring and combating attacks and maintaining at least as well equipped as the intruder in understanding and awareness. This course proposes to increase the understanding of the student in the areas of liability, exposure, opportunity, ability and function of various weaknesses and forms of attack, and the detection and defense of same. The issues and facilities available to both the intruder and administrator will be examined and evaluated with appropriate laboratory exercises to illustrate their effect. (4002-421 and 0501-507 Computer Crime or equivalent) Class 3, Credit 4

4002-556 Seminar in Undergraduate Computer Applications Current topics and advances in applications of computer technology for undergraduate students. Class 4, Credit 4

4002-558 Senior Seminar in Information Technology Capstone seminar to be taken by graduating information technology curriculum students. Topics include recent advances and future impacts in information technology. (Fourth-year standing) Class 1, Credit 1

4002-559 Seminar in Undergraduate Computer Applications Current topics and advances in applications of computer technology for undergraduate students. Class 4, Credit 4
Computer Science

4003-101 First-Year Seminar
This course provides first-year students an opportunity to build the skills necessary for success in the RIT computer science program. Through interactions in a small group environment, students will meet other computer science students, create a stronger bond with RIT and their college and receive extended orientation. There will be a focus on communication and small group skills valuable for future project work. The students will become more familiar with the computer science curriculum, career options, and ethical issues. Credit 1

4003-203 AF C++
This course is used only for the purpose of transferring in Advanced Placement (AP) credit. Amount of credit (either 4 or 8 credit hours) will depend upon the student’s score in the AP exam. Transfer credit of 4 credit hours will be granted for scores representing mastery of the principles of programming. Topics include variables, expressions and assignment, control structures (sequencing, selection and repetition), objects, procedures and functions, parameter mechanisms, recursion, one and two-dimensional arrays, Transfer credit of 8 credit hours will be granted for scores representing mastery of the above principles and basic data structures. These topics would include arrays, records, pointers, dynamic storage allocation, linked lists, stacks, queues, and trees. May not be taken for credit. Credit 4-8

4003-221 Introduction to Computer Science
An introduction to basic topics needed to succeed in computer science combined with the course material covered in 4003-231. These topics include general problem solving and computing skills, such as the use of the operating system, text-based and graphical interfaces and the use of tools such as editors and file managers. The course satisfies the prerequisite for 4003-232. Computer Science 2. (Departmental approval required) Class 5, Lab 2, Credit 6

4003-231 Computer Science 1
The goal of the course is to introduce you to engineering problem solving (EPS). We do this directly by talking about elements of EPS, including problem decomposition, design and implementation of solutions, testing those solutions and integrating pieces of solutions together. We will use object-oriented technology as a means to an end to design solutions and actually implement them in software. Java is the language used; it is an object-oriented programming language that was designed for developing large systems from reusable components. Programming assignments-labs and post-labs are an integral part of the course. Class 3, Lab 2, Credit 4

4003-232 Computer Science 2
The goal of this course is to continue with the introduction to engineering problem solving (EPS) started in Computer Science 1. You will learn how to design a solution to a problem by reusing existing components, and by creating new components using inheritance. Other topics are exception handling, files/streams, recursion, searching, trees, and threads. We will use object-oriented technology as a means to an end to design solutions and actually implement them in software. Java is the language used; it is an object-oriented programming language that was designed for developing large systems from reusable components. Programming assignments-labs and projects are an integral part of the course. (4003-221 or 4003-231) Class 3, Lab 2, Credit 4

4003-233 Computer Science 3
The goal of this course is to continue with the introduction to Engineering Problem Solving (EPS) started in Computer Science 1 and continued in Computer Science 2. You will learn how to design a solution to a problem by reusing existing components, and by creating new components using inheritance. Other topics are: threads, data structures, AWT-Swing, applets, networking, RMI. We will use object-oriented technology as a means to an end to design solutions and actually implement them in software. Java is the language used; it is an object-oriented programming language that was designed for developing large systems from reusable components. Programming assignments-labs and projects are an integral part of the course. (4003-232) Class 3, Lab 2, Credit 4

4003-234 Accelerated Computer Science I
An accelerated course that covers material from Computer Science I and II. This course provides the foundation for the object-oriented programming (OOP) paradigm that is used throughout following courses in the curriculum. OOP is discussed conceptually and demonstrated using the Java programming language. Topics include class design and implementation, linear containers, inheritance, exceptions, files and analysis of searching and sorting methods. Students will be introduced to the essential tools needed in their course work. Laboratory programming assignments are an integral part of the course and a larger programming project is assigned in the second half of the course. (Departmental approval required) Class 3, Lab 2, Credit 4

4003-235 Accelerated Computer Science II
A second accelerated course that covers material from Computer Science II and III. This course continues the data structure coverage begun in Honors Computer Science I. It then introduces many of the contemporary programming techniques in use in current programs. Topics include trees, graphs, multi-threaded programming, thread synchronization, network distributed programming, graphical user interfaces and event-driven programming. Laboratory and project programming assignments are an integral part of the course. (4003-234) Class 3, Lab 2, Credit 4

4003-263 Computer Science for Transfers
This course introduces the student to the object-oriented programming paradigm, the computer science workstation environment and the C++ language. Topics include advanced data structures, template classes and handling exceptions. Students work individually and in small groups on programming assignments, which are an integral part of the course. This course is intended for students with previous programming experience and a background in data structures. Open only to transfer students and students who have received advanced placement credit for 4003-233; not to be taken as a computer science elective. (Departmental approval required) Class 4, Lab 2, Credit 5

4003-309 C for C++ Programmers
C for C++ Programmers
A study of low-level programming techniques in the C language. Pointer techniques and the use of pointers are emphasized. The course covers C operators, native arrays, strings, unions, and the C library. Techniques for implementing polymorphism and generic data types are covered. Programming projects will be required. (This course may not be taken for credit simultaneously with 4003-406. Students who receive credit for 4003-406 may not later take 4003-309 for credit.) (4003-263 or 4003-334) Class 2, Credit 2

4003-318 Scientific Programming
An introduction to classical algorithms used in the solution of numerical problems encountered in science and engineering. The C language will be introduced as a tool for implementing these algorithms. Topics include an introduction to C, number representation and round-off error, algorithms for finding roots of nonlinear equations, interpolation, numerical differentiation and integration, function approximation and data fitting, solutions to systems of linear equations, and general matrix manipulation. This course is restricted to Computer Engineering and Software Engineering students. (4003-334 or 4003-263) Class 3, Credit 3

4003-319 Scientific Applications
An introduction to classical algorithms used in the solution of numerical problems encountered in science and engineering. The C language will be introduced as a tool for implementing these algorithms. Topics include an introduction to C, algorithms for solving linear algebraic equations, non-linear algebraic equations, interpolation, numerical differentiation and integration, and general matrix manipulation. Programming projects will be required. (4003-263 or 4003-334) Class 4, Credit 4

4003-334 Computer Science 4
The first part of this course is a C++ language course. Topics cover the basic syntax language, how it supports the object-oriented programming paradigm, templates and input/output. The second part of the course explores advanced data structures such as graphs and B-trees. Students will work individually and in small groups on programming projects, which are an integral part of the course. (4003-233) Class 3, Lab 2, Credit 4
4003-341 Professional Communications
An introduction to the types of communication that are part of the life of a computing professional. Topics include analysis of purpose of a document or report, and writing effectively for the expertise and interests of the intended audience. Writing assignments will cover reports, specifications and user documentation. Oral reports and presentation skills also are emphasized. Small and large group activities will be used to simulate a wide range of work and communications environments. (4003-233, or 4003-263 as a corequisite) Class 4, Credit 4

4003-351 Introduction to Digital Design
An introduction to computer architecture and implementation. Topics include number systems, boolean algebra, combinatorial and sequential circuit design, flip-flops and adders, and storage mechanisms and their organization. Laboratory experiments introduce elementary integrated circuit building blocks, including gates, flip-flops, registers, counters and elementary sequential circuits. (4003-232 and 1016-265) Class 3, Credit 3

4003-352 Computer Organization
A continuation of 4003-351. Topics include instruction fetching, decoding and execution, CPU specification through a descriptive language, bus structures, microprogramming, interrupts, architectural differences, the assembly process, addressing, storage allocation, subroutines, parameter passing, looping, address modification, and simple I/O. Programming projects will be required. (4003-351) Class 3, Credit 3

4003-380 Introduction to Computer Science Theory
Introduction to the classical and contemporary theory of computation covering regular, context-free and computable (recursive) languages with finite state machines, pushdown automata and Turing machines. Basic concepts of computability theory and NP-theory. (1016-265; corequisite: 1016-366) Class 4, Credit 4

4003-406 Systems Programming I
This course is an introduction to systems programming concepts and techniques. Topics include: the Intel system architecture, its assembly language, the C language, and how to use these tools to interact with the low level hardware and the Unix operating system. (Students who receive credit for this course may not later take 4003-309 for credit.) (4003-263 or 4003-334; 4003-352) Class 4, Credit 4

4003-420 Data Communications & Networks I
This course is an introduction to the concepts and principles of computer networks. Students will design and implement projects using application protocols, and will study transport, network, and data link protocols and algorithms. The course also includes an introduction to local area networks, data transmission fundamentals, and network security. Programming projects will be required. (1016-351 and either 4003-334 or 4003-263) Class 4, Credit 4

4003-440 Operating Systems I
A general survey of operating system concepts. Topics include process synchronization, interprocess communication, deadlock, multiprocessing and multithreading, processor scheduling and resource management, memory management, operating systems, static and dynamic relocation, virtual memory, file systems, logical and physical I/O, device allocation, I/O processor scheduling, process and resource protection. Programming projects will be required. (4003-263 or 4003-334; 4003-352) Class 4, Credit 4

4003-450 Programming Language Concepts
A study of the syntax and semantics of a diverse set of high-level programming languages. The languages chosen are compared and contrasted in order to demonstrate general principles of programming language design. The course emphasizes the concepts underpinning modern languages rather than the mastery of particular language details. Programming projects will be required. (4003-263 or 4003-334; 1016-265) Class 4, Credit 4

4003-455 Artificial Intelligence
An introduction to the field of artificial intelligence, including both theory and applications. A programming language that allows effective symbolic manipulation (PROLOG) is used to demonstrate the capabilities and limitations of the material presented in class. Topics include search strategies and their implementation, logic, networks, frames and scripts, productions, symbolic manipulation and list processing, problem-solving methods, expert systems, natural language understanding, and selections from vision, robotics, planning and learning. Programming assignments are an integral part of the course. (4003-450) Class 4, Credit 4

4003-456 Expert Systems
An introduction to the issues and techniques employed in expert systems. Topics include a consideration of successful existing systems, control strategies, expert system building tools and environments, knowledge acquisition and use of expert system technology. Students will participate in group projects involving both the creation of an expert system and explorations of ways to effectively use such systems. (4003-455) Class 4, Credit 4

4003-457 Introduction to Computer Vision
An introduction to the underlying concepts of computer vision and image understanding. The course will consider fundamental topics, including image formation, edge detection, texture analysis, color, segmentation, shape analysis, detection of objects in images and high level image representation. Depending on the interest of the class more advanced topics will be covered, such as, image database retrieval or robotic vision. Programming assignments are an integral part of the course. (Third-year standing in computer science) Class 4, Credit 4

4003-480 Formal Languages
Formal language theory and principles. Topics include regular, context-free and context-sensitive grammars; finite automata, pushdown automata and Turing machines; and an introduction to unsolvability and computability. (4003-380) Class 4, Credit 4

4003-481 Complexity & Computability
This course provides an introduction to the complexity and computability theories. It starts with an overview of basic complexity classes, with special focus on NP-theory related problems. This is followed by a study of problems complete in NP and PSPACE, the Church-Turing thesis, and undecidability of a selection of classical problems. Some advanced topics in computability, like degrees of unsolvability, the recursion theorem, or Godel’s incompleteness theorem will be discussed. (4003-380) Class 4, Credit 4

4003-482 Cryptography
The course is devoted to the review of basic cryptographic algorithms, their implementations and usage. Classical encryption techniques and those of Rivest-Shamir-Adleman and ELGamal will be seen in depth, and an overview of several others will be presented. The course also presents authentication schemes and interactive proof protocols. Students will write a term paper, either theoretically based on literature or reporting a student's own implementation or experiments with a chosen cryptographic scheme. Depending on the size of the group, some or all students will give a presentation to the class. (4003-263 or 4003-334; 1016-265) Class 4, Credit 4

4003-485 Database Concepts
Broad introduction to database management systems (DBMS) and the design, implementation and applications of databases. Topics include an overview of DBMS architectures; concepts and implementations of the relational model; SQL; database design and modeling techniques; and issues such as recovery, concurrency, physical implementation concerns and performance and management aspects. Optional topics include: alternative approaches to designing database systems (for example, object-oriented or extended relational systems); distributed databases; database machines; and database interfaces and languages. A database programming project is required. (4003-263 or 4003-334) Class 4, Credit 4

4003-499 Co-op
Class, Credit 0

4003-506 Systems Programming II
Application of operating system concepts to the design of hardware interfaces for a multiprogramming environment. Laboratory work includes the development of a multiprogramming (optionally, multiprocessing) kernel with system call and interrupt handling facilities, and the building of device drivers for a variety of peripheral devices. This course provides extensive experience with those aspects of systems programming that deal directly with the hardware interface. A significant team programming project is a major component of the course. (4010.361; 4003-406; and 4003-440) Class 4, Credit 4

4003-515 Analysis of Algorithms
A study of techniques to design and analyze the complexity of algorithms. The course will make students aware of a large number of classical algorithms and their complexity and will introduce the area of NP-completeness. (4003-263 or 4003-334; 1016-366) Class 4, Credit 4

4003-575 Small and large group activities will be used to simulate a wide range of work and communications environments. (4003-233, or 4003-263 as a corequisite) Class 4, Credit 4

4003-580 Introduction to Computer Science Theory
Introduction to the classical and contemporary theory of computation covering regular, context-free and computable (recursive) languages with finite state machines, pushdown automata and Turing machines. Basic concepts of computability theory and NP-theory. (1016-265; corequisite: 1016-366) Class 4, Credit 4

4003-592 Cryptography
The course is devoted to the review of basic cryptographic algorithms, their implementations and usage. Classical encryption techniques and those of Rivest-Shamir-Adleman and ELGamal will be seen in depth, and an overview of several others will be presented. The course also presents authentication schemes and interactive proof protocols. Students will write a term paper, either theoretically based on literature or reporting a student's own implementation or experiments with a chosen cryptographic scheme. Depending on the size of the group, some or all students will give a presentation to the class. (4003-263 or 4003-334; 1016-265) Class 4, Credit 4

4003-685 Database Concepts
Broad introduction to database management systems (DBMS) and the design, implementation and applications of databases. Topics include an overview of DBMS architectures; concepts and implementations of the relational model; SQL; database design and modeling techniques; and issues such as recovery, concurrency, physical implementation concerns and performance and management aspects. Optional topics include: alternative approaches to designing database systems (for example, object-oriented or extended relational systems); distributed databases; database machines; and database interfaces and languages. A database programming project is required. (4003-263 or 4003-334) Class 4, Credit 4

4003-699 Co-op
Class, Credit 0

4003-706 Systems Programming II
Application of operating system concepts to the design of hardware interfaces for a multiprogramming environment. Laboratory work includes the development of a multiprogramming (optionally, multiprocessing) kernel with system call and interrupt handling facilities, and the building of device drivers for a variety of peripheral devices. This course provides extensive experience with those aspects of systems programming that deal directly with the hardware interface. A significant team programming project is a major component of the course. (4010.361; 4003-406; and 4003-440) Class 4, Credit 4

4003-751 Analysis of Algorithms
A study of techniques to design and analyze the complexity of algorithms. The course will make students aware of a large number of classical algorithms and their complexity and will introduce the area of NP-completeness. (4003-263 or 4003-334; 1016-366) Class 4, Credit 4
200 Computing and Information Sciences

4003-520 Computer Architecture
An introduction to computer architecture. Includes a survey of computer architecture fundamentals exemplified in commercially available computer systems, including classical CPU and control unit design, register organization, primary memory organization and access, internal and external bus structures, and virtual memory schemes. Alternatives to classical machine architecture, such as the stack machine and the associative processor, are defined and compared. Parallel processors and distributed systems are also presented, along with an analysis of their performance relative to nonparallel machines. Programming projects are required. (4003-440) Class 4, Credit 4

4003-530 Fundamentals of Discrete Simulation
An introduction to discrete simulation modeling. Methods for the design of discrete simulation models are examined, and simulation models are designed and implemented using a general purpose discrete simulation language. Related topics such as the validity and appropriateness of general statistics for the model are covered. Both the theoretical and statistical aspects of modeling are examined. Programming projects are required. (1016-352; third-year standing in computer science) Class 4, Credit 4

4003-531 Parallel Computing I
A study of the basic hardware and software issues in parallel computing. Topics include an introduction to the basic concepts, parallel architectures and network topologies, parallel algorithms, parallel metrics, parallel languages, network topology, granularity, applications, parallel programming design, and debugging. Programming projects will be required. (4003-440) Class 4, Credit 4

4003-532 Parallel Computing II
A study of selected topics in parallel algorithm design through the analysis of algorithms used in various areas of application. The course will investigate the interplay between architecture and algorithmic structure and will discuss the effect that these issues have on the complexity and efficiency of parallel algorithms. Programming projects are required. (4003-531) Class 4, Credit 4

4003-541 Data Communications & Networks II
This course continues the study of computer networks begun in 4003-420 Data Communications and Networks I, emphasizing design principles and theoretical aspects of networks. Topics include the nature of communications media and signaling methods, analog and digital transmission; data link protocols, protocol proof techniques; routing, broadcasting, multicasting; connection, disconnection and crash recovery protocols; internetworking and security; and network analysis and design using graph theory and queueing theory. (4003-420) Class 4, Credit 4

4003-542 Data Communications & Networks III
This course will build on topics developed in 4003-420 Data Communications and Networks I and 4003-541 Data Communications and Networks II in a lab setting. Students will be required to design and implement a small computer network addressing issues such as routing strategies, virtual circuits vs. datagrams, data link protocols, and user (presentation) level services. (4003-406 and 4003-541) Class 4, Credit 4

4003-544 Operating Systems II
This course is a more in-depth look at the concepts in Operating Systems I (4003-440). Laboratory work includes implementing components of a pedagogical operating system as a team project through the entire term. Each team will design and implement the software for thread synchronization abstractions, loadable user processes, virtual memory and a file system. An emphasis will be placed on the software engineering of each component as it is added to the overall operating system. (4010-361 and 4003-440) Class 4, Credit 4

4003-560 Compiler Construction Lab
A course in the design and implementation of high-level language compilers. Laboratory projects are assigned in the areas of parsing, code generation, code optimization and language design. (4003-580) Class 4, Credit 4

4003-570 Computer Graphics I
A study of the hardware and software principles of computer graphics. Topics include an introduction to the basic concepts: 2-D transformations, viewing transformations, display file structure, geometric models, picture structure, interactive and noninteractive techniques, raster graphics fundamentals, 3-D fundamentals, graphics packages and graphics systems. Students use and develop a graphics software system based on an accepted graphics standard. Programming projects are required. (Third-year standing in computer science) Class 4, Credit 4

4003-571 Computer Graphics II
This project-oriented course builds on topics developed in 4003-570 Computer Graphics I. Expanded topics include standard graphics software, animation techniques, 3-D modeling methods, hidden surface and line algorithms, shading, antialiasing, color models and design of the user interface. Students will be required to design and implement an interactive system for an application that incorporates several of the above areas. Programming projects will be required. (4003-570) Class 4, Credit 4

4003-580 Language Processors
A course exposing students to issues in the design of language processors and translators. The basic concepts will be presented in conjunction with the design of several such programs. Topics include compilers and interpreters, compiler generators, lexical analysis, abstract syntax trees, syntactic and contextual analysis, and implementation of nested block structure. Programming projects will be required. (4003-450; course given in Java) Class 4, Credit 4

4003-590 Seminar in Computer Science
Current advances in computer science. (Set by instructor) Class, Credit 1-4

4003-599 Independent Study
(Set by instructor) Class 1-4, Credit 1-4

Software Engineering

4010-101 Software Engineering Seminar
Provides first-year students with the skills necessary to succeed at RIT and in the software engineering program. Small group sessions are used to help new students make friends, create a stronger bond with RIT and their program and become acquainted with the campus and its facilities. In addition, students are introduced to the profession of software engineering and to ethical issues they will face at RIT and throughout their careers. Class 1, Credit 1

4010-361 Software Engineering
An introductory course in software engineering, emphasizing the organizational aspects of software development and software design and implementation by individuals and small teams within a process/product framework. Topics include the software life cycle, software design, user interface issues, specification and implementation of components, assessing design quality, design reviews and code inspections, software testing, basic support tools, technical communication and system documentation, team-based development. A term-long team-based project done in a formal lab setting is used to reinforce concepts presented in class. Class 3, Credit 4

4010-362 Engineering of Software Subsystems
An introduction to the principles at the foundations of contemporary software design. Topics include software subsystem modeling, design patterns, design tradeoffs, and component-based software development, with a focus on application of these concepts to concrete design problems. The relationship between design and related process issues such as testing, estimation, and maintenance are also discussed. (4010-361) Class 3, Credit 4

4010-420 Formal Methods for Specification At Design
An introduction to the development of mathematical models of software systems, and the application of such models to the analysis of system properties and verification of design and implementation decisions. Topics include a brief review of logic and set theory, the use of formalism such as Z or VDM, the development of models using the formalism, and analysis via simulation or proof of a model's properties. The application of other formalisms, such as state-machines and regular expressions, is also surveyed. (4003-266, 4010-440) Class 4, Credit 4

4010-440 Principles of Software Architecture & Design
Examination of the fundamental building blocks and patterns for construction of large software systems in the context of a sound design process, forming the foundation for subsequent courses in the curriculum's design sequence. The course emphasizes the study and development of software systems that can best be understood in terms sequential software architectures and their architectural and non-architectural quality attributes. Class lectures are reinforced by laboratory exercises and projects. (4010-362) Class 3, Credit 4
4010-441 Principles of Concurrent Software Systems
Issues and structures common in the construction of concurrent software systems. Emphasis is on fundamentals repeated in the design and development of systems with closely coupled systems concurrently executing components. Topics include modeling, synchronization, and coordination techniques and common architectures for concurrent software systems. Other issues include problem decomposition and analysis of deadlock, safety, and liveness. (4010-440) Class 3, Credit 4

4010-442 Principles of Distributed Software Systems
Issues and structures common in the construction of distributed software systems. Emphasis in on fundamentals found in systems of this type. Topics include remote object invocation, middleware technologies, and common architectural and design patterns. Quality factors will be discussed, including responsiveness, throughput, and extensibility. Significant laboratory work is required. (4010-440) Class 3, Credit 4

4010-443 Principles of Information Systems Design
Issues and structures common in the construction of information systems. Emphasis is on fundamentals repeated in most systems of this type. Topics include historical review of methods of organizing and accessing information, high-level modeling techniques, performance and security concerns, implications of storing new data types (e.g., sound, pictures) and new dimensions (e.g., time) on information systems architectures. Team projects are required. (4010-440) Class 3, Credit 4

4010-450 Software Processes & Product Metrics
Software metrics help a software organization on two main fronts: quality assessment of its process and products, and assessment of its progress toward its main goal—the production of software artifacts. Students are exposed to metrics used in industry to control large software processes. Topics include product and process metrics, personal metrics portfolio, metrics attributes, and resource and time estimation metrics. (4010-362) Class 4, Credit 4

4010-452 Software Verification & Validation
Introduction to a set of principles and techniques that represent the foundation for improving software products. Topics include verification and validation, unit level testing, system level testing, software quality assurance, and software reliability. Team projects are emphasized. (4010-362) Class 4, Credit 4

4010-455 Software Requirements & Specification
In-depth coverage of the early phases of the software development life cycle commonly called software requirements analysis and specification. Topics include requirements elicitation and definition, requirements prototyping, functional and nonfunctional requirements specification, and legacy systems. Team projects are emphasized. (4010-420, 4010-440) Class 4, Credit 4

4010-456 Software Engineering Process
An introductory course to software process and related software project management issues. Emphasis is on the study, use, evaluation, and improvement of the software process. Topics include software maturity framework, software project planning, software requirements management, software quality assurance, risk management and tracking, software process improvement, and an introduction to lightweight processes. (4010-440) Class 4, Credit 4

4010-561 Software Engineering Project I
The first course in a two-course, senior-level capstone project experience. Students work as part of a team to develop solutions to problems posed by either internal or external customers. Problems may require considerable software development or evolution and maintenance of existing software products. Culminates with the completion and presentation of the first major increment of the project solution. Class time is divided among lectures on contemporary issues in software engineering, guest lectures by industry practitioners and time devoted to team-based activities. (Senior-level standing in software engineering) Class 4, Credit 4

4010-562 Software Engineering Project II
The second course in a two-course, senior-level capstone project experience. Students submit one or more additional increments that build upon the solution submitted at the end of the first course. Students make major presentations for both customers as well as technical-oriented audiences, turn over a complete portfolio of project-related artifacts and offer an evaluation of the project and team experience. (4010-561) Class 4, Credit 4

4010-590 Software Engineering Seminar
Emerging topics of relevance to the software engineering field. (Set by instructor) Class 1-4, Credit 1-4

4010-599 Independent Study
The student will work independently under the supervision of a faculty advisor on a topic not covered in other courses. (Proposal signed by a faculty member) Class 14, Credit 14
College of Engineering

Index

0301 Electrical Engineering ... 202
0302 Undeclared Engineering .. 205
0303 General Engineering .. 205
0304 Industrial Systems Engineering 205
0305 Mechanical Engineering .. 207
0306 Computer Engineering .. 210
0307 Quality & Applied Statistics 211
0308 Chemical Engineering .. 212

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 99); lower division (200-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Electrical Engineering

0301-364 Advanced Programming for Engineers
This course is a continuation of 0301-345. It is intended to discuss advanced topics in C as well as teach students the basics of object-oriented programming (OOP) with an emphasis on C++. Advanced skills of applying pointers will be emphasized throughout the course so as to improve the portability and efficiency of programs. Advanced skills of preprocessors, generic functions, linked lists and the use of the Standard Template Library will be developed. (0301-345 or equivalent) Class 4, Credit 4 (F)

0301-347 Computer Architecture & Data Structures
The purpose of this course is to expose students to both the hardware and the software components of a digital computer system. It focuses on the boundary between hardware and software operations. Students will learn about a computer system from various abstraction levels from the digital logic gates to software applications. This course will also provide a solid foundation in computer systems architecture. The first half of the course should deal with the major hardware components such as the central processing unit, the system memory and I/O modules. The second half focuses on software components such as the instruction set and the operating system. (0301-240, 345, 365) Class 3, Lab 2 Credit 4 (F, W)

0301-362 Introduction to Electrical Engineering
This course is designed for non-electrical engineering majors. Introduction to the basic concepts of electrical circuits including AC and DC analysis, network theorems and RCL circuits. Design of simple amplifiers, data conversion and an introduction to electromechanical devices are included in the course. (1017-313, 377, 306; third-year status mandatory) Class 3, Lab 2, Credit 4 (S, SU)

0301-365 Microcomputer Systems
Initial course in microprocessor based systems. After a review of computer arithmetic, logic operations, number systems and codes, the elements of microcomputer architecture are presented, including a detailed discussion of the memory, input-output, the central processing unit (CPU) and the busses over which they communicate. Assembly language level programming is introduced with an emphasis on enabling manipulation of elements of a microcomputer system. Efficient methods for designing and developing assembly language programs are presented. Concepts of program controlled input and output are studied in detail and reinforced with extensive hands-on lab exercises involving both software and hardware. (0301-240) Class 4, Lab 2, Credit 4 (W)

0301-381 Circuits I with Lab
Covers basics of DC circuit analysis starting with the definition of voltage, current, resistance, power and energy. Linearity and super-position, together with Kirchhoff’s laws, are applied to analysis of circuits having series, parallel and other combinations of circuit elements. Circuits with dependent and independent voltage and current sources are studied, with these concepts generalized into branch, loop, mesh and nodal analysis. Thevenin, Norton and maximum power transfer theorems are proved and applied. Inductance and capacitance are introduced and the transient response of RCL circuits to step inputs is established. Practical aspects of the properties of passive devices and batteries are discussed, as are the characteristics associated with battery-powered circuitry. The laboratory component incorporates use of both computer and manually controlled instrumentation including powers supplies, signal generators and oscilloscopes to reinforce concepts discussed in class as well as circuit design and simulation software. (0301 Practicum, 1017, 313, 1016-253) Class 4, Lab 1, Credit 5 (F, S, SU)

0301-382 Circuits II
Covers the fundamentals of AC circuit analysis starting with the study of sinusoidal steady-state solutions for circuits in the time domain. The complex plane is introduced along with the concepts of complex exponential functions, phasors, impedances and admittances. Nodal, loop and mesh methods of analysis as well as Thevenin and related theorems are applied to the complex plane. The concept of complex power is developed. Two-port network theory is developed and applied to circuits and interconnections. The analysis of mutual induction as applied to coupled coils, linear ideal and non-ideal transformers is introduced. Complex frequency analysis is introduced to enable discussion of transfer functions, frequency dependent behavior, stability, resonance phenomenon and simple filter circuits. (0301-381) Class 4, Credit 4 (F, W)
Engineering 203

0301-453 Linear Systems I
Provides the foundations of signal and system analysis including signal and system description and modeling. Topics include input-output relationship of a linear system; convolution; Fourier series; evaluation of Fourier coefficients; circuit analysis with periodic inputs; exponential and trigonometric forms of Fourier series and their properties, relationships and applications. Fourier transforms including energy spectrum and energy spectral density (along with applications) are covered. A comprehensive treatment of the Laplace transforms and its inverse; concepts of transfer function, poles and zeros; frequency response of systems and Bode diagrams; application of Laplace transforms to system modeling; solution of differential equations; and circuit analysis are also taught. (0301-352, 452; 1016-328, 420) Class 4, Credit 4 (S, SU, Ext. day F)

0301-473 Electromagnetic Fields I
Study of electrostatic, magnetostatic, and quasi-static fields. Topics: review of vector algebra, vector calculus and orthogonal coordinate systems (Cartesian, cylindrical, and spherical coordinates), electrostatic fields (Coulomb’s law, Gauss’s law, the electrical potential, conductors and dielectrics in static electric fields, polarization, electric flux density and dielectric constant, boundary conditions, capacitance, electrostatic energy forces), solution of electrostatic problems (Poisson’s and Laplace’s equations, methods of images), steady electric currents, conduction current density and resistance, static magnetic fields (Ampere’s law, the vector magnetic potential, Biot-Savart law, the magnetic dipole, magnetization, magnetic field intensity, permeability, boundary conditions, self and mutual inductance, magnetic energy and forces, Faraday’s law of electromagnetic induction). (1016-328) Class 4, Credit 4 (S, SU)

0301-474 Electromagnetic Fields II
Study of propagation, reflection and transmission of electromagnetic waves in unbounded regions and in guiding structures. Topics: time varying fields, Maxwell’s equations, wave equations, uniform plane waves in conductive regions, polarization, the Poynting theorem and power, reflection and transmission at normal incidence from plane boundaries (multiple dielectric interfaces), oblique incidence at plane dielectric boundaries, two-conductor transmission lines (transmission line equations, transients on transmission lines, pulse and step excitations, reflection diagrams, sinusoidal steady state solutions, standing waves, the Smith Chart and impedance matching techniques), TE and TM waves in rectangular wave guides (propagation dispersion characteristics). A few experiments illustrating fundamental wave propagation and reflection concepts are conducted. (0301-471) Class 4, Lab 2, Credit 5 (F, W)

0301-481 Electronics I with Lab
Introduction to electronics and basic principles of small signal analysis of circuits with nonlinear components. Covers the use of ideal operational amplifiers in nonlinear applications such as comparators and circuits with hysteresis. The PN junction is introduced, followed by a study of basic junction and field effect transistor function. Primarily concerned with such fundamental semiconductor devices as circuit elements, dwelling principally on diode applications and simple BJTs and FET transistor amplifier stages. Study includes rectification and power supply filtering and the basic operation and biasing of bipolar and junction field effect transistors. Analytical techniques include the development of linear equivalent circuits, load line construction, small signal analysis of single amplifier stages, and waveform prediction. Emphasis on developing skills required for circuit design. The laboratory deals with basic design experiments in electronics. (0301-381) Class 3, Lab 1, Credit 4 (F, W)

0301-482 Electronics II with Lab
Continuation of 0301-481. Primarily concerned with analog electronics, the course covers cascaded amplifiers and the design of IC operational amplifiers (including differential amplifiers, active loads, current mirror and level shifting circuits) as well as more advanced op amp subjects such as offsets and component matching; NMOS, PMOS and CMOS circuits and basic analog/digital interfacing; amplifier frequency response, Bode diagrams, multivibrators and power amplifier effect of feedback on circuit performance; the study of feedback amplifier design; and means of determining open and closed loop behavior. The laboratory continues the integration of the engineering workstation into the electronic design program. The design, simulation, construction and evaluation of a multistage amplifier are required. The evaluation includes DC operating points, transient response, and steady-state frequency response. (0301-382, 481) Class 3, Lab 1, Credit 4 (S, SU)

0301-514 Control Systems Design
This is the first course in the design of feedback control systems. Conventional design techniques, root locus and bode plots, are used to design both continuous and discrete controllers. Topics include review of transfer function models of physical systems, second order system response and transient specifications, its relationship to complex poles in S & Z planes (Laplace & 2 transforms), effect of additional poles and zeros, steady state error, error, error constants. Root locus analysis, design of lag, lead and PID controllers (continuous and discrete), Design using frequency response techniques, review of Bode plots, W transform and Bode plots for discrete systems, specifications in discrete controllers using bode plots. Performance comparison of continuous and discrete controllers. Practical aspects in controller implementations. Students are expected to use compute; aided design packages like MATLAB both in class assignments and laboratory projects. (0301-453, 0301-554 Linear Systems I & II) Class 4, Lab 3, Credit 5 (S, SU)

0301-531 Electrical Machines
An introduction to transformers and AC and DC machines. Basic relationships for power and energy in rotating systems, magnetic fields and electrical circuits are developed into an understanding of the operational characteristics of electrical machines. (0301-382) Class 3, Lab 3, Credit 4 (F, W)

0301-534 Introduction to Communication Systems
Provides the basics of the formation, transmission and reception of information over communication channels. Spectral density and correlation descriptions for deterministic and stationary random signals. Amplitude and angle modulation methods (e.g., AM and FM) for continuous signals. Carrier detection and synchronization. Phase-locked loop and its application. Introduction to digital communication. Binary FSK and PSK. Noise effects. Optimum detection: matched filters, maximum-likelihood reception. Computer simulation. (1016-351, 0301-453) Class 4, Credit 4 (S, SU)

0301-545 Digital Electronics
Studies the principles of digital electronic circuits with emphasis on MOS (CMOS in particular) and their use in logic circuits. Serves as a prerequisite for digital systems design and VLSI design. Topics include review of basic logic principles, study of MOS devices and their models, basic logic structures using MOS devices, circuit characterization and performance estimation, design structures of logic systems, memory, registers and system timing, binary and BICMOS digital circuits. The laboratory portion introduces the student to fabrication of integrated circuits, simulation of digital circuits and design of basic logic circuits using workstations and software packages. (0301-442, 0301-544) Class 3, Lab 3, Credit 4 (S, SU,)

0301-554 Linear Systems II
Topics include continuation of the linear systems concepts from 0301-453 except that in this course they are applied to discrete signals and systems. The origins of discrete sequences and systems; an introduction to sampling of continuous signals and the sampling theorem; a description of discrete systems via difference equations and convolution; the z transform and inverse z transform; system transfer function; system frequency response function and interpretation of frequency response; an introduction to the design of digital filters; filter block diagrams for FIR and IIR filters; the discrete Fourier transform, its properties and its application to the solution of signal processing problems; and a brief introduction to fast algorithms for computation of the discrete Fourier transform are discussed. (0301-453) Class 4, Credit 4 (F, W)

0301-590 Thesis
A research or development project to be carried out under the general supervision of a faculty member. The project need not be of the state-of-the-art type, but a reasonable problem of theoretical and/or experimental investigation, to be arranged with an individual faculty member. Credit 4

0301-599 Independent Study
A supervised investigation within an electrical engineering area of student interest. (Permission of instructor) Class variable, Credit variable

0301-605 Robotic Vision
An introductory course on computer vision with special emphasis on its use in a manufacturing environment. Develops an understanding of how information obtained from images can be used for industrial automation. Topics include image formation and sensing, effects of lighting, image recognition, binary images, geometrical properties, image segmentation, grayscale image processing, enhancement, edge detection, 3-D structure, motion analysis, industrial applications. In the laboratory portion, students are required to use and experiment with the set of available image processing algorithms. Students are also required to do a project in which image processing techniques are applied to solve practical problems. (0301-554) Class 3, Lab 3, Credit 4 (S, SU)
0301-610 Analog Electronic Design
Enhances the student’s skills in designing analog circuits. Subjects covered include nonlinear characteristics of op-amps, operational amplifier applications, A/D and D/A conversion; multipliers and modulators; phase-locked loop, frequency synthesis and audio power amplifiers. Students meet in the classroom three hours each week and three hours in the laboratory. The laboratory time is used to discuss and troubleshoot circuits. Students are expected to work on design projects at their own pace outside of class hours. (0301-390, 395, 441, 442) Class 3, Lab 3, Credit 4

0301-621 Microwave Engineering
Study of the theory and design of microwave components and circuits. Review of basic EM theory, TEM waves in transmission lines, TE and TM waves in rectangular waveguides, microstrip lines and striplines, TE and TM waves in cylindrical waveguides; the scattering matrix description of multiport microwave circuits; wave guide tees, direction couplers and phase shifters; microwave integrated circuit components-branchline couplers, power dividers, hybrid ring couplers and phase shifters; rectangular, cylindrical and coaxial cavity resonators; wave guide and coaxial line filters and waveguide frequency meters; microwave integrated circuit high pass and band pass filters; ferrite components. Laboratory illustrates various microwave component design and measurement techniques. Class 3, Lab 3, Credit 4 (W)

0301-622 Antenna Design
A design course in antennas which studies fundamental principles of antenna theory and applies them to the analysis and design of antennas. Emphasis is on the design procedures for some practical and popular antenna configurations: e.g., the dipole; thin linear antennas; linear arrays, broadband and end-fire arrays; phased array; nonuniform amplitude linear arrays, the binomial array and the Dolf Tschebyscheff array; planar arrays; the Yagi-Uda array; E-plane and H-plane sectoral horns; the pyramidal horn; the parabolic reflector; and microstrip antennas. The student also is exposed to the measurement techniques of antenna characteristics, such as radiation pattern, gain and input impedance, using state-of-the-art equipment. Of primary importance is a project involving the design, construction and testing of an antenna. The project requires a report and a presentation with a demonstration. (0301-472) Class 3, Lab 3, Credit 4

0301-625 Modern Photonic Devices & Systems
This professional elective course introduces students to many of the photonic devices presently used in the photonics revolution in communications. Topics include the laser, photodetectors, fiber, optic communication systems and modulators, as well as several topics from classical optics such as holography, and interference and diffraction. The course includes an occasional laboratory and/or demonstration laboratory. (0301-474) Class 4, Lab 1, Credit 4

0301446 Power Electronics
The study of a variety of semiconductor devices generally used for purposes other than signal processing, including thyristors, unijunction transistors, opto-couplers, power MOS and IGBTs. Applications stressed are concerned with the use of electrical power for control of lighting, motion and heat. Particular attention is given to calculating power dissipation, heat sinks and thermal management. Replaces 0301-645, Special Semiconductor Devices. (0301-545) Class 3, Lab 3, Credit 4

0301-650 Design of Digital Systems
Deals with the design of both synchronous and asynchronous digital systems. The accent is on design methodologies for final implementation on programmable logic devices. Design techniques are based on top-down design using ASM charts and bubble diagrams along with microprogramming applications. Students also learn how to rapidly develop digital systems with VHDL. Design strategies for testability are discussed along with their impact on performance. The practical aspects of component interconnection (crosstalk, noise, transmission line effects) with effects on performance are also surveyed. The laboratory portion consists of four distinct projects proposed, designed, simulated (two projects require actual hardware implementation), and tested by the student. The design laboratory is supported by the ALTERA MAX-PLUS II VHDL design tools and EPLD/FPGA programmers. (0301-240.365) Class 3, Lab 2, Credit 4

0301-651 ASIC Design
A technical elective that introduces students to the fundamental principles of Application Specific I.C. (ASK) design. Both circuit design and system design are covered. The student also is introduced to CAD tools for schematic capture, placement and routing of standard cells. The projects are designed and simulated using commercial CAD tools. Top-down design using a hardware description language (VHDL) is included. (0301-650) Class 4, Credit 4

0301-655 Microcomputer Software I
Discussion of the use of the C Programming language in generating software specifically for microprocessor based systems. The tools and procedures necessary for the organized and efficient development of high-level code for a target microprocessor as well as establishing a compiler, linkers, object code libraries, and symbolic debugging as well as monitor programs and real-time multi-tasking kernel principles. Programming projects with emphasis on the applications in electrical engineering are required. (0301-365 Microcomputer Systems, 0301-345 C Programming for Electrical Engineers) Class 4, Credit 4

0301-656 Microcomputer Software II
Introduction to the use of the Java programming language and object oriented programming in generating software for microprocessor based systems in a high level language that can be written once to be deployed on different target platforms with a minimum of modification. Details regarding the Java Virtual Machine (JVM), its implementation in hardware and software, byte-code, trade-offs and optimization in terms of code size and speed as well as issues in debugging and deployment will be discussed. The Unified Modeling Language will be introduced as a method of unambiguous description of program specification, design, implementation and testing. Programming projects with emphasis on the applications in electrical engineering are required. (0301-655 Microcomputer Software I) Class 4, Credit 4

0301-662 Neural Networks
Artificial neural networks (ANN) is the name given to a broad class of processing algorithms that are loosely based on how the brain processes information. The term “artificial” distinguishes the silicon-based systems from the biological systems (such as ourselves). ANNs are used in numerous applications from manufacturing controls to handwriting recognition to optical visual processing, or in any application that can handle some “uzziness” in the output. Artificial Neural Networks also form the foundation for artificial intelligence (AI) systems. This course begins with a discussion of what ANNs are and what features define them, then examines a number of the most common neural algorithms and techniques such as backward error propagation (“Back-prop”), Software implementations of the algorithms (requiring C programming skills) as well as hardware implementations (requiring PSPICE simulations) will be discussed. Credit 4

0301-664 Embedded Microcontroller Systems
Gives the student detailed knowledge of the hardware and software organization of 8-bit microcontroller systems with an emphasis on design. Peripheral interfacing, serial and parallel I/O, including interrupts, are considered. Special attention is given to interfacing microcontroller with the analog world, including the use of A/D and D/A converters. Software organization as well as design tools are discussed. Design case studies of typical microcomputer–embedded systems are examined. (0301-365) Class 3, Lab 3, Credit 4 (F, SU)

0301-666 32-Bit Microcomputer Systems
Covers both the hardware and software aspects of 32-bit microcomputer systems. The architecture, timing and enhanced instruction sets are discussed. Memory and serial and parallel I/O interfacing techniques, including standard interface chips, are examined. Modular programming concepts and the software tools are introduced. Use of A/D and D/A converters to interface with the analog world is discussed. General purpose personal computers are used to demonstrate key concepts. (0301-365) Class 3, Lab 3, Credit 4 (F, SU)

0301-674 Fiber Optics: Theory & Applications
Introduction to fiber optics that begins with a review of communication systems and lightweight fundamentals. The study of dielectric waveguides and optical fibers, light-emitting diodes (LEDs), laser diodes and photodetectors (pin and a.p.d) follows. Concludes with a discussion of optical fiber communication systems with special attention to noise sources in optical receivers, bit error rate and power budget. The laboratory component includes experiments selected from these topics: handling and cleaving fiber, numerical aperture, attenuation in optical fiber, coupling light into fiber, single and multimode fiber, laser diode characteristics, properties of photodetectors. (0301-474) Class 3, Lab 3, Credit 4
0301-677 Digital Filters & Signal Processing
A continuation of the topics studied in 0301-554. Topics include study of the design methods for digital IIR filters via s-plane transformations; study of design methods for digital FIR filters, including emphasis on the question of linear phase response; a review of the discrete Fourier transform (DFT) and an in-depth study of fast algorithms (FFTs) for implementing the DFT; including radix 2, radix 4 and mixed radix algorithms; quantization effects in discrete systems; an introduction to digital signal processing computer chips and their use in the implementation of digital processing systems; and applications of digital signal processing, including speech processing and two-dimensional image processing. Includes several design projects in the digital signal processing laboratory. (0301-554) Class 4, Credit 4

0301-679 Analog Filter Design
A study of the various techniques for the design of filters to meet given specifications. Approximations to the ideal filter characteristic through Butterworth, Chebyshev and other polynomials are discussed in detail. The emphasis is on active network realizations using op amp stages. Topics include review of analysis of op amp circuits and transfer function of networks; magnitude and frequency scaling; ideal filter characteristics; Butterworth, Chebyshev and Bessel-Thompson approximations to the ideal filters; determination of transfer functions to meet given specifications; high-pass to low-pass and band-pass to low-pass transformations; standard op amp circuits for filter realizations; negative impedance converters; generalized impedance converters; and switched capacitor filters. (0301-453) Class 4, Credit 4

0301-682 Principles of Robotics
An introduction to a wide range of robotics-related topics, including but not limited to: sensors, interface design, robot devices and applications, mobile robots, intelligent navigation, task planning, coordinate systems and positioning, image processing, digital signal processing applications on robots, and controller circuitry design. Prerequisite of the class in the basic understanding of signals and systems, matrix theory, and computer programming. Software assignments will be given to the students in robotics applications. Students will prepare a project, in which they will complete software or hardware design of an industrial or mobile robot. There will be a two-hour lab in addition to the lectures. (0301-204, 0301-453, 0301-345/346) Class 4, Credit 4

0301-692 Communication Networks
A major portion of today’s communication takes place over digital networks. This includes communication between people in the form of voice, facsimile (fax) and e-mail, as well as communication between machines. Digital networks are most likely to be the dominant element of communication links of the future. The current effort in ISDN points to such a trend. This course covers key aspects of the structure of present-day digital communication networks (0301-534) Class 4, Credit 4

0301-693 Digital Data Communication
Principles and practices of modern data communication systems. Topics include pulse code transmission and error probabilities, M-ary signaling and performance, RF communications link budget analysis, an introduction to channel coding, a discussion of modulation/coding tradeoffs and a discussion of digital telephony. (0301-534) Class 4, Credit 4

0301-694 Information Theory & Coding
Introduction to the notions of information, source entropy and mutual information leading to the topics of efficient source coding and communication channel capacity. Huffman coding and its variations are discussed in detail. The effects of random channel disturbances are described leading to the requirements for error-detection and error-protection coding. Linear block coding concepts are introduced followed by a description of cyclic codes and their underlying algebraic structure. Other related topics include BCH codes, convolutional codes and maximum-likelihood decoding of convolutional codes, (1016-351; 0301-453, 534) Class 4, Credit 4

0301-697 Senior Design Project I
The first half of a two-quarter sequence in electrical engineering design devoted to the creative portion of the design project and its logistics. Under the guidance of a faculty adviser, teams of three or four students are formed early in the quarter and a proposal, including a schedule and budget, is written to attack a specific design problem. By end of the quarter, much of the design work on the project will be completed. A final report should include the analytical basis of the design along with detailed schematics and software flow charts. An oral design review before the student’s peers and faculty is required. Class 2, Open Lab, Credit 2 (F)

0301-698 Senior Design Project II
The sequel to 0301-697, Senior Design Project I. The design created in part I must be constructed and evaluated. Software and hardware must be integrated to produce a complete working prototype. The performance specified in the original proposal will be contrasted with the performance of the operational unit. The design teams give a written and oral presentation of the prototype’s design and its validation by demonstration. In this second quarter there are also a few lectures focusing mainly on professional aspects of engineering and special topics related to design. (0301-697) Class 4, Open Lab, Credit 2-4

General Engineering

0302-210 Introduction to Engineering
A one credit-hour course for the undeclared engineering student that presents information and exercises to introduce the student to the six engineering curricula offered by RIT. Various aspects of the curricula requirements as well as career opportunities that are available are discussed as they pertain to each major. Class 2, Credit 1 (F)

0302-215 Computing for Engineers
A first course in computer programming for engineers that involves extensive development of programming skills required in the engineering disciplines. “C” is the current language of choice. Class 4, Credit 4 (F)

0302-610 Multidisciplinary Product Design I
The first course of a two-course sequence. Most products designed today reflect the fusion of efforts of a team of engineers from many disciplines. Successful product designers must be able to converse and work with engineers and managers from a variety of backgrounds. A group of students drawn from at least three different disciplines is formed into a team to design an actual product. These products are sponsored by industry or agencies who cooperate closely with the team during the entire design process. Elective course, open normally to undergraduate and graduate students. Includes lectures and seminars about organizing and planning techniques, an introduction to team dynamics, and courses and seminars relating to the specific design and manufacture. At the conclusion of the course, the team is expected to produce a written proposal for the design accompanied by an oral presentation. Credit 4 (F, W)

0302-620 Multidisciplinary Product Design II
The second of a two-course sequence with the main thrust on the completion of the design begun in 0302-610 and on the construction and evaluation of an engineering prototype. A written final report is required along with an oral presentation to the faculty and the sponsoring organization. Since this is usually a very busy time, the lectures and seminars are run at a somewhat lower level than in the first course. The topics addressed are more general in nature and involve ethical and professional considerations, ergonomics and some general system considerations. (0302-610) Credit 4 (W, S)

Industrial and Systems Engineering

0303-203 Freshman Seminar
An introductory course in industrial engineering for first-year students. Describes engineering in an overall sense and industrial engineering in particular. Includes an overview of some of the engineering sciences used in industrial engineering such as work measurement, manufacturing, facilities planning, engineering economy, statistics, ergonomics and engineering design. The laboratory portion covers hands-on applications relating to topics covered in lectures and group exercises in creative problem solving in the context of engineering design. Class 3, Lab 1, Credit 4 (F)

0303-204 Computer Tools for Increased Productivity
Builds a basic computer competence. Students learn about various computer software programs including word processing, spreadsheets, presentation graphics and database programs. Class 2, Credit 2 (W)
0303-302 Computing for Industrial Engineering
A first course in computer programming for engineers. Involves extensive development of programming skills required in the engineering disciplines. "C" is the current language of choice. Class 4, Credit 4 (S)

0303-401 Introduction to Operations Research I
An introduction to the optimization methodology of mathematical problem formulation. Investigation of mathematical programming techniques including linear programming and special types of linear programming problems such as the transportation and assignment algorithms. (1016-331 or permission of instructor) Class 4, Credit 4

0303-402 Introduction to Operations Research II
A survey of nonlinear mathematical models within the field of systems and industrial engineering. Areas of study include queuing theory, network analysis, and inventory theory. (1016.351, 306 or permission of instructor) Class 4, Credit 4

0303-415 Ergonomics
Physiological and biomechanical aspects of human performance. The human capacity for physical work and human anthropometry is studied to enable the student to design work places, processes, products and procedures that are consistent with human capabilities and limitations. A systems approach to design is emphasized. Topics include repetitive motion disorders, manual materials handling, hand tool design and selection, as well as current OSHA requirements. (1016-351 or permission of instructor) Class 3, Lab 3, Credit 4

0303-422 Systems & Facilities Planning
A basic course in plant layout. Topics include product-quantity analysis, flow of materials, relationship charts, activity charts, material handling systems design and factors influencing the layout design. Introduces computer-aided drafting tools as well as state-of-the-art computer-aided layout design packages. (Permission of instructor) Class 3, Lab 3, Credit 4

0303-481 Management Theory & Practice
Development of the fundamental management principles of the industrial enterprise. Internal organization as well as general economic conditions are considered. Emphasis is on the role of behavior science. (Permission of instructor) Class 4, Credit 4

0303-482 Production Control I
A basic course in production control emphasizing the systems approach. Topics include forecasting, mathematical inventory models, material requirements planning and scheduling including PERT. (Professional elective. 0303. 511 and 0303-503, or permission of instructor) Class 4, Credit 4

0303-483 Production Control II
A design course in production control. Each student is asked to design, test and implement a complete production control system for an operating plant. Professional elective. (0303-482) Class 4, Credit 4

0303-503 Simulation
A first course in simulation emphasizing the role of the computer in developing simulation models. Simulation language usage is emphasized. (0303-302, 1016-351 or equivalent) Class 4, Credit 4

0303-510 Applied Statistical Quality Control
An applied approach to statistics utilizing theoretical tools acquired in other math-stat courses. Heavy emphasis on understanding and applying statistical analysis methods in real-world situations in engineering. Topics include quality control and reliability. (1016-351,352) Class 4, Credit 4

0303-511 Applied Linear Regress Analysis
An applied approach to statistics utilizing theoretical tools acquired in other math-stat courses. Heavy emphasis on understanding and applying statistical analysis methods in real-world situations in engineering. Topics include analysis of variance and regression. (1016.351,352) Class 4, Credit 4

0303-516 Human Factors
Psychological and cognitive aspects of human performance. The human information processing capabilities are studied to enable students to design work places, procedures, products and processes that are consistent with human capabilities and limitations. A systems approach to design is emphasized. Topics include the human sensory, memory, attention and cognitive processes; display and control design principles; as well as human computer interface issues. (1016-352 or permission of instructor) Class 3, Lab 3, Credit 4

0303-520 Engineering Economy
Time value of money, methods of comparing alternatives, depreciation and depletion, income tax consideration and capital budgeting. Cannot be used as a professional elective for IME majors. Non-IME majors may choose this as a professional elective. Class 4, Credit 4

0303-525 Manufacturing Engineering
This course is intended to provide broad exposure to various concepts in manufacturing within an integrated framework. The course is a combination of theory and laboratory activities. This course explores the concepts of product conceptualization, CAD/CAM and solid modeling, GD&T, reverse engineering metrology, DFX, rapid prototyping and tooling, material removal and deformation processes, automation, assembly systems and quality aspects. At the end of the course, students will participate in an actual production run for the product being considered. Modern aspects such as green manufacturing and design for recycling are included. Class 1, Lab 3, Credit 4

0303-530 Engineering Design
An introduction to engineering design as it relates to unstructured problems in terms of objectives, constraints, criteria, resources, solution ideation and multi-criteria-weighted analysis method. Topics include an overview of value analysis/value engineering and design strategies. Students participate in group design exercises. (Fourth-year status) Class 4, Credit 4

0303-550 Safety Engineering
Acquaints students with practical aspects of safety engineering. Students acquire a working knowledge of legal and technical aspects of safety. Focuses on a systems approach to safety engineering. Topics include workers compensation, OSHA, Consumer Product Safety Commission and NIOSH Workplace Guidelines and various hazard analysis techniques. Students also are exposed to various theories of accident causation, research methodology and ways of evaluating safety programs and related research. Professional elective. Class 4, Credit 4 (S)

0303-560 Project Design
A design course oriented to the solution of on-site industrial engineering problems. Each student group attempts to define, analyze, design and implement a solution to unstructured, open-ended, actual ongoing problems in the Rochester community. (0303-530 or permission of instructor) Class 4, Credit 4 W

0303-599 Independent Study
A supervised investigation within an industrial engineering area of student interest. Professional elective. (Permission of instructor) Class variable, Credit variable

0303-601 Value Analysis
This course examines the nature and measurement of value. The concept and construction of a value index representing average value is developed. Numerical estimation methods such as ranking, paired comparison, magnitude estimation and criteria analysis are explained and used to measure the value of diverse items. The methods used are applicable to the study of a wide variety of problems and have special utility in engineering design studies. Credit 4

0303-620 Engineering Economy
Time value of money, methods of comparing alternatives, depreciation and depletion, income tax consideration, replacement, retirement and obsolescence, and capital budgeting. Cannot be used as a professional elective. Credit 4

0303-625 Concepts in Manufacturing
This course provides an in-depth introduction to the fundamental concepts in manufacturing engineering. Topics include engineering design, computer-aided design, materials and manufacturing processes, programmable automation, computer-aided manufacturing, computer numerical control, modern and adaptive control, robotics, computer-integrated manufacturing, computer-aided process planning, and group technology. The objective is to introduce the student to the major technologies in modern manufacturing systems. The student will gain an understanding of, as well as limited hands-on experience with, the manufacturing technologies needed for a range of production systems from job-shop facility to a continuous flow enterprise. Credit 4 (F)
0303-630 Advanced Systems Integration
To familiarize students in industrial engineering with the basic concepts and techniques needed to specify, design and implement systems that are computer controlled. Emphasis is on real-time data acquisition and process control as related to computer-integrated manufacturing. Physical simulations of real-world systems such as automated storage and retrieval systems, material handling systems and flexible manufacturing systems using robots will be reviewed. Topics include real-time programming, interface electronics, and microprocessor-based data acquisition systems and programmable controllers. (0303-503, 0303-302, or permission of instructor) Class 3, Lab 3, Credit 4

0304-203 Freshman Seminar
Gives the entering first-year student an overview of mechanical engineering and helps integrate the incoming student into the RIT community. Topics discussed include the program of study, the cooperative work experience, an overview of the RIT facilities and career options in mechanical engineering. In addition this course gives the student an opportunity to interact with the faculty, upper-division students and other first-year students. Credit 1 (F, W)

0304-212 Introduction to CAD
Design drafting is accomplished using computer-aided drawing techniques on a CAD system. Skills are developed by producing drawings for assigned parts. (0304-211) Lab 4, Credit 2

0304-214 Engineering Design Graphics
Emphasis is on technical sketching, visualization, design, and the use of CAD systems for mechanical drawing. Combines the study and practice of manual graphics and desktop sketching along with design graphics using a CAD system. Course goal is to develop design graphics skills that will meet industrial standards, both manually and using CAD systems and software, while at the same time developing spatial visualization abilities and skills. Class 1, Recitation 2, Lab 2, Credit 3 (F, W)

0304-312 Geometric Dimensioning & Tolerancing
The course is based on the ANSI standard for GD & T. Students learn how to properly dimension and tolerance production piece-parts and assemblies using an industry desired dimensioning system. This is a project-based course with student teams designing and dimensioning a small assembly. The students learn how to convert functional requirements into production drawings while reflecting manufacturing realities. Includes instruction in isometric sketching of part applications. (0304-212) Class 1, Recitation 2, Lab 2, Credit 3 (W, S)

0304-330 Statics & Dynamics
This basic course for nonmechanical engineering students begins with the static equilibrium of particles and rigid bodies under the action of forces. Topics include forces, couples, equilibrium, trusses and friction. This is followed by the fundamentals of dynamics of particles and rigid bodies. Topics include kinematics and kinetics of particles and rigid bodies, work, energy and momentum. Applications will include rotating machines and gear trains. (1017-311; corequisite: 1016-306) Class 5, Credit 5 (W, S)

0304-331 Mechanics I
For students majoring in industrial engineering. Statics: equilibrium, the principle of transmissibility of forces, couples, centroids, trusses, frames, machines and friction. Introduction to strength of materials: axial stresses and strains, statically indeterminate problems, torsion and bending. (1017-311, 1016-252) Class 4, Credit 4 (F)

0304-332 Mechanics II
For students majoring in industrial engineering. Topics include dynamics of particles and rigid bodies with an introduction to kinematics and kinetics of particles and rigid bodies, work, energy, impulse momentum and mechanical vibrations. Emphasis is on problem solving. (0304-331) Class 4, Credit 4 (W)

0304-336 Statics
This basic course treats the equilibrium of particles and rigid bodies under the action of forces. It integrates the mathematical subjects of calculus, vector algebra and simultaneous algebraic equations with the physical concepts of equilibrium in two and three dimensions. Topics include concepts of force and moment, trusses, frames, machines, shear force and bending moment diagrams and equations, friction, fluid statics, centroids and moments of inertia. (1016-252; 1017-311) Class 4, Credit 4 (F, W)

0304-342 Problem Solving with Computers
Introduces students to personal computers for solving science and engineering problems. Students also learn to interpret and analyze their results and document their solutions. The course covers principles and techniques of computer programming to analyze and solve problems and to document both numerically and graphically the results of the analysis. Programming and analysis of problems are implemented using either spreadsheet (Microsoft Excel) or a symbolic algebra system (Waterloo Maple) with supplemental documentation and communication of results using a word processor (Microsoft Word). (Corequisite: 1016-252) Class 2, Lab 2, Credit 3 (W, S)

0304-343 Materials Processing
A study of the application of machine tools and fabrication processes to engineering materials in the manufacture of products. Processes covered include cutting, molding, casting, forming, powder metallurgy and welding. Students make a project in the lab portion of the course. Class 3, Lab 2, Credit 4 (F, W)

0304-344 Materials Science
The structure and properties of metallic, polymeric, composite and ceramic materials as related to structural imperfections, atom movements and phase changes. Develops a basic understanding of the structure/properties relationship in materials and their behavior in service environments. (1011-273, 277) Class 3, Lab 2, Credit 4 (W, S)

0304-347 Mechanics of Materials
A basic course in the fundamental principles of the mechanics of deformable media, including stress, strain, deflections and the relationships among them. The basic loadings of tension, compression, shear, torsion and bending are also included. Mechanics of Materials Lab (0304-348) is to be taken concurrently with this course. (0304-336; corequisite: 0304-348) Class 4, Credit 4 (W, S)

0304-348 Mechanics of Materials Lab
A required laboratory course taken concurrently with 0304-347. Illustrates the mechanical behavior of common engineering materials. Students investigate a material’s response to axial, torsional and bending loads. In addition students are introduced to statistical analysis of data, basic experimental techniques, strain gage mounting and usage, and effective report writing. (0304-336; corequisite: 0304-347) Lab 2, Credit 1 (W, S)

0304-359 Dynamics
A basic course in the kinematics and kinetics of particles and rigid bodies. Newton’s Laws and the theorems of work-energy and impulse-momentum are applied to a variety of particle problems. Systems of particles are employed to transition to the analysis of rigid body problems. Absolute and relative motion are used to investigate the kinematics and kinetics of systems of rigid bodies. Newton’s Laws and the theorems of work-energy and impulse-momentum are also applied to a variety of rigid body problems. (0304-336) Class 5, Credit 5 (W, S)

0304-413 Thermodynamics
A basic course introducing the classical theory of thermodynamics. Applications of the first law of thermodynamics are used to introduce the student to thermodynamic processes for closed and open systems. The Clausius and Kelvin-Planck statements of the second law are then correlated with the concept of entropy and enthalpy to investigate both real and reversible processes and the thermodynamic properties of pure substances. (1016-252, 0304-336, 1017-312) Class 4, Credit 4 (F, W)

0304-415 Fluid Mechanics
0304-416 Thermal Fluids Lab I
This laboratory course pertains to topics covered in Thermodynamics (0304.413) and Fluid Mechanics (0304.415). Each laboratory experiment is designed to quantify the differences between real and ideal systems through rigorous system analysis. Students will work in teams to evaluate four systems: steam power plant, vapor compression, refrigeration, viscous pipe flow and centrifugal pumps. Extensive spreadsheet analysis is used to calculate system characteristics and to graph and predict system behavior. (0304-413; corequisite: 0304-415) Lab 2, Credit 1 (S, SU)

0304-437 Design of Machine Elements
The analysis and theory of machine design in the context of failure theories. Particular emphasis on the design and analysis of machine elements and fatigue. A discussion of engineering professionalism and ethics is also included. (0304.347, 348) Class 4, Credit 4 (F, W)

0304-440 Numerical Methods
A study of numerical methods to model and solve engineering problems using a computer. Students learn to analyze and interpret the numerical solutions obtained. Topics include roots of algebraic and transcendental equations, linear systems, curve fitting, numerical differentiation and integration, and ordinary differential equations. Applications are taken from students' background in statics, mechanics, dynamics, mathematics and thermodynamics. (0304.342 or 0304-441, 1016-318; corequisite: 0304-347) Class 4, Credit 4 (F, W)

0304-441 Computer Tools
The course covers the use of a personal computer for solving engineering problems and for documenting their solutions. Students learn techniques that use a spreadsheet (Microsoft Excel), a symbolic algebra system (Waterloo Maple), and a word processor (Microsoft Word) on personal computers. This course is intended for transfer (internal and external) students who have not taken the course 0304-342, Problem Solving with Computers. (Corequisite: 0304-440) Lab: first three Saturdays, Credit 1 (F)

0304-464 Design for Manufacture
The student learns how to design parts for economical manufacture and how to design assemblies with the optimum number of parts. This project-based course includes lectures on the creative process. The student uses both manual and software techniques to calculate assembly design efficiencies and software techniques to determine part and part tooling costs. (0304-312, 344) Class 4, Credit 4 (S, SU)

0304-500 Study Abroad
01 -Mechanical Engineering Independent Study, Credit 1-8
02 -Mechanical Engineering Free Elective, Credit 1-8
03 -Mechanical Engineering Technical Elective-Design, Credit 1-8

0304-514 Heat Transfer
A basic course in the fundamentals of heat transfer by conduction, convection and radiation, together with applications to typical engineering systems. Topics include one-dimensional steady state and transient heat conduction, radiation between black bodies and gray bodies, correlations for the Nusselt number in forced and natural convection, and an introduction to heat exchanger design by LMTD and NTU methods. (0304-413, 415) Class 4, Credit 4 (F, W)

0304-518 Advanced Computational Techniques
This extension of Numerical Methods, 0304-440, covers finite element and finite difference techniques and their applications in mechanical engineering (structural analysis, heat transfer, fluid mechanics). (0304-440) Class 3, Lab 2, Credit 4 (S, SU)

0304-540 Introduction to Auto Design & Manufacturing
An introduction to the design and manufacturing practices employed in typical automotive industries. Design practices that are currently being implemented in industry will be emphasized including the use of computer-aided engineering, software, and statistical analysis. The regularly scheduled lecture periods will include guest lecturers from automotive OEMs to introduce the students to current manufacturing technologies. (Fourth-year standing in ME program) Class 4, Credit 4 (W)

0304-543 System Dynamics
This required course introduces the student to systems modeling, analysis and design. Lump-parameter mechanical, electrical, electromechanical, acoustic and thermal systems are considered. The determination and solution of differential equations that model system behavior is a vital aspect of the course. System response is characterized in both time and frequency domains. The design of systems or sub-systems is evaluated based on performance criteria, and design modifications are suggested from alternate modeling scenarios. Associated projects introduce students to simulation software. (0304-359, 1016-306, 0301-362; corequisite: 0304-545) Studio Class 6, Credit 5 (F, W)

0304-550 Transport Phenomena
A second course in fluid mechanics, integrating concepts of heat and mass transfer. Use of the differential form of the fundamental equations of the conservation of mass, momentum and energy is derived and used throughout. Topics include potential flow, viscous internal plane and pipe flows, external boundary layers, and the convective transport of heat and mass. (1016-318, 0304-415; corequisite: 0304-514) Class 4, Credit 4 (F, W)

0304-551 Thermal Fluids Lab II
A laboratory course based on the materials covered in Heat Transfer I, 0304-514, and Transport Phenomena, 0304-550. Students perform four experiments in the area of fin performance comparison, transient heat conduction, wind tunnel, laser-doppler measurement techniques. Each lab is preceded by a two-hour lecture covering an in-depth analysis of the lab experiment. Students are required to work on an assignment related to the experiment using the textbooks and reference material available in the library. After performing the experiments, students perform the required analysis, including an error analysis and comments on identifying the sources of error and how to reduce them. Students submit a detailed lab report that is graded on the technical content as well as writing skills. (0304-514, 550) Lab 2, Credit 1 (S, SU)

0304-560 Introduction to Aerospace Engineering
Lays the foundation for studies in aerospace engineering. Topics include the history of aviation, basic aerodynamics, airfoils, wings and other aerodynamic shapes, airplane performance, stability and control, propulsion and aircraft structures. (0304-359,415) Class 4, Credit 4 (F)

0304-599 Independent Study
A student project course encompassing both analytical and experimental work. (Fourth- or fifth-year standing) Credit variable (F, W, S, SU)

0304-610 Topics in Mechanical Engineering Design
In response to student and/or faculty interest, special courses of current interest and/or logical continuation of regular courses are presented. A design project is required. Class 4, Credit 4

0304-615 Robotics
An applied course in the fundamentals and applications of industrial robots. Topics include coordinate systems, drive motors, encoders, sensors, programming, gripper design, safety, economics, machine vision and flexible manufacturing systems. A major emphasis is placed on a design project involving an industrial problem. (Fifth-year standing) Class 3, Lab 2, Credit 4 (F, W)

0304-618 Computer-Aided Engineering
Introduces the mechanical engineering student to the procedures and techniques used to integrate the computer into the engineering and design cycle. The student is exposed to the computer hardware and software used in mechanical design: solids modeling, finite elements, dynamic analyses, etc. The student uses software on the academic computing system, the workstation laboratory and personal computers. Concepts associated with the design of interactive graphics display programs for design applications are presented. A design project is selected from one or more of the topics covered. (0304-437, 518) Class 3, Lab 2, Credit 4 (S)

0304-620 Introduction to Optimal Design
An introduction to some basic optimization techniques for engineering design synthesis. Topics include basic concepts, the general problem statement, necessary conditions of optimization, numerical techniques for unconstrained optimization, constrained optimization through unconstrained optimization and direct methods. Numerical solutions are obtained by interfacing with available software. A design project is required. (0304-437, 440) Class 4, Credit 4 (F or W)
0304-624 Vehicle Dynamics
Deals with the fundamentals of ground vehicle stability and control. The contribution of tire lateral force, stiffness, and aligning torque to vehicle stability is discussed. Bicycle and four-wheel vehicle models are analyzed for neutral, under and oversteer characteristics. The effects of suspension geometry, chassis stiffness and roll stiffness on stability and handling are analyzed. (0304-543) Class 4, Credit 4 (S)

0304-626 Automotive Control Applications
Examines several key vehicle control subsystems. Such subsystems include engine sensors and controls, anti-lock brake systems and semi-active suspensions. Recent ITS (intelligent transportation systems) developments in the area of AVCS (advanced vehicle control systems) such as collision avoidance will also be studied. Relevant modeling and computer simulations will be performed. (0304543) Class 4, Credit 4 (W)

0304-630 Senior Design I
The first of a two-course capstone design sequence. Students work in design teams in an environment approximating an industrial setting. Emphasis is placed on teamwork and on developing good oral, written and interpersonal communication skills. In this course, student teams develop their proposed final design of a mechanical system after identifying possible alternative concepts. The final design must be supported by sound engineering analyses and by engineering drawings necessary to build a prototype. (Fifth-year standing as defined immediately above first mechanical engineering course listing in this bulletin) Class 4, Credit 4 (F, W)

0304-631 Senior Design II
The second of the two-course capstone design sequence. The same student teams from Senior Design I return to build and test a working prototype of their previously developed final design. Non-working prototypes are not acceptable, and some redesign work may be required to make the system work. Continued emphasis is placed on teamwork and on developing good oral, written and interpersonal communication skills. (0304-630) Class 4, Credit 4 (S)

0304-635 Heat Transfer II
Consists of the numerical solution of heat transfer problems. One-and two-dimensional steady-state as well as transient conduction cases are analyzed. A detailed study of single-phase forced and natural convective heat transfer is presented. Heat transfer during pool boiling, flow boiling and condensation is studied. Design aspects of heat transfer equipment are introduced. A major design project is undertaken by the students. (0304-440, 514) Class 4, Credit 4 (S or SU)

0304-638 Design of Machine Systems
This is an applied course in the selection of components and integration of those components into electro-pneumatic-mechanical devices and systems. Topics involve all aspects of machine design, including drive components and systems, motion generation and control, and electrical control hardware and strategy. (0304-359,437; 3031-362) Class 4, Credit 4

0304-640 Internal Combustion Engines
An introduction to the operation and design of internal combustion engines. Topics include engine types and cycles, Gels, intake and exhaust processes, emissions and emission control systems, heat transfer and lubrication. (0304-413, 514, 550) Class 4, Credit 4 (S)

0304-642 Air Pollution Dispersion
An introduction to air pollution meteorology and the fundamentals of dispersion modeling. Topics include atmospheric structure and circulation, atmospheric stability, gaussian diffusion and dispersion, gaussian plume models for point and line sources, plume rise calculation, mobile source modeling and an overview of regulatory models. (0304460, 514,550; corequisite: 0304-518) Class 4, Credit 4

0304-644 Introduction to Composite Materials
This course is an applied course in the fundamentals and applications of composite materials. Topics covered include constituents of composite materials, fabrication techniques, micromechanical analysis, macromechanical analysis, and the use of composites in design. Some laboratory work will be done, and a major design project is required. (0304-344,347,518) Class 4, Credit 4

0304-652 Fluid Mechanics of Turbomachines
Examines the basic principles applicable to all turbomachinery as well as the consideration of the operating and design characteristics of several basic classes of turbomachinery. Includes a major design project. (0304-415) Class 4, Credit 4 (F or w)

0304-660 Refrigeration & Air Conditioning
A basic course in the principles and applications of refrigeration and air conditioning involving mechanical vapor compression and absorption refrigeration cycles, associated hardware, psychrometrics, heat transmission in buildings and thermodynamic design of air conditioning systems. Students are expected to do a design project. (0304-514) Class 4, Credit 4 (S, SU)

0304-671 Aerostuctures
The principles of deformable bodies as applied to the analysis and design of aircraft and space vehicle structures. Topics include the study of bending and torsion of thin-walled, multi-cell beams and columns; wing and fuselage stress analysis; and structural stability. Strain energy concepts and matrix methods are utilized throughout the course. (0304.437,518) Class 4, Credit 4 (S)

0304-672 Dynamics of Machinery
An introduction to the fundamentals and applications of machinery design. Basic concepts such as linkage classification, mobility and motion characteristics are introduced. The kinematic and dynamic analyses of planar lower-pair linkages are carried out using analytical vector methods, complex number methods and graphical methods. The design and analysis of cams are treated by graphical and analytical methods. Major emphasis is placed on a term project in which a synthesized mechanism for specific application is kinematically and dynamically analyzed. (0304-543) Class 4, Credit 4 (S, SU)

0304-673 Aerodynamics Laboratory
A companion laboratory course for 0304-671 and 0304-675 illustrating the behavior of advanced engineering structures and aerodynamic principles common to aircraft and spacecraft design. Students investigate the bending and torsion of thin-walled single cell and multi-cell members. Wind tunnel experiments investigate basic concepts of lift and drag on bluff bodies, wind sections and lifting bodies. Boundary layer characterization is simulated on digital computers and investigated experimentally. Structural analysis and design evaluation are also simulated where appropriate. (0304-560; corequisites: 0304-671,675) Lab 2, Credit 1 (S)

0304-675 Aerodynamics
Presents the essentials of aerodynamic theory. Topics include airfoil theory, wings of finite span, inviscid potential flows, laminar and turbulent boundary layer, compressible flows, wave drag and aerodynamic design. (0304-560 or 0304-550 with instructor’s consent) Class 4, Credit 4 (S)

0304-678 Propulsion
The fundamentals of propulsion including the basic operating principles and design methods for flight vehicle propulsion systems. Topics include air-breathing engines (turbosets, ramjets, turboprops, and turbofans) as well as liquid and solid propellant chemical rockets. (0304-514 and 0304-550 or 0304-560) Class 4, Credit 4 (W)

0304-682 Flight Dynamics
The three-dimensional dynamics of aircraft, including general aircraft performance, stability and control. Topics include determination of range, endurance and rate of climb; simulation of aircraft trajectory; static and dynamic stability; and aircraft control. (0304-560) Class 4, Credit 4 (W)

0304-694 Stress Analysis
Extends the student’s theoretical, numerical and experimental base of knowledge beyond an introductory level. The state properties of stress, strain and elastic deformation and their relationships are reviewed in detail. Topics from advanced strength of materials and elasticity theory are covered including unsymmetrical bending, shear flow in thin-walled sections, curved beams, torsion in thin-walled tubes, and three-dimensional coordinate transformations. The use of the finite element software presented in 0304-518, Advanced Computational Techniques, is extended to more complex design-oriented problems. Experimental topics include the use of strain gages and photoelasticity. A design project is assigned that utilizes numerical and/or experimental methods. (0304.437; corequisite: 0304-518) Class 4, Credit 4 (SU)

0304-698 Independent Study Design Project
A design-oriented independent study requiring a major design project. (Senior standing) Credit 4
Microelectronic Engineering

0305-202 Freshman Seminar
The microelectronic engineering Freshman Seminar entitled “Semiconductor Frontiers” consists of introduction/discussion/projects related to different aspects of semiconductor device engineering. Regular attendance and active participation are required. Sharing ideas in class is an important academic skill that can be acquired only through practice. Students will work on different projects in small groups and then share their experience with other groups. Class 1, Credit 0 (W)

0305-221 Introduction to Microlithography
An introduction to the fundamentals of microlithography. Topics include IC masking, sensionmetry, radiometry, resolution, contact lithography, projection lithography, photoresist materials and processing. Laboratories include maskmaking, source characterization, resist characterization and stepper operation. (1011-212) Class 3, Credit 4 (F, S)

0305-350 IC Technology
An introduction to the basics of integrated circuits fabrication. The electronic properties of semiconductor materials and basic device structures are discussed, along with fabrication topics including photolithography, diffusion, ion implantation, and metallization. The laboratory uses a four-level metal gate PMOS process to fabricate an IC chip and provide experience in device design and layout (CAD), process design, in-process characterization and device testing. Students will understand the basic interaction between process design, device design and device layout. (0305-201) Class 3, Credit 4 (W)

0305-460 Semiconductor Devices I
An introduction to the fundamentals of semiconductor materials and the effects of variations in the material properties of the resulting current-voltage characteristics for two terminal devices, namely resistors and diodes. Topics include electron energies in solids, the statistical physics of carrier concentration and motion in crystals, energy band models, drift and diffusion currents, recombination-generation of carriers, continuity equations, and the p-n junction under equilibrium and bias conditions. Non-idealities associated with real diodes are introduced. Design of an IC resistor or diode is required. (1017-314; 0305-350, 530) Class 4, Lab 0, Credit 4 (F, W)

0305-514 Design of Experiments
An introduction to experimental design concepts for engineering application. Topics include analysis of variance, screening designs, response surface methodology and design robustness. Students utilize statistical software packages to analyze case studies and design optimal experiments. A student design project is required. (1016-314) Class 4, Lab 0, Credit 4 (F, W)

0305-520 VLSI Design
Introduction to the design of CMOS very large scale integrated (VLSI) circuits. Extensive use of Mentor Graphics software in a networked workstation environment, including homework and design project. Topics include logic design and state machines, schematic capture, electrical simulation, geometrical layout, design and electrical rule checking. Standard cell libraries are used for selected assignments. Emphasis is placed on a further understanding of the fabrication process by discussion of mask layers, rule checks and circuit simulation. (0301-240, 442; 0305-350, 560) Class 4, Lab 0, Credit 4 (S, SU)

0305-525 Optics for Microelectronic Engineering
An introduction to the principles of optics in which reflection, refraction and transmission are explained as a result of interference between the excitation field and the atomic oscillations that result in the emission of spherical wavelets (Huygens Principle). Topics include Fresnel coefficients, imagery due to refraction at a single surface, simple lenses, ray tracing techniques, apertures, mirrors and thick lenses. Both the paraxial case (ideal imagery) and aberrations in spherical lenses are covered. An introduction to physical optics and the topics of diffraction and interferometry is provided. These topics set the stage for understanding ellipsometers, steppers, microscopes, and other optical instrumentation utilized in IC manufacturing. Lab required. (1017-313) Class 3, Lab 3, Credit 4 IF, W)

0305-530 Electromagnetic Fields I
This course is a study of electromagnetic field theory developed from the relevant experimental laws. The course will cover the fundamentals of static electric and magnetic fields and their applications to simple engineering problems. Topics include a review of vector calculus required for 3-D problem solving, the electric field and its associated scalar potential, electric flux density. Understanding the relationships between the electric and magnetic fields and their sources, namely charge and current, will enable the student to understand the distributed resistance, capacitance, and inductance of real devices. The application of electrostatic field concepts to the area of microelectronic devices will be emphasized. Maxwell’s equations will be identified and discussed for static fields. (1016-328,1017-313) Class 4, Lab 0, Credit 4 (F, W)

0305-540 Electromagnetic Fields II
An introduction to time-varying electro- and magnetostatic fields and the resulting propagation of light. Topics include a synopsis of Fields I concepts to refresh the key relationships, the concept of displacement current density and Maxwell’s equations, Faraday’s Law of Induction, and the study of the wave equation and plane waves; both propagation and their relationships at the boundary between two materials. This course provides the foundation for the study of light waves in optical systems, Lab required. (0305-530) Class 3, Lab 3, Credit 4 (S, SU)

0305-546 Microlithography Systems
A course covering the physical aspects of lithography. Image formation in optical projection, optical proximity, and high energy systems (DUV/VUV, e-beam/SCALPEL, x-ray, and EW) are studied. Fresnel diffraction, Fraunhofer diffraction, and Fourier optics are utilized to understand diffraction-limited imaging processes. Topics include illumination, lens parameters, image assessment (resolution, alignment and overlay), phase-shift masking, and resist interactions. Lithographic systems are designed and optimized through use of modeling and simulation packages. Current status of the practical implementation of advanced technologies in industry as well as future requirements will be presented. (0305-221, 350, 514) Class 3, Lab 0, Credit 3, 6, SU)

0305-574 Microlithography Systems Lab
A laboratory will be taken concurrently with 0305-564. Topics emphasize optical microlithography modeling, illumination systems, reticle enhancement techniques, alignment, and optimization of image capture related to focus, exposure and substrate reflectivity. Class 0, Lab 3, Credit 1 (S, SU)

0305-599 Independent Study
A supervised investigation within a microelectronic area of student interest. (Permission of instructor) Class variable, Credit variable

0305-632 Silicon Processes
An intermediate course in the study of integrated circuit processing. Topics include atomic models for diffusion, oxidation and ion implantation. Process integration for bipolar and MOS device fabrication is studied in detail. Students learn how to design processes to realize a variety of device structures and processes. Extensive use of CAE tools such as SUPREM. (0305-350, 560,563, 573; 0301-442) Class 3, Lab 3, Credit 4 (F, W)

0305-643 Thin Film Processes
Covers materials issues and thin film processing techniques used to manufacture semiconductor devices. Topics include basic vacuum technology, plasma physics, sputtering, evaporation (resistive, electron beam, laser ablation), chemical mechanical planarization, chemical vapor deposition and etching. Explores the mechanisms of each and discusses relevant material chemistries. Explains thin film growth models and relates processing variables to material properties. Laboratories complement the lectures and give students practical, hands-on experience with thin film processing equipment. (0305-350, 514) Class 3, Lab 3, Credit 4 (S, SU)

0305-645 Advanced Microelectronics
An advanced-level course on CMOS manufacturing and CMOS scaling. Topics include well processing (single well, twin well and retro-grade well), device isolation (field implants, LOCOS, SILO, PBL, shallow trench), latch-up and its prevention, MOSFET operation and modeling, short channel effects and submicron N莫斯 design and modeling, ion implanted channels, buried-channel PMOS, CMOS scaling based on the subthreshold scaling technique, SRAMs, DRAMS, EEPROMs, E2PROMs (including flash EEPRoms). Students design a CMOS technology for a given channel length and supply voltage and do complete characterization of its off-state leakage, drain breakdown, on-state drive, and speed of operation. (0305-360, 632, 643) Class 4, Lab 0, Credit 4 (F, W)
0305-650 Integrated Circuits Processing Lab
A laboratory course in which students manufacture and test CMOS integrated circuits. Topics include design of individual process operations and their integration into a complete manufacturing sequence. Students are introduced to work in process tracking, ion implantation, oxidation, diffusion, plasma etch, LPCVD, and photolithography. Analog and digital CMOS devices are made and tested. MOS capacitive voltage measurements and surface charge analysis are studied. (0305-632) Class 2, Lab 6, Credit 4 (F, W)

0305-666 Photolithography Materials & Processes
Covers the chemical aspect of photolithography and resist processes. The chemistry of positive (novolac-based) and chemically amplified resist systems will be studied. Topics include the principles of photo polymerization, including synthesis, photo absorption and emission, processing technologies and methods of process optimization. Also advanced lithographic techniques and materials, including multiplier techniques for BARC, TARC, and silylation are applied to optical lithography. (0305-221, 350, 514) Class 3, Lab 0, Credit 3 (F, W)

0305-676 DUV Materials & Processes Lab
Laboratory will be taken concurrently with 0305-666. Materials characterization and process optimizations will utilize experimental design techniques. Processes to be studied include development rate monitoring, DUV resists, BARC, resist silylation and SEM evaluation of imaged resists and etched structures. Class 0, Lab 3, Credit 1 (F, W)

0305-680 Seminar/Research I
A capstone design experience for microelectronic engineering senior students. Students propose a 10-week project related to microelectronic devices design and processing, design of experiments, a timetable and a formal proposal. The proposal is evaluated on the basis of intellectual merit, sound research plan, and feasibility. The proposed work is carried through in the sequel course, Seminar/Research II (0305-690). Each student is required to make an individual Web page on which his/her project information will be placed. Class 1, Lab 3, Credit 2 (F, W)

0305-690 Seminar/Research II
A capstone design experience for microelectronic engineering senior students. In this 10-week course, students conduct the projects proposed in the previous course, Seminar/Research I. Technical presentations of the results, including a talk and a poster, are required at the annual department conference on microelectronic engineering in May. A written paper in IEEE format is required and is included in the conference journal. (0305-680) Class I, Lab 3, Credit 2 (S)

Computer Engineering

0306-200 Introduction to Computer Engineering
Briefly describes the field of computer engineering and provides a reference for the sequences of computer engineering, computer science and electrical engineering courses that appear in the computer engineering curriculum. Topics include an introduction to computing, computer architecture and electrical engineering courses that appear in the computer engineering curriculum. Topics include an introduction to computers and computing, basic concepts, nomenclature, historical background and some elements of data representation. Mentor Graphics tools are used for a laboratory session. Class 1, Credit 1 (F)

0306-201 Freshman Seminar
This course introduces various topics of interest to computer engineering majors, including teamwork and aspects of engineering design. Class 1, Credit 1 (W)

0306-250 Assembly Language Program
An introduction to fundamental computer organization, assembly language programming and input/output techniques of a modern microprocessor system. Covers addressing methods, machine instructions, assembler directives, macro definitions, relocatability, subroutine linkage, data-structures, I/O programming, exception processing and interrupts. The assembly language program design techniques necessary to write efficient, maintainable device drivers are considered. An introduction to basic digital computer organization concepts also is provided. The Motorola MC68000 microprocessor family of devices is used in most class examples and all required programming projects. (0603-232 or equivalent) Class 4, Lab 2, Credit 4 (F, W)

0306-341 Introduction to Digital Systems
The course covers the specification, analysis and design of digital systems. The rapid growth of digital computers, control devices, instruments and communication equipment requires a basic knowledge and general methodology that can be adapted to rapidly evolving changes and constraints. The study of combinational and sequential systems considers the use of standard modules such as decoders, encoders, multiplexers, shifters, ROMs, PLAs, adders, registers and counters. The laboratory provides more insight into the physical and circuit aspects of the design and implementation of digital systems using commercial IC components as well as Mentor Graphics design tools. (1016-265 concurrently) Class 3, Lab 3, Credit 4 (S, F)

0306-351 Hardware Description Languages
This course presents modern approaches to digital system modeling and description. The course covers traditional schematic description and stresses modern hardware description languages (HDL). The focus is on the VHDL language, however, other modeling concepts are also presented. Other topics include explanation and practical use of hierarchical approach to digital system design. The theory is exemplified by practical realizations of digital systems. Class 3, Lab 2, Credit 4 (W, S)

0306-361 Modeling of Linear Systems
An introduction to mathematical modeling of dynamic systems. Linear models are developed in terms of state-variable and input-output differential equations and transfer functions. Time-domain, linear algebra and Laplace transform methods are introduced to solve systems of simultaneous differential equations. Mechanical and electrical systems are studied. Assignments involve the use of MATLAB to verify and simulate dynamic systems modules. (1016-306) Class 3, Credit 3 (F, W)

0306-452 Linear Control Systems
Provides a comprehensive introduction to the basic theory and essential techniques for analysis and design of linear control systems using the conventional transform method and frequency response approach. MATLAB and the Control System Toolbox are utilized throughout the course to introduce students to the notion of computer-aided analysis and design of feedback control systems. (0301-352, 1016-306, 0306-351) Class 4, Credit 4 (F, W)

0306-550 Computer Organization
Provides an understanding of the information transfer and transformations that occur in a computer, with emphasis on the relations between computer architecture and organization. Topics include design levels and their respective primitives, modules and descriptive media, register transfer and micro-operations, basic computer organization and design, central processor organization, control unit and microprogramming, memory organization, input-output organization, computer architecture-defining the hardware/software interface, and from architecture to organization (to many). (0306-341, 0603-440) Class 4, Credit 4 (S, SU)

0306-551 Computer Architecture
Provides the critical tools to quantitatively analyze uniprocessor computer performance. Instruction set architecture alternatives are described and examples are presented of each alternative, such as load-and-store, CISC, stack, etc. Techniques to enhance performance, such as pipelining, cache memory and memory hierarchy, are presented. The use of vector processing, such as used in supercomputers, is described and analyzed. Finally, the impact of input/output on computer performance is described. (0306-550) Class 4, Credit 4 (F, W)

0306-553 Digital Control Systems
This course concentrates on the analysis, simulation and design of digital control systems using the state variable representation. It also deals with the microprocessor-based implementation of digital filters for control applications. (0306-452, 560) Class 3, Lab 3, Credit 4 (S, SU)

0306-560 Interface & Digital Electronics
Introduction to some common transducers, transformations from raw measured quantity to transducer output. Instrumentation amplifiers, active filters, analog switching for applications in multiplexers, and sample and hold circuits. The analog-to-digital and digital-to-analog conversions processes. Logic families including TTL, ECL, CMOS, BiCMOS and their interfaces to each other. Mentor Graphics design tools are used to design active filters. (Fourth-year status in computer engineering) Class 3, Lab 3, Credit 4 (F, W)
Engineering

Digital System Design
Covers the specification, analysis, design and implementation of digital systems. The hierarchical and structured design methodology is introduced. Both synchronous and asynchronous sequential machines are studied. Student designs incorporate MSI/LSI modules, PALS, EPROMS, FPGAs and elements of VHDL. Design for testability is emphasized. (0306-341,560) Class 3, Lab 3, Credit 4 (S, SU)

Independent Study
Allows senior-level undergraduate students an opportunity to independently investigate, under faculty supervision, aspects of the field of computer engineering that are not sufficiently covered in existing courses. Proposals for independent study activities must be approved by both the faculty member supervising the independent study and the department head. (Permission of supervising faculty member and department head is required.) Credit variable 1-4

Design Automation of Digital Systems
Deals with the computer as a tool or aid in the design and creation of digital systems. The VHDL hardware description language is taught and used to specify digital systems on the behavioral, data-flow, register-transfer and structural levels or logic elements levels. Simulation techniques and logic synthesis methods are studied and implemented on VHDL models using Mentor Graphics Corporation QuickVHDL. QuickSIM and Autologic tools. (0306-550 or 0603-520 or 0603-720) Class 4, Credit 4 (F, W)

Introduction to VLSI Design
An introduction to the design and implementation of very large scale integrated (or VLSI) including NMOS and PMOS devices, CMOS circuits and digital subsystems. The procedures for designing and implementing digital integrated systems will be covered, including the Mead and Conway structured design approach consisting of the use of stick diagramming, scaling of CMOS design rules and techniques for estimating time delays. Emphasis will be placed on the use of static CMOS circuits and regular structures such as programmed logic arrays in custom and standard cell-based designs. The use of workstations with Mentor Graphics design tools for circuit simulation and for physical layouts will be stressed. Laboratory design projects will be required. (0306-561 or equivalent) Class 4, Lab 2, Credit 4 (F, W, SU)

Advanced VLSI Design
A second course in the design and implementation of very large scale integrated (VLSI) circuits and systems. Emphasis will be placed on the design and use of dynamic precharge and precharge-evaluate CMOS circuitry including Domino, NOR and Zipper CMOS logic, and sub-systems. Basic requirements of a clocking system and a general clocking strategy for timing design in both static and dynamic CMOS circuits are investigated. Topics on the design and use of a standard cell library in the implementation of large system designs will be covered. The use of workstations with Mentor Graphics design tools and Synopsys synthesis tool suite will be required in laboratory projects leading to the design, VHDL synthesis and testing of an integrated circuit device. (0306-630 or 730) Class 4, Lab 2, Credit 4 (W, S)

Computer Engineering Design Projects I
The first part of a capstone undergraduate design projects course in computer engineering. Lecture materials include real-time programming techniques, formulating independent project proposals and a brief introduction to the laboratory tools available in the concluding course. Students undertake a relatively simple, independent design project and formulate a proposal for a more complex electro-mechanical, closed-loop, computer-controlled design project to be completed during the concluding course. (Fourth-year standing in computer engineering) Class 2, Credit 2 (S, SU)

Projects in Computer Engineering
This capstone design course entails several detailed projects involving the design of hardware and software to exercise students’ engineering design creativity and ability to integrate concepts from throughout the curriculum. Some lectures are presented on real-time programming techniques such as interrupt handlers, multitasking concepts, process synchronization, response time considerations, rate monotonic scheduling, input noise reduction and debugging techniques. Other topics are also presented. (Fifth-year standing in computer engineering) Class 3, Lab 3, Credit 4 (F, W)

Computer Engineering Design Projects II
The conclusion of a capstone undergraduate design projects course in computer engineering. Students will have prepared for the major course project during the previous course and will have done some detailed project analysis over the intervening co-op work period. This course begins with project design reviews presented to the class and selected faculty members. Project performance analysis and reliability will be major metrics. A smaller independent learning experience design project concludes the course. (0306-654) Class 4, Credit 4 (F, W)

Engineering Design of Software
An advanced course moving the student beyond computer programming to the engineering of complex software systems. At the end of this class, students will learn how to make the right selection of design methodologies or architectures, produce executable structure models that can be verified by computer, formulate a design that meets all functional and performance requirements, and perform trade-off analyses that enhance decision making. Students will work in teams on large-scale software projects. (Knowledge of software engineering process models and related activities; basic familiarity with a high-level programming language) Class 4, Credit 4 (F, W)

Concurrent Software Design
This course introduces methods for developing and designing con-current software, which consists of many cooperating processes. Formal logical formulas are used to characterize sets of states and sets of program behaviors. The software is then analyzed by manipulating these logical formulas. Several classical concurrent program-mining problems such as critical sections, producers and consumers, and resource allocation are examined. Practical examples and exercises are used to illustrate points and evaluate design tradeoffs. (Permission of instructor) Class 4, Credit 4 (S)

Special Topics in Computer Engineering
Topics and subject areas that are not among the courses listed here are frequently offered under the Special Topics title. Under the same title also may be found experimental courses that may be offered for the first time. Such courses are offered in a formal format; that is, regularly scheduled class sessions with an instructor. The level of complexity is commensurate with a senior-level undergraduate/freshman graduate technical course. Class 4, Credit 4

Survey of Electronic Document Processing
Suitable for both undergraduate and graduate students interested in document image processing. Several topics are covered in the field, including input scanning, output printing and image processing. Interpolation techniques for scaling and resolution conversion are discussed. Rotation, edge extraction, halftoning and compression of digital images are covered. Feature extraction and recognition of image characters are described. Provides a framework for showing the relationships among these various topics in electronic document processing. Class 4, Credit 4 (S)

Data & Computer Communications
Provides a unified view of the broad field of data and computer communications. Emphasis is on the basic principles underlying the technology of data and computer communications. Critical issues in data communication networks as well as the current and evolving standards in computer communication architecture are discussed. The topology, access control and performance of various types of local-area networks are studied in detail. (Fifth-year standing in computer engineering or permission of instructor) Class 4, Credit 4 (S)

Independent Study
Allows senior-level graduate students an opportunity to independently investigate, under faculty supervision, aspects of the field of computer engineering that are not sufficiently covered in existing courses. Proposals for independent study activities are subject to approval by both the faculty member supervising the independent study and the department head. (Permission of the supervising faculty member and the department head is required.) Credit variable 1-4

Quality and Applied Statistics

Probability & Statistics for Engineers I
Statistics in engineering; enumerative and analytic studies; descriptive statistics and statistical control; sample spaces and events; axioms of probability; counting techniques; conditional probability and independence; distributions of discrete and continuous random variables; joint distributions; central limit theorem. (Corequisite: 1016-305) Credit 4 (F, S)

Probability & Statistics for Engineers II
Point estimation; hypothesis testing and confidence intervals; one- and two-sample inference; introduction to analysis of variance, regression, and non-parametric methods. (0307-361) Credit 4 (W, Su)
College of Imaging Arts & Sciences

Index

2001 Interdisciplinary Imaging Arts 213
2009 New Media Design 218
2010 Graphic Design 219
2012 Extended Studies: Art, Design 214
2013 Foundation Courses 213
2015 Interior Design 221
2019 Illustration 215
2020 Medical Illustration 217
2021 Fine Arts Studio 218
2025 Industrial Design 222
2039 Art History 213
2040 Ceramics & Ceramic Sculpture 223
2041 Glass & Glass Sculpture 223
2042 Metalcrafts & Jewelry 224
2043 Weaving & Textile Design 224
2044 Woodworking & Furniture Design 224
2060 Fine Art Photography 230
2061 Biomedical Photography 231
2065 Film and Animation 226
2067 Photographic Arts 232
2068 Imaging Systems Management 236
2076 Imaging & Photographic Technology 237
2080 Printing Management 239
2081 Printing Technology 240
2082 Graphic Media 242
2083 New Media Publishing 243
2045 General Crafts Studies 225
2046 Crafts Extended Studies 225

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter's schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Interdisciplinary Imaging Arts

2001-555 E.S.P.R.I.T. Production Students produce a special-interest publication(s). E.S.P.R.I.T., via print and/or electronic methods. They are required to design and build the publication(s) by working beyond normally scheduled class hours. Lectures and hands-on activities enable each student to discover the applications of electronic imaging; interactive publishing; electronic publishing (CD-ROM or Internet); desktop publishing via print, page and screen design; as well as the procedures necessary to provide quality results. Lecturers include faculty from the schools of Photographic Arts and Sciences, Print Media, Art, Design, School for American Crafts and other Institute disciplines as deemed appropriate. (Matriculated senior or graduate-level status and instructor's approval based on student's experience and production team's needs.) Class 4, Credit 4

Foundation

2013-205, 206, 207 Creative Sources Creative Sources is a lecture series designed to expose students to a broad range of faculty, other professionals and topics in the visual arts to challenge students conceptually and creatively while informing them of contemporary issues. Class 1, Credit 1 per quarter

2013-211, 212, 213 Drawing A basic foundation in drawing as a form of creative expression and a means to communicate information. Through the use of organic and inorganic materials, attention is given to individual response to "seeing" as interspersed with all sensory conditioning. The figure is utilized in the analysis of action, structure, and gesture. Lab 6, Credit 3 per quarter

2013-231, 232, 233 2D Design A structured introduction to the fundamentals of design and color with media exploration in two dimensions, concentrating on concept development, visual recognition and organization, and skill development through creative problem solving. Lab 6, Credit 3 per quarter

2013-241, 242, 243 3D Design The elements of design and their structural relationship as applied to problems in three dimensions. A variety of media are used. Lab fee required. Lab 6, Credit 3 per quarter

Art History

2039-225, 226, 227 Survey of Western Art & Architecture The subject of this course is the history of western art and architecture from prehistoric times to circa 1950. We will examine the form, style, function, and meaning of important monuments of the past, and consider these in their historical and cultural context. We will approach these objects in chronological order, for students first need to learn when, where, and by whom (whether a people or a known individual) a given object was produced before they can attempt to determine why the object was made, what it meant in its time and place (as opposed to what it may mean to us today), and whose ideology it served. Once we know how to classify visual information, we may be able to make historical sense of the surviving evidence. Lec. 3, Credit 3

2039-300 History of Design Explores the historical precedents of two- and three-dimensional design, including fine arts, industrial, graphic and environmental design. The course provides a foundation for individual decisions on planning and design to complement and enhance present and future environments. Lec. 3, Credit 3

2039-310 History of Crafts Explores creative thinking and designing in the area of crafts through the ages with special emphasis on clay, fibers, glass, metal and wood. The course highlights the artistic achievements of the craftsmen of the past to enable present students to view their own time in its historical perspective and thereby understand more thoroughly their creative heritage and the efforts of contemporary craftspeople. Class 3, Credit 3

2039-320 History of Art Criticism A study of what makes art "good" (philosophical theories of art and the aesthetic experience) and what art criticism is and does (types and principles of art criticism) with direct applications to the life and work of the artist and craftsman/designer. Class 3, Credit 3

2039-330 Philosophy in Art Traces the historical changes that art has undergone. Traces the interaction between philosophic thought and artistic styles throughout art history. Explores art as a reflection of human values. Class 3, Credit 3

2039-340 Symbols & Symbol Making A concentrated study of the nature of sign and symbol as visual metaphor paralleling legend, myth, folklore and fairy tale as verbal metaphor; analysis of Freudian and Jungian theories about symbolic/metaphoric communication; and application of the theories to contemporary examples. Designed to help the artist, designer and craftsperson produce more effective visual communication. Class 3, Credit 3

2039-350 Asian Art A study of the art of India, China, and Japan in the area of painting, printmaking, sculpture, architecture and the crafts with emphasis on their implications for contemporary artists, designers and craftsmen. Class 3, Credit 3

2039-360 18th & 19th Century Art The development of the arts in these two centuries in the areas of painting, printmaking, sculpture, architecture and the crafts with emphasis on their influence of 20th century styles and focusing on their impact on the artist/craftsperson/designer. Class 3, Credit 3

2039-370 20th Century Art A thematic exploration of 20th century painting, sculpture, and architecture of Europe and the U.S. Lectures, reading assignments, and research papers. Class 3, Credit 3
2039-376 Renaissance Painting in Flanders
The history of Renaissance painting in the southern Netherlands from the beginning of the 15th century to the end of the 16th century will be studied. Areas of consideration will include the meaning of the Renaissance in Flanders, the observations and recording of natural appearances, “hidden symbolism” and sacramental themes in Early Netherlandish painting, the connections between Flemish, German and Italian art, the development of new genres in the 16th century, “originality” and “artistic progress.” (2039, 225,226 and 227) Lec. 3, Credit 3

2039-380 Contemporary Art
A study of the painting, printmaking, sculpture, architecture and crafts from the 1960s to the present year with focus on the current American scene. Class 3, Credit 3

2039-390 Native American Art & Culture Survey of Native American visual arts within the context of Native American cultures and within a historical and anthropological framework. Native American arts-their roots, traditional expression, and changes with European contact and contemporary expressions-are examined by culture area. Consideration also is given to materials used, techniques of construction, individual and tribal styles, as well as to the meaning and function of various art forms within Native American societies. Class 3, Credit 3

2039-420 American Art
A survey of the development of the visual arts (art, architecture, crafts, design, sculpture) in America from pre-Colonial times through 1865. Class 3, Credit 3

2039-430 Dada & Surrealism
Explores the Dada and Surrealist movements in Europe and the United States from 1916 through the post-World War II period. Emphasis is on identifying the major works of artists involved in these aesthetic developments. Ideology and formal ideas are analyzed in paintings, literary works, films, and objects. Class 3, Credit 3

2039-440 Conceptual Art
Explores the mid-1960s movement in which artists began to regard the phenomenon of art making more in terms of process or concept and less in terms of the end product. The student will be acquainted with various facets of theory and design-oriented works in the United States, Canada, South America, and Europe. Class 3, Credit 3

2039-450 Pop Art & Pop Culture
Explores the social, cultural, and political context within which this movement of the 1960s developed. Emphasis is on artists in New York and Britain. Lectures, discussions and films compose the course content. Class 3, Credit 3

2039-460 Media & Advertising & Consciousness
Provides a discourse on the interaction of media and advertising through both historical and theoretical means. The historical part of the course deals with the social impact of industry on “modern life” at the turn of the century. The theoretical part of the course discusses the impact of advertising and media on social consciousness. Class 3, Credit 3

Extended Studies: Art, Design

2012-201, 202, 203 Basic Design I, II, III
Study of basic elements of design: line, shape, texture, color, space and their incorporation in design principles as applied to two- and three-dimensional design problems including the graphic arts. Credit 2 per quarter

2012-211, 212, 213 Basic Drawing & Media I, II, III
An intense study of the fundamentals of drawing and application of media, designed to develop a flexible, creative mind capable of interpreting ideas. Specific emphasis is placed on problems confronting the student who has had little or no drawing experience. Credit 2 per quarter

2012-215 Basic Figure Drawing
Drawing from a costumed and nude model. The students make a visual analysis of action and gesture through quick sketches. Short poses gradually extended to longer studies so that the student can develop techniques, skills and the control of media. (2012-211, 212, 213 or equivalent) Credit 2

2012-217 Color Theory in Art
An opportunity to develop an awareness of and sensitivity to the world of color through slide lectures, class discussion and instructor’s evaluation. Emphasis on visual impact of color for traditional and digital applications. (2012-201, 202, 203 or equivalent) Credit 2

2012-220 Collage
A basic study of the history, materials, and techniques used in collage. Students explore a variety of materials used by past and contemporary artists and then apply these techniques to develop their own work. May be elected more than once for credit. (2012-201, 202, 203 and 2012-211, 212, 213 or equivalent) Credit 2 per quarter

2012-221 Advanced Drawing
Drawing in a variety of media, including an introduction to line, form, and color as elements of pictorial expression. Organic, inorganic and imaginative stimuli are presented. May be elected more than once for credit. (2012-201, 202, 203 and 2012-211, 212, 213) Credit 2

2012-225 Figure Drawing
Drawing from the costumed and nude model for combined action and figure construction. Short poses gradually extended to longer studies for sustained attention to the problem. May be elected more than once for credit. (2012-215) Credit 2

2012-229 Portfolio Workshop
A workshop designed to help students take what they have learned in art classes (or workstations) to prepare and present a portfolio. Students produce a resume and cover letter appropriate for their career goals. Projects are tailored to the needs of individual students, allowing them to compile an accurate representation of their skills in a concise, positive and beneficial manner. Includes visits from prominent people in the field showing their work and sharing their experiences. Credit 2

2012-231, 232, 233 Graphic Design I, II, III
A contemporary approach to design for printed advertising with the emphasis on creative experience. Working knowledge of the field of graphic design, its history, its future, and general practices among current professionals is provided. The role of the graphic designer in the field of communications is explored. (2012-201, 202, 203 and 2012-211, 212, 213 or equivalent; 2012-246, 247,248 recommended) Credit 2 per quarter

2012-241, 242, 243 Advertising Design I, II, III
The arts and the skills of the art director touch on all phases of advertising art from concepts and professional studio procedures to practical approaches in design and production. (2012-201, 202, 203 and 2012-211, 212, 213 or equivalent; 2012-246, 247,248 recommended) Credit 2 per quarter

2012-246, 247, 248 Advanced Design & Typography I, II, III
Study commercial layout procedures from rough layouts to comprehensives, type selection, copy fitting, pictorial indication and production procedures as related to contemporary practices. Course emphasizes the design, structure, historical development, and techniques of lettering. Proceed from rough letter indication to development of finished lettering and application in commercial advertising programs. Typography and photo lettering methods are studied relative to their use in commercial design. (2012-201, 202, 203 and 2012-211, 212,213) Credit 2 per quarter

2012-251, 252 Interior Design I, II
Career orientation. Emphasis on practical aspects of the profession. Details of purchasing all furnishings used in a home. Client centered planning and design. (012-201, 202, 203 and 2012-211, 212, 213 or equivalent) Credit 2 per quarter

2012-254 History: Interior Design
Historical survey of period decoration and furniture styles from antiquity to the present. Credit 2

2012-256, 257, 259 Display Design I, II, III
First quarter examines the fundamentals of three-dimensional design. The second and third quarters apply these principles to develop mechanical, graphic and model-making manipulative skills and problem solving approaches used by designers in space planning. (2012-201, 202, 203 and 2012-211, 212, 213 or equivalent) Credit 2 per quarter
2012-259 Commercial Interior Design
Students learn to develop a good commercial interior plan giving clear specifications and boundaries. Presentation techniques, client relations and fee philosophy are also discussed through frequent field trips and guest speakers. (2012-251, 252 or equivalent) Credit 2

2012-261, 262, 263 Environmental Design I, II, III
The study of enclosed space, using a variety of materials and the elements of design line form, texture, and color to develop living space. (2012-201, 202, 203 and 2012-211, 212, 213 or equivalent) Credit 2 per quarter

2012-264 Business Aspects of Environmental Design
Introduces students to various occupations available to the environmental and interior designer. Instructs them in the use of their artistic and technical skills to obtain employment and establish themselves in the design community. Dealing with clients, vendors, and contractors is also covered. Assignments are structured to meet the personal business needs of each student. Credit 2

2012-266 Rendering Techniques I
Introduction to the materials and techniques used by designers in rendering interiors, layouts, products, etc. Marker sketching, perspective, shadowing, media selection, and presentation techniques are covered. Suggested for all design students. (012-201, 202, 203 and 2012-211, 212, 213 or equivalent) Credit 2

2012-268 Marker Rendering Techniques
Students are introduced to marker techniques and materials used in rendering layouts, interiors, products and illustrations. Other mediums are united with marker to develop shadow and highlighting, sketching, and presentation techniques. Credit 2

2012-274 Illustration
Fundamentals of visualization and pictorial organization in terms of advertising and editorial illustration. Emphasis on contemporary graphics procedures. May be elected more than once for credit. (2012-215) Credit 2

2012-276 Calligraphy
Introduction to either the Foundational or the Italic form of lettering. Students explore the history, theory and techniques that have shaped letter forms as we know them today. Emphasis is on developing skills and knowledge through the study of historic and contemporary forms as well as through the use of a variety of tools and materials. Areas studied include majuscules, minuscules, rhythm, spacing, techniques, media, color, design, page layout, and either the mechanics of bookbinding or camera-ready art. Credit 2

2012-277 Cartooning
Various cartooning styles are examined, identifying and discussing the factors that make cartoons appealing and effective. The focus of the course is the study and the practice of the principles of cartoon illustration. The importance of obtaining good reference materials and maintaining a file of other cartoon art are stressed. Students complete weekly drawing assignments, covering different elements of cartoon, building in complexity and culminating in the completion of several finished cartoon pieces. (012-201, 202, 203 and 2012-211, 212,213 or permission of chairperson) Credit 2

2012-278 Interpretive Landscape Drawing
Students sketch directly from nature on location during field trips. In subsequent studio sessions, compositions translating first impression, using various methods are then developed. Special attention is given to individual approaches and expression. Credit 2

2012-279 Human Anatomy for Artists
Students learn to identify and define the bones and muscles that affect the surface of the human anatomy. The instructor demonstrates how to draw these structures in simplified shapes and forms. The students then apply this information to figure drawing in the class. Credit 2

2012-284 Airbrush Techniques
An opportunity for beginners to develop the basic skills and techniques of painting with an airbrush and for experienced users to enhance their skills. Graphic artists, illustrators and photographers can benefit from this exposure to airbrush techniques and applications through demonstration and experiential learning. Class is limited to 10 students. (2012-201, 202, 203 & 2012-211, 212,213) Credit 3 per quarter

2012-286 Introduction to Painting
Study of the materials and techniques of painting through use of still life and nature forms. Basic training and foundation for advanced work. (2012-201, 202,203 and 2012-211, 212, 213 or equivalent) Credit 2

2012-288 Painting
Painting with opportunities for gifted and advanced students to explore media, seek new skills, and develop a new style of expression. The instructor, an accomplished artist, works individually with the student. Models are available on a limited basis. Still life and sketches are used for inspiration. May be elected more than once for credit. (2012-286 or equivalent) Credit 2

2012-291 Figure Painting
Painting from costumed and nude models. The emphasis is on action, structure, gesture, composition, experimental attitudes and techniques. The student is provided with an opportunity to achieve clear understanding of various media in his or her individual search for expression. May be elected more than once for credit. (2012-225 or equivalent) Credit 2

2012-292 Portrait Painting
Particular attention is given to the development of anatomical understanding. Several media are explained. Emphasis is placed on understanding various aesthetic and craft traditions. Individual attention is supplemented by demonstrations and discussions with the instructor, who is an active portrait artist in the community. May be elected more than once for credit. (2012-215 & 2012-256 or equivalent) Credit 2

2012-293 Watercolor Painting
Basic study of watercolor media, methods and techniques. Students receive individual as well as group instruction with emphasis on composition, color, and personal expression. Media: watercolor, tempera and casein. May be elected more than once for credit. (2012-211, 212, 213 or equivalent) Credit 2

2012-296 Introduction: Non-toxic Printmaking
An introduction to the methods, materials, tools and techniques of printmaking. Prints may include woodcut, etching, engraving, stencil, collagraphs and lithography. Students are required to pull an edition of prints in one medium. Credit 2

2012-376 Calligraphy Workshop
Further study in the methods and techniques of calligraphy. Students are able to pursue study in a variety of styles and letterforms in a concentrated manner. May be elected more than once for credit. (2012-276) Credit 2

2012-377 Advanced Cartooning
This course builds upon the foundation established in Cartooning. The value of gesture drawing is stressed, and an exploration of the many elements of cartooning is made. Assignments are more specific and become more comprehensive in content. Color is used more, and a wide variety of media options are explored. Composition, layout, and attention to detail are stressed. Reference materials are integrated into many of the assignments. Client-vendor relationships and the pros and cons of freelancing are discussed. (2012-277) Credit 2

2012-396 Printmaking Workshop
Further study of methods and techniques of etching, lithography and relief printing. Students may concentrate in one print medium. May be elected more than once for credit. (2012-296) Credit 2

School of Art

Illustration

Prerequisite for all 300-level illustration courses: foundation program or equivalent

2019-301 Illustration I
Illustration core for illustration majors and medical illustration majors in their sophomore year. The students approach major elements of technique, application, and theory in relation to becoming illustrators. Studio sessions involve basic anatomy, design and typography for illustrator, figurative expression, photographic tools, and illustrative technique. Class structure allows demonstrations of process and experimentation and critique with illustrative media. Lab 6, Credit 3
Anatomical Figure Draw
Helps students correlate underlying osseous and muscular anatomy with surface form and structure. Instruction also emphasizes gesture, proportion and balance. Course work requires students to use their figure drawing skills while solving illustration assignments. Lab 6, Credit 3

Prerequisite for all 400-level illustration courses: sophomore illustration core or equivalent

Introduction to Digital Illustration
This course will introduce students to the computer as a medium for the production of illustrations. Emphasis will be places on professional methods, reference gathering, software selection, and file preparation, as well as traditional drawing skills while focusing on the final illustration being completed digitally. (Art and design foundation) Lec. 1, Lab 3, Credit 3

Dimensional Illustration
This course will introduce students to an alternative, three-dimensional style of illustration. Emphasis will be placed on planning, preparation, and compositional elements in three dimensional sculptural form and creative problem solving. Students will be encouraged to explore a variety of material and techniques to complete projects. (Art and design foundation) Lec. 1, Studio 4, Credit 3

Figure-Advertising Illustration
An in-depth introduction to the field of advertising illustration. Emphasis on drawing and painting the figure in a variety of situations and formats common in contemporary advertising. All problems are designed to develop an understanding of the use of visual images for communication in this specialty area. The importance of referencing, deadlines and business concerns for the freelancer are a few of the topics covered in this course. Class 6, Credit 3

Exploration using illustration with typography in a coherent design that pays special attention to composition and work with graphic media most often employed by the illustrator. Students also will work with black and white media and effective use of the silhouette to convey information. Techniques include work with marker and airbrush for layout and design, as well as other materials. Class 6, Credit 3

Advanced Illustration Method
Focuses on exploring the different ways in which illustrators utilize reference (photos/life drawing). Students learn to create their own photo reference, learn resourceful ways to find good reference and learn how to combine existing reference with their own to achieve the best possible results. Imaging environments and situations are created by piecing together many different sources. Class 6, Credit 3

Publishing-Illustrations
Focuses on the use of illustration in the book-publishing field, starting with the children’s book and the history of illustration in children’s educational materials. Discusses methods of production that affect the preparation of illustrations, the use of color separations and the organization of text and picture. Looks at special areas, including the illustrated novel and the pop-up book. All aspects of publishing and the techniques used in the field are our subject. Class 6, Credit 3

Symbols in Editorial Illustration
An in-depth introduction to the field of editorial illustration. Emphasis is on brainstorming and concepts. Cultural images and symbols are examined and utilized to express ideas. Students are encouraged to expand in a personal direction while effectively communicating specific information from a given article or story. Efficient and effective time and energy priorities are established. Lec. 1, Lab 4, Credit 3

Illustration & Editorial Statement
The illustrator works from texts and develops concepts and statements in visual form. Often these can take the form of a narrative or a visual comment, as in a political cartoon. During class, we investigate the history of editorial art, looking at examples in class, and experiment with our quest for the completion of an artistic vision that embodies a topical subject. Class 6, Credit 3

Computer Application Book Illustration
Using the computer’s ability to make color separations and repair work for the printing process, this course emphasizes the development of story ideas and layouts and the creation of cover art for book illustration projects. Class 6, Credit 3

Computer Illustration: Advertisement
Using the computer’s ability to generate charts and graphs, this course emphasizes an understanding of the use of visual images for communication in the world of advertising, including product illustration, newspaper media, brochures and promotional campaigns. Class 6, Credit 3

Digital Editorial I
This course emphasis is on effectively communicating information in a given article or story, from political themes and news stories to plays and poetry, exploring the computer’s ability to make many variations and subtle changes to the images quickly. Class 6, Credit 3

Prerequisite for all 500-level illustration courses: junior illustration core or equivalent

Illustration as Journalist I
Illustration problems that require the student to visually report and record a specific happening or event. These projects will be of longer duration and will consist of several major paintings, many drawings, sketches, notes, and photo-references. This journalistic approach to illustration demands that the students attend the event and select those images that will best communicate the atmosphere of the event. Students are encouraged to sharpen their observations in order to clarify or embellish what might be commonplace to the non-visual observer. Class 6, Credit 3

Contemporary History Illustration
Students are introduced to a sequence of historical events that have had the most lasting effect on 20th century illustration. These events affect the look of illustration and provide a place to begin discussion. The effects on Surrealism, on the one hand, and Social Realism, on the other, represent a swing of the pendulum of narrative and representational art. Studio work incorporates ideas embodied in these and other contemporary art trends. Lectures and illustrated talks compare contemporary art and illustration history. Class 6, Credit 3

Illustration for Books
Explores the basic principles in developing illustrations for books. Composition, conceptualization and storyboard development are covered, as well as finishing art preparation. Emphasis not only on creativity of expression but also on conceptual and technical experimentation. Work is geared toward books for a variety of age groups and functions. Class 6, Credit 3

Illustration for Promotion
Takes an in-depth look at using illustration for advertising and promotional campaigns. Also looks at the business of marketing oneself as an illustrator. Students develop examples of illustration as advertising and view examples by masters in this field. Lectures focus on the pricing and ethical guidelines published by the Graphic Artists Guild as a text to discuss contracts and career building. Class 6, Credit 3

Personal Focus I
A series of illustration projects in which students are encouraged to investigate topical subjects of their choice. Each student’s own creativity, self-expression and visual communication skills are stressed. Emphasis is on clarity of concepts and developmental procedures necessary to work as an illustrator. Class 6, Credit 3

Alternative Materials &Media
Looks at the use of alternative techniques for the illustrator, including dimensional materials and electronic programs. Also looks at specialized areas of illustration, which may include an in-depth look at scientific topics as a subject for illustration. Specialized markets and electronic and digital image making round out the applications studies in this section of Senior Illustration. Class 6, Credit 3

Animating Digital Illustration
An introduction to illustrating for multimedia projects by creating computer-generated animations and presentations. Macromedia Director, in combination with other imaging software, will be used to develop these “movies.” The Director movies will investigate not only illustrated animation but also sound, music, color, and special effects. Lec. 2, Lab 3, Credit 3

The Interactive Illustration
Projects will highlight the integration of interactive interfaces into illustrated Macromedia movies, thus, allowing responses to choices made by the user. Using scripting and branching, in combination with menus and buttons, projects will be programmed to allow some control over a movie and navigation through animations and presentations. Lec. 2, Lab 3, Credit 3
2019-518 Time-Based Illustration & Design Illustration and design students will be teamed together to develop multimedia projects; i.e., CD-ROMS, animated advertisements, and kiosk displays. The teams will begin with short problems. Culminating in final full-scale electronic projects, which utilize their respective illustrate and design skills to develop strong, unified solutions. Projects will include both passive and interactive projects, which reinforce the students' knowledge time-based authoring tools, such as Macromedia Director, QuickTime Movies or Adobe Premiere. Lec. 2, Lab 3, Credit 3

Medical Illustration
Prerequisite for all 400-level medical illustration courses: sophomore fine arts core or equivalent

2020-401 Medical Illustration Applications
An in-depth study of carbon dust, charcoal and pastel techniques developed for medical illustration. Concentration is on detailed illustrations of human anatomy as a preparation for future courses in anatomical and surgical illustration. Lab 6, Credit 3

2020-404 Computer Applications for Scientific Illustration
Course explores combining drawing and digital imaging as tools for designing illustrations in support of scientific and biomedical instruction. Class 6, Credit 3

2020-405 Scientific Illustration
Development of range and mastery of scientific line illustration techniques. Coursework emphasizes translation of “site drawings” into “instructional illustrations” designed to be published as line reproductions. Assignments will require students to combine illustrations with typographic elements. Class 6, Credit 3

2020-406 Anatomic Drawing I
Students are assigned projects to reinforce their knowledge of anatomy while collaborating on dissection and illustration from the cadaver. Problems include oncology from cross sections and x-rays in preparation for surgical and medical/legal art. Mixed media is encouraged. Lab 6, Credit 3

2020-407 Anatomical Illustration-Wet Media Applications
Development of range and mastery of medical wet media illustration techniques. Course work emphasizes transition of anatomical drawing done from dissected cadavers into “instructional anatomical illustrations” designed to be published using half-tone and four-color reproduction techniques. Lab 6, Credit 3

2020-408 Computer Applications for Anatomical Illustration
Illustration Advanced application of computer hardware and software to create illustrations in support of anatomical instruction. Course work emphasizes translating on-site drawings from student dissections into digital illustrations. Lab 4, Credit 3

2020-409 Anatomic Drawing II
Building on experience gained in Anatomic Drawing I, students are assigned projects to reinforce their knowledge of anatomy while collaborating on dissection and illustration from the cadaver. Problems include oncology from cross sections and x-rays in preparation for surgical and medical/legal art. Mixed media is encouraged. Lec. 2, Lab 4, Credit 3

2020-410 Anatomic Illustration Mixed Media
Development of range and mastery of airbrush and mixed media illustration techniques. Course work emphasizes creating illustrations aimed at a variety of medical illustration markets, including medical/legal, editorial, and advertising. Lab 6, Credit 3

2020-431 Human Gross Anatomy I
Dissection and the study of the human body are presented with such topics as developmental comparative and applied anatomy. Emphasis is directed toward osteology, radiographic anatomy. Lec. 2, Lab 4, Credit 4

2020-432 Human Gross Anatomy II
The second half of a two-quarter sequence devoted to the study of the human body. Detailed dissection of a human cadaver is supplemented with lectures on the structure and function of the major organ systems. The winter quarter begins with a detailed dissection of the head and neck and moves on to the pelvis, perineum, and a lower limb. (2020-431) Lec 2, Lab 8, Credit 4

2020-461 3D Modeling & Animation: Biomedical & Organic Forms I
Course explores modeling and animating three-dimensional forms of visual support for allied health instruction. Assignments focus initially on modeling geometric forms to create biomedical subjects (i.e., human cells, bacteria, viruses, etc.). Fundamentals of animation and its use as an instructional media are then presented. Additional modeling techniques and expanded lighting, and rendering procedures are explored. Students create animation explaining cellular event(s) or depicting the anatomy of a human organ for their final assignments. Lec. 2, Studio 4, Credit 3

2020-462 3D Modeling & Animation: Biomedical & Organic Forms II
Course employs three-dimensional modeling and animation as a means of providing a visual support for biomedical instruction. Assignments focus on constructing models that accurately portray a member of the phylum arthropoda (crustaceans, insects, arachnids). Fundamentals of animation and its use as an instructional media is reviewed. Models are then attached to “skeletons” in order to animate some characteristic action of the chosen species. Forward kinetics, inverse kinetics, and inverse kinetics using a spline handle are compared as means for controlling animation. Lec 2, Studio 4, Credit 3

2020-463 Advanced 3D Modeling & Animation: Biomedical & Organic Forms
Course for students who have taken either 3D Modeling and Animation of Biomedical and Organic Forms I or II to develop animations that provide health information as a public service displayed on the Web. Course material focuses on advance modeling and animation procedures. In addition to technical animation and modeling skills, student projects are expected to demonstrate independent research methodologies. Lec 2, Studio 4, Credit 3

2020-468 Medical Legal Illustration
This course deals with the preparation of support materials for medical litigation-personal injury, medical malpractice, and product liability cases. Students learn to read and interpret medical records including operative reports, discharge summaries, radiographs, pathology and autopsy reports. From these records, students propose effective visual aids to best depict the facts of the case, create preliminary sketches of the proposed exhibits, and then complete the exhibits in a format appropriate for presentation to a jury or arbitrator. Lec 3, Lab 3, Credit 3

Prerequisite for all 500-level medical illustration courses: junior medical illustration core or equivalent

2020-501 Advanced Medical Illustration
Advanced medical illustration techniques. Graphic design related to illustrative and photographic practice. Lab sessions to be scheduled in operating room facilities. Jointly sponsored by RIT and the University of Rochester. Lab 6, Credit 3

2020-504 Surgical Drawing & Illustration I
This course provides students with the unique opportunity of drawing while observing surgery in local operating suites. Surgical sketches are further developed into final illustrations designed to support instructions. Illustrations created in this course will be produced using traditional and electronic media. (Introduction to Illustration) Credit 3

2020-505 Surgical Drawing & Illustration II
This course provides students with the unique opportunity of drawing while observing surgery in local operating suites. Surgical sketches are further developed into final illustrations designed to support instruction, editorialize, advertise, and support courtroom presentation. Illustrations created in this course will be produced using traditional and electronic media. (Introduction to Illustration) Lab 6, Credit 3

2020-506 Computer Animation Medical Instruction
Advanced study of hardware and software applications to support medical instruction. Course covers creating two-dimensional computer animations as support for biomedical instruction. Lab 6, Credit 3

2020-507 Marketing & Business Practice Medical Illustration
Course work prepares students for entry into the medical illustration profession. Topics include writing and designing resumes, cover letters and self-promotional materials as instruments for gaining employment. Additional classroom lectures and demonstrations cover professional ethics, copyrights, contracts and client/illustrator negotiations. Lab 6, Credit 3
Fine Arts Studio

Prerequisites for all 300-level courses: foundation program or equivalent

2021-305 Introduction to Painting
Emphasis is on painting and the development of form, space and expression from a variety of sources, including the human figure. Emphasis on basic techniques, materials and concepts for further study in painting and related media. Introduction to the materials and techniques of permanent painting media. Preparation and execution in both direct and indirect painting methods. Safe handling of artists’ materials is stressed. Lab 6, Credit 3

2021-321 Contemporary Drawing
Drawing from the standpoint of being informed, inventive, and contemporary in thought in the use of form concepts and relationships. To encourage freedom of thought, imagination, and inquiry into theory, technology, and the application of drawing as a visual communication. Class 6, Credit 3

2021-361 Introduction to Sculpture Assemblage
One of the most basic approaches to creating sculpture, this course involves assembling or bringing together parts/pieces to form a whole. Spontaneous and immediate contact with unique materials, creative processes and the degree of sculptural impact may all be characterized as extremely direct. This straightforward confrontation offers no flashy techniques, seductive material or process or hide behind. Instead, at the onset, basic sculptural manipulation must occur. Class 6, Credit 3

2021-362 Introduction to Sculpture: Figure
This sculpture course investigates the study of human form through the development of sculptured clay figures working directly from living models. Emphasis is placed on exploring the following sculptural elements: the underlying three-dimensional structure of the human figure; proportions of the human figure; volume, mass & surface anatomy; gesture; support and balance; figurative spatial relationships; expressive qualities of the human form; use and control of basic materials and processes related to figure sculpture. Class 6, Credit 3

2021-381 Watercolor
Use and control of the technique of watercolor painting. Exploring watercolor as an illustrative and painting media. Class 6, Credit 3

Prerequisites for 400-level fine arts courses: sophomore fine arts courses or their equivalent or permission of the instructor

2021-401, 402, 403 Fine Arts Studio I
Second year of painting in a three-year degree sequence. Increased development of mastery of painting media and the experience of drawing. Emphasis placed upon individual solutions and expression. Lab 6, Credit 3

2021-411, 412, 413 Fine Arts Advanced Elective
An elective providing the opportunity for exploration of personal expression through a painting medium or a variety of mixed media. Lab 6, Credit 3

Prerequisites for 500-level fine arts courses: junior fine arts courses or their equivalent or permission of the instructor

2021-501, 502, 503 Fine Arts Studio II
The third year of advanced studio work completing a major course of study in the fine arts. Concentrated studio production focused upon individual creative solutions. Individual and group presentations of work in an exhibition format is encouraged, as is the development of a visual portfolio of one’s work. Advanced drawing incorporated into studio procedure. Lab 6, Credit 3

2021-569 Art Gallery Management
The complex social and cultural role of a fine arts gallery will be explored through actual gallery operations: the installation of experimental and traditional exhibitions, promotion, and marketing for art competitions, student initiatives and special events tailored to RIT and community art audiences. (On-site presentations plus arranged hours in laboratory: gallery setting) Lec 2.5, Studio 3.5, Credit 3

School of Design

New Media Design

2009-211 Ideation & Visualization
This course will deal with both the concepts of ideation and problem solving and visualization. An introductory course in visualization with free hand drawing at its core. Students will learn to use drawing and sketching as a tool to help create new ideas, solve problems and visually communicate ideas. Lec 2, Lab 6, Credit 4

2009-212 3D Form & Space
An introductory course in visualization that extends previous experience and skills to include in third dimension. The course will provide fundamentals for more advanced studies in three-dimensional animation, virtual spaces, and multi-dimensional navigation spaces. Manual and digital tools will be used for problem solving. Students will be expected to show evidence of growth in three-dimensional understanding from simple objects to more complex environmental spaces. Lec 2, Lab 3, Credit 3

2009-213 Elements: Graphic Design New Media
This course introduces the student to visual communication and the graphic design profession. Through formal studies and perceptual understanding, including aesthetics, graphic form and structure, concept development and visual organization methods, students will design solutions to communication problems. Assignments exploring aspects of graphic imagery, typography, and production will be included. Lec 1, Studio 5, Credit 3

Prerequisites for all 300-level New Media courses: foundation program or equivalent

2009-311 Typography for New Media
A course designed to introduce students to the fundamentals that need to be considered for the creation of text documents, and to provide the students with the terminology necessary to communicate with a client or originator and the manufacturer of the document. Lec 3, Credit 3

2009-312 Information Design in New Media
Information design for the Web and interactive multimedia integrates content with visual indicators. Legibility and clear communication of information and direction is important to the success of graphical user interface design. This course integrates imagery, type, icons, buttons, color, visual hierarchy, and site architecture to design friendly and functional user interfaces. Studio 6, Credit 3

2009-313 Introduction to Computer Imaging
An introduction to the computer as an illustrative tool. Emphasis will be on the application of visual organization methods in the context of electronic media. Exploration of Raster and/or Vector Graphic software programs will serve as the basis for the development of illustrative assignments. (NM Core, CIAS Foundation or permission of instructor) Lec 2, Lab 3, Credit 3

2009-323 Designing Graphical User Interface
An introduction to designing the interface, both visually and technically, for New Media projects and applications. Good interface design allows the user to accomplish a variety of tasks. It should not force a user to look all over for information and buttons. It should allow the user to operate intuitively, with ease of navigation and be entertained at the same time, regardless of the information being communicated. Team-taught lectures, presentations and demonstrations will investigate both the programming and visual communication aspects of developing good interface design. Lec 2, Studio 3, Credit 3

Prerequisites for 400-level New Media courses: sophomore New Media courses or their equivalent or permission of the instructor

2009-401 Advanced Design Networking
This course extends previous networking experience and skills to emphasize advanced visual Web design layout skill and the incorporation of time-based vector graphics. The emphasis in this course will be away from programming toward the application of software tools and design concepts related to more visual Web page development with interactive, dynamic interfaces. Typical software tools such as, but not limited to, Flash and Dreamweaver will be used. (Third-year NM Design & Imaging major or permission of instructor) Lec 2, Lab 3, Credit 3
2009-402 Emerging Multimedia Design & Imaging Tools
This course will deal with whatever is “new” in the world of multimedia. With software changing all the time and new products being released every time we turn around, this course will be important to the D & I student. As new software comes into the marketplace, this is where the D & I student will first encounter it. An ever-changing course that will stay on the leading edge of new technology in the field. (NM design & imaging major or permission of instructor) Lec 1, Lab 4, Credit 3

2009-403 Dynamic Information Design
A study of the application of information design theory and practice to the developing area of New Media. Cartography and iconography will be viewed in the context of Web and kiosk use. The delivery of consumer information, using interactive and dynamic media as the vehicle, will be investigated. (Third-year NM major or permission of instructor) Lec 2, Lab 3, Credit 3

2009-411 Time-Based Imaging for New Media
New students will develop short animated and interactive multimedia projects, while learning the basics of time-based authoring software, Macromedia Director. The students will begin with short exercises, culminating in final larger electronic projects that begin to develop their design and programming skills. Projects will include both passive and interactive projects, which will support the learning process. (NM major or permission of instructor) Lec 2, Lab 3, Credit 3

2009-412 Dynamic Typography
This course will deal with design concepts related to moving type. The impact of type as it moves, rotates, explodes, scales and fades will be considered. Legibility of the message will be studied in relation to this movement. Students will learn how both 2D and 3D type can be manipulated in a time-based manner. (Third-year NM design and imaging major or permission of instructor) Lec 1, Lab 4, Credit 3

2009-413 Advanced 3-D Techniques
This course extends previous three-dimensional experience and skills to include advanced 3D effects such as particles, volumetric textures such as fog, and the movement of three-dimensional objects using both fixed cameras and moving cameras. Gravity, wind, and inverse kinematics will also be considered. (Third-year NM design and imaging major or permission of instructor) Lec 2, Lab 3, Credit 3

2009-422 History of Computer Graphics
This course will cover the complete history of computer graphics from pre-history to date. It will touch on related technology and the growth of the computer industry. The major personalities and their contributions will be covered. The course will trace the use of main frames, micro computers, turnkey systems, the introduction of the personal computer, advent of laser printers, scanning technology, post-script, CAD-CAM, etc. The impact of computers of animation will also be covered. Lec 3, Credit 3

Prerequisites for 500-level New Media courses: junior New Media courses or their equivalent or permission of the instructor

2009-501 Dynamic Persuasion Design
An incorporation of commercial practices, such as advertising, editorial design and editorial illustration, with dynamic media. Dynamic media refers to the inclusion of any audio, video, and animation clips that are used in a project. Dynamic media greatly adds to the impact of the message being communicated. The point of message delivery will include Web and kiosk use. The delivery of consumer information, using interactive and dynamic media as the vehicle, will be investigated. (Third-year NM design and imaging major or permission of instructor) Lec 2, Lab 3, Credit 3

2009-502 Virtual Entertainment
A course dealing with design and gaming concepts, delivery systems and software for the entertainment industry. Working with 2D and 3D visual concepts, virtual reality, interactivity and sound the student will develop media for the entertainment industry. Environments, characters, gaming strategies, role playing concepts, navigation and feedback will be part of the information presented within the course. (Fourth-year NM design and imaging major or permission of instructor) Lec 1, Lab 4, Credit 3

2009-511 QTVR & Multimedia Design
This course extends previous multimedia and three-dimensional experience and skills to emphasize advanced multimedia applications that use QTVR as a design tool to interactively explore and examine photorealistic 3D virtual worlds. Attention will be given not only to the mechanics of creating the movies but also to the design, relationship to the other visual elements, and visual communication effectiveness of the movies. (Fourth-year NM design and imaging major or permission of instructor) Lec 2, Lab 3, Credit 3

2009-512 Interactive Graphics
Projects will highlight the integration of interactive interfaces into illustrated Macromedia movies thus allowing responses to choices made by the user. Using scripting and branching, in combination with buttons and menu choices, projects will be programmed to allow some control over a movie and navigation through animations and presentations. (Animating Digital Illustration, Interactive Media Design, the NM Core, or permission of instructor) Lec 2, Lab 3, Credit 3

2009-542 New Media Team Workshop I
The first course in a two-quarter sequence designed to engage the new media major in a “cap stone” production experience. The instructor will form student teams that will design and complete new media projects sponsored by clients external to the class. (New Media Production Management or Dynamic Persuasion Design) Lec 2, Studio/Lab 4, Credit 4

2009-543 New Media Team Workshop II
The second course in a two-quarter sequence designed to engage the new media major in a “capstone” production experience. Students continue to work till completion on their new media group production. Each group is required to test their product with a focus group and provide written feedback and analysis. (New Media Team Project I) Lec 2, Lab 4, Credit 4

Graphic Design
2010-211 Computer Skills: Raster Imaging
An introduction to basic computer software skills, terminology, and technology as related to raster based computer-imaging software (such as Photoshop). This course provides the skills necessary to using drawing software relative to the design curriculum. The areas of file formats, software tools, image creation, and file output are covered. Lec 1, Lab 2, Credit 2

2010-216 Computer Skills: Vector Imaging
An introduction to basic computer software skills, terminology, and technology as related to vector based computer drawing software (such as Freehand and Illustrator). This course provides the skills necessary to using drawing software relative to the design curriculum. The areas of file formats, software tools, image creation, and file output are covered. Lec 1, Lab 2, Credit 2

Prerequisites for 300-level graphic design: foundation program or equivalent

2010-301 Elements of Graphic Design
Introduction to basic visual communications in the field of graphic design. Lectures will cover graphic design topics and information ranging from typographic terminology and design principles to methods of visual organization. Lectures will often be related to assignments that will be undertaken in the studio where hands-on introduction to graphic design studio skills and practices will occur. Through formal studies and perceptual understanding, including aesthetics, graphic form and structure, concept development and visual organization, students will design solutions to communication problems. Assignments will explore aspects of graphic imagery, typography, and layout. Students will refine their computer skills through applications requiring a digital format. Class 1, Lab 4, Credit 3

2010-302 Typography I
Introduction to typography in visual communication. Lectures will cover typographic topics and information ranging from communication principles to methods of visual organization. During studio time students will design solutions to assigned communication problems which will explore aspects of typography and layout as well as concept development and historical research. Students will refine their computer skills through applications requiring a digital format. Class 1, Lab 4, Credit 3
2010-303 Type & Image
Introduction to the interaction of type and image in visual communication. Through formal studies and perceptual understanding, including aesthetics, graphic form and structure, concept development and visual organization methods, students will design solutions to communication problems which will involve both graphic imagery and typography. Students will refine their professional skills through applications requiring a digital format. Class 1, Lab 4, Credit 3

2010-313 Introduction to Time-Based Design
This course introduces students to the fundamental principles of time-based graphic design; including forms of narrative, organizing methods, sequencing, composition, visual variables, and motion variables, and the application of these principles to the solution of specific graphic design problems. Projects will include typography and/or imagery components, storyboard planning and computer-based applications as they apply to graphic design problem solving (Completion of 2010-301, 302, & 303) Lec 1, Studio 4, Credit 3

Prerequisites for 400-level graphic design: sophomore graphic design courses or their equivalent or permission of the instructor

2010-401 Typography II
Students expand their understanding of basic typographic principles through advanced applied problems focused on typography as the visual representation of language, typographic hierarchy, formal values (syntax) of letterforms, and the typographic grid as a principle organizing systems for providing meaningful structure. Class/Lab 6, Credit 3

2010-402 Imagery in Design
Creative problem-solving experiences focus on the selection, generation and use of imagery in graphic design. Design process skills are enhanced as students learn how to explore the dynamics of image content and meaning, composition, color, scale, cropping, manipulation and the integration of imagery with typography. Class/Lab 6, Credit 3

2010-403 Symbols & Icon Design
The focus of this course is on the principles, theory, and terminology of symbols (primarily pictographic, non-verbal graphic communication) symbol systems, marks of identity, and icon design for computer applications. Also emphasized are the inherent benefits and shortcomings of symbols, the application and use of symbols, and the evaluation or field testing of graphic symbols to substantiate effectiveness. Class/Lab 6, Credit 3

2010-404 Design for Publication
Students explore the underlying principles of grid theory, text and display typography, sequence, page layout, and type and image integration as they relate to a range of publication design applications such as instructional materials, brochures, magazines, books, etc. Class/Lab 6, Credit 3

2010-405 Information Design
Information Design is an area of graphic design concerned with understanding reader and user responses to written and visually presented information. These are highly utilitarian problems in which the functional requirements of design are critical in making data and information understandable and accessible to the user. Principles of language, structure, emphasis, diagrammatic interpretation and the visual display of information are explored in the context of applied problems. Class/Lab 6, Credit 3

2010-406 Environmental Design
Challenging, applied problems introduce students to the basic functions of environmental graphic design: to assist users in negotiating or “wayfinding” through a space or environment; to identify, direct and inform; to visually enhance the environment; and to protect the safety of the public. Class/Lab 6, Credit 3

2010-411, 412, 413 Graphic Design Elective
Various electives offer concept development, aesthetics, visual communication theory and methods, applied problem solving, computer-based design, and production. Class/Lab 6, Credit 3

2010-471 History of Graphic Design
This course will be a thematic approach to Graphic Design history and will provide a necessary historical basis for students in this major. The course will involve lectures on design history, pioneering designers, design from other cultures and countries, graphic design artifacts, and the historical context for this design. In addition to lectures, the course will involve guest speakers, videos, participatory exercises and discussion, and essay writing, which will build critical thinking skills. (Completion of sophomore graphic design major courses) Lec 3, Credit 3

Prerequisites for 500-level graphic design: junior graphic design courses or their equivalent or permission of the instructor

2010-501 Career Skills & Professional Practice
This course is divided into two segments. The first half focuses on resume development, cover letters and interviewing practices. The emphasis is on using present level of experience to enter the job market. The second half of the course focuses on beginning a private design practice. This includes the types of legal forms of business, setting up the practice, client contact and sales, client briefings, books and records, professional consultants, working with suppliers, establishing credit. Class 6, Credit 3

2010-502 Corporate Design
This course provides an overview of corporate design as an integrated study within the field of graphic design. Past and present corporate design models will give students historical background as well as provide current and future trends. Corporate design analysis, development, application and implementation of identity-based projects will be explored. Studio 6, Credit 3

2010-503 Design History
To discover the fundamental ideas, form and design principles governing style in design and art movements. Required is the design of a prototype guidebook on style in a design or art movement. Each student will select one movement from the list provided and develop a work plan for the guidebook, which will involve a proposal and outline. Information gathering and research will be followed by copy writing and the collection of illustrations from the selected style. Copy and visuals will be integrated in a dummy sketch, which then will be developed and refined to a high quality comp for the book. The course also includes lectures and weekly presentation and critiques. Class 6, Credit 3

2010-504 Design Systems
Advanced problems incorporation research, and development of concepts that lead to applied projects as related to visual design systems. Packaging systems, advertising and promotional campaigns are some of the areas investigated. Human factors as related to consumer preferences and audience response are also integrated. Teamwork on projects is expected. Class 6, Credit 3

2010-505 Advertising Design
Advanced creative problem-solving experiences relating to advertising design and developing a selling tool. Course content and projects include advertising assignments, ethics, research methodology and production. Concept development and the use of imagery in advertising are stressed. Class 6, Credit 3

2010-506 Concept & Symbolism
Advanced creative problem-solving experiences emphasize development of effective visual concepts and implementation. The focus is on innovation and application of creative concepts using visual symbolism for communicating specific messages to an audience/user. Areas such as promotion, advertising, and marketing are integrated into the projects. Class 6, Credit 3

2010-507 Design for Marketing
This course deals with the relationship between marketing and graphic design. It is not a marketing course to teach professional marketing skills and practices but is directed at teaching the graphic designer basic skills and terminology. The goal is to bring into play marketing concepts with design practice, focusing on short- and long-term marketing and design projects. When possible, specific firms are contacted and engaged as client/consultants. Class 6, Credit 3

2010-508 Photography in Graphic Design
Advanced creative problem-solving experiences that emphasize learning and exercising skills in the design of projects using typography with photography. The relationship between typography and photographic imagery is examined in order to strengthen control over the resulting communication through design. Lab 6, Credit 3
2010-509 Design Specifications
Advanced creative problem-solving experiences that meet the development of design concepts to meet budget specifications and with the working relationships with printers, paper reps, illustrators, photographers, etc. Class 6, Credit 3

2010-510 Design Applications
Advanced creative problem-solving experiences that focus on preparations for the design job market. Projects could include work with local clients, a self-promotional booklet (designed and printed), resume revision, portfolio development and practice interviews. Interaction, discussion and student presentations are also part of this course. Class 6, Credit 3

2010-511 Advanced Information Design
Advanced problems to further extend students’ knowledge and experience with complex information design issues. Problems include: legal documents, business forms, diagrams, transportation maps, statistical information, charts, graphs and tables, instructional materials, wayfinding systems, and computerized information systems. Class 6, Credit 3

2010-512 Introduction to Interactive Media Design
Students are introduced to the ideas, concepts, uses and general principles of interactive media on the computer. Several forms of logic and how they can be used in this design process are explored. Included are several projects to develop the students’ understanding of software, logic and aesthetic considerations in this field. Students are expected to complete assigned readings and projects. Lab 6, Credit 3

2010-513 Senior Projects
Advanced creative problem-solving experiences relating to visual communication imagery in the form of a self-designed project. This is based on a strong emphasis of formal design values and their utilization for the communication of ideas and information. The faculty mentor reviews the project and modifications may be made based on consultation with the student. The project may be thought of as a senior thesis project. (Completion of junior graphic design core) Lab 6, Credit 3

2010-514 Editorial Design
Explores the role of the graphic designer in developing appropriate a communicative editorial design. Students interpret and develop concepts for the author’s text and point of view for each assigned editorial article. Content includes the relationship and use of typography, imagery and layout for editorial impact. Some sections of this course work with the Editorial Photo class on assigned projects to experience the working relationship between the photographer and the designer, particularly in regard to editorial design. (Graphic design senior or permission of instructor) Lab 6, Credit 3

2010-518 Public & Social Service Design
Gives the graphic design senior professional experience developing and creating visual communications for nonprofit organizations. Through various community service agencies and in cooperation with the United Way Internship Program, students create design projects requiring skill and the ability to develop concepts through production, with emphasis on message content in relation to its audience. With guidance from the instructor, and by closely working with the organizations, students understand and experience client-designer relationships, budget limitations, and time and project management. (Graphic design senior or permission of instructor) Lab 6, Credit 3

2010-523 Senior Internship
This course exposes students to the professional environment through outside job opportunities in graphic design studios, advertising agencies, corporate communications departments and other acceptable organizations. Students will be working under the guidance of art directors, creative directors, senior graphic designers or marketing communication managers and performing creative work that is educational and meaningful for their short-term academic goals as well as their long-range career preparation (Completion of junior graphic design major courses) Studio 6, Credit 3

2010624 Portfolio Development & Presentation
The objective of this course will be to assist the student in developing a professional portfolio and learning how to best present the work that it contains. Evaluation of current work and assessment of strengths and weaknesses of such will determine the specific actions, revisions or generation of new work which need to be undertaken as part of this course. High standards of presentation will be expected as well as objective selection of work for meeting specific career expectations (Completion of junior graphic design major courses) Studio 6, Credit 3

2015-215 Interior Design Freshman Elective
Students will be given an overview of the field of interior design and an understanding of the educational requirements and expectations of the interior design major. The career options, required skills, and the creative process as they apply to the field of interior design will be presented through lecture, class discussions, design projects, and periodic interaction with professional designers. Lec 1, Studio 2, Credit 2

2015-222 Design Survey
Design Survey provides freshmen students with an increased exposure to the fields of graphic design, industrial design, interior design, and new media. It will provide students with an in-depth awareness of the role of design in society, and a designer’s ethical and social responsibilities. The course also describes how the design professions are related to one another, yet presents their distinct and differentiated aspects. Objectives include exposing students to a common vocabulary, to increase their awareness of the individual disciplines, and provide exposure to the related contexts, philosophies, and issues. Lec 2, Credit 2

Prerequisites for 300-level interior design courses: foundation program or equivalent

2015-305 Architectural Drawing
An introduction to interior design through architectural drafting. Lab 6, Credit 3

2015-306 Perspective Rendering
An introduction to residential interior design and perspective rendering. Lab 6, Credit 3

2015-307 Introduction to Interior Design
An introduction to interior design with emphasis on basic process, spatial relationships, design conceptualization and development. Lab 6, Credit 3

2015-308 CAD Application
An introduction to the use of the computer as a tool in the interior design process. Use of the computer is required. Lab 6, Credit 3.

2015-311 Model Building & Human Dimension
Introduction to design conceptualization through model building; exploration of the impact of human dimensions on interior space configuration; exploration of requirements of a diverse population of users. Lab 6, Credit 3

Prerequisites for 400-level interior design courses: sophomore interior design courses or their equivalent or permission of instructor

2015-404 Hospitality Design
The applications of design methods and skills to the design of interior space for hospitality use. Lab 6, Credit 3

2015-405 Applications of Color & Light
Introduction to color and light for spatial development. Lab 6, Credit 3

2015-406 Retail Design
Introduction to designing interior space for retail use. Lab 6, Credit 3

2015-407 Building Construction System
Introduction of building construction systems for interior design. Lab 4, Credit 3

2015-408 Office Design & Planning
Introduction to interior design and planning for office use. Lab 6, Credit 3

2015-411, 412, 413 Interior Design Elective
An elective offering basic instruction and involvement in design application projects. Each quarter concentrates on a specific topic of design study. 411 Environmental, 412 Interior, 413 Environmental. Lab 6, Credit 3

Prerequisites for 500-level interior design courses: sophomore interior design courses or their equivalent or by permission of instructor

2015-504 Multistory/Purpose Design
The application of design methods and skills to professional level projects in interior design. Lab 6, Credit 4
2035-215 Industrial Design Freshman Elective
Students will be given an overview of the field of industrial design and an understanding of the educational requirements and expectations of the industrial design major. The career options, required skills, and the creative process as they apply to the development of products, packaging, and systems within the field of industrial design will be presented through lecture, class discussions, design projects, and periodic interaction with professionals in the field. Lec 1, Studio 2; Credit 2

Prerequisites for 300-level industrial design courses: foundation program or equivalent

2035-305 Layout Systems
An introduction to the fields of industrial and packaging design. Emphasis is on design conceptualization and development, form and functional studies of packages, graphics and exhibits. Lab 6, Credit 3

2035-306 Technical Drawing
An introduction to drafting in the field of industrial and packaging design. Emphasis is on basic skills in orthographic drawing, O-Datum and decimal, inch dimensioning and engineering drawings. Lab 6, Credit 3

2035-307 Graphic Visualization
Sketching and rendering techniques are developed through exercises that also promote abilities to visualize three-dimensional forms in two-dimensional representations. Lab 6, Credit 3

2035-310 CAD Applications I
An introduction to CAD applications for industrial design that offers instruction in CAD-based software as related to three-dimensional object modeling applications. Coursework in computer modeling of solids and surfaces, simple rendering, and computer model documentation (CAD drawing/drafting) is included. (Foundation Program or consent of the instructor) Studio 6, Credit 3

2035-311 Model Making
An introduction to model making in the field of industrial design. Coursework emphasizes skills necessary for three-dimensional design conceptualization and development. Lab 6, Credit 3

2035-312 Concept Design Sketching
Freehand concept sketching technique for the industrial designer. (Foundation Program) Studio 6, Credit 3

Prerequisites for 400-level industrial design courses: sophomore industrial design core or its equivalent or permission of instructor

2035-405 Materials & Processes Applications
The acquisition of a technical and theoretical base in industrial design through a formal introduction to materials and processes. Lab 6, Credit 3
School for American Crafts

Ceramics & Ceramic Sculpture
2040-215 Freshman: Introduction to Ceramics
An introduction course with overview of historical perspective, hands-on projects and demonstrations, slide talks, introduction to vocabulary and terminology, and discussion of career opportunities. Lec 1, Studio 3, Credit 2

2040-251, 252, 253, 254 Ceramics Elective
An elementary course in design and techniques in ceramics. Each quarter different techniques are taught, including wheel and hand building glaze and decorating. Materials fee required. Lab 6, Credit 3

Prerequisites for 300-level courses: successful completion of foundation program or its equivalent or permission of instructor

2040-301 Materials & Processes of Ceramics Sophomore I
A course with concentration on the fundamentals of pottery making. The student will design and make utilitarian pottery, with emphasis on form, function, and surface decoration. The student will primarily focus on high firing techniques. The students will also study clay materials and chemistry. Class 18, Credit 6 (F)

2040-302 Materials & Processes of Ceramics Sophomore II
This course continues to focus on the fundamentals of working with ceramics. The emphasis is working within the vessel format. Primarily students will be working with handbuilding techniques. The students will work at a mid range firing temperature. In the course the student will also learn glaze calculation. (2040-301) Class 18, Credit 6 (W)

2040-303 Materials & Processes of Ceramics Sophomore III
This course investigates the issues involving ceramic sculpture. The students will primarily investigate issues of form and scale. The primary focus of firings will be low fire and raku techniques. In this course the student will also learn the fundamentals of kiln building and firing techniques. (2040-302) Class 18, Credit 6 (S)

Prerequisites for 400-level courses: successful completion of sophomore-level courses in ceramics or ceramics sculpture

2040-401 Materials & Processes of Ceramics Junior I
A course with concentration on utilitarian ceramics, the fundamentals of pottery making. There will be a focus on the students developing their own aesthetic ideas and independent firing methodology. A continuation of technique development in ceramic making and firing. The students will also work on the connections of their work and ceramics art history. (2040-303) Lec 2, Crit 1, Studio 12-15, Credit 6 (F)

2040-402 Materials & Processes of Ceramics Junior II
A course with continuing concentration of working with the vessel. The student will investigate their own methodologies of making and developing their ideas through using the vessel. There will be an emphasis on historical context and personal expression. (2040-401) Lec 2, Crit 1, Studio 12-15, Credit 6 (W)

2040-403 Materials & Processes of Ceramics Junior III
Continuing concentration on the development of ceramic sculpture working on both large and small scale and addressing the concepts of presentation. There will be a strong emphasis on developing the student’s own aesthetics, personal voice and idea. (2040-402) Lec 2, Critique 1, Studio 12-15, Credit 6

Prerequisites for 500-level courses: successful completion of junior level courses in ceramics and ceramic sculpture

2040-501 Materials & Processes of Ceramics Senior I
In this course, students will begin to develop a senior thesis. This is a cohesive body of work centered on a theme agreed to by each student and his or her adviser. Students are required to develop their own clays, glazes, and firing methodology. The students will begin to research information for their written thesis. (2040-403) Class 18, Credit 6 (F)

2040-502 Materials & Processes of Ceramics Senior II
Continued development of senior thesis studio work with an emphasis on contemporary and historical context for this work, as well as personal glaze and firing development. Students will begin to address the written element of their thesis and develop a body of work for their senior thesis exhibition. (2040-501) Class 18, Credit 6 (W)

2040-503 Materials & Processes of Ceramics Senior III
This course is the culmination of the students’ written thesis and exhibition of their work. (2040-502) Class 18, Credit 6 (S)
2041-401 Materials & Processes of Glass Junior I
The class will introduce the student to sand casting, pate de verre, lost wax casting, billet casting, gravity casting. Alternative forms of model building, mold making with clay, and wax for casting glass are part of this course. Annealing cycles and the use of the oven controls will be utilized as the student develops solutions to casting problems. Students will explore the history of casting with glass from ancient Egypt to today. In glassblowing, Graal pick-up and other techniques involving pre-formed blanks or elements will be taught. There will be an emphasis on teamwork and experimentation with new techniques. Options for problem solving include mixed media sculpture and the vessel. Lec 2, Critique 1, Studio 12-15 hrs per week, Credit 6 (F)

2041-402 Materials & Processes of Glass Junior II
Utilizing The Corning Museum of Glass study collection and the Rakow Research Library, students will develop a body of work that reflects their specific interests in glass. They may select a concept from the following or develop an alternative topic: glass equipment construction, building a studio, public commissions, developing a production series, industrial design for glass, colored glass chemistry, creative resource for a sculpture, art education, the gallery. The student will make a formal presentation related to the research topic. (2041-401) Lec 2, Crit. 1, Studio 12-15 hrs/week, Credit 6 (W)

2041-403 Materials & Processes of Glass Junior III
A continuation of the work described in 2041-402. Lec 2, Crit., 1, Studio 12-15, Credit 6 (S)

Prerequisites for 500-level courses: successful completion of junior-level courses in glass

2041-501 Materials & Processes of Glass Senior I
Independent work produced during this quarter will be of an exploratory nature. Working with the instructor, students will identify concepts for senior level research based on individual interests and visual exploration. Preparation for graduation requirements-including a written thesis, portfolio presentation, artist’s statement, and senior exhibition-will be a part of this course. (2041-403) Class 18, Credit 6 (F)

2041-502 Materials & Processes of Glass Senior II
Information developed during the previous course will serve as a foundation for in-depth research to be developed during this quarter. A statement describing the nature and intent of the thesis is required before week 2 of this term. The student will refine and develop a body of work for the senior exhibition and will submit the initial draft of the thesis at the end of this quarter. (2041-501) Class 18, Credit 6 (W)

2041-503 Materials & Processes of Glass Senior III
The student will conclude the senior year with a solo exhibition of their creative work. The specifics of the exhibition including location, installation, opening, invitation announcement, and mailing list developed by each student. The written thesis, 20-slide portfolio, artist’s statement and resume will be presented to the department head before graduation. Alternative or additional prerequisites may be required according to individual necessities. (2041-502) Class 18, Credit 6 (S)

Metalcrafts & Jewelry

2042-215 Freshman: Jewelry/Metals
This is an introductory course designed to expose the beginning student to the basics and fundamentals of jewelry/metal field as a career path in the field of contemporary crafts. Slide lectures, technical demonstrations, field trips, hands-on experience and critiques will be used. Lec 1, Lab 3, Credit 2

2042-251, 252, 253, 254 Metals Elective
An elective course providing an opportunity for introductory study in metals in the area of either holloware or jewelry. Materials fee required. Lab 6, Credit 3

Prerequisite for 300-level courses: successful completion of foundation program or equivalent or permission of instructor

2042-301 Materials & Processes of Metals Sophomore I
This class will introduce the student to basic jewelry hand tools. Ferrous and nonferrous metals, their composition and working priorities will serve as the primary materials. Class 18, Credit 6 (F)

2042-302 Materials & Processes of Metals Sophomore II
This class will introduce the student to basic machine skills, silver soldering and gem setting. (2042-301) Class 18, Credit 6 (W)

2042-303 Materials & Processes of Metals Sophomore III
This class will introduce the student to basic forming skills for holloware, flatware and jewelry. (2042-302) Class 18, Credit 6 (S)

Prerequisite for 400-level courses: successful completion of sophomore-level courses in metals and jewelry design

2042-401 Materials & Processes of Metals/Jewelry Junior I
This class will introduce the student to advanced properties of gold as a material and advanced casting and mold-making techniques. (2042-303) Class 18, Credit 6 (F)

2042-402 Materials & Processes of Metals/Jewelry Junior II
This course introduces jewelry and holloware rendering, chasing and repousse, and tool making. (2042-401) Credit 18, Class 6 (W)

2042-403 Materials & Processes of Metals/Jewelry Junior III
This course introduces jewelry and holloware design and production through the use of kumbo and eunbo overlay technique, aluminum anodizing, and acid etching. (2042-402) Class 18, Credit 6 (S)

Prerequisite for 500-level courses: successful completion of junior-level courses in metals and jewelry design

2042-501 Materials & Processes of Metals/Jewelry Senior I
This course concentrates on holloware design and production through spinning, advanced holloware techniques, and rendering. The design and compilation of a professional resume is also a requirement. (2042-403) Class 18, Credit 6 (F)

2042-502 Materials & Processes of Metals/Jewelry Senior II
This course introduces advanced gem setting and identification, gemstone anatomy, and jewelry mechanisms. Students also begin to pursue the issue of career opportunities by contacting potential employers in a “job search” seminar. (2042-501) Class 18, Credit 6 (W)

2042-503 Materials & Processes of Metals/Jewelry Senior III
This course allows for individual research in technique and design. Third-quarter senior-level students are encouraged to assemble a group show of their four years’ work and complete a job search and professional portfolio including resume, photography, and renderings. (2042-502) Class 18, Credit 6 (S)

Weaving & Textile Design

2043-251, 252, 253, 254 Textile Elective
A basic course in design and techniques in textiles. Each quarter a different area of study is undertaken in quilt making, natural basketry, crochet, soft sculpture or other non-loom textile processes. Materials fee required. Lab 6, Credit 3

Woodworking & Furniture Design

2044-215 Freshman: Woodworking & Furniture Design
This course introduces the beginning student to the field of woodworking and furniture design. There will be hands-on involvement with the material as well as a look at the career opportunities for a contemporary woods craftsperson. Slide talks, technical demonstrations, field trips, design and design review will be some of the ways we experience this area firsthand. Credit 2, Lec 1, Studio 3

2044-251, 252, 253, 254 Wood Elective
A non-sequential, elementary course in designing and building wooden projects such as a tray, small box or small table. A broader choice of projects is afforded students who take the course for a second or third quarter. Materials fee required. Lab 6, Credit 3
Prerequisite for 300-level courses: successful completion of foundation program or equivalent permission of instructor

2044-301 Materials & Processes of Wood Sophomore I
This is the first of a three-quarter sequential class covering the fundamental techniques and aesthetics of woodworking. Topics include the care and use of hand tools, wood as a material, its basic properties, basic joinery, and fundamental techniques of wood fabrication and finishing. The course includes a machine maintenance program. Credit 18, Class 6 (F)

2044-302 Materials & Processes of Wood Sophomore II
This is the second of a three-quarter sequential class covering the fundamental techniques and aesthetics of woodworking. Topics include the continued care and use of hand tools, and the introduction of power equipment. Basic joinery and fundamental techniques of wood fabrication are continued using both hand and power equipment, and additional finishing techniques are studied. The course includes a machine maintenance program. (2044-301) Class 18, Credit 6 (W)

2044-303 Materials & Processes of Wood Sophomore III
This is the third of a three-quarter sequential class covering the fundamental techniques and aesthetics of woodworking. Topics include the continued care and use of hand tools and the introduction of more power equipment. Basic joinery and fundamental techniques of wood fabrication are continued, using both hand and power equipment, and additional finishing techniques are studied. The course includes a machine maintenance program. (2044-302) Class 18 Credit 6 (S)

Prerequisite for 400-level courses: successful completion of sophomore-level courses in woodworking and furniture design

2044-401 Materials & Processes of Wood Junior I
This is the first of a three-quarter sequential class covering the intermediate techniques and aesthetics of woodworking. This course addresses the issues of the design and construction of a chair: aesthetics, ergonomics, structure (geometry, triangulation), materials, etc. The course includes a machine maintenance program. (2044-303) Class 18, Credit 6

2044-402 Materials & Processes of Wood Junior II
This is the second of a three-quarter sequential class covering the intermediate techniques and aesthetics of woodworking. This course addresses the issues of source material used for inspiration in the design process. It requires the investigation and selection of specific source material to be used to design a specific piece of furniture. Additional techniques are included. The course includes a machine maintenance program. (2044-401) Class 18, Credit 6

2044-403 Materials & Processes of Wood Junior III
This is the third of a three-quarter sequential class covering the intermediate techniques and aesthetics of woodworking. This course addresses the issues of large solid wood carcass construction and multiple drawer construction through the design and construction of a chest of drawers. Additional techniques are included. The course includes a machine maintenance program. (2044-402) Class 18, Credit 6

Prerequisite for 500-level courses: successful completion of junior-level courses in woodworking and furniture design

2044-501 Materials & Processes of Wood Senior I
This is the first of a three-quarter sequential class covering the advanced techniques and aesthetics of woodworking. This course addresses aspects of woodworking that students may wish to pursue after graduation. Students select from a menu of topics including jigs and fixtures (shaper, router, etc.), industry-related, series, production, outdoor, site specific, multiple seating, multimedia, and sculpture. They then develop a proposal for a body of work that may span more than one quarter. Students may select more than one topic. The course includes a machine maintenance program. (2044-403) Class 18, Credit 6

2044-502 Materials & Processes of Wood Senior II
This is the second of a three-quarter sequential class covering the advanced techniques and aesthetics of woodworking. See description for 2044-501 above. (2044501) Class 18, Credit 6

2044-503 Materials & Processes of Wood Senior III
This is the last of a three-quarter sequential class covering advanced techniques and aesthetics of woodworking. See description for 2044-502. (2044-502) Class 18 Credit 6

General Crafts Studies

2045-311 Concept Drawing
Freehand concept sketching technique for the crafts major. Lab 6, Credit 3

2045-312 Crafts Technical Drawing
A one-quarter course covering basic drafting technique as it is used for both design and presentation. Topics include use of instruments, lettering, standard conventions, dimensioning, basic layout techniques and formats, orthographic projection, sectioning, auxiliary views, axonometric drawings, measured perspective, comprehensive working drawings and presentation techniques. Lab 6, Credit 3

2045-511 Planning Career: Crafts
One of three courses covering topics commonly associated with the operation of a small business in fields related to the fine and applied arts. This first course covers career assessment, qualitative and quantitative evaluation and assessment of potential career paths through the development of a comprehensive business plan, and employment options. The course includes lectures, group discussions, independent study, studio and business visits, homework, papers and reports, and oral presentations. Each of the three courses is structured as an independent unit. Interested students may take any or all of these courses in any sequence. Lec 3, Credit 3

2045-512 Crafts Promotional Packing
One of three courses covering topics commonly associated with the operation of a small business in fields related to the fine and applied arts. This second course addresses promotional issues, including portfolio, photography, resume writing, business cards and stationery, marketing, client relations, etc. Students will create their own comprehensive promotional package. The course includes lectures, group discussions, independent study, studio and business visits, homework, papers and reports, and oral presentations. Each of the three-quarter long courses is structured as an independent unit. Interested elective students may take any or all of these courses, in any sequence. Credit 3, Lec 3

2045-513 Operating a Business in the Crafts
One of three courses covering topics commonly associated with the operation of a small business in fields related to the fine and applied arts. This third course addresses day-to-day business operations, including marketing, contracts, and other legal issues; record keeping; banking; insurance; taxes; employees; and location and layout of a business. The course includes lectures, group discussions, independent study, studio and business visits, homework, papers and reports, and a oral presentation. Each of the three courses is structured as an independent unit. Interested elective students may take any or all of these courses in any sequence. This course is required for all School of American Crafts BFA seniors. Class 3, Credit 3

Crafts Extended Studies

2046-201 Ceramics
A survey of on- and off-the-wheel formation techniques using stoneware. Students are introduced to a variety of decorative methods as well as the basics of glazing and firing finished work. Class projects will emphasize the development of competent skills and good design. Credit 2

2046-202 Ceramics II
This introductory ceramics course combines wheelthrowing and handbuilding techniques with clay. Through a variety of forming methods, glazing techniques, and wide range of projects, students will learn about making all kinds of ceramic objects. Slide lectures will support and introduce projects. May be taken more then once for credit. Lab 4, Credit 2

2046-206 Metalcrafts/Jewelry
Emphasis on basic jewelry-making techniques involving sawing, filing, soldering, hand and machine finishing techniques, simple stone setting and more. Design is stressed throughout the course. May be elected more than once for credit. Credit 2
2046-211 Woodworking
Explorations in joinery, finishing, use and care of hand tools, and basic procedures in machine woodworking. In this course the development of design skills and technical ability is emphasized. May be taken more than once for credit. Lab 4, Credit 2

2046-271 Woodworking II
This course will explore the uses of joinery, finishing, the use and care of hand tools, and basic procedures in woodworking. The development of design skills and technical ability is emphasized. May be taken more than once for credit. Lab 4, Credit 2

School of Film and Animation

2065-201 Film/Video Production 1
A fundamental course in 16mm non-synchronous film production. Filmmaking is presented as a means of interpretation and expression. This course combines technical information in motion picture exposure and editing with a theoretical and practical approach to motion picture continuity. Production is in 16mm (non-sync) format. Students furnish film, tape and processing. Equipment is furnished by the department. Class 3, Lab 4, Credit 5

2065-202 Film/Video Production II
A foundation course in editing theory and practice for motion pictures. Emphasis is on identification and concerns of a variety of approaches to the edited image. The student edits S-VHS or video taped projects designed to address specific editorial concerns. Students provide videotape; equipment is furnished by the department. (2065-201) Class 3, Lab 4, Credit 5

2065-203 Film/Video Production III
This is the third course of three for freshman film/video students. It introduces the nature and importance of the sound component in creating cinematic works. Students are exposed to a variety of possible treatments of sound using historical and contemporary examples in cinema. Students engage in the creation of soundtracks that are rich, complex and meaningful. They learn the processes, equipment and techniques, as well as creative and efficient strategies, for multitrack soundtrack creation for both film and video. This course is essential for students of the film/video curriculum, who must be able to create not only images but also mature and appropriate soundtracks for their film and video works. Also essential for students who wish to pursue sound-related careers in film and video. (2065-201, 2065-202) Class 3, Lab 4, Credit 5

2065-206 Story & Structure
A discipline specific introductory course designed to introduce first year students to the meaning of “story”; the components of a story, approaches to film structure, and the variety of expressions that a film can take. Class 3, Credit 2

2065-211 New Media Perspectives
This course exposes New Media students to the broad range of cultural, technological, aesthetic, political, and business trends associated with the growth and evolution of digital media. Students are expected to engage in dialog and debate, and begin to contribute to the intellectual life of the discipline. Seminar 2, Class 2, Credit 3

2065-217 Digital Video: Multimedia
Digital video technology democratizes creative moving image editing and manipulation. Broadly the goal of this course is to teach the basic craft of filmmaking using the most currently available digital software/hardware tools. Students will be expected to complete several shooting and editing exercises as well as produce two finished productions. Credit 4, Lec 2, Lab 2

2065-221 Materials & Process of Moving Images I
Familiarizes the student with the basic technical concepts of film and video making. Students gain an understanding of the technical theory required to work in these media. Credit 2 (F)

2065-222 Film Language
A screenings, readings, and writing course designed to give the student the opportunity to trace the development of the techniques and forms of communication in what now constitutes the classic cinema. Class 4, Credit 4

2065-243 Introduction to Portable Video I
A basic course for non-majors. Emphasis is on videotaping and the use of the medium as an interpretive and expressive medium. A combined theoretical/practical approach to the dynamics of the medium. Two short video projects are required. VHS production and editing facilities are provided by RIT. Students must purchase a minimum of two 60-minute, ½” videocassettes. This course does not count as elective credit for F/V majors. Class 3, Lab 3, Credit 4 (F, W, S)

2065-244 Introduction to Portable Video II
In this course the student applies the basic video skills acquired in 2065-243 to the design and realization of mature narrative imagery. Progress is supervised by the instructor through regular screenings and conferences with the student. This course does not count as elective credit for F/V majors. (2065-243) Class 3, Lab 3, Credit 4 (W)

2065-263 Single-Frame Motion
This class is intended to give students a thorough, intuitive understanding of animation motion. Emphasis will be towards hands-on exercises without the demands of finished production. Image capture and playback technologies will be immediate so students will see the results of their efforts quickly. The assignments will direct students to shoot pixelation, animation of real objects, cut outs, and pre-made puppets. Lec 1, Lab 2, Credit 2

2065-311 Video Tools & Technology
An intensive tools and technology course that allows the student to work in the S-VHS and digital video format. Examines the technical concerns of single-system portable video production and editing. Production skills in camera work, editing and sound recording are covered. (2065-203) Credit 5 (F)

2065-313 Color Theory: Film & Animation
This course examines the use of color in animation by first looking at its use in single images of animation and then extending that into its use over time. Students do simple animation exercises exploring various aspects of color, especially focusing on the use of color to support the mood and content of the concept of a film. Lec 2, Credit 2

2065-317 Advanced Production Workshop: Documentary I
Students produce short documentary projects in either film or video, depending on their prerequisites, or, with consent of the instructor, they may work in any medium appropriate to their experience and resources, such as still photo, painting, animation, comic strip, performance, radio or multimedia. Students are encouraged to experiment with individual style and, while producing their own work, also serve as production planning team and production crew for all other projects. Students complete projects that were begun during the quarter or during the previous quarter in Production Workshop: Documentary II for presentation at public departmental screenings. (2065-311 or 2065-431) Class 2, Lab 4, Credit 4 (F)

2065-318 Advanced Production Workshop: Documentary II
Students produce short documentary projects in either film or video, depending on their prerequisites, or, with consent of the instructor, they may work in any medium appropriate to their experience and resources, such as still photo, painting, animation, comic strip, performance, radio or multimedia. Students are encouraged to experiment with individual style and, while producing their own work, also serve as production planning team and production crew for all other projects. Students complete projects for presentation at public departmental screenings or may plan and shoot more ambitious projects to be completed the following quarter in Production Workshop: Documentary II. (2065-431 or 2065-311) Class 2, Lab 4, Credit 4 (W)

2065-319 Production Workshop: Documentary
Students produce short documentary projects in either 16mm film or 3/4” video, depending on their prerequisites, or with consent of instructor. Students may work in any medium appropriate to their experience and resources such as: still photo, painting, animation, comic strip, performance, radio or multimedia. Students are encouraged to experiment with individual style and while producing their own work also serve as production planning team and production crew for all other projects. Students complete projects for presentation at public departmental screenings that are begun during the quarter, or were begun in Production Workshop: Documentary II. (2065-311 or 2065-431) Credit 4 (S)
2065-327 Advanced Production Workshop: Experimental I
Students produce short projects as experiments in concept, style or technology and are encouraged to take risks, break “rules” and explore their own unique creative potential without fear of grade punishment for being different. Students may work in either film or video, depending on their prerequisites, or, with consent of the instructor, they may work in any medium appropriate to their experience and resources, such as still photo, painting, animation, comic strip, performance, radio or multimedia. While producing their own work, students also serve as production planning team and production crew for all other projects. Students complete projects begun during the quarter or during the previous quarter in Production Workshop: Experimental I for presentation at public departmental screenings. (2065-431 or 2065-311 or consent of the instructor) Credit 4

2065-328 Advanced Production Workshop: Experimental II
Students produce short projects as experiments in concept, style or technology and are encouraged to take risks, break “rules” and explore their own unique creative potential without fear of grade punishment for being different. Students may work in either film or video, depending on their prerequisites, or, with consent of the instructor, they may work in any medium appropriate to their experience and resources, such as still photo, painting, animation, comic strip, performance, radio or multimedia. While producing their own work, students also serve as production planning team and production crew for all other projects. Students complete projects for presentation at public departmental screenings or may plan and shoot more ambitious projects to be completed the following quarter in Production Workshop: Experimental II. (2065-431 or 2065-311 or consent of the instructor) Credit 4

2065-329 Production Workshop: Experimental
Students produce short projects as experiments in concept, style, or technology and are encouraged to take risks, break “rules” and explore their own unique creative potential without fear of grade punishment for being different. Students may work in either 16mm film or ¾’ video, depending on their prerequisites, or with consent of instructor. Students may work in any medium appropriate to their experience and resources such as: still photo, painting, animation, comic strip, performance, radio, or multi-media. While producing their own work, students serve as production planning team and production crew for all other projects. Students complete projects for presentation at public departmental screenings, begun during the quarter or begun the previous quarter in Production Workshop. (2065-431 or 2065-311 or consent of instructor) Credit 4

2065-331 Introduction to Animation I
An introduction to the techniques and practices of traditional and digital animated film production. Provides training and practical experience in a wide variety of approaches to single-frame motion picture production. Students produce a number of short film exercises utilizing cut out, paint and draw, animation as well as kinesthesis. Extensive film screenings illustrate each technique and related aesthetics. (JPHQ major or consent of instructor) Class 2, Lab 2, Credit 4 (F)

2065-332 Advanced Animation Tools
This course in animation techniques and tools provides the student with the training and practical experience necessary for independent operation of animation equipment and the independent production of animated film. A variety of traditional and experimental techniques are explored in depth. These techniques include animation stand as well as three-dimensional animation execution. Students work independently and in-group situations and participate in all phases of animated film production. Students have the opportunity to explore mixed technique approaches, as well as to utilize their experiences in photography, graphic arts painting, sculpture, and other backgrounds and skills. Screenings of films illustrate a variety of different techniques, style, and production concerns and practices. Proficiency in drawing is not required. (2065-331) Lab 3, Credit 4

2065-333 Animation Production
Provides practice in all phases of single-frame film production. Students produce a 16mm 60-second film with sound utilizing one or more techniques learned in the preceding two quarters. (2065-332) Class 3, Lab 2, Credit 4 (S)

2065-337 Advanced Production Workshop: Fiction I
Students produce short fictional projects in either film or video, depending on their prerequisites, or, with consent of the instructor, they may work in any medium appropriate to their experience and resources, such as still photo, painting, animation, comic strip, performance, radio or multi-media. Students are encouraged to experiment with individual style, and while producing their own work, also serve as production planning team and production crew for all other projects. Students complete projects begun during the quarter or during the previous quarter in Production Workshop: Fiction I for presentation at public departmental screenings. (2065-431 or 2065-311 or consent of the instructor) Credit 4

2065-338 Advanced Production Workshop: Fiction II
Students produce short fictional projects in either film or video, depending on their prerequisites, or, with consent of the instructor, they may work in any medium appropriate to their experience and resources, such as still photo, painting, animation, comic strip, performance, radio or multi-media. Students are encouraged to experiment with individual style, and while producing their own work, also serve as production planning team and production crew for all other projects. Students complete projects for presentation at public departmental screenings or may plan and shoot more ambitious projects to be completed the following quarter in Production Workshop: Fiction II. (2065. 431 or 2065-311 or consent of the instructor) Credit 4

2065-339 Production Workshop: Fiction III
In this course students will produce short fiction projects in either 16mm film or ¾’ video, depending on their prerequisites, or with consent of instructor. Students may work in any medium appropriate to their experience and resources such as: still photo, painting, animation, comic strips, performance, radio, or multi-media. Students are encouraged to experiment with individual style and while producing their own work also serve as production planning team and production crew for all other projects. Students complete projects for presentation at public departmental screenings that are begun during the quarter or were begun during the previous quarter in Production Workshop: Fiction II. (2065-311 or 2065-431) Credit 4

2065-342 Writing for Film/Video I
Explores the writing of non-fiction and fiction for theatrical and non-theatrical films and television. Experience in the writing of fiction concentrates on the elements of dramatic construction. The exploration of non-fictional writing examines information gathering techniques and methods of investigation. Both nonfiction and fiction are treated as expository, story-telling forms. Students are responsible for writing film or television scripts on subjects of their own choosing and for completing several brief written exercises in areas such as character, dialogue, the interview, suspense and plot. Although this course is designed primarily to meet the needs of film and television majors, it is not restricted to those students. (JPHQ major or instructor permission) Class 2, Lab 3, Credit 3 (W)

2065-343 Writing for Film/Video II
Continuation of 2065-342. (2065-342 or consent of instructor) Class 2, Lab 3, Credit 3 (S)

2065-345 Acting for Film/Video
A course in basic acting technique with emphasis on the special problems peculiar to film and video production. The class is taught in conjunction with 2065-347, Directing the Actor. Class meetings are organized around the presentation of scenes prepared by student actors and directors. Studio 4, Class 1, Credit 3

2065-347 Directing the Actor
A course in basic directorial techniques with emphasis on the special problems peculiar to film and video production. Class meetings are organized around the presentation of scenes prepared by student directors. Studio 4, Class 1, Credit 3

2065-350 Figure Drawing: Animation
A studio figure drawing class suited specifically to the needs of drawn character animators. Live models will provide frequent short poses revealing stages of movement, center of gravity, dramatic gesture, and specific movement in dance, and sports. Students will draw rapidly and asked to conjure form from unseen shapes and flowing motion. Frame-per-frame video will be examined of live model’s movement and compared to students’ drawings (at least one figure drawing class or permission of instructor). Studio 6, Credit 3
2065-352 Animation Pre-Production
Students collect and produce short film ideas and learn to express them in a variety of methods. Short film scripts will be written in a workshop setting and shared with class in critiques. Students will learn how to create digital soundtracks and read digital sound. Students will make animation bar sheets for sound/image relationships and timings and exposure sheet design. Students will also work with storyboards scanned into the computer and manipulated in time with sound as animatics as another tool for initializing animation production. (2065-203 and 2065-244 or 2065-331) Lab 4, Credit 4

2065-354 Business of Film/Video
Examines the business aspects of designing, developing and producing film and/or video projects. Emphasis is on development of production projects with interactive problem-solving experiences in which the instructor and students work as a production team. Special attention is given to script development techniques, estimation and management of production costs, location productions, live broadcasts and the cost/quality considerations of film/video production. Specific issues and situations are used as exercises for student problem-solving activities. Class 3, Credit 3

2065-355 Introduction to Film Appreciation
In this course, students view, analyze and critique feature-length narrative films, a documentary and animation. Most are selected from the AFI list of the 100 best films. Films are analyzed from various perspectives, including plot, technique, cinematography, acting, and genre. Lec 4, Credit 4

2065-356 History & Aesthetics of the Moving Image: Fiction
A non-scholarly exploration of the history and aesthetics of film. Emphasis is on determining the unique characteristics of the medium, how those characteristics are used as a means of interpretation and expression and their relevance to other kinds of nonverbal image making. (Must be at least a second-year student) Class 3, Credit 3

2065-357 History & Aesthetics of the Moving Image: Documentary
A non-scholarly exploration of the history and aesthetics of film. Emphasis is on determining the unique characteristics of the medium, how those characteristics are used as a means of interpretation and expression, and their relevance to other kinds of nonverbal image making. (Must be at least a second-year student) Class 3, Credit 3

2065-358 History & Aesthetics of the Moving Image: Animation
A non-scholarly exploration of the history and aesthetics of film. Emphasis is on determining the unique characteristics of the medium, how those characteristics are used as a means of interpretation and expression, and their relevance to other kinds of nonverbal image making. (Must be at least a second-year student) Class 3, Credit 3

2065-359 Introduction to 3-D Computer Animation
An introduction to three-dimensional computer animation. The basic principles of animation will be addressed within the context of producing three-dimensional computer animations as part of the learning process and then a final short 3D computer animation of their own design. Students will become familiar with a variety of three-dimensional computer animation techniques and applications. Lec 3, Lab 2, Credit 4

2065-360 Optical Printing
In this course the students will learn motion picture techniques for creating visual special effects through the use of the optical printer. It will cover the basics of materials and methods and the hands-on functioning of the printer. Topics include sizing and focusing, filtration and exposure control, film stocks, fades, dissolves, superimpositions, and mattes. Techniques for hand processing black and white motion picture film will also be demonstrated. Class 5, Credit 4

2065-361 Film Theory & Criticism
A historical survey of film theory is offered along with the analysis of films using specific critical methodologies. Provides the student with the viewing and discussion skills necessary to understand film as a fine art. Class 3, Credit 3

2065-362 Visual Effects: Cinematography
This course is designed to enhance the students’ awareness of the creative possibilities inherent in the motion picture camera by giving them a “real world” work experience, concentrating on group dynamics within a problem-solving environment. The object is to produce a 16mm motion picture visual effects sequence by students working cooperatively with each other within production units, and/or each production unit working cooperatively with the others. Students share their projects during weekly production meetings chaired by the instructor. Work with models and miniatures is involved. (2065-203) Lec 2, Lab 4, Credit 4

2065-363 Film/Video-Paris, Summer
Provides students with the opportunity to creatively explore and experience film production for six weeks in Paris, France. Students study the rich history and prehistory of French (and European) cinema. Study includes weekly screenings of many historical and contemporary film works from the Film Archives at the National Museum of Modern Art in Paris, meetings with French/European filmmakers and historians, museum trips, special film programs at the Cinematheque Francaise and the Videothèque of Paris, and library research. Both traditional and experimental French cinema are examined. Equipment is provided. Students produce works in either or both 16mm film and 1/2 video formats. Open to undergraduates and graduates, majors and nonmajors, with or without production experience. Credit 6

2065-367 Introduction to Stop Motion Animation
Explore techniques for producing stop motion animation. Gain familiarity with the use of a variety of materials that may include clay, puppet, foam, latex and more. Develop techniques for making armatures and skeletons and creating joints. Learn how to measure movement from frame to frame. Research and write about a stop motion technique or animator. (2065-331) Lec 3, Lab 2, Credit 4

2065-369 Visual Anthropology
We see others as we imagine them to be, in terms of our values, not as they see themselves. This course examines ways in which we can understand and represent the reality of others through visual media, across the boundaries of culture, gender and race. It considers how and why visual media can be used to represent-or to distort-the world around us. (Sophomore standing) Credit 3 (S)

2065-370 Miniature Sets & Props
This course gives students hands-on experience in all stages of designing an building miniature sets. Common set construction materials will be introduced and proper techniques explained. Students will design and build basic structures with a variety of surface finishes using organic and artificial forms. Students will evaluate the artistic merits of their design. Examples from architecture and movies will be provided. Realistic sets with a cultural heritage will be considered as well as fantasy environments. Two final sets will be completed by the class-one for use in stop-motion and one for use in visual effects. Studio 6, Credit 3

2065-371 Historical Approaches to Stop Motion Animation
An introduction to historical approaches to stop motion animation. Students will work as a production team. Special attention is given to script development, scriptwriting, and/or video projects. Emphasis is on development of production projects with interactive problem-solving experiences in which the instructor and students work as a production team. Special attention is given to script development techniques, estimation and management of production costs, location productions, live broadcasts and the cost/quality considerations of film/video production. Specific issues and situations are used as exercises for student problem-solving activities. Class 3, Credit 3

2065-373 Film Archives in the United States
Lec 3, Lab 2, Credit 4

2065-374 Seminar in International Film History
Examines selected, varying film topics in a wider socio-historical context. Seminar themes change each year and may include topics such as post-war German film, films of the Holocaust, Japanese film, surrealism and magic realism, film, Soviet film, Native Americans on film, etc. Students are expected to participate actively in the course via class presentations and discussions. Credit 3

2065-375 Physical Expression: Animation, Film & Video
A course in non-verbal communication designed to broaden the creative vocabulary of animators, directors, editors and actors. Through a series of exercises and assignments, students will experiment with movement principles and gestured language. Analysis of these projects will be used to focus and refine their work during class and towards a final project. Class 3, Credit 3

2065-376 Introduction to Digital Animation
An introduction to the techniques and practice of graphic and animated film production. This course provides training and practical experience in producing 2D animated sequences using off the shelf multimedia software. Students produce a number of short exercises utilizing existing, computer created and non-digital original artwork. Topics include key frame and tweening, cycling, acceleration, squash and stretch, backgrounds, inking, rotoscoping, sound, masking, multiplane effects and space-to-time. Screenings of professionally made films will illustrate and provide historical perspective. Proficiency in drawing is not required. Lec 2, Lab 3, Credit 4

2065-378 Optical Printing
2065-398 Film/Video Community Service
Allows the student to take film or video production experience to the community. Community organizations and groups make contact with film and video majors with the assistance of the faculty community service coordinator for work toward the production of media necessary to the group's outreach, educational or promotional efforts. A final written report, screening of the community project and meeting with the faculty coordinator help the student evaluate the production and the experience. (2065-203) Credit 4

2065-413 Senior Project Seminar
A required course for third-year film/video majors and the prerequisite for 2065-507, Senior Project. Students discuss and generate a written plan for their senior film and/or video projects and select an adviser from among the film/video faculty. (2065-432) Class 2, Credit 1

2065-427 Introduction to 2-D Computer Animation
Students in this course create a motion picture portfolio consisting of a number of short animation projects composed on a digital computer. Lectures discuss a number of topics, both aesthetic and technical, related to the field. Lec 3, Lab 4. Credit 5

2065-431 Introduction to 16mm Sync Sound
An introduction to all aspects of professional film production. Students produce short projects while learning basic shooting and editorial procedures along with equipment handling and maintenance. (2065-203) Class 3, Lab 4, Credit 5

2065-437 Advanced Animation Workshop I
Students are given the opportunity to produce, either singly or in small groups, a motion picture with sound using an animation technique or combination of techniques of their own choosing. Students may elect to take this course for one or two quarters, depending upon the dimensions of the project. (2065-427) Lab 4, Credit 4

2065-441 Drawing Animation: Dynamics
Three different courses in drawing for animation are offered. Each course provides a different focus. The courses do not need to be taken in sequence. This course focuses on the dynamics of drawn animation. Students explore the use of acceleration and deceleration, squash and stretch, maintaining volume, anticipation, secondary action, overlapping action, paths of motion, follow-through, and exaggeration. A variety of examples of drawn animation will be screened in class. Gesture drawing from live models may be included. (Figure in Motion or permission of instructor) Studio 6, Credit 3

2065-442 Drawing Animation: Sequences
Three different courses in drawing for animation are offered. Each course provides a different focus. The courses do not need to be taken in sequence. Flexibility is provided for students at different stages of development. This course focuses on structuring the shots in a scene. Students learn how to break a scene into shots. They develop the shots into a sequence. They storyboard the sequence. They learn to compose the frame for action and to juxtapose one shot against the next. Students learn to use exposure sheets to plan out animation. They animate short sequences using acquired skills. A variety of examples of drawn animation will be screened in class. Gesture drawing from live models may be included. (Figure in Motion or permission of instructor) Studio 6, Credit 3

2065-443 Drawing Animation: Characters
Three different courses in drawing for animation are offered. Each course provides a different focus. The courses do not need to be taken in sequence. This course focuses on character development for animation. Students produce character sheets. They explore different perspectives of the character drawing from the imagination. They use the characters in sequential frames of motion. A variety of examples of drawn animation will be screened in class. Gesture drawing from live models may be included. (Figure in Motion or permission of instructor) Studio 6, Credit 3

2065-444 Advanced Scriptwriting
A seminar in advanced scriptwriting. Problems related to structure, character development, dialogue, rewriting, cultural conventions, genre and style are discussed in detail while students work on a major writing project. (2065-343) Class 2, Discussion 4, Credit 4 (W)

2065-447 Experimental Animation Workshop
Directed towards experimentation and exploration with single-frame motion image making. Students investigate in creative conceptual and experimental investigation and processes to discover new expressions and techniques. This activity is not limited to film format, but may include performance, installation, video, computer imagery, fine arts and photographic processes, nontraditional sound presentation, live action and more. It is also an opportunity for students to involve acquired skills from other disciplines in the research and actualization of their experimental work. Students study past experimental animated works and examine the definition and pretext for the experimental approach, the connections and relationships of experimental works to art and the role of the experimentalist as discoverer and interpreter of new meaning. Lec 2, Lab 4, Credit 4

2065-452 Sound Recording
Specialized information and work in sound to give information and lab work beyond the regular course and to encourage the beginning of vocational-level work in sound. Each student prepares a mixed soundtrack to professional quality standards. Class 1, Lab 2, Credit 3 (F)

2065-454 Advanced Production Workshop: Script I
This course is for students who have written a one-act screenplay or have completed a sizable portion of a feature length script. Through a combination of class critiques and discussions, conferences, and readings, students will revise and complete their screenplays. (2065343 or consent of instructor) Lec 4, Credit 4

2065-457 Introduction to 3-D Modeling: Animation
Beginning modeling for animation in 3D software. Students learn modeling techniques that can be used in the 3D animation course as well as the techniques of digital cinematography that are used to create and light a 3D environment. (2065-331) Lec 2, Lab 4, Credit 4

2065-462 Advanced Sound Recording
Continuing the work in 2065-452 to include the decision level in the employment of various sound equipment and including more complex work in multi-track recording and mixing. (2065-452 or permission of instructor) Class 2, Lab 2, Credit 3

2065-466 Lighting Film & Video
This course will present the fundamental principles of lighting. For film and video production: The current methods and practices of lighting used in the motion picture industry will be explored through demonstration, lectures, and hands-on lab assignments. Lec 2, Lab 3, Credit 3

2065-469 Digital Video Post Production
A hands-on tutorial in using Avid Media Composer 1000s for Digital Video Post Production. Emphasis is on the three major stages of the process: digitizing/ DV file transfer, editing/mixing and writing back to a distributed media. Students learn how to edit, manipulate, add effects, mix, and composite their source material into a finished fine-edit product. Students use stock media for the exercises and then produce a short finished production of their own design. (2065-311 or permission of instructor) Class 4, Credit 4

2065-478 Introduction to 3-D Character Animation
An introduction to three-dimensional digital character animation. The basic principles of character animation and development will be addressed within the context of producing three-dimensional digital character animation. Students will produce a series of short 3D computer animations of digital characters using inverse kinematics as part of the learning process. Then they will produce a final short 3D digital character animation of their own design. Students will become familiar with a variety of techniques and applications. (2065-361 or permission of instructor) Lec 2, Lab 4, Credit 4

2065-498 Film/Video Internship
Provides the student with on-the-job experience in the field of film/video. The student seeks and acquires a school-approved internship position in a business or industry. The working environment provides the forum for learning more about the student's chosen career. A final interview with the internship coordinator assists the student in evaluating the experience. The coordinator should be the faculty member most familiar with the student's internship field. (Permission of internship coordinator) Credits 1-6 per quarter (F, W, S)
2065-507 Senior Project I
The student develops the pre-production planning and completes all major production work on the senior project, meeting weekly with his or her faculty adviser to discuss and devise production plans, screen rushes and revise production strategies. Course work includes budgeting and production economics; script breakdown, shot lists and visual organization; production scheduling, introduction to unit management; and production strategies. (2065-413 and departmental approval) Credit 6

2065-508 Senior Project 2
Work on the senior project continues into the post-production process. Course work includes post-production processes: editing, construction of soundtracks, sound mix, preparation of log for negative cutter and communicating with labs. (2065-507) Lec 1, Lab 6, Credit 4

2065-509 Senior Project 3
Students complete work on their Senior Project creating a release print version or other appropriate publishable material. (Fourth-year SOFA student, complete Senior Project I and II) Lec 2, Credit 2

2065-512 Senior Forum 2
This course is intended to accompany and complement the department’s Senior Project 2 course. All students in Senior Forum meet as a group to screen edited works in progress, discuss post-production problems, and plan jointly for the use of departmental production resources. (2065-511) Seminar 2. Credit 2

2065-513 Senior Forum 3
Completes the Senior Project; i.e., on-line editing and/or negative cutting, lab procedures, first trial print, film-to-video transfer, etc., as well as festival entries and distribution. In addition, the course covers producing, crew structure and production management and concludes with practical assistance in job seeking and life after RIT. (Senior standing and completion of Senior Thesis I and II) Credit 2 (S)

2065-550, 551, 552, 553 Special Topics
A seminar approach offered on demand when adequate numbers of students and faculty desire to investigate specialized topics not normally offered in the regular curriculum. Available to upper-level students. Credit variable

2065-599 Independent Study
A student-proposed advanced project sponsored by an instructor. Approval of the proposal by a faculty sponsor and the administrative chairperson of the school. Available to upper-level students with a GPA of 3.0 or greater. Credit variable (F, W, S, SU)

School of Photographic Arts

Fine Art Photography

2060-257 Still Photography I
In the first quarter students become familiar with the 35mm camera, processing and printing. The work is restricted to black-and-white photography. The aesthetics and basic understanding of photographic practice are covered. The second and third quarters deal with more advanced techniques and principles of photography. This series of courses is available for students who are not majoring in photography. Class 2, Lab 6, Credit 3

2060-258 Still Photography II
A basic studio course for the hobbyist or someone who occasionally uses photography in his or her work. Ideas for one- and two-person portraiture are discussed and explored in a natural (rather than commercial) manner. The idea of self-portrait also is discussed and explored. (2060-257 or a working knowledge of developing film and making black-and-white enlargements) Class 2, Lab 4, Studio 2, Credit 3

2060-259 Still Photography III
A one-quarter course in which students determine their own theme of expression using black-and-white photographs. (2060-257 or a working knowledge of developing film and making enlargements; 2060-258; permission of instructor) Class 2, Lab 6, Credit 3

2000-301, 302, 303 History & Aesthetics of Photography
Covering the history and aesthetics of photography from 1839 to the present, with special emphasis on the development of photographic seeing, and its related effect on other media. A survey of the numerous processes and how their development affected the image making of their particular period, i.e., daguerreotypes, collotypes, ambrotypes, etc. Slide lectures cover topics from surrealism and documentary to conceptual art and post-modernism. Class 3, Credit 3 per quarter

2000-311, 312, 313 Introduction to Fine Art Photography
The meaning and practice of photography in a fine art context is discussed by the faculty. Students create visual work informed by the lectures and reflective of their own personal interests and experience. During all three quarters, the work of relevant artists is surveyed in slide presentations. The courses may be supplemented by field trips to museums, galleries and artists’ studios (Photo I or suitable portfolio) Lec./Crit, 4, Credit 4 per quarter

2000-324 Photo Media Survey
Students experiment with 19th century processes such as Vandyke, cyanotype, glenn bichromate, and with image combinations and alterations such as collage, montage, hand coloring, Xerox, hand-coated emulsions, etc. Lectures introduce historical perspective on artists using these techniques and also feature demonstrations of various imaging systems and their integration. Class 1, Lab 4, Credit 3

2000-359 Digital Imaging: Artists
This course is intended for fine art students and others whose primary interest is in digital picture making within the art historical/contemporary context. Lectures and hands-on activities will permit each student to improve their skills and develop their idealization as digital artist/imagemakers. Demonstrations will facilitate learning software techniques and systems of working. Labs will provide 1:1 assistance to students with their technical problems. Slide/electronic image lectures will introduce contemporary and historic work by artist that is relevant to today’s picture makers. Students will be expected to produce at least one large-scale digital image during the quarter. Lec 2, Lab 4, Credit 4

2000-363 Avant-Garde & Creative Processes
This course will explore the essence of the myth that the artist is a precursor, a seer and that significant work is art that prepares for the future. Students will study how the major political movements of the twentieth century Capitalist, Democracy, Communism and Fascism give rise to the concept of subversive innovation among the avant-garde in Europe and America. The course will explore the role that photography plays in such avant-garde movements as Dada, Surrealism, Futurism, Photorealism, Pop Art, Conceptual Art, and Abstract Expressionism. Lec 3, Credit 3

2000-401, 402, 403 Photography as a Fine Art
The major emphasis is on the individual’s learning to identify and articulate a personal response to his or her environment through the medium of photography. Students design their own projects and work under the guidance of the professor. Traditional silver, as well as nonsilver, photography techniques may be utilized. (2000-311) Class 3, Field trip 2, Credit 4 per quarter

2000-411, 412, 413 Contemporary Issues
An examination of many thought-provoking and/or controversial issues in photography from 1950 to the present through a series of lectures, readings and discussions. Topics covered include post-modernism, genderism, pornography, censorship, altered images, connoisseurship and others. The course format allows review and exploration of such themes as the landscape, the nude, portraiture, conceptual art, trompe l’oeil and so on. Students prepare an oral debate or a written term paper. Class 2, Credit 4 per quarter

2000-463 Women & Visual Imaging
Students explore the nature of gender, its history and its implications in visual images. Students develop a working knowledge of the roles of women both as subjective content in images and as creators of values and ideas in the visual form. (Third- or fourth-year status) Lec 2, Critique 2, Credit 4

2000-464 Art Censorship
Students will analyze and debate the art and the issues propelling censorship in the arts beginning with the 1989 cancellation of the Mapplethorpe show by the Corcoran Gallery and continuing through the present debates. Students will view and discuss the art works of this period as well as historic art, ideas, and events that have generated censorial conflict. Students will investigate censorship in terms of the underlying, opposing social values that define American culture. (Open to third- and fourth-year students) Lec 4, Credit 4
Biomedical Photography

2061-001
Biomedical Freshman Seminar
Freshman seminar assists students with issues that are of major importance in their first year at RIT. It investigates how to learn, set goals and stay motivated and includes other issues of importance to young students beginning their careers at RIT. Additionally, areas of specific interest to scientific photographers, such as ethics and animal rights, are investigated. Class 1, Credit 0

2061-201
Biomedical Photography I
This is the first of a three-quarter sequence of study in the fundamentals of photography, with emphasis on the development of strong photographic skills as they relate to the principles of 35mm camera optics, choosing and using perspective, lighting and related aspects of darkroom skills. Principles of creativity, craftsmanship applied photographic theory as well as visual communication and presentation will be used to support the foundation theme of using cameras as a tool used in problem solving for technical and visual communications. Lec 2, Lab 4, Studio 3, Credit 4

2061-202
Biomedical Photography II
The second in a three-quarter sequence of study in the fundamentals of photography, with emphasis on the development of strong artificial lighting skills as they relate to working in the studio. Principles of creativity, craftsmanship, applied photographic theory as well as visual communication and presentation will be used to support the foundation theme of using 4x5 cameras. (2061-201) Lec 2, Lab 4, Studio 3, Credit 4

2061-203
Biomedical Photography III
The third in a three-quarter sequence of study in the fundamentals of scientific photography, with emphasis on the development of enhanced skills as they relate to working as a scientific photographer. Principles of creativity, craftsmanship, applied photographic theory as used in the presentation subjects matter relevant to the life sciences industry will be incorporated as part of the foundation for future biomedical photography experiences where appropriate. (2061-202) Lec 2, Lab 4, Studio 3, Credit 4

2061-221
Photography with Digital Technology I
This course explores the traditional experiences found in film photography with the sophisticated tools of the digital age. Students can experience photography approaches to the conceptual process required for the making of photographs as integral activities through the use of their imaginations, the selection of proper photographic tools and methods as they create visual solutions to assignments. Many of these solutions will include the use of equipment and techniques found in the world digital photography and its technology. Students will produce assignments that demonstrate the successful delivery of ideas through pictures in this class designed to support the new media students. Class 2, Lab 6, Credit 4

2061-276
Basic Photography for Scientists
This basic photography course for non-photo majors emphasizes theory, craftsmanship and visual communication based in technical photography Forensic, technical, biological, and other relevant subject matter; are incorporated into this foundation course. Students explore camera operation and lens selection, depth-of-field relationships, exposure meters and choosing and using films as well as the use of supplementary artificial light sources. Lec 2, Lab 4, Credit 4

2061-301, 302, 303
Biomedical Photography II
A three-quarter sequential course explores approaches and techniques that are required in the production of communication media used in the life sciences industry. The emphasis will be on placed on developing skills and approaches used in close-up photography as well as photomacrophotography. The course uses all formats as well as film and digital capture. In the winter students are exposed to illumination and optical considerations required to use a microscope. This quarter culminates in the production of an educational poster featuring a subject that has been researched using the microscope. Spring investigates the use of electronic flash as a light source found in the life sciences community. Students are exposed to ophthalmic photography, surgical photography, dental photography, environmental and close-up photography. Final project integrates images into an educational poster. (2061-203) Class 4, Lab 4, Credit 5
2061-311 Preparation of Biomedical Visuals I
The first course in a three-quarter sequence will study the basic principles required for the generation of effective visual communication specific to the life sciences industries. The emphasis will be placed on choosing and using the correct technology for visuals including aspects of fundamental design required in such a dynamic delivery environment. Assignments have been designed to emphasize the appropriate techniques for producing visuals, which exhibit effective design necessary for reproduction using either traditional mechanical or electronic methods. Class 3, Credit 3

2061-312 Preparation of Biomedical Visuals II
The second course in a three-quarter sequence designed to study the basic techniques required for the generation of effective visual support materials specific to the life sciences industries. The emphasis will be placed on creation of 35mm slides using copy, duplicating, and photomechanical as well as computer graphic methods. In addition students will be exposed to the operation of various audiovisual equipment. (2061-311) Lec 2, Credit 2

2061-313 Preparation of Biomedical Visuals III
The third course in a three-quarter sequence will study the basic principles for the generation of effective desktop publishing specific to the life sciences industries. The emphasis will be on choosing and using the correct technology for visuals including aspects of fundamentals design required electronic publishing. Students will specifically be exposed to core principles required to produce electronic pieces including effective resumes, posters, brochures and flyers. Assignments have been designed to emphasize the appropriate techniques for producing these visuals, which exhibit effective typography that is necessary for reproduction using electronic methods. (2061-312) Class 2, Lab 4, Credit 3

2061-316 Digital Media in Biomedical Photography I
Electronic media is quickly replacing traditional photography on many fronts in the life sciences industry. Digital Media in Biomedical Photography is a two-course sequence that explores all aspects of digital media from concept development through production of final product. The course will examine significant issues found in electronic imaging activities driven by budget, hardware, software and production issues. Students will execute practical assignments in the production of educational support materials found in a variety of digital media areas including image capture, processing, hard copy output, and color management. Lec 2, Lab 6, Credit 4

2061-318 Digital Media in Biomedical Photography II
This is the continuation of a two-course sequence that explores digital media from concept development through production of final project. The course will examine significant issues found in electronic imaging activities driven by budget, hardware, software and production issues. Students will execute practical assignments in the production of educational support materials found in a variety of digital media areas including: interactivity, on-line documents, digital posters, user interface design, Web site production, basic 2D animations, and speaker support materials. Lec 2, Lab 6, Credit 4

2061-354 Basic Ophthalmic Photography
Investigates proper patient management, camera and photographic techniques in ophthalmic photography. Diagnostic evaluation of ocular anatomy and physiology utilizing special cameras is presented. (2061-300 series or permission of instructor) Class 1, Lab 6, Credit 4

2061-357 Principles & Technology of Photo-Macrography
A condensed course in principles of photo-macrography. It examines the equipment involved with, the technical considerations necessary and the techniques involved in the photography of subjects 1:1 through 20:1 magnification. Lighting, optics, camera technique and various other considerations are evaluated in theory and practice. (Second-year or higher photographic status) Class 1, Lab 6, Credit 4

2061-361 Web Design Using Photography
Photographers have always communicated visually: the accessibility of the Web creates a potential audience of millions. This course explores the nature of the Web, Web sites, and the process of designing, building and maintaining these sites for business or other applications. Students will explore the use of images and media as they relate to the Web, including bandwidth and quality considerations. Interactivity, design, structure, viability, and the successful delivery of ideas will be emphasized. Some quarters this course is delivered through distance methodology and culminates in individual student Web sites as the course final project. Lec 2, Lab 4, Credit 4

2061-401 Audio Visual Production I
Design, creation and presentation of 35mm slide and 35mm slide/tape productions as applied to medical and scientific needs. Planning, researching, scriptwriting, production, revision, evaluation. Dissolve programming; graphics; combination of music, words and images. For biomedical photography majors only. (2061-303, strong still-photography background) Class 2, Lab 4, Credit 4

2061-402, 403 Advanced Photography in Biomedical Communications
Sophisticated and creative applications of photography serving the needs of the scientific community. Students explore a variety of specialized photographic techniques and a variety of philosophies. Assignments are performed that are similar to those encountered in biomedical and research institutes. (2061-303, basic color course) Class 2, Lab 4, Credit 4

2061-454 Intermediate Ophthalmic Photography
Intermediate Ophthalmic Photography goes beyond the shooting of retina fundus photographs or posterior segment photography and concentrates on interpretation of fluorescein angiography films and anterior segment photography. Additionally investigates external ocular photography, slit-lamp biomicrography, common corneal anatomy and diseases. (2061-354) Class 2, Lab 4, Credit 4

2061-455 Advanced Application in Ophthalmic Photography
Provides students with clinical experience in ophthalmic photography. Students work off campus in an ophthalmology clinic performing stereo fundus photography, fluorescein angiography, specular biomicroscopy, slit-lamp biomicrography and gonioscopy. The educational experience is balanced with the needs and tolerance of each patient involved, and represents an important clinical education necessary for diagnostic imaging. Students are responsible for their own transportation to and from site. (2061-354, 2061-552 and consent of the instructor) Class 3, Lab 2, Credit 4

2061-463 Imagine & the Microscope
This photomicrography course goes beyond the basics of imaging through a microscope. This course investigates optical enhancement techniques, video recording and motion stopping as well as specimen preparation in various applications as well as sample preparations. (2061-302 or 2076-412) Class 2, Lab 4, Credit 4

2061-499 Biomedical Photography Co-Op
Provides biomedical photographic communications students with on-the-job experience. The student seeks and acquires a school-approved co-op position in the health care industry. The working environment provides the forum for learning more about the student’s chosen career. A final interview with the co-op coordinator assists the student in evaluating the experience. Credit 0

2061-501, 502, 503 Photo Concentration
Investigating, planning, organizing and producing an audiovisual presentation, a learning package or an informational program for a biomedical communications client. (Completion of Biomedical Photographic Communications AAS degree requirements; at least one upper-division photo elective in media; permission of the instructor) Class 2, Lab 8, Credit 4

2061-550, 551, 552, 553 Special Topics
A seminar approach offered on demand when adequate numbers of students and faculty desire to investigate specialized topics not normally offered in the regular curriculum. Available to upper-level students. Credit variable 1-9

2061-599 Independent Study
A student-proposed advanced project sponsored by an instructor. Approval of the proposal by the department chairperson and the director of the school. Available to upper-level students with a GPA of 3.0 or greater. Credit variable 1-9

Photographic Arts

2067-200 Photography I
Photography I-JPHL/JPH A
An intensive lo-week summer course for students entering the transfer program in professional photographic illustration. This is the minimum photographic education needed for entry to second-year standing and replaces 2067-201, 202. Since this course is such an intensive offering, previous photographic experience is highly advisable. Class 10, Lab 20, Credit 12

2067-201, 202 Applied Photo I
An introduction to the major in applied photography that will give the student broad experience in various areas of photography to assist in making program decisions and practicing visual communications. The curriculum emphasizes both craft and visual problem solving Lec/critique 5, Lab/studio 4, Credit 6
2067-208 Introduction to Color A one-quarter course introducing color as a new element in making photographs. Offers a theoretical, technical and aesthetic foundation in color photography. The student gains familiarity with the materials through shooting assignments. Emphasis is placed on developing printing skills. (2067-201, 2067-202, or permission of instructor) Class 2, Lab 4, Credit 5

2067-263 Studio Light A lighting workshop course that uses visual exercises to teach student how to evaluate light conditions outside and control and reproduce those conditions in the studio. (2067-201, 202) Lec 2, Critique 2, Studio 4, Lab 4, Credit 5

2067-264 Introduction to Photography for Non-photo Majors An introduction to still photography-principles, methods, theory, and practice-for non-photography majors. This course will familiarize the student with the basic skills of still photography. This is a non-darkroom course designed to introduce students to the operation of their camera, flash, and accessories; film selection and exposure variables; light, filters, and basic tone control. Photographic aesthetics/composition, history, contemporary artists, professional applications, and other non-technical aspects of photography will be addressed through weekly lectures and critiques of photographic shooting assignments. Students are required to have their own adjustable camera and flash unit. Each student will provide his/her own film and processing. For non-photo majors only. Class 4, Credit 4

2067-268 Visual Images: Source & Resource Considers ideas and modes of thinking that can influence the creation of pictures. It is designed around several thematic issues that allow the students to personally and creatively resolve visual problems associated with personal culture and history; photographic and non-photographic images; integration of aesthetics, ethics and values; ways of working; and discipline, structure and inspiration. Students are encouraged not only to think about pictures in a larger context but also to consider their personal relationships with the act of making photographic images. (Photo 1) Lec./Crit, 5, Credit 4

2067-273 Visual Inquiry Where do ideas come from, and how do you help them along? How do you solve visual problems, assignments, questions and curiosities? What is your method for coming up with unique visual solutions? This class is for those who like to write and trace ideas and their evolution. A journal is used as a forum for drawing, writing, collages, photographs and other things. We analyze the process we take in order to solve problems (visual and other types). We start with simple posed questions (curiosities) and evolve them into useful solutions (photographs). Lec./Crit, 6, Credit 5

2067-278 The Spiritual & Mystical Image Guides the student toward a tangible perception of a higher self that is compatible with our established perceptions of ourselves as artists. Three major areas to be integrated are self, intellect and spirit. Emphasis on realist and contemporary possibilities and self-discovery through imagination. Credit 5

2067-283 Introduction to Applied & Fine Art Concepts An interdisciplinary approach to the application of core skills in photography, stressing the similarities and differences between the fine art, advertising and journalism disciplines. The student has the opportunity to work with diverse faculty from these specialties. (2067-201,202) Credit 5

2067-288 Media & Society This survey of rights and duties of the media professional will look back at the historical and philosophical underpinnings of legal and ethical issues related to professional communication, current laws and ethical practices, and forward to future media technologies and how they might be shaped by these principles. Class 4, Credit 4

2067-300 BFA Photography II A concentrated 10-week summer course for students entering the transfer program in photographic illustration. Students must have had previous photography, design and an AAS degree (or its equivalent) from another institution. All selections will be verified by portfolio. This course is designed for exclusive admission to the complete third/fourth-year BFA program. (AAS degree or equivalent and previous photography and design) Credit 15

2067-301, 302 Applied Photo II Advanced applied photography in black-and-white and color with emphasis on craftsmanship, problem solving and visual communications. Major technical emphasis and introduction to studio electronic flash and large-format photography. Further emphasis is placed on the development of the student’s ability to apply creative thinking and contemporary techniques in executing meaningful and effective photographs. (2067-202) Class 4, Studio 5, Credit 5

2067-325 Introduction to Electronic Image Photography Lectures and hands-on activities will permit each student to discover the applications of electronic imaging for still photographers. In addition to photographic lab exercises, there will be lectures and presentations on the basics of these technologies and their applications, integration of the communications fields and an introduction to acquiring and presenting electronic images. Students will be expected to complete both electronic imaging tutorials and photographic assignments. (2067-201, equivalent, or permission of instructor) Lec 2, Lab 4, Credit 4

2067-363 Zone System & the Fine Print A one-quarter introduction to the fundamentals of the zone system and the fine print, using black-and-white photography. Purpose, technique and aesthetics of the system and printing are the content of the course. Emphasis is on large-format technique. (2067-201, 202) Credit 5

2067-364 Art Direction & Copy I A study of art direction and copywriting with emphasis on conceptual thinking as it applies to the photographic image. Some emphasis is placed on basic hand skills, i.e.; layout, type rendering and paste-up. Marketing principles and career possibilities are covered. (Photo student or permission of instructor) Lec 4, Credit 5

2067-373 Non-traditional Photo II An intense exploration of the possibilities for integrating the disciplines and thinking related to art, philosophy, culture and mythology with the production of images for use in advertising and editorial media. The approach is intended to inspire a more spontaneous and emotional form of expression by providing an opportunity to experiment with alternative processes and fine-art methodology in the broad context of commercial applications. (Second-, third-, or fourth-year status) Credit 5

2067-374 Non-traditional Darkroom Students produce a series of nontraditional photographic images while learning to utilize the darkroom as a primary tool in their expression. Course is an introduction to, and exploration of, alternatives to camera/lens photography. Not limited to in-camera paper negative photography, it also explores a variety of nontraditional photographic processes. Challenges the student to “leave the photographic tradition of representation and enter a broader area of creative control.” (2067-201, 202) Lec 2, Critique 2, Lab 4, Credit 5

2067-378 Photojournalism: Color Seminar An exploration of the aesthetic and technical evolution of color in photojournalism. Students research the work of contemporary photojournalists, experiment with a variety of color films to identify potential applications and complete a series of shooting assignments. Students produce personal portfolios of color photographs. (Second-, third-, or fourth-year status) Lec 2, Crit., 2, Field 5, Credit 5

2067-379 Photojournalism: Newspaper For students in, or curious about, a career in newspaper photojournalism. The content is both theoretical and practical. Students are required to shoot according to newspaper standards and needs on a weekly basis. In addition, students have the opportunity to shadow photographers and editors from the Gannett newspaper. Shooting sports, spot news, features and special essays is part of the course. Special processing and printing skills are covered as well as specialized camera and lens handling techniques. An excellent opportunity for those seeking to improve their portfolio for newspaper internship possibilities. (Permission of instructor) Lec 4, Lec./Lab 5, Credit 5

2067-383 Hand-Held Electronic Flash Flash photography provides a means of consistent and precise exposure control in the most demanding of lighting situations and/or in rapidly changing environments where many exposures of different views are necessary. Course is an introduction to the application and aesthetics of hand-held electronic flash photography for students wishing to further their knowledge, understanding and experience with hand-held electronic flash for small-format photography. Students produce a series of commercial or personal images while learning to use flash as an aesthetic tool. Students are required to have their own flash units. (2067-201, 202) Lec 2, Critique 2, Lab 4, Credit 5
A one-quarter business survey course for all applied department students but methods, self-promotion, bookkeeping, and legal aspects of business will be required for advertising photography majors. This course will cover business concepts necessary for the operation of a small studio or freelance business on a practical level, beyond the basics covered in Advertising I & II. Job search methods, self-promotion, bookkeeping, and legal aspects of business will be addressed. (Advertising Photography or consent of instructor) Lec 3, Credit 3

2067-451 Advertising & Fine Arts
This course will examine aspects of different traditions, styles and movements of the fine arts: painting, sculpture, dance, and theater. We will look at how these disciplines relate to images created for editorial and advertising art. The class will use these art forms to draw on for inspiration for the images we produce for this class, whether photographic or non-photographic. Field trips to local museums, theaters, and concerts will be funded by the individual students. (2067-412) Lec 2, Crit, 2, Studio 5, Credit 5

2067-453 On-Location Photography
Covers the techniques and equipment necessary to complete an on-location assignment for a corporate report, brochure or audiovisual presentation. Students are encouraged to meet professional standards while developing a strong personal point of view. (2067-302 or equivalent) Credit 5 (SU)

2067-457 Propaganda & Photography
PROPAGANDA-A-GAN-DA, N. The particular doctrines or principles propagated by an organizational or concerted movement. The dissemination of information from a particular point of view. Course examines photographs and films that have very often shaped our view of the world and explores the positive and negative effects of such images. The period from the Crimean War to the present is covered. Special emphasis is placed on World War II, where propaganda was used in the extreme for both good and evil. Still photographs, some of which are "faked" and including those in the professor's collection, are studied. The larger question explored is "Why were these photographs faked?" Included in lectures are the historical and cultural forces behind the work. Class 4, Credit 4

2067-458 Food
Instruction covers basic means and methods of preparing a food photograph: shopping for the proper ingredients; consultation and working the prop and food stylist/chef/home economists; how the approach to a food photograph differs from other photographic assignments. Students learn the basic methods of preparing food for photography as opposed to food for eating. Assignments range from simple raw-ingredient shots to pour shots to building a sandwich to making a salad. (Third- or fourth-year status) Credit 5

2067-460 Personal Document
A combination studio and location class that introduces the student to the concepts of using personal experience and lifestyle as information and inspiration towards image making and taking. A variety of issues are dealt with, such as public and personal events, cultural, social, personal and intercultural symbols. The written word and its effect and influence on the photograph are covered. Layout and presentation and their effects on the audience the work is designed to serve are included. (2067-302, or permission of instructor) Credit 7 (SU)

2067-461 Editorial Photo
The editorial photography course is an investigation into images that are created to illustrate magazine articles. Students will have the option of working with still life, people, location, documentary, and/or fashion photographs. Current events will be discussed for picture possibilities. Emphasis will be on producing multiple or sequential images that relate to social and political issues. Historical and contemporary studies of layout and style will be examined. (2067-412) Credit 5

2067-462 Portrait I
Lectures are devoted to discussion of the current portrait approaches in commercial, documentary and fine-art photography. Because a successful portrait requires a synthesis of aesthetic and technical skills, the technical elements of portraiture including camera, lighting, background and posing are discussed and demonstrated. Students work primarily with studio strobes and are encouraged through weekly assignments and critiques to apply what they've learned. Credit 4

2067-463 Portrait II
Encourages the student to develop a personal approach to portrait photography through a term-long, self-directed project. Critiques are held weekly to provide feedback on work in progress. (2067-462) Credit 4

2067-464 Contemporary Portrait Photography
Brings together the skills of the first two terms and encourages the student to develop a personal approach to portrait photography through a term-long, self-directed project. Class 2, Studio 4, Credit 4 (S only)
2067-465 XI-Summer Advertising Core Advertising and editorial projects are required assignments in this course. Also required as class assignments are projects of personal artistic expression. This course gives a student an opportunity to learn and build a portfolio of work at an intensified rate with daily (Monday through Friday) association with the instructor. Each student will have personal use of a studio for the entire course duration. Marketing techniques and analysis of the student’s portfolio are included. (Completion of second year or instructor’s permission) Class 3, Credit 10 (SU)

2067-468 Self-Promotions & Business Contemporary marketing and business issues for the free-lance photographer are the principal subjects and include calculating a creative fee, client negotiations, invoicing and copyright for assignment and stock photography, and client research methods for photographers. Students will create self-promotion materials, including mailers, business cards and letterheads. (Junior or senior status or instructor’s permission) Lec./Critique 4, Credit 4

2067-469 Environmental Portraiture A course involving the selection of various persons as subjects and learning of their skills and specialties. The student interviews subjects, defines what they do and where they do it, and designs a photograph that shows the viewer the subject’s job or avocation and the environment in which the subject operates. Lec 1, Critique 2, Studio/Location 4, Credit 5

2067-470 Studio Photography/Still Life Still life as a medium for creative expression and visual experimentation. Assignments cover a range of professional experiences particular to advertising and editorial still-life photography. They introduce the student to the tools and techniques of studio still-life photography and to concepts of visual communication inherent to the still life. This course is an alternate to the first quarter of Advertising I core course and also may be taken as a photo elective. (Third-year status or permission of instructor) Credit 7 (SU)

2067-471 Advertising & Design Photography This course teams photographers and graphic designers in the production of advertising layouts/campaigns, posters and brochures. Students have the option of working with still life, people, location, and/or fashion photography. Current advertising campaigns will be discussed and analyzed. Emphasis will be on producing multiple or sequential images. Historical and contemporary studies of layout and style will be examined (Advertising Photography or permission of faculty) Credit 5, Lec 2, Crit, 2, Studio 5

2067-473 Portfolio Development Designed for third- and fourth-year students who are ready to present themselves and their work to potential employers. Weekly assignments move the students closer to their stated goals. To begin this course students must be able to answer two career-related questions: what is it they wish to do, and where do they wish to do it? Credit 5

2067-475 Digital Photography Hands-on activities will permit each student to investigate the applications of applied digital and hybrid photography. In addition to studio, location and laboratory exercises, there will be presentations on trends in contemporary imaging. Students will be expected to capture images using both digital and film-based cameras, process digital images, create picture files and participate in project-related critiques. (Available to senior, junior, or graduate students; 2067-325 or equivalent or instructor’s approval) Lec 2, Critique 1, Lab 4, Credit 5

2067-478 Archietctural Photography An image-making course for advanced students with a specific interest in architectural exterior and interior photography. Assignments are designed to emphasize the development and exploration of professional techniques and styles. (Completion of the second-year courses or permission of the instructor) Class 4, Credit 4

2067-483 Introduction to Fashion Photography This is a course that provides advertising students with basic experience in fashion photography. Students will be taught the concepts, aesthetics, and processes of fashion work, casting and directing the model, studio and location shooting, and ethics (especially with regard to women’s issues). Digital imaging, including both capture and post production, will form an integral part of the course. (Applied Photo II) Lec/Crit 4, Lab 5, Credit 5

2067-488 People Illustrated Studio Advanced study of people photography focusing on the development of the photographic and social skills of the studio photographer. Learning to orchestrate the tangible and emotional studio environment is a major goal of the course. Studio lighting, camera techniques, and the selection and direction of models are the subjects of lectures, demonstrations and assignments. Many of the course assignments are open ended, which gives the student freedom to generate independent projects. (2067411,412 or permission of the instructor) Credit 5

2067-491 Problems & Projects/Still Life The still life as a medium for creative expression and visual experimentation. The tools and techniques particular to the still-life photographer are investigated and demonstrated. The special manipulations possible-choice of lighting, perspective, camera angle, surface propping, set riggings, multiple exposure, front projection and other esoteric techniques are discussed, demonstrated and applied to assignments. Projects are in a practical vein, relating to actual typical problems that are part of a working studio’s daily life. Assignments investigate the overlapping relationships of fine-art, editorial and commercial still-life photography. Large- and small-format cameras may be used; assignments are done both in and out of the studio. Credit 5

2067-498 Picture Researching Introduction to current practices, procedures, techniques and resource employed in picture researching for collections, exhibitions, publications, motion pictures and television. Students explore the ways pictures are used in communications, establish what pictures are needed for specific projects, discover how they may be found (or produced) and make arrangements to obtain reproduction rights. A case history in picture researching and a personal picture researching project are produced by each student. (Third- or fourth-year status) Credit 5

2067-512 Visual Media Capstone Students will submit a proposal for a major project incorporating their visual media focus as well as photography. Faculty from two disciplines will sponsor the research and development of the final project. This activity will be a demonstration of the students’ capabilities in their chosen areas of study. The project will be designed, developed and completed during the quarter. Completed projects will constitute a substantial portfolio piece. (12 credits of Visual Media focus) Lec 4, Credit 4

2067-550, 551, 552, 553 Special Topics Advanced topics of current or special interest, varying from quarter to quarter, selected from the field of professional photographic illustration. Special topics announced in advance. (Not offered every quarter. Consult coordinator of the professional photographic illustration program.) Credit variable

2067-554 Advanced Digital Photography This lecture and laboratory course gives the advanced student of electronic photography an in-depth look at the tools and techniques of electronic imaging systems. Students pursue research projects in either the visual communications or technical aspects of electronic photography. The student’s final project is self-defined. (2067-475 or permission of instructor) Class 2, Lab 3+, Credit 4

2067-563 Senior Thesis Photography & Design Brings together graphic design and photography students. The students are expected to create a small campaign on a subject of their choice. The purpose of the course is to establish a collaborative atmosphere between the two groups and to introduce them to the process of work on the outside. Teams set up during the sixth or seventh week of the winter quarter. Enrollment is limited. (Fourth-year status and permission of instructor) Credit 5

2067-564 Advanced Color Seminar Portfolio preparation course concentrating on the shooting, structure and presentation of a body of work. Completion of a four-part thematic assignment and three individual photographic assignments are required. All assignments are non-specific in nature, allowing, the student the freedom of his or her own direction. As part of the course requirements, each student chooses an appropriate portfolio format and begins to show a portfolio. (Fourth-year standing or instructor’s permission; 2067-412 or instructor’s permission) Class 3, Studio 4, Credit 4 (W, S)
2067-572 Advertising Workshop
A course structured to emulate the daily operations of a professional photographic studio. Only those students who seriously aspire to be professional photographic illustrators should enroll. The assignments are specific and vary from straight commercial to advertising illustration. In addition, the student is encouraged to specialize in the direction of his or her own natural abilities and interests. (2067-411 or faculty approval) 2 hr Lec, 2 hr Critique, 5 hrs Studio, Credits 5

2067-573 Mac workstation Installation & Maintenance Training students to install and maintain Macintosh-based imaging workstations. Selected components of hardware and software maintenance are taught. Students receive hands-on instruction in the use and installation of peripheral devices, virus checking and disk maintenance software, system and application software installation, and safety procedures. Methods of hardware operation and optimization are included. (Survey of Computer Science 0602200, Beginning Electronic Photography 2067-454, instructor approval [significant experience with Macintosh]) Lec./Lab 4, Credit 3

2067-574 Portfolio Seminar Illustration
Provides an opportunity to reshoot and refine existing ideas, create new images and develop self-promotion materials. Emphasis is on presentation, editing and organizing a personal portfolio. Interviews, your first job, defining the marketplace/commercial photography, billing/pricing and how to take charge of your career in photography are a few of the topics discussed. Students have an opportunity to share their work with professional designers, art directors and photographers. Credit 5

2067582 Production Photography
Production photography is the storytelling side of professional illustration. Assignments for the course will include recreating historical events, inventing futuristic scenes, creating believable period pieces—all with an emphasis on narrative illustrations. In the process we’ll introduce the skills, concepts, and preparation required to shoot still-life and model photography in the studio and on location. Students work as production teams to simulate the professional production environment. (Advertising I or permission of faculty) Lec 1, Studio 5, Critique 2, Credit 5

2067-588 Advanced People Illustration
An advanced study of people photography, this course is a continuation of People Illustration/Studio with emphasis on the continued development of the photographic and social skills of the studio photographer. Another specific subject is the development of the photographer’s portfolio. Course assignments are open ended, giving the student freedom to generate independent projects specific to his/her portfolio format. A completed mini portfolio is required for successful completion of this course. (2067-488) Lec 2, Critique 2, Lab 5, Credit 5

2067-593 Advanced Still Life
Introduces the student to advanced concepts of visual communication and studio techniques. Students are encouraged to work on projects in which they have a significant interest. Assignment content is open to student input. Work is shared to various audiences for criticism and experience. Evaluation of these criticisms is an important part of the experience. The tools and techniques of studio still-life photography are discussed and demonstrated as appropriate. (Photojournalism I or Advertising I or permission of instructor) Lec 2, Critique 2, Studio 5, Credit 5

2067-599 Independent Study
A student-proposed advanced project sponsored by an instructor. Approval of the proposal by the department chairperson and the director of the school. Available to upper-level students with a GPA of 3.0 or greater. Credit variable 1-10

Imaging Systems Management

2068-401 Photo Image Production Systems
Introduction to photographic print production systems, principles of operation and quality control. Systems introduced include minilab and production color printers. *Color printing theory, tone reproduction, color theory, RA-4 and C-41 processes quality control and production problems are addressed in this course. (Laboratory Science 2076-211) Class 2, Lab 6, Credit 4

2068-402 Digital Image Production Systems
Introduction to digital image processing and production systems and their operation and control. Through theory and laboratory production problems students will learn the basic principles of scanning, film recording, digital color printing, image data storage, and transmission and image database management. (2076-211) Class 2, Lab 6, Credit 4

2068-403 Custom Image Services
Introduction to custom photographic printing techniques, including enlargement, printing of color transparencies including duratrans, internegatives and slide duping; and image restoration via digital techniques. (2068-402,421) Class 2, Lab 6, Credit 4

2068-421 Photo Processes & Quality Control
A variety of analytical methods of studying the chemical and physical factors required to obtain data, adjust and maintain photographic processing systems in a control status are explored through theory and experiment. Students also are introduced to the tools and techniques of statistical process control and quality management to document and find solutions for problems. (Science with lab, 1016-319) Class 3, Lab 3, Credit 4

2068-423 Statistical Quality Control
The basic concepts of quality control and the role of applied statistics are addressed using examples from the photographic and graphic arts industries. Examples include the use of such statistical tools as process capability studies, conformance to specification analysis, control charts, and attribute and acceptance sampling plans. (2068-513) Credit 4

2068-464 Color Transparency Process Techniques
The fundamentals of a slide duping, internegatives from slides and reversal processing for small laboratories are addressed in this course. The emphasis is placed on establishing a quality control system including densitometry, chem mix, control charts, chemical control, use of quality control computers, and the operation of several types of processing equipment. Class 2, Lab 4, Credit 4

2068-499 Imaging Management Co-op
Provides the student with industry experience in the photo processing and imaging industry. Department staff assists the student with placement. &credit 0 (F, W, S, SU)

2068-501 Finance for Imaging Management
Financial analysis for imaging and managers. Project costing, financial analysis, time value of money, project evaluations, evaluating leases and other methods of financial analysis are applied to management issues in imaging industry business (0101-301, 0106-320, 2068-513, 1016-319) Class 3, Credit 4

2068-502 Imaging Services Market Projection
The production project studies of marketing imaging services addressed in this course will enhance the student’s ability to integrate marketing, visual communication design and project management techniques. A variety of marketing and production problems that require the broad range of their technical imaging and marketing management skills will be planned and executed by the students in this course (2068-501, 0105-363) Class 3, Credit 4

2068-511 Imaging Systems Techniques
Introduction to the theoretical and practical principles of the operational components used in imaging laboratory production systems. The objective is to achieve an understanding of the electrical, optical and mechanical components of photographic and digital production systems in order to develop skill in basic diagnostic procedures and equipment repair. (2068-403, 0606-411) Credit 2

2068-513 Operations Management for Imaging Services
This course will give the student the background necessary to address workflow analysis, facilities layout, production costing and planning, scheduling, project management, forecasting, and inventory management issues in an imaging service operations through lectures, case studies, and projects. (2068-402, 0102-430, 0101-302) Lec 4, Credit 4
Imaging & Photographic Technology

2068-550, 551, 552, 553 Special Topics
A seminar approach offered on demand when adequate numbers of students and a faculty member agree to study a subject not normally offered. Credit variable (F, W, S, SU)

2068-599 Independent Study
A student-proposed advanced project sponsored by an instructor. Approval of the proposal by department chairperson and director of the school. Credit variable 1-10 (F, W, S, SU)

2076-200 Photography I- JPH/JP HB
An intensive lo-week summer course for students entering the transfer programs in biomedical photographic communications and photographic technology. This is the minimum photographic education needed to gain entry to second-year standing and replaces 2061-201, 202, 203 and 2076-201, 202, 203. Since this course is such an intensive offering, previous photographic experience is highly advisable. Class 10, Lab 20, Credit 12

2076-201, 202, 203 Photography I
An intensive three-quarter sequence concentrating on the fundamentals of black-and-white and color photography. Beginning with 35mm and 4x5 cameras in the first quarter, small-, medium- and large-format cameras are utilized as problem solving tools. Professionally equipped upper-class studios are used all three quarters as well as black-and-white labs and color printing in the third quarter. Principles of creativity, craftsmanship, visual communication, presentation, preproduction planning and postproduction analysis are taught. Concepts learned in Materials and Processes of Photography are put to practical application in this course. Class 2, Lab 4, Studio 4, Credit 4 (F, W, S)

2076-210 Materials & Processes of Photography
An intensive 10-week summer course for students entering a transfer program in biomedical photographic communications or imaging and photographic technology. Replaces 2076-211, 212, 213. (Either this course or the 2076-211, 212, 213 sequence is also a requirement in the professional photographic illustration program.) Class 9, Credit 6 SU

2076-211, 212, 213 Materials & Processes of Photography
Basic study of the technology of photography, with the emphasis on applications to real photographic problems. Among the topics studied are image formation and evaluation, photosensitive materials, exposure, processing, tone reproduction, visual perception, color theory, variability, quality control and photographic effects. An approved independent study project is required. Class 3, Credit 3

2076-301 Photographic Sensimetry
This is a course about quantitative photographic image quality. The photographic imaging system from light source to output will be investigated, component by component, for the effects each has on system image quality. Students will characterize the image quality of various photographic components, such as exposure, film, paper, and processing. Input-output relationships for each component subsystem will be investigated. Component responses will be collectively used to determine system image quality (based on tone reproduction). Related topics in radiometry, photometry and color sensimetry will also be covered. (2076-211, 212, 213; 2076-201, 202, 203) Lec 2, Lab 4, Credit 4

2076-302 Photographic Chemistry
Provides both fundamental and advanced treatment of the photographic process at the molecular level. Light-sensitive emulsion chemistry and formulation, latent image theory and the associated dynamic processes, as well as developer formulation and mechanisms of chemical action, will be treated. Extension and comparisons to solid state and digital imaging processes and materials are investigated. An intensive laboratory component will emphasize application of concepts covered in lectures. (2076-211, 212, 213) Lec 2, Lab 4, Credit 4

2076-303 Photographic Optics
Provides both fundamental and advanced treatment of the optical processes related to image formation. Particular emphasis on photographic lenses and their element design, as well as mechanical considerations. Treatment will extend to reflective and fiber optics in the context of imaging and communications applications. An intensive laboratory component will emphasize application of classroom concepts. (2076-211, 212, 213, 1016-204, 1017-211, 212, 271, 272) Lec 2, Lab 4, Credit 4

2076-311 Color Photo Design
Exploration of color images through the application of visual elements principles and attributes, including the key and quality of light in the making of photographs. Color contrast and rendition and comparison of rendition with different photo materials. Class 2, Lab 4, Credit 4

2076-312 Color Printing Theory
Introduction to color theory and the exploration of color processes utilizing practical laboratory procedures and photographic color reproduction processes. Supports lectures and readings on applied color theory relating to both color photography and its applications. Important topics, in addition to color materials and processes, include color vision, psychological aspects of color, color terminology, and color measurement and specification. Class 2, Lab 4, Credit 4

2076-313 Color Measurement
Equipment and methods used for the measurement of color are discussed and demonstrated in the laboratory. Topics covered include light sources, radiometry, spectrophotometry, color order systems, color difference formulas and reproduction of color. Class 2, Lab 4, Credit 4

2076-376 Law Enforcement Photo II
Applies photographic techniques to the field of forensic science and law enforcement in general, Emphasizes the recording and visualization of visible and invisible evidence of criminal activities. Among the topics are the use of special techniques, such as infrared and ultraviolet luminescence for forgery analysis, close-up and photomacography, photomicrography of physical evidence, traffic accident and crime scene photography and the admissibility of photographs in courtroom proceedings. (Law Enforcement Photography 1 or one of the 2076-201, 202, 203 courses and/or, with permission of instructor, equivalent photo background) Lec 2, Lab 1, Credit 4

2076-381 Introduction to Photo for Publications
An introduction to the use of photography in specialized publications in science, industry, business and education. Skill-building assignments to improve competence and an introduction to the problems of the art director, editor, printer, layout person and writer form the basis of the course content. (2076-302, 2076-312 or the permission of instructor) Class 2, Lab 4, Credit 4

2076-382 Photolelectronics Workshop
Introductory hands-on course on basic photo electronic devices. Emphasis on understanding circuits, and learning basic electronic symbols, and principles while constructing project. Several assembly techniques will be introduced. Class 1, Lab 4, Credit 3

2076-401 Systems Design for Graphic Presentations
Study of the hardware and software needed to effectively design computer graphic images. Workstation lab provides hands-on experience with MS-DOS and Mac computer platforms. (2076-203) Class 2, Lab 2, Credit 3

2076-454 Holography I
Introduction to holographic and diffractive imaging. Lectures and demonstrations cover the materials, processes and applications of the fundamental types of holograms. Laboratory investigations provide hands-on experience with the construction and playback or transmission, reflection and white-light holograms. (Algebra and Physics) Class 2, Lab 4, Credit 4

2076-455 Applications of Holography
Gives the student a range of experiences in the production and evaluation of holograms as applied to scientific and engineering problems. Instruction is given in both the theoretical and practical aspects of holographic interferometry and nondestructive testing as well as holographic optical elements, computer-generated holography and coherent optical processing. The student is expected to have previous experience in basic display holography. (2076454) Credit 4

2076-461 Photo Instrumentation Seminar
The student is exposed to a variety of technical, industrial and/or applied photographic experiences in order to gain a fuller understanding of the scope of photography and its applications. Simplified approaches to photographic instrumentation applications are emphasized. Photographic topics are discussed that emphasize scientific and technical applications where photography functions as a tool of measurement and visualization of events that are beyond the range of normal photographic equipment. Class 1 VS, Lab 4, Credit 4

2076-464 Reversal Color Printing
A one-quarter course on reversal color printing procedures, printing and processing. Students gain proficiency in using reversal print material. (2076-312 or permission of the instructor) Class 1, Lab 4, Credit 3
2076-470 Summer Nature Photography
Students learn the fundamentals of professional nature photography as exhibited by such magazines as Audubon and National Wildlife. Topics include selection and care of equipment, use of strobes, adapting to adverse weather conditions, sale of photographs, copyright law, freelancing and more. Students are required to spend several hours per week shooting in natural environments. (2076-201, 202, 203 or permission of instructor) Class 4, Field 4, Credit 4 (SU only)

2076-471, 472, 473 Nature Photography
Students learn the fundamentals of professional nature photography as exhibited by such magazines as Audubon and National Wildlife. Topics include selection and care of equipment, use of strobes, adapting to adverse weather conditions, sales of photographs, copyright law, free-lancing and more. Students are required to spend a minimum of several hours per week shooting in natural environments. (Photo I or instructor’s permission) Class 4, Field 4, Credit 4

2076-479 Introduction to Scientific & Technical Photography
Introduction to special or unusual methods particularly useful in technical, scientific or research photography. Emphasis on the student’s development of innovative solutions to a set of photographic problems. Firsthand experience is encouraged by participation in simulated and simplified approaches to more complex specialties. Class 2, Lab 4, Credit 4

2076-481 Advanced Color Printing I
This course advances the student’s basic knowledge of color printing and assists in the preparation of a color portfolio. Students print their own portfolio-quality images using one or a combination of color-printing avenues. Students can print from negative using RA-4 processing and from transparencies using R-3 or the state-of-the-art P-4 Ilford process. The instructor works with each student to tailor his or her portfolio. Lec 2, Lab 5, Credit 4

2076-482 Advanced Color Printing II
This course provides advanced study in color techniques and theory in Relation to quality and creative use of photographic materials. The student may choose a section for intensive study such as the dye transfer process, quality control methods in printing and processing and special masking. (2076-312 or equivalent and permission of the instructor) Lec 1, Lab 6, Credit 4

2076-483 Advanced Color Printing III
This course provides advanced study in color techniques and theory in Relation to quality and creative use of photographic materials. The student may choose a section for intensive study such as the dye transfer process, quality control methods in printing and processing and special masking. (2076-312 or equivalent and permission of the instructor) Lec 1, Lab 6 Credit 4

2076-486 Photo Scanning Systems
The student receives instruction and makes photographs related to the ever-increasing application of scanning imaging systems in industry, especially as these relate to industrial, scientific and technical applications. Simplified and experimental equipment is demonstrated and used. Primary emphasis is on demonstrating a thorough understanding of the imaging processes and controls at work in systems such as peripheral, photofinish, strip enlarging and panoramic recording methods. (For upper-division 2076 students; others with permission of the instructor) Class 2, Lab 4, Credit 4

2076-487 Special Effects Photography
A course for practicing photographers and students in which photographic effects beyond those encountered in everyday situations in illustrative, commercial and advertising photography are discussed and practiced. Among the topics are stroboscopic, peripheral, scanning, high-speed flash, matte box and combination flash/tungsten photographic techniques. (For upper-division SPAS students) Class 2, Studio 4, Credit 4

2076-491 Introduction to Digital Imaging
Exploration of the technology, theory and application of digital image processing equipment and procedures, particularly in relation to photographic processes. Principles of input, output and computer processing techniques are covered. Applications such as contrast enhancement, edge sharpening and smoothing are included. (2076-210, 213, and 321 or 0002-208) Class 2, Lab 4, Credit 4

2076-492 Electronic Sensitometry
This is a course about electronic image quality. The student will work with and characterize the image quality for various electronic I/O devices such as scanners, electronic cameras, printers and other display devices. The electronic imaging system-from light source to output will be investigated, component by component, to discover the effect each component has on total system image quality. Input-output relationships for each component subsystem will be investigated, and the component responses will be collectively used to determine system image quality. (Materials and Processes, 2076-211, 213 Introduction to Digital Image Processes, 2076-491) Class 6, Credit 4

2076-499 Imaging & Photographic Technology Co-op
Provides students with on-the-job experience in the field of imaging and photographic technology. The student seeks and acquires a school-approved co-op position in business or industry. The working environment provides the forum for learning more about the student’s chosen career. A final interview with the co-op coordinator assists the student in evaluating the experience. Credit 0

2076-501 Introduction to Research
Prepares the student for the senior research project (2076.502). Cover basic research methods, including experimental design, unobtrusive evaluation and selection of an appropriate statistical treatment for the research to be conducted. Chi-square, two-tailed t test, linear regression and nonparametric statistics are taught as pertinent evaluation tools. (Senior status or permission of department chair) Class 3, Credit 3

2076-503 Non-Conventional Imaging Systems
A survey of imaging methods and imaging systems not normally encountered in other technical photography courses, including UV, IR, 3D, holography, electrophotography, x-ray and nonsilver applications. (For upper-division 2076 students, others with permission of the instructor) Class 2, Lab 2, Credit 3

2076-511 High-Speed/Time-Lapse
The theory and practice of photographic systems designed to permit analysis of events of very short or of extended duration. Included are operational characteristics of time-lapse cameras, sequencing and timing control devices, time magnification relationships. Also, characteristics of intermittent and rotating prism cameras, rotating mirror and drum cameras, synchronization system and timing controls and high-speed flash and spark gap systems. Students gain experience not only in the use of the basic equipment but also in proper planning, set-up and data reduction techniques through a series of practical experiments. (For upper-division 2076 students, others with permission of the instructor) Class 2, Lab 4, Credit 3

2076-550, 551, 552, 553 Special Topics
A seminar approach offered on demand when adequate numbers of students and a faculty member agree to study a subject not normally offered. Available to upper-level students. Credit variable

2076-560 Color Photo Workshop
A creative color workshop with the goal of producing visually effective color photographs. The student is free to choose from a large variety of assignment suggestions to structure a program individually as an independent study. Besides creativity, principles are produced on color transparency material. The last two weeks can be spent color printing for those wishing this experience. Students are expected to furnish their own small- or medium-format cameras and supplies. Large-format cameras and chemicals are furnished. Color film and paper expenses can be expected to run as high as $75 to $100. (Some previous photographic experience is required.) (Registration limited; permission of the instructor) Credit 9 (SU)

2076-572 Scanning Electron Microscopy
A proficiency-oriented course designed to train students to operate and take photographs with a scanning electron microscope (SEM). Emphasis is on understanding and optimization of the instrumental and photographic parameters associated with the SEM. (2076-211, 212, 213 and 2076-303 OR 2061-403 or consent of instructor) Class 2, Lab 4, Credit 4
2076-580 Imaging & Photographic Technology Senior Project
A two-quarter sequence of formal research investigation in areas of applied, technical or scientific photography, involving camera and/or laboratory-computer work. Project topics are selected and approved in course 2076-50X. The course requires students to plan, organize and execute a research project under the direction of a faculty adviser. Students are responsible for the technical content, experimental design, statistical analysis, accountability for accuracy and the integrity of the investigative process for the project. Requirements for completion of the course are an evaluation of experimental results and a formal written research paper; may include a formal oral presentation. (2076-50X) Class 2, Lab 2, Credit 2

2076-599 Independent Study
A student-proposed advanced project sponsored by a faculty member. Approval of the proposal by the department chairman and the school director required. Available to upper-level students with a GPA of 3.0 or higher. Credit variable

School of Print Media

Printing Management

2080-010 Co-op Orientation
Lectures will provide the fundamentals or job searching strategies using Tiger Job Connection and other tools. Students will have the opportunity to register for and use Tiger Job Connection to facilitate on-line job searching. Students will apply the theory of effective interviewing by the use of mock interviews. Students will apply the theory of effective resume writing by producing an approved resume for conventional and electronic dissemination. Guest speakers and SPM Senior class student panels will be used to enrich the learning experience. Credit 0

2080-031 Print Financial Controls
Plant accounting systems covered as a tool for improving production management decisions. Topics include accounting’s general philosophy and structure, inventory, equipment, job cost, standard cost and analysis of variance, budgeting and control techniques. Class 4, Credit 4

2080-032 Business Planning for Graphic Media
This course is designed to provide students with an understanding of graphic media business planning, specifically business, marketing, and production plans. Class 4, Credit 4

2080-317 Professional & Technical Writing
Development of writing skills for business correspondence, proposals, and reports. Consideration of techniques, organization, format, and style to achieve desired writing purposes. Consideration of the computer as a writing, editing, and re-writing tool. A formal technical research report is required. Class sessions consist of lectures on research techniques, documentation, audience analysis, writing formats as well as consideration of grammatical topics. (English Composition 0504-225, 0502-226) Class 3, Credit 3

2080-319 Electronic Communication in the Publishing & Printing Industry
Presentation of an overview of electronic communication theory and its application to the publishing industry. Provides the student with the background necessary to relate publishing requirements to electronic system parameters. Several practical newspaper systems are discussed. (1016-225, 226) Class 4, Credit 3

2080-323 Management Overview of the Graphic Communication Industry
Dramatic industry changes in technology, global competition, and economic restructuring are presenting today’s managers with difficult challenges forcing them to adopt new skills and attitudes. The focus of this course will be providing students with an understanding of the critical management functions and behaviors necessary to lead our industry to sustained growth and profitability. The purpose will be to prepare students for interacting with all levels of management as they begin their career and to understand many of the dynamics of the management process to which they will be exposed. Class 3, Credit 3

2080-357 Magazine Writing & Design
A discerning look at what goes on in the competitive world of magazine publishing. An overview of the history, the business side and the production side of the magazine industry. The first part of the course is devoted mainly to writing techniques and the second to design techniques. Class 3, Credit 3

2080-361 Women in Graphic Media & Publishing
A presentation of various topics related to issues specific to women in the graphic media and publishing industries. Topics have been selected that will prepare students to address the organizational and social challenges that exist in the industry structure. These challenges are due to the result of the long-term demographic make-up of these industries. As more women are obtaining key positions in graphic media and publishing, they are finding few role models available for support. Therefore, an integral part of the course will focus on industry demographics, legal implication, gender communication issues and perspectives from women in graphic media and publishing. Lec 3, Credit 3

2080-371 Estimating Practice
A detailed study of the practice of estimating that provides the student with the understanding that the final price of a printed job is the result of a series of planning decisions made during the estimating process. Development and the use of production standards and hourly rates are analyzed to determine their importance in the pricing structure of printed materials. (2080-302) Class 4, Credit 4

2080-372 Digital Print Marketing Concepts
This course is a presentation of topics relating to strategic marketing practices in the digital printing environment. Customer relationship marketing, digital print markets and market applications are discussed. Special emphasis on the creative aspects of digital printing. Class 3, Credit 3

2080-376 Introduction to Magazine Publishing & Management
A survey course that gives the student insights into the editorial, production, management, fulfillment and distribution processes vital to the success of any magazine. Leaders from the magazine publishing industry are invited to present three-hour guest lectures on a major aspect of their profession. Graduates of the publishing program who have attained prominence within the industry are often guest speakers, encouraging interaction between current and former students. Class 3, Credit 3

2080-383 Economics of Production Management
Microeconomic study of factors in printing production systems. Supply and demand theories are applied to printing system inputs and outputs. Class 4, Credit 4

2080-387 Supervision in the Graphic Arts
An elective course that studies the problems to be encountered in the proper supervision of employees in a non-union shop. Subjects covered are the nature of the employment relation, hiring, motivation and training, discipline, firing, layoffs, and plant closures. Class 4, Credit 4

2080-404 Dynamics of Personal Leadership in Printing
Prepare for more effective leadership and personal success in the printing industry. Provides guided opportunities for students to consider management principles in more practical, laboratory-type situations than can be provided in larger lecture-hall concept courses. The purpose is to facilitate applications of management theory in career-related situations. Helps students understand the nature of the printing industry and the personal skills, habits, etc., that will improve their effectiveness in an industry position. Class 4, Credit 4

2080-421 Labor Relations in the Graphic Arts
A study of the organization of the United States labor force through the impact of national legislation and the construction of the same by Supreme Court and National Labor Relations Board decisions. Study includes rights of employees, their free choice of representation, duty of fair representation, right to strike and future modification of the field. Class 4, Credit 4

2080-471 Computer Estimating Systems
A continuation of 2080-371 in which more complex jobs are estimated, including some on the web offset press. An introduction to the use of the computer in estimating: comparative estimates are made and graphed to determine optimum printing quantities for press size, imposition and cost. An analysis of computer estimating systems provides a guide to selection and use of these systems. (2080-371) Class 4, Credit 4
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2081-216</td>
<td>Graphic Software Tools 1</td>
<td>Laboratory introduction to computer basics and the fundamental tools and concepts of management software programs, specifically Microsoft Office. Features of Microsoft Office are stressed during structured laboratory time and homework assignments. Lab 3, Credit 1</td>
</tr>
<tr>
<td>2081-217</td>
<td>Graphic Software Tools 2</td>
<td>Laboratory introduction to the fundamental tools and concepts of page makeup software programs, specifically QuarkXPress. Features of QuarkXPress are stressed during structured laboratory time and homework assignments. (2081-216) Lab 3, Credit 1</td>
</tr>
<tr>
<td>2081-218</td>
<td>Graphic Software Tools 3</td>
<td>Laboratory introduction to the fundamental tools and concepts of paint software programs, specifically Adobe Photoshop. Features of Photoshop are stressed during structured laboratory time and homework assignments. The laboratory assignments reinforce imaging theory discussed in 2081-321, Imaging Technology. (2081-216 & 2081-217) Lab 3, Credit 1</td>
</tr>
<tr>
<td>2081-225</td>
<td>Design & Typographic Fundamentals</td>
<td>An introductory course that provides students with the underlying principles of two graphic arts disciplines: printing design and typography. Lab assignments on Macintosh computers are expected to be completed during the quarter. Class 2, Lab 3, Credit 3</td>
</tr>
<tr>
<td>2081-231</td>
<td>Graphic Communication Distribution System</td>
<td>The first part of this course will familiarize the students with conventional printing, the importance for good graphic communication from the design through the planning stages. The main emphasis is to familiarize the students with the mechanical limitations in print-production. In addition, they will gain extensive knowledge of the various methods and techniques used in finishing and distribution to package, customize and personalize conventionally printed products. The second part will familiarize the students with electronic distribution of graphic images using conventional and emergent techniques. Class 3, Credit 3</td>
</tr>
<tr>
<td>2081-254</td>
<td>Introduction to Graphic Communication Industry</td>
<td>This course introduces the graphic communications industry through history, culture, technology, markets and people. Establishes a basic understanding of the current industry by examining the technologies and the businesses that employ them. Students gain a comprehension of the various businesses and roles that exist in the industry. Class 3, Recitation 1, Credit 3</td>
</tr>
<tr>
<td>2081-255</td>
<td>Information Formatting</td>
<td>An introductory course designed to acquaint students with the function of the format designer within the graphic communication industry. The course will give the student necessary fundamental terminology associated with the typographic and design aspects of document formats. The basic considerations for process of reproduction, materials and distribution are incorporated into the discussions of the various kinds of traditional and digital document formats. Included in lecture information is a basic overview of the historical development of type design and document design. Extensive use of slides, overhead materials, handouts. Homework assignments are designed to reinforce assimilation of basic information contained in lectures. (2081-254) Class 3, Credit 3</td>
</tr>
<tr>
<td>2081-316</td>
<td>Ink & Substrates</td>
<td>Provides a basic understanding of the many different kinds of ink and substrates utilized by the various printing processes. Substrate composition, runability, printability and end-use requirements are covered, as well as the different formulation of inks and their drying systems. Requirements of each printing process and the printed product as they relate to the ink and substrate properties are covered. Class 3, Credit 3</td>
</tr>
<tr>
<td>2081-318</td>
<td>Imaging Technology</td>
<td>Introduces the student to fundamental imaging concepts that apply to the graphic communications industry. Provides the student with opportunities to develop basic digital imaging, skills in page capture processing, and its reproduction. Encourages the student to exercise communication and information search skills using a variety of media, both print and electronic. Class 3, Recitation 1, Credit 3</td>
</tr>
<tr>
<td>2081-358</td>
<td>Calligraphic Forms</td>
<td>An introduction to the basics of calligraphy; exercises in use of broad edge pen to develop primary forms of Italic, Roman Capitals and Urical letter styles. Evolution of letterforms. Consideration of historical origins of letters, use of basic tools, understanding of methods and disciplines stressed. Class 3, Credit 3</td>
</tr>
<tr>
<td>2081-359</td>
<td>Bookbinding</td>
<td>The introduction of digital printing processes has created the need to bind single or small quantities or printed products. This course is an introduction to the many different binding options, ranging from saddle-stitched pamphlets to hardcover books as well as the wide range of materials available. Contemporary procedures of finishing on-demand publications are part of this course. Students are encouraged to bring with them some personal projects for binding. No prerequisites are required. However, good manual dexterity is desired. Class 2, Lab 3, Credit 3</td>
</tr>
<tr>
<td>2081-361</td>
<td>Introduction to Book Production</td>
<td>Introduces the student to the many-faceted role of the production manager in a book publishing firm. Production’s role throughout the publishing cycle from manuscript to bound books is examined, and detailed emphasis is placed upon determining production and purchasing requirements for producing a variety of books, including trade books, textbooks, juveniles, and special editions. Class 3, Credit 3</td>
</tr>
<tr>
<td>2081-363</td>
<td>Introduction to Book Design</td>
<td>Intended to give the student an understanding of how a book designer functions within a book publishing firm. Emphasis is placed upon the many factors involved in book design decisions, including the important relationship between book design and book production in producing a readable, functional book. (2081-255) Class 2, Lab 3, Credit 3</td>
</tr>
</tbody>
</table>
2081-364 Flexographic Process
A fundamental course based on the principles and practices of the flexographic printing process. Emphasis is on the elements of the technology from artwork, plates, platemaking, inks and presswork. Lab offers hands-on work centered around plate mounting, ink formulation and presswork. Students print on a wide variety of presses. (2081-201 or 2081-254) Class 2, Lab 3, Credit 3

2081-366 Digital Imposition/Image Assembly
Until recently, preparing an image for printing was done manually, combining individual files to produce the desired final printed result. Nowadays digital imposition is commonly used. Yet digital imposition by computer is more complex than merely learning to use software design for the task. A thorough knowledge of the principles involved with manual image assembly and imposition fundamentals as well as printing processes and bindery procedures is required to successfully master digital imposition. This course will integrate all these aspects to give a true perspective on digital imposition. Lec 2, Lab 3, Credit 3

2081-367 Lithographic Process
This course details the equipment, materials, and people that create printed products with the lithographic printing process. Topics include the press and image carrier and their interactions with ink, fountain solution, and paper. Lectures and discussion provide the theory, and hands-on labs provide the practical experience. (2081-254) Class 2, Lab 3, Credit 3

2081-372 The Printed Book in America from 1640
Traces the main currents in the development of the printed book in America by closely examining the books themselves. In addition, close study of the lives and works of the great printers, their equipment and available technology, and their aesthetic viewpoints is undertaken to determine their impact on their times and their relevance for today. Class 3, Credit 3

2081-386 Gravure Process
Building upon the concepts of the gravure process learned in 2081-254, this course expands on the theories and practices of the gravure process including both cylinder imaging and press work and involving information on related techniques, equipment, materials and supplies. Includes lectures, class discussions, demonstration and laboratory exercises involving chemical etching of cylinders, electronic engraving of cylinders and four-color printing on a four-unit web press. Students gain experience in trouble shooting press problems through the use of a state-of-the-art computer-based gravure press simulator. Class 2, Lab 3, Credit 3

2081-401 Image Capture & Analysis
Introduces students to the theory and practice of image capture methodology for graphic reproduction of monochrome images and provides students with opportunities to perform fundamental lab experiments using conventional photographic and desktop systems to promote understanding of their operations and provide data for analysis. Students develop problem-solving and analytical skills using practical and scientific techniques to assess printability of monochrome images. (2081-321) Class 2, Lab 3, Credit 3

2081-409 Color Separation Systems
A study of basic color theory, materials and methods used in the printing industry for the reproduction of color originals. Emphasis is placed on color separation systems and the requirements for producing good-quality color. Topics include the major separation methods, color proofing, electronic color scanning, production methods, quality color and an introduction to color electronic prepress systems. (2081-401) Class 2, Lab 3, Credit 3

2081-414 Web Offset
An analytical study of the technological developments in web offset. Emphasis on the interrelationship of procedures, materials and equipment. Practical laboratory projects on a commercial four-unit perfecting web offset press. (2081-367) Class 2, Lab 2, Credit 3

2081-416 Quality Control In Graphic Art
Offers a practical approach to quality printing with emphasis placed on quality concepts, process capability study, process control, and defect prevention. Examines specifications and recommend practices, which exist in the printing and publishing industry. Discusses the importance of management commitment and involvement in understanding the need for change and making quality improvement programs work. Class 3, Credit 3

2081-454 Print Finishing Management
Planning for successful print finishing requires in-depth knowledge of production phases from design through prepress planning, press, bindery and distribution. Emphasizes cost-effective planning and management, based in part on an awareness of the mechanical limitations involved in print production and in a contemporary print-finishing environment. (2081-231) Class 2, Lab 3, Credit 3

2081-458 Ink & Color
Theory of light and color; basic theory of process color and corrections; theory and applications of CIE color system; color matching systems; theory and applications of various ink systems; correlation of ink properties with applications, with emphasis on relationships of ink to paper and press; study of ink problems and their correction. Class 4, Credit 4

2081-464 Advanced Flexography
An advanced course in the principles and practices of the flexographic printing process. Expanded lab time allows students to explore all phases of flexographic technology in greater depth. Students perform all operations necessary to print a large variety of substrates on all lab presses. Course includes class field trip and plant tours. (2081-364) Class 2, Lab 6, Credit 4

2081-467 Lithographic Press Problems
An advanced course in the theory and practice of offset presswork. Through lecture, discussion, reading, and preparing assignments the student gains a greater understanding of multicolor printing and problem solving models for use in trouble-shooting and managing. Through demonstration and hands-on laboratory experience the student will test press theory by applying it to a printed environment. The course expands on topics of the Lithographic Process course. (2081-367) Class 2, Lab 6, Credit 4

2081-486 Advanced Gravure
Building upon 2081-386, this is an advanced laboratory and technical course embracing the theories and practices of the gravure printing process. Classes include such new course content as electronic image processing, color proofing systems, quality assurance testing for packaging printing, press-side color testing, press design concepts and the economics of the gravure process. Includes lectures, laboratory exercises, guest speakers and plant tours. (2081-386) Class 2, Lab 3, Credit 3

2081-550, 551, 552, 553 Special Topics-Printing
Presents and investigates technological topics that normally are not covered in the regular curriculum on a one-time basis. Guest lecturers such as industry leaders as well as regular faculty are used to conduct this course. Topics to be covered are announced in advance. Credit variable 1-4

2081-561 Desktop Prepress Systems
Through an intensive study of the PostScript language and the algorithms used to convert PostScript programs into physical images, students learn how PostScript-based desktop publishing technology is used as a front end to graphic arts prepress systems. Students who take this course gain a deep understanding of how a modern desktop publishing system works and how to approach the task of establishing efficient workflows between clients who are originating work on desktop systems and the printer who deals with it in digital form. (2081-321) Class 2, Lab 3, Credit 3

2081-562 Color Perception & Measurement in the Graphic Art
Addresses principles of human color perception and its relationship with objective measurement methods including densitometry and CIE colorimetry. Discusses the role of visual perception and instrumentation methods of color measurement and communication in graphic arts imaging for color matching and pleasing color image reproduction. (2081-416) Class 2, Lab 3, Credit 3

2081-572 Electronic Color Imaging & Color Control
An analytical study of color reproduction systems will give data to consistently produce good-quality color reproduction. Requirements and capabilities of electronic prepress integrated color systems are studied to help in the design and management of a color system, whether it be in-house or part of a network. (2081-409) Class 2, Lab 3, Credit 3
2081-573 Typographic Workshop
Allows students to create and solve typographic problems of their own choice. Complete freedom is given, and experimentation is encouraged, giving students opportunities to satisfy their own objectives. Class 2, Lab 6, Credit 4

2081-574 Electronic Publishing
Introduces the student to the rapidly evolving concepts, technologies and practices in electronic publishing and provides him or her with opportunities to perform fundamental experiments with electronic publishing technology and to discover its application within the printing and publishing industries. Coverage includes PDF, interactive media, Web production, and traditional publishing. (2081-321 and 2081-561) Class 3, Credit 3

2081-576 Digital Print & Publishing
Introduces the rapidly evolving concepts, technologies and practices in digital printing and publishing. Provides opportunities to perform fundamental experiments with digital printing technology and to discover its application within the printing and publishing industries. Students complete projects on a variety of digital printing systems. (2081-321 and 2081-561) Class 2, Lab 3, Credit 3

2081-577 Test Targets & Evaluation in the Graphic Arts Imaging
Introduces the student to theories and practices of film-based as well as digital test targets for purposes of calibrating and characterizing components and, thereafter, to optimize the color reproduction process. Fosters the understanding and selection of appropriate test targets, such as microlines, halftone patterns, and pictorial images, along with color measurement tools for calibration and characterization of control settings in prepress and press operations. Discusses the role of test targets in graphic arts technology standards. (2081-416 and 2081-562 or instructor’s approval) Class 2, Lab 3, Credit 4

2082-201 Graphic Media Perspectives
This course introduces students to the graphic and new media industries by studying the history, culture, technology, markets and workers in these industries. It establishes a basic understanding of the current technologies by examining the industry and businesses that employ them. Students will gain a comprehension of the businesses and roles that exist in the various industries and see an overview of industry structures and the effect of new media. Lec 3, Credit 3

2082-207 Design Parameters in Graphic Media
Students will take a pragmatic approach to graphic design and production by building on their skills and knowledge from Typography and Design and Digital image Capture to develop projects for specific production processes. The fundamentals of media development and design will be emphasized for students to gain a better understanding of the variables implicit in production workflows. Production planning, tone reproduction, and color workflows will be discussed for e-media and print media publishing. Projects will allow students to optimize their work for specific publishing requirements as well as to optimize images and workflows for repurposing documents. Lec 3, Lab 2, Credit 4

2082-208 Digital Workflow
This course will allow students to develop a more cohesive understanding of digital workflow and the underlying responsibilities and decisions in preparing files for publishing. It will present real-world applications of digital workflows and include preflighting, font management, file compression, raster and vector file requirements, PDF workflow, networking and telecommunications, and advanced trends. It will provide students with the opportunity to develop critical thinking and problem-solving skills when dealing with workflows that link design/creative and production/publishing of a workflow in a cross-media environment. Lec 3, Lab 2, Credit 4

2082-211 Application of Typography & Design
This course is designed to introduce students to the typographic and design fundamentals that need to be considered for the creation of documents in print and electronic form. Students will learn the language of information formatting and develop documents utilizing typographic standards and pragmatic design. Publishing projects involve collaboration between creative, production, and marketing personnel. This course will sensitize students to the creative aspects of the process. Lec 3, Lab 2, Credit 4

2082-217 Graphic Media Publishing
This course surveys the development of new media in the publishing industry. Technological developments are placed in context with traditional operations and emerging demands in methods of content creation, design, storage, management, programming, distribution, economics, marketing, ethics, and regulatory environment. This course introduces the students to frameworks for understanding, explaining, and analyzing new media publishing. Students produce PDF and printed products as part of class projects. Lec 2, Lab 3, Credit 3

2082-218 Leadership & Interpersonal Communication
This course introduces the students to the skills and traits needed for successful leadership and managerial roles in the graphic media publishing industry. Dynamic change, driven by emerging new media and rapid technological displacement of old technology, coupled with evolving digital workflows, require future leaders to develop relations and critical thinking skills in order to cope with these challenges. The fundamental skills of mutual trust, developing vision, and communicating effectively will be emphasized during this course. Lec 4, Credit 4

2082-221 Digital Image Capture
Students will capture images with film, digital cameras, digital video cameras (still capture), and scanners for reproduction and distribution. The course will cover all aspects of image capture: origination factors, resolution, bit-depth, measured photography, image processing, and basic color theory. Students will develop a sensitivity to the role of images in publishing and the production requirements for handling them. Lec 3, Lab 2, Credit 4

2082-227 Document Publishing Languages
This course introduces the students to the languages of new media publishing: PostScript, PDF, HTML, SGML, and XML. Through lecture and projects, students will gain an understanding of page description languages (PDLs), portable document format (PDF) structure and workflows, SGML and HTML, and XML. Lec 4, Credit 4

2082-301 Digital Media Programming Concepts
This course introduces the students to scripting and advanced web-publishing concepts and programming environments. Style sheet creation and application, AppleScript, JavaScript and CGI/Perl approaches will be reviewed and developed. Students will develop an appreciation of programming concepts as applied to publishing. (2082-227) Lec 4, Credit 4

2082-303 Professional & Technical Writing
Students will develop writing skills for business correspondence, proposals, and technical reports. Consideration of techniques, organization, format and style based on appropriate research techniques and audience analysis will be discussed. A formal technical research report and presentation will be required. (Writing and Literature I & II) Lec 4, Credit 4

2082-307 High-Volume Publishing
Students are introduced to the media and workflows of high-volume publishing. Topics covered include both sheet-fed and web-fed lithography, as well as gravure, flexographic, letterpress and high-speed inkjet processes. Students will also study process control, industry standards and appropriate workflows for high-volume output through case studies and hands-on experiences. (Sophomore status) Lec 3, Lab 2, Credit 4

2082-311 Packaging, Solutions
This course introduces students to the package printing industry. Topics will include flexography, gravure, digital printing, platemaking, packaging substrates, color workflows, specialty coatings and production planning. Students will initiate projects that take a package from creation to final printed product production. (Sophomore status) Lec 3, Lab 2, Credit 4

2082-313 Graphic Media Distribution
In this course students gain extensive knowledge of the various methods and techniques used in finishing and distribution to package, customize and personalize conventionally produced products. Students will also study electronic distribution systems, distribute and print models, planning, scheduling, inventory management, and customer fulfillment. (Sophomore status) Lec 3, Lab 2, Credit 4

2082-317 Web Site Design for Graphic Media Publishing
This course enhances skills related to HTML, Web publishing and multimedia provided in previous coursework. Students will prepare and implement complex Web projects that take into account usability, accessibility, information layout, and graphics use in the context of the Web. They will examine and implement publishing projects that repurpose print-based materials as they develop a sensitivity to cross-media issues. (Sophomore status) Lec 3, Lab 2, Credit 4
This course presents a multidimensional model for comparisons of all major print reproduction processes and evaluation of their suitability for any given application. Students will learn the basic theory of image reproduction embodied in available analog and digital printing processes, and learn to identify the process origins of print samples. Additionally, students will learn which consumables are involved in the various processes and how they interact. Lec 4, Credit 4

2082-322 Materials & Process II
This course presents a multidimensional model for comparison of all major print reproduction processes. Students will develop a sophisticated understanding of the capabilities and suitable applications of each process. A press run for some of the processes will be carried out. The same test targets and images will be used for each press run. The students will see how to prepare the files for the different presses. An introduction to image quality will show the students how substrates, inks, toners, and presses/printers interact and how the final prints can be evaluated. Lec 3, Lab 1, Credit 4

2082-401 Digital Printing & Publishing
This course provides students with an opportunity to learn the principles and applications of digital printing. It will present the technical aspects of the major digital print engines and compare digital printing to conventional printing processes. The strategic use of digital printing will be emphasized from a digital workflow standpoint. Variable data personalization and on-demand printing will be studied from both technical and marketing perspectives. Lec 3, Lab 2, Credit 4

2082-407 Color Management Systems
This course addresses the science and technology of color management systems in achieving quality color reproduction and scanner-monitor and proof-print agreements. Students will study the role of color measurement for device calibration, device characterization, and building an ICC-based color management system. Students will also perform color image rendering from digital capture to print, investigate digital proofing and soft and remote proofing, and evaluate color management system performance. Process control tools and analysis of control targets will also be covered. Lec 3, Lab 2, Credit 4

2082-408 Graphic Media in Business Management
This course concentrates on the key disciplines required for the successful management of graphic media companies. Dramatic industry changes present managers with challenges to adopt emerging new media that require new skill sets and attitudes in order to cope with rapid technological advances, e-commerce, global competition, and economic restructuring. This course is designed to provide students with the knowledge and resources necessary to play a leadership role in the industry as their careers evolve. Lec 4, Credit 4

2082-412 Digital Video in Graphic Media
This course covers production aspects of digital video for Web and multimedia. The goal of this course is to introduce digital video tools for graphic media publishing. Students will learn basic skills and techniques of moving imagery, and how to grab still frames for print production, effectively plan, budget and implement video productions to meet client needs. Lec 3, Lab 2, Credit 4

2082-417 Database Publishing
This course introduces students to the technologies and workflows for database creation and management for the publication of print and new media. Topics include the process of building databases comprised of information and digital assets, building databases that support publishing business activities, building databases that produce targeted products, and employing database technology for personalized publications. Lec 2, Lab 2, Credit 3

2082-501 Industry Issues & Trends
This course presents a detailed analysis of the critical trends and issues related to the graphic media publishing industry. It provides an in-depth look at key technologies as well as business, environmental and regulatory issues. This course provides a capstone experience that contributes to the student’s fuller understanding of the graphic media publishing industry. This course prepares students for successful careers by providing insights into the nature and scope of the major challenges facing industry managers and leaders. Lec 4, Credit 4

2082-513 Graphic Media in Project Management
This course covers the creation, tracking, and management of cross-media publishing production. Topics such as project planning, choosing a target audience, storyboarding, prototyping and testing and designing for delivery media will be discussed. In-depth exploration of media integration, project production and materials organization will be covered. Students will examine case studies, plan potential projects, work in groups, create one or more prototypes of projects, and do other related activities. Lec 4, Credit 4

2082-518 Group Production Workshop I
This is the first of a two course sequence designed to engage graphic media publishing students in a group capstone production experience. The students will form teams that will design and complete projects sponsored by external clients. The course project spans two quarters. Lec 2, Lab 3, Credit 3

2082-523 Group Production Workshop II
This is the second of a two-course sequence designed to engage graphic media publishing students in a group capstone production experience. The students will form teams that will design and complete projects sponsored by external clients. Lec 2, Lab 3, Credit 3

New Media Publishing

2083-211 New Media Publishing
This course surveys the development of new media in the publishing industry. Technological developments are placed in context with traditional operations and emerging demands for changes in methods of content creation, design, storage, management, programming, distribution, economics, marketing, ethics, and the regulatory environment. The course introduces the student to frameworks for understanding, explaining, and analyzing new media publishing. (Restricted to new media majors) Lec 2, Lab 3, Credit 3

2083-402 Media Law
An investigation of the effect of digital communications technologies upon the evolution of basic legal principles of freedom of the press and intellectual property, as well as the related issues of government regulation of technology, competitive business practices, and taxation. Lec 3, Credit 3

2083-412 Digital News Systems Management
This course surveys the breadth and links of both conventional and digital news outlets but concentrates on magazine, newspaper, and online news services. The lectures focus on the various models, values, skills, and general management systems used in the industry, imparting the fundamental planning knowledge required of all managers in the news business. This course prepares the student for a more advanced co-op experience in a complex digital news organization. (0101-301 and 0104-420 or 0104441) Lec 4, Credit 4

2083-541 New Media Production Management
Multimedia production is examined from a more holistic viewpoint. Topics such as project planning, choosing a target audience, storyboarding, prototyping and testing, and designing for delivery media are discussed. A more in-depth exploration of media integration, project production and materials organization will be covered. Students will examine case studies, plan potential projects, work in groups, create one or more prototypes of projects, and carry out other related activities. (Intro. to Multimedia Production or instructor’s permission) Lec 2, Credit 4

2083-542 New Media Team Workshop I
The first course in a two-quarter sequence designed to engage the new media major in a capstone production experience. The instructor will form student teams that will design and complete new media projects sponsored by clients external to the class. (New Media Production Management or Dynamic Persuasion Design) Lec 2, Lab 4, Credit 4

2083-543 New Media Team Workshop II
The second course in a two-quarter sequence designed to engage the new media major in a capstone production experience. The instructor will form student teams that will design and complete new media projects sponsored by external clients. (2009-542) Lec 2, Studio/Lab 4, Credit 4
0501 Criminal Justice 244
0502 Language 246
0503 Foreign Languages 247
0504 Literature 251
0505 Fine Arts 254
0506 Humanities 256
0507 History 256
0508 Science, Technology & Society 258
0509 Philosophy 260
0510 Anthropology 262
0511 Economics 262
0513 Political Science 264
0514 Psychology 265
0515 Sociology 267
0516 Social Work 269
0519 Interdisciplinary-Aerospace 272
0520 Interdisciplinary-Liberal Arts 272
0521 Public Policy 272
0522 Women’s Studies 273
0535 Communication 273

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Criminal justice

0501-201 Seminar in Criminal Justice Covers the principles of the criminal justice system including relationship between system components, their effectiveness, and theories of operation and reform. Consideration is also given to specific problems within the branches of the criminal justice system. This seminar course involves extensive reading, writing and discussion. It acquaints students with key resources for criminal justice research. Required course for criminal justice majors. Class 4, Credit 4

0501-307 Investigative Techniques This course will familiarize the student with the different types and forms of physical evidence that a technician is likely to encounter in the investigation of the crime scene and relate innovations to the criminal justice system. Students will learn the primary methods used in crime scene, evaluation, search, recording, and collection of physical evidence. Basic techniques of crime scene management, photography, drawing and reporting will be instructed. Fingerprint and firearms identification as well as serology and trace evidence will be studied. Class 4, Credit 4

0501-400 Criminology A survey of the field of criminology with emphasis on major forms of contemporary crime, definition of crimes and criminality, theories of criminality, the extent of crime, criminal typologies and fundamental aspects of the social control of crime. Required course for criminal justice majors; option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. Class 4, Credit 4

0501-401 Research Methods I This course is the first of two courses designed to provide students with a foundation in social science research methods. Through lecture, discussion and activities associated with a research proposal, the different methods of conducting research are presented. Stress is on issues of deductive hypotheses from theoretical frame works, variable construction, experimental design, sampling methodology and the techniques and methods of data collection. Students will formulate a written research proposal that details a research question and the research design appropriate for addressing that question. Required course for criminal justice majors. (Junior status, two math and computer course requirements) Class 4, Credit 4

0501-403 Field Experience Internship practicum for all preservice criminal justice students. Gives the student first-hand experience in the field of criminal justice in an appropriate organization that meets the needs of the student’s career objectives. Students are closely supervised at selected organizations, developing their professional skills while learning about the organization’s programs and operations. The student also is required to attend a seminar that runs concurrently with field work. Required course for criminal justice majors. (Senior status) Class variable, Credit 8 (F, WI)

0501-405 Major Issues in Criminal Justice System Focuses on contemporary issues and topics not otherwise distinctly incorporated into established criminal justice courses. Concentrates on student discussion and interaction surrounding required readings on topics such as deviance, crime prevention, issues in the prosecution/court system, deterrence, female criminality and computer applications. Recent examples: art, theft and fraud; crime and justice in the community; international crime; legal controversies in the law; seminar in sexual violence; stress in the criminal justice system; substance abuse; terrorism and hostage taking; legal research. Professional elective course for criminal justice majors; option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. (Junior or senior status) Class 4, Credit 4

0501-406 Technology in Criminal Justice Develops understanding of theories, management processes, organizational capabilities, and social interactions related to invention, innovation, adoption, implementation, use, maintenance and diffusion of criminal justice technologies. Many categories of technology are considered, including tools and techniques used for: communications and records-management, transportation and traffic management, apprehension and detention of suspected offenders and criminals, crime scene investigations and laboratory forensics, telephonic and physical surveillance, and weapons and special assault and protection tactics. Students also consider the role of industry, government, and user groups in the historical development and legal/ethical use of specific technologies including less-than-lethal. Special attention is given to information technologies, which increasingly, are becoming the basis for innumerable criminal justice practices. Class 4, Credit 4

0501-409 Legal Rights of Offenders Presents an in-depth study of the substantive and procedural law as it affects convicted offenders. Considerable attention is devoted to the study of constitutional rights and privileges, how they apply to convicted offenders and the methods employed to secure these rights. Conviction and its consequences are explored, as is the sentencing process. The rights of prisoners, probationers and parolees are reviewed. In addition, the various remedies for enforcement of these rights are discussed, including direct appeals, collateral attacks and a variety of postconviction remedies. Intended for students who wish to pursue a career in law enforcement, corrections, probation, parole or law. However, students interested in some other aspect of criminal justice that deals with convicted offenders may find this course useful. Professional elective for criminal justice majors. (Junior or senior status) Class 4, Credit 4 (offered periodically)

0501-410 Management in Criminal Justice Presents the history and development of the principles of management and organizational theory as they have been applied to the field of criminal justice. This developmental evaluation is followed by a presentation of principles and philosophies of agency administration that have been effective in business, industry and government, with the intention of discussing their applicability throughout the criminal justice system. Required course for criminal justice majors. (Junior or senior status) Class 4, Credit 4

0501-412 Social Control of Deviant Behavior A professional elective for criminal justice majors interested in the major themes explaining the phenomena of deviance: how it is created and labeled through the process of definition and social sanction. Emphasis is on that type of behavior which elicits societal response in the form of criminal or civil action and on deviance from the perspective of the deviant who may be placed under some form of legalized social control. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-413 Civil Disobedience & Criminal Justice A survey of the philosophy and history of civil disobedience, civil disobedience as a political tactic, differentiation between civil disobedience and “ordinary crime,” civil disobedience and “noncriminals,” civil disobedience with the criminal justice system and the role of riot commissions. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)
0501-415 Domestic Violence
For social work students, criminal justice students and professionals who are interested in examining the problems related to domestic conflict and violence. Instead, is the study of the dynamics of violence as reflected in child abuse, incest, marital rape, spouse and parental abuse, and violence among siblings. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-440 Juvenile Justice
This course examines the concepts, theories and environmental influences of juvenile offenders, the impact of the judicial system, control and corrections on juvenile justice. The course also examines the role of forces in the system including police, courts, community resources and treatment. Required course for criminal justice majors; option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. Class 4, Credit 4

0501-441 Corrections
Introduction to the basic organizations of the correctional system, their functions and performance. Prisons, and jails, as well as probation and parole agencies, are discussed with the context of historical and contemporary philosophy. Attention also is focused on decision-making functions, the role of various personnel within the correctional system and the population of offenders within it. Strategies for rehabilitation and their effectiveness are surveyed. Required course for criminal justice majors, option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. (0501-400) Class 4, Credit 4

0501-443 Law Enforcement in Society
The social and historical origins of the various police systems; police culture, role and career; police in the legal system; social and legal restraints on police practices; police discretion in practice; police and community; police organization and community control mechanisms. Required course for criminal justice majors, option for minors and concentrators in criminal justice. Also may be taken as a liberal arts elective. (0501-400) Class 4, Credit 4

0501-444 Concepts in Criminal Law
Concepts in Criminal Law deals with the substantive and procedural criminal law. Emphasis will be placed on various concepts of criminal law and practice; how ideas, laws and community perception influence the criminal justice system. Characteristics of crimes against people and property will be examined; including: the nature of criminal conduct, intent, and causation. Required course for criminal justice majors, option for minors and concentrators in criminal justice. Also may be taken as a liberal arts elective. (0501-400) Class 4, Credit 4

0501-445 Minority Groups & Criminal Justice System
The goal of this course is to enlighten as well as sensitize the student and future professional on issues of minorities and criminal justice system. This course will investigate the role played by racial minorities-African Americans, Native Americans, Hispanic Americans, and Asian Americans-at each level of the criminal justice system in the United States of America. The experience of African Americans will be emphasized since this group has been the subject of more extensive research by criminologists and criminal justice practitioners. Professional elective course for criminal justice majors; option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. Class 4, Credit 4

0501-446 Women & Crime
Deals with women as criminal offenders and as victims of crime, focusing upon theories about women in crime, types of crimes committed, patterns of criminality and the treatment of women offenders. Also examines the role of women as law enforcement officers, judges, lawyers and correctional officers in the criminal justice system. Professional elective for criminal justice majors; option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. (0501-400) Class 4, Credit 4

0501-456 Courts
This course provides students with an understanding of the recognized functions of courts in the American criminal justice system. Jurisdiction, policies and procedures of courts in the administration of criminal justice, including trial and appellate courts, will be discussed. Courts will be examined at the local state and federal levels. Required course for criminal justice majors; option for minors and concentrators in criminal justice; and also may be taken as a liberal arts elective. (0501-400) Class 4, Credit 4

0501-460 Current Issues in Criminal Justice
This course involves year long participation in, and written critique of, a designated set of lectures, roundtables and presentations on topics covering current issues in criminal justice. The goal is to engage students in discussion of current issues with their peers and with experts in the field. Students must sign up in the criminal justice office for fall, and register for the course in the spring quarter. May be taken up to 4 times. Professional elective for criminal justice majors. (0501-400) Class 2, Credit 2

0501-505 Corporate/White Collar Crime
An examination of the extent and character of white collar crime with special emphasis upon business and professional deviance. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-506 Evidence
Provides the student with an awareness of what types of evidence are admissible in a criminal trial. Includes a comprehensive analysis of the most frequently used rules of evidence. There are readings and discussions pertaining to the nature of real, testimonial, hearsay and circumstantial evidence. Examines rules concerning the cross-examination of witnesses, exceptions to the exclusion of hearsay evidence, the burden of proof, the provinces of the judge and of the jury; legal presumptions and the exclusion of illegally obtained evidence. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-507 Computer Crime
This is a non-technical course that provides definitional, theoretical, and operational context for understanding computer-based competition, conflict, and crime in the information age. Students study the history, nature and extent of computer-related crime, as well as differing types of computer criminals, their motivations, and the methods they use to threaten, attack, compromise or damage physical and cyber assets. The course considers legal and regulatory environments and the impact these have on policies and practices related to ethics in the management of information security, data encryption, privacy, and numerous other special topics. Also considered are the inter-related roles and responsibilities of law enforcement agencies, the managed security industry, and the intelligence community to prevent and control computer-related crime, provide information security and privacy protections, and assure critical information infrastructure protection. Class 4, Credit 4

0501-510 Interviewing/Counseling in Criminal Justice
Instructs the student in the various accepted contemporary dynamics of interviewing and counseling criminal justice and related human services clients. Issues discussed revolve around counseling and supervision strategies and conflicts among agencies, between administrators and staff, and clients. Presents both the practical and theoretical aspects of these issues as well as devotes attention to surveying prospective counseling strategies for accomplishing desired behavioral change. Required course for criminal justice majors. (Junior or senior status) Class 4, Credit 4

0501-511 Alternatives to Incarceration
Analyzes possible sentencing options available to the criminal courts as well as preadjudicatory alternatives for both adults and juvenile offenders. The variety of dispositions evaluated include probation, parole, halfway houses, work-release, study-release, prison furloughs, pretrial release, preprobation alternatives (fines, suspended sentences, conditional discharge and a variety of diversion programs). Special emphasis is placed on a critical evaluation of the alternatives as they compare to the more traditional methods of handling offenders. Field trips and guest lecturers from nontraditional programs are typically included in the course. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-517 Comparative Criminal Justice System
Examines, in a comparative analysis, the criminal system and the penal methods of Europe and the United States. Major emphasis is given to the issues of intent, criminal responsibility, individual and public interests, purposes and modes of prevention, repression and punishment, methods of trial, punishment and pardon. Professional elective course for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-518 Criminal Justice & the Community
Examines the goals and objectives of agencies operating within, or directly related to, the criminal justice system in relation to mutual expectations, the community and the agency, in the delivery of services. Emphasis is on intergroup responsibilities in exploring strategies to reduce conflict in the solving of public problems within the sphere of the criminal justice system. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

Liberal Arts 245
0501-522 Victimless Crime
Familiarizes the student with many of the implications and ramifications of efforts to control "victimless" crimes. Discussions concentrate on the illegal activity associated with prostitution, gambling, homosexuality, drug use and pornography. The social, moral, legal and practical consequences of legalizing such activities are examined and evaluated. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-523 Crime & Violence
Focusses on the outbreak and increase of violent crime and criminal trends in the United States as one of the more serious realities in this century. In addition to an historical review, contemporary problems are explored, covering such topics as violence in the streets, terrorism, riots, vigilantism and the role of various criminal justice agencies in attempting to control these problems. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-526 Seminar in Criminal Justice & Public Policy
A critical analysis of some of the current issues, problems and concerns in the area of law enforcement; emphasis on basic police functions in regard to the courts, corrections and the community. Conflicts between theory and practice are examined and analyzed, and future trends in law enforcement are explored. Required course for criminal justice majors. (0501-443, junior status) Class 4, Credit 4

0501-528 Theories Crime & Criminality
A comprehensive survey of historical and contemporary theories of the causes of crime. Included are theories that derive from biological, psychological, sociological, geographic, economic, and political perspectives. Development of criminological theory reviewed; fundamental distinctions between classical and positivist theories and between theories of crime and criminality discussed. Required course for criminal justice majors. (0501-201) Class 4, Credit 4

0501-529 Public & Private Safety
Examines, through survey techniques, the complex problems confronting business and industry in the protection of assets. The use of electronic and nonelectronic anti-intrusion systems and other hardware is examined and evaluated. Safety and accident prevention, health hazard prevention methods, and fire prevention and control also are examined. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-536 Seminar in Security
For seniors completing criminal justice degree requirements with a concentration in security, focuses on critical issues, problems and concerns in the area of security that are not otherwise covered directly or in depth in established security courses. Topics are expected to vary from offering to offering. Professional elective for criminal justice majors. (0501-400) Class 4, Credit 4 (offered periodically)

0501-541 Research Methods II
This course is the second of two courses designed to provide students with a foundation in social science research methods. Through lecture, discussion and activities associated with a research project, emphasis is placed on the creation of null hypotheses, identification of the relationships among variables, establishment models, and analysis of data using both parametric and nonparametric statistics. The required research projects typically include data gathering and coding procedures, entry of the data to a file, the use of application software (e.g. SPSS, MINITAB, SAS) and preparation of a final report. Required course for criminal justice majors. (0501-400) Class 4, Credit 4

0501-542 Honors Research
For students interested in research applications beyond basic scientific analysis and design. Included in the course are advanced statistical techniques of criminal justice data and qualitative field methods. Three projects are required. First, an analysis of a multi-group design experiment must be performed using an available criminal justice database. Second, an ongoing qualitative field study must be completed utilizing classical observation methodology. Third, the student must complete a draft of a formal research proposal for a sponsoring agency. A group field visit to the research foundation is included in this assignment. The course is in seminar format and includes case discussion and method critiques. Only students who have taken scientific methodology and research methods should apply to this course. Professional elective for criminal justice majors. Class 4, Credit 4

0501-599 Independent Study
A combined student/faculty-member effort on a chosen topic beyond the normal sequence of course selections. It provides the qualified, self-motivated student with a creative orientation the opportunity to develop an autonomous and personal sense of academic growth and achievement. Class variable, Credit variable

0502-100 Basic Writing
This course develops minimal entry-level college writing competencies prerequisite for Writing and Literature I. The credits earned do not comprise part of the student's normal liberal arts general education curriculum, nor may the course be substituted for Writing and Literature or English Composition. Class 3, Credit 3

0502-110 Written Communication II
This first course in a two-quarter basic writing course sequence for NTID supported students develops the writing skills necessary to complete Writing and Literature I and II successfully. It serves students who need additional time to meet RIT's freshman writing competency requirements as well as students who need to develop skills prerequisite to Writing and Literature I. It focuses on the conventions of expository essay writing and critical reading. Registration by permission of the Department of Liberal Arts Support. Class 4, Credit 4

0502-301 College Writing
This course sequence develops minimal college-level writing competencies. The credits earned, however, may not comprise part of the student's normal liberal arts curriculum. Furthermore, this sequence may not be substituted for English Composition. Class 1, Credit 1 (offered quarterly)

0502-443 Written Argument
Seeks to develop in students the language and reasoning skills necessary to create responsible and effective written arguments. Part of the language communication concentration and minor, and may be taken as an elective. (0504. 226 or equivalent) Class 4, Credit 4 (offered regularly)

0502-444 Technical Writing
Provides knowledge of and practice in technical writing style; audience analysis; organizing, preparing and revising short and long technical documents; designing documents using effective design features and principles, and format elements; using tables and graphs; conducting research; writing technical definitions, and physical and process descriptions; writing instructions; and individual and group editing. Required course for communication majors and may be taken to fulfill a language communication concentration and minors, communication minor, or as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

0502-445 The Evolving English Language
What makes the English language so difficult? Where do our words come from? What is a challenge for native speakers to master English grammar? This course surveys the development of the English language from its beginning to the present to answer such questions as these about the nature and flexibility of the English language. Designed for anyone who is curious about the English language. May be taken as a professional elective for communication majors, and is part of the language communication concentration and communications minor. May be taken as a liberal arts elective. (0504-226) Class 4, Credit 4 (offered occasionally)

0502-446 Writing Technical Manuals
Develops in students those skills necessary for designing, writing and editing long technical manuals. Special emphasis is given to graphics and page layout. Students enrolling should have command of concise English prose. May be taken as a professional elective for communication majors, and is part of the language communication concentration and communications minor. May also be taken as a liberal arts elective. (0504-226) Class 4, Credit 4
0502-449 Worlds of Writing
This course offers a diverse range of written assignments, including personal narrative, research and analysis, oral histories, documentary studies, and literary interpretation. Accompanying the written assignments are selective readings on the life adventures of a famous physicist, investigations into the Challenger explosion, documentary narrative, oral history and photography on the world of work, holocaust survivor memoirs in comic book form, selected short stories and poems, as well as videos and other media. The course focuses on the social context of language, on issues of representation, and how language shapes our understanding of reality. Part of the language/communication concentration and minor; also may be taken as an elective. (0504-226) Class 4, Credit 4 (offered regularly)

0502-450 Advanced Composition
Builds on the writing skills developed in Writing and Literature I and II (0504-225 and 226) or equivalent. Neither a remedial course nor a technical or business writing course. Advanced Composition is designed for the student who wants to develop writing skills beyond the level attained in Writing and Literature II. Part of the language concentration and also may be taken as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

0502-451 Creative Writing: Poetry
An exploration of the techniques of writing poetry in both open and closed forms. Professional elective for professional technical communication majors. Part of language concentration; the creative writing minor; also may be taken as a liberal arts elective. (0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

0502-452 Creative Writing: Prose & Fiction
An exploration of some of the most important contemporary techniques of prose fiction in the short story form. May be taken as a professional elective for communication majors, part of the language communication concentration, the creative writing minor; and also may be taken as a liberal arts elective. (0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

0502-453 Advanced Creative Writing
Students who have completed Creative Writing or who have satisfied the instructor (normally by presentation of a writing sample) of their readiness to undertake the course are given an opportunity to explore in depth a literary genre, subject or theme chosen by the individual student in conference with the instructor. The acceptability of the student’s project is determined on the basis of its intrinsic literary merit and its potential value to the student’s development as a writer. May be taken as a professional elective for communication majors; part of the language communication concentration, the creative writing minor; and may be taken as a liberal arts elective. (0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

0502-454 Newswriting
Practicum in basic techniques of newswriting and gathering for the daily press. Emphasis is primarily on writing for the print media and on frequent writing against a deadline. May be taken as a professional elective for communication majors and is part of the language communication concentration and communications minor. May also be taken as a liberal arts elective. (0504-226) Class 4, Credit 4 (offered occasionally)

0502-455 Writing the Self & Others
“To know oneself better through others and to know others better through oneself” is one writer’s view of the ultimate aim of education and is an appropriate description of the intent of this course on focused autobiographical writings and modest oral history projects. This course emphasizes the reflective process of memoir writing, moving from short exercises into longer, peer-reviewed papers, as well as the constructive aspect of oral history through listening, transcribing, and editing. Students also read from culturally diverse published memoirs and oral histories, study theoretical concepts of narrative and oral history, and view photographs and films. Our purpose is to expand, through writing, an awareness of the complexities of such old human practices as telling and listening to stories about our lives. Part of the language concentration and minor; also may be taken as an elective for liberal arts. Class 4, Credit 4 (offered regularly)

0502-524 Communication & Documentary Film
An examination of the documentary film and video as case studies in communication media. Focuses on film techniques used as argument, persuasion, propaganda and reconstruction of reality. Such elements as director, subject, shooting style and editing techniques are analyzed in terms of message, purpose and audience. PTC elective. (0504-226) Class 4, Credit 4 (offered occasionally)

0503-400 American Sign Language I
This is the first course in a three-course sequence. This sequence is a study of the origins, nature, and development of American Sign Language (ASL) and its variants, as used by the deaf population of North America. Integral to the courses is a study of the linguistic structure of ASL and the nature of signing as a linguistic modality. Prerequisite for the ASL concentration. This course may be taken as an elective. Class 4, Credit 4

0503-405 Beginning Arabic I
Beginning Arabic I, in the SILP program, introduces students with no prior knowledge of the language both to leventine Arabic and to modern standard Arabic. Arabic I builds the foundation skills in speaking, listening, writing, and culture, with emphasis on conversation. Arabic I or equivalent proficiency is the prerequisite for the Arabic language/culture concentration. May also be taken as an elective. Class time is determined at orientation meeting first day of quarter. (Permission of SILP coordinator is required.) Class 2, Credit 4

0503-408 Beginning Chinese I
This course is designed for beginners, with little or no prior study of Chinese. The course introduces students to the sounds, basic sentence structures, and the writing system of Mandarin Chinese. Pinyin, the phonetic translation system for students, is taught and required throughout the course. Students learn to read and write Chinese characters. Emphasis is on developing listening and speaking skills as well as building a vocabulary based on the ideographic Chinese characters. Chinese I is a prerequisite for the Chinese foreign language/culture concentration. May also be taken as an elective. Class 4, Credit 4

0503-412 Beginning German I
Beginning German I is the first course in a three-course sequence. The sequence provides students without prior exposure to the language with a sound basis for learning German as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. The sequence also acquaints students with contemporary culture and life in the German-speaking countries. This course may be taken as the prerequisite for the German language/culture concentration; the German language/culture and the German language minors; and also may be taken as an elective. Class 4, Credit 4

0503-420 Beginning Japanese I
This is the first course in the first year sequence desired for students with no prior exposure to Japanese. It provides a sound introduction to the language as it is spoken and written today. A strong emphasis is placed on oral proficiency, and the appropriate use of language in Japanese society. Hiragana and Katakana Syllabaries are also taught for written communication. The course is a prerequisite for the Japanese foreign language/culture concentration and minor. It is also a prerequisite for the KIT/RIT summer program in Kanazawa, Japan. The course may also be taken as an elective. Not open to students with prior Japanese instruction. See instructor for placement. Class 4, Credit 4

0503-424 Russian I
Russian I, in the SILP program, builds the foundation skills in speaking, listening, reading, writing, and culture, with emphasis on conversation. For students with no prior experience in the language. Russian I or equivalent proficiency is the prerequisite for the Russian language concentration. May be taken as an elective. Class time is determined at orientation meeting on first day of quarter. (Permission of SILP coordinator is required.) Class 2, Credit 4

0503-425 Russian II
Russian II, in the SILP program, focuses on the development of functional competence in speaking, listening, reading, writing, and culture, with emphasis on conversation. Part of the Russian language/culture concentration. May be taken as an elective. See SILP coordinator if this is your first RIT Russian course. Class time is determined at orientation meeting on first day of quarter. Class 2, Credit 4

0503-426 Russian III
Russian III, in the SILP program, works on further development of functional skills in speaking, listening, reading, writing, and culture, with emphasis on conversation. Part of the Russian language/culture concentration. May be taken as an elective. See SILP coordinator if this is your first RIT Russian course. Class time is determined at orientation meeting on first day of quarter. Class 2, Credit 4
Beginning Arabic IV, in the SILP program, continues more intermediate-level development of functional skills in speaking, listening, reading, writing, and culture, with emphasis on conversation. May be part of the Arabic language/culture concentration. See SILP coordinator if this is your first RIT Arabic course. Class time determined at orientation meeting first day of quarter. Class 2, Credit 4

Beginning Arabic V, in the SILP program, continues more intermediate-level work in all skills, including conversation, with increased work in reading and writing. May be part of the Arabic language/culture concentration. May be taken as an elective. See SILP coordinator if this is your first RIT Arabic course. Class time determined at orientation meeting first day of quarter. Class 2, Credit 4

Beginning Arabic VI, last of a six-course sequence in Arabic language in the SILP program, does advanced-intermediate level work in all skills, including conversation, with increased work in reading and writing. May be part of the Arabic language/culture concentration. May be taken as an elective. See SILP coordinator if this is your first RIT Arabic course. Class time determined at orientation meeting first day of quarter. Class 2, Credit 4

Beginning Spanish I is the first course in a three-course sequence. This sequence of courses provides students with a basic foundation in all skills in Spanish (speaking, listening, reading, writing, culture) through intensive practice in a variety of media. Course I is for true beginners, and it (or an equivalent proficiency) is a prerequisite for courses II and III. This course may be taken as the prerequisite for the Spanish language/culture concentration and the Spanish language/culture and Spanish language minors. It also may be taken as an elective. See SILP coordinator if this is your first RIT Spanish course. Class time determined at orientation meeting on the first day of quarter. Class 2, Credit 4

Beginning French I is the first course in a three-course sequence. The sequence of courses provides students with a basic foundation in all skills in French (speaking, listening, reading, writing, culture) through intensive practice in a variety of media. Course I is for true beginners, and it (or an equivalent proficiency) is a prerequisite for courses II and III. This course may be taken as the prerequisite for the Frenchlanguage/culture concentration and minor and also may be taken as an elective. Class 4, Credit 4

Beginning Chinese IIThis course follows Beginning Chinese I. Knowledge of Pinyin is required. The focus continues to be on developing listening and speaking skills, with an increasing emphasis on reading and writing in Chinese ideographic characters. Chinese II is part of the Chinese concentration and also may be taken as an elective. (0503-408) Class 4, Credit 4

Beginning Chinese IIIThis course completes the first year level Chinese, continuing work in listening and speaking, and increasing work on reading and writing Chinese characters. Pinyin is also used. By the end of the first year of coursework, students will have studied 800 Chinese characters. Chinese III is part of the Chinese concentration and also may be taken as an elective. (0503-451) Class 4, Credit 4

Intermediate Chinese IThis course begins the second-year level of Chinese study. Knowledge of the Pinyin system is required for the purpose of pronunciation. The course continues to focus on developing communication skills (speaking and listening), with an increasing emphasis on reading and writing in ideographic characters and expanding vocabulary. Includes study of culture. Part of the Chinese concentration and may be taken as an elective. (0503-452) Class 4, Credit 4

Intermediate Chinese IIThis course continues the second-year level study of Chinese. Grammatical structures will be reviewed. Communication skills (speaking and listening) are the focus and special emphasis will be given to expanding vocabulary and reading and writing characters at some length. Pinyin study for pronunciation practice continues. Includes study of culture. This course is part of the Chinese concentration and also may be taken as an elective. (0503-453) Class 4, Credit 4

Intermediate Chinese IIIFollowing Intermediate Chinese II, this course continues the grammar review, the focus on communication skills (speaking and listening), expansion of vocabulary, and more lengthy reading and writing of characters. Pinyin study for pronunciation practice continues, Includes study of culture. By the end of the second year of coursework, students will have studied 1600 characters. This course is part of the Chinese concentration and also may be taken as an elective. (0503-454) Class 4, Credit 4

Beginning Russian I, in the SILP program, continues with intermediate-level development of functional skills in speaking, listening, reading, writing, and culture, with emphasis on conversation. Part of the Russian language/culture concentration. May be taken as an elective. See SILP coordinator if this is your first RIT Russian course. Class time is determined at orientation meeting on the first day of quarter. Class 2, Credit 4
Beginning French II is the second course in a three-course sequence. The sequence provides students without prior knowledge of the language with a sound basis for learning French as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. Students study contemporary culture and life in the French-speaking countries. This course is part of the French foreign language/culture concentration and minor and also may be taken as an elective. (0503-435) Class 4, Credit 4

Beginning French III is the third course in a three-course sequence. The sequence provides students without prior knowledge of the language with a sound basis for learning French as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. Students also study contemporary life and culture in the French-speaking countries. This course is part of the French foreign language/culture concentration and minor and also may be taken as an elective. (0503-464) Class 4, Credit 4

Intermediate French I is the first course of a three-course sequence at the intermediate level. Prerequisite is one year of college level French or its equivalent. This sequence provides students with the tools necessary to increase their ability to function in French. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the French foreign language/culture concentration and minor and also may be taken as an elective. (0503-466) Class 4, Credit 4

Intermediate French II is the second course of a three-course sequence at the intermediate level. This sequence provides students with the tools necessary to increase their ability to function in French. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the French foreign language/culture concentration and minor and also may be taken as an elective. (0503-467) Class 4, Credit 4

Intermediate French III is the final course of a three-course sequence at the intermediate level. This sequence provides students with the tools necessary to increase their ability to function in French. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the French foreign language/culture concentration and minor and also may be taken as an elective. (0503-468) Class 4, Credit 4

Beginning German II is the second course in a three-course sequence. The sequence provides students without prior exposure to the language with a sound basis for learning German as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. The sequence also acquaints students with contemporary culture and life in the German-speaking countries. This course is part of the German foreign language/culture concentration; the German foreign language/culture concentration and minor and also may be taken as an elective. (0503-472) Class 4, Credit 4

Beginning German III is the third course in a three-course sequence. The sequence provides students without prior exposure to the language with a sound basis for learning German as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. The sequence also acquaints students with contemporary culture and life in the German-speaking countries. This course is part of the German foreign language/culture concentration, the German language/culture and minors and also may be taken as an elective. (0503-473) Class 4, Credit 4

Beginning German I is the first course of a three-course sequence at the intermediate level. Prerequisite is one year of college-level German or its equivalent. This sequence provides students with the tools to increase their ability to function in German. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the German foreign language/culture concentration, the German language/culture and minors and also may be taken as an elective. It is also required for international business majors concentrating in German. (0503-474) Class 4, Credit 4

Intermediate German II is the second course of a three-course sequence at the intermediate level. This sequence provides students with the tools to increase their ability to function in German. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the German foreign language/culture concentration and minor and also may be taken as an elective. (0503-475) Class 4, Credit 4

Intermediate German III is the third course in a three-course sequence at the intermediate level. This sequence provides students with the tools to increase their ability to function in German. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the German foreign language/culture concentration and minor and also may be taken as an elective. It is required for international business majors concentrating in German. (0503-476) Class 4, Credit 4

Intermediate German I is the first course of a three-course sequence at the intermediate level. Prerequisite is one year of college-level German or its equivalent. This sequence provides students with the tools to increase their ability to function in German. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the German foreign language/culture concentration, the German language/culture and minors and also may be taken as an elective. (0503-477) Class 4, Credit 4

Intermediate German II is the second course of a three-course sequence at the intermediate level. This sequence provides students with the tools to increase their ability to function in German. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the German foreign language/culture concentration and minor and also may be taken as an elective. (0503-478) Class 4, Credit 4

Intermediate German III is the third course in a three-course sequence at the intermediate level. This sequence provides students with the tools to increase their ability to function in German. Communicative activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course is part of the German foreign language/culture concentration and minor and also may be taken as an elective. (0503-479) Class 4, Credit 4

Contemporary French Culture Course examines the role of culture as manifested in everyday French life and face-to-face interactions. Students will observe and discuss German customs, attitudes, values, and patterns of behavior in their native setting. Course is offered only as part of the Marburg Summer Study Program. Registration is limited to program participants. Liberal arts elective, French concentration and minor course. Class 4, Credit 4

Beginning Japanese II is the second course in the first-year sequence designed to 11 students with no prior exposure to Japanese. It provides a sound introduction to the language as it is spoken and written today. A strong emphasis is placed on proficiency and the appropriate use of language in Japanese society. Students continue to learn how to use language in real-life situations for different communication purposes. The course is a prerequisite for the KIT/RIT summer program in Kanazawa, Japan. It is part of the Japanese foreign language/culture concentration and minor and may also be taken as an elective. Students must know Hiragana and Katakana to take this course. (0503-420 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Beginning Japanese III is the third course in the first-year sequence designed for students with no prior exposure to Japanese. It provides a sound introduction to the language as it is spoken and written today. A strong emphasis is placed on proficiency and the appropriate use of language in Japanese society. Students continue to learn how to use language in real-life situations for different communication purposes. In addition to Hiragana and Katakana syllabaries, students learn approximately 50 kanji in this course. The course is a prerequisite for the KIT/RIT summer program in Kanazawa, Japan. It is part of the Japanese foreign language concentration and minor and may also be taken as an elective. (0503-480 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Beginning Japanese I is the first course in the second-year sequence designed to give students more advanced instructions and practice in the skills of speaking, reading, writing and comprehending contemporary Japanese. A strong emphasis is placed on proficiency. Through reading, writing and speaking activities, students learn cultural information and practice using the language in real life situations in Japanese society. Approximately 50 new kanji arc introduced. The course is a prerequisite for the KIT/RIT summer program in Kanazawa, Japan. It is part of the Japanese concentration and minor and may also be taken as an elective. (0503-481 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4
This is the second course in the Intermediate Spanish sequence designed to give students more advanced instructions and practice in the skills of speaking, reading, writing, and comprehending contemporary Japanese. A strong emphasis is placed on proficiency. Through reading, writing, and speaking activities, students learn cultural information and practice using the language in real life situations in Japanese society. Approximately 90 new kanji are introduced. The course is a prerequisite for the KIT/RIT summer program in Kanazawa, Japan. It is part of the Japanese language/culture concentration and minor and may also be taken as an elective. (0503-482 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Intermediate Japanese III
This is the third course in the second-year sequence designed to give students more advanced instructions and practice in the skills of speaking, reading, writing, and comprehending contemporary Japanese. A strong emphasis is placed on proficiency through reading, writing, and speaking activities, students learn cultural information and practice using the language in real life situations in Japanese society. Approximately 90 new kanji are introduced. The course is part of the Japanese language/culture concentration and minor and may also be taken as an elective. (0503-483 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Intermediate Japanese II
This is the second course in the Intermediate Spanish sequence. Intermediate II (Winter) emphasizes professional vocabulary in the student’s major field of study, business correspondence (letters), and culture. The Intermediate courses continue the study of Spanish on a more advanced level with a strong culture component (detailed study of the Spanish-speaking countries) and intensive work in speaking, writing, reading and listening. The basic skills learned previously are now put into practice. The courses may be taken in sequence or separately. May count towards the language component of the Spanish foreign language/culture and the Latino/Latina Latin American concentrations; the Spanish foreign language minor; and also may be taken as an elective. They are required for international business majors concentrating in Spanish. (0503-491 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Intermediate Spanish III
This is the third course in the Intermediate Spanish sequence. Intermediate III (Spring) emphasizes conversations and composition along with culture. The intermediate courses continue the study of Spanish on a more advanced level with a strong culture component (detailed study of the Spanish-speaking countries) and intensive work in speaking, writing, reading and listening. The basic skills learned previously are now put into practice. The courses may be taken in sequence or separately. May count towards the language component of the Spanish foreign language/culture and the Latino/Latina Latin American concentrations; the Spanish foreign language minor; and also may be taken as an elective. They are required for international business majors concentrating in Spanish. (0503-491 or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Beginning Japanese I
This course provides advanced students of Japanese with training in all four language skills. Students will practice oral communication with a high degree of proficiency in various social settings. They will also receive training in reading semi-authentic materials with the help of a dictionary, and in writing a specific purpose such as news reports and critical essays. Class 4, Credit 4

Beginning Spanish II
This is the second course in the Beginning Spanish sequence continuing through the basic language structures, vocabulary and situations. Course II is part of the Spanish language/culture and Latino/Latina Latin American concentrations. It is part of the Spanish language/culture and Spanish language minors. It also may be taken as an elective. (Course II or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Beginning Spanish III
This is the third course in the Beginning Spanish sequence continuing through the basic structure, vocabulary and situations, and expanding practice in all skills. Course III is part of the Spanish language/culture concentration and the Latino/Latina Latin American concentration. It is part of the Spanish language/culture and Spanish language minors and also may be taken as an elective. (Course III or equivalent proficiency) (See instructor for placement.) Class 4, Credit 4

Beginning Italian I
Beginning Italian I is the first course in a three-course sequence. The sequence provides students without prior knowledge of the language with a sound basis for learning Italian as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. The sequence also acquaints students with contemporary culture and life in Italy. This course may be taken as the prerequisite for the Italian concentration. May be taken as an elective. Class 4, Credit 4

Beginning Italian II
Beginning Italian II is the second course in a three-course sequence. The sequence provides students without prior knowledge of the language with a sound basis for learning Italian as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. Students study contemporary culture and life in Italy. This course is part of the Italian concentration and may also be taken as an elective. (0503-521) Class 4, Credit 4

Beginning Italian III
Beginning Italian III is the third course in a three-course sequence. The sequence provides students without prior knowledge of the language with a sound basis for learning Italian as it is used today in its spoken and written forms. The goal of the sequence is proficiency in communication skills with an emphasis on oral proficiency. Students also study contemporary culture and life in Italy. This course is part of the Italian concentration. May also be taken as an elective. (0503-522) Class 4, Credit 4
Intermediate Italian III is the final course of a three-course sequence at the intermediate level. This sequence provides students with the tools necessary to increase their ability to function in Italian. Communication activities, contemporary texts, vocabulary study, and grammar are used to expand all communication skills, especially oral proficiency. This course may be taken as an elective. (0503-525) Class 4, Credit 4

0503-530 Portuguese I, in the SILP program, builds the foundation skills in speaking, reading, writing, and culture, with emphasis on conversation. For students with no prior experience in the language. May be taken as an elective. Class time is determined at orientation meeting on the first day of quarter. (Permission of SILP coordinator is required.) Class 2, Credit 4

0503-595 Special Topics: Foreign Language Study of a topic or area in one of the foreign languages or cultures not normally offered in any other concentration or minor course. Part of the foreign language/culture concentration; the foreign language minor; and may also be taken as an elective. Class 4 Credit 4 (offered occasionally)

Literature

0504-225 Writing & Literature I The first course of a two-quarter eight-credit sequence designed to develop student’s proficiency in written composition, critical reading and critical thinking. Students read, study, and write about representative narratives, as well as nonfiction forms such as essays, letters, and autobiographies. The course develops the language skills needed to understand and interpret literature, and to write clear, accurate, and effective prose. This will substitute for English Composition and Literature. Students must take both quarters in sequence. Class 4, Credit 4 (offered quarterly)

0504-226 Writing & Literature II The second course of a two-credit sequence designed to develop student’s proficiency in written composition, critical reading and critical thinking. Students read, study, and write about representative poems and dramas, as well as nonfiction forms such as essays, letters and autobiographies. The course develops the language skills needed to understand and interpret literature, and to write clear, accurate, and effective prose. This will substitute for English Composition and Literature. Students must take both quarters in sequence. Class 4, Credit 4 (offered quarterly)

0504-227 Honors Literature This Honors core course in literature will examine a set of literary texts from disciplinary or interdisciplinary perspectives, using contemporary theoretical and critical approaches. The specific focus of each section will be indicated in the sub-title of the course and will reflect both a particular scholarly interest and expertise of the professor and an area of literary study that Honor students will find intellectually engaging. The course is conducted in seminar format, class enrollment is limited to 16, and each student is expected to participate fully in seminar discussions and in the oral and written presentation of his/ her scholarly research. The specific course description for each section of Honors Literature is reflected in the instructor’s syllabus. Honors Literature fulfills one of the four Honors core requirements in the RIT Honors Program. Class 4, Credit 4

0504-440 Drama/Theatre Drama as a genre and theater as a performing art. Intensive study of at least one major playwright or period complements a general survey of drama/theater from ancient Greece to modern Broadway. Part of the literature concentration; literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

0504-441 The Art of Poetry Emphasizes the enjoyment and study of poetry with primary attention to major poetry in English. Part of the literature concentration; the creative writing and literature minors; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

0504-442 The Short Story A study of a collection of short stories with critical commentary in order to provide source materials on the nature and development of this genre. Part of the literature concentration; the creative writing, and literature minors; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

The Novel A close reading and analysis of several novels selected to show the range of narrative techniques, methods of characterization and plot construction, and styles representative of the genre. Part of the literature concentration; the creative writing and literature minors; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

Film as Literature Examines the nature of narrative in both film and literature, the various aspects of adaptation of literature into film and the relationship between social reality and storytelling in documentary film. A no technical, no chronological study of film with a balance of roughly 50 percent literature and 50 percent film. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered annually)

Literature Topic A focused, in-depth study and analysis of a selected advanced topic in literature. Specific topics vary according to faculty assigned, and are published when the course is offered. Part of the literature concentration and minor and may also be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4 Credit 4 (offered occasionally)

0504-448 Biographical Literature Students develop skills to critically read one of the 20th century’s most popular literary genre the various forms of biographical literature. The course distinguishes between biographical and autobiographical literature and asks students to examine and critique the strengths and weaknesses of various forms. Selections attempt to explore lives lived within a variety of cultures. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered annually)

0504-449 Mark Twain Consists of readings from the bitter-comic writings of the last part of Twain’s career, focusing on his philosophy of total determinism, his disenchantment with the “damned human race” and its institutions of government, his trust in and later disillusionment with industrialism, and his romantic nostalgic desire to return to an idyllic pre-Civil War existence. Part of the literature concentration and also may be taken as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

0504-450 Ibsen & The Family Reading and/or viewing 10 plays of Henrik Ibsen, the father of modern drama, enables attentive examination of values and structures of modern society that form and formulate the lives of women and men. Ibsen argues that the possibility of individual freedom and creativity can be won only by seeing beyond and acting in spite of formidable forces. The texts and films are analyzed for visual, as well as verbal, information. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

0504-451 Chaucer A close reading of the major poetry of Geoffrey Chaucer and The Pearl poet in modern English translation and a brief introduction to the history of the English language. Part of the literature concentration and also may be taken as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

0504-452 James Joyce Careful study of three of James Joyce’s major works: Dubliners, A Portrait of the Artist as a Young Man and Ulysses. Part of the literature concentration and also may be taken as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

0504-453 Henry James Survey of the writings of Henry James, examining his use of the “international theme”; his treatment of the relations between men and women; his fictional patterns of initiation, manipulation and corruption; and his interest in the “psychological novel.” Also examines James’s contributions to literary theory and his experiments with literary form. Part of the literature concentration and also may be taken as an elective. (0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)
Shakespeare: Tragedy
A generous sample of Shakespeare’s tragic and romantic plays is investigated to reveal literary excellence and theatrical power. Reference is made to his poems; to the sources of his plays; to the world of Shakespeare’s time, its intellectual preconceptions, political stresses and religious rivalries; and to the theatre and its traditions. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Shakespeare: Comedy/History
Several of Shakespeare’s comedy and history plays are read and analyzed to reveal their literary excellence and theatrical power. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0502-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Dostoyevsky
A study in the style, themes and purposes of one of the world’s greatest novelists. At least one long novel is read, along with several shorter works. The writer is studied in the context of nineteenth-century Russia and for the implications his works and life continue to have for twentieth-century Western culture. Part of the literature and Russian foreign language/culture concentrations; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Tolstoy
A study in the style, themes and purposes of one of the worlds greatest novelists. At least one long novel is read, along with several shorter works. The writer is studied in the context of nineteenth-century Russia and for the implications his works and life continue to have for twentieth-century Western culture. Part of the literature and Russian foreign language/culture concentrations; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Walt Whitman
In 1867, the Nobel Laureate poet Pablo Neruda said, “We live in a Whitmanesque Age.” Course attempts to show Whitman as the “representative man” of his time and to assess the validity of his claim that he initiated the poetry of democracy. Also considers his living and influential presence in our time. Students read Whitman’s poetry and some of his (unjustly neglected) prose; selected works by his contemporaries, such as Tennyson and Longfellow; and some works by our contemporaries, such as Neruda and Allen Ginsberg. Part of the literature concentration, the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Toni Morrison
Through reading and discussion of Toni Morrison’s novels and feminist and African American critical theory, this course will allow students to follow the development of Morrison’s art and to approach her work from a more critical perspective. Particular attention will be paid to the role of narrative in African American culture and to Morrison’s understanding of its literary, historical, and political functions. Part of the literature and women’s studies concentrations; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Modern Poetry
A close examination of the poems of important English and American poets of the 19th and 20th centuries, including several living poets. Part of the literature concentration, the creative writing and literature minors; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Latin American Literature
Reading short stories, novels and poetry of modern Mexico and Central and South America reveals a literature and culture wherein the mythic functions as an integral part of the modern world view and the poetic functions as a political power. The impressive vitality of modern Latin American literature can be attributed to its indigenous roots and to its branches that, stemming from a common language and a shared continent, overreach national boundaries and political regimes to form an international literary community. Part of the literature, the Spanish foreign language/culture, the Latino/Latina/Latin American concentrations; the Spanish foreign language/culture and literature minors; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Modern Poetry
A study of 19th and 20th century American literature (short stories, essays, poems and novels) commenting on the impact of technology on society. The works selected reflect mostly the skeptical response of American writers to the technological utopia. Part of the literature and science and technology studies concentrations; the literature and science, technology and environmental studies minors; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Literature of the Bible
A close and rapid reading of selected Old and New Testament books to show the range and variety of literary genres and styles in the Bible. Part of the literature concentration and perspectives on religion concentration and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Myth, Legend, Folklore
Scholarly investigation into the rationale, origins and sources of myths, legends and folklore of the western world and the effect these primary forms have had on our literature. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Viking Myth & Saga
Reading the myths, sagas and folktales of the Viking world reveals the values of a people that created the worlds oldest extant democratic society. Both women and men fiercely defend their honor and freedom, willing to risk death rather than to bow in submission. The sagas are analyzed as compelling narrative structures and as documents of a culture that continues significantly to shape western civilization. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Early African-American Literature
Traces the literary contributions of selected black writers in the various genres from their roots in the African heritage through slavery to the Harlem Renaissance. Part of the literature and minority relations concentrations; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Modern African-American Literature
Traces the literary contributions of selected black writers in the various genres from the Harlem Renaissance to the present day. Part of the literature and the minority relations concentrations; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

American Spirit in Literature
A survey of the development of American philosophy through the study of selected works from the colonial period through the mid-19th century. Particular attention is given to the ideas of the writers under consideration and their effect on modern American thought. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

New American Literature
Walt Whitman described America as a “teeming nation of nations.” Such diversity has not always been represented in American literature. This course explores the contested and complex cultural history of the United States. Beginning with the idea of “discovering” an inhabited land, we examine issues of identity, migration, difference and work in literature presented in historical context. The emphasis is on under-represented voices in writing by African American, Caribbean, Puerto Rican, Chicanx or Native and Chinese Americans. This course looks at both the struggle and the possibilities of forging a genuinely democratic literary tradition. Part of the literature concentration; the literature minor; and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

Irish Literature
This course, which is multicultural in approach, will survey the wealth of Irish literature from ancient Celtic sagas to contemporary poetry and fiction. The course will focus on selected early texts (in translation) as well as on selected works of 19th and 20th century writers. We will study particular poems, short stories, plays, novels, and essays in the context of Irish history and culture. The course is part of the literature concentration and minor and may also be taken as an elective. Class 4, Credit 4 (offered annually)
Women of Color Dialogue
This course explores cultural productions by and about women of color; i.e., women of African, Latina, Asian, and Native American descent. These works demonstrate the multiple and changing representations of women of color. We will examine how historically race, gender, and class structures inform and are reinscribed by what feminist theorist Patricia Hill Collins calls “controlling images” of women of color. Through the study of writings, film, music, photography, paintings and sculpture by women of color, we will find representations that not only challenge and oppose the controlling images, but also question the reality of these women’s physicality, labor, sexuality and political activism. Part of the literature concentration and minor, and the women’s studies concentration and minor; and may also be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4

Analogy, Mathematics & Poetry
Analogy, Mathematics, and Poetry is a team-taught course offered by faculty from the College of Liberal Arts and the College of Science. This course will explore the many ways in which analogy is employed in both poetry and mathematics; i.e. for explanation, expression, description, discovery, and invention. Students will read primary texts from both mathematics and poetry, as well as writings in which poetry and mathematics are discussed in terms of or in relation to each other. The course material will also draw on the wide range of research much of it interdisciplinary-currently being conducted in areas of analogic thinking. Part of the literature concentration and minor, and may also be taken as a liberal arts elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered occasionally)

British Romantic Literature
This course examines the poetry, prose and drama written by British authors during the tumultuous and vibrant period beginning with the onset of the French Revolution in 1789 and ending with the ascension of Queen Victoria in 1837. It was during this period that England experienced the change from an agrarian society in which power began to shift, and from which a more democratic and egalitarian society began to emerge. All of the changes and shifts in society are reflected in the literature of the period, making it one of the richest and most varied periods in English history. Part of the literature concentration and minor, and may also be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

Postcolonial Literature
The course explores Anglophone literatures of countries other than England and the United States. Postcolonial writers will be presented as responding to the history and discursive power of colonialism. The content may cover any or a combination of literatures from the following regions: Africa, Australia, Canada, the Caribbean, New Zealand, South Asia, South East Asia, and immigrant communities who move across and out of these regions to the United States or England. Finally, the course should encourage students to think about contemporary globalization as part of the continuing history of colonialism and postcolonialism. Part of the literature concentration and minor, and may also be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered regularly)

Literatures of Migration
This course examines literary treatments of immigration and migration to and across the U.S. Students will read novels, poems, and plays, and view films by and about the experiences of Chicanos, Caribbean immigrants, European immigrants, Asian Americans, and other immigrant communities. The course will also explore texts dealing with the displacement of Native Americans, the shifting and ambiguous U.S./Mexican border, and the Great African American Migration. Students will read a short selection of essays on the history and politics of immigration. Part of the literature concentration and minor, and may also be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4

Italian Literature
This course traces Italian literature of a particular time period. Readings may include novels, short stories, poetry, plays, and essays- representative of the time period, with attention to literary trends and cultural and historical influence; All readings will be in English translation. The course is part of the literature and foreign language concentrations and minors, and it may also be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4 Credit 4

Arab American Literature: First Wave
A study of fiction, poetry and memoirs written by early, mainly Christian Arab American immigrants to the U.S. (1870-1924) and their children, with additional attention to writing about Arabs and Arab Americans by non-Arabs. Emphasis will be given to literary expressions of the Arab American experience, particularly the nature of Arab identity; the difficulties involved in claiming Americanization and simultaneously affirming Arab culture heritage and identity; the significance of family, religion, community, and language to first and second generation immigrants; and the effects of Orientalism upon Arabs and Arab Americans. This course is part of the literature concentration and minor and may also be taken as an elective. (0504-225 and 226 or equivalent) Class 4, Credit 4

Latino Literature in Experience
This course presents an overview of the Latino experience in the United States, examining representative works of Hispanic writers. Major Latino groups will be studied (Cuban-Americans, Mexican, and Puerto Rican). The emphasis is on the interplay between each of these groups, the main society and their place of origin. Special attention will be given to the issues of migration and assimilation. Class 4, Credit 4

Women in Literature
Concentrates on literature by women, about women, primarily from the early 19th century to the present. Considers the aspirations, frustrations and achievements of women as documented by themselves, as well as the perceptions and representations of women in literature by male writers. Works are examined for their literary value as well as their documentation of broader feminist issues. Part of the women's studies and literature concentrations and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered annually)

Literature & Religion
Exploration of the complexity of religious experience, both personal and cultural, as it is portrayed by writers from biblical times to our own day. The literature is supplemented by readings from such disciplines as psychology, philosophy, history and theology. Part of the perspectives on religion and the literature concentrations and literature minor and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4

Literature of French Black Africa & Caribbean Reading
In (English translation) short stories, novels, plays, poems, and essays of modern French-speaking writers from Black Africa (countries such as Senegal, Guinea, Mali, Ivory Coast, Congo) and the Caribbean (Martinique, Guadeloupe, Haiti), as well as viewing films by French-speaking directors, enable an exploration of the richness, variety, and vitality of written and filmed art composed in a shared global language. Such a focus also reveals the profound tensions arising from highly contested constructions of culture and identity as they are shaped in and by that very language. Part of the literature and French foreign language/culture concentrations and literature minor and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4 (offered annually)

Literature of French North Africa & French Canada Reading
In (English translation) short stories, novels, plays, poems, and essays of modern French-speaking writers from Canada and from North Africa (Algeria, Morocco, and Tunisia), as well as viewing films by French-speaking directors, enables an exploration of the richness, variety, and vitality of written and filmed art composed in a shared global language. Such a focus also reveals the profound tensions arising from highly contested constructions of culture and identity as they are shaped in and by that very language. Part of the literature and French foreign language/culture concentrations and literature minor and also may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4

American Indian Literature
In the reading, writing and discussion of this course, students will concern themselves with how American Indian literatures may be read and understood from perspectives simultaneously related to, but also quite distinguishable from, the conventional critical criteria of Euro-American literary tradition. The focus will be on understanding the themes, storytelling, strategies, and purposes of the readings in particular historical and cultural contexts that illuminate them as fully as possible. The work will compare and integrate the cultural and aesthetic qualities of selected texts to illustrate how “insider” control of representations of Indianness within contemporary Native literature has created a body of work of great consequence for both Native and non-Native readers. Part of the literature concentration and may be taken as an elective. (0504-225 and 0504-226 or equivalent) Class 4, Credit 4

Liberal Arts 253

0504-472
0504-473
0504-474
0504-475
0504-476
0504-477
0504-478
0504-479
0504-480
0504-481
0504-482
0504-483
0504-484
0504-485
0504-486
0504-487
0504-488
0504-489
0504-490
Fine Arts

0505-213 Fine Arts: Visual Arts
Students develop ability in perceiving worth in objects of art through consideration of fundamental concepts in painting, sculpture and architecture, involving analysis, interpretation and principles of aesthetics. Class 4, Credit 4 (offered quarterly)

0505-214 Fine Arts: Musical Arts
An introduction to music as a fine art. Students develop skills in listening, evaluation and analysis through an examination of music’s forms, constituent elements, and stylistic and historical development. Class 4, Credit 4 (offered quarterly)

0505-215 Fine Arts: Film Arts
Students develop ability to view analytically and evaluate the film arts, both still and moving (motion) pictures, through consideration of their technologies, histories, aesthetics and critical writings. Class 4, Credit 4 (offered quarterly)

0505-216 Fine Arts: Theatre Arts
The course will develop student's skills in viewing, evaluating, and analyzing the art of the theatre through an examination of its constituent elements, aesthetics, and stylistic and historical development. Class 4, Credit 4

0505-401 RIT Singers
RIT’s primary choral group performs vocal works dating from the Middle Ages to the present. There is one major performance per quarter and several smaller events throughout the year. Contact Professor Edward T. Schell, music director, for information about participating. Class 1, Credit 1

0505-402 RIT Philharmonia
The RIT Philharmonia performs three major concerts per year of standard orchestral repertoire. In addition, students from the Philharmonia have the opportunity to play in a variety of chamber ensembles. Participation is by audition. Contact Dr. Michael Ruhling for information. Class 1, Credit 1

0505-403 RIT Concert Band
The RIT Concert Band is a large instrumental ensemble that performs a wide body of literature including traditional marches, wind ensemble pieces, musical medleys and orchestral transcriptions. The group rehearses once a week for two hours in the music room (A128) of the Student Alumni Union. Students participating in the course are eligible for one credit hour applied toward their individual concentration. The group performs at least one formal concert per quarter as well as several special events throughout the academic year. The group is under the direction of Dr. Jonathan Kruger. Class 1, Credit 1

0505-430 20th Century Art
The subject of this course is 20th century painting, sculpture and architecture in Europe and the United States. Focus will be upon the images and ideas that have interested 20th century artists and architects, instead of proffering yet another chronological survey of the subject. Thus, those who need to brush up on the history of 20th century art will have to consult standard surveys of art history-such as Gardner, Janson, Hartt, Stokstad, or Honour and Fleming-or more comprehensive surveys of 20th century art, such as Arnason, Jacobus and Hunter or Lynton. Part of the art history minor. Class 4, Credit 4

0505-431 Topics in Baroque Art
This course will focus upon Italian artists working in Rome from circa 1590 to circa 1660. Although we will explore painting, sculpture and architecture in this particular sequence and more or less chronologically, we will often have the chance to consider how these media coalesce to create an overwhelming visual experience. We will pay particular attention to major commissions given to Annibale Carracci, Michelangelo da Caravaggio, Gianlorenzo Bemiini and Francesco Borromini as we seek to define the nature and meaning of the Roman Baroque. Part of the Art History minor. Class 4, Credit 4

0505-432 Renaissance: Painting in Flanders
This is the study of the history of Renaissance painting in the Southern Netherlands from the first half of the 15th century to the end of the 16th century. We will examine such problems as the meaning of the Renaissance in Flanders; the observation and recording of natural appearances; hidden symbolism and sacramental themes in Early Netherlandish painting; the connections between Flemish, German and Italian art; the development of new genres in the 16th century; “originality” and “artistic progress.” The Master of Flemalle, Jan van der Goes, Hans Memling, Gerard David, Quinten Metsys, Hieronymus Bosch, Joachim Patinier, Pieter Aertsen and Pieter Breughel the Elder are among the artists studied. Part of the Art History minor. Class 4, Credit 4

0505-433 15th Century Art & Architecture in Florence & Rome
The subject of this course is 15th century painting, sculpture and architecture in Florence and Rome. We will approach this material in a more or less chronological order as we focus upon a series of important commissions. Questions for consideration will include: the nature and meaning of the Italian Renaissance, developments in artistic theory and practice, the importance of Antique and Medieval precedents the increasing attention to the effects of nature, the rising status of the artist, the role of the patron, and the relevance of documents, literary sources and visual precedents for our interpretation of images. Part of the Art History concentration. May be used as an elective. Class 4, Credit 4

0505-435 Russian Art: 10th-20th Century
This course will trace the evolution of Russian art from the adoption of Christianity in 988 through Gorbachev's Perestroika and to the present day. The course will highlight major historical events and artistic schools/works that contributed to the unique phenomenon of Russian culture. The course embraces such major art forms as architecture, painting, and sculpture as well as elements of decorative and folk art. Part of the Art History concentration. Class 4, Credit 4

0505-436 Women’s Stories & Films
This course will provide an introduction to women’s films through an exploration of narrative structure in films made by women. Through film screenings and class discussion, the course will examine the themes and issues of women’s narratives and how they are presented in the medium of film. The hero’s journey and traditional narrative structure will be contrasted with the heroine’s journey and the more personal story telling style of the feminine. The course will also examine differences between films made by women and films made by men about women. The course will introduce the work of feminist film critics and consider the relevance of those theories to women’s story telling in a context of feminine mythology and women’s psychology. Part of the Women's Studies concentration and minor. Cross-listed with 2065-553. Class 4, Credit 4

0505-441 American Architecture
A survey of American architecture from the seventeenth century to the present. Stress is placed on a visual as well as historical and social analysis. Part of the American artistic experience concentration and also may be taken as an elective. Class 4, Credit 4

0505-442 Music in the US
A survey of music in the United States from the time of European colonization to the present. Particular emphasis is placed upon the question of what makes music distinctively “American.” Part of the American artistic experience concentration and the music concentration and also may be taken as an elective. Class 4, Credit 4

0505-443 Images of American Life
Students examine images of American life in the 19th and 20th century in the visual arts, particularly photography, to analyze and evaluate the influences of American political, social and cultural events on imagery and perception. Part of the American artistic experience concentration and also may be taken as an elective. Class 4, Credit 4
American Painting
A survey of the style and meaning in American paintings from the colonial luminers to contemporary artists. Centers on what distinguishes painting of the colonies and of the United States from its European counterpart. Part of the American artistic experience concentration and also may be taken as an elective. Class 4, Credit 4

American Film
Students develop an understanding of theories, styles and trends in American film through a historical and sociological study of the medium. Part of the American artistic experience concentration and also may be taken as an elective. Class 4, Credit 4

American Musical Theatre
Survey of the development of American opera and the American musical theater, highlighting representative works, composers, librettists and performers of both the "cultivated and vernacular traditions." Part of the American artistic experience concentration and the music concentration and also may be taken as an elective. Class 4, Credit 4

Music Theory I
For the student who has basic musical literacy (ability to read music notation). In addition to the writing of melody, two-part counterpoint and four-part harmony, some attention is given to the analysis of form and style. Part of the music concentration and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

American Film & the Stage
Survey of the development of opera and the American musical theatre, highlighting representative works, composers, librettists and performers. Part of the music concentration and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

Special Topics: American Art
A critical examination of issues and/or artistic developments in American art. The topic may have been briefly covered in another concentration course. Provides a unique opportunity to expose the student to an in-depth analysis of one selected aspect of Art. Examples of likely topics are: American landscape painting; American portraiture; pop art of the 60s; jazz; Robert Venturi and post-modern architecture in America; criticism and theory; or other topics dealing with American painting, sculpture, architecture, music and film. Part of the American artistic experience concentration and also may be taken as an elective. (Prerequisites, if any, are determined by the instructor.) Class 4, Credit 4 (offered occasionally)

Theatre in the U.S.
A broad survey of theater in the United States, designed to acquaint students with the major figures, companies, plays, productions and stylistic currents that have defined the American stage since the Revolution. Emphasizes the native and multicultural features of our theater’s development, while taking due note of the influences from Europe. Also introduces students to some of the impulses, both traditional and avant garde, that have characterized the American theater since mid-century. Part of the American artistic experience concentration and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

American Orchestra & Repertoire
A survey of the history and development of the orchestra and its repertoire from the baroque to the present, focusing on works commonly performed by American orchestras. In conjunction with concert attendance requirements, special attention is given to works performed by area orchestras. In addition, various business, legal, cultural and artistic aspects of the modern American orchestra are addressed. Part of the music and American artistic experience concentrations and may be taken as an elective. Class 4, Credit 4
Romanticism in Music Survey of the rise of German Romanticism from Beethoven to Strauss in the context of the development of 19th century musical styles in general. Part of the German language/culture and the music concentration. It is also part of the German language/culture minor and may be taken as an elective. Class 4, Credit 4 (offered occasionally)

Music Theory II For the student who has completed Music Theory I or a comparable program of study. In addition to the continuing study of melodic construction and development, thematic development in two-part counterpoint, four-part harmony, and analysis of form and style, emphasis is placed on the development of individual musical skills. Part of the music concentration and also may be taken as an elective. (0505.449) Class 4, Credit 4 (offered occasionally)

German Theatre & Drama A survey of the cultural and artistic achievements of German-language dramatists in the modern period (1885-present). The course spans the last hundred years of changing styles, major playwrights, and political-social conditions for the making of theatre. Beginning with two classical works (Goethe’s Faust, Part I, and Schiller’s Maid Orleans) to establish the tradition of Germanic drama and theatre, the course’s readings cover chief works of Naturalist, Expressionist, and Postmodernist drama, emphasizing the plays and practice of Bertolt Brecht (1898-1956). Special topics include dramaturgy of the Nazi period, East German theatre, and experimental avant-garde theatre since the Berlin Wall. Part of the German language/culture concentration and the German language/culture minor. Also may be taken as an elective. Class 4, Credit 4

Art of Islam A survey of artistic traditions (to include architecture, decorative arts, art of the book and painting) from the seventh century onwards in countries from Asia, Africa, and Europe that were influenced by the religion of Islam. There will be an opportunity for each student to pursue special interests in depth. This course is part of the Arabic foreign language/culture concentration and may also be used as an elective. No prerequisite. Class 4 Credit 4

Shakespeare: Dramatist This is a course in Shakespeare’s drama that emphasizes the plays as potential theatre productions. Studying five or six plays representative of the different acknowledged types of Shakespearean drama (comedy, tragedy, history, problem comedy, romance), students gain a broad understanding of the character and range of Shakespeare’s poetic-dramatic art. Experimenting on selected production activities, they acquire a practical appreciation of Shakespearean drama’s theatrical potency, of the original staging conventions, and how each type of play makes particular generic demands on both the reader and spectator. Augmenting the reading and practice work is a term research project focused on the history of a single play’s staging interpretation. No prerequisite. May be taken as an elective. Class 4, Credit 4

Introduction to Old Testament An examination of Judaism and Christianity as they are presented in the Old and New Testaments. Part of the perspectives on religion concentration and also may be taken as an elective. Class 4, Credit 4

Introduction to New Testament Provides the student with a basic understanding of Christianity as it is presented in the New Testament. Christian thought is examined against the background of the economic, social, political and historical setting of the New Testament period. A modern critical biblical scholarship, as well as the traditional approaches to the New Testament, is applied. Part of the perspectives on religion concentration and also may be taken as an elective. Class 4, Credit 4

History: Modern America The political, social, cultural and economic development of the American people in the modern period. Studies the United States in its foreign relations. Class 4, Credit 4 (offered quarterly)

History: Modern European An examination of social, economic, political and intellectual movements of Europe from the Modern Period to the twentieth century, which played major roles in shaping our contemporary world. Class 4, Credit 4 (offered quarterly)

History: Modern America: Colonial-Antebellum This course considers the history of American women from the colonial era to Seneca Falls Convention. We will examine the experiences of women of different races and classes across the country, looking at Puritans in Massachusetts and at planters’ daughters in the Carolinas; at female slaves in the deep South and at mill workers in the urban North. We will investigate the impact of the American Revolution upon women, and we will also trace the emergence of the women’s rights movement, culminating in the convention at Seneca Falls. Part of the women’s studies and history concentrations; the American history minor the women’s studies minor; and may also be taken as an elective. (0507-301,302 or equivalent) Class 4, Credit 4

History of American Women: Civil War-Civil Rights This course considers the history of American women from the first Seneca Falls Convention to the present. We will trace the impact of the first woman’s rights convention and follow the story of the struggle for the vote. We will also consider the role of women in other important 19th century reform movements, including abolition, temperance, spiritualism, and progressivism. We will also look at the varied experience of women in the 20th century, from birth control to second wave feminism to coeducation. Part of the women’s studies and history concentrations; the American history minor; the women’s studies minor; may also be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

U.S. Social & Intellectual History Examines the American people, their society and their culture in relation to the nation’s institutions: government, courts, business, labor, and political and private associations. The interplay between the American people and the institutions that structure their lives sheds light on the dynamic forces that shape American history and helps to explain the present. Instead of detailing day-to-day chronology, this study highlights the sweep of major trends and movements over longer periods of the American experience. Part of the history concentration; the American history minor; and also may be taken as an elective. (0507-301,302 or equivalent) Class 4, Credit 4

20th Century American Diplomatic History An examination of the major events and forces which shaped American diplomacy from the opening years of the 20th century to the immediate post-World War II era. Part of the history and global studies concentrations; the history of modern world minor; and also may be taken as an elective. (0507-301,302 or equivalent) Class 4, Credit 4

Contemporary Middle East Analyzes the making of the contemporary Middle East from the rise of Islam to the present with special emphasis on the patterns of political development in the 20th century. Part of the history, international relations and foreign language/culture concentrations; the history of the modern world and international relations minors; and also may be taken as an elective. (0507-301,302 or equivalent for history concentration; 0513-211, 215 or equivalent for international relations concentration) Class 4, Credit 4

European Social & Intellectual History An analysis of social events and intellectual movements in Europe since 1600. Part of the history concentration; the European history minor; and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

Strategy & Diplomacy: Europe Investigates the origins and outcomes of the two World Wars with special emphasis on the conflicting strategies and secretive diplomacy adopted by the European Great Powers between 1871 and 1945. Part of the history and international relations concentrations; the European history and international relations minors; and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

Modern Latin America Survey of the historical development of the Hispanic and Portuguese areas of the Americas from independence to the mid-20th century. The movement towards independence, the problems that emerged during the nineteenth century of forming unified nations and the problems of modernization in the twentieth century are all covered. The histories of selected countries are used to illustrate these issues. Part of the history, Spanish language/culture, and Latino/Latina Latin American concentrations. Also part of the Spanish language/culture and history minors. May be taken as an elective. (0507-301,302 or equivalent) Class 4, Credit 4
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0507-446</td>
<td>Europe Since 1945</td>
<td>Credit 4</td>
<td>Class 4, Credit 4 (offered occasionally)</td>
</tr>
<tr>
<td>0507-447</td>
<td>U.S. Since 1945</td>
<td>Credit 4</td>
<td>Class 4, Credit 4 (offered occasionally)</td>
</tr>
<tr>
<td>0507-448</td>
<td>History of Russia to 1917</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-449</td>
<td>History of Russia Since 1917</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-450</td>
<td>Stalin, Mussolini, Hitler</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-451</td>
<td>Local History</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-452</td>
<td>Race & Society</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-453</td>
<td>U.S.-Latin American Diplomatic History</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-454</td>
<td>Crime, Violence & Urban Crisis</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-455</td>
<td>Italian American Experience</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-456</td>
<td>U.S. & Third World Revolution</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-457</td>
<td>History: Popular American Culture</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-458</td>
<td>Civil Liberties</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-459</td>
<td>Social Justice & American Constitution</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-460</td>
<td>Revolutionary Leaders: Latin America</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-461</td>
<td>The Renaissance World</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-462</td>
<td>Civil War & Reconstruction</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-463</td>
<td>Deaf History</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-464</td>
<td>The American Environment & the American Character</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
<tr>
<td>0507-465</td>
<td>Survey of African American History</td>
<td>Credit 4</td>
<td>(0507-301, 302 or equivalent) Class 4, Credit 4</td>
</tr>
</tbody>
</table>
0507-466 American Slavery, American Freedom This course examines debates over the institution of slavery and the meaning of freedom in antebellum American society. Students will study the history of enslavement in American society before the Civil War, including such topics as the creation of slave culture, slave rebellion, and relations between masters and enslaved people. In addition, students will study movements against slavery by abolitionists, politicians and free black activists. Part of history concentration, and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-467 Disabilities in American History This course considers the issue of disability in American Life. We will examine a variety of disabilities within different historical contexts, including literary, cinematic, and cultural, in order to answer the following questions: what is disability? Who decides? Can a condition be considered a grave disability in one culture but go nearly unnoticed in another? Is a disability a biological or a social construction? What can we learn by considering these issues from a disabled point of view? May be taken as an elective and is also part of the American history minor. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-483 Christianity in the West Traces the development of Christian thought in the broad historical context of Western Civilization. Concentrates on major movements and outstanding personalities. This history of Christian thought is examined against the background of economic, political, social and intellectual currents. The study sheds light on both the conflicts within and the criticisms from outside the Christian tradition. Part of the perspectives on religion concentration and the history concentration, also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4 (offered occasionally)

0507-485 Foundations of Asian Civilization A study of the Confucian/Buddhist world in East Asia, focusing on China and Japan, their origins and cultural characteristics. Part of the Japanese and Chinese foreign language/culture concentrations and the history concentration, also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-486 20th Century China &Japan An examination of social, political, economic and intellectual developments of China and Japan in the 20th century with an analysis of how these two Asian powers have reached their respective significant status in the contemporary world. Part of the Japanese and Chinese foreign language/culture concentrations and the history concentration, also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-487 Communist China An analysis of the main characteristics of Chinese Communism, its native roots, Marxist/Leninist elements and Maoist innovations. Also examines the causes for the rise of Communism in modern China, the context and process of its development, as well as contributions and problems Communism brought to the Chinese people. In addition, China and the world are examined. Part of the foreign language/culture and history concentrations, the history of modern world minor, and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4 (offered occasionally)

0507-488 Modern Germany A study of Germany in the 19th and 20th centuries, beginning with the unification of Germany in 1871 and tracing the political evolution of the nation to the present. Special emphasis is placed on the rise of Nazism. Pertinent social and cultural factors are considered as well. Part of the history, international relations, and foreign language/culture concentrations and the German language/culture, European history, history of modern world, and international relations minors. It also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4 (offered occasionally)

0507-489 Japan in the Modern World An examination of social, economic, political and intellectual developments of Japan in the nineteenth and twentieth centuries with an analysis of how Japan has reached such a significant status in the contemporary world. Part of the foreign language/culture and history concentrations, the history of modern world minor; and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-490 History of Mexico The historical development of Mexico, including the colonial period, independence movement, the liberal-conservative class and the revolution of 1910. Part of the Spanish language/culture and history concentrations, part of the Spanish language/culture minor; and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-491 Black Experience in America Examines the history of blacks in America, treating the subject primarily from a social and cultural perspective. Studies the impact of whites on black American history and describes the contribution of blacks to the development of the United States. Part of the minority relations concentration and the history concentration, also may be used as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-492 Selected Problems in Black History A seminar approach to the thought of key black leaders (Washington, Garvey, King) and the study of civil rights and black-power movements. Part of the minority relations concentration and the history concentration; also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4 (offered occasionally)

0507-494 Immigration & Ethnicity Explores the personal and collective experience of immigrants arriving in North America from colonial times to the present. Categories of special interest include immigrant expectations and adaptation, the tension between ethnic exclusiveness and assimilation, the role of the immigrant in the urban communities of the United States and Canada, native-born reactions to immigrants, the ethnic revival of the 1960s and 1970s, and the condition of ethnicity and the new immigration in contemporary America. Part of the minority relations and history concentrations; the American history minor; and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4 (offered occasionally)

0507-495 Black Civil Rights in the 20th Century Examines the social and legal history of civil rights in the U.S. with particular attention to the demonstrations of the 1950s and 1960s and the philosophy of the Rev. Dr. Martin Luther King Jr. Compares his views with those of the recent Black Power Movement. Part of the minority and history concentration; the American history and history of modern world minors; and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-496 African History Provides an overview of African history and politics in three phases: precolonial times, colonialism and the postcolonial era. Part of the history, global studies and minority relations concentration; the history of modern world minor. (0507-301, 302 or equivalent) Class 4, Credit 4

0507-497 Biography &History The course will examine the psychological motivations of individuals and groups which have influenced American History. The result will allow for a reinterpretation of the American Family, Society and Politics. However, the psychological motivations will be examined in the context of economic, political, ideological and other social forces. The goal is to show how these elements interrelated to change American society over time. This course is part of the history concentration and also may be taken as an elective. (0507-301, 302 or equivalent) Class 4, Credit 4 (offered occasionally)

Science, Technology & Society

0508-211 Science &Technical Values This course explores the concepts and effects of science and technology in society, analyzes the relationship between science and technology, examines how each has come to play a major role today, and looks at how science and technology have affected and been affected by our values. This course also considers the environmental aspects of science and technology. Science and technology are often assumed to be value free, yet people, guided by individual and societal values, develop the science and technology. In turn, the choices people make among the opportunities provided by science and technology are guided by their individual values. (Offered quarterly) Class 4, Credit 4

0508-440 History of Science A study of the origins, nature and development of Western science and its social, economic and cultural context. Part of the science and technology studies concentration, the science, technology and environmental studies minor, and also may be taken as an elective. Class 4, Credit 4
Science & Technology Policy
0508-441
Examines how local, state, federal and international policies are developed to influence innovation, the transfer of technology and industrial productivity in the United States and other selected nations. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

History of American Technology
0508-442
An examination of the cultural context of American technology and its influence on American social, economic, political and cultural institutions. Part of the science and technology studies concentration; the science, technology and environmental studies minor, and also may be taken as an elective. Class 4, Credit 4

Face of the Land
0508-443
A case study in the relationship of technology and society, focusing on the interaction of land, people and technology. By considering the natural landscapes of the United States and other countries as appropriate, students see how the nature of land determines its value. As technological innovations are made and introduced, old relationships with the land are altered, sometimes irreversibly. Through this study students have a concrete example of the positive and negative effects of technology on the social structure. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

Social Consequences of Technology
0508-444
Modern society is increasingly based on technology. With each advance due to technology, unanticipated problems are also introduced. Society must define and solve these problems or the advances may be diluted or lost. In this course we study several interactions between technology and the world in which we live. We investigate how various technologies developed and compare the expected effects of the new technologies with the actual results. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

Biomedical Issues in Science & Technology
0508-445
A study of the impact of science and technology on life, our view of life and of the value issues that arise from this impact. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

Makers of Modern Science
0508-446
Helps the student understand the life of modern science through the lives of modern scientists. Modern science is understood to be science from the Scientific Revolution of the 16th and 17th centuries to the present. Much recent scholarship has been devoted to analyzing science in context; i.e., the way it actually develops in particular social and political environments as well as through the lives of individuals. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

Special Topics in Science & Technology
0508-447
Offered periodically in the social impacts of science and technology concentration. Topic and specific content and methods vary from year to year or term to term. Allows examination of a special problem or area relevant to the other courses in this area of study. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

Space, Time & Reality
0508-448
In this course we learn the conceptual development of the twentieth-century theories of time and space with major emphasis on their applications in the present decade. These views, which grew out of the rigorous, mathematical logic of relativity theory and quantum theory, represent one of the most profound revisions of intellectual thought in human history. We learn how any vestige of an absolute frame of reference in space and time, and how cause and effect and strict determinism were demolished and how probability was introduced by means of these theories. Part of the science and technology studies concentration and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

Introduction to Environmental Science I
0508-460
Three-quarter sequence offered in student's first year that presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through the study of the earth's ecosystems. Throughout the sequence, the focus will be on sustainability as the foundation for environmental problem solving. Cross-listed with College of Science (1031-201). Part of environmental studies concentration. Class 2, Lab 4, Credit 4

Introduction to Environmental Science II
0508-461
Continuation of Introduction to Environmental Science I (0508-460). Cross-listed with College of Science (1031-202). (0508-460 or permission of instructor) Class 2, Lab 4, Credit 4

Introduction to Environmental Science III
0508-462
Continuation of 0508-461. Cross-listed with college of science (1031-202). (0508-461 or permission of instructor) Class 2, Lab 4, Credit 4

Beginning in a three-quarter sequence that continues the integrated presentation of the interrelated, interdisciplinary principles of environmental science through an in-depth study of the Great Lakes ecosystem. Throughout the sequence, the focus will be on sustainability as the foundation for environmental problem solving in the Great Lakes. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history, and engineering will be embedded in the scientific matrix used to present this course to the students. Course cross-listed with College of Science. Required freshman course for SCLE program. Part of the environmental studies concentration; the science, technology and environmental studies minor. Class 2, Lab 4, Credit 4

Great Lakes II
0508-464
Continuation of 0508-463. Course cross-listed with College of Science. Required course for SCLE program. Part of the environmental studies concentration and the science technology and environmental studies minor. Class 2, Lab 4, Credit 4

Great Lakes III
0508-465
Continuation of 0508-464. Course cross-listed with College of Science. Required course for SCLE program. Part of the environmental studies concentration and the science technology and environmental studies minor. Class 2, Lab 4, Credit 4

Introduction to Environmental Studies
0508-481
Makers of modern science.
Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. (Course not open to environmental science majors) Class 4, Credit 4

Energy & the Environment
0508-482
Examines how local, state, federal and international policies are developed to influence innovation, the transfer of technology and industrial productivity in the United States and other selected nations. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

Environmental Values
0508-483
We seek to identify, interpret and trace the values associated with concern for the environment and the factors that induced change in these values. Concern with the environment is not a new concept; it's history reaches to ancient times, but the values related to this concern have drastically changed. Understanding environmental values helps one become a better prepared participant in the environmental decision making. Part of the environmental studies concentration; the science, technology and environmental studies minor; and also may be used as an elective. Class 4, Credit 4

Introduction to Environmental Science I
0508-460
Three-quarter sequence offered in student's first year that presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through the study of the earth's ecosystems. Throughout the sequence, the focus will be on sustainability as the foundation for environmental problem solving. Cross-listed with College of Science (1031-201). Part of environmental studies concentration. Class 2, Lab 4, Credit 4

Introduction to Environmental Science II
0508-461
Continuation of Introduction to Environmental Science I (0508-460). Cross-listed with College of Science (1031-202). (0508-460 or permission of instructor) Class 2, Lab 4, Credit 4

Introduction to Environmental Science III
0508-462
Continuation of 0508-461. Cross-listed with college of science (1031-202). (0508-461 or permission of instructor) Class 2, Lab 4, Credit 4

Beginning in a three-quarter sequence that continues the integrated presentation of the interrelated, interdisciplinary principles of environmental science through an in-depth study of the Great Lakes ecosystem. Throughout the sequence, the focus will be on sustainability as the foundation for environmental problem solving in the Great Lakes. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history, and engineering will be embedded in the scientific matrix used to present this course to the students. Course cross-listed with College of Science. Required freshman course for SCLE program. Part of the environmental studies concentration; the science, technology and environmental studies minor. Class 2, Lab 4, Credit 4

Great Lakes II
0508-464
Continuation of 0508-463. Course cross-listed with College of Science. Required course for SCLE program. Part of the environmental studies concentration and the science technology and environmental studies minor. Class 2, Lab 4, Credit 4

Great Lakes III
0508-465
Continuation of 0508-464. Course cross-listed with College of Science. Required course for SCLE program. Part of the environmental studies concentration and the science technology and environmental studies minor. Class 2, Lab 4, Credit 4

Introduction to Environmental Studies
0508-481
Makers of modern science.
Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. (Course not open to environmental science majors) Class 4, Credit 4

Energy & the Environment
0508-482
Examines how local, state, federal and international policies are developed to influence innovation, the transfer of technology and industrial productivity in the United States and other selected nations. Part of the science and technology studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

Environmental Values
0508-483
We seek to identify, interpret and trace the values associated with concern for the environment and the factors that induced change in these values. Concern with the environment is not a new concept; it's history reaches to ancient times, but the values related to this concern have drastically changed. Understanding environmental values helps one become a better prepared participant in the environmental decision making. Part of the environmental studies concentration; the science, technology and environmental studies minor; and also may be used as an elective. Class 4, Credit 4
0509-484 Environmental Policy
Public compliance with environmental regulations has become increasingly complicated as a result of many laws and regulations instituted since the mid-1960s. Students study the consequences of major environmental legislation and regulations and examine the actions of both citizens and the corporate sector as they comply with these laws. They also focus on the economic and social implications and value of environmental regulation and enforcement and identify current developments in the area. Part of the environmental studies and American politics concentrations; the American politics and science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

0508-485 Development of U.S. Energy Policy
An examination of the development of U.S. energy policy from the mid-19th century to the present. A number of policies have affected the supply of and demand for energy for many years, and an examination of the development of these policies aids in understanding some of the current energy conflicts and debates. Part of the environmental studies concentration and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

0508-486 Modern War Technology & Arms Control Study of the importance of science and technology to defense matters. Investigates how modern weapons, both nuclear and conventional; their delivery systems; and reconnaissance and surveillance methods have seriously affected the character of armed conflict and of preventing wars. Also how scientists, by providing their expertise, have been able to influence national security and attempts to control arms. Part of the peace studies concentration and the social impacts of science and technology concentration; also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

0508-487 Special Topics: Environmental Study
Offered periodically in the environmental studies concentration. Topic and specific content and methods vary from year to year or term to term. Allows examination of a special problem or area relevant to the other courses in this area of study. Part of the environmental studies concentration; the science, technology and environmental studies minor; and also may be taken as an elective. Class 4, Credit 4

0508-507 Community Energy Planning
Allows the student to understand the concepts underlying community energy self-reliance, how to analyze a community’s energy supply and consumption, and how to evaluate possible energy futures for a community based as much as possible on conservation and alternative energy strategies. Class 4, Credit 4 (offered occasionally)

0508-514 History of American Medicine
A survey of the development of medical thought and practice in America from the 17th century to the present. Class 4, Credit 4 (offered occasionally)

0508-515 Community Environmental Issues
Explores three general areas of community environmental concern: land use, solid waste and energy in a community context as to be able to see that these decisions, involving technology and society, can and should be made by all affected parties. Class 4, Credit 4 (offered occasionally)

0508-519 History of Medical Ethics
Introduces students to thinking philosophically about the nature of art and its relation to other human experiences. Among the topics considered are the aesthetic experience, the relation between morality and art, ugliness in art and truth in art. Part of the philosophy concentration; the philosophy minor; and May also be taken as an elective. (0509-210, 211, 213 or equivalent) Class 4, Credit 4 (offered biannually)

0508-521 Development of U.S. Energy Policy
An examination of the development of U.S. energy policy from the mid-19th century to the present. A number of policies have affected the supply of and demand for energy for many years, and an examination of the development of these policies aids in understanding some of the current energy conflicts and debates. Part of the environmental studies concentration and also may be taken as an elective. Class 4, Credit 4

0509-210 Introduction to Philosophy
An introduction to some of the major problems, methods and insights of philosophy with readings from both classical and contemporary sources. Class 4, Credit 4 (offered several times annually)

0509-211 Ethics
An introduction to moral philosophy through an analysis, comparison an evaluation of some main theories that have been offered as systematic ways of making moral decisions, and through discussions of contemporary moral problems. Class 4, Credit 4 (offered several times annually)

0509-213 Critical Thinking
An introduction to philosophical analysis, especially as it may be applied in contexts other than professional philosophy. Class 4, Credit 4 (offered several times annually)

0509-217 Ethics in the Information Age
Technological advances in creating, storing, sending, and monitoring information have created new ways in which ethical problems can arise. We shall explore the ethical issues that arise regarding privacy on the internet, the commodification of data, hacking, ownership of computer-related items such as software and web pages and so on. Class 4, Credit 4 (offered several times annually)

0509-440 Philosophy of Religion
A critical examination of a number of important issues connected with religion. These include the nature of religion itself, the existence of God, the problem of evil and questions about the language we use when we talk and write about religion. Part of the philosophy and the perspectives on religion concentrations; the philosophy minor; and also may be taken as an elective. (0509-210, 211, 213 or equivalent) Class 4, Credit 4 (offered biannually)

0509-441 Logic
An introduction to the basic principles of logic. The main emphasis is on symbolic, or formal, logic but some attention may be paid to informal logic as well. Part of the philosophy concentration and the philosophy minor. May be taken as an elective. Class 4, Credit 4 (offered biannually)

0509-442 Philosophy of Art &Aesthetics
Introduces students to thinking philosophically about the nature of art and its relation to other human experiences. Among the topics considered are the aesthetic experience, the relation between morality and art, ugliness in art and truth in art. Part of the philosophy concentration; the philosophy minor; and May also be taken as an elective. (0509-210, 211, 213 or equivalent) Class 4, Credit 4 (offered biannually)

0509-443 Philosophy of Science
An examination of the nature of the scientific enterprises; possible discussion topics include the presuppositions of science, its logic, its claims to reliability, and its relationships to society and to problems of human values. Part of the philosophy concentration; the philosophy minor; science & technology studies concentration; science, technology and environmental studies minor; and also may be taken as an elective. (At least one prior course in either philosophy or one of the natural sciences, physics, chemistry, biology) Class 4, Credit 4 (offered biannually)

0509-444 The Great Thinkers
Introduces students to the thought of some of those philosophers who have been most influential in the history of ideas. An attempt is made to cover in some depth the works of one or more of those “great thinkers.” Students will begin to recognize the enduring nature of some of our most pressing problems, as well as the intellectual foundation of proposed solutions. Part of the philosophy concentration; the philosophy minor; and may also be taken as an elective. Class 4, Credit 4 (offered biannually)

0509-445 Social & Political Philosophy
An examination of some of the main problems of social and political philosophy through analysis, comparison and critical examination of various views concerning the natures of individuality and society, the relations between them and the dependence of one on the other. Part of the philosophy concentration; the philosophy minor; and also may be taken as an elective. (At least one prior course in philosophy, political science, or sociology) Class 4, Credit 4 (offered biannually)
0509-446 Philosophy of Law
An introduction to philosophical analysis centering on the nature, extent and justification of law; the nature of legal thought; and the problems and theories of justice. Part of the philosophy concentration; the philosophy minor; and may also be taken as an elective. Class 4, Credit 4 Credit 4 (offered biannually)

0509-447 Contemporary Moral Problems
Presents moral issues which arise in the professions and other areas of technical expertise. These problems in applied ethics are studied through contemporary literature by moral philosophers (Dworkin, Frankfurt, Gadamer, Habermas, Jonas, Singer and Wellmer) as well as key classical texts (Plato, Locke, Reid, Kant and Dewey). Each section of the course applies moral theory to one of a number of professional areas, such as business, communications, medicine and bioethics, public policy and technology. Part of the philosophy concentration; the philosophy minor; and also may be taken as an elective. (0509-211) Class 4, Credit 4 (offered biannually)

0509-448 Philosophy of Peace
An introduction to some of the philosophical dimensions of the search for world peace, including the elements that would constitute a just and lasting peace, nations as moral entities, justice and national self-interest, force and violence, the morality of the use of force, peace-making and peace-keeping groups. Part of the peace studies and the philosophy concentration; the philosophy minor; and also may be taken as an elective. Class 4, Credit 4 (offered biannually)

0509-449 Special Topics: Philosophy
A critical examination of issues in some area of philosophy not covered in any other concentration course. Examples of likely topics are metaphysics, epistemology, the philosophy of mind and the philosophy of language. Part of the philosophy concentration; the philosophy minor; and also may be taken as an elective. Class 4, Credit 4 (offered biannually)

0509-450 Seminar: Philosophy
Examines some area of philosophy at an advanced undergraduate level. The area examined may vary from quarter to quarter. The seminar is designed especially for those whose interest in philosophy goes beyond the requirements of the liberal arts curriculum. Part of the philosophy concentration; the philosophy minor; and also may be taken as an elective. (Two courses in philosophy or permission of the instructor) Class 4, Credit 4 (offered annually)

0509-451 Professional Ethics
This course critically examines ethical issues that arise in professional life. The course will examine not only the general relationship between ethics and professional life, but the particular consequences of ethical considerations within the student’s own profession and the professions of others with whom the student must live and work. Part of the philosophy concentration; the philosophy minor; may be taken as an elective. Class 4, Credit 4 (offered biannually)

0509-452 Philosophy of Technology
Technology is a ubiquitous and defining force in our world. The course will investigate how our conceptions of technology have emerged within philosophy, as well as the role technology plays in shaping how we live and how we reflect upon questions of meaning and value in life more generally. Technological modes of understanding, organizing and transforming the world shape our relationships with others, with ourselves and with nature at fundamental levels. We will explore how these modes have emerged and why they emerged so predominantly within a western social and intellectual context. Part of the philosophy concentration; philosophy minor; may also be taken as an elective; part of the public policy major. Class 4, Credit 4 (offered biannually)

0509-453 Environmental Philosophy & Decision Making
A variety of different decision procedures may be and have been used to determine what we ought to do regarding environmental issues. Each alternative can determine what is reasonable and moral, and assessing them presents a theoretical problem. We examine each in terms of morality, examine their presuppositions and consequences, determine whether we can assess them, and if so, how. Students begin to learn to be conscious of and assess the decision procedures that are often buried in policy recommendations regarding particular environmental problems. Part of the philosophy concentration and the philosophy minor, and part of the public policy major. May also be taken as an elective (offered biannually). Class 4, Credit 4

0509-454 Feminist Theory
This course will introduce students to the foundations of feminism in political theory, and it will critically explore how feminist concepts can be expanded to take account of class, race, and sexuality. We will examine the differences between the categories of sex and gender and the ways in which feminist understandings of human experience have modified traditional philosophical accounts of reality, knowledge, morality, and justice. (Cross-listed with 0522-406) Class 4, Credit 4

0509-455 Theories of Knowledge
Epistemology, or the theory of knowledge, examines how we come to know what we know. This course covers historical and contemporary approaches to the question of what knowledge is, what makes a belief true, and how beliefs are justified. Philosophical skepticism, the position that we actually know nothing at all, will also be discussed, as will possible responses. Other topics may include feminist epistemology, naturalism, the internalism/externalism debate, and the application of epistemology to other fields. Part of the philosophy concentration and minor. May be used as an elective. Class 4, Credit 4

0509-456 Ancient Philosophy
This course examines the origin and development of Western philosophy in ancient Greece from Thales in the 6th century down to at least the 4th century BC, concentrating on the central ideas of the pre-Socratics, the Sophists, Socrates, Plato and Aristotle. Some attention might also be given to the Hellenistic philosophers (Epicureans, Stoics and Skeptics). This was a period of remarkable intellectual creativity in philosophy, mathematics, medicine, rhetorical theory, aesthetics and cosmology. Questions to be considered are: What are the nature and limits of knowledge? Is knowledge even possible? What is the nature of language? How reliable is perception? What is the true nature of reality? What is the origin and nature of the material world? Is moral knowledge possible? What is the nature of happiness, and what sort of life would make people happy? Part of the philosophy concentration and minor. Class 4, Credit 4

0509-457 Modern Philosophy
This course examines the history of modern philosophy, from Descartes through Kant. It concentrates on the development of modern thought, examining the concepts of mind, body, and causation among others. This period marked the beginning of modern science, with a rich ferment of ideas, and the philosophy of the period is essential to understanding modern science as well as contemporary problems about consciousness, mind/body interaction, causation, and so on. Questions to be considered in this course are: What can we know? How do we come to know what we can know? What is the scope and what are the limits of our knowledge? What is the nature of reality? Do we have access to reality? How is causal interaction possible, if at all? Does God exist, and if so, how do we know and what relation does God have to the world? Part of the philosophy concentration and minor. May be used as a n elective. Class 4, Credit 4

0509-458 Philosophy of Mind
The Philosophy of Mind is a fairly large category. It includes issues of metaphysics, epistemology, logic, psychology, aesthetics, logic, linguistics, cognitive science, artificial intelligence, and biology, to name a few. Here are some typical questions that writers in the philosophy of mind often find interesting: Is there an ontological difference between minds and bodies? (That is, do they represent two metaphysically distinct categories of things in the universe?) Could there be minds without bodies? Can I know that I have a mind? How do I come to know that? Are there other minds in the universe? Can I be conscious of my own consciousness? Can other things have the kinds of experiences which I have? Part of the philosophy concentration and minor. May be used as an elective. Class 4, Credit 4

0509-459 Philosophy of Social Science
This course examines the methods, foundations, assumptions and purposes of the social science. In particular, it will examine the ways in which “science” and “non-science” are distinguished, as well as the similarities and differences between the social and natural sciences. Special attention will be paid to the ways in which both Anglo-American and European philosophical traditions approach the social sciences. Other topics may include the role of values in social scientific inquiry, the processes of explanation and theory confirmation in the social sciences, the relative virtues/vices of microanalysis and macroanalysis in the social sciences, and the role of various conceptions of interpretation and meaning in the social sciences. Part of the philosophy concentration and minor. May be used as an elective. Class 4, Credit 4
Anthropology

0510-210 Cultural Anthropology
A study of the nature, method and scope of human culture the patterns of thought and behavior with which mankind makes decisions, criticisms, choices and judgments in order to satisfy the needs of life and experience. Class 4, Credit 4 (offered quarterly)

0510-440 Cultural Change
Change in all subsystems of human culture is the norm on the planet earth as its human inhabitants begin the 21st century and a new millennium. In particular, the stress and strain that accompany change challenge traditional life-ways among both tribal and peasant societies in the developing world. The change is driven by many factors including global and local population growth and by the expanding world capitalist system through which technology is transferred and the culture of consumption is spread to the most remote corners of the globe. This course presents an anthropological perspective in which both historical and cross-cultural approaches to study of cultural dynamics are emphasized. Part of the sociology concentration; the sociology/anthropology minor and also may be taken as an elective. (0515-210, 0510-210 or equivalent) Class 4, Credit 4

0510-444 Social Movements & Global Economics
This course focuses on the intertwining of economies in North and South America, the impacts on workers and peasants, and the creative responses of social movements. We examine trends including the movement of industrial work overseas, consequent deindustrialization in the U.S., international labor migration, and the export of the neo-liberal economic agenda. We examine the impacts of these trends on people in North and South America and the creative responses of worker peasant, and neighborhood movements. Part of the sociology/social change in a technological society concentration and the sociology/anthropology minor. (0515210 or equivalent) Class 4, Credit 4

0510-483 Anthropology of Religion
Provides students with a basic understanding of how religion operates as an integral part of any society. In order to demonstrate this, the institution of religion is studied from a cross-cultural, anthropological perspective. Emphasis is on primitive and peasant societies. Part of the perspectives on religion concentration and also may be taken as an elective. Class 4, Credit 4 (offered occasionally)

Anthropology Research Methods
Exposes students from a variety of backgrounds to an alternative means of understanding human behavior through the methods of the cultural anthropologist and demonstrates that variations in cultural patterning exist in our presumably homogeneous society. The primary emphasis is involvement of students in the actual observation of human behavior and collection of data in a subculture of their own selection in the Rochester area. Class 4, Credit 4 (offered occasionally)

American Culture & Archaeology of US
American history and contemporary American society are examined through the only unexpurgated record of our behavior, the material remains. Illustrated how the techniques of archaeology can throw new light on the lives of our Pilgrim forebears, the founding fathers, on slaves and free blacks, on the American industrial revolution and even on the contemporary middle class of a city like Tucson, Arizona. Class 4, Credit 4 (offered occasionally)

Cultural Diversity
Diversity of cultures is a pervasive fact of life in America in the second half of the 20th century. The dynamics of intergroup relations will have a profound impact on American economic, social, political and cultural life in the 21st century. Approaches diversity as an asset; an individual’s appreciation for this diversity depends upon replacing a monocultural with an intercultural perspective. We are striving to reach a point where we not only celebrate diversity, but take it for granted at the same time. Consequently, the content emphasizes directed observations as an approach to developing more relativistic attitudes. Diverse techniques, from simulation to field experience, are used in order to assist students in understanding and adjusting to diversity. Class 4, Credit 4
0511-442 Contemporary International Economic Problems
Prepares the student to deal with foreign exchange market, international trade decisions, the macroeconomic effects of trade on domestic economies, and the effects of domestic business fluctuations on international trade and finance of each country. Though basically a theory course in economics, emphasizes the applied aspects of international trade and finance. Part of the economics concentration and also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-443 Current American Macroeconomic Problems
An in-depth analysis of selected macroeconomic problems such as economic growth, inflation and business cycles. The primary focus is consideration of current macroeconomic theory and policy application in the context of the U.S. economic problems, e.g., tax-based incomes policies, wage-price controls. Part of the economics concentration and also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-444 Public Finance
A study of the economics of the public sector. Topics include, but are not limited to: taxation and public expenditures and their effect on the allocation of resources, distribution of income, and employment; market failure; public goods; the economics of public choice; and the application of public finance principles and normative questions to public economic issues. Part of the economics concentration and also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-445 Survey of Economic Thought
A survey of the various schools of thought that have developed in economics from the late eighteenth century up to the present. Representative economists from each of the major schools (Classical, Marxian, Neo-Classical, Keynesian, Monetarist, etc.) are studied. Part of the economics concentration and also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-448 Economics of Less Developed Countries
Introduction to the economic problems of less developed countries (LDC). Students study the historical causes of underdevelopment gap between developed and underdeveloped countries and the theories and the policies aimed at accelerating the rate of growth in LDC. In addition, the role of international organizations in the economic development of LDC is discussed. Part of the global studies and the economics concentrations; also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-450 Benefit-Cost Analysis
Explores the use and abuse of benefit-cost and related analytical techniques commonly encountered in economic policy making. Many expenditure and regulatory programs of governmental agencies now are routinely evaluated in a benefit-cost or cost-effectiveness framework, and debate about policy decisions increasingly draws upon benefit-cost findings. Yet application of benefit-cost analysis often attracts much controversy, in part because of disagreements about how to conduct such analysis and about the role that economic efficiency should play in societal decisions. The mechanics, power and limitations of this form of analysis form the primary elements of the course. Required course for economics majors; part of the economics minor and concentration; and also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-452 Monetary Analysis & Policy
The study of monetary behavior and the role of monetary institutions in the modern economy. Includes consideration of monetary theory, the development and current characteristics of monetary institutions in the American economy and the use of the tools of monetary analysis to evaluate alternative monetary policies. Concludes with an evaluation of the neo-Keynesian and Monetarist positions. Required course for economics majors; part of the economics concentration and minor; and may be taken as an elective. (0511-401 or equivalent) Class 4, Credit 4

0511-453 Intermediate Microeconomics Theory
Helps develop the tools of analysis utilized in contemporary economics to study the process of price formulation in a capitalist society. Topics covered include the theories of consumer behavior, cost and production, alternative market structures and the pricing of factors of production. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511-401 or equivalent) Class 4, Credit 4

0511-454 International Trade & Finance
Introduces the students to the theory and practical issues of the export/import markets, the international flow of capital and international investment decisions. In addition, students study the foreign-exchange and the Euro-dollar markets and the investment opportunities in them. The role of multinational corporations in international trade and finance also is discussed. Required course for economics majors; part of the economics concentration and minor; and may be taken as an elective. (0511-301, 401 or equivalent) Class 4, Credit 4

0511-455 Intermediate Macroeconomics Theory
The central question of macroeconomics is the determination of output, employment and prices. This course develops models that incorporate behavioral assumptions concerning consumption, investment and the role of money and their relationship to macroeconomic variables. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511-401 or equivalent) Class 4, Credit 4

0511-456 Industrial Organization
The study of the structure, conduct and performance of contemporary American industry. Involves the application of the tools of microeconomic analysis and empirical evidence to aid in understanding the behavior of modern industry. In addition, the course considers the historical determinants of contemporary market structure and the public policy measures designed to preserve a competitive market structure. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511-401 or equivalent) Class 4, Credit 4

0511-457 Applied Econometrics
Provides students in the economics program with an opportunity to develop their skills in applied regression analysis. Covers the various regression models, estimation techniques, data preparation and transformation, and the interpretation of regression results. Particular emphasis on the dangers of misuse of regression techniques. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511-401, 1016-319, 1016-226) Class 4, Credit 4

0511-458 Economic Forecasting
Introduction to one of the major functions contemporary economists perform economic forecasting. Students are exposed to alternative theories and the manner in which economists in both the private and public sectors use these frameworks of analysis, data and quantitative methods to generate economic forecasts. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511-401) Class 4, Credit 4

0511-459 Managerial Economics
A further elaboration of the elementary principles of economic analysis in Principles I and II. Particular emphasis is on the application of these principles to the decision-making process of the firm. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511-401) Class 4, Credit 4

0511-460 Mathematical Methods: Economics
Develops the mathematical skills used by the applied economist in computer-based research. Exercises and research projects for the course are chosen to illustrate the kind of problems actually dealt with by the contemporary applied economist. Required course for economics majors; part of the economics concentration and minor; and also may be taken as an elective. (0511, 401, 1016-226) Class 4, Credit 4

0511-461 Seminar in Applied Economics
A senior-level course emphasizing applications of economic analysis an quantitative methods to economic decision making. Cases are drawn from both the private and public sectors of the economy. Required course for economics majors degree. Part of the economics concentration and also may be taken as an elective. Class 4, Credit 4

0511-480 Economic Role of Women
Analyzes the economic role of women in today’s society. Includes the economic role of women in the labor force, as owners of other factors of production and in business decision-making process. The impact of the changing role of women on GNP, labor market and other economic variables is elaborated. Through the analysis of some economic models and their application to real world situations, it is shown that the social, political and individual equality of women depends, to a great extent, on their economic role in family and society, Class 4, Credit 4 (offered occasionally)
0511-481 Environmental Economics
Examines the relationship and apparent conflict between economic growth and environmental quality, the economics of environmental issues and policy, the environment as a resource and a public good, and the ability and lack of ability of free markets and the government to deal adequately with pollution and other environmental problems. Part of the environmental studies and economics concentrations; the science, technology and environmental studies minor; and also may be taken as an elective. (0511-301) Class 4, Credit 4

0511-484 Natural Resource Economics
This course develops an economic perspective on one of the most important and challenging issues facing global society—the allocation, use, and preservation of natural resources. The course presents and discusses the methodology economists use to inform natural resource managers and policy makers. Economic thought and analysis are used to evaluate a variety of issues in this area. The course concludes with a brief discussion of the interdisciplinary aspects of natural resource management. Part of the economic concentration and minor. (0511-301) Class 4, Credit 4

Political Science

0513-211 American Politics
A study of the American national political system, its theoretical foundations and institutions, and the contemporary issues that confront it. Class 4, Credit 4 (offered quarterly)

0513-215 Political Ideologies
Examines the major political ideologies, their idea sets and accompanying action plans across the political spectrum and clarifies students' political preferences for them. Class 4, Credit 4 (offered quarterly)

0513-401 National Security Forces I
This course will examine the sociology aspects of officerhood, the Military criminal justice system, and introduce national security policy. Topics of interest focus on the military as a profession, officerhood, air force doctrine, civilian control of the military, and a comparison of the military/civilian justice systems. (Approval of the aerospace studies department; strictly for ROTC students) Class 4, Credit 5

0513-402 National Security Forces II
This course will examine the American national security policy by analysis of the evolution of the American defense strategy and policy. Topics include methods for managing conflict, international terrorism, alliances and regional security, an analysis of arms control and the threat of war, and the formulation of American Defense policy and strategy. (Approval of the aerospace studies department; strictly for ROTC students) Class 4, Credit 4

0513-440 International Relations
A critical analysis of the structure and principles of the international system with emphasis on the tensions between the imperatives of power politics and the requirements of law and justice. Part of the international relations, global studies and peace studies concentrations; the international relations minor; and also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-441 Politics in China
Provides students with the political dynamics of the People's Republic of China. Major emphasis is given to the historical background, major aspects of the political systems and the foreign relations of China. Part of the international relations, foreign language/culture concentrations; the international relations minor; and also may be taken as an elective. (0513-211 or 215) Class 4, Credit 4

0513-442 Government & Policy of Russia
An analysis of the politics and governmental systems in Russia. Emphasis is on the dynamics of political, economic and social change, as well as political leadership and contemporary issues. Part of the international relations concentration; the international relations minor; and also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-443 Foreign Policy of Russia & CIS
A critical examination of the fundamental elements of the foreign policy of Russia from the Soviet era to the present. Special emphasis is given to the geopolitical, economic and ideological forces affecting national interests, as well as analyses of the mechanics of foreign policy formulation and its implementation with respect to the United States, Europe, China, the Third World, Middle East and the “Near Abroad.” Part of the international relations concentration; the international relations minor; and also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-444 The Cold War
An examination of the origins and evolution of the Cold War with the major emphasis upon the Soviet-American rivalry in the post-World War II era. Part of the international relations concentration and also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-445 Comparative Politics
Provides a mode of analysis for the study of political systems. Basic concepts of political science are utilized to present a descriptive and analytical examination of various political systems that can be classified as western democracies, communist or third world. Particular attention is paid to the governmental structure, current leadership and major issues of public policy of those selected political systems under review. Part of the international relations, American politics and global studies concentrations; the international relations minor; and also may be taken as an elective. Class 4, Credit 4

0513-446 Politics in the Third World
This course uses comparative theoretical perspectives to explore the ways in which the historical, cultural, economic and political context of the societies of Africa, Asia and Latin America determines the patterns of their political process. Focus is directed to such factors as history, religion, economics underdevelopment, and culture and their impact on the efforts to promote the values of liberalization and democratization, economic and social modernization and political and social stability. Class 4, Credit 4

0513-450 State & Local Politics
A study of politics and government on the state and local levels and the relationships between these levels and the federal government. It illustrates differences in state governments by comparing other states to New York and uses the Rochester area for comparisons with local governments found elsewhere. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-451 The Legislative Process
Examines the role of the legislature in the U.S. political process. The primary emphasis is the study of the U.S. Congress, but some attention also is directed to state legislatures. Topics studied include elections, party organization, committees, interest-group activities and executive- legislative relations. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-452 The American Presidency
A study of the role of the presidency in the American political system Among the topics considered are the nomination and election process, evolution, expansion and limitation of presidential powers, factors in decision making and the various leadership functions performed by the American Presidency. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-453 American Foreign Policy
A study of the formulation and execution of American foreign policy, including the examination of the instruments, procedures and philosophies shaping the development and implementation of foreign policy. Part of the American politics and international relations concentrations; the international relations minor; and also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-454 Political Parties & Voting
Political parties are a crucial part of the democratic process. Parties serve as a critical link between citizens and their government, as parties promote policies favored by their voters. This course studies parties, their history, their future and their role in the democratic process. Overall emphasis is on the degree to which parties perform or fail to perform as links between citizens and government. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-455 Politics & Public Policy
A study of the politics of the policy process covering these basic questions: How do public problems get to the agenda of government? How does government formulate policy alternatives? How does government legitimate public policy? How does government implement public policy? How does government evaluate public policy? Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4
0513-456 The Judicial Process
Examines the structure and function of the state and federal courts in the American political system. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-457 Constitutional Law
Provides the student with a basic understanding of the constitutional principles frequently encountered in the criminal justice profession. Landmark court decisions relating to due process, equal protection, unlawful arrest, unreasonable search and seizure, compulsory self-incrimination, the assignment of counsel and fair trial guarantees are discussed and critically evaluated. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-458 American Political Thought
Study of the political ideas, concepts, issues and principles which taken together compose the stream of American political thought. Examines major controversies which have marked the developing body of the literature by examining the contributions of major political thinkers. Option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-481 Women in Politics
A study of feminism thought as it applies to the political, economic and social status of women and how it has been expressed through the women’s political movement. Students study a number of public policies as they apply to and affect women and examine the opportunities for women to participate in the political process. Part of the women’s studies concentration and an option for minors and concentrators in American politics. Also may be taken as an elective. (0513-211, 215 or equivalent) Class 4, Credit 4

0513-482 African-American Politics
This course will examine the institutions and processes of American government and politics from the perspective of African American presence and influence. The fundamental premise is that race is the most important cleavage in American life and that race has always been an enduring fault line in American society and politics. This course will examine how the presence of Africans in the U.S. affected the founding of the Republic and its political institutions from the colonial era to the present. The course will conclude with a comprehensive review of the race-related implications of the 2000 presidential election controversy in the state of Florida. The materials covered in this course will be historically informed. Class 4, Credit 4

0513-483 Contemporary Africa
This course introduces you to contemporary Africa. In doing so, it touches on the political, economic, and sociocultural factors that have shaped the continent. Among the themes covered are indigenous and modern political and social systems; international relations; population growth and urbanization; the environment; and women’s effect in society. Class 4, Credit 4

0513-484 Government & Politics in Africa
The course examines the influence of historical, cultural, economic and social factors on the pattern of politics in sub-Saharan Africa. Focus is directed to the challenges of economic modernization and development, national integration, the promotion of a vibrant and liberal civil society, democratization and stability. Class 4, Credit 4

0513-514 Theories: Political Systems
An examination of the basic questions in political theory, a survey of the major political philosophers and an inquiry into the major political ideologies. Class 4, Credit 4 (offered occasionally)

0513-599 Independent Study
A student may register for an independent study project subject to the approval of the faculty sponsor, students department, and the Academic Committee and dean of the College of Liberal Arts and providing that she or he has a minimum GPA of 2.7 at time of application. An independent study project is not a substitute for a course. It enables the interested student and his or her faculty sponsor to coordinate their efforts on subjects and topics that range beyond the normal sequence of course selection. Credit variable (offered annually)

0514-201 Freshman Seminar
Acquaints students with career opportunities available to psychology majors, assists in exploration of individual career goals and aids students in planning a curriculum strategy that will match their goals. Required course for psychology majors. Class 1, Credit 1

0514-210 Introduction to Psychology
Introduction to the scope and methodology of psychology. Topics include aims and methods, sensation and perception, learning and memory, emotion and motivation, normal and abnormal personality, and social psychology. Required course for psychology majors. Class 4, Credit 4 (offered quarterly)

0514-350 Psychological Statistics
This course will cover descriptive and inferential statistics and will train students how to use the SPSS statistical application. Special attention will be given to psychological applications, conceptualization, and interpretation of statistics, computer-assisted data-analysis, and reporting of results. This course should be taken prior to higher-level psychology courses, especially experimental psychology and track courses. Class 4, Credit 4

0514-400 Experimental Psychology
An introduction to the logic of experimental research and application of the scientific methods to the study of behavior. Emphasis on stating empirically testable hypotheses, understanding and designing experiments, and writing research papers in APA style. Required for psychology majors (0514-350) and may be taken by psychology minors (0514-210; 1016-319 or higher). Class 4, Credit 4

0514-402 Research Methods
An introduction to the logic of experimental research and application of the scientific methods to the study of behavior. Emphasis on stating empirically testable hypotheses, understanding and designing experiments, and writing research papers in APA style. Part of the psychology minor. (0514-210) Class 4, Credit 4

0514-440 Childhood & Adolescence
Explores human development from conception through adolescence. The developmental approach provides the opportunity to integrate many areas of psychological research such as cognition, personality, perception, social interaction and moral development as they apply to human development. Required course for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-441 Humanistic Psychology
Examines the major assumptions, theories and implications of “growth” or humanistic psychology. Students study human beings as dynamic, complex creatures who shape themselves and their world through the choices they make each day and whose best hope for realizing their individual and collective potential is an accurate understanding of what human persons need to grow psychologically and what societal conditions seem to foster such growth. Professional elective for psychology majors. Part of the psychology concentration and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-442 Adulthood & Aging
Encompasses the psychology of the span of life from young adulthood through the middle years. The developmental approach, presented in an interdisciplinary framework, provides a systematic orientation to the study of the individual during early adulthood. Professional elective for psychology majors. Part of the psychology concentration and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-443 Cognitive Psychology
This course examines how people perceive, learn, represent, remember and use information. Contemporary theory and research is surveyed in such areas as attention, pattern and object recognition, memory, knowledge representation, language acquisition and use, reasoning, decision making, problem solving, creativity, and intelligence. Applications in artificial intelligence and human/technology interaction may also be treated. Part of the psychology concentration; the psychology minor; and also may be taken as elective. (0514-210) Class 4, Credit 4
0514-444 Social Psychology
Gives a general overview of those areas of social psychology currently under the most intensive investigation and likely to be of most interest to the student, including nonverbal communication, attraction, aggression and group effects. Required course for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-445 Psychology of Perception
Covers topics of all sense modalities with emphasis on visual perception. Traces what happens to the physical stimulus as our sensory systems analyze it to produce complicated perceptions of the world around us. Many complex perceptual phenomena draw upon explanations at the physiological, psychological and cognitive levels. Professional elective for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-446 Psychology of Personality
Examines the strengths and weaknesses of the major psychological theories of personality. Methods of assessing personality, research and applications of theory to real-life situations are included in the evaluation of each theory. Required course for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-447 Abnormal Psychology
Examines the major categories of mental disorder not only from the descriptive point of view, but also in terms of the major theoretical explanations of the causes of disorder. The major treatment modalities also are covered. Required course for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-448 Industrial & Organizational Psychology
Consideration of principles as well as application of, and current research in, industrial psychology, with particular reference to personnel selection, training, motivation, morale, performance appraisal, leadership and communication. Required course for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-449 Behavior Modification
Students learn the skills of changing their behavior by controlling their environment and the consequences of their behavior. Professional elective for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

0514-451 Psychology of Motivation
Surveys basic motivational concepts and provides a fair representation of many different areas of motivational research, relating these to each other where possible. Professional elective for psychology majors. Part of the psychology concentration; the psychology minor; and also may be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4 (offered occasionally)

0514-453 Death & Dying
This course will view death from a social-psychological perspective. After dealing with topics such as the leading causes of death, attitudes toward death, suicide, and American funeral practices, it will focus on such questions as how people can better cope with their own mortality and that of loved ones, and how people can help others face death, and help themselves and others during periods of bereavement. Part of the psychology concentration and also may be taken as an elective. (0514-210) Class 4, Credit 4

0514-480 Psychology of Women
Examines the relevance and applicability of present psychological theory and research to the understanding of the development and behavior of women. Major topics covered include psychological and biological sex differences, psychological theories of women’s development, the relationship between female personality development and various sociocultural factors, women’s place in society, women and their bodies, and women and mental health. Part of the women’s studies concentration and also may be taken as an elective. Class 4, Credit 4

0514-493 Social Psychology of Religion
Examines religions as cultures that, like other “ways of life,” face the task of attracting or creating new members, maintaining their loyalty, providing them with a coherent world view and satisfying their basic needs. Suggests how psychological processes such as identity information, attribution, self-actualization, brainwashing, conflict, denial, projection and repression may be applied and misapplied in efforts to understand religious belief and behavior. Part of the perspectives on religion concentration and also may be taken as an elective. Class 4, Credit 4

0514-530 Attention & Pattern Perception
One of the most formidable bottlenecks in human information processing is the limitation of attention. This course surveys contemporary theory and research on selective and divided attention with an emphasis on laboratory research and its relevance in such applied areas as display layout and driving. Cross-modal attention and attention for action are covered, as is the relationship between attention and conscious awareness. This course also surveys Gestalt and contemporary cognitive approaches to object recognition. Required information processing track course for psychology majors. May be taken as an open elective but not as a liberal arts elective. (0514-210, 350, 400) Class 4, Credit 4

0514-531 Language & Problem Solving
Perhaps the most significant cognitive capacity of human beings is their use and understanding of language. This course examines the structure of language and its relationship to thought, and surveys contemporary theory and research on the comprehension and production of spoken and written language. Applications such as artificial speech recognition are discussed. The course also surveys the psychological literature on reasoning and problem solving and examines attempts in artificial intelligence to simulate human performance in these areas. Required information processing track course for psychology majors. May be taken as an open elective but not as a liberal arts elective. (0514-210, 350, 400, 1016-301, 311) Class 4, Credit 4

0514-532 Judgment & Decision Making
Explores judgment and decision-making processes and focuses on the social and cognitive aspects of complex information processing. Topics include selective perception, memory and hindsight biases, framing effects, heuristics and biases, social influences, group processes and common errors. Required information processing track course for psychology majors. May be taken as an open elective but not as a liberal arts elective. (0514-210, 350, 400, 1016-301, 311) Class 4, Credit 4

0514-533 Learning & Memory
This course reviews current research within a larger historical perspective. It presents the multistore or modal model of memory with an in-depth examination of the evidence used to support the model. Baddeley’s Working Memory model is presented in some detail to illustrate how theorists explain the huge amount of information we have about memory performance. It also includes topics such as memory structures, levels of processing, implicit and explicit memory, schemas, signal detection theory and global memory models. Theories of learning are clearly meaningful for the study of memory. With the new developments in connectionist models of learning, theories of learning again assume importance in scientific study. Required information processing track course for psychology majors. May be taken as an open elective, but not as a liberal arts elective. (0514-210, 350, 400) Class 4, Credit 4

0514-540 Visual System
As the basis to study visual perception, this course introduces electromagnetic waves as visual stimuli, structure of the eye, and visual pathways in humans, vertebrates, and some non-vertebrates. The materials covered span basic optics, biology, physiology, and psychophysics. The functional and behavioral consequences of the visual system such as uneven distribution of photoreceptors in the retina, receptive field of cells, and neural plasticity are also considered. Required for psychology majors in the visual perception track. May be taken as a liberal arts elective. (0514-210, 445 or equivalent) Class 4, Credit 4

0514-541 Color Perception
Examines human color perception from the psychophysical perspective with knowledge in optics, neurophysiology, and color science. Among the topics covered are theories of color vision, basic colorimetry, chromatic and acquired color vision deficiencies, and evolution of color vision. Required for psychology majors in the visual perception track. May be taken as a liberal arts elective. (0514-210, 445 or equivalent) Class 4, Credit 4
Spatial Vision & Pattern Perception
Traditional psychological views of organization of spatial vision such as Gestalt psychology and optical array are elaborated and connected to recent development of studies in spatial vision and pattern recognition. Techniques include electrophysiology, psychophysics, and brain imaging. Required for psychology majors in the visual perception track. May be taken as a liberal arts elective. (0514-210, 445 or equivalent) Class 4, Credit 4

Depth & Motion Perception
This course surveys such topics as monocular and binocular depth cues, size and shape constancy, stereopsis, direction perception, apparent motion, structure-from-motion, heading perception, and self-motion. Gibsonian approaches to perception are contrasted with more traditional indirect perception approaches. The physiological bases of depth and motion perception are covered, as are practical applications of work in the area. Required visual perception track course for psychology majors. Also may be taken as a liberal arts elective. (0514-210, 445 or equivalent) Class 4, Credit 4

History & Systems
Course provides background to the development of current psychological perspectives. It examines beliefs, practices, achievements and limitations of various systems of psychology from Greek times through to the late 20th century. Professional elective for psychology majors. Part of the psychology concentration and minor. May be taken as an elective. (0514-210 or equivalent) Class 4, Credit 4

Brain & Behavior
Introduction to the neurobiological basis of cognition and behavior. Topics include hemispheric specialization, localization of function, brain injury, neuropsychological testing, and functional neuroimaging. Emphasis is on higher brain functions, such as language, memory, and visuospatial processing, with an evolutionary perspective. Laboratory work focuses on EEG correlates of attention and cognition. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Right Brain Left Brain
A comprehensive introduction to hemispheric specialization, including clinical and scientific relevance of brain asymmetry. Topics include localization of function, split-brain procedures, neuropsychological testing, interhemispheric interactions, and functional neuroimaging. Emphasis is on higher brain functions such as language, memory, and visuospatial processing, in an evolutionary context. Laboratory work focuses on lateralized tachistoscopic designs to investigate normal language function. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Brainwaves & Behavior
Introduction to the study of human EEG, also known as brainwaves. EEG analysis is the original functional neuroimaging technique for visualizing brain activity in healthy and patient populations during cognitive tasks. Advances in functional neuroimaging have triggered a revolution in research on the biological bases of cognition, emotion, and psychiatric disorders. This course provides a forum in which students can learn about recent EEG findings and applications. Methods for evoking brain activity and how to analyze EEG data as well as the limitations of neuroimaging results will be explored. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Biological Bases for Mental Disorder
A comprehensive introduction to the biological foundations of schizophrenia, depression, autism, bipolar disorder, Tourette’s syndrome, and other mental disorders. Topics include neuropsychological testing, etiology, and structural and functional neuroimaging. Laboratory work will focus on language and cognitive function in one or two of these disorders. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Introduction to Clinical Psychology
The purpose of this course is to provide an overview of the field of clinical psychology. The course is designed for upper-level undergraduate students interested in learning more about this specific field. Students will learn about the primary tasks of a clinical psychologist, including fundamentals of assessment, clinical research, conceptualizing problems, and psychotherapy. In addition, students will learn about the educational and professional behavior, and controversial issues within the field. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Psychological Testing
This course will explore the theories, methods, and applications of psychological testing. The advantages and drawbacks of psychological testing in general, and selected tests in particular will be emphasized. The use of tests in clinical and other applied areas of psychology is based on several assumptions. First, assessment is apt to be more useful if based upon reliable and valid information. Second, improving one’s knowledge of tests will help students to gather meaningful information about people and environments. Third, it is desirable to design intervention plans based on accurate assessment data, and to use data to evaluate intervention outcomes. In a practical sense, a primary objective of this course is to help students develop some preliminary assessment skills and improve their knowledge about assessment techniques and tests. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Research Clinical Psychology
This course will explore the theory and methods used to evaluate interventions in the field of clinical psychology and related human services. Topics to be covered will include with subjects/single subjects experiments, between-subjects experiments/clinical trials, and general program evaluation. Two primary objectives are to help students develop an appreciation for the importance of scientific evaluations of psychotherapy and other interventions and to develop skills for evaluating the efficacy of clinical interventions. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Helping Skills: Practicum
The purpose of this course is twofold. First, students will be exposed to an overview of the process of psychotherapy with an emphasis on the scientific-practitioner model of clinical practice. Topics to be covered will include listening and communication skills, interviewing, crisis assessment and management, and the therapeutic relationship. Second, students will develop practical experiences in dealing with people diagnosed with severe mental illnesses through a year long volunteer experience through Compeer or other local volunteer agency approved by the instructor. Part of the clinical psychology track for the psychology degree program. Class 4, Credit 4

Senior Project in Psychology
This course is intended for students in the psychology major to demonstrate independent, experimental research expertise. Students are guided by faculty advisors in conducting experimental research on an issue of their choice. Students design the method, run subjects, and analyze the results of their study. Students write up the project in APA format. Passing this write-up qualifies the students for the writing requirement in psychology. Because Senior Project is the culmination of a student’s scientific research learning experience in the psychology major, it is expected that the project will be somewhat novel, will extend the theoretical understanding of their previous work (or of the previous work of another researcher), and go well beyond any similar projects that they might have done in any of their previous courses. (0514-210, 350, 400; 0516-301, 302 and proposal) Class 4, Credit 4

Foundations of Sociology
Introduces students to the way sociologists interpret social reality, the major elements of the field and the most important research findings. Included are such topics as cultural differences and ethnocentrism, socialization, social statuses and roles, group dynamics, social institutions, stratification, collective behavior. Class 4, Credit 4 (offered quarterly)
0515-442 The Urban Experience
This sociology course analyzes social and spatial characteristics of cities and considers reasons for urban development, ecological factors, types and networks of settlements, and urbanism as a way of life. Also examines the issues of neighborhoods, subareas, ghetto enclaves, metropolitan regions, urban social and political structures, problems, services and planning. Part of the social change in a technological society concentration and also may be taken as an elective. (0515-210 or 0510-210) Class 4, Credit 4

0515-443 Sociology of Work
This course analyzes continuity and change in the way work is organized, performed and experienced within national and global contexts of the economy, politics and technology. It focuses on the relationship between the social and technical organization of work, including such aspects as displacement, union-management relations, safety, skill and the experience of work as satisfying or alienating. It also examines the interplay of race, ethnicity, class and gender with work, and the interplay of work with other social settings, such as family life, leisure and education. Part of the sociology concentration; the sociology/anthropology minor; and also may be taken as an elective. (0515-210, 0510-210 or equivalent) Class 4, Credit 4

0515-444 Social Change
This course describes and applies competing explanations for major transitions in a variety of institutions, including the economy, work, politics, family and education. These transitions are seen within historical and global contexts, but the interplay of these changing social structures with individual experiences is explored as well. Topics include economic, racial and gender stratification, culture, labor-management relations, and the source and consequences of technological change. As future professionals in technical fields, students will learn to understand, assess, and manage social change rather than simply react to it. Part of the sociology concentration; the sociology/anthropology minor; and also may be taken as an elective. (0515-210, 0510-210 or equivalent) Also part of the social welfare policy minor. Class 4, Credit 4

0515-446 Sociology of Health
A survey of the sociological aspects of health and illness. Some areas of study will be the definition, causes (etiology) and cure of disease in various societies and social groups. Also included is a discussion of the epidemiology of disease, access to and delivery of health care in contemporary U.S. society, problems of patient care, and the study of mental illness and death and/or dying. Part of the social change in a technological society concentration and also may be taken as an elective. (0515-210 or 0510-210 or equivalent) Class 4, Credit 4

0515-447 Women, Work & Culture
Broad sociological issues affecting women, work and culture are a result of the emerging global economy and technological revolution. The course will consider how the process of gender socialization is complicated by the way in which gender intersects with racial, class, ethnic, sexual, and other identities. This course will present the major theoretical perspectives employed in sociology and women’s studies and consider how they relate to the study of women, work and culture. This course is part of the sociology concentration; the sociology/anthropology minor; and also may be taken as an elective. (0515-210, 0510-210 or equivalent) Class 4, Credit 4

0515-448 Minority Group Relations
Deals with the principal concepts and research findings of those who have studied racial and ethnic minorities and their relations. Taking into account the growing body of theory and data on the dynamics of ethnic prejudice and discrimination, the course is concerned with the subcultures of minorities; the nature of prejudice and discrimination; the etiology, patterns and consequences of intergroup conflict; and the reactions of minorities to differential and discriminatory treatment. Concepts such as assimilation, amalgamation and desegregation are analyzed as forms of conflict resolution. Part of the social change in a technological society concentration and the minority group relations concentration; and also may be taken as an elective. (0515-210, or 0510-210 or equivalent) Class 4, Credit 4

0515-449 Population & Society
Study of demographic variables of mortality, fertility and migration as they affect the rise and quality of population. Part of the social change in a technological society concentration and also may be taken as an elective. (0515-210 or 0510-210 or equivalent) Class 4, Credit 4

0515-451 Transfer Technology & Globalization
This course provides an understanding of theoretical perspectives, directions, processes and consequences of transfer of technology from modern to developing societies. It also examines the diffusion of technologies, that is, the process through which they spread from their initial sources into various national and international organizations (e.g., multinational firms, factories, communities, and homes). The course also analyzes the consequences of conventional technological transfers and the need for appropriate technology for developing countries. Part of the sociology concentration; the sociology/anthropology minor; and also may be taken as an elective. (0515-210 or 0510-210 or equivalent) Class 4, Credit 4

0515-482 African American Culture
Analyzes past and present social policies, programs and practices from their actual and predictable effects on black people. These analyses and solutions include particular emphasis on how the black community has been forced to develop mechanisms for coping with the debilitating effects of poverty, environmental deprivation and institutional racism. Presents a systematic means of facilitating change in people’s attitudes and behaviors. Part of the minority relations concentration, the Latino/Latina Latin American concentration and also may be taken as an elective. Class 4, Credit 4

0515-483 Hispanic American Culture
The study of the social experiences and conditions of Hispanic Americans and the degree to which they have been assimilated into the mainstream dominant culture. Various Hispanic groups are studied with the goal of defining and outlining their social structures and similarities. The Puerto Ricans in the Northeast and the Mexican Americans in the Southwest are specifically selected for analysis. Helps students to better understand the problems faced by Hispanic Americans by looking at specific socio-economic indicators such as their access to health care, job opportunities, educational institutions and the degree to which Hispanics have “progressed” in the U.S. Part of the minority relations concentration, the Latino/Latina Latin American concentration and also may be taken as an elective. Class 4, Credit 4

0515-484 Cultures of Latin America
This course provides an introduction to the societies of Latin America and the Caribbean from a historical and cultural perspective. We begin with an overview of the ancient indigenous cultures, then consider the motivations for patterns of Spanish and Portuguese invasion and colonialism. We consider how the colonial past is reflected today in ethnic inequalities, economic vulnerability, and social unrest. We examine how Latin Americans struggle to compete on the global market, consider industrial development, the growth of cities, religious protest, the changing role of women and men, and grassroots social movements. Through a few case studies, we examine environmental protection in the Amazon, power in everyday life in Nicaragua, and the impact of globalization in Mexico. Overall, we view how contemporary societies reflect the historical past and the resilience and creativity of Latin American people. Part of the Latino/Latina Latin American concentration and may be taken as an elective. Class 4, Credit 4

0515-506 Social Inequality
A survey course that examines different dimensions of stratification in the U.S. and elsewhere. Explanations for the existence of inequality are addressed at individual, group and institutional levels. Class 4, Credit 4 (offered occasionally)

0515-507 Complex Organizations
Analyzes the structure and dynamics of a wide variety of social organizations (government bureaucracies, corporations and voluntary groups). Topics include theories of organization, organizational processes, technological impact, and organizational change and development. An examination of the internal operation of large organizations includes sources of power and authority, modes of communication and division of labor, as well as tension, stress and strain. Class 4, Credit 4 (offered occasionally)

0515-508 Aging & Society
Considers concepts, issues and research techniques in the behavioral and biological aspects of aging. Examines the interaction of group processes in the family and community that influence society’s attitudes toward the aging process. Further examines the cultural, environmental and institutional changes as they relate to an increasing population of older people. Class 4, Credit 4
0515-509 Social Policy
An examination of social policy formulation in a variety of contexts from local government to national government. Special attention is given to the strategies, choices and priorities in the formulation of social policy. Deals with historical development of social policies, including the issues of health, aging, poverty, family and children. Also examines the question of how social values and economy influence policy development. Class 4, Credit 4 (offered occasionally)

0515-515 Social Policy & Aging
Course work is organized around culture and values as context for policy formulation. Special attention is given to the process of policy analysis and implementation. Several specific policy areas are examined: social security and income maintenance, health and long-term care, work and retirement, social services and the aging network, housing and living arrangements for the elderly, and the role of the family and the elderly. May be used as a social work minor. Class 4, Credit 4

0515-524 Applied Sociology
Provides the student with useful sociological knowledge applicable to solutions of practical problems. The inventory of problem is not fixed beforehand, and the specific course content reflects the problems either already encountered by students or very likely to represent a significant portion of their anticipated professional concern upon graduation. (Permission of instructor) Class 4, Credit 4

0515-529 Deaf Culture in America
An introductory survey of culture among various groups of deaf people in the United States. Students study the scholarly literature dealing with these groups and have contact with members of this community. Familiarizes students with the characteristics of deaf culture as well as general perceptions of deafness and the deaf community within the dominant hearing society. Students should come to recognize and appreciate this segment of American cultural diversity. (0515-210 or 0510-210) Class 4, Credit 4

0515-569 Human Sexuality
This course is sex positive in its approach to the study of human sexual behavior. It focuses upon basic physiology, sexual awareness, sexual development throughout the life cycle, sex roles, sexual myths, legal and social issues, premarital and marital sexual behavior, and alternative sexual choices. Frequently these issues raise questions of sexual attitude and value, and these are examined and clarified. Class 4 + 2-hr. weekly seminar, Credit 4 (offered occasionally)

Social Work

0516-210 The Professional Social Work Role
Explores social work as a profession, the various fields in which social workers practice, and the differing philosophies of human services and social work approaches. Also covered are strategies for developing self-awareness and professional self-assessment. Required course for social work majors. Class 4, Credit 4 (F, W)

0516-212 Self Awareness in the Helping Role
Self Awareness develops students’ helping skills in essentially three broad areas: 1) skills in noticing or observing; 2) observing one’s professional use of self in the helping relationship and evaluating the appropriateness of such behavior; and 3) observing the client and evaluating the effect one’s response has on her or him. Students are expected and required to increase their awareness skills, and this course offers an opportunity for students to focus on and practice using awareness skills. Further, this course introduces students to personal and professional skills which are necessary in developing an understanding of their beliefs, prejudices, and emotions, and the affect these have on the clients with whom they interact. The course is intended to help students integrate professional ethics and values with their personal ethics and values to be a better social worker. Required course for social work majors. Class 4, Credit 4 (W, S)

0516-218 Technology & Social Work
This course covers most of the technology literacy requirements for graduation from the social work program. Students must take this course during their first or second matriculated quarter and will be expected to utilize computers and other relevant technology immediately in other courses. The course focuses on broad areas of information technology applications to social work: general computer literacy skills, E-mail skills, word-processing basics, technology and confidentiality, accessibility to technology, internet skills, and presentation software. Required course for social work majors. Class 2, Credit 2. (S)

0516-330 Rural Social Services
Identifies the historical development, cultural makeup, family lifestyles, and work habits of the nation’s migrant population and the rural poor. Examines and critically analyzes the differences between migrants and the rural poor and compares them to the characteristics of the urban poor found in contemporary American cities. Considers governmental rural policies and servicedelivery systems directed to the rural areas that reflect the economic, political and social conditions during the time they were developed. The skills of generalist social work as applied in the rural setting are compared to application in urban settings. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered on sufficient demand)

0516-340 Deafness: Fundamental Aspects
Provides the student with a basic understanding of deafness. The overview includes how we hear, techniques for diagnosis, the etiology of deafness, as well as a historical perspective on how education for the deaf has developed with its various philosophies. Language acquisition and modes of communication are explored, as well as the social, psychological and vocational development of deaf persons. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered every other year)

0516-341 Psychological & Social Implications of Deafness
The purpose of this course is to provide the student with an in-depth examination of the psychological implications of deafness for the individual. The various situations with which the deaf individual interacts as well as within which she/he interacts, will be examined for their relevance to the development and functioning of the individual. We will also examine how the individual and these systems impact and influence each other. These systems will include family, school, service delivery systems and society. Professional elective for social work majors. Class 4, Credit 4

0516-342 Deafness: Intervention Strategies
Helps build skills in applying the knowledge base developed in the prerequisite course to case situations. Students demonstrate collection and recognition of pertinent information and development and implementation of appropriate intervention plans. Legal and political issues as well as methods of assessing local resource networks are considered. Professional roles and intervention goals are discussed as they relate to interfacing systems, including individual, family, school, medical, mental health, rehabilitation and employment. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered every other year)

0516-354 Human Behavior in the Social Environment I-Preadolescence & Young Adult
Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social, and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecological perspective of social work practice. The course is designed to enhance students’ critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student’s perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, discrimination Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. Class 4, Credit 4

0516-355 Human Behavior in the Social Environment II-Adolescence & Young Adult
Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social, and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecological perspective of social work practice. The course is designed to enhance students’ critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student’s perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, discrimination. Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. (0516-354) Class 4, Credit 4

0516-357 Mental Health-Mental Illness
Gives social work students a basic understanding of mental health and mental illness from a social work perspective. The role of the social worker in working with individuals and their families is included. Students are given a general understanding of our current mental health systems. The medical model and alternative systems of diagnosis are considered. Class 4, Credit 4 (S)
Human Behavior in the Social Environment III-
Adult to Late Adult

Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecologic perspective of social work practice. The course is designed to enhance students' critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student's perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, and discrimination. Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. Class 4, Credit 4

Social Work with the Disabled

An examination of the psychosocial aspects of disabilities. Emphasizes the effects of disability on the individual's development and functioning and the accompanying stress on the family and society in attempts to respond to her or his needs. Intervention strategies and critical times for intervention by the social worker are examined. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered on sufficient demand)

Social & the Law

Provides the student with the opportunity to develop a workable vocabulary and understanding of some of the basic legislative processes and laws that affect the practice of social work. Focus centers around significant issues and points of law that have affected the delivery of services. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered on sufficient demand)

Practice III: Families

This course is third course in the practice sequence. It is designed to give the social work student a basic understanding of the family as client. Students gain an understanding of family dynamics and the choices and decisions about family life that are required in contemporary society. A major focus of the course is the assessment of the family throughout its natural life cycle and areas of potential problems during its development when social work intervention may be beneficial. Students also learn about changes which can affect the family such as divorce, single-parenthood, remarriage, AIDS, death in the family, alcoholism, and family violence. It includes the influences currently affecting the contemporary American families such as social class, racism, ethnicity, poverty, and the changing status of women. (0516-354, 355, 358, 475) Class 4, Credit 4

SWPS: Social Welfare History

Acquaints the student with the historical roots of our present system of social welfare, emphasizing its development in the United States and the concurrent development of social work as a profession. It examines the value bases and the economic, social and political factors of each era as reflected in the social welfare programs of that time and their effects on people. Required course for social work majors. Also may be used as a social welfare policy minor. Class 4, Credit 4 (F, S)

Structure & Function of Social Work

Examines the provision of current social services in five major fields of social welfare: public welfare, traditional voluntary agencies, voluntary social movements, mental health and the legal system. Also explores organization theory as it applies to the structure of these services, as well as major patterns and sources of funding. Required course for social welfare degree program. Also part of the social welfare policy minor. This course is open to non-majors and non-matriculated students. Class 4, Credit 4 (F)

SWPS: Policy Advocacy

Examines the role of social workers in advocating with and on behalf of clients and others for negotiating or bringing about needed change in institutions or policies of our society. Discussion of the forces in the social, economic and political environment today that directly affect poverty, racism and other issues is related to examining techniques for achieving change. Professional elective for social work majors. (Third-year status) Also part of the social welfare policy minor. Class 4, Credit 4 (offered on sufficient demand)

Research I: Explore & Describe

Introduction to basic research methodology in social work practice. Emphasis is on an introduction to bibliographic search procedures, becoming a practitioner/researcher, evaluation of one's own professional practice, formulation of research, the environmental contexts of research, ethics and confidentiality, research methods and design, sampling, measurement, validity, reliability, indexes, scales, instrument design and basic descriptive statistics. Instruction, practical demonstration and hands-on experience are provided in computer applications ranging from electronic communication (including submission of assignments), storage of information, text formatting, ethics and confidentiality of electronically stored information to data processing and report writing. Required course for social work majors. (0516-429 or 1016-301, 302, 303) Class 4, Credit 4 (S)

Poly-addiction

Gives students and practitioners in the various fields of addiction a view of the myriad interconnections between alcohol and substance abuse, eating disorders, post-traumatic stress disorder and mental health. This wide perspective on poly addiction also takes into consideration ACOA and EAP and the assessment, treatment, evaluation and consequent training required of professionals in the field. Professional elective for social work majors. (Third-year standing) Class 4, Credit 2 or 4 (offered every other year)

Contemporary Issues in Social Work

Offers students an opportunity to examine and discuss contemporary issues in the field of social work. Course content varies from quarter to quarter depending on current issues and student interest. Areas related to expressed student interest, faculty expertise and developments in the field are examined. Professional elective for social work majors. (Third-year standing) Also may be used as a social work minor course. Class 4, Credit 4 (offered on sufficient demand)

Practice II: Groups

This second practice course provides the knowledge and initial experiential base for the development of practice skills in working with groups. It also provides the theoretical foundations of group dynamics and group behavior within the context of the social work profession. Such concepts as types of groups (prevention, rehabilitation), group development, composition, group process (problem solving, decision making, affection), program, communication, structure, and modes of intervention are covered. Class 4, Credit 4

Practice IV: Organization & Communities

In this course students learn about organizations and communities and study assessment techniques for identifying the strengths and weaknesses of services provided within a community. Topics include program evaluation, quality assurance procedures, and community development. Attention is given to programs for minority groups, the disabled, the elderly, youth, persons with mental health problems, and other special problems. It builds upon the knowledge of human behavior provided in the HBSE I and II as well as providing knowledge of macro practice. The focus is towards providing the skills, values and knowledge of organizations and communities necessary for generalist practice at the macro level. Students must have general knowledge of the generalist practice and the social work problem solving model. Students should be familiar with social work roles and ecological systems perspective. (0516-354, 355) Class 4, Credit 4

Practice I: Individuals

Practice I: Individuals is the first in a six-course sequence dealing with generalist social work practice skills. This course is meant to prepare students to apply the problem-solving process, including problem definition, assessment, goal planning, intervention, termination, and outcome evaluation to social work practice with individuals based on the ecological/systemic/strength based theoretical perspectives. The task-centered and crisis intervention models are integrated as examples of the problem solving process. Relationship building, communication skills, such as empathic and active listening, and the professional use of self are also explored. Class 4, Credit 4

Alcohol & the Family

Living in an alcoholic family, in which chronic alcoholism is the central theme, can have profound effects on family members, both drinkers and non-drinkers. These effects can be carried from generation to generation in complex ways. This course provides a comprehensive look at alcoholism as a family issue. Includes focusing on the progression within family systems, as well as codependency and adult children of alcoholics. Intervention, treatment and recovery of the alcoholic family also are discussed. Professional elective for social work majors. (Third-year standing) Class 4, Credit 2 or 4

Human Behavior in the Social Environment I-
Generalist Practice I: Individuals

Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecologic perspective of social work practice. The course is designed to enhance students' critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student's perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, and discrimination. Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. Class 4, Credit 4

Human Behavior in the Social Environment II-
Generalist Practice II: Groups

Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecologic perspective of social work practice. The course is designed to enhance students' critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student's perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, and discrimination. Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. Class 4, Credit 4

Human Behavior in the Social Environment IV-
Generalist Practice IV: Organization & Communities

Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecologic perspective of social work practice. The course is designed to enhance students' critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student's perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, and discrimination. Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. Class 4, Credit 4

Human Behavior in the Social Environment V-
Generalist Practice V: Leadership & Values

Human Behavior in the Social Environment is a three-course sequence designed to give students a basic knowledge of human development over the entire life cycle. Students study the biological, psychological, social and environmental aspects of human development. This individual development is placed in the context of the developmental family life cycle and the ecologic perspective of social work practice. The course is designed to enhance students' critical thinking skills about how people understand themselves, how they create meaning in their lives, how they change, and how the student's perspective influences his/her understanding of the client-systems. Social and economic influences that are addressed include racism, poverty, and discrimination. Changing gender roles, sexism, and sexual orientation are discussed within the context of human diversity. Class 4, Credit 4
0516-505 Practice V: Assessment & Intervention
Practice V: Assessment and Intervention is a two-part seminar structured course that builds upon the basic principles and objectives presented in the previous practice courses. Students will be expected to develop and expand knowledge of practice and interventions at the micro and mezzo levels. This course focuses on the specific skills necessary for social work practice as a means of enhancing client role performance and social functioning. Skill building will focus on such interventions as relaxation, self-management strategies, reframing, and guided imagery. This two-part course emphasizes the middle phase of work with clients, but begins at the assessment phase, and ends with termination and evaluation. Class 2, Credit 2

0516-506 Field Instruction I
Field Instruction I and II comprise a 20-week, 30-hour-per-week supervised field placement. Under the guidance of an instructor, the student is placed in a cooperating social, governmental, health or educational agency in order to gain direct experience with its organization, programs and client services. Closely supervised work at the agency is supplemented by seminars designed to integrate theory and practice. Required course for social work majors. (0516-435, 465, 475; corequisite with 0516-505, 527, 535) Field 300, Credit 6 (F)

0516-509 Policy & Strategy: Children & Families
Gives social work students a beginning knowledge of social work services to children and their families. Specific services included are preventive services, homemakers, day care, protective services, foster care, adoption, unmarried parents, institutional care and mental health services. The development of each type of service is discussed, as well as the reasons why each service is needed and for what type of situation. The social worker’s role in each area also is considered. Professional elective for social work majors. (Third-year standing) Also may be used as a social work minor course. Class 4 Credit 4 (offered every other year)

0516-525 Grant Writing
Provides the student with a series of readings and experiential exercises necessary for writing a grant proposal. Focus is on funding sources that provide money for social welfare programs and for research into social work. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered on sufficient demand)

0516-535 Introduction to Practice Evaluation
For social work majors in their first quarter of field instruction. Building on the first research course and on knowledge of statistical analysis, this course considers the integration of social work practice and research, especially in relation to the evaluation of one's own professional practice and agency programs. The continued use of the computer as a research tool is explored. Specialized analytic techniques, common to social work (e.g., quantitative: autocorrelation, one-and two-standard deviation procedures, ANOVA, t-tests for slope and level, chi-square: and qualitative: field research and coding for interview data), are studied in relation to actual data collected by students in their concurrent field placements. The ethics of research and the relationship of research with populations-at-risk are also covered. Required course for social work majors. (0516-505, 506, 552) Class 2, Credit 2 (F)

0516-536 Aging & Society
Concepts, issues and research techniques in the behavioral and biological aspects of aging. Examines the interaction of group processes in the family and community that influence society’s attitudes toward the aging process. Further examines the culture, environmental and institutional changes as they relate to an increasing population of older people. Professional elective for social work majors. (May also be taken for liberal arts elective credit under 0515-515) (Third-year standing) Class 4, Credit 4 (offered on sufficient demand)

0516-537 Social Policy & Aging
Culture and values as the context for policy formulation. Special attention is given to the process of policy analysis and implementation. Several specific policy areas are examined: social security and income maintenance, health and long-term care, work and retirement, social services and the aging network, housing and living arrangements for the elderly, and the role of the family and the elderly. Professional elective for social work majors. (May also be taken for liberal arts elective credit under 0515-515) (Third-year standing) Also may also be used as a social work minor course. Class 4, Credit 4 (offered on sufficient demand)

0516-538 Family Violence
Acquaints social work students and practitioners with the problem of family violence. The causes and dynamics of various forms of violence in the family are addressed. These include child abuse, incest, spouse abuse, sibling violence, marital rape, abuse of parents by adolescents and the abuse of the elderly by their adult children. Factors affecting intervention in families where these occur and techniques for intervention are included. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered every other year)

0516-539 Services For Aging
Deals with the variety of existing community-based services available for the elderly. Also examines the tactics, assessment, coordination and evaluation of various direct and indirect services for the elderly. Particular attention is given to such service groups as nursing homes, home health care, mental health, and other formal and informal support systems. Professional elective for social work majors. (Third-year standing) Class 4, Credit 4 (offered on sufficient demand)

0516-540 Research III: Practice Evaluation
The third of a three-course sequence is built on material learned in Research II: Practice Evaluation and its prerequisites. Students learn about baseline assessments, the ethics of research and experimental research. They also learn about report writing, grant writing and the politics of research. Concerns and issues in research with special populations and cross-cultural research also are explored. Students design and complete a major research project and report on their own professional social work practice. Required course for social work majors. (0516-550, 551, 553) Class 2, Credit 2 (W)

0516-550 Practice VI: Assessment & Intervention
Practice VI: Assessment and Intervention is the final course in the Practice course sequence. This seminar-structured class continues to build upon the basic principles and objectives presented in the previous practice courses. Students will be expected to continue to develop and expand knowledge of practice and interventions at the micro and mezzo levels. The focus here is on the theory, concepts, and techniques of cognitive behavior therapies, with a particular emphasis on intervention methods that may be used by the social worker to help clients with specific thinking and behavioral challenges. Class 4, Credit 4

0516-551 Field Instruction II
Required course for social work majors. See 0516-506. (0516-505, 506, 535, 552; corequisite with 0516-540, 550, 553) Field 300, Credit 6 (W)

0516-552 Field Seminar I
A practicum seminar taken during the first quarter of field instruction. Students and instructor discuss topics related to field experiences and concerns. This practicum is taken concurrently with Field Instruction I, Practice V: Assessment and Intervention I, Research II: Practice Evaluation. It is intended to help students integrate field experiences with their pre-field course content and the concurrently taken courses. Students are expected to write a complete self-assessment of their achievement of field instruction objectives. Required course for social work majors. (0516-505, 506, 535) Class 2, Credit 2 (F)

0516-553 Field Seminar II
A weekly seminar, taken during the second quarter of field placement, in which students continue to read, write, think about and discuss issues directly related to their field practice and social work education. Continuing with the work of the first quarter seminar for field students, focus is on students’ professional growth. The seminar is taken concurrently with Field Instruction II, Practice VI: Assessment & Intervention II, and Research III: Program Evaluation. All three courses share common objectives as well as the study of the generalist practice model. Effort is made by faculty to ensure that students in the field education sequence successfully integrate course content and objectives. Required course for social work majors. (0516-540, 550, 551) Class 2, Credit 2 (W)

0516-595 SWPS: Policy & Planning Process
Explores the development of social welfare services as it proceeds for the determination of social need through program design to implementation. Concepts of policy process, large system change, and grant and proposal writing are considered. (Fourth-year standing) Also may be used as a social work minor course. Class 4, Credit 4 (S)
0516-598 Professional Seminar
For social work students who have completed field instruction. Serves as a capstone in the student’s social work education and facilitates the integration of all content areas in the curriculum. This integration is achieved through presentations by faculty, practitioners and invited experts in order to cover the interrelationships between values and ethics of the profession; human behavior and the social environment; needs assessment and research techniques; methods of intervention; and policy, planning and funding processes. This integration is demonstrated by students through a major paper, which combines these areas with the student’s chosen field of application. Required course for social work majors. (0516-550, 551, 553) Class 4, Credit 4 (S)

0516-599 Independent Study
A combined student/faculty effort on a chosen topic beyond the normal course selections. Provides the self-motivated student with a creative orientation, the opportunity to develop an autonomous and personal sense of academic growth, and achievement. May include independent work in an agency setting or other field work away from the Rochester area. Credit variable (F, W, S, SU)

Interdisciplinary-Aerospace

0519-201 History of Airpower I
This course is a study of the development of airpower from its origins to the present. This course deals with the impact of airpower upon 20th century warfare. It also traces the evolution of airpower as a factor in military and nonmilitary operations in support of U.S. foreign and domestic policy. ROTC students have priority. Class 1, Credit 1 (offered annually)

0519-202 History of Airpower II
This course is a study of the development of airpower from its origins to the present. This course deals with the impact of airpower upon 20th century warfare. It also traces the evolution of airpower as a factor in military and nonmilitary operations in support of U.S. foreign and domestic policy. ROTC students have priority. Class 2, Credit 2 (offered annually)

0519-203 History of Airpower III
This course is a study of the development of airpower from its Origins to the present. This course deals with the impact of airpower upon 20th century warfare. It also traces the evolution of airpower as a factor in military and nonmilitary operations in support of U.S. foreign and domestic policy. ROTC students have priority. Class 1, Credit 1 (offered annually)

Interdisciplinary-liberal Arts

0520-201 Career Exploration Seminar
This seminar is designed to introduce students, in a small group setting, to the process by which they can make informed decisions in selecting a career and identifying an educational program, which will lead to their career goal. Students begin the quarter by assessing, with the assistance of facilitators familiar with careers and with RIT programs, their own skills and working styles. They will, then, research careers that match their personal profiles. Finally, they will research academic programs that lead to the careers they have identified. This includes interviewing faculty and administrators in campus programs as well as professionals working in the field. This seminar is required for RIT exploration program students. Class 1, Credit 1 (offered quarterly)

0520-311 Honors Interdisciplinary Seminar
This interdisciplinary seminar explores the constructed nature of culture and identity by examining the “context” at borders of various kinds: cultural, geographic, linguistic, racial, ecological. This scrutiny of sites of contact and encounter enables students to understand and articulate the multiplicity of voices past and present that shape contemporary individual and cultural narratives. Credit 2, Class 2

0520-501 Senior Seminar
This course enables students to sharpen and demonstrate their ability to define a research task or problem, gather and evaluate scholarly Evidence and present their finding in a paper or project. While the content and focus of the seminar will change from year to year, it will always direct student attention toward a broad issue or aspect of contemporary culture and equip them to understand that subject more fully; investigate one facet of it in depth, and provide an advanced experience of problem solving and value clarification. Class 2, Credit 2 (offered quarterly)

Public Policy

0521-301 Values & Public Policy
This course will introduce the student to a range of ethical issues that arise in policy decision making and policy analysis. It will focus upon the types of ethical reasoning that are utilized by focusing upon a series of case studies. Class 4, Credit 4

0521-302 Information & Communication Policy
This course examines how federal and international policies are developed to influence innovation of information and computer technology. In particular, the course will examine such topics as privacy, freedom of speech, intellectual property rights, access to information technology, and regulation of the internet. Class 4, Credit 4

0521-400 Foundations of Public Policy
This interdisciplinary course will introduce the student to the concept of public policy, the policymaking process, the role of stakeholders and interest groups, and the basic dimensions of quantitative and qualitative policy analysis. A range of public policy issues, such as economic and budget policy, environmental policy, science and technology policy, and information and communications policy, will be explored. Class 4, Credit 4

0521-402 Policy Analysis I
This course is the first in a three-course sequence (Policy Analysis I-III) that normally will be taken in the third year of the program. The purpose of the three-course sequence is to introduce the student to both qualitative and quantitative policy analyses and to progressively integrate qualitative and quantitative dimensions of analysis into a systematic whole. Class 4, Credit 4

0521-403 Policy Analysis II
This course is the second in a three-course sequence (Policy Analysis I-III) that normally will be taken in the third year of the program. This course will assist the student in integrating both quantitative and qualitative analysis in the context of their areas of developing specialization emerging from track courses. Additional, this course will introduce new analytical methods such as Bayesian analysis and queuing. Class 4, Credit 4

0521-404 Policy Analysis III
This course is the third in a three-course sequence (Policy Analysis I-III) that normally will be taken in the third year of the program. Utilizing a team approach, this course will provide students an opportunity to develop an analysis and proposal of a particular policy issue. The culmination of the students’ work will be a written proposal and oral presentation. Class 4, Credit 4

0521-405 Senior Project
The culminating educational experience for public policy students. The principal focus is an independent study project, centered on a major policy issue drawn from the student’s chosen specialization. Class 4, Credit 4

0521-406 Introduction to Qualitative Policy Analysis
This is a course in the practical aspects of doing theoretically informed qualitative social research. Special attention will be given to the processes by which research problems are formulated, research designs selected, data gathered and interpreted, and conclusions drawn. Through example, illustration, and application, specific research skills will be simulated using case studies. Class 4, Credit 4

0521-449 Special Topics: Public Policy
This course will examine current topics in Public Policy and may be used with consent of advisor as a policy core elective or track elective for the public policy BS degree. The focus will be examination of a special problem or area relevant to the other courses in the three core areas: ethics, fundamentals of political and social processes, society, science and technology; or in a policy track. Class 4, Credit 4
Women's Studies 0522-400 Foundation of Women's Studies This course will use an interdisciplinary perspective to provide an introduction to women’s studies, the academic manifestation of feminism. The course will focus on the rise of feminist consciousness in the western world from the middle ages to the late 20th century. It will consider the concept of the patriarchy, its dominance for the past four millennia, and the multitude of efforts by women and men to conceptualize an alternative world view. The course will consider key historic al patriarchal and feminist texts, study the rise of feminist thought, and consider the history of women’s activism and the women’s rights movement from the late 18th century through the second half of the 20th century. The course will also consider feminist theory and the rise of feminism. The course will conclude with a survey of feminist practice in a wide range of contemporary issues and consider strategies for negotiating daily life. Part of women’s studies concentration and minor. May be used as an elective. Course 4, Credit 4

0522-405 Women & Science This interdisciplinary women’s studies course links science, feminist theory, history, and biography in recognizing the importance of gender to the study and practice of science. The course focuses on four critical concerns: recognition of women pioneers in the sciences, analysis of the barriers women scientists have faced historically and presently, awareness of the historical roots and exclusions of women in science, and examination of how the practice of science particularly affects women. Part of the women’s studies minor and concentration, this course is relevant to non-science majors as well as those majoring in the field. (Cross-listed with 0508-581) Class 4, Credit 4

0522-406 Feminist Theory This course will introduce students to the foundations of feminism in political theory, and it will critically explore how feminist concepts can be expanded to take account of class, race, and sexuality. We will examine the differences between the categories of sex and gender and the ways in which feminist understandings of human experience have modified traditional philosophical accounts of reality, knowledge, morality, and justice. (Cross-listed with 0508-454) Part of the women’s studies concentration and minor. May be used as an elective. Class 4, Credit 4

Communication 0535-200 Foundation of Communication An introduction to the theoretical and conceptual underpinnings of oral, visual and written communication. Introduces basic communication models, the role of language in communication, symbols and symbol making, issues of audience analysis and the development of different modes of discourse. Also explores the history of communication and introduces students to basic research in communications studies. Required course for communication majors only. Class 4, Credit 4

0535-210 Interpersonal Communication Analysis and application of the major theories of interpersonal communication in various situations. Focuses on perception of self and others, language use, nonverbal communication and symbolic interaction in the communication of shared meanings in face-to-face interpersonal relationships. Required course for communication majors. Class 4, Credit 4

0535-221 Computer Applications in Communication An introduction to essential software applications in professional and technical communication: desktop publishing, image manipulation, web authoring, groupware/conferencing, and statistical applications. Prerequisite: Survey of Computer Science or instructor's permission. Required course for communication majors only. Class 4, Credit 4

0535-230 Written Argument Develops in students the language and reasoning skills necessary to create responsible and effective written arguments. Required course for communication majors. Class 4, Credit 4

0535-311 Rhetoric/ Discourse Analyzes rhetorical discourse as spoken, symbolic human action intending to influence the formation of public opinion and public policy. Various critical perspectives, including classical origins, modern rhetorical theorists and contemporary critical approaches, are applied to public discourse in the United States. Students have the opportunity to apply appropriate critical methods to selected historical and contemporary rhetoric from the American experience. Research and writing are stressed. Required course for communication majors. Class 4, Credit 4

0535-315 Quantitative Research Methods An introduction to the methods and ethics of scientific, scholarly communication research, including methods of locating, analyzing and critiquing communication research literature. Focuses on empirical methods and leads to the development of a research project proposal. Required course for communication majors only. (0535-200, 210, 310, 445) Class 4, Credit 4

0535-316 Qualitative Research Methods Introduction to the methods and ethics of critical research, participant observation, naturalistic study, and focus group interviewing. Qualitative research methods rely on the researcher’s observational, analytic and critical skills, and seeks to understand the behaviors, beliefs, values, attitudes, assumption, rituals and symbol systems that characterize relationships between the source, message, media and audience of specific communication acts. Students develop a research proposal suitable for implementation as the senior thesis in communication. Required course for communication majors only. (0535-200, 210, 310, 445) Class 4, Credit 4

0535-403 Effective Technical Communication This course provides knowledge and practice of written and oral communication skills generally required in technical professions. Focus is on individual and group writing and speaking tasks. All written work must be prepared on word processor. Required course for various programs. Class 4, Credit 4 (offered annually)

0535-415 Organizational Communication Examines both interpersonal and small-group communication in organizational settings. Topics include information flow and networks, organizational theory, managerial decision making, interviewing, organizational development, corporate culture and conflict resolution. May be taken as a professional elective for communication majors, and is part of the communication minor. Class 4, Credit 4 (offered occasionally)

0535-420 Argument & Discourse Examines the processes of oral argumentation encountered in the give-and-take of formal and informal communication situations. Emphasizes development of research, speaking, organization, writing, oral cross examination, and critical listening abilities. Students are taught to develop the means to argue cogently in different interactive communication situations. (0535-501 or equivalent) Class 4, Credit 4 (offered occasionally)

0535-421 Public Relations An introduction to the study of public relations. Topics include history, research areas, laws, ethics and social responsibilities as they relate to the theory and practice of public relations. May be taken as a professional elective for communication majors, and is part of the communication minor. Class 4, Credit 4 (offered occasionally)

0535-422 Ethics in Technical Communication Ethics is the study of morals, of what is right and good, especially regarding specific moral choices. In a given situation, a system of ethics helps us answer the question: What should I do? Ethics in Technical Communication explores the ways in which ethical conduct is important in the communication of technical information, particularly among professional technical communicators; establishes principles, based on the history of ethical studies, for making ethical choices as technical communicators; and provides opportunities to apply ethical principles to case studies, in order to better understand the often problematic nature of ethical choices in technical-or any communication. Part of the language communication concentration or the applied track of the communication minor, and a professional elective for communication majors. Class 4, Credit 4

0535-445 Theories of Communication An introduction to human communication theory, including a history of the major stages in development of modern theories of communication. Theories based both in the humanities and the social sciences are covered. Required course for communication majors only. (0535-200, 201) Class 4, Credit 4

0535-450 Visual Communication Examines communication processes and principles that use the visual mode. Through a survey of several areas represented in the literature of visual communication, this course examines theories, analysis, and sender and receiver orientations to images. Emphasis is on communicative understanding rather than on aesthetic, technical or skills approach. Discussion primarily depends on, but is not limited to, photographic images. Required course for communication majors and may be taken to fulfill a communications minor. (0535-200, 210) Class 4, Credit 4
0535-452 Uses & Effects of Mass Media
An analysis of the effects and uses and gratifications of mass communication research with focus on building mass communication theory. May be taken as a professional elective for communication majors and is part of the communication minor. (0535-482) Class 4, Credit 4 (offered occasionally)

0535-480 Human Communication
An overview of the field of communication, including the contexts of interpersonal, group, mass and public communication. Option for minors and concentrators in communication. Also may be taken as an elective. Class 4, Credit 4

0535-481 Persuasion
An in-depth study of the theories, practices, effects and ethics of persuasion. Persuasion is defined as human communication designed to influence one’s beliefs, values, attitudes and actions. Required course for communication majors and may be taken to fulfill a communication concentration and a communication minor. Class 4, Credit 4

0535-482 Mass Communications
An introduction to the study of the mass media focusing on the history development, and law and regulation of the mass media in the united states. Required course for communication majors and may be taken to fulfill a communication concentration and a communication minor. Class 4, Credit 4

0535-483 Small Group Communication
Practice in analysis of a variety of small group discussion techniques focusing on phenomena such as processes of interaction, decision making, norms structure and development, membership and theory of group development. May be taken as a professional elective by communication majors, and is part of the communication concentration, communication minor, and may be taken as an elective. Class 4, Credit 4

0535-484 Rhetoric of Race Relations
Examines the history of the struggle for freedom and equality for blacks in American society. This course traces the history and rhetoric of key spokespersons from the pre-Civil War period to the 20th century as evidenced in the texts of selected public speeches and reactions to them. No prerequisites. Part of the minority relations concentration, communication minor, and may be taken as an elective. Class 4, Credit 4

0535-490 Persuasion & Social Change
Reading and analysis of selected public speeches and essays advocating or opposing major issues of social change in the United States from the 18th century through contemporary advocacy. May be taken as a professional elective for communication majors, and is part of the peace studies concentration and communication minor. (0535-481) Class 4, Credit 4 (offered occasionally)

0535-501 Effective Speaking
The development of formal public speaking techniques as an aid to self-confidence in modern social and business situations. Weekly practice talks with emphasis on organization, clarity, vocal expressions and poise. Required course for communication majors and may be taken to fulfill a communication concentration and a communication minor. Class 4, Credit 4

0535-502 Speech Writing
An advanced elective course in communication for those who wish to increase their abilities to write professional public speeches for themselves or others. The course uses “real life” situations as a context for speech writing assignments in a variety of genres. May be taken as a professional elective for communication majors and is part of the communication minor. May also be taken as an elective. Class 4, Credit 4 (offered occasionally)

0535-520 Intercultural Communication
An examination of the role of culture in face-to-face interaction. Students may find a basic background in communication, anthropology or psychology useful. Professional elective for professional technical communication majors. Option for concentrators in Arabic and French foreign language culture concentrations and for the communication minor. Also may be taken as an elective. Class 4, Credit 4

0535-524 Communication & Documentary Film
An examination of the documentary film and video as case studies in communication media. The course focuses on filmic techniques used as argument, persuasion, propaganda and reconstruction of reality. Such elements as the director, subject, shooting style, and editing technique will be analyzed in terms of message, purpose and audience. (0535-200 or equivalent) Class 4, Credit 4

0535-525 Special Topics: Communication
A focused, in-depth study and analysis of a selected advanced topic in communication and associated issues. Specific topic varies according to faculty assigned and is published when the course is offered. Topics may include: semiotics, communication technologies, gender differences in communication, legal communication, rhetoric of race relations, group dynamics, and censorship and propaganda. Professional elective for communication majors. (For junior/senior communication majors; permission of the instructor required for all others) (0535-200) Class 4, Credit 4

0535-532 Professional Writing
Students develop writing, research, and interviewing skills necessary to the composition of articles for magazines, newsletters, and other similar publications. In addition students learn how to investigate the market for and “sell” their writing, and how to write query letters. Much of the course is conducted as a workshop, during which students appraise each other’s work, and make suggestions for revision. Required course for communication majors and may be taken to fulfill a communication minor. (0535-230 or equivalent) Class 4, Credit 4

0535-550 Film & Society
An inquiry concerning the relationship between motion pictures and society that uses historical, humanistic and social science research to achieve an understanding of movies as a social force, industry and art form. May be taken as a professional elective for communication majors and is part of the communication minor. (0535-482) Class 4, Credit 4 (offered occasionally)

0535-595 Senior Thesis in Communication
A guided research seminar culminating in a major project that brings together the student’s communication studies and substantive work in his or her professional core. Focuses on designing, conducting and completing an independent research project. The progress of each project is shared with the class for discussion and critiques. Required course for communication majors only. (0535-410, 411, 445) Class 4, Credit 4
College of Science

Index

1001 Biology 275
1004 General Biology 278
1005 Field Biology 278
1008 Analytical Chemistry 278
1009 Biochemistry 278
1010 Chemistry 279
1011 General Chemistry 279
1012 Inorganic Chemistry 280
1013 Organic Chemistry 281
1014 Physical Chemistry 281
1015 Environmental Chemistry 281
1016 Mathematics & Statistics 282
1017 Physics 287
1018 General Science 290
1019 Mathematics & Statistics 286
1024 Medical Laboratory Technology 290
1025 Nuclear Medicine Technology 290
1026 Clinical Science-General 291
1027 Biomedical Computing 292
1029 Polymer Chemistry. 281
1030 Diagnostic Medical Sonography 292
1031 Environmental Science. 282
1032 Physician Assistant 293
1051 Imaging Science 294

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Biology

1001-200 Freshman Symposium
Introduction to academic and student life in the biological sciences department. Class 2, Credit 1 (F)

1001-201 General Biology
Characteristics and origin of life; basic principles of modern cellular biology, including cell organelle structure; chemical basis and functions of life, including enzyme systems, cellular respiration and photosynthesis; nutrient procurement in plants and animals. (High school biology and chemistry) Class 3, Credit 3 (F, SU)

1001-202 General Biology
A study of the physiological processes of gas exchange, internal transport, osmoregulation, excretion and hormonal control in plants and animals; nervous system and behavior in animals. (1001-201 or permission of instructor) Class 3, Credit 3 (W, SU)

1001-203 General Biology
A study of cellular and organismal reproduction, the principles of genetics and developmental biology, introduction to evolution and ecology. (1001-202 or permission of instructor) Class 3, Credit 3 (S, SU)

1001-205 General Biology Laboratory
Laboratory work to complement the lecture material of General Biology (1001-201). The experiments are designed to illustrate concepts; develop laboratory skills and techniques; and improve ability to make, record and interpret observations. (Corequisite 1001-201) Lab 3, Credit 1 IF, SU

1001-206 General Biology Laboratory
Laboratory work to complement the lecture material of general biology (1001-202). The experiments are designed to illustrate concepts, develop laboratory skills and techniques, and improve ability to make, record, and interpret observations. (Corequisite 1001-202) Lab 3, Credit 1 (W, SU)

1001-207 General Biology Laboratory
Laboratory work to complement the lecture material of general biology (1001-203). The experiments are designed to illustrate concepts, develop laboratory skills and techniques, and improve ability to make, record and interpret observations. (Corequisite 1001-203) Lab 3, Credit 16, SU

1001-241 Biological Science Research
Faculty-directed research projects involving field or laboratory work including data collection and analysis. (Permission of instructor) Class variable (F, W, S, SU)

1001-251 Introduction to Cell Biology
A study of the major concepts in cell biology that focuses on the molecular coordination within the cell that is necessary for life. Emphasis is on the evolution of structures and functions that permit cells to live and grow as single, independent organisms or as the fundamental subunits of complex multicellular organisms. Lab includes exercises on the theory of experimental design, applications of this theory in classical and investigative experiments, and observations on the diversity and complexity of cellular life. (High school biology and chemistry; biology or biotechnology major; or permission of instructor) Class 3, Recitation 1, Lab 3, Credit 4 (F)

1001-252 Introduction to Developmental Biology
Exploration of the major concepts in developmental biology using investigative laboratory techniques to illustrate principles of cell specialization and differentiation. Lab introduces students to biological systems that can be manipulated to study gene and cell functions at different levels of complexity. Students become familiar with experimental systems, discuss their initial results, develop new approaches to experimental design based on these results, and test their predictions of the outcomes. Lecture incorporates discussions of students’ lab findings, background material and current research applications of the systems and techniques approach to scientific investigations. Modification of developmental mechanisms is examined as a fundamental process in bringing about evolutionary change. (Biology or biotechnology major and 1001-251, or permission of instructor) Class 3, Recitation 1, Lab 3, Credit 4 (W)

1001-253 General Physiology
A study of the major concepts in physiology by exploring the evolutionary strategies employed by multicellular life forms to exploit environmental niches, with an emphasis on functional adaptation. Laboratory exercises include classical experiments in plant and animal physiology with an emphasis on investigative approaches to scientific problem solving. (Biology or biotechnology major and 1001-252, or permission of instructor) Class 3, Recitation 1, Lab 3, Credit 4 (S)

1001-254 General Anatomy
Anatomy of the human body. (1 year of Introductory Biology or equivalent) Class variable, Credit variable (F, W, S)

1001-280 Laboratory Teaching Experience
Provides qualified undergraduate students the opportunity to gain experience in a laboratory instructional setting under the direct guidance of a faculty member. Students are required to prepare and present prelab discussions, assist in the design and set up of labs, answer enrolled student questions, and perform lab demonstrations and other associated duties and responsibilities. (Contact faculty member for specific eligibility criteria.) Class 0, Lab 3, Credit 1 (F, W, S)

1001-289 Independent Study
Faculty-directed study of appropriate topics on a tutorial basis. Enables an individual to pursue studies of existing knowledge in the literature. (One year of Introductory Biology or equivalent) Class variable, Credit variable (F, W, S)

1001-300 Introduction to Co-op Seminar
Exploration of cooperative education opportunities in the biological sciences. Practice in writing letters of application, resume writing and interviewing procedures. Class 1, Credit 1 (W)

1001-301 Invertebrate Zoology
Biology of invertebrate animals with emphasis on phylogeny and functional morphology. (One year of Introductory Biology or equivalent or permission of instructor) Class 3, Lab 3, Credit 4 (F)

1001-302 Vertebrate Zoology
Morphology, physiology, behavior, classification and ecology of chordates (One year of Introductory Biology or equivalent or permission of instructor) Class 3, Lab 3, Credit 4 (W)

1001-303 Comparative Vertebrate Anatomy
A comparative study of the organ systems of representative members of the vertebrates with emphasis on structural changes that occur during evolution. (1001-305,306) Class 3, Lab 6, Credit 5 (F)
1001-304 Botany
Distribution of the major groups of plants and their adaptations to their particular environment. (1001-253 or equivalent or permission of instructor) Class 3, Lab 3, Credit 4 (S)

1001-305 Physiology & Anatomy I
An integrated approach to the structure and function of the nervous, endocrine, integumentary, muscular and skeletal systems. Laboratory exercises include histological examination, anatomical dissections and physiology experiments with human subjects. (1001-253 or equivalent or permission of instructor for non-science majors) Class 4, Lab 3, Credit 5 (F)

1001-306 Physiology & Anatomy II
An integrated approach to the structure and function of the gastrointestinal, cardiovascular, immunological, respiratory, excretory and reproductive systems with an emphasis on the maintenance of homeostasis. Laboratory exercises include histological examinations, anatomical dissections and physiological experiments using human subjects. (1001-305 or permission of instructor) Class 4, Lab 3, Credit 5 (W)

1001-310 Plant Physiology
Physiological phenomena in the growth and development of higher plants, water relationships, photosynthesis, translocation, mineral nutrition, growth, hormonal control and reproduction. (1001-253 and one year of organic chemistry) Class 3, Lab 3, Credit 4 (F)

1001-311 Cell Biology
Principles of cell biology including internal cell structure, cell cycle and growth control, cell interactions, cell differentiation and the extracellular matrix with an emphasis on the observations and experimental evidence supporting them. (One year of Introductory Biology or equivalent) Class 4, Credit 4 (F)

1001-313 Sports Biology
An introduction to the human physiology and anatomy of all types of sporting activities. Body systems studied include musculoskeletal, cardiovascular, neuromuscular and pulmonary. Motion, mobility, flexibility, strength, endurance and nutrition are other topics included in a comprehensive investigation of the biology of athletic performance. Class 2, Credit 2 (F, S)

1001-320 Histology
Detailed microscopic studies on the structure and function of normal human tissues. (1001-305, 306 recommended) Class 3, Lab 3, Credit 4

1001-330 Small Animal Laboratory Techniques
Prepares the student for small-animal handling, biological administrations and preparations, minor surgery and autopsies. (Third-, fourth- or fifth-year status and permission of instructor) Class 1, Lab 3, Credit 3 (S)

1001-340 General Ecology
Introduction to ecosystem ecology stressing the dynamic interrelationships of plant and animal communities with their environments. A study to include such ecological concepts as energy flow and trophic levels in natural communities, plant responses and animal behavior, population dynamics, bio-geography and representative ecosystems. (One year of Introductory Biology or equivalent) Class 3, Lab 3, Credit 4 (F)

1001-350 Molecular Biology
The study of structure, function and organization of proteins, nucleic acids and other biological macromolecules. (One year of Introductory Biology or equivalent, 1013-233, second- or third-year status) Class 3, Lab 3, Credit 4 (W, S)

1001-365 Evolutionary Biology
Topics covered will include the historical framework of evolutionary biology, the meaning and nature of evidence pertinent to biological evolution, Earth history, the evolution of proteins and the genetic code, cellular and metabolic evolution, molecular evolution, neutral theory vs. selection, genetic variation, natural selection, migration, mutation, genetic drift, fitness, population dynamics and genetics, species concepts and speciation, systematics and classification systems, molecular phylogenetics, the evolution of protozoans, plants, fungi, invertebrates and vertebrates, behavioral evolution, interactions among species, historical biogeography, human evolution and variation. (1001-251, 252,253 or 1001-201, 202, 203) Class 3, Lab 3, Credit 4 (F)

1001-370 Biological Writing
Written technical communication in the biological sciences with emphasis on components of report writing: analysis, definition, description, instruction, data presentation, literature research, abstracting and editing. (Third-, fourth-, fifth-year status, biology or biotechnology majors) Class 1, Recitation 1, Credit 3 (F, W, S)

1001-375 Galapagos: Evolution & Biogeography
The course examines geological and biological factors that made the Galapagos Islands a crucible in which Darwin formed the theory of evolution and discusses the origins of the islands by the twin mechanisms of plate tectonics and volcanism. Students will observe recent lava flows and see initial biological colonists as well as ancient flows in advanced stages of colonization. The islands reveal the interaction between ocean currents, marine life, and mammalian and avian fauna that thrive on this rich sea life. Students will observe many endemic species and subspecies and gain an understanding of adaptive radiation. The 11-day trip includes a visit to the Darwin Scientific Research Station where students learn of the dangers of human infringement on the fragile ecology and efforts to conserve unique plant and animal species. Enrollment limited. Contact instructor fall quarter. Travel fee required. (1001-251, 252, 253 or 1001-201, 202, 203) Class 3, Credit 4 (S)

1001-380 Human Gross Anatomy
Exposes students to details of human anatomy through cadaver dissection. Lecture material stresses functional and clinical correlates corresponding to laboratory exercises. (1001-305, 306 and permission of instructor) Class 3, Lab 6, Credit 5 (S)

1001-390 Vertebrate Evolution
Study of the major changes in vertebrate functional morphology through time, beginning with fish and ending with humans; fossil evidence depicting major transitions between the vertebrate classes; modern taxonomy, including cladistic analysis, geologic time and stratigraphy; and plate tectonics. (1001-253 or equivalent) Class 4, Credit 4 (W)

1001-395 Ethical Issues in Medicine & Biology
Students will explore major ethical issues in medicine and biology via lecture, readings, films, and presentation and discussion of cases. Students will also be encouraged to report on current events in ethics as researched via the library computer search facilities and the internet. The first two weeks of the course will be lecture. Students will learn about various theories of ethical analysis that are in current use. Subsequent classes will be devoted to particular ethical areas. Relevant cases will be given to the students for presentation, any additional background material that may be required to discuss the cases will be presented by the instructor, and the remainder of the period will be taken up with discussion based on the philosophical foundation provided at the beginning of the course. (Second-year or higher status, biology, biotechnology, pre-medical studies, or permission of instructor) Class 3, Credit 3 (S)

1001-402 Immunology
Investigation of the basic concepts of immunology (antigens, antibodies, immunologic specificity, antibody synthesis, and cell-mediated immunity) and the applications of immunology to infectious diseases, allergic reactions, transplantations, tumors, autoimmune diseases, immunosuppression, and tolerance. (1001-253 or equivalent) Class 3, Credit 3 (W)

1001-403 Cell Physiology
Functional eucaryotic cytology, nuclear and cytoplasmic regulation of macromolecular synthesis, exchange of materials across cell membranes, regulation of cellular metabolism and control of cell growth. (1001-350) Class 3, Lab 3, Credit 4 (F)

1001-404 Introduction to Microbiology
Introduction to microorganisms and their importance. Principles of structure, metabolic diversity, taxonomy, environmental microbiology and infectious diseases of procaryotes are discussed. Basic laboratory techniques, microscopy, staining, bacterial identification and food testing. (One year of organic chemistry) Class 3, Lab 4, Credit 5 (F)

1001-407 Microbial &Viral Genetics
The study of the molecular genetics of bacteria, bacteriophages, fungi and eucaryotic viruses. (1001-350, 421; one biochemistry course or permission of instructor) Class 3, Lab 3, Credit 4 (F)
The course will investigate fundamental aspects of plant tissue culture and manipulation, the genetic transformation of plant cells, and the construction, characterization and application of transgenic plants to agriculture, plant molecular biology and novel product development. The laboratory will provide experiences to complement the lecture information in plant cell culture and in the use of Agrobacterium as the gene shuttle to introduce genetic information into plants. (1001-311, 1001-350, 1001-404) Class 3, Lab 4, Credit 5 (W)

1001-417 Industrial Microbiology
Practical applications of yeasts, fungi and bacteria in industrial fermentations. Industrial aspects of fermentor design, pilot plant operations, strain development and recovery of fermentation end products. Microbiology, biochemistry and engineering of large-scale processes. (1001-404 and one biochemistry course) Class 3, Lab 3, Credit 4 (W)

1001-420 Plant Ecology
A consideration of the nature and variation of plant communities with discussion of factors that limit, maintain and modify communities both locally and regionally. Laboratories involve field studies of various plant communities and the gathering and analysis of data. (1001-340) Class 3, Lab 3, Credit 4 (S)

1001-421 Genetics
Introduction to the principles of inheritance; the study of genes and chromosomes at molecular, cellular, organismal and population levels. (1001-253 or equivalent) Class 3, Lab 3, Credit 4 (F)

1001-422 Developmental Biology
Study of the processes of growth, differentiation and development that lead to the mature form of an organism. (1001-253 or equivalent) Class 3, Lab 3, Credit 4 (W)

1001-424 Descriptive Embryology
Study of the developmental processes leading to the mature vertebrate form, with emphasis on early human development and its clinical variations. Course requires extensive use of independent study materials. (1001-253 or equivalent) Class 2, Credit 4 (F)

1001-442 Hybridoma Techniques
Designed to acquaint each student with the basic methods employed in the production of hybridoma cell lines and monoclonal antibodies. Includes preparation of viable cell suspensions, cell culture fusion techniques, cloning, and monoclonal antibody production and characterization. (1001-445) Lab 4, Credit 2 (S)

1001-445 Tissue Culture
Study of the techniques and applications of culturing cells, tissues and organs in vitro. Emphasis on mammalian systems. (1001-253 or equivalent) Class 2, Lab 3, Credit 4 (W)

1001-450 Genetic Engineering
Introduction to the theoretical basis, laboratory techniques and applications of gene manipulation. (1001-350) Class 3, Lab 6, Credit 5 (S)

1001-451 Microbial Pathogenesis
Mechanisms of bacterial, fungal, viral and parasitic diseases; host response to pathogen invasion; subversion of host defenses; virulence factors; examples of infectious diseases. (1001-404 required) Class 3, Lab 3, Credit 4 (W)

1001-460 Basic Pathology
Introduction to pathophysiology; the study of disease and its consequences. Major topics of lecture discussions and laboratory exercises deal with general pathologic processes, including cell injury/cell death, inflammation, immunological deficiencies, hemodynamic and fluid derangements and neoplasia. Clinical correlations are made as often as possible as examples of how physiologic processes can go awry in the generation of a particular disease. (1001-251, 252, 253 or equivalent required; 1001-305, 306 strongly recommended) Class 3, Lab 3, Credit 4 (S)

1001-467 Advanced Microbial Fermentation
An advanced course in industrial microbial fermentations. The students are presented with advanced topics in fermentation design, operation, and the economics of operation. The laboratory consists of a ten week project in the optimization of product titers utilizing various principles of scale up which will include New Brunswick 7-liter fermenters. The students will be using either Ralstonia eutrophics to produce PHAs or Xanthomonas campestris to produce xanthan gum. Principles of product recovery will also be presented in the lab. (1001-404) Class 3, Lab 3, Credit 4 (S)

1001-471 Freshwater Ecology
A study of the physics, chemistry and biology of inland waters. Emphasizes the physical and chemical properties of water and how these properties affect the associated biological communities. Planktonic, benthic and littoral communities are considered. Field trips to streams and lakes are conducted to gather physical, chemical and biological data. (1001-340 or permission of instructor) Class 3, Lab 3, Credit 4 (W)

1001-475 Applied Ecology
A course concentrating on the practical application of ecological principles. Man’s impact on species diversity will be emphasized as it relates to agricultural, forest, coastal and wetland ecosystems. A discussion of management practices used to restore disturbed ecosystems will be included. Laboratory exercises will concentrate on methods of analyzing ecosystems for regulatory requirements and management purposes. (1001-340) Class 3, Lab 3, Credit 4 (W)

1001-492 Genomics
Genomics will introduce students to the analysis of complex genomes. Emphasis will be placed on genetic information derived from the human genome project but advances with genomes of other model systems will be discussed. Lectures will cover scientific techniques used to map and sequence the human genome, as well as strategies for identification of disease susceptibility genes. The wet-bench laboratory will utilize an automated DNA sequencer to demonstrate the acquisition of genetic sequences. Laboratory sessions will emphasize cycle sequencing of cloned DNA fragments using an automated fluorescent DNA sequencer and mapping techniques using radiation hybrid cell panels. (1001-350) Class 3, Lab 3, Credit 4 (F)

1001-493 Bioinformatics
Bioinformatics will introduce students to the analysis of genetic sequences. Emphasis will be placed on genetic information derived from the human genome project but findings from genomes of other model systems will be presented. Lectures will discuss available computational tools for extracting biological information from nucleotide and protein sequences. The computer-based laboratory will utilize bioinformatics software to demonstrate how to manage, search and analyze genetic sequences. Laboratory sessions will cover gene prediction programs, DNA fragment assembly, multiple sequence analysis, secondary structure predictions, phylogenetic constructions and web-access to public databases. (1001-350) Class 3, Lab 3, Credit 4 (S)

1001-502 Advanced Immunology
The lecture material will cover in depth the molecular and cellular events of antigen processing, recognition of antigen by T lymphocytes and their subsequent activation. The two distinct processing pathways for exogenous and endogenous antigens will be contrasted, in regards to intracellular compartments, proteolytic mechanisms and site of assembly with the major histocompatibility complex (MHC) molecules. Distinctions in maturation and transport to the cell surface of the two classes of peptide-loaded MHC molecules will be discussed. The structure, genetics, polymorphism and cell surface expression of MHC molecules will be covered. The intracellular events that occur following antigen recognition, as well as the two-signal model for T cell activation will be presented. The phenomenon of positive/negative selection within the thymus during T cell differentiation will be covered. (1001-350, 402) Class 3, Lab 3, Credit 4 (S)

1001-541,542,543 Advanced Biological Science Research
Faculty-directed projects of research usually involving original field or laboratory work encompassing a period of at least two quarters. Final results are presented in written and oral formats. (Third-year status with a GPA of 2.5 in science and mathematics courses and consent of faculty) Class variable, Credit variable (F, W, S)

1001-550 Biology Seminar
Written and oral reports and their discussion by class members covering topics of current interest in the biological sciences. (40 quarter credits in biology and successful completion of the departmental writing requirement) Class 2, Credit 2 (W, S)

1001-559 Special Topics: Biology
Advanced courses that are of current interest and/or logical continuations of the courses already being offered. These courses are structured as ordinary courses and have specified prerequisites, contact hours and examination procedures. Class variable, Credit variable (Offered upon sufficient request) (F, W, S)
1001-599 Independent Study: Biology
Faculty-directed study of appropriate topics on a tutorial basis for program elective credit. Enables an individual to pursue studies of existing knowledge in the literature. (1001-253 or equivalent) Class variable, Credit variable (F, W, S)

1004-210 Microbiology in Health & Disease
An introduction to microorganisms; their relationship to the environment and human health; the causes, prevention and treatment of infectious diseases; and the role of microorganisms in the preparation and spoilage of foods. (One year of high school biology or equivalent) Class 4, Credit 4 (F)

1004-211 Human Biology I
A general study of human anatomy and physiology. Includes discussions of cellular biology, skeletal, muscular, nervous and endocrine systems. Class 3, Credit 3 (W)

1004-212 Human Biology II
A general study of human anatomy and physiology with emphasis on mechanisms by which the nervous and endocrine systems coordinate and integrate body functions. This second course includes discussion of nutrition, metabolism and respiratory, circulatory, lymphatic, urinary and reproductive systems. Class 3, Credit 3 (S)

1004-231 Human Biology I Laboratory
To complement the lecture material of 1004-211. Experiments are designed to illustrate the dynamic characteristics of cells, tissues and organ systems. Lab 2, Credit 1 (WI)

1004-232 Human Biology II Laboratory
For dietetic and medical illustration students complements the lecture material of 1004-212. Experiments are designed to illustrate the dynamic anatomy and physiology of major organ systems. Lab 2, Credit 1 (S)

1004-289 Contemporary Science: Biology
A study in various biological topics relevant to contemporary problems of society. Topics may include population biology, pollution, disease control, human heredity, contagious diseases, marine biology, bioethics. Class 4, Credit 4 (SU)

1004-315 Medical Genetics
A survey of selected human variations and diseases of medical importance, with emphasis on the underlying genetic principles. (1001-203 or equivalent) Class 2, Credit 2 (S)

1005-210 Field Biology for Non-Science Students
An introduction to the ecology of individuals, populations and communities. The dynamic interaction between organisms and their environment will be stressed. Included will be the concepts of energy flow and nutrient cycling in ecosystems, population dynamics, food webs, and the causes of temporal and spatial changes in communities. Class 3, Lab 3, Credit 4 (S)

1005-250 Galapagos: Ecology & Evolution
An 11-day field course in Ecuador and the Galapagos Islands. Students meet weekly on the RIT campus during spring quarter to learn about the wildlife and geology of the islands and about their influence on Darwin’s Theory of Evolution. The difficulties of balancing human problems with environmental conservation are ongoing problems in the Galapagos. The actual field trip occurs in May, right after graduation. We charter a boat and cruise among the islands for one week. There are daily shore excursions and frequent snorkeling opportunities. The course provides outstanding opportunities for nature photography. Although this is a spring quarter offering, students must contact the instructor during the previous fall quarter. Enrollment is limited to 11 students. A travel fee is required. Credit variable (S)

1008-261 Quantitative Analysis I
Designed for chemistry department majors or those interested in pursuing the major. Topics include theoretical introduction to quantitative methods, including gravimetric techniques, equilibria, statistical methods and solution chemistry. (Corequisites 1008265, 1010-252) Lecture 3, Credit 3 (W)

1008-262 Quantitative Analysis II
Designed for chemistry department majors or those interested in pursuing the major. Topics include equilibrium for polyprotic acids, electrochemistry and redox reactions, spectroscopy, potentiometry and electogravimetric determinations. (Corequisite 1008-266) (1008-261, 265) Lecture 4, Credit 4 (S)

*X, extended day (after 5 p.m.)
1009-502 Biochemistry: Conformation & Dynamics
Provides a foundation for biochemistry course sequence and for participation in undergraduate research in biochemistry. The relationship between the three-dimensional structure of proteins and their function in oxygen transport and enzymatic catalysis is examined. In preparation for the next course in the sequence (1009-503, Biochemistry: Metabolism), membrane structure and the physical laws that apply to metabolic processes are also discussed. (1013-233 or 1013-433, or permission of instructor) Class 3, Credit 3 (F-X*, W-X*)

1009-503 Biochemistry: Metabolism
Introduction to the metabolic pathways used for energy production and for the synthesis and degradation of the building blocks of living organisms. The pathways are presented individually, then integrated to show the balance between pathways; for example, the products generated by one pathway that are necessary for a second pathway. The efficiency of chemical synthesis in biological organisms is discussed. Finally, the metabolic basis of selected diseases is examined. (1009-502 or permission of the instructor) Class 3, Credit 3 (F, W-X*)

1009-504 Biochemistry: Nucleic Acids & Molecular Genetics
Nucleic acid structures, including the classical Watson-Crick DNA secondary structure, as well as more recently discovered forms, are described. Nucleic acid metabolism and the flow of genetic information including replication of DNA, its transcription into RNA and the translation of messenger RNA into protein, as well as regulation of gene expression in prokaryotes are presented. DNA sequencing and recombinant DNA techniques having practical applications in medicine, agriculture and forensics are described. The nucleic-acid-biochemistry of viruses and oncogenes is surveyed. (1009-502) Class 3, Credit 3 (F, S-X*)

1009-505 Biochemistry: Experimental Techniques
An introduction to the theory and practice of modern experimental biochemical laboratory techniques and concepts. The weekly one-hour lecture provides a theoretical framework for the course and includes a discussion of the properties of biomolecules and how those properties are exploited in the separation and characterization of the molecules. Practical laboratory techniques include the preparation of buffers, centrifugation, gel exclusion chromatography, electrophoretic methods, and UV-visible and fluorescence spectrophotometry as applied to the isolation and characterization of proteins and nucleic acids. The manipulation of genetic material in E. coli will also be examined. Class 1, Lab 6, Credit 3 (F)

1009-541, 542, 543 Biochemistry Research
Faculty-directed student projects or research in biochemistry, usually involving laboratory work and/or calculations that would be considered original. (Permission of research adviser) Class variable, Credit variable (F, W, S, SU)

1010-200 Chemistry Safety
A basic course in safe chemical laboratory practices. Topics include protective equipment; toxicity; safe reaction procedures; storage and disposal methods; and handling of all chemicals, including flammable materials, compressed gases, cryogens, radioactive materials and other special chemicals. Class 1, Credit 1 (F)

1010-230 Introduction to Co-op Seminar
Exploration of cooperative education opportunities with practice in writing letters of application and resumes and in interviewing techniques. Careers related to chemistry, polymer chemistry, biochemistry and environmental chemistry option are discussed, and career information resources at RIT are utilized. Class 1, Credit 1 (F)

1010-251 General Chemistry I
Designed for chemistry department majors or those interested in pursuing the major. Topics include theoretical introduction to quantitative methods, including gravimetric techniques, equilibria, statistical methods and solution chemistry. (Corequisites 1008-265, 1010-252) Lecture 3, Credit 3 (W)

1010-252 General Chemistry II
Designed for chemistry department majors. Includes topics on atomic theory and electronic structure, chemical bonding, VSEPR and valence bond theory, molecular orbital theory, enthalpy and entropy, rate laws, catalysis and nuclear chemistry. (Corequisite 1008-265) (1010-251) Class 3, Credit 3 (W)

1010-255 General Chemistry I Laboratory
Designed for chemistry department majors to complement General Chemistry I (1010-251). Experiments involve inorganic chemistry (empirical formula, qualitative analysis of transition metal ions, synthesis of an inorganic complex ion), quantitative analysis (acid-base titrations, gravimetric analysis, visible spectrophotometry) and an introduction to polymer chemistry. (Corequisite 1010-251) Lab 3, Credit 1 (F)

1010-401 Chemical Literature
Instruction is given on the use of chemical literature resources such as Chemical Abstracts, Science Citation Index, Beilstein, Current Contents and computerized information retrieval. Students prepare a library-based research paper and poster on a chemical topic of their choice as a culmination of instruction on planning a research paper: outlining, using correct scientific English and formats for documentation (footnotes, endnotes, bibliographies) preparing visuals, abstracts and letters of transmittal. Class 2, Credit 2 (F, W)

1010-480 Laboratory Teaching Experience
This course is designed to offer students teaching experience in an undergraduate laboratory setting. Evaluation by a faculty supervisor is based on teaching performance and preparation of materials required for the lab. (Must have completed the course and laboratory or equivalent experience under consideration with a grade of A or B; permission of instructor/laboratory coordinator and department head) Class 3-6, Credit 1-2 (F, W, S, SU)

1010-499 Chemistry Co-op
Cooperative education experience for undergraduate chemistry students. Credit 0 (offered every quarter)

1010-541,542,543 Chemical Research
Faculty-directed student projects or research usually involving laboratory work and/or calculations that would be considered original. (Permission of research adviser) Class variable, Credit variable (F, W, S, SU)

1010-559 Special Topics: Undergraduate Chemistry
Courses in which topics of special interest to a sufficiently large group of students, and not covered in other courses, may be offered upon request. Class variable, Credit variable (offered upon sufficient request)

1011-201 Survey of General Chemistry
One-quarter survey of general chemistry for non-science majors with no previous background in chemistry. Fundamentals of dimensional analysis, matter and energy, atomic theory, molecular structure, chemical bonding, chemical reactions, solution chemistry, acid-base chemistry, nuclear reactions and an introduction to equilibrium are covered with emphasis on the relationship between chemistry and modern sociological, nutritional and environmental issues. (Corequisite 1011-205) (1016-225) Class 5, Credit 5 (F)

1011-202 Introduction to Organic & Biological Chemistry
Survey of organic chemistry fundamentals followed by an introduction to the structure and function of biomolecules. Organic functional groups covered include hydrocarbons, alcohols, thiols, amines and carbonyl compounds. Biomolecules covered include amino acids, proteins, enzymes, vitamins and hormones. (Corequisite 1011-207) (1011-201) Class 4, Credit 4 (W)

1011-203 Metabolic & Nucleic Acid Biochemistry
Application of carbohydrate, lipid, protein and amino acid metabolism to nutrition and health is covered as well as the flow of genetic information from DNA to RNA to protein. Fluid balance, blood chemistry and kidney function are also surveyed. (1011-202) Class 4, Credit 4 (S)

1011-205 Chemistry Principles I Laboratory
Laboratory course to introduce basic laboratory techniques: gravimetric, volumetric, thermal and titration analyses. Experiments complement material in first-quarter lecture. (Corequisite 1011-201, 211, 215, or 271) Lab 3, Credit 1 (F, W, S, SU)

1011-206 Chemistry Principles II Laboratory
Laboratory course to introduce techniques of chemical analysis: spectrometry, calorimetry, separations, reaction schemes, titrations and kinetic studies. Experiments complement material in second-quarter lecture. (Corequisite 1011-212 or 216) (1011-205) Lab 3, Credit 1 (F, W, S, SU)

1011-207 Introduction to Organic Chemistry Laboratory
An introduction to organic laboratory techniques. Methods of separating, purifying and characterizing organic compounds are covered. (Corequisite 1011-202 or 213) (1011-205) Lab 3, Credit 1 (W, S, SU)

X, extended day after 5 p.m.
1011-208 College Chemistry
Primarily for, but not limited to, engineering students. Topics include an introduction to some basic concepts in chemistry, stoichiometry, First Law of Thermodynamics, thermochemistry, electronic theory of composition and structure, chemical bonding. Class 4, Credit 4 (F, W)

1011-211 Chemistry Principles I
For science, microelectronics, information technology majors and others who desire an in-depth study of general chemistry. Atomic structure and chemical bonding; chemical equations, stoichiometry and chemical analysis; gases; acids and bases. Also offered in distance-learning format. (Corequisite 1011-205) Class 3, Credit 3 (F, W, S, SU)

1011-212 Chemistry Principles II
Problem-solving applications of chemical principles. Topics include thermodynamics and equilibrium, nuclear chemistry and electrochemistry, oxida-
tion-reduction and chemical kinetics. Also offered in distance-learning format. (Corequisite 1011-206) (1011-211) Class 3, Credit 3 (F, W, S, SU)

1011-213 Introduction to Organic Chemistry
Introduction to the structure and reactivities of organic molecules for physical science majors. An overview of the structure, nomenclature, bonding and reactivities of major functional groups. Special topics include polymers and biomolecules. Also offered in distance-learning format. (Corequisite 1011-207) (1011-201 or 1011-212) Class 3, Credit 3 (S, SU)

1011-215 General & Analytical Chemistry I
General chemistry for students in biological and allied health sciences. Introduction to chemical symbols, formulas, nomenclature, equations, sto-
ichiometry, atomic structure, chemical periodicity and bonding. Emphasis on an early introduction to solutions, concentrations, acid-base and precipitation reactions; analytical chemistry problem-solving applications are stressed. (Corequisite 1011-205) Class 3, Recitation 1, Credit 4 (F)

1011-216 General & Analytical Chemistry II
Introduction to quantitative analysis, acid-base chemistry, oxidation-reduction, chemical equilibrium and equilibria in aqueous solutions. Particular emphasis on solution equilibria including weak acids, bases, buffers, hydrolysis, pH titra-
tions and heterogeneous equilibria. (Corequisite 1011-206) (1011-215) Class 3, Credit 3 (W)

1011-217 General &Analytical Chemistry III
The concepts of polyprotic equilibria, spectrophotometry instrumentation and analyses, electrochemistry, nuclear chemistry and chemical kinetics are pre-
rented with an emphasis on the analytical applications of these principles to the life sciences. (Corequisite 1011-227) (1011-216) Class 3, Credit 3 (S)

1011-227 General &Analytical Chemistry III Laboratory
Continuation of 1011-206 laboratory. Topics include pH measurement, buffers and pH indicators, polyprotic acid multi-endpoint titrations, spectrophoto-
metric analysis of equilibrium constants, and an independent laboratory prac-
tical on the quantitative analysis of an unknown solution by various analytical methods. Experiments are designed to complement lecture material in 1011-
217. Emphasis is on independent laboratory analysis, experimental design and data analysis. (Corequisite 1011-217) (1011-206) Lab 6, Credit 2 (S)

1011-241 Chemistry for a Global Society I
This course is designed for students in any discipline and will address the basic concepts of chemistry as applied to natural phenomena, familiar every-
day situations, or relevant social, political and cultural issues. Topics will include atomic models, the mole concept, stoichiometry, chemical reactions, acids and bases, and oxidation/ reduction. Environmental and nuclear appli-
cation may be among special topics selected by the instructor. Basic mathem-
atics will be utilized, but many topics will be non-quantitative. (Corequisite 1011-245) Class 3, Credit 3 (W)

1011-242 Chemistry for a Global Society II
This course is designed for students in any discipline and will address the basic concepts of chemistry as applied to natural phenomena, familiar every-
day situations, or relevant social, political and cultural issues. Topics will include organic chemistry concepts, including polymers and biochemistry with applications to the environment, forensic science, food, household chem-
icals, photography, and pigments and dyes. Basic mathematics will be uti-
lized, but many topics will be non-quantitative. (Corequisite 1011-246) (College chemistry course) Class 3, Credit 3 (S)

1011-245 Chemistry for a Global Society I Laboratory
To accompany 1011-241, with experiments emphasizing basic chemical principles often using everyday life materials: density, conservation of mass, chromatography, water, acids and bases, oxidation and reduction. A field trip may be incorporated as part of lab. (Corequisite 1011-241) Lab 2, Credit 1 (W)

1011-246 Chemistry for a Global Society II Laboratory
To accompany 1011-242, with experiments emphasizing basic chemical principles often using everyday life materials: organic molecular models, pigments and dyes, gravimetric determination, field trip to a police or photo lab, syntheses of esters, aspirin; polymers, food tests. (Corequisite 1011-
242) (College chemistry course) Lab 2, Credit 1 (S)

1011-271 Fundamentals of Chemistry
Introduction to basic concepts of chemistry, assuming no prior experience. Topics include atomic theory, chemical bonding, stoichiometry, states of matter and the periodic table. Also offered in distance-learning format. (Corequisite 1011-205) Class 3, Credit 3 (F, W)

1011-272 Chemistry of Water & Waste Water
Chemistry of water analyses, including solids, pH, alkalinity, acidity, chloride, phosphate, BOD, COD, nitrogen, metals, radioactivity, residual chlorine and chlorinated demand. Polymers are also covered. (Corequisite 1011-276) (1011-271 or equivalent) Class 3, Credit 3 (F, W, S, SU)

1011-273 Introduction to Chemical Materials
Application of the basic concepts of chemistry to energy conversion (thermo-
chemistry, nuclear chemistry), reaction kinetics and equilibria, electrochem-
istry and materials (metals, ceramics, and polymers). Also offered in distance-
learning format. (Corequisite 1011-277) (1011-271 or 1011-208) Class 3, Credit 3 (W, S)

1011-276 Chemistry of Water & Waste Water Laboratory
To be taken concurrently with 1011-272. Techniques used in water and waste water analysis are covered. (1011-271 or equivalent) Lab 3, Credit 1 (S)

1011-277 Introduction to Chemical Materials Laboratory
Experiments in thermochemistry, kinetics, equilibrium, oxidation-reduction and the properties of matter that complement the lecture material. (Corequisite 1011-273) (1011-205 or 1011-208) Lab 3, Credit 1 (W, S)

1011-309 Glassblowing Techniques
Introduces and trains each student in small-scale scientific glassblowing tech-
niques. Proficiency is developed in rod manipulation, ring seals, construction of apparatus, annealing, use of a simple lathe and hand-torch work. (May be taken by chemistry, polymer chemistry, and other majors.) Class 4, Credit 2 (offered upon sufficient request)

1011-507 Introduction to Intellectual Property
An introductory course on the fundamentals of intellectual property covering trade secrets, copyrights, confidentiality issues and patents. Students will write an invention disclosure and patent application based on knowledge gained in this course. In addition, students will understand intellectual property issues in corporate settings and in particular industries. Class 3, Credit 3 (F, W)

1012-562 Inorganic Chemistry I
For common elements, mastery of chemical reactions that describe: (1) their isolation, (2) their characteristic chemical reactivities with other common ele-
ments, (3) large-volume industrial processes and (4) environmental impacts required. Nomenclature and isomerism are included. (1013-433, 1014-441) Class 4, Credit 4 (F, W)

1012-563 Inorganic Chemistry II
This course provides a view of how bonding theories endeavor to account for and predict the physical properties of a wide variety of inorganic compounds; e.g., color, magnetism, stability, chemical potential and electrical conductivity. Applications of bonding theory to current research areas are included. (1012-
562, 1014-442 or permission of instructor) Class 4, Credit 4 (S)

1012-564 Modern Inorganic Chemistry
Introduces the more sophisticated tools with which an inorganic chemist investigates inorganic materials. These physical methods are applied to inor-
ganic reactions that exemplify the similarities and differences for the elements in each family of the periodic table. (1014-441 or permission of instructor) Class 4, Credit 4 (S)
1013-231 Organic Chemistry I
Survey of the structure, nomenclature, reactions and synthesis of the major functional groups. (Corequisites 1013-235) (1011-212 or 216 or permission of instructor) Class 3, Credit 3 (F, W-X*, SU)

1013-232 Organic Chemistry II
Mechanisms of main classes of reactions are discussed. (Corequisite 1013-236) (1011-231) Class 3, Credit 3 (W, S-X*, SU)

1013-233 Organic Chemistry III
Structure, nomenclature, reactions and properties of the important classes of bio-organic molecules (carbohydrates, lipids, amino acids, proteins and nucleic acids) are covered in depth. Emphasis is on structure and reactivity in relation to biochemical processes. (Corequisite 1013-237) (1013-232) Class 3, Credit 3 (S, F-X*)

1013-235 Organic Chemistry I Laboratory
Laboratory work emphasizes techniques, preparations and analyses. (Corequisite 1013-231) Lab 3, Credit 1 (F, W-X*, SU)

1013-236 Organic Chemistry II Laboratory
Laboratory work emphasizes techniques, preparations, and analyses. (Corequisite 1013-232) Lab 3, Credit 1 (W, S-X*, SU)

1013-237 Organic Chemistry III Laboratory
Laboratory work emphasizes reactions and properties of biomonomers and polymers. (Corequisite 1013-233) Lab 3, Credit 1 (S, F-X*)

1013-431 Organic Chemistry I
A rigorous survey of the mechanisms and reactions of organic functional groups, emphasizing alkanes, alkenes and alkynes. Stereochemistry is also included. (Corequisite 1013-435) (1010-252) Class 3, Credit 3 (S, SU)

1013-432 Organic Chemistry II
A continued survey of reactions and mechanisms of organic functional groups including aromatic compounds, alcohols, ethers, aledhedges and organometalics. Spectral analysis (IR, UV, NMR) is also included. (Corequisite 1013-436) (1013-431) Class 3, Credit 3 (F, W)

1013-433 Organic Chemistry III
A continued survey of reactions of major organic functional groups, including carboxylic acids, carboxylic acid derivatives, amines and enolate anions. Structure, nomenclature, reactions and properties of important classes of bio-organic molecules are also included. (Corequisite 1013-437) (1013-432) Class 3, Credit 3 (S, SU)

1013-435 Preparative Organic Chemistry I Laboratory
Designed for chemistry department majors to complement 1013-431. Organic Chemistry I. Synthesis, purification and characterization of organic compounds are conducted. (Corequisite 1013-431) (1010-252) Lab 4, Credit 1 (S, SU)

1013-436 Preparative Organic Chemistry II Laboratory
Designed for chemistry department majors to complement 1013-432, Organic Chemistry II. Emphasis is on synthesis, functional group reactivities, separations, IR and NMR analysis and introduction to microscale synthesis. (Corequisite 1013-432) (1013-431) Lab 4, Credit 1 (F, W)

1013-437 Systematic Identification of Organic Compounds
A laboratory course utilizing synthesis, chemical and spectral (IR, NMR and GC/MS) techniques to identify and characterize organic compounds. (Should be taken concurrently with 1013-433) (1008-319, 1013-432, 436) Lab 6, Credit 2 (S, SU)

1013-437-3 Advanced Organic Chemistry Synthesis
This course will revisit undergraduate organic chemistry topics at a more advanced level with specific examples from the current chemical literature. Multistep synthesis and synthesis of complex multifunctional molecules will be emphasized. (Students requiring 4 credits should register for 1013-737.) (1013-433) Class 3, Credit 3 (F-X*)

1014-441 Chemical Thermodynamics
Properties of gases; temperature; energy and the First Law of Thermodynamics; entropy and the Second and Third laws; Helmholtz and Gibbs free energies; criteria for equilibrium and spontaneity; chemical equilibrium; phase equilibrium; equilibrium in ideal and non-ideal solutions; electrochemistry. (Corequisite 1014-445) (1010-252, 1016-252, 1017-211 or 311) Class 4, Credit 4 (F, W)

1014-442 Quantum Chemistry
Introduction to quantum mechanics and spectroscopy, radioactivity; Planck’s Law; photоОelectric effect; the Bohr atom; deBroglie, Schrodinger and Heisenberg theories; eigenvalue/eigenvector equations; variation and perturbation theory; quantum statics; Heitler-London theory of covalent bonds; selection rules and spectroscopy; and matrices applicable to quantum chemistry. (Corequisite 1014-446) (1014-441, 1016-306) Class 4, Credit 4 (W,S,X*)

1014-443 Chemical Kinetics
Kinetic molecular theory, transport properties of gases, chemical kinetics, surface chemistry, photochemical kinetics, irreversible processes in solution and introduction to statistical mechanics. (Corequisite 1014-447) (1014-441) Class 4, Credit 4 (S, SU-X*)

1014-445 Chemical Thermodynamics Laboratory
Introduction to physical chemistry laboratory; chemical thermodynamics and equilibrium. Emphasis on data analysis and interpretation of results. (Should be taken concurrently with 1014-441) Lab 3, Credit 1 (F, W-X*)

1014-446 Quantum Chemistry Laboratory
Experiments in the application of quantum chemistry, atomic and molecular spectroscopy, and radioactivity. (Should be taken concurrently with 1014-442) Lab 3, Credit 1 (W, S-X*)

1014-447 Chemical Kinetics Laboratory
Laboratory experiments in chemical dynamics. Emphasis on application of physical chemical models. (Should be taken concurrently with 1014-443) Lab 3, Credit 1 (S, SU-X*)

1015-520 Environmental Chemistry
Students will be introduced to sources, reactions, transport, effects and fate of chemical species in air, soil, water and living systems. (Organic Chemistry) Class 3, Credit 3 (S-X*)

1015-521 Atmospheric Chemistry
An overview of the major forces controlling the chemical composition of Earth’s atmosphere with emphasis on the role of the biosphere and the changes induced by human activity. Emphasis is placed on urban pollution, acid rain, strato-spheric ozone depletion, and climate change. (1014-443) Class 3, Credit 3 (S)

1015-522 Aquatic Toxicology & Chemistry
An introduction to key chemical, biological, microbiological and toxicological concepts and processes that govern the presence and fate of pollutants in the aquatic environment; environmental fate of specific inorganic, organic and pathogenic pollutants; analytical testing and modeling methods used to assess the toxicity impact of aquatic pollutants. (Organic chemistry, 1001-201) Class 3, Credit 3 (S-X*)

1029-301 Introduction to Polymer Technology
Survey of polymer science, including terminology, synthesis, structures, properties, applications and processing techniques of commercially significant polymers. (General Chemistry, 1016-251 or equivalent) Class 2, Credit 2 (F)

1029-501 Organic Chemistry of Polymers
The synthesis of high molecular weight organic polymers and their properties are introduced. Mechanisms of step growth and chain growth polymerization reactions, polymer reactions and degradation are also considered. The end properties of polymers can be “tailored” by their method of synthesis. Controlled synthesis is particularly achievable when using coordinative polymerization, which will be discussed in detail. (1013-433) Class 4, Credit 4 (F-X*)

1029-502 Polymer Chemistry: Chains & Solutions
Although most polymeric materials find utility as solids, polymer fabrication and characterization techniques are general liquid-phase processes. This course is concerned with the fundamental physical chemistry of polymers in liquid solutions. Topics to be addressed include polymerization kinetics and chain structure, molecular weight distributions and determination, polymer solution thermodynamics and transport phenomena, and solution phase transitions. (1029-301, 1014-442) Class 4, Credit 4 (S-X*)

* extended day (after 5 p.m)
1029-603 Polymer Chemistry: Properties of Bulk Materials
This course is designed to give the student with a chemistry or materials science background a thorough grounding in the main concepts that describe bulk polymer structure, behavior and properties. The course follows a synthetic path; the structure-property relationships for polymeric materials are built up from a microscopic to a macroscopic level. One of the most important lessons of the course is that polymers are almost never in a thermodynamically stable state. Consequently, the behavior of polymers and the properties they display are time dependent and vary with the thermo-mechanical history of the materials. (1029.501,502) Class 4, Credit 4 (F-X*)

1029-504 Polymer Characterization Laboratory
This course introduces, and gives the student experience with, analytical techniques commonly employed to characterize high polymers. To accomplish this, the course is divided into five sections, each highlighting a particular characteristic of polymeric materials: 1)molecular weight distributions; 2)spectroscopic analysis of chemical structure; 3)thermal stability; 4)morphology and phase transitions; and 5)mechanical properties. The experiments, each requiring eight lab hours to complete, are designed to give students exposure to laboratory techniques not generally covered in undergraduate science/engineering curriculum. (1008-319,1029-301) Lab 6, Credit 2 (offered alternate years; offered 2004-05) (S)

1029-505 Synthesis of High Polymers Laboratory
Students will carry out about eight experiments. They will conduct in about half of those experiments step-growth polymerizations and in the other half chain-addition polymerizations. Among the polymers produced will be Nylon 6-10, Nylon 11, polystyrene, high-density polyethylene, linear low density polyethylene, copolymer of styrene and methyl methacrylate and polyurethane. The most specific types of polymerizations and reactions introduced will be cross-linking polymer, interfacial and bulk step-growth polymerizations, cyclopolymerization, radical, ionic and coordinative chain polymerizations. Instructors may add or delete polymer-related experiments of their choice. Experiments also include basic characterization of products by at least one method. (1013-437) Lab 6, Credit 2 (offered alternate years; offered 2002-03) (F)

Environmental Science
1031-200 Environmental Science Freshman Seminar I
This course is designed to maximize the student’s potential to achieve academic success and to adjust to personal and interpersonal challenges presented by college life. An interactive approach to classroom activities will include teamwork, small group discussions, information presentations, personal and academic assessment and group exercises. Required for all first year environmental science students. Class 1, Credit 1 (F)

1031-201 Introduction to Environmental Science II
Introduction to environmental science is a three-quarter sequence that presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through the study of the Earth’s ecosystems. Throughout the sequence, the focus will be on sustainability as the foundation for problem solving. The first quarter will establish the educational foundation that will be built upon in subsequent courses. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering will be embedded in the scientific matrix used to present this course. (Permission of instructor) Class 2, Lab 4, Credit 4 (F)

1031-202 Introduction to Environmental Science II Continuation of 1031-201. (1031-201 or permission of instructor) Class 2, Lab 4, Credit 4 (W)

1031-203 Introduction to Environmental Science III Continuation of 1031-202. (1031-202 or permission of instructor) Class 2, Lab 4, Credit 4 (S)

1031-210 Environmental Science Freshman Seminar II Continuation of 1031-200. Class 1, Credit 1 (W)

1031-501 Environmental Science: Great Lakes I
First course in a three-quarter sequence that continues the integrated presentation of the interrelated, interdisciplinary principles of environmental science through an in-depth study of the Great Lakes ecosystem. Throughout the sequence, the focus will be on sustainability as the foundation for environmental problem solving in the Great Lakes. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering are embedded in the scientific matrix used to present this course. (Permission of instructor) Class 2, Lab 4, Credit 4 (F)

1031-502 Environmental Science: Great Lakes II Continuation of 1031-501. (1031-501 or permission of instructor) Class 2, Lab 4, Credit 4 (W)

1031-503 Environmental Science: Great Lakes III Continuation of 1031-502. (1031-502 or permission of instructor) Class 2, Lab 4, Credit 4 (S)

1031-559 Special Topics: Environmental Science
Courses that are of current interest and/or logical continuations of the courses already being offered. These courses are structured as ordinary courses and may have specified prerequisites, contact hours, and examination procedures. Class variable, Credit variable (F, W, S, SU)

1031-599 Independent Study: Environmental Science
Faculty-directed study of appropriate topics on a tutorial basis. Enables an individual to pursue studies of existing knowledge available in literature. Class variable, Credit variable (F, W, S, SU)

Mathematics & Statistics
1016-200 Algebra
An algebra course including such topics as operations involving polynomials, algebraic fractions, factoring, exponents and radicals, solution of linear and quadratic equations, and graphing linear equations. (One year of high school algebra) Class 4, Credit 4 (F, W, S)

1016-204 College Algebra & Trigonometry
Topics include a review of the fundamentals of algebra; solution of linear, fractional and quadratic equations; functions and their graphs; polynomial, exponential, logarithmic and trigonometric functions; systems of linear equations. (Two years of high school algebra) Class 4, Credit 4 (F, W, S, SU)

1016-205 Discrete Math for Technologists I
An introduction to topics of discrete mathematics for students of Information Technology, including number systems, sets and logic, counting and matrices. (Grade of C or better in 1016-204 or equivalent) Class 4, Credit 4 (F, W, S, SU)

1016-206 Discrete Math for Technologists II
A continuation of an introduction to topics of discrete mathematics for students of Information Technology, including relations, Boolean algebra, graph theory and regular sets. (Grade of C or better in 1016-205 or 1016-265 or equivalent) Class 4, Credit 4 (W, S, SU)

1016-210 Math Seminar I
An introductory course for freshman and some transfers that explores the three majors and shows typical problems that applied mathematicians, computational mathematicians and applied statisticians solve in academic and industrial settings. Class 1, Credit 1 (F)

1016-211 Math Seminar II
A continuation of 210 including a four-week introduction to co-op with a cover letter and resume writing. Additional mathematical and statistical topics will be discussed. A technical report is required. Class 1, Credit 1 (W)

1016-214 Elementary Calculus I
Introduction to the study of differential calculus. The following topics are covered: functions and graphs, limits, continuity, the derivative and its significance, the algebra of derivatives, chain rule, related rates, maxima and minima. (Grade of C or better in 1016-204 or equivalent) Class 3, Credit 3 (W, S)

1016-215 Elementary Calculus II
A continuation of 1016-214, dealing with an introduction to integral calculus. The following topics will be covered: definite integral, area, work and distance problems, volumes, fundamental theorem of calculus, approximation techniques, exponential and logarithmic functions, applications, introduction to differential equations. (Grade of C or better in 1016-214) Class 3, Credit 3 (S, F)
1016-220 Fundamentals of Trigonometry
A study of the fundamental concepts in trigonometry including terminology, radian measures, trigonometric ratios, graphs of trigonometric functions, applications and vectors. Class 1, Credit 1 (S)

1016-225 Algebra for Management Science
Introduction to functions, including linear, quadratic, polynomial, exponential, logarithmic and rational functions with applications to supply and demand, cost, revenue and profit functions. Additional topics include matrices, linear programming and mathematics of finance. (Three years of high school mathematics) Class 4, Credit 4 (F, W, S, SU)

1016-226 Calculus for Management Science
A course stressing applications of calculus concepts to solving problems in business and economics. Topics include the limit concept, differentiation, partial differentiation and integration. (Grade of C or better in 1016-225) Class 4, Credit 4 (F, W, S, SU)

1016-228 Analytical Geometry
Topics in analytical geometry such as slopes, lines and conic sections. Also additional topics in polar coordinates, determinants, parametric equations, trigonometry, and two- and three-dimensional vectors. (Grade of C or better in 1016-204) Class 4, Credit 4 (F, W, S)

1016-240 Precalculus
The course reviews functions and graphs and then concentrates on a full discussion of trigonometric functions to prepare students for their use in higher mathematics and applications courses. (Three years of high school math) Class 4, Credit 4 (F, W)

1016-241 Calculus & Analytical Geometry I
A study of precalculus topics needed to succeed in learning calculus combined with the course material covered in 1016-251. (Three years of high school mathematics) Class 6, Credit 6 (F, W)

1016-242 Calculus & Analytical Geometry II
A continuation of the material from 1016-241 combined with the course material covered in 1016-252. (Grade of C or better in 1016-241 or 251) Class 6, Credit 6 (W, S)

1016-243 Calculus & Analytical Geometry III
A continuation of the material from 1016-242 combined with the course material covered in 1016-253. (Grade of C or better in 1016-242 or 252) Class 6, Credit 6 (S, F)

1016-251 Calculus I
Calculus I-III is a standard first course in calculus intended for students majoring in mathematics, science or engineering with the major emphasis on understanding the concepts and using them to solve a variety of physical problems. Calculus I covers two-dimensional analytic geometry, functions, limits, continuity, the derivative and its formulas, and applications of the derivative. (Three years of high school mathematics) Class 4, Credit 4 (F, W, S, SU)

1016-252 Calculus II
This course follows 1016-251 and is a continuation of the standard first course in calculus intended for students majoring in mathematics or science or engineering, with the major emphasis on understanding the concepts and using them to solve a variety of physical problems. The subject matter is as follows: anti-derivatives by various methods; the definite integral with applications to calculation of area, volumes of revolutions, etc; transcendental functions; numerical integration. (Grade of C or better in 1016-251 or B or better in 241) Class 4, Credit 4 (F, W, S, SU)

1016-253 Calculus III
Third in the sequence of a standard first course in calculus intended for students majoring in mathematics, science or engineering with the major emphasis on understanding the concepts and using them to solve a variety of physical problems. The subject matter is as follows: improper integrals, formal limits of sequences, infinite series, Taylor series, polar coordinates, conic sections. (Grade of C or better in 1016-252 or B or better in 242) Class 4, Credit 4 (F, W, S, SU)

1016-258 Introduction to Mathematics
An introduction to the computer algebra system Mathematics and its uses and applications in several undergraduate courses. Symbolic manipulations, numerical calculations and graphics techniques are explored, as well as Mathematics packages and programming techniques. (Corequisite is a basic calculus course such as 1016-251, 1019-420, 1016-241 or 1016-214) Class 2, Credit 2 (offered upon sufficient request)

1016-260 Statistical Computing with Excel & Minitab
An introduction to statistical computing using Excel and Minitab software packages. (Permission of instructor) Class 1, Lab 1, Credit 2 (S)

1016-265 Discrete Math I
An introduction to discrete mathematics with applications in computer science and mathematics with an emphasis on proof techniques. The basics of combinatorics, sets, functions, the natural numbers and the integers modulo n are covered. (Sophomore standing or department permission) Class 4, Credit 4 (F, W, S, SU)

1016-289 Contemporary Science: Mathematics
A basic survey of mathematical structures as well as an introduction to problem solving. Topics are chosen from foundations of mathematics, algebra, topology, number theory, graph theory, probability and statistics. These structures are examined as they occur naturally in modern settings. NOTE: Not acceptable as science credit for College of Science majors. Class 4, Credit 4 (offered upon sufficient request)

1016-301 Introduction to Statistical Methods I
An elementary introduction to the topics of descriptive statistics and probability. Minitab will be used as a tool for data analysis. This course is intended for non-technical programs such as, but not limited to, criminal justice, hospitality and service management, and social work. (Grade of C or better in 1016-200 or equivalent) Class 3, Lab 1, Credit 4 (F, W)

1016-302 Introduction to Statistical Methods II
An elementary, concept-oriented introduction to the topics of inferential statistics and sampling methodology. SPSS will be used as a tool for data analysis. This course is intended for non-technical programs such as, but not limited to, criminal justice, hospitality and service management, and social work. (Grade of C or better in 1016-301) Class 3, Lab 1, Credit 4 (W, S)

1016-303 Introduction to Statistical Methods III
An elementary introduction to the topics of analysis of variance, regression and forecasting, SPSS will be used as a tool for data analysis. This course is intended for non-technical programs such as, but not limited to, criminal justice, hospitality and service management, and social work. (Grade of C or better in 1016-302) Class 3, Lab 3, Credit 4 (S)

1016-305 Calculus IV
A continuation of 1016-253 treating three-dimensional analytic geometry and vector algebra, partial derivations, multiple integrals and applications. (Grade of C or better in 1016-253 or grade of C or better in 1016-252 and coregistration in 1016-253) Class 4, Credit 4 (F, W, S, SU)

1016-306 Differential Equations I
An introduction to the study of ordinary differential equations and their applications. Common first-order equations and linear second-order equations are solved. Method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, numerical solution techniques, vibrating systems, Laplace transforms. (Grade of C or better in 1016-253) Class 4, Credit 4 (F, W, S, SU)

1016-307 Differential Equations II
Second-quarter course in ordinary differential equations that includes power series solutions to ordinary differential equations about ordinary and regular singular points; orthogonal polynomials; solution of systems of linear differential equations; phase plane analysis, stability and chaos. (Grade of C or better in 1016-305,306) Class 4, Credit 4 (offered upon sufficient request)

1016-314 Engineering Statistics
Basic statistical concepts: descriptive statistics, probability, inference and quality control. The statistical package Minitab will be used to reinforce these techniques. The focus of this course is on statistical applications and quality improvement in engineering. This course is intended for engineering programs and has a calculus prerequisite. NOTE: This course may not be taken for credit if credit is to be earned in 1016-319. (Grade of C or better in 1016-253) Class 4, Credit 4 (W, S)

1016-318 Matrices & Boundary Value Problems
An introduction to matrix algebra and boundary value problems. Topics include matrix operations with applications to the solution of linear systems of algebraic equations, Fourier series, separation of variables, the heat equation and the wave equation. (Grade of C or better in 1016-305, 306) Class 4, Credit 4 (F, S, SU)

Science 283
1016-319 Data Analysis
This course will study the statistical principles of presenting and interpreting data. Topics covered will include: descriptive statistics and displays, random sampling, the normal distribution, confidence intervals and hypothesis testing. The statistical software package Minitab will be used to reinforce these principles and to introduce students to the use of the computer in statistical analysis. This is a general introductory statistics course and is intended for a broad range of programs. NOTE: This course may not be taken for credit if credit is to be earned in 1016-314. (Grade of C or better in 1016-204) Class 4, Credit 4 (F, W, S, SU)

1016-320 Data Analysis II
An elementary introduction to the topics of regression and analysis of variance. The statistical software package Minitab is used to reinforce these techniques. The focus of this course is on business applications. This is a general introductory statistics course and is intended for a broad range of programs. (Grade of C or better in 1016-319 or equivalent) Class 4, Credit 4 (W, S)

1016-328 Engineering Mathematics
An introduction to matrix algebra and vector calculus. Topics include matrix operations with applications to the solution of linear systems of algebraic equations; gradient, divergence and curl; line and surface integrals; independence of path and the divergence theorem; and Stokes's theorem with discussion of engineering applications. (Grade of C or better in 1016-305, 306) Class 4, Credit 4 (F, S, SU)

1016-331 Matrix Algebra
An introduction to the basic concepts of linear algebra, with an emphasis on matrix manipulation. Topics include Gaussian elimination, matrix arithmetic, determinants, Cramer's rule, vector spaces, linear independence, basis, null and column space of a matrix, eigenvalues and numerical linear algebra. Various applications are interspersed throughout the course. (Grade of C or better in 1016-305, 306) Class 4, Credit 4 (F, W, S)

1016-351 Probability & Statistics I
Descriptive statistics; sample spaces and events; axioms of probability; counting techniques; conditional probability and independence; distributions of discrete and continuous random variables; joint distributions; central limit theorem. (Grade of C or better in 1016-253) Class 4, Credit 4 (F, W, S, SU)

1016-352 Probability & Statistics II
Basic statistical concepts, sampling theory, hypothesis testing, confidence intervals and nonparametric methods. A statistical software package is used for data analysis. (Grade of C or better in 1016-351) Class 4, Credit 4 (F, W, S)

1016-353 Applied Statistics
Topics in simple linear regression, an introduction to analysis of variance and the use of the statistical software package SAS. (Grade of C or better in 1016-352 or in 1016-314) Class 4, Credit 4 (S)

1016-354 Introduction to Regression Analysis
A study of regression techniques with applications to the type of problems encountered in real-world situations. Includes use of statistical software. Topics include review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, various other models as time permits. (Grades of C or better in 1016-353 and 331 or permission of instructor) Class 4, Credit 4 (F)

1016-355 Design of Experiments
A study of the design and analysis of experiments. Includes extensive use of statistical software. Topics include single-factor analysis of variance; multiple comparisons and model validation; multifactor factorial designs; fixed, random and mixed models; expected mean square calculations; confounding; randomized block designs; other designs and topics as time permits. (Grade of C or better in 1016-353) Class 4, Credit 4 (W)

1016-358 Statistical Quality Control
A review of probability models associated with control charts, control charts for continuous and discrete data, interpretation of control charts, acceptance sampling, O.C. curves, standard sampling plans. A statistical software package is used for data analysis. (Grade of C or better in 1016-352 or in 1016-314) Class 4, Credit 4 (S)

1016-365 Combinatorial Mathematics
An introduction to the mathematical theory of combination, arrangement and enumeration of discrete structures. Topics include enumeration, recursion, inclusion-exclusion, block design, general functions. (Grade of C or better in 1016-265 or permission of instructor) Class 4, Credit 4 (offered upon sufficient request)

1016-366 Discrete Mathematics II
A continuation of 1016-265 Discrete Mathematics I with applications in computer science. The topics introduced include combinatorics, logic, introduction to algebraic systems, introduction to graph theory and their interconnections. (Grade of C or better in 1016-265) Class 4, Credit 4 (W, S)

1016-379 Data Analysis I Laboratory
A computer laboratory course that reinforces the concepts of 1016-319 Data Analysis I. The statistical software package MINITAB is used. The focus is on statistical analysis of data with business applications. (Corequisite: 1016-319 or equivalent) Class 2, Credit 2 (W, S, SU)

1016-380 Data Analysis II Laboratory
A computer laboratory course that reinforces the concepts of 1016-320 Data Analysis II. Statistical software such as MINITAB, SPSS or SAS is used, and spreadsheet software such as Lotus or Excel may also be used. The focus is on statistical analysis and model building using data with business applications. (Corequisite: 1016-320 or equivalent) Class 2, Credit 2 (S, F)

1016-385 History of Mathematics
An introduction to the history of mathematics that provides the student the opportunity to study the historical background of some topics in the mathematical sciences and to write about those topics. The set of topics studied will vary. (Grade of C or better in 1016-306 or equivalent) Class 4, Credit 4 (offered upon sufficient request)

1016399 Mathematics Co-op Seminar
Exploration of cooperative education opportunities, practice in writing letters of application, resume writing and interviewing procedures. Class 1, Credit 0

1016-407 Dynamical Systems
The course revisits the equations of spring-mass, RLC circuits and pendulum systems in order to view and interpret the phase space representations of these dynamical systems. This begins with linear systems followed by a study of the stability analysis of nonlinear systems. Matrix techniques are introduced to study higher order systems. The Lorenz equation will be studied to introduce the presence of chaotic solutions. A computer algebra system will be used. (Grade of C or better in 1016-306) Class 4, Credit 4 (S)

1016-411 Real Variables I
An investigation and extension of the theoretical aspects of elementary calculus. Topics include mathematical induction, real numbers, functions, limits, continuity, differentiation, l'Hopital's rule, Taylor's theorem. (Grade of C or better in 1016-305 and grade of C or better in 1016-265 or permission of the instructor) Class 4, Credit 4 (W)

1016-412 Real Variables II
A continuation of 1016-411 which concentrates on integration: definition of integral-its existence and its properties-improper integrals, infinite series, sequences and power series. (Grade of C or better in 1016-411) Class 4, Credit 4 (S)

1016-415 Statistical Analysis for Bioinformatics
An introduction to the probabilistic models and statistical techniques used in computational molecular biology. Probabilistic and/or statistical techniques will be presented for the understanding of pairwise and multiple sequence alignment methods, gene and protein classification methods, and phylogenetic tree construction. (Grades of C or better in 1016-252, 265, 319) Class 4, Credit 4 (W)

1016-420 Complex Variables
A brief discussion of preliminaries leading to the concept of analyticity. Complex integration. Cauchy's integral theorem and integral formulas. Taylor and Laurent series. Residues. Real integrals by complex methods. (Grade of C or better in 1016-305) Class 4, Credit 4 (F, W, SU)

1016-432 Linear Algebra
A further development of the basic concepts of linear algebra, including orthogonality. Topics include similarity, linear transformations, diagonalization, inner products, Gram-Schmidt, quadratic forms and various numerical techniques. Several applications of these ideas are also presented. (Grade of C or better in 1016-331) Class 4, Credit 4 (W, F)

1016-437 Computer Methods in Applied Mathematics
Emphasizes the formulation of problems to allow solutions by standardized techniques and library routines. A study of numerical techniques such as direct and iterative methods for solving linear and nonlinear equations and optimization functions, discrete methods for boundary value problems and other techniques for solving problems. Computer-based homework. (Grades of C or better in 1016-305, 306, 331, some programming knowledge) Class 4, Credit 4 (S)
1016-451 Mathematical Statistics I
Brief review of basic probability concepts and distribution theory; mathematical properties of distributions needed for statistical inference. (Grade of C or better in 1016-352) Class 4, Credit 4 (W)

1016-452 Mathematical Statistics II
A continuation of 1016-451 covering classical and Bayesian methods in estimation theory; chi-square test; Neyman-Pearson lemma; mathematical justification of standard test procedures; sufficient statistics and further topics in statistical inference. (Grade of C or better in 1016-451) Class 4, Credit 4 (S)

1016-453 SAS Programming
This course presents the features of the SAS programming language that are essential for statistical applications. The focus is on the SAS data step emphasizing techniques useful in reshaping data sets and data entry. Other topics include SAS procedures for data description and manipulation. The SAS Macro language, SAS/IML, SAS/Graph and the SQL procedure. This is an intense introduction to SAS. All topics covered in the typical commercially offered SAS programming course are included. In addition, a number of statistical ideas are studied—bootstrapping, permutation tests and generalized linear models along with their implementation in SAS. (Grade of C or better in 1016-353, 1016-331 recommended or permission of instructor) Class 4, Credit 4 (S, alternate years)

1016-454 Non-parametric Statistics
An in-depth study of inferential procedures that are valid under a wide range of shapes for the population distribution. Topics include tests based on the binomial distribution, contingency tables, statistical inferences based on ranks, runs tests and randomization methods. A statistical software package is used for data analysis. (Grade of C or better in 1016-314 or in 1016-352) Class 4, Credit 4 (F)

1016-457 Research Sampling Techniques
Provides a basis for understanding the selection of the appropriate tools and techniques for analyzing survey data. Topics include design of sample surveys, methods of data collection, a study of standard sampling methods. A statistical software package is used for data analysis. (Grade of C or better in 1016-352 or in 1016-314) Class 4, Credit 4 (W)

1016-461 Mathematical Modeling
Explores problem solving, formulation of the mathematical model from physical considerations, solution of the mathematical problem, testing the model and interpretation of results. Problems are selected from the physical sciences, engineering and economics. (Grade of C or better in 1016-305, 306, 331, 352) Class 4, Credit 4 (F)

1016-465 Linear Programming
A presentation of the general linear programming problem. A review of pertinent matrix theory, convex sets and systems of linear inequalities; the simplex method of solution; artificial bases; duality; parametric programming; and applications. (Grade of C or better in 1016-432) Class 4, Credit 4 (offered alternate years) (W)

1016-466 Advanced Mathematical Programming
A continuation of 1016-465 that surveys the mathematical optimization techniques of integer programming, dynamic programming, project scheduling, queuing theory and some simulation. NOTE: 1016-465 and 1016-466 together cover the material on which the Operations Research exam of the Society of Actuaries is based. (Grade of C or better in 1016-465) Class 4, Credit 4 (offered upon sufficient request)

1016-467 Theory of Graphs & Networks
The basic theory of graphs and networks, including the concepts of circuits, trees, edge and vertex separability, planarity and vertex coloring and partitioning. There is a strong emphasis on applications to physical problems and on graph algorithms such as those for spiking trees, shortest paths, non-separable blocks and network flows. (Grade of C or better in 1016-265) Class 4, Credit 4 (offered alternate years) (F)

1016-469 Mathematical Simulation
An introduction to computer simulation, simulation languages, model building and computer implementation, and mathematical analyses of simulation models and their results using techniques from probability and statistics. (Grade of C or better in 1016-352, 4001-241, 242 or 4002-208, 210) Class 4, Credit 4 (offered upon sufficient request)

1016-481 Problem Solving
Helps students develop strategies for solving problems that are chosen from a wide variety of areas in mathematics. Emphasis is on attempting problem solutions and presentation of efforts to the class or to the instructor. (One year of calculus or permission of instructor) Class 2, Credit 2 (F)

1016-485 Number Theory
A study of the structure of the set of integers. Topics such as divisibility, congruences, arithmetic functions, primitive roots, quadratic residues, and the nature and distribution of primes are investigated. (Grade of C or better in 1016-265) Class 4, Credit 4 (offered upon sufficient request)

1016-501 Advanced Differential Equations
A study of first order, linear higher order and systems of differential equations including such topics as existence, uniqueness, properties of solutions, Green's functions, Sturm-Liouville systems and boundary value problems. (Grade of C or better in 1016-305 and 306; 331 desirable) Class 4, Credit 4 (offered upon sufficient request)

1016-502 Advanced Differential Equations II
A study of first order, linear higher order and systems of differential equations including such topics as existence, uniqueness properties of solutions, Green's functions, Sturm-Liouville systems and boundary value problems. (Grade of C or better in 1016-338) Class 4, Credit 4 (offered upon sufficient request)

1016-511 Numerical Analysis I
Numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, initial value problems. (Grade of C or better in 1016-305 and 306; some programming knowledge) Class 4, Credit 4 (F)

1016-512 Numerical Analysis II
Numerical techniques that treat systems of equations, eigenvalue problems, boundary value problems, splines, additional topics at the discretion of the instructor. (Grades of C or better in 1016-305, 306, 331, some programming knowledge) Class 4, Credit 4 (W)

1016-513 Topics in Probability & Statistics
Selected topics in applied probability and statistics to meet the need and interest of the students. (Grades of C or better in 1016-305, 352 or permission of instructor) Class 4, Credit 4 (offered upon sufficient request)

1016-524 Introduction to Time Series
A study of the modeling and forecasting of time series. Topics include ARMA and ARIMA models, autocorrelation function, partial autocorrelation function, detrending, residual analysis, graphical methods and diagnostics. A statistical software package is used for data analysis. (Grade of C or better in 1016-352 or 1016-314) Class 4, Credit 4 (offered alternate years) (S)

1016-525 Stochastic Processes
Explores Poisson processes and Markov chains with an emphasis on applications. Extensive use is made of conditional probability and conditional expectation. Further topics, such as renewal processes, Brownian motion, queuing models and reliability, are discussed as time allows. (Grades of C or better in 1016-331, 351, or permission of instructor) Class 4, Credit 4 (offered upon sufficient request)

1016-531 Abstract Algebra
A review of pertinent basic set theory and number theory. Groups, subgroups, cyclic and permutation groups, Lagrange's theorem, quotient groups, isomorphism theorems, applications to scientific problems. (Grade of C or better in 1016-265, 432) Class 4, Credit 4 (W)

1016-532 Abstract Algebra II
The basic theory of rings, integral domains, ideals and fields GF (p^n), applications to coding theory or abstract vector spaces, function spaces, direct sums, applications to differential equations, and to scientific problems. (Grade of C or better in 1016-531) Class 4, Credit 4 (S)

1016-541 Actuarial Mathematics I
Students study challenging problems whose solutions require a combination of skills that one acquires in a typical mathematics-based curriculum. Course work synthesizes basic, essential problem-solving ideas and techniques as they apply to various areas, such as actuarial mathematics. (Grade of C or better in 1016-432 or permission of instructor) Class 2, Credit 2 (F)
1019-420 Calculus for Technologists I
The first course in a calculus sequence covering essential concepts and manipulations. Topics include limits, derivative, indefinite and definite integrals, and numerical approximation. Applications to physical problems are stressed. (Grade of C or better in 1016-204) Class 4, Credit 4 (F, W, S)

1019-421 Calculus for Technologists II
A continuation of 1019-420. Topics covered in this course are applications of the integral calculus, differential and integral calculus of the transcendental functions, and basic techniques of integration with emphasis on applications to engineering technology problems. (Grade of C or better in 1019-420 or equivalent) Class 4, Credit 4 (F, W, S)

1019-422 Solutions to Engineering Problems
A continuation of 1019-421. Course covers selected applied mathematics topics, including differential equations, Laplace transforms, numerical methods and the calculus of functions of two variables. Emphasis is on the application of these topics to engineering technology problems. (Grade of C or better in 1019-421 or equivalent) Class 4, Credit 4 (F, W, S)
Physics

1017-200 Physics Orientation I
An introduction to the nature and scope of physics for freshmen interested in physics as a profession. Topics include: (a) what is physics?; (b) professional opportunities in physics; (c) the physics profession; (d) the literature of physics; (e) communicating in physics. Laboratory includes safety instruction, measurement and recording techniques, graphical analysis, error analysis and report writing. Each student presents a formal written or oral report on some topic of interest at the end of the course. Class 1, Credit 1 (F)

1017-201 Physics Orientation II
This course continues the introduction to physics at RIT started in 1017-200. Class 1, Credit 1 (W)

1017-202 Exploration in Physics
An activity-based course in which topics will encompass a range of physical phenomena. Scientific concepts are introduced to provide a basis for understanding phenomena such as sight and optics, motion, rainbows, cloud formation, and global warming. Typically two topics per quarter will be covered. The main emphasis will be on the process of scientific investigation, with students developing hands-on projects throughout each quarter. Class 4, Lab 2, Credit 4 (S)

1017-211 College Physics I
An elementary course in college physics. Mechanics: Newton’s laws of motion, momentum, rotational motion, energy. (Competency in algebra, geometry and trigonometry) (See 1017-271 for lab) Class 3, Credit 3 (F, W, S)

1017-212 College Physics II
Heat and thermodynamics, fluids, wave motion, sound, geometrical optics. (1017-211) (See 1017-272 for lab) Class 3, Credit 3 (F, W, S)

1017-213 College Physics III
Wave optics, electricity and circuits, magnetism, some elements of modern physics. (1017-211, 212) (See 1017-273 for lab) Class 3, Credit 3 (F, W, S)

1017-230 Stellar Astronomy
An introduction to the basic concepts of stellar astronomy, including celestial sphere, constellations, nomenclature, physical properties of the stars, principles of spectroscopy as applied to astronomy, double stars, variable stars, star clusters, stellar evolution, gaseous nebulae, stellar motions and distribution, Milky Way system. (Competency in algebra) (May be taken before or after 1016-253,240) Class 3, Credit 3 (F)

1017-231 Stellar Astronomy Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. Observational exercises utilizing the RIT observatory and associated equipment are emphasized. (Credit or coregistration in 1017-230) Class 2, Credit 1 (F)

1017-235 Solar System Astronomy
An introduction to basic concepts of solar system astronomy, including celestial sphere, zodiac, astronomical telescopes, sun, moon, eclipses, earth as a planet, planets and their satellites, comets, meteorites and theories of the origin of the solar system. (Competency in algebra) (May be taken before or after 1017-230,240) Class 3, Credit 3 (S)

1017-236 Solar System Astronomy Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. Observational exercises utilizing the RIT observatory and associated equipment are emphasized. (Credit or coregistration in 1017-235) Class 2, Credit 1 (S)

1017-240 Extragalactic Astronomy
An introduction to extragalactic astronomy, including the history of our discovery of the external galaxies and their classification, the “cosmic distance ladder,” quasars and other distinct objects, the Big Bang theory of cosmology and the future of the universe. (Competency in algebra) (May be taken before or after 1017-230,235) Class 3, Credit 3 (W)

1017-250 Fundamentals of Radiation
An introduction to ionizing radiation. Includes the different kinds of radiation and their properties. The effects of radiation, how it can be detected and its applications are also discussed. This is a distance learning course. (Competency in algebra) Class 4, Credit 4 (offered every year upon sufficient request)

1017-271 College Physics I Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-211) Lab 2, Credit 1 (F, W, S)

1017-272 College Physics II Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-212) (1017-271) Lab 2, Credit 1 (F, W, S)

1017-273 College Physics III Laboratory
This laboratory course includes experiments related to the principles and theories discussed in corresponding lecture. (Credit or coregistration in 1017-213) (1017-271) Lab 2, Credit 1 (F, W, S)

1017-289 Contemporary Science: Physics
Introductory science for nonscience students. One or more topics such as astronomy, space exploration, relativity, nuclear energy and lasers are discussed and simply explained to give an appreciation of the significance of physics in our contemporary technological society. A minimum of mathematics is used. A laboratory or discussion option may be offered for small group meetings once a week, which reinforces the material given in demonstration lectures and audiovisual presentations. NOTE: Not acceptable for science credit for College of Science majors. (Competency in algebra) Class 4, Credit 4 (F, W, S)

1017-300 Introduction to Semiconduct Device Physics
An introductory survey, using some calculus, of the physics underlying operation and manufacture of modern semiconductor devices used in integrated circuits and microcomputers. Review of classical physics, classical free-electron gas, atomic physics, molecular bonds and band theory, theory of metals, structure and properties of semiconductors and semiconductor devices. (1017-213,273; 1019-422) Class 4, Credit 4 (S)

1017-301 University Astronomy
An introduction to the basic concepts of astronomy and astrophysics for scientists and engineers. Topics include the celestial sphere, celestial mechanics, methods of data acquisition, planetary systems, stars and stellar systems, cosmology, and life in the universe. (1017-311; 1016-253) Class 4, Credit 4 (F)

1017-311 University Physics I
An intensive course in general physics, using calculus, for majors in the sciences and engineering. Mechanics, kinematics and dynamics of particles; work and energy; momentum and impulse; gravitation. (Credit or coregistration in 1016-252) (See 1017-371 for three-hour lab, 1017-373 for two-hour lab) Class 4, Credit 4 (F, W, S)

1017-312 University Physics II
Rotational motion, kinematics and dynamics of a rigid body, oscillatory motion, heat and thermodynamics, kinetic theory of gases, wave motion, sound, physical optics. (Credit or coregistration in 1016-253) (1017-311) (See 1017-372 for three-hour lab, 1017-376 for two-hour lab) Class 4, Credit 4 (F, W, S, SU)

1017-313 University Physics III
Electrostatics, Gauss’ law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampère’s law, inductance. (Credit or coregistration in 1016-253) (1017-311, 312) (See 1017-373 for three-hour lab, 1017-377 for two-hour lab) Class 4, Credit 4 (F, W, S)

1017-314 Introduction to Modern Physics
An introductory survey of modern physics at the sophomore level. Fundamentals of relativity; photons; interaction of radiation with matter; deBroglie waves; Bohr model; introduction to quantum mechanics; nuclear systematics; radioactivity; alpha, beta and gamma decays; Q-values; nuclear fission; nuclear fusion. (1016-305; 1017-312,313) Class 4, Credit 4 (F, W, S)

1017-315 Introduction to Semiconductor Physics
Kinetic theory of gases and transport phenomena; Drude’s theory of metals; quantum mechanics of a particle in a box; atomic orbitals; band theory of metals, insulators and impurity semiconductors; Fermi-Dirac distribution; equilibrium charge-carrier densities in metals, insulators and semiconductors; operation principles of diodes, bipolar junction transistors and MOSFETs. (1017-314) Class 4, Credit 4 (S)
1017-316 Particle Physics, Stars, and the Big Bang
This course is a second course in modern physics and designed for students who have completed the introductory modern physics course. Topics include: an introduction to the structure of nuclei, nuclear reactions, and elementary particle physics; the creation of the elements through the lives of stars, hydrogen fusion, black holes, supernovae; the origin and fate of the universe from the Big Bang to the unknown future. (1017-314 or permission of instructor) Class 4, Credit 4 (S)

1017-317 Introduction to Computational Physics & Programming
An introduction to techniques of computational physics, such as numerical differentiation, integration, solutions of the equations of Newtonian mechanics, coupled differential equations. The course includes a very brief introduction to computer programming, focusing on documentation, style and clarity, as well as introducing functional programming language. (Credit or coregistration in 1017-312 and 1016-252) Class 4, Credit 4 (S)

1017-320 Principles of Optics
An introductory course in physical and geometrical optics. Wave and photon description of light; propagation of electromagnetic waves in vacuum and transparent media; mirrors, lenses, and simple optical instruments; basics of optical fibers; polarization of light and polarizing optical elements; interference; Michelson interferometer; Fraunhofer and Fresnel diffraction; diffraction gratings. (1017-213, 1017-273, 1019-421) Class 4, Credit 4 (W)

1017-321 Introduction to Laboratory Techniques
An introduction to equipment and procedures common to the physics research laboratory. The oscilloscope and ac circuit analysis, statistics, vacuum systems including vacuum pumps and gauges, the laboratory notebook and writing for publication. (1017-313, either 1017-373 or 377) Class 3, Lab 3, Credit 4 (W)

1017-331 Introduction to Electricity & Electronics
Fundamentals of electricity; construction and measurements of electrical and electronic circuits encountered in a scientific laboratory. (1017-211, 212, 271, 272) Class 3, Lab 3 Credit 4 (offered upon sufficient request) (S)

1017-341 Foundations of Scientific Thinking
Definition of science; historical perspective; ingredients of the scientific quest; the scientific method; scientific explanation, laws, theories and hypotheses; the role of mathematics; probability and induction; science and other disciplines. (At least a year of basic sciences at the college level) Class 2, Credit 2 (offered upon sufficient request) (F, W)

1017-350 Sophomore Physics Seminar
A study of concepts that unify the diverse topics covered in the introductory physics sequence. Preparation for Comprehensive Oral Exam I. Techniques of physics literature searches and the preparation and organization of technical papers and oral presentations. Physics majors must pass this course before going on to 400-level courses. (1017-311, 312, 313, 314) Class 2, Credit 1 (S)

1017-351 Radiation Physics I
Introductory modern physics emphasizing radiation phenomena. Atomic physics, nuclear physics, radioactivity, production of radionuclides, interaction of charged particles and neutrons with matter. (1017-213; competency in algebra, geometry and trigonometry; 1016-309 recommended) Class 4, Lab 3, Credit 5 (F)

1017-352 Radiation Physics II
Interaction of x-rays and gamma-rays with matter. Radiation detectors, scintillation detectors, solid state detectors. Radionuclide imaging instrumentation. (1017-351) Class 4, Lab 3, Credit 5 (W)

1017-353 Radiation Physics III
Principles of radiation protection. Radiation protection instrumentation. Internal and external dose calculations. Practical radiation health physics. Introduction to electronics, including laboratory. (1017-352) Class 4, Lab 3, Credit 5 (S)

1017-355 Radiation Protection
Principles and practical aspects of radiation protection; calculation of external and internal radiation dose measurements. (Permission of instructor and one year of college-level physics) Class 3, Credit 3 (S)

1017-358 Nuclear Medicine Physics & Instrumentation
An introduction to radiation, radioactive materials and radiation detection to provide students with the background for understanding and working with radiation and radioactive materials. Principles of radiation detection systems and clinical uses are presented. Class 5, Lab 3, Credit 6 (SU)

1017-359 Special Topics: Physics
Intermediate courses which are of current interest and/or logical continuations of the courses already being offered. These courses are structured as ordinary courses and have specific prerequisites, contact hours and examination procedures. Topics could include introductory statistical mechanics, plasma physics, general relativity, linear integrated circuits, cryogenics, radio astronomy, history of physics, astrophysics, astronomy. The level of study is appropriate for students in their first three years of study. Class variable, Credit variable (offered upon sufficient request)

1017-361 Ultrasonic Physics
The basic physics of ultrasound, covering ultrasonic wave generation and propagation, transducers, Doppler effect, reflection and refraction, biological effects and applications of ultrasonic physics in medicine. (Permission of instructor and one year of college-level physics) Class 4, Lab 3, Credit 5 (F)

1017-371 University Physics I Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-311) (See 1017-375 for a two-hour lab) Lab 3, Credit 1 (W)

1017-372 University Physics II Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-312) (1017-371) (See 1017-376 for a two-hour lab) Lab 3, Credit 1 (S)

1017-373 University Physics III Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-313) (1017-371, 372) (See 1017-377 for a two-hour lab) Lab 3, Credit 1 (F)

1017-374 Modern Physics Laboratory
Basic experiments representative of the experimental foundations of modern quantum physics, such as photoelectric effect, Franck-Hertz experiment, X-ray diffraction, optical diffraction and interference, atomic spectroscopy, electron microscopy, nuclear spectroscopy, radioactive half-life, Millikan oil drop, black-body radiation. Students enrolled in 1017-315 may include experiments in semiconductor solid state physics. (1017-314, 1017-321) Lab 3, Credit 1 (S)

1017-375 University Physics Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-311) (Recommended for all students in the University Physics lectures who are not required to take a three-hour lab) Lab 2, Credit 1 (F, W, S)

1017-376 University Physics II Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-312) (1017-375 or 1017-371) (Recommended for all students in the University Physics lectures who are not required to take a three-hour lab) Lab 2, Credit 1 (F, W, S)

1017-377 University Physics III Laboratory
This laboratory course includes experiments related to the principles and theories discussed in the corresponding lecture. (Credit or coregistration in 1017-313) (1017-375 or 1017-371) (Recommended for all students in the University Physics lectures who are not required to take a three-hour lab) Lab 2, Credit 1 (F, W, S)

1017-399 Physics: Intermediate Independent Study
Faculty-directed study of appropriate topics on a tutorial basis. The level of study is appropriate for students in their first three years of study. Class variable, Credit variable

1017-401 Intermediate Mechanics I
Particle dynamics in one, two and three dimensions; systems of particles; conservation laws; rigid body motion; gravitational fields and potentials. (Credit or coregistration in 1017-480) (1016-306, 1017-312, 313) Class 4, Credit 4 (F)

1017-402 Intermediate Mechanics II
Translating and rotating coordinate systems, mechanics of continuous media, wave motion, Lagrangian formulation of mechanics. (Credit or coregistration in 1017-481) (1017-401, 480) Class 4, Credit 4 (W)
1017-445 Observational Astronomy
This course provides a practical, hands-on introduction to optical astronomy. Students will use the RIT Observatory telescopes and CCD cameras to take images of celestial objects, reduce the data, and analyze the results. The course will emphasize the details of image processing required to remove instrumental effects from CCD images. (1017-301 or permission of instructor) Class 4, Credit 4 (offered upon sufficient request) (S)

1017-455 Physical Optics I
Physical optics including interference, diffraction and polarization. Brief introduction to modern optics. (1016-305; 1017-312, 313, 480) Class 4, Credit 4 (F)

1017-480 Theoretical Physics I
An introduction to mathematical topics necessary for a quantitative study of physical phenomena. Topics include vector analysis, including vector differentiation and integration, curvilinear coordinate systems and transformations from one orthogonal coordinate system to another, Fourier series and integral transforms. Applications of these concepts to physics are presented. (1016-306, 1017-312, 313) Class 4, Credit 4 (F)

1017-481 Theoretical Physics II
An application of advanced mathematical methods to physics. Topics include the solution of several ordinary differential equations and partial differential equations encountered in physics; examples taken from heat flow, diffusion, wave phenomena, electrostatic, and modern physics. (1017-480) Class 4, Credit 4 (F)

1017-511 Experimental Optics
Advanced laboratory course with experiments based on topics in Optical Physics I and II. Laboratory work includes experimental design, construction data collection, analysis and reporting. (1017-455) Lab 6, Credit 3 (offered upon sufficient request) (F or WI

1017-521 Advanced Experimental Physics
Advanced laboratory experiments and projects in atomic physics, nuclear physics or solid state physics. Special emphasis on experimental research techniques. (1017412,421) Lab 6, Credit 2 (F)

1017-522 Introduction to Quantum Mechanics
A study of the concepts and mathematical structure of nonrelativistic quantum mechanics. Exact and approximate techniques for solving the Schrodinger equation are presented for various systems. (1017-314, 402, 480, 481) Class 4, Credit 4 (W)

1017-531 Solid State Physics
The structure of solids and their thermal, mechanical, electrical and magnetic properties. (1017-315, 415, 480, 481 and 522) Class 4, Credit 4 (F)

1017539 Astrophysics Research
Faculty-directed student project or research involving observational or theoretical work that could be considered of an original nature. (1017-445 or permission of instructor) Class variable, Credit variable (offered every year)

1017-540 Astronomical Instrumentation & Techniques
A survey of modern instrumentation and techniques used in astronomical data acquisition. Topics include astronomical sources, observational limits, telescopes, atmospheric effects, spectrographs, dilute apertures and detectors. (1017-455 or permission of instructor) Class 3, Credit 3 (offered upon sufficient request) (F or W)

1017-541 Physics Research
Faculty-directed student project or research usually involving laboratory work or theoretical calculations that could be considered of an original nature. (Permission of the instructor) Class variable, Credit variable

1017-542 Physics Research
Faculty directed student project or research usually involving laboratory work or theoretical calculations that could be considered of an original nature (1017-541) (Permission of instructor) Class variable, Credit variable (offered every year)

1017-543 Physics Research
Faculty-directed student project or research usually involving laboratory work or theoretical calculations that could be considered of an original nature. (Permission of instructor) (1017-541, 542) Class variable, Credit variable (offered every year)
A study of the structure of the atomic nucleus as determined by experiments and theory. Description and quantum mechanical analysis of nuclear properties, radioactivity and nuclear reactions. (1017-522) Class 4, Credit 4 (offered on sufficient request) (F or W)

Optical Physics II
This course is an extension of Optical Physics I (1017-455). It covers coherence theory, Fourier optics, holography, gradient index optics, and other modern optics topics. (1017-455) Class 4, Credit 4 (offered upon sufficient request) (F or W)

Laser Physics
The semiclassical theory of the operation of a laser, characteristics and practical aspects of laser systems, applications of lasers in scientific research. (1017-455) Class 4, Credit 4 (offered upon sufficient request) (For W)

Special Topics
Advanced courses that are of current interest and/or logical continuations of the courses already being offered. These courses are structured as ordinary courses and have specific prerequisites, contact hours and examination procedures. Topics could include introductory statistical mechanics, plasma physics, general relativity, linear integrated circuits, cryogenics, radio astronomy, history of physics, astrophysics, astronomy. (The level of study is appropriate for students in their fourth or fifth years of study.) Class variable, Credit variable (offered upon sufficient request)

Physics: Advanced Independent Study
Faculty-directed study of appropriate topics on a tutorial basis. The level of study is appropriate for students in their fourth or fifth years of study. Class variable, Credit variable

Statistical Physics
Introduction to the statistical description of systems of particles with mechanical, electrical, and thermal interactions. Statistical calculation of thermodynamic quantities. Basic methods and results of statistical mechanics. Applications of statistical mechanics to elementary classical and quantum systems. (1017-314, 1017-415, 1017-480) Class 4, Credit 4 (offered upon sufficient request)

General Science

Seminar Undeclared Science I, II
This course provides an introduction to the opportunities available within the College of Science and RIT. It offers the students the opportunity to increase their knowledge of science programs and careers, develop group skills, and establish a sense of community within the group. Class 2, Credit 1 (FW)

Building Scientific Apparatus Laboratory
Basic skills associated with the construction of scientific laboratory apparatus, some of which is not commercially available, are covered: machine shop skills, working with glass, vacuum line technology, optical spectrometer design and instrument electronics. (Corequisites: 1008-620) (1014-441; 1017-212, 213 or 312,313; or permission of instructor) Lab 4, Credit 1 (offered upon sufficient request)

Allied Health Sciences

Medical Laboratory Technology Seminar
Introduction to the profession of medical technology through a series of lectures that provide an overview of the major departments within the modern clinical laboratory. Historical perspectives, developmental aspects and regulating standards of the medical technology profession are discussed. Class 1, Credit 1 (F)

Hematology/Immunohematology
A study of the blood (erythrocytes, leukocytes, platelets, coagulation factors and blood group antigens). Descriptions of the cellular components of the blood in health and in disease. Cellular and immunological functions and their interrelationships. Hemostasis and coagulation mechanisms. Structures of antigens and antibodies and mechanisms of antigen-antibody reactions. Lab procedures demonstrate cell counting techniques, coagulation studies, antigen-antibody reactions and compatibility testing of various blood groups. (1001-306 or permission of instructor) Class 3, Lab 3, Credit 4 (F)

Principles of clinical laboratory instruments in the analysis of body fluids. This quarter stresses the principles of instrumental methods of analysis including visible and ultraviolet spectrophotometry, nephelometry, fluorometry, flame photometry, refractometry, chromatography, electrophoresis, osmometry, radiation counters and coulometric/amperometric techniques. (1011-217 or equivalent) Class 2, Lab 6, Credit 4 (W)

Basic clinical Chemistry
Principles of clinical chemistry in the analysis of the chemical component of body fluids. This quarter stresses the basic chemistries underlying the classical methodologies and relates them to the disease state. Topics include liver function tests, renal function tests, carbohydrates, electrolytes, acid base balance, enzymes, lipids, endocrine function tests, drug analysis and statistical quality control. (1011-217 or equivalent) Class 2, Lab 6, Credit 4 (S)

Medical Laboratory Testing
Emphasizes the role of clinical laboratory testing in the areas of blood banking, clinical chemistry, hematology, urinalysis, and serology. Relates laboratory values with disease states. (Third year in the PA program) Class 4, Credit 4 (S)

Radiation & the Human Body
Details qualitative and quantitative effects on the human body of exposure to various amounts and types of ionizing radiation and the benefits of the medical uses of radiation. Presents a rationale for the safe handling and use of radioactive materials. Class 2, Credit 2 (SU)

Introduction to clinical Nuclear Medicine
A combination lecture/laboratory course introducing clinical aspects of nuclear medicine. Hospital organization is presented as well as the relationship of nuclear medicine services to other hospital services. Laboratories in affiliated hospitals are correlated with lectures on nuclear medicine technology, patient care and emergency procedures. (Third year in the NMT program) Credit 2 (S)

Nuclear Medicine Procedures: Central Nervous System
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving structures in the central nervous system. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 1 (F)

Nuclear Medicine Procedures: Skeletal System
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving structures in the skeletal system. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 1 (F)

Nuclear Medicine Procedures: Urinary System
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving structures in the urinary system. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 1 (W)

Nuclear Medicine Procedures: Endocrine System
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving structures in the endocrine system. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 2 (W)

Nuclear Medicine Procedures: Cardiovascular System
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving structures in the cardiovascular system. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 2 (F)
1025-513 Nuclear Medicine Procedures: Digestive System
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving structures in the digestive system. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 2 (W)

1025-514 Nuclear Medicine Procedures: Special Studies
A combination lecture/practicum course. Lectures are given on specific imaging procedures involving special studies. Physiology and anatomy, medical indications, fundamental principles, technique and scan interpretation are covered. Students observe and perform these procedures in the clinical setting. (Fourth year in the NMT program) Credit 1 (S)

1025-515 Nuclear Medicine Procedures: Hematological & In-vitro Studies
Basic procedures utilized in nuclear medicine for the evaluation of patients with hemato logic disorders. Medical indications, fundamental principles, techniques, data calculations and test interpretation are covered for each procedure discussed. (Fourth year in the NMT program) Credit 2 (S)

1025-516 Instrumentation &Computers in Nuclear Medicine
A combination lecture/practicum course covering the various nuclear instrumentation found in the clinical setting. The lectures provide knowledge of the function and characteristics of the basic components of any scintillation detection system necessary to understand its applications in nuclear medicine. Lectures are reinforced through clinical practicums in which the student operates the equipment. Collimation, tomography, quality control, computer systems and film processing are covered. (Fourth year in the NMT program) Credit 2 (F)

1025-517 Radiochemistry & Radiopharmacology
A combination lecture/lab course covering the production and use of radioisotopes in medicine. Radiopharmaceutical compounding, quality control procedures, dose calibration and licensing regulations regarding the handling and use of radiopharmaceuticals are covered. (Fourth year in the NMT program) Credit 2 (S)

1025-518 Radioluclidean Therapy
A study of the application of radionuclides in the treatment of disease and the study of the biological changes which occur following irradiation. (Fourth year in the NMT program) Credit 1 (W)

1025-519 Radiation Health Safety
A course designed to familiarize the student with the daily routine of safe handling of radioactive materials. Radiation protection, licensing regulations, decontamination procedures, waste disposal and area surveys are covered. Credit 2 (W)

1025-521 Review in Nuclear Medicine
Discussion of all aspects of nuclear medicine covered during the clinical internship including preparation for the national certification exams in nuclear medicine technology. (Fourth year in the NMT program) Credit 2 (S)

1025-522 Clinical Nuclear Medicine I
A clinical practicum that gives the student the opportunity to learn and master nuclear medicine procedures through technical and practical experience. Each student is assigned a particular combination of three hospitals and trains approximately three months in each. Students work with patients under the supervision of physicians and technologists on the hospital staff. Student progress and performance is monitored by the RIT nuclear medicine technology clinical coordinator, who makes periodic visits to the hospital department. (Fourth year in the NMT program) Credit 7 (F)

1025-523 Clinical Nuclear Medicine II
Continuation of Clinical Nuclear Medicine I. (Fourth year in the NMT program) Credit 7 (W)

1025-524 Clinical Nuclear Medicine III
Continuation of Clinical Nuclear Medicine II. (Fourth year in the NMT program) Credit 7 (S)

1026-205 Introduction to Diagnostic Medical Imaging
An entry-level exploration of the historical, professional and occupational development of medical imaging. Current uses and future trends are discussed in the areas of radiography, computed tomography, magnetic resonance, nuclear medicine, and ultrasound imaging. Class 2, Credit 2 (F, S)

1026-220 Medical Laboratory Procedures
This first part of a three-course sequence (see 1026-221, 222 following) is a survey of the most frequently performed laboratory tests used in the diagnosis and treatment of disease and maintenance of health. The fundamentals of medical laboratory procedures are reinforced by laboratory experiences in microscopy, urinalysis, clinical chemistry, hematology, serology and bacteri ology. Laboratory safety and quality assurance are also stressed. This course may not be taken by allied health sciences majors to fulfill degree requirements. Class 3, Lab 2, Credit 4 (F)

1026-221 Health Awareness
In this continuation of 1026-220 (see above) the opportunity is provided to explore the effects of common stressors on lifestyle. Basic structural and function of selected human body systems are discussed and related to factors such as diet, alcohol, drugs, smoking, stress and the environment. Lecture, discussion, demonstrations and student participation are used to explore health-related issues. Class 3, Lab 2, Credit 4 (W)

1026-222 Human Diseases
A general survey of human diseases from a systematic approach with emphasis on disease symptoms, etiology, diagnosis and prognosis. Also included are the topics of immunology, oncology, endocrinology and pathophysiology. Upon completion of this course students will have a basic knowledge of many diseases that afflict mankind. Class 3, Lab 2, Credit 4 (S)

1026-230 Computers in Medicine
An introduction to computer technology and its use in the medical field. A study of large computer systems and microcomputers as well as related software. Exposure through demonstration and computer laboratory assignments to personal productivity software such as word processors, spreadsheets, database systems and electronic communications. A study of major applications of computers in medicine, including hospital information systems (HIS), laboratory information systems (LIS), medical imaging, disease diagnosis, patient treatment, medical education and biomedical research. Class 4, Credit 4 (F, W)

1026-301 Medical Terminology
Emphasizes etymology, definition, pronunciation and correct utilization of medical terms, which enables students to develop a vocabulary essential to the understanding of and communication with the various health areas in which allied health professionals will serve. Class 3, Credit 3 (F, W, S)

1026-305 Sports Physiology & Life Fitness
A contemporary science course that provides a foundation for understanding the importance of nutrition and energy transfer in maximizing the potential for exercise and training. In addition to the basic principles of exercise physiology, a variety of contemporary issues are covered, including use of legal and illegal aids, cardiovascular fitness and disease prevention, training methodologies and fitness assessment. Particularly appropriate for individuals interested in maintaining their level of physical fitness and wellness, participating in competitive athletics or working in recreation or physical therapy. (Distance learning offering) Credit 4

1026-306 Fitness Prescription Programming
This course is designed to help students develop the skills and knowledge necessary to provide safe and appropriate fitness assessments and exercise programs. The American College of Sports Medicine objectives for health fitness instructor certification serve as the core learning objectives. Students will practice exercise testing and prescription skills at various points throughout the course. (1026-305) Class 4, Credit 4

1026-307 Exercise Prescription
This course is designed for those who work in the field of exercise/fitness or medical health care who work with individuals and patients with diagnosed disease states or other significant limitations who would benefit from appropriately designed and prescribed exercise programs. The course will review theoretical and diagnostic value of testing, create exercise prescriptions, and understand the therapeutic benefit exercise will have on specific conditions. Some topics to be addressed include: rheumatoid arthritis, diabetes, high blood cholesterol, obesity, pulmonary disorders, coronary heart disease, cystic fibrosis, hypertension, low functional capacity and aging. (1026-306) Class 4, Credit 4
1026-333 Patient Care
This course is designed for students in allied health sciences and biological sciences. The course will introduce and develop basic skills for providing integrated patient care through assessment, communication and continuous care. The course will also introduce students to the concept of medical ethics and infection control issues related to their future patients. Credit 2 (S)

1026-351 Trends in Allied Health
A seminar series that provides students with exposure to current issues of concern to the clinical laboratory scientist. Class 1, Credit 1 (F)

1026-352 Medical Laboratory Management
A seminar series that provides students with exposure to basic management concepts and topics related to maintaining effective laboratory operations. Class 1, Credit 1 (W)

1026-353 New Medical Technologies
A seminar series that provides students with exposure to the latest techniques and scientific discoveries modernizing the clinical laboratory. Class 1, Credit 1 (S)

1026-415 Medical Pathophysiology
Presents the physiologic and pathologic processes that underlie the spectrum of human disease entities. Taught in the context of clinical scenarios that demonstrate the basic science principles in a real-world context of health care. Material is presented in the context of case studies, utilizing clinical findings and addressing underlying basic physiologic, biochemical and immunologic processes as they relate to patient care and individual patient problem cases. (1001-305, 306) Credit 4 (F, S)

1026-501 Medical Botany
This course is intended to introduce the student to the subject of medical botany. A detailed study will be made of those members of the plant kingdom that are medically useful in preventing, treating, or curing disease states. Where possible, the active chemical ingredient(s) will be defined for each medicinal plant described. Emphasis will be placed on those plant substances that are useful in the treatment of cancers, nervous system disorders, heart and circulatory diseases, metabolic disorders, sensory organ diseases, dental disease, gastrointestinal disorders, respiratory diseases, urogenital diseases, skin diseases, infections, and mental disorders. When available, the data from clinical trials and clinical studies will be discussed. (1001-203 and 1013-233) Class 3, Credit 3 (W) (offered alternate years)

1026-559 Special Topics: Allied Health Sciences
Advanced courses that are of current interest and/or logical continuations of the courses already being offered. These courses are structured as ordinary courses and have specified prerequisites, contact hours and examination procedures. Class variable, Credit variable (F, W, S)

1026-599 Independent Study: Allied Health Sciences
Faculty-directed study of appropriate topics on a tutorial basis. Enables an individual to pursue studies of existing knowledge available in the literature. Class variable, Credit variable (F, W, S)

1027-201 Introduction to Biomedical Computing
An introduction to the applications of computers in health care. Information concerning career opportunities and cooperative education is also provided. Class 1, Credit 1 (W)

1027-305 M Programming
An in-depth study of the M programming language and its database capabilities. Programming projects are required and are taken from the health care field. Direct mode, local/global/special variables, commands, arguments, operators, writing and executing routines, M editors, screen/printer formatting, string manipulation, pattern matching, concatenation, arrays and trees, multilevel and string substrings, input/output using devices, cross reference files, indentation. (1026-230 or permission of instructor) Class 3, Lab 2, Credit 4

1027-315 Internet Java & Health Care
An introduction to the Internet as a vehicle for accessing medical information. A study of the Java object-oriented programming language for developing both stand-alone medical applications and interactive applets to be run on the Internet with animation and full multimedia. Applications will include computer simulations, interactive models, teaching tools, and more. Weekly computer assignments will demonstrate the use of Java and the Internet in applications from health care. (1026-230) Class 3, Lab 2, Credit 4 (S)

1030-412 Cross-sectional Anatomy
Basic sectional anatomy of the abdomen and pelvis. Builds on the basic knowledge of anatomy. Prepares the student to recognize sectional anatomy of major human structures, especially as they relate to medical imaging techniques. Lectures are augmented with exercises using prepared human sections, organ modeling and diagnostic imaging units. (1001-305, 306 or permission of instructor) Class 4, Credit 4 (W)

1030-413 Ultrasound Instrumentation
Principles of ultrasound physics are directly applied to the use of ultrasound instrumentation in medical imaging. Transducers, signal production, data display, manipulation of controls, quality control, biologic effects and doppler techniques are discussed. Emphasis is on the creation of high-quality images on laboratory scanners. Class 4, Credit 4 (S)

1030-414 General Vascular Evaluation
Provides basic knowledge of general vascular evaluation with an emphasis on the sonographic approach. Two-dimensional real-time imaging and Doppler techniques are presented as well as a discussion of other imaging modalities and their use in vascular evaluation. Performance of examinations on laboratory equipment is stressed. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Class 4, Credit 4 (S)

1030-552 Introduction to Obstetrical Ultrasound
Provides the ultrasound candidate with basic knowledge necessary to perform obstetrical examinations. High-quality image production, recognition of normal structures and basic pathologic states are stressed. Examination protocols, review of specific anatomy, film reading, and use of other imaging techniques are addressed. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Class 3, Credit 3 (F)

1030-553 Introduction to Gynecological Ultrasound
Information necessary to perform basic gynecologic sonographic examinations is presented. Examination strategies for various procedures are explored, as well as the integration of ultrasound into established clinical practices. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Class 3, Credit 3 (F)

1030-554 Advanced Obstetrical Ultrasound
Provides information necessary to perform more sophisticated obstetrical procedures utilizing ultrasound. Examination strategies for various procedures are explored as well as the integration of ultrasound into established clinical practices. This is an internship course. (Fourth year standing in ultrasound program or permission of faculty) Class 4, Credit 4 (W)

1030-556 Abdominal Ultrasound I
Laboratory simulation and classroom instruction are used to develop practical skills and clinical knowledge necessary to perform basic abdominal examinations utilizing ultrasound. High-quality image production, recognition of normal abdominal structures and basic pathologic states are stressed. Examination protocols, review of anatomy, film reading and use of other scanning techniques are addressed. This is an internship course. (Fourth year standing in ultrasound program or permission of faculty) Class 3, Credit 3 (F)

1030-557 Abdominal Ultrasound II
A continuation of 1030-556. Laboratory simulation and classroom instruction are used to develop practical skills and clinical knowledge necessary to perform basic abdominal examinations utilizing ultrasound. High-quality image production, recognition of normal abdominal structures and basic pathologic states are stressed. Examination protocols, review of anatomy, film reading and use of other scanning techniques are addressed. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Class 3, Credit 3 (F)

1030-558 Small Parts Ultrasound
Provides the classroom and clinical knowledge necessary to perform basic sonographic examination of anatomy classified as small parts, usually utilizing specialized equipment and high megahertz frequencies. Examination strategies for various procedures are discussed, as well as the role of ultrasound in established clinical practices utilizing small parts imaging. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Credit 3 (S)
1030-560 Seminar in Ultrasound
Candidates prepare a complete plan for an ultrasound department as if they had been hired to establish a new department in a hospital setting. The candidates work together to develop the physical, administrative and financial aspects of a department. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Class 2, Credit 2 (9)

1030-561 Advanced Seminar in Ultrasound
Speaking, writing and researching skills are explored. Methods of basic research, developing writing strategies and oral presentations. Students develop or critique a research project and prepare a written document following common publishing guidelines in addition to making oral presentations. This is an internship course. (Fourth year in the ultrasound program or permission of faculty) Class 2, Credit 2 (W)

1030-570 Clinical Diagnostic Medical Sonography I
Prepares the student for application of classroom knowledge to the practice of ultrasound by means of a clinical internship. Performing basic, general ultrasound examinations in both the laboratory and clinical settings is stressed. The candidate is expected to perform basic examinations with little, if any, assistance by the end of this course. This is an internship course. (Fourth year in the ultrasound program or permission of director) Credit 7 (F)

1030-571 Clinical Diagnostic Medical Sonography II
Further prepares the candidate for application of classroom knowledge to the practice of ultrasound by means of a clinical internship. Performing basic, general ultrasound examinations in both the laboratory and clinical settings is stressed. The candidate is expected to perform general ultrasound examinations with little, if any, assistance by the end of this course. This is an internship course. (Fourth year in the ultrasound program or permission of director) 1030-570 Credit 7 (W)

1030-572 Clinical Diagnostic Medical Sonography III
Final development of ultrasound examination skills by means of clinical internship. The candidate is expected to perform general ultrasound examinations with no assistance by the end of this course. This is an internship course. (Fourth year in the ultrasound program or permission of director) 1030-571 Credit 7 (S)

1032-200 Behavioral Medicine
Familiarizes physician assistant students with biological concepts and the human life cycle. Provides students with a foundation in basic psychopathology and its relationship to understanding human illness. Addresses basic principles of patient care in the context of biopsychosocial issues and social structures in contemporary Western society. (First or second year in the PA program) Credit 2 (S)

1032-201 Early Clinical Experience I
This course brings together first year physician assistant students to evaluate the role of the PA as a critical member of the health care team. A thorough understanding of the duties and training of our colleagues in the many health professions is critical to performing as a PA. The numerous professions from clerical staff to understanding the training of our physician supervisors are researched and discussed. Team building exercises are an important aspect of the course. Class 2, Credit 1 (W)

1032-202 Early Clinical Experience II
A continuation of 1032-201, this class begins to examine the various aspects that make our future patients different. Comparing cultural, racial and religious differences is the main focus of this course. Other issues such as sexual orientation and socioeconomic status are also discussed. Students will draw on their own experiences to contribute to the learning process. Attitudes toward diversity are assessed and their impact on patient care is examined. Service learning is a mandatory and critical component of this course. Class 2, Credit 1 (S)

1032-203 Early clinical Experience III
A continuation of 1032-201 and 202, students will continue to look at important characteristics of the populations they will serve as clinicians. Topics of domestic violence, child abuse, drug addiction and alcohol abuse are presented. Students will also learn about the demographic and sociographic features of the growing geriatric population. A group community service project and presentation of the project concludes this three-course sequence. (1032-201,202) Class 2, Credit 1 (F)

1032-210 Physician Assistant Seminar
Introduces the student to the role of the physician assistant in relationship to patients, supervising physicians, colleagues and other physician assistants. Emphasis is on developing a highly-prepared professional in the delivery of care with health care. Topics include legislation, certification, registration, professional organizations: sociomedical issues, ethics, legal and economic aspects of medicine, health care organization and medical records. (Second or third year in the PA program) Class 1, Credit 1 (W)

1032-330 Law & Medicine
This course will provide an overview of health care law, principles and ethics as it relates to the health care provider. Lecture topics will cover an introduction to law, criminal aspects of health care, patient consent issues, legal reporting obligations, contracts and antitrust, information management and health care records, legal risk to the health care provider, end of life issues and malpractice issues. (Third year in the PA program or permission of instructor) Class 2, Credit 2 (W)

1032-401 Patient History & Physical Exam I
This first part of a three-quarter sequence introduces and develops the clinical psychosocial skills and anatomic/physiologic science involved in interviewing and examining patients. Includes practical medical terminology, attitude development and values clarification strategies to aid students in adopting a humanistic approach, interviewing techniques used during patient interaction, comprehensive database, demonstrated techniques for a complete physical examination of all body systems and explanation/implementation of the Problem Oriented Medical Record (POMR). Weekly patient contact. (Third year in the PA program or permission of instructor) Class 2, Credit 2 (F)

1032-402 Patient History & Physical Exam II
This second part of a three-quarter sequence introduces and develops the clinical psychosocial skills and anatomic/physiologic science involved in interviewing and examining patients. Includes performing and writing complete, accurate medical histories and physical examinations with small group instruction. Weekly patient contact. (1032-401) Class 1, Credit 2 (W)

1032-403 Patient History & Physical Exam III
This final part of a three-quarter sequence introduces and develops the clinical psychosocial skills and anatomic/physiologic science involved in interviewing and examining patients. Includes a critical analysis of students performing and writing complete, accurate medical histories and physical examinations. Small group instruction. Weekly patient contact. (1032-402) Class 1, Credit 2 (S)

1032-406 Medical Microbiology
Provides physician assistant students with the understanding of the biology of human pathogens. The students study how this understanding impacts therapeutic modalities for the treatment of human disease. Students have the opportunity to master specific skills that will be central to their roles as practicing physician assistants. (Second year in the PA program) Credit 4 (W)

1032-410 Clinical Skills
Provides for the PA student requisite skills for professional courses and internships. Emphasis is on developing competence in basic skills in conjunction with patient care. (Third year in the PA program or permission of instructor) Class 1, Credit 1 (S)

1032-420 Clinical Pharmacology I
A study of the mechanics of medications: indications, effects, distribution, absorption, metabolism, excretion, interactions, pharmokinetics and administration/dosing. Emphasizes agents commonly prescribed in the diagnosis and treatment of disease. A body systems approach is utilized to study cardiology, pulmonology, infectious diseases, dental diseases, otolaryngology, neurology and ophthalmology. (Third year in the PA program or permission of instructor) Class 3, Credit 3 (F)

1032-421 Clinical Pharmacology II
Continuation of 1032-420. Indications, effects, distribution, absorption, metabolism, excretion, interactions, pharmokinetics and administration/dosing. Emphasizes agents commonly prescribed in the diagnosis and treatment of disease. A body systems approach is utilized to study fluids/electrolytes/nutrition, gastroenterology, nephrology, urology, endocrinology, and dermatology. (1032-420) Class 3, Credit 3 (W)
1032-422 Clinical Pharmacology III
Continuation of 1032-421. Indications, effects, distribution, absorption, metabolism, excretion, interactions, pharmacokinetics and administration/dosing. Emphasizes agents commonly prescribed in the diagnosis and treatment of disease. A body systems approach is utilized to study hematology, obstetrics/gynecology, orthopedics, surgery, geriatrics, pediatrics, and psychiatry. Prescribing and dispensing are discussed. (1032-421) Class 2, Credit 2 (S)

1032-430 Clinical Diagnostic Imaging
Introduces PA students to the principles of diagnostic imaging: physical foundations, recognition of gross abnormalities, determination of a diagnostic impression and application of different diagnostic procedures. Emphasis is on correlating body systems with findings of specific radiographic studies. (Third year in the PA program or permission of instructor) Class 1, Credit 1 (S)

1032-440 Clinical Medicine I
The clinical medicine courses give the PA student the necessary foundation of knowledge and understanding to deal with the patient in the clinical context. This preparation precedes the clinical rotations in which students apply their knowledge in examining patients and expand their expertise in evaluation, clinical procedures and problem solving. A body systems approach is utilized to study cardiology, pulmonology, nphrology, hematology, psychiatry, and obstetrics/gynecology. (Third year in the PA program or permission of instructor) Class 15, Credit 4 (F)

1032-441 Clinical Medicine II
Continuation of 1032-440. This section covers fluids/electrolytes/nutrition, gastroenterology, neurology, orthopedics, rheumatology/allergy, infectious disease, endocrinology, and dermatology. (1032-440) Class 15, Credit 4 (W)

1032-442 Clinical Medicine III
Continuation of 1032-441. Further areas of study encompass emergency medicine, oncology, ophthalmology, dermatology and preventive medicine, surgery, geriatrics, pediatrics. (1032-441) Class 15, Credit 4 (S)

1032-490 PA Clinical Rotation I
Mandatory rotations are in fields of general clinical practice that will build a solid basic understanding and groundwork. These required rotations are internal medicine (in-patient and out-patient), orthopedics, emergency medicine, OB/GYN, pediatrics, general surgery, and psychiatry. Students also are able to select two elective rotations. These latter rotations allow students to individualize their experiences according to their own areas of interest. (Fourth year in the PA program) Credit 12 (SU)

1032-491 PA Clinical Rotation II
Continuation of PA Clinical Rotation I. (Fourth-year standing in PA program) Credit 12 (F)

1032-492 PA Clinical Rotation III
Continuation of PA Clinical Rotation II. (Fourth-year standing in PA program) Credit 12 (W)

1032-493 PA Clinical Rotation IV
Continuation of PA Clinical Rotation III. (Fourth-year standing in PA program) Credit 12 (S)

Imaging Science

1051-200 Imaging Science First Year Seminar
An introduction to academic and student life in the College of Science and the Center for Imaging Science. Topics covered will include a history of imaging science, Wallace Library and basic library skills, resources for student life, campus and laboratory safety practices, the Office of Cooperative Education and Career Services, and resume and cover letter writing. Class 1, Credit 1 (F)

1051-201 Survey of Imaging Science
Survey of Imaging Science is the first course in the curriculum. It describes the field of imaging science and introduces students to the component parts of many imaging systems. Class 2, Credit 2 (F)

1051-202 Introduction to Imaging Science I
Students study the “building blocks” of imaging systems and examine several example systems in that context. Students select one topic, research it in more depth, and write a term paper. (1051-201 or permission of instructor) Class 3, Credit 3 (W)

1051-203 Introduction to Imaging Science II
Using the concepts and tools developed in 1051-202 (Introduction to Imaging Science I) students examine traditional and digital photographic systems in detail. The system, from light source through display, is examined and evaluated. The effects of each step in the “imaging chain” on the mean-level tone reproduction are examined, leading to a graphical and computational analysis of the system characteristics. Students are introduced to additive and subtractive color systems and their basis in human color perception. (1051-202) Class 3, Lab 3, Credit 4 (6)

1051-211 Programming for Imaging Science
This course will introduce the student to the IDL environment as a data visualization tool and a programming language. The student will learn the various capabilities of the package and how they can quickly prototype solutions to various science and engineering problems. As these solutions are developed, fundamental concepts of programming and data structures will be introduced. Problems will begin with ‘one-dimensional examples and evolve to two-dimensional analogs. This course will emphasize the need for concrete problem definition, problem decomposition, into smaller sub-problems, implementation/ testing, and presentation/documentation of the algorithms and results. (Algebra and trigonometry) Class 4, Credit 4 (W)

1051-215 Imaging Science Fundamentals
An exploration of the fundamentals of imaging science and the imaging systems of the past, present and future. Imaging systems studied include the human visual system, consumer and entertainment applications (e.g., traditional and digital photography, television, digital television and HDTV, virtual reality); medical applications (e.g., X-ray, ultrasound, MRI); business/document applications (e.g., impact and non-impact printing, scanners, printers, fax machines, copiers); and systems used in remote sensing and astronomy (e.g., night-vision systems, ground- and satellite-based observatories). The laboratory component includes experiments related to the principles and theories discussed in the corresponding lecture. Laboratory experiments give students experience with many imaging systems and exposure to the underlying scientific principles. (Competency in algebra) Class 3, Lab 2, Credit 4 (F, W)

1051-221 Survey of Imaging Science II/Laboratory Survey of Imaging Science Laboratory is a companion lab for Survey of Imaging Science. Students examine the components of imaging systems and the interaction between those components and are introduced to methods for characterizing them. Lab 3, Credit 1 (F)

1051-231 Imaging Systems Laboratory I
This course is the first in a two-quarter sequence. The sequence is designed to integrate the concepts and core competency areas learned earlier in the curriculum and to allow the direct study of systems built upon those concepts. The concept of image chain analysis is used to analyze a “real-world” imaging system. In Imaging Systems Lab I, students are presented with an imaging system made up of several subcomponents. They work in teams to analyze each component, the interactions between components, and the system’s final performance. (1051-202, 1016-253, 1017-311, or permission of instructor) Class 1, Lab 3, Credit 2 (W)

1051-232 Imaging Systems Laboratory II
This course is the second in a two-quarter sequence. The sequence is designed to integrate the concepts and core competency areas learned earlier in the curriculum and to allow the direct study of systems built upon those concepts. The concept of image chain analysis is used to analyze a “real-world” imaging system. In Imaging Systems Lab II, students build on the first course. They are presented with a more complex imaging system made up of several sub-components. They work in teams to analyze each component, the interactions between the components and the final system’s performance. Each team prepares a final written report and presents results to the class. (1051-231) Class 1, Lab 3, Credit 2 (S)

1051-303 Optics for Imaging
The principles of ray and wave optics are applied to imaging systems. Reflecting and refracting surfaces, pupils and stops, optical imaging systems, diffraction and interference. Particular emphasis is placed on the fundamental limitations of the optical system on the resulting image. (1017-311 and concurrent registration in 1051-232) Class 4, Credit 4 (S)

1051-313 Interaction Between Light & Matter
The interaction of electromagnetic energy with various states of matter, including the creation, propagation and destruction of electromagnetic energy. Topics covered include the electromagnetic spectrum; reflection, absorption and transmission of energy; vibrations and simple excitations; molecular orbitals; band theory; and optical interactions. (1031-314, 1011-213) Class 4, Credit 4
1051-400 Vision & Psychophysics
This course presents an overview of the organization and function of the human visual system and some of the psychophysical techniques used to study vision. Topics include optical image formation in the eye; retinal and cortical representations; spatial, temporal, motion, depth and color coding; and eye movements. (1051-303 or permission of instructor) Class 3, Credit 3 (W)

1051-401 Radiometry
The generation, propagation, absorption and measurement of electromagnetic radiation. Sources, detectors, spectrometers and measurement devices are treated with an emphasis on approaches to quantification of electromagnetic radiation levels. (1016-306, 1017-313) Class 3, Lab 3, Credit 4

1051-402 Colorimetry
This course presents an introduction to color perception, measurement and reproduction. Building upon an understanding of the human visual system from 1051-400, this course explores in more detail the basis of color perception by the visual system and applies those principles to the study of methods of color measurement and reproduction. (1051-400) Class 3, Lab 3, Credit 4 (F)

1051-403 Tone & Color Reproduction
Builds on 1051-401 and 1051-402 to understand strategies for governing mean value input/output relationships of imaging systems. This includes tone and color reproduction in both hard copy and soft display, and the propagation of imaging signals through multiple components. Optical, electronic and hard copy systems will be examined. Techniques for characterizing input/output parameters and how these parameters propagate through multiple imaging steps will be a major focus. Traditional sensitometry and densitometry will be included. How fundamental chemical and physical parameters lead to input/output characteristics of systems will be studied and modeled. Laboratory experiments will include characterization of electrophotographic, electronic and chemical imaging systems. Models will be tested against measured system performance. (1051-401,402) Class 3, Lab 3, Credit 4 (W)

1051-411 C++ Programming for Imaging Science
An introduction to the C++ programming language, associated constructs and an object-oriented approach to program implementation. The data/ process definition of this approach will emphasize the domain of digital images and image-related problems. Fundamental UNIX operating system commands will be reviewed along with tools and utilities used in software development. Implemented covered in 1051-211 are revisited and implemented under a more traditional programming paradigm. The student will gain a more comprehensive knowledge of image types/formats and be exposed to more advanced features of tools used for image display and manipulation. (1051-211 or permission of instructor) Class 2, Credit 2 (W)

1051-420 Environmental Applications of Remote Sensing
An introduction to the wide range of environmental applications of remote sensing. Systems for detecting physical phenomena and analysis techniques for extracting useful information are described for active and passive sensors operating throughout the electromagnetic spectrum from both airborne and spaceborne sensors. The Earth’s atmospheric, hydrospHERic and terrestrial processes are examined at a global scale. Application areas studied include monitoring vegetation health, identifying cultural features, assessing water resources, and detecting pollution and natural hazards. (1017-213 or permission of instructor) Class 4, Credit 4 (W)

1051-461 Digital Image Processing I
The principles, techniques and applications of digital image processing are introduced. Formation of digital images, sampling and quantization, image input/output devices, image statistics and descriptors (e.g., histograms), Point, neighborhood, global, and geometrical operations on digital images are considered, including kernel operations and discrete convolution. Image segmentation operations for gray-scale, color, and multispectral images are described. Emphasis is placed on applications, algorithm prototyping and verification using high-level languages, and efficient computer implementation of image operations in a scientific programming language. (1016-251, 1016-305, programming language) Class 3, Credit 3 (F)

1051-462 Digital Image Processing II
This course continues the development of digital image processing that began in 1051-461. Alternate mathematical representations of digital images based on global operations are introduced, including those based on the discrete Fourier transform and the Radon transform. Geometrical operations, such as are required to correct image distortions, are considered. Applications to the image processing techniques are described. Emphasis is placed on applications, algorithm prototyping and verification using high-level languages and efficient computer implementation of image operations using the C++ programming language. (Corequisite 1051-411 or permission of instructor) (1016-251-305, 1051-461) Class 3, Credit 3 (W)

1051-463 Digital Image Processing III
The principles, techniques and applications of signal compression are considered. Particular emphasis is placed on those techniques that are used in image compression, such as JPEG and MPEG standards. (1051-462) Class 3, Credit 3 (S)

1051-499 Imaging Science Co-op
Cooperative education experience for undergraduate imaging science students. Credit 0 (offered every quarter)

1051-501 Senior Project I
Develops skills in scientific research, including use of library resources, technical report writing, technical presentations. Students are required to research, write and present a proposal for a research project. The proposed research is performed in 1051-502, 503. (Matriculation in SIMG) Class 3, Credit 3 (F)

1051-502,503 Senior Project II, III
Students perform the independent research project defined in 1051-501 under the direction of a faculty member in imaging science. The student presents the results of the project to a public meeting at the end of spring quarter. Class 1, Credit 1-3 (W-502, S-503)

1051-511 Imaging Systems Analysis I
This course introduces the concepts of continuous and discrete convolution, Fourier transform, linear systems in both one and two dimensions and then considers applications of these concepts to the evaluation of imaging systems. Emphasis is placed on understanding the underlying mathematical principles and their connection to real-life applications. The perspective of modeling an imaging system as a linear system is introduced from the beginning and is maintained throughout the course. Finally, some examples of imaging systems, including cascaded systems are used to describe how and why the output depends on the system design parameters. (1051-313, 1051-401, 1051-462 or permission of instructor) Class 4, Credit 4 (F)

1051-512 Imaging Systems Analysis II
A continuation of 1051-511 extending the linear-systems formalism for analyzing and characterizing imaging systems; point, line and edge spread functions; optical, modulation and phase-transfer functions; coherent and incoherent optical systems. (1051-511) Class 4, Credit 4 (W)

1051-513 Image Microstructure
This course examines the spatial properties of both linear and non-linear imaging processes. Instrumental techniques are examined for the experimental characterization of noise (granularity) and resolution properties of images and imaging processes. The control of tone and color reproduction through both optical and digital strategies of halftone imaging is described. Also described are temporal microstructure effects in real-time imaging systems such as television and motion pictures. Emphasis is also placed on the underlying physical, chemical and optical mechanisms that impact microstructure of images and systems. (1051-403) Class 3, Lab 1, Credit 4 (S)

1051-528 Design & Fabrication of Solid State Camera
The purpose of this course is to provide the student with hands-on experience in building a CCD camera. The course provides the basics of CCD operation including an overview, CCD clocking, analog output circuitry, cooling and evaluation criteria. (Senior status imaging science or permission of instructor) Class 1.5, Lab 7.5, Credit 4

1051-533 Special Topics Imaging
Topics of special interest, varying from quarter to quarter, selected from the field of imaging science and not currently offered in the curriculum. Specific topics are announced in advance. (Not offered each quarter. Consult director of the Center for Imaging Science.) Class variable, Credit variable

1051-599 Independent Study
A student-proposed advanced project sponsored by an instructor. Approval required by the department chairperson and the director of the school. Available to upper-level students with a GPA of 3.0 or greater. Credit variable
National Technical Institute for the Deaf

Index

0801 Accounting Technology ... 298
0804 Business Technology/Administrative Support ... 304
0805 Applied Computer Technology ... 301
0806 Interdisciplinary Studies ... 296
0812 Computer Integrated Machining Technology ... 306
0813 Computer Integrated Machining Technology ... 306
 Deaf Studies ... 307
0820 Healthcare Billing & Coding Technology ... 311
0825 Art & Computer Design ... 299
0827 Ophthalmic Optical Finishing Technology ... 318
0853 Pre-baccalaureate Studies ... 319
0860 Speech & Language ... 322
0875 ASL-English Interpretation ... 296
0876 Deaf Studies Certificate ... 322
0878 Digital Imaging & Publishing Technology ... 308
0879 Laboratory Science Technology ... 315
0880 Communication Studies ... 313
0880 Humanities ... 312
0881 Performing Arts ... 314
0882 Social Science ... 321
0883 English ... 310
0884 Mathematics ... 317
0885 Science ... 319
0886 American Sign Language ... 313
0890 Computer Aided Drafting Technology ... 305
0891 Automation Technologies ... 303

Course numbering: RIT courses are generally referred to by their seven-digit registration number. The first two digits refer to the college offering the course. The third and fourth digits identify the discipline within the college. The final three digits are unique to each course and identify whether the course is noncredit (less than 099); lower division (100-399); upper division (400-699); or graduate level (700 and above).

Unless otherwise noted, the following courses are offered annually. Specific times and dates can be found in each quarter’s schedule of courses, published by the Office of the Registrar. Prerequisites and/or corequisites are noted in parentheses near the end of the course description.

Interdisciplinary Courses

0806-101 Job Search Process Course goals are to prepare students to secure a cooperative or professional work experience in the student’s major and to assist the student in acquiring the skills for accessing information, networking, developing resumes and letters, completing various employment-related forms, interviewing, and using various communication techniques in preparing students for the job search process. Class 2, Credit 2 (F, W, S)

0806-201 Employment Seminar Provides the student with an opportunity to synthesize a work experience with knowledge gained in technical and liberal arts courses in order to prepare for permanent employment. Experiences will include resume revisions, further research into potential permanent employment, including accessing professional journals, electronic networks, and interviewing for permanent employment. Discussions relating to financial considerations to be used in evaluating employment opportunities and individual roles with the organization will also be included. Class 1, Credit 1 (F, W, S)

0887-200 Freshman Seminar Provides entering NTID students with opportunities to enhance personal, social, intellectual, academic, and ethical decision making in order to maximize their college experience. Students have opportunities to explore and negotiate the college environment, confront questions of identity and social roles, and deal with ethical issues with faculty members and peer mentors, expand critical thinking skills, learn and use academic skills. Course emphasizes student self-assessment of current strengths and areas of needed improvement along with development of plans for ongoing growth, rather than attainment of skill mastery within a quarter-length course. Class 2, Credit 2 (F, W)

0875-201 American Sign Language I ASL I includes the linguistic features, cultural protocols and core vocabulary for students to function in basic ASL conversations that include ASL grammar for asking and answering questions while introducing oneself; exchanging personal information; talking about family, friends and surroundings; and discussing activities. This course is designed for students who have no knowledge of American Sign Language. Class 4, Credit 4 (F, W)

0875-202 American Sign Language II This course expands the basic principles presented in ASL I. ASL II teaches students to use linguistic features, cultural protocols, and core vocabulary to function in basic ASL conversations that include ASL grammar for giving directions; describing; making requests; talking about family, occupations and routines; and attributing qualities to others. (0875-201) Class 4, Credit 4 (W, S)

0875-203 American Sign Language III This course builds upon ASL II foundation of skills and knowledge. The course focuses on the ASL features of time, subject/object, classifiers, non-manual behaviors, and fngerspelling (including numbers and loan signs). In addition, ASL semantics and syntax (including conversation regulators) will be introduced. (0875-202) Class 4, Credit 4 (S, SU)

0875-211 Intercultural Communication for Interpreters Students examine their own cultural background and how this influences face-to-face interaction. Major concepts that will be addressed include the influence of culture, the relationship between language and culture, equivalence issues in translation, nonverbal communication and culture, cultural influences on context, stereotyping and prejudice, and developing strategies for improved intercultural communication. Class 4, Credit 4 (F)

0875-212 Deaf Culture & Community This course is designed to introduce students to aspects of Deaf Culture and the Deaf Community. The distinction between these two groups will be reviewed and characteristics of both will be identified. Students will learn about the language, norms of behavior, values, traditions, and possessions (materials) of the Deaf people. The evolution of a pathological view of the Deaf people to a cultural one will be analyzed from a historical and sociological perspective. Intercultural issues relating to the role of hearing people within the Deaf Community will also be covered. (0875-211) Class 4, Credit 4 (W)

0875-213 Introduction to the Field of Interpreting This course provides students with information regarding the role and function of an interpreter. Information about the history of interpreting, terminology, employment options with regard to various settings, and the function of assessing as part of the interpreting process is presented. Additional topics include values and characteristis of a professional and cumulative trauma disorders (CTD's). (0875-211, 212) Class 4, Credit 4 (S)

0875-301 American Sign Language IV This course is the fourth in a series of six ASL courses for interpreting students. This course will continue to increase the grammatical features of ASL, introduces new grammatical features of ASL, specialized vocabulary (including math, chemistry, the medical environment, and drugs), and continues to increase fngerspelling and numbers. In addition, the use of space in ASL discourse will be expanded. (0875-203) Class 4, Credit 4 (F)

0875-302 American Sign Language V This course is the fifth in a series of six for interpreting students. This course continues to build upon the foundation in the previous courses. The use of space in ASL discourse will be a focus of this class. Areas of vocabulary development include social work, social services, and alcoholism. (0875-301) Class 4, Credit 4 (W)
American Sign Language VI
This course is the last in a series of six for interpreting students, building upon the foundation in the previous courses. The focus of this course will be the different registers of ASL discourse, in addition to the use of space in discourse will be reviewed and expanded. Most of the work in this class will involve students producing appropriate, accurate ASL discourse. Areas of vocabulary development include contextually sensitive vocabulary (e.g. human sexuality, AIDS), national and world events, and politics. (0875-302) Class 4, Credit 4 (S)
0875-310
Discourse Analysis for Interpreters
This course presents an in-depth look at the interpreters as bicultural/bilingual mediator, at the center of communicative activity. The interpreter’s communicative competence requires knowledge of what is communicatively appropriate in both the source-language and target-language communities. This course includes a study of conversational exchanges in English and ASL, including open and close signals, backchannel signals, turnover signals, acoustically adequate and interpretable messages, bracket signals, non-participant constraints, preempt signals, and Grice’s maxims. (Co-requisite: 0875-302) Class 4, Credit 4 (W)
0875-311
Processing Skills Development
This course is an introduction to the mental processing skills (pre-interpreting skills) of consecutive and simultaneous interpretation. This course includes an overview of the theoretical models of translation and interpretation, provides skill development activities for isolated interpreting sub-tasks and practice activities for the integration of these tasks in translation activities. Course content includes translation and interpreting theory, visualization, listening and comprehension, shadowing, paraphrasing, abstracting, dual task training, text analysis (including identification of main point, summarizing, and structuring), closed skills and translation. (0502-225, 0875-310, 0875-302 can be taken concurrently) Class 4, Credit 4 (W)
0875-315
Voice-to-Sign Interpreting I
This is the first course in a two-course sequence in which students develop the ability to produce an equivalent ASL message from a spoken English source message. The focus of this course is text analysis and consecutively producing an equivalent message in the target language. Content also includes interpreting management strategies for voice-to-sign interpreting. Students will interpret both rehearsed and unrehearsed monologues and dialogues. Warm-up exercises will be performed as part of the self-care regimen recommended for sign language interpreters. (0875-302, 310, 311) Class 4, Credit 4 (S)
0875-316
Sign-to-Voice Interpreting I
This is the first course in a two-course sequence in which students develop the ability to produce an equivalent spoken English message from an ASL source message. The focus of this course is text analysis and consecutively producing an equivalent message in the target language. Content also includes interpreting management strategies for sign-to-voice interpreting. Students will interpret both rehearsed and unrehearsed monologues and dialogues. (0875-302, 310, 311) Class 4, Credit 4 (S)
0875-320
Practical & Ethical Applications
Students examine the underlying principles of the Registry of Interpreters for the Deaf (RID) Code of Ethics and discuss application of the Code of Ethics to the various situations and settings in which sign language interpreters work. Students will explore how professional interpreters apply these principles in their daily work and how deaf consumers perceived the ethical role and function of interpreters. In addition to ethical considerations, etiquette and protocol for each setting will be discussed. Settings include K-12, post-secondary, religious, medical, mental health, deaf-blind, performing arts, business and industry, and vocational rehabilitation. (0875-213) Class 4, Credit 4 (W)
0875-325
Voice-to-Sign Interpreting II
This is the second course in a two-course sequence in which students develop the ability to produce simultaneously an equivalent ASL message from a spoken English source message. Specific discipline areas will be addressed. Students will develop the ability to analyze and apply text analysis skills to the simultaneous English to ASL interpreting tasks. Additionally, students will develop the ability to apply the principles of diagnostic feedback. One special area of emphasis will include affect equivalence between source and target languages. Warm-up exercises will be performed as part of the self-care regimen recommended for sign language interpreters. (0875-315) Class 4, Credit 4 (F)
0875-326
Sign-to-Voice Interpreting II
This is the second course in a two-course sequence in which students develop the ability to produce simultaneously an equivalent English message from an ASL source message. Specific discipline areas will be addressed. Students will develop the ability to analyze skills to the simultaneous ASL to English interpreting task. In addition, students will develop the ability to apply the principles of diagnostic feedback. One special area of emphasis will include affect equivalency between source and target languages. (0875-316) Class 4, Credit 4 (F)
0875-330
Introduction to Translation
This course develops the ability to translate simultaneously from a spoken English message into an equivalent signed message while retaining English word order. The focus of this course will be transliterating in post-secondary settings. Course work includes analysis and interpretation of text macrostructure and microstructure of academic texts, translating frozen texts, an introduction to team interpreting, and producing transliterations that are sensitive to contact language situations. Warm-up exercises will be performed as part of the self-care regimen recommended for sign language interpreters. (0875-325,326) Class 4, Credit 4 (W)
0875-350
PRACTICUM & SEMINAR I
Practicum & Seminar I
The student experiences a practicum placement under the immediate supervision of a professional interpreter who functions as the student’s mentor and the overall supervision of the seminar instructor (supervising instructor). The practicum will involve such activities as observing the mentor and a variety of other interpreters at work, preparing videotapes for mentor critique, interpreting under the supervision of the mentor, and meeting weekly with the mentor to discuss the practicum experience. In addition, practicum students will meet weekly to share observations and experiences gained from the practicum placement. Class discussions focus on linguistic issues in interpretation, ethical dilemmas, situational concerns and problem solving. Field experience includes 100 hours. (Cumulative GPA 2.5; 0875-320, 325, 326, 330) Class 2, Credit 4 (F, W, S)
0875-400
Advanced Interactive Interpreting
In this course students advance their skills in working with interactive texts within small-group and one-to-one settings. Students will observe and practice simultaneous sign-to voice and voice-to-sign interpreting for interactions. Students will expand English language skills and their understanding and use of ASL vocabularies and interpreting analysis skills. Warm-up exercises will be performed as part of the self-care regimen recommended for sign language interpreters. Students will participate in four hours of lectures and four hours of lab work per week. (0875-325,326) Class 4, Credit 4 (F)
0875-411
Interpreting Frozen & Literary Texts
This course will focus on skills and techniques for the interpretation of special English texts known as “frozen” texts and literary ASL texts. Work includes translation and interpretation of both sign-to-voice and voice-to-sign texts, including prayers, music, poetry, drama, etc. (0875-400) Class 4, Credit 4 (W)
0875-415
PRACTICUM & SEMINAR II
Practicum & Seminar II
The course will provide students with the opportunity to experience several different interpreting settings. All students will complete three different practical experiences: three weeks in a post-secondary setting, three weeks in a K-12 setting, and three weeks in a community setting (e.g., hospitals, interpreter referral agencies, mental health agencies, etc.). Students are assigned to a professional interpreter working in the setting who functions as the student’s mentor. Students use the final week of the quarter to compose a written paper that will compare and contrast the three practical experiences and settings. Additionally, practicum students meet together weekly to share observations and experiences gained from the practicum placement. Class discussions focus on linguistic issues in interpretation, ethical dilemmas, situational concerns, and problem solving. (0875-400, GPA of 2.5 or better and permission of instructor) Class 10, Credit 4 (S)
0875-430
Introduction to K-12 Interpreting
This course includes an overview of the history and current status of educational interpreting throughout the United States. Content includes the role, power, and skills of educational interpreters in K-12, settings; communication systems; pertinent laws and regulations; resources, information, and strategies for consumer awareness and education; administrative practices and personnel structure of school systems; assessment and management of educational interpreters; and topics that concern educational interpreters. (0875-400) Class 4, Credit 4 (W, S)
0875-501 Advanced Sign-to-Voice Interpreting
In this course students advance their skills in simultaneously producing equivalent spoken English messages from ASL or contact language source messages. Single speaker texts on specific topical areas for large group settings will be the focus of this course. Students will continue to develop their English vocabulary, ASL vocabulary, interpreting analysis skills, and strategies for team interpreting. Warm-up exercises will be performed as part of the self-care regimen recommended for sign language interpreters. (0875-400) Class 4, Credit 4 (F)

0875-502 Advanced Voice-to-Sign Interpreting
In this course students advance their skills in simultaneously producing equivalent ASL messages from spoken English source messages. Single speaker texts on specific topical areas for large group settings will be the focus of this course. Students will continue to develop their English vocabulary, ASL vocabulary, interpreting analysis skills, and strategies for team interpreting. Warm-up exercises will be performed as part of the self-care regimen recommended for sign language interpreters. (0875-400) Class 4, Credit 4 (F)

0875-515 Interpreting Internship
This experience provides students with extensive exploration of the profession under the supervision of qualified, professional interpreters, in one of several settings, including but not limited to education, medical, business, and government. Internships will be available nationally at sites that provide high quality supervised experiences. The internship will be 10 weeks in length, requiring approximately 35 hours per week (Permission of instructor) Class 35, Credit 12 W, W

0875-520 Issues in Interpreting
This course offers students who have completed their internship an opportunity to integrate all curricular content areas through the examination and discussion of issues in the field of interpreting. While the course content and focus will vary depending on current issues and student interest/experiences, the course will provide an advanced experience of problem solving and value clarification. Students will develop and demonstrate their ability to define a research topic or problem, gather and evaluate scholarly evidence, and present their findings in a paper and presentation. (0875-515) Class 4, Credit 4 (9)

0875-531 Educational Interpreting: Elementary Settings
This course is designed to prepare students to interpret in elementary school settings. Content will include an orientation to activities, discipline content and sign vocabulary, language development, psycho-social development, and interpreting issues that are pertinent to elementary students. The course addresses strategies for interpreting classroom discourse and various content areas. Vocabulary for various elementary content areas will be introduced. Students will do voice-to-sign and sign-to-voice interpreting for elementary-level texts. (0875-430) Class 4, Credit 4 (S)

0875-532 Educational Interpreting: Middle/Secondary Settings
This course is designed to prepare students to interpret in middle and secondary school settings. Content will include orientation to the activities, discipline content and vocabulary, language development, psycho-social development, and issues pertinent to middle and secondary school students. The course also includes information about teaching methodologies and strategies for interpreting classroom discourse and various content areas. Students will learn how to prepare the middle/secondary students to request and work with interpreters in community and post-secondary settings. Vocabulary for various middle and secondary school content areas will be introduced. Students will also learn about interpreting for foreign language courses. Students will do voice-to-sign and sign-to-voice interpreting for middle and secondary school-level texts. (0875-430) Class 4, Credit 4 (W)

0875-533 Interpreting in Post-Secondary Settings
This course prepares students to interpret in the post-secondary setting. Students will learn preparation strategies for voice-to-sign and sign-to-voice interpreting for the following topics: computer science, advanced science and mathematics, selected liberal arts, physical education, and the instruction of a foreign language. In addition, students will become familiar with current issues facing interpreters in post-secondary settings. As part of this course, students will observe interpreters working in several types of college classrooms, (e.g. lecture, seminar, labs, and studios). (0875-400 Advanced Interactive Interpreting or previous coursework in translation) Class 4, Credit 4 (W)

0875-540 Oral Transliteration
This course concentrates on the theory and skill of oral transliteration. Students will develop the skill of receiving a spoken English message and reproducing it in a highly visual modality by applying the principles of clear speech production and support techniques. Additionally, students will develop the skill of visible to spoken (voice-over) interpreting for deaf and hard-of-hearing persons who rely on speech and speech reading. Major concepts that will be addressed include speech production principles; speech visibility factors; verbal and non-verbal support techniques; knowledge of the characteristics, methodologies, and philosophies of oral education and oral consumers; and oral interpreting certification. (0875-400) Class 4, Credit 4 (S)

0875-550 Deaf-Blind Interpreting
This course is designed to prepare students to interpret for deaf-blind individuals who have different degrees and types of deaf-blindness. Content includes an introduction to aspects of deaf-blindness including the language, norms of behavior, values and traditions of deaf-blind people. Students learn about tools and technology used by deaf-blind individuals and develop visual orientation skills, guiding skills, and the interpreting skills needed to work with this population of consumers. (0875-501, 502) Class 4, Credit 4 (W)

Accounting Technology

0801-100 Principles of Accounting I
Introduction to accounting for both accounting and non-accounting students. Topics covered include the analyzing and recording of business transactions using the double-entry accounting system, end-of-period adjustments, the worksheet, financial statements, closing entries, the post-closing trial balance and the management of cash funds. Lecture/Lab 6, Credit 4 (W, S)

0801-201 Principles of Accounting II
A continuation of Principles of Accounting I for both accounting and non-accounting students. Topics covered include the payroll system and accounting for a merchandising business using special journals. Course work includes a practice set that applies accounting concepts in a simulated business situation. Spreadsheet applications are used on microcomputers. (0801-201) Lecture/Lab 6, Credit 4 (F,S)

0801-202 Principles of Accounting III
This course for accounting students is a continuation of Principles of Accounting I and II. Topics include notes payable and notes receivable; the valuation of receivables, inventories, and plant and equipment; as well as the voucher system of accounting. Course work includes a computerized practice set that applies accounting concepts in a simulated business situation. Spreadsheet applications are used on microcomputers. (0801-202) Class 6, Credit 4 (F,W)

0801-204 Principles of Accounting IV
Emphasizes corporate accounting concepts and principles. Topics covered include capital stock, retained earnings, taxes, dividends, the statement of cash flow and the analysis of financial statements. Accounting for partnerships also is covered. (0801-203) Class 6, Credit 4 (F,W)

0801-231 Economics I
This two-course sequence gives an overview of micro- and macroeconomic concepts. Students examine economic problems in a rational manner by learning the fundamental processes of economic analysis and the skills of economic reasoning. These courses include selected knowledge and skills from the economic discipline presented in the form of concepts and understandings deemed most important to economic literacy for students. (Applied accounting associate degree status, 0804-101) Class 4, Credit 3 (W)
Art & Computer Design

0825-204 Perspective Drawing
Introduction to the fundamentals of perspective, including one-point, two-point and three-point perspective; special vanishing points; mixed perspective; and ellipses. Basic three-dimensional shapes are drawn using both free-hand techniques and drafting tools. Perspective concepts are applied to drawing more complex objects and environments, including shading. Studio 4, Credit 2 (W, S)

0825-206 Figure Drawing
Introduces students to the study of the human form, including quick gesture drawing, contour studies, line drawing, proportion, shading and light, study of head/face features and use of quick sketches and sustained study including use of the figure in composition. Students are introduced to media and materials used to draw the human form. Studio 4, Credit 2 (W, S)

0825-208 Drawing Composition
Use of drawing principles learned in previous drawing courses will be applied to drawing still life, architecture, various environments and the human form within environments. Use of sketchbooks is emphasized for development of compositions. Students are encouraged to research visual ideas through the use of the library and other sources. A variety of media and materials are used. (0825-204, 206) Studio 4, Credit 2 (S)

0825-210 Vector Graphics
Students learn the skills to use vector-based illustration programs to create color graphics using various basic bezier functions of the programs, such as the pen tool, basic shapes tool set, brushes, type and related sub-menus. Fundamentals of color, including gradient, radial, blend, and mesh gradient functions are taught. Comprehension and correct usage of terminology/vocabulary concepts are emphasized. Studio 4, Credit 2 (W, S)

0825-211 Basic Design
Emphasis is placed on concepts, elements and exploration of basic two-dimensional design principles such as point, line, shape, texture and space, using black-and-white media for presentation of ideas; technical quality in presentation of design concepts is emphasized. Studio 4, Credit 2 (F, W)

0825-212 Color in Design
In this course, color theory is emphasized and concepts learned in Basic Design are applied using color media and materials to solve basic design problems. Technical quality in presentation of design concepts is emphasized. (0825-211) Studio 4, Credit 2 (W, S)

0825-213 Design for Graphics
Students apply fundamentals of basic design, color theory and composition to explore a wide variety of solutions to simple graphic design problems. Focus will be placed on techniques and tools used to visualize and create clear, effective, well-crafted thumbnails and rough layouts. Emphasis is on process, rather than finished work, and students are encouraged to experiment with a range of media. (0825-212) Studio 4, Credit 2 (F, S)

0825-215 Art Career Seminar
Provides information regarding jobs, titles, roles and paths for careers in the art field. Students identify a specific art field for further personal exploration. They also are expected to arrange and conduct an interview with a professional artist. Development of college survival skills and systematic decision-making related to art careers is further emphasized. Information is presented through presentations, field trips, discussions and research of art careers. (0887-200) Class 2, Credit 2 (W,S)

0825-221 Basic Typography
Students learn the fundamentals and principles of typography, including type measurement/point sizes and type classification/type families, identification of typefaces, effective use of letter spacing, word spacing, line spacing, line length and type arrangements. (0825-109,110) Studio 4, Credit 2 (F,S)

0825-230 Electronic Layout Programs
Computer page layout programs are taught through the use of professional tutorials and supplemental practice materials. Students acquire a good working knowledge of page layout software used in most graphic design studios and agencies (0825-109, 110) Studio 4, Credit 2 (F,S)
0825-281 Drawing Applications
An advanced course refining freehand and technical drawing concepts, methods and techniques developed in Perspective Drawing, Figure Drawing and Drawing Composition. Emphasis is on development of advanced drawing skills, using various subjects, media and processes. Elective course for both art and computer design students and students in other majors. (0825-208) Studio 4, Credit 2 (W)

0825-282 Applied Art Photography
Use of photographic processes as they relate to the applied artist. Emphasis is on understanding and using the camera, black-and-white film processing, contact printing and enlarging. Students practice darkroom procedures and methods for obtaining a well-crafted photographic image. Elective course for both art and computer design students and students in other majors. Studio 4, Credit 2 (F, S)

0825-284 Three-Dimensional Applications
Extends basic concepts, principles and methods as they apply to three-dimensional form. Emphasis is on material characteristics, tool/material processes, construction techniques and craftsmanship. Elective course for both art and computer design students and students in other majors. Studio 4, Credit 2 (W, S)

0825-299 Cooperative Work Experience: Art & Computer Design
This 10-week, full-time experience gives studentsmatriculated in the art and computer design program a sampling of the world of work in the applied art field under the supervision of qualified professionals such as production managers and art directors. Students complete a workbook as part of this experience. This experience must be satisfactorily completed before the student enrolls in the final courses in the major. (0806-101, 0825-324, 334, 344) Credit O (F, W, S)

0825-301 Graphics for Communication
Using design concepts and practices learned in the first level of the program, students work through steps of the design process, including definition and research of simple graphic design problems, development and presentation of solutions through clear, well-executed thumbnail sketches, roughs and comprehensive layouts. Students learn how to select printing papers and finishing methods. Major emphasis is given to verbal presentation of layout ideas, group production meetings and group critiques. (0825-210, 213, 230) Studio 6, Credit 3 (F, W)

0825-310 Digital Illustration
Provides students with comprehensive skills in the area of computer illustration. Students focus on comparison, use, integration and functions of several illustration photo manipulation software programs, to create professional-quality renditions for print publication. (0825-109,110,208,210,212) Studio 4, Credit 2 (F, W)

0825-315 Art History I
Survey of major historical developments in the visual arts as they relate to the field of art, specifically examining art fromprehistoric times to the late Renaissance at the end of the 16th century. Class 3, Credit 3 (F)

0825-316 Art History II
Survey of major historical developments in the visual arts, specifically examining Western art from the Baroque period of the 17th century to the post-Impressionists to current movements in fine art. (0825-315) Class 3, Credit 3 (W)

0825-317 History of Graphic Design
Survey of art and design movements, designers and typographers who have made significant contributions to the field of graphic design. (0825-316) Class 3, Credit 3 (S)

0825-321 Type in Design
Students focus on selection of appropriate type to best communicate a message, use of type as an integral part of a design, how to choose letter, word and line spacing, line length and type arrangement. Emphasis is on working with type and grids, legibility and readability, proofreaders’ marks and proofreading and copy specification. (0825-105, 210, 212, 221) Studio 4, Credit 2 (F, W)

0825-324 Introduction to Print Design
An overview of the Print Design concentration introduces students to the various areas within the general field of print design, including corporate graphic design, information design, advertising/promotion design, and publication design/editorial design. Students become familiar with the broad range of print design, and students are required to create several examples of print design. Students also are expected to use correct graphic design vocabulary and demonstrate understanding of design principles and the design process by discussing and evaluating their own and others’ work. (0825-301, 310, 321) Studio 4, Credit 2 (W, S)

0825-326 Grid Systems
Provide students with knowledge needed to understand and utilize grids and other organizational systems to solve graphic design problems. Students are asked to use pre-designed grid systems and will design and apply their own systems to solve graphic design problems related to publication page layout, as they become proficient in understanding and use of these systems. This course is part of the Print Design concentration. (0825-324, 334, 344) Studio 4, Credit 2 (F, S)

0825-327 Identity Systems Design
Emphasis is placed on design and development of identity symbols/logos/logotypes and systems of identification for corporations, businesses and organizations, as well as individuals including business cards, letterheads, envelopes, invoices and other components. Focus is placed on analysis of company need, audience, budget, compatibility, design consistency, and practicality of use. This course is part of the Print Design concentration. (0825-324, 334,344) Studio 6, Credit 3 (F, S)

0825-328 Multi-page Design
Focus is on layout and design of multi-paged printed graphics including brochures, booklets, catalogs, calendars, and magazine spreads using grids and other organizational systems. Issues such as page sequencing and pagination, design flow and consistency through the layout/design and successful communication of the client’s needs are addressed. Projects are completed using page layout software that is consistent with industry standards. This course is part of the Print Design concentration. (0825-326, 327) Studio 6, Credit 3 (F, W)

0825-333 Introduction to Production
Course provides an overview of the Production concentration and students learn the fundamentals of preparing production art for black and white and color reproduction and using page layout and illustration software. Technical vocabulary related to preparing artwork for printing is emphasized. (0825-301, 310, 321) Studio 4, Credit 2 (W, S)

0825-336 Production Applications
Students continue to learn skills needed to produce art for black and white and color reproduction. Students use computer skills to create and prepare more complex, multi-page production art. Technical vocabulary related to preparing artwork for printing is emphasized. (0825-324, 334, 344) Studio 6, Credit 3 (F, S)

0825-344 Introduction to Web Design
An overview of the Web Design concentration is provided and students are introduced to the fundamental skills needed to use the World Wide Web, learn basic HTML programming for graphics, and legal issues of the Internet. Issues concerning successful use of typographic, color and composition are discussed. Students are expected to create web pages that demonstrate their understanding and use of basic design principles. (0825-301, 310, 321) Studio 4, Credit 2 (W, S)

0825-346 Creating Web Graphics
Internet graphics and how they are related to the World Wide Web are introduced. Students gain in-depth knowledge of graphics preparation and optimizing graphics for use on the Internet. Course content includes exploring the Internet, using various programs to create and optimize images for use on the Internet, and the use of basic HTML programming. Vocabulary of the Internet, various graphic file formats, compression schemes, and concepts of effective graphic communication on the Internet are also discussed. This course is part of the Web Design concentration. (0825-324, 334, 344) Studio 4, Credit 2 (F, S)

0825-347 Designing Web Sites
Students continue to learn how to use design elements successfully to create a multi-page web site. Students are introduced to the concept of web site design, site navigation theories, and the management of a multi-page web site. Students explore advanced techniques of web design with the inclusion of video and programmed elements. This course is part of the Web Design concentration. (0825-346, 8005-251) Studio 4, Credit 2 (F, W)
Applied Computer Technology

0805-201 Applications Software
This course is an introduction to computers and problem solving using general-purpose application software. Students solve a variety of problems by using application software tools such as a word processor, a spreadsheet, a presentation package, and a database program. Class 3, Credit 3 (F, W, S)

0805-205 Introduction to Midrange Computer Operations
This course introduces the major components of the operating system and hardware of a mid-range computer. Students build skills in the shared use of peripheral equipment and use of computer-based messages, queues, and business applications. Class 2, Lab 2, Credit 3 (F, W)

0805-206 Command Language Utilities for Midrange Computers
Students learn how to use application development tools (like Source Entry Utility) and how to manage libraries, files, members, and user-defined options. Students also develop a working knowledge of the command language used by most system operators of midrange computers, such as commands for manipulating files, compiling command language programs, performing a specified set of tasks, monitoring run-time error messages, and working with message queues, output queues, and library lists. (0805-205) Class 2, Lab 2, Credit 3 (F, W)

0805-207 Multiprogramming & Spooling for Midrange Computers
Students are introduced to system administration of a midrange computer system in a multiprogramming environment, including queue control and general control of a spooling system. Students study the requirements for the physical environment, networking environment, operating systems environment, and user’s work environment. While they learn to maintain the total computing environment, students study the hardware architecture of an example midrange computer and its requirements for physical security, electrical environment, and atmospheric requirements. (0805-206) Class 2, Lab 2, Credit 3 (W, S)

0805-210 Data Processing for Business Occupations
An introduction to the use of computers in business-related applications. Concepts of interacting with the computer function of a business as well as hands-on use of computers are presented. (Second-year standing in business occupations) Class 3, Credit 3 (W)

0805-212 Applied Circuits I
A first course in circuits that introduces students to the fundamentals of direct current (DC) and alternating current (AC) electricity. Students become familiar with fundamental concepts of conductivity, resistivity, laws of attraction and associated engineering notation and prefixes. Topics covered include power, energy transfer, open- and short-circuit diagnosis. Through hands-on laboratory projects, students will acquire an understanding of fundamental DC and AC, voltage and resistance and will develop skills for connecting and measuring series and parallel DC and AC circuits. Digital multimeters (DMMs) are used to measure and troubleshoot breadboard circuits. Class 3, Lab 2, Credit 4 (F, W)

0805-213 Applied Circuits II
A second course in circuits where students continue to study concepts of electricity related to direct current (DC) and alternating current (AC) circuits, including power, energy transfer, open- and short-circuit diagnosis. Topics include series and parallel circuits, resistance, capacitance, inductance, conductance, DC/AC power and transformers. Through hands-on laboratory projects, students will acquire an understanding of AC/DC current, voltage and resistance; build skills in connecting and measuring series, parallel, and series-parallel circuits. Oscilloscopes and DMMs will be used to measure and troubleshoot breadboard circuits. (0805-212) Class 2, Lab 2, Credit 3 (W, S)

0805-215 PC Operating Systems
This course is designed to acquaint students with the structure and function of microcomputer operating systems and to provide the skills required to install, configure, and maintain them. Topics include system concepts, system-level commands, and commands relating to program, file, and applications management. Students perform a variety of functions including OS installation and configuration, application program installation and management, creation and management of directories and file structures, partitioning and preparation of storage media. Class 3, Credit 3 (F, W)

0805-216 PC Hardware I
This course introduces the fundamental hardware concepts of IBM-compatible personal computer (PC) systems including their structure and components. The skills required to install, upgrade and maintain PCs are presented. Hands-on topics include the identification and handling of basic computer hardware, input/output devices, and data communications. Various methods of upgrading microcomputers are presented. (0805-215) Class 2, Lab 1, Credit 3 (W, S)

0805-217 PC Hardware II
This course provides students with methodologies and hands-on activities related to the configuration, diagnosis, repairing, and preventive maintenance of microcomputers. Topics include familiarization with the basic functions and use of test equipment, logical troubleshooting of internal system conflicts and faulty peripherals, electrical safety, and methods of maintaining computer equipment. (0805-216) Class 1, Lab 3, Credit 3 (F, S)

0805-220 Introduction to UNIX
This course is designed to address the basics of the UNIX computer operating system. Salient features of mainstreamed operating systems covered in PC operating systems and other systems such are reviewed in this course and compared with similar UNIX functions to illustrate efficiencies of various operating systems. Topics include language commands; mail; network communications; directory and file structure; the editor; shell, pipe, and filter concepts. (0805-215) Class 3, Credit 3 (F, W)

0805-224 Networking I
This first course focuses on stand-alone local area networks (LANs) of microcomputers. Students study network configurations, cabling, physical layer protocols, and network operating systems. Students add computer equipment to a LAN, install software and identify and correct hardware and software incompatibility problems. (0805-217) Class 2, Lab 2, Credit 3 (F, W)

0805-225 Networking II
This second course in networking builds on concepts learned in Networking I. Topics focus on connecting local area networks (LANs) of personal computers with other LANs, wide area networks (WANs), and minicomputer/mainframe computers. (0805-224) Class 2, Lab 2, Credit 3 (W, S)

0805-226 Networking III
This third course is designed to provide students with skills in implementing and maintaining the network infrastructure required to support intranets/Internet. Topics include implementing and administering of internet/intranet services of appropriate server platform, applications, WAN technologies, security, reliability, and coordination with content providers. Heavy emphasis is placed on hands-on problem solving. (0805-225) Class 2, Lab 2, Credit 3 (F, S)

0805-230 Programming I
A first course in programming that introduces students to general programming concepts and enables them to design simple Windows-based business applications. Course focus is on problem-solving methods, design, and writing of simple Windows-based applications with an emphasis on logic skill development. The course serves as a foundation for future programming courses. Programming projects are required. (0805-215) Class 3, Credit 3 (F, W)
0805-231 Programming II
A second course in programming where students learn to write modular, well-documented programs and are introduced to computer programming constructs. Course focus is on problem analysis, design, and writing of typical Windows-based business applications with emphasis on logic skill development. Programming projects are required. (0805-230) Class 3, Credit 3 (W,S)

0805-240 Fundamentals of Digital Logic
This course introduces the fundamentals of digital logic, devices and circuits. Topics include binary arithmetic, truth tables, Boolean algebra, logic gates, counter, flip-flops, multiplexers and decoders. Common digital decoders will be used to drive LED and LCD displays. Troubleshooting procedures will be studied, including static and dynamic tests. Digital multimeters (DMMs) are used to measure and troubleshoot breadboard circuits. (0805-213) Class 2, Lab 2, Credit 3 (F, S)

0805-245 Fundamentals of Electronics
This course covers the fundamentals of electronic components and circuits, including diodes, rectifier circuits, bipolar transistor switches, SCRs, op amps and power supplies. Various types of field effect transistors, IC operational amplifiers and their applications will be studied. Laboratory equipment such as oscilloscopes, digital multimeters (DMMs) and power supplies will be used for measuring devices and circuits. (0805-213) Class 2, Lab 2, Credit 3 (F, S)

0805-251 Internet Technologies I
This course addresses the basics of the Internet, including introduction to the Internet, Web browsers, searching/researching on the Internet, creating and maintaining home pages with page/site-creation applications, multimedia on the web, and introductory level Web programming. (0805-201, 215) Class 3, Credit 3 (W, S)

0805-252 Internet Technologies II
This course continues Internet Technologies I, by addressing intermediate topics for the Web, including: using hypertext programming and scripting languages to enhance Web pages, creating links between home pages and databases maintained outside of the Web, and creating advanced multimedia for the Web (for example, image maps, animations, audio, and movies/video). (0805-231,251) Class 3, Credit 3 (F, S)

0805-299 Co-op: Applied Computer Technology
Credit 0 (F, W, S, SU)

0805-301 C++ Programming I
The first course in a two-quarter sequence in C++ programming. Topics include elementary data types, C++ control structures, arrays, records, functions with parameters, and introductory object-oriented programming concepts. (0805-231) Class 4, Credit 4 (W, S)

0805-302 C++ Programming II
Second in a two-quarter course sequence in C++ programming. Topics include additional information on data types, C++ control structures, arrays, records, functions with parameters, and introductory object oriented programming concepts. This sequence is intended to give students beginning skills in C++ programming. (0805-301) Class 4, Credit 4 (F, W)

0805-305 Spreadsheet Software
This course provides students with an in-depth study of spreadsheets and how they are used as a productive tool in business. Students are given hands-on instruction on how to create and manipulate spreadsheets to solve common business problems and how to use the built-in language found in spreadsheet software to automate the solution to a variety of spreadsheet problems. (0805-201,230) Class 3, Credit 3 (F, S)

0805-310 Microcomputer Database Software
Creating, inquiring, reporting and other functions of databases. A leading database software product for microcomputers is studied. Students design a database, establish criteria for data to be accepted and coded, and prepare views of the database contents. Database utilization in the business environment and application to the student’s expected work environment is presented. (0805-201, 231) Class 3, Credit 3 (F, W)

0805-311 RPG Programming I
An introduction to the report program generator language (RPG). This course covers program logic, flowcharting, writing programs in WG, and entering the programs and related files on a mid-range computer. Students practice debugging and executing programs. Break logic, exception reporting and the use of databases for input are presented. (0805-231) Class 3, Credit 3 (F, W)

0805-312 RPG Programming II
A continuation of RPG Programming I. Advanced applications such as screen design, on-line processing: real-time updating, and 'file updating are topics used for programs the students write, debug and execute. (0805-311) Class 3, Credit 3 (W, S)

0805-315 Introduction to Desktop Publishing
Provides a hands-on introduction to the use of desktop publishing software on computer platforms. The mechanics of the use of software products to create and-integrate text and graphics is presented. Technical topics including file formats and file exchange are stressed over design considerations. (0805-216, 251) Class 3, Credit 3 (W,S)

0805-325 Database Systems
In this course, which uses a midrange computer system, students learn the basic criteria for data to be a relational database, the use of basic relational database commands such as record selection and joining of databases, SQL, and extraction and formatting of data for reports. Students design a database, establish criteria for data to be accepted and coded, and prepare views of the database contents. (0805-206,231) Class 4, Credit 4 (S)

0805-330 Microprocessor I
This is the first course in a two-course sequence in microprocessors. Students will learn how to control microprocessors using assembly language to control importing and exporting of data to and from external devices through the I/O ports of a computer and to control the operation of a microprocessor. Programming assignments will be required. (0805-230, 235) Class 2, Lab 2, Credit 3 (F, S)

0805-331 Microprocessor II
This is the second course in a two-course sequence in microprocessors. This course will cover internal microprocessor architecture and interfacing to external devices through analog and digital means. Students will use a C-based compiled assembler to control a specific microprocessor. A/D converters, I/O ports, interrupts and DMA will be covered in detail. Depth pin-outs and pin functions, clock generators, bus buffering, latching and timing will be covered. (0805-330, 0805-245) Class 2, Lab 2, Credit 3 (F, W)

0805-340 Visual Programming Language I
This is the first course of a two-quarter sequence in visual programming language (VPL). Topics include pick and drop data controls, module and variable declarations, property boxes, form design windows, code design windows, event generators, and introductory visual object oriented programming concepts. This course is intended to give students beginning skills in graphical user interface (GUI) programming. (0805-231) Class 4, Credit 4 (W,S)

0805-341 Visual Programming Language II
This is the second course in a two-quarter sequence in visual programming language (VPL). This course covers advanced topics such as error handling, client/server applications, procedure calls, functions and application program interfaces (APIs, OLE, multiple document interfaces, and dynamic linked libraries. The two-course sequence is intended to give students an in-depth background in developing GUI client/server applications and basic technical writing in the form of on-line help screens. (0805-340) Class 4, Credit 4 (F,W)

0805-345 Groupware Administration
This course builds on skills previously developed in Networking I and II courses. Students acquire an understanding of the structure and functionality provided by groupware and obtain hands-on experience in installing and administering a groupware product across heterogeneous platforms. Topics include installation, security, users, groups, and backup, as well as integration with the Internet, relational database management systems (RDBMS), and other productivity software. (0805-225) Class 2, Lab 2, Credit 3 (S)

0805-350 PC Electronics & Interfacing
This course provides a deeper understanding of software/hardware electronics interfacing theory and applications. Topics include fundamental understanding of DC and AC electricity, and how it applies to computers and their peripherals. Software/hardware program interfacing and testing of general real-world applications such as computer telephony, video/audio communication and the interconnection of digital devices are also included. Students become familiar with electronic test equipment such as digital multimeters (dmm), oscilloscopes and such, and how they are used in the laboratory to diagnose hardware and software problems. (0805-217, 231) Class 2, Lab 2, Credit 3 (S)
0805-355 Industrial Controls
This course will familiarize the student with various industrial controls and devices used in a manufacturing environment. The most commonly used DC and AC motors and servos will be studied. Motor controls, containing commonly used sensors, vision and feedback systems will be studied. Programmable logic controllers will be studied from both a hardware and software perspective. (0805-225, 0805-245, 0805-330) Class 2, Lab 2, Credit 3 (F/W)

0805-360 Command Language Programming
This course is a continuation of Control Language/Utilities for Midrange Computers. Students expand their knowledge of control language commands and learn the use of variables and control commands, and how to pass parameters between processes for control language programs. Exercises may include writing control language programs for basic error handling, monitoring messages, and controlling work management. (0805207,231) Class 2, Credit 2 (F)

0805-370 Fiber Optic Cable: Uses & Maintenance
This course introduces fiber optics and parallels the objectives of the National Association of Communication Contractors fiber optic cable installer training. Students will learn the basic fiber systems, which consist of a light-emitting diode or laser transmitter, fiber optic cable, connectors and a receiver. The course is primarily oriented to connectorization of cable ends and their evaluation using the optical time domain reflectometer (OTDR). (0805-224) Class 2, Lab 2, Credit 3 (W, S)

0805-375 Telecommunication Concepts
This course introduces concepts in both analog (voice) and digital (data) telecommunications. Topics covered include plain old telephone service (POTS), in-home wiring service, telephone operation, number coding, routing, transmission media and other appropriate telephony topics. Private branch exchanges (PBX) and Centrex also will be discussed. (0805-225) Class 2, Lab 2, Credit 3 (S)

0805-398 Special Topics: Applied Computer Technology
Credit variable (F, W, S)

0805-399 Independent Study
Credit variable

Automation Technologies

0891-201 Survey of Automation Technologies
This course introduces students to the Automation Technologies program, its entry and graduation requirements and its employment options. The course uses examples of automated manufacturing systems to promote an understanding of their configuration and the processes that are involved. Installation, preventative maintenance and troubleshooting are introduced, as are the procedures, tools and instrumentation used by technicians. The importance of quality control, safety practices and teamwork in an automated manufacturing environment is emphasized. Class 1, Lab 6, Credit 3 (F)

0891-210 Pneumatic & Hydraulic Systems
The basics of fluid power are the course focus. Areas of study include pressure, viscosity, turbulence, flow, thermal properties and displacement. Hydraulic/pneumatic components such as pumps, actuators, valves, accumulators, lines, directional controls, sealing devices, servomechanisms are introduced, as are the tools and procedures used to install and maintain hydraulic/pneumatic systems. (0885-201) Class 1, Lab 6, Credit 3 (S)

0891-214 Electromechanical Devices
This course introduces various devices used in the manufacturing environment for automation control. The most commonly used AC and DC motors, stepper motors, motor controllers and servomotor drives are used in laboratory set-ups along with sensors and transducers used in monitoring or controlling the manufacturing process. Relays, contacts, starters, symbols, ladder diagrams, motor connections, overload protection and interlocking schemes are studied. In addition, control loops, feedback, rate response, proportional control, process instruments and sensor interfaces as they apply to automatic control systems are studied in detail. (0805-240, 0891-201) Class 2, Lab 6, Credit 4 (S)

0891-216 Programming Concepts
This course introduces problem solving processes and programming concepts as they can be used to guide automation control systems and other automated system subsystems. Programming structure and flowcharting are studied. Students are exposed to programming applications with automated control systems and are expected to write simple programs. Class 3, Lab 3, Credit 4 (S)

0891-218 Robotics Fundamentals
Students begin to learn about industrial robots and their applications in automated manufacturing industries. Students learn robotic safety practices, robotic coordinate systems, basic mechanics and power systems for robots and some interfacing considerations. This course helps students to choose a concentration in either the semiconductor technology option or the applied robotics option. (0891-210, 0891-214) Lab 2, Credit 1 (F)

0891-220 Automated Systems I
This course reinforces previously learned subsystem level skills while introducing additional concepts and skills at a system level. System assembly, wiring, programming, networking, monitoring (data collection and analysis) and troubleshooting are addressed. Basic robotic technology is introduced as part of an automated system. Students also work in a semiconductor cleanroom environment in preparation for choosing a concentration in either the semiconductor or the applied robotics option. (0891-210, 0891-214) Class 1, Lab 6, Credit 3 (F)

0891-230 Automated Systems Troubleshooting I
This course introduces skills associated with performing basic system maintenance and troubleshooting. Maintenance sheets, along with the appropriate equipment manuals, procedures, tools and instrumentation to safely and correctly perform the maintenance functions are considered. Analysis of data from system performance charts are interpreted and used to make necessary process or equipment adjustments. Skills needed to diagnose and repair a system fault in a safe and logical manner will be introduced and performed according to manufacturer specifications. (0891-220) Class 2, Lab 6, Credit 4 (W)

0891-299 Independent Study
Credit 0 (F, W, S)

0891-314 Programmable Logic Controllers (PLC) Programming
Students begin to learn about the use of programmable logic controllers (PLCs). Content includes the concepts of PLC programming and interfacing and the development of PLC applications. Students use PLC program development software, test PLC applications, and modify PLC programs to effect process changes as indicated. (0891-220) Class 2, Lab 6, Credit 4 (W)

0891-316 Mechanical Devices & Systems
This course builds on coursework introduced in prior physics and automated systems courses. Students learn about mechanical components found in transmission pathways of automated systems including drive mechanisms, pallet changers, shifters, conveyers, gears and linkages. Students analyze factors contributing to mechanical failure such as load and torque. Effects of changes in pressure, direction, force, speed and other physical parameters are also studied. Students work with simulated modules and automated systems with mechanical components. (0885-203, 0891-220) Class 1, Lab 6, Credit 3 (W)

0891-318 Applied Robotics
Students use, maintain, develop and debug robotic programs. Course content requires that students learn the concepts related to robotic programming and interfacing as well as the applications that use robotics. Using lab experiments and robotics program development software students learn to set up, install, download, diagnose, write, manipulate and test programs in automated manufacturing environments. (0891-220) Class 2, Lab 6, Credit 4 (S)

0891-320 Automated Systems II
This course builds on the system level skills developed in Automated Systems I and Automated Systems Troubleshooting I. Students encounter advanced robotic operations, process and equipment control using programmable logic controllers and material transport systems as they learn to work with product changeovers relative to upgrading or retrofitting a flexible manufacturing cell. Human machine interfaces (HMI) and electronic operator interfaces (EOI) are used for machine-user interfacing. (0891-230, 0891-238, 0891-314) Class 1, Lab 6, Credit 3 (S)

0891-330 Automated Systems Troubleshooting II
This advanced troubleshooting course not only incorporates all the maintenance and troubleshooting skills developed in Automated Systems Troubleshooting I for basic system maintenance, diagnosis and repair, but also introduces maintenance and troubleshooting of the more difficult and advanced system areas such as networked controllers, vision systems, advanced robotics, programmable logic controllers, and other systems and subsystem components where hardware and software are heavily integrated for system operation. (0891-320) Class 2, Lab 6, Credit 4 (F)
0891-340 Semiconductor Manufacturing
This course is an introduction to fundamental semiconductor properties and silicon processing technology. Students are introduced to the individual processes utilized in the fabrication of silicon circuits such as epitaxial growth, chemical and physical deposition of amorphous and polycrystalline films, thermal oxidation, diffusion, ion implantation, microlithography and etching processes. In the lab, students have the opportunity to observe the equipment involved at each step of the process. Students experience the fabrication process from the initial design phase through the production of an operational silicon circuit. (0891-230) Class 2, Lab 6, Credit 4 (S)

0891-344 Vacuum & RF Technology
This course provides concentrated study in vacuum and RF technology and its applications. Vacuum topics addressed include vacuum system components, vacuum pumps and pumping systems and complete vacuum system configurations, considerations and maintenance. The RF portion of the course includes introduction to RF principles for semiconductor manufacturing, RF plasma system components, RF systems and their applications and RF subsystems. Students learn maintenance and troubleshooting practices and various measurement techniques and safety considerations utilizing high technology equipment. (0891-230) Class 1, Lab 6, Credit 3 (F)

0891-350 Semiconductor Tooling
Students are introduced to several semiconductor tool sets used in the chip fabrication process. Set up, maintenance and repair of the tool set is the course focus. Students use a variety of resources and tools including assembly drawings and manuals, manufacturing specifications, assembly/disassembly procedures for parts or assembly replacement, hand tools and instrumentation. In addition, use of calibration and maintenance logs, computer user interface operation and diagnostics and correct protocol for working in a clean room environment are addressed. (0891-340) Class 2, Lab 6, Credit 4 (F)

0891-398 Special Topics: Automation Technologies
Credit variable (F, W, S)

0891-399 Independent Study
Credit variable (F, W, S)

Business Technology/ Administrative Support Technology

Administrative Support Technology

0804-101 Orientation to Business
Broad overview of the form and structure of American business. It provides students with a basic knowledge of the history, organization and operation of business and its particular vocabulary. Students use a microcomputer in a market simulation. Class 4, Credit 3 (F, W, S)

0804-110 Business English
This self-paced course provides proofreading and editing skills as they relate to typewritten communications. Course content includes rules for word division, capitalization, numbers, abbreviation style, spelling and business letter writing. Designed specifically for students enrolled in courses in the business occupations department. Class 3, Credit 3 (W, S)

0804-111 Keyboarding
These courses are for students with limited keyboarding experience and for those who keyboard below 25 net words per minute. Keyboarding focuses on skill development, introduction to the computer, and basic formatting. Keyboarding students are expected to exit this course with a 20 words proficiency per minute for five minutes. Business correspondence, reports, and tables are prepared in the Formatting course and students are expected to exit this course with a 25 net words per minute proficiency. Lecture 3/Lab 2 (contact hours). Credit 4 (F, W, S)

0804-112 OAS-Formatting
These courses are for students with limited keyboarding experience and for those who keyboard below 25 net words per minute. Keyboarding focuses on skill development, introduction to the computer, and basic formatting. Keyboarding students are expected to exit this course with a 20 words proficiency per minute for five minutes. Business correspondence, reports, and tables are prepared in the Formatting course and students are expected to exit this course with a 25 net words per minute proficiency. Lecture 2, Lab 2, Credit 3 (F, W, S)

0804-113 OAS-Document Production I
This course focuses on enhancements to business correspondence, reports, and tables produced on a microcomputer using current software. Skill development continues with an expected exit speed to 30 net words per minute for five minutes. Lecture/Lab 5, Credit 4 (F, W, S)

0804-114 Keyboarding for Nonmajors
Offered to students who possess O-20 words per minute keyboarding speed. The focus of the course is to facilitate inputting of alphabetic, numeric and other character information on a microcomputer and on an electric typewriter using a standard keyboard. Students are expected to exit this course with a keyboarding speed of 25 words per minute for three minutes. Open to all NTID students. Class 4, Credit 2 (F, W, S)

0804-211 Records Management & Business Calculation
This sequence of courses develops basic skills in current business procedures related to general office functions. Skills include the use of electronic mail, current records management systems and introduction to Paradox databases, the correct use of business machines, and the manual and automated computerized keeping of payroll records using Lotus 1-2-3 software. Students develop skills applicable to a variety of office settings. Class 5, Credit 3 (F, W)

0804-212 Payroll/Spreadsheet Applications
This course develops basic skills in current business procedures related to general office functions. Skills include the use of electronic mail; current records management systems and introduction to Paradox databases; the correct use of business machines; and the manual and automated computerized keeping of payroll records using Lotus 1-2-3 software. Students develop skills applicable to a variety of office settings. Class 5, Credit 3 (W, S)

0804-221 OAS-Document Production II
Emphasis on the improvement of basic skills and their application to a variety of realistic office projects. Students type correspondence, reports and tables on a microcomputer using current software. Applied accounting and office technologies students are expected to exit with a net speed of 40 words per minute for five minutes. (0804-113) Class 3, Lab 2, Credit 4 (F, W, S)

0804-230 Office Technology Seminar
Gives students an opportunity to prepare for employment through field trips, mentoring and guest lectures. Topics for discussion are identified by students enrolled in the seminar. Topics covered may include time management, career development and personal/social development skills necessary for job success. Students are expected to participate in planning class sessions. (Office technology diploma status) Class 2, Lab 2, Credit 3 (S)

0804-244 Fundamentals of Management
Focuses on theory and practice basic to the management process. Students use case studies, lectures and simulations to study planning, organizing, directing, staffing and controlling functions. Also introduces students to motivation and leadership theory as it relates to the role of a manager. (0804-101) Class 4, Credit 3 (F, W)

0804-246 Fundamentals of Marketing I
Introduction to the field of marketing and its strategies. Topics include consumer behavior and its effect in the marketplace, product research and planning, pricing, distribution channels, marketing institutions, advertising and promotion. (0804-101) Class 4, Credit 3 (S)

0804-290 Small Business Organization
An elective course for business students but available to students who have completed the prerequisites and have a desire to learn entrepreneurial skills for starting a business. Each student writes a business plan describing a selected business. (0804-201, 0804-284, or 0804-286) Class 4, Credit 3 (S)

0804-291 Applied Business Techniques
Gives students an opportunity to review skill-oriented course work on a microcomputer prior to graduation and job entry. Skill review includes production and speed typing, payroll procedures, records management techniques, word processing and database applications using various software packages. (0804-301) Class 3, Credit 2 (F, W, S)

0804-299 Co-op: Administrative Support Technology
Credit 0 (SU)
Computer Aided Drafting Technology

0890-201 Computer Aided Drafting I
Students learn the basic AutoCAD commands necessary to create and edit 2-D drawings. Students are introduced to drafting conventions and project types associated with the manufacturing and construction industries. Lab 6, Credit 2 (F)

0890-202 Computer Aided Drafting II
Students learn advance 2-D drafting with AutoCAD. This course covers commands designed to make the user more productive. Topics include advanced data input, grips, attributes, advanced dimensioning commands, external references, model and paper space viewpoints, and basic 3-D. (0890-201) Lab 6, Credit 2 (W)

0890-204 Computer Aided Drafting Technology Seminar
The course provides students with information regarding careers in the A/E/C and manufacturing industries. Activities include field trips, hands-on experiences, career information presentations, self-assessment testing, group discussion, and interaction with technical and professional people in the field. These activities help students decide on a CADT career option of study. (0890-201, corequisite 0890-202) Class 2, Lab 3, Credit 3 (W)

0890-206 Manufacturing Measurement Systems
This course provides students with hands-on experience with basic measuring instruments used in the manufacturing industry. Students practice measurement skills in classroom and laboratory settings as well as use computer simulations. Care and handling of the instruments, data collection, data management, data analysis and calculations will be developed. Students will learn standard procedures to communication, report, and display measurement information. Class 1, Lab 3, Credit 2 (S)

0890-208 A/E/C Measurement Systems
This course provides students with hands-on experience with basic measuring instruments used in the A/E/C industry. Students practice measurement skills in lab and field settings as well as using computer simulations. Care and handling of the instruments, data collection, management, analysis, and other calculations are developed. Students learn standard procedures to report and display measurement information. Class 1, Lab 3, Credit 2 (S)

0890-210 Construction CAD I
Students learn to apply 2-D and 3-D CAD techniques to a one-story construction project on a level site. Concepts associated with 3-D elements (wall, floor, foundation, deck, and roof) are integrated into the creation of a virtual 3-D model. Students will derive a series of orthographic (plan, section, elevation) and pictorial views from the model. 2-D features (site boundaries, setbacks, location of the structures on the site, sewer alignment, road, driveway, parking layout, and building access) are included in a 2-D drawing on which plan views of the 3-D models are overlaid. All these drawings are organized on sheets according to accepted conventions. (0890-202) Lab 12, Credit 4 (S)

0890-215 Manufacturing CAD I
This course introduces students to basic 3-D manufacturing CAD concepts. Students will create a solid model that they will translate into 2-D drawings. The topics will include basic drawing techniques such as orthographic projections, dimensioning, and engineering detail drawings. Lab 12, Credit 4 (S)

0890-220 Construction CAD II
Students learn to apply 3-D CAD techniques to a bi-level construction project situated on a site with modest topographic features. Concepts associated with structural systems are integrated into the construction of the 3-D model. Students will extract a series of orthographic and pictorial views from the model, producing a comprehensive set of working drawings. (0890-210) Lab 12, Credit 4 (F)

0890-225 Manufacturing CAD II
Students apply the concepts learned in Manufacturing CAD I to the intermediate level of manufacturing 3-D computer-aided drafting. Students, working in teams to simulate an industrial drafting team, will create solid assembly models and extract the parts into 2-D engineering working drawings. Students will make presentations on their portion of the team project. Topics to be taught are 3-D assemblies, methods of assembly, materials and methods of manufacturing, intermediate level engineering working drawings, and tolerances and fits. (0890-215) Lab 12, Credit 4 (F)

0890-230 Construction CAD III
Students learn to apply 3-D CAD techniques to a multi-level construction project situated on a site with significant topographic features. Students will function as a team to create a total project model. Concepts of structural systems will be integrated into the construction of the building models. Students will extract and refine a series of orthographic views from the site and building models such that a comprehensive set of working drawings is produced. (0890-220) Lab 12, Credit 4 (W)

0890-235 Electrical CAD
This course covers the principles and practices of printed circuit board drafting and design. Students will design printed circuit boards from schematic diagrams. Topics will include schematic capture, surface-mounted and through-hole mounted theory of printed circuit board design and fabrication. (0890-250, 0890-225) Lab 12, Credit 4 (W)

0890-250 Electronic Components
This course is designed to introduce students to surface-mounted and through-hole electronic components and how they function within a circuit. Students will use CAD to produce schematic diagrams and build breadboards from their schematic drawings. (0890-215) Class 2, Lab 3, Credit 3 (F)

0890-255 Construction Materials & Methods I
Students begin to learn about the common structural materials used in construction. Content includes vocabulary, identification, characteristics, origins, sources, standard sizes and shapes, units of measure, and methods for testing and acceptance. Students use standard references and classification systems for materials and products. (0890-208) Class 2, Lab 3, Credit 3 (F)

0890-260 Geometric Dimensioning & Tolerancing
The course is designed to give students an overview of geometric symbols and how these symbols effect the shape and features of a part r object in relationship to size. Students learn a drawing language that fosters uniform understanding among design, production, and inspection groups. Topics will include form controls, datums, orientation controls, and location controls per industrial standard ASME/ANSI Y 14.5M-1994. (0890-206,215) Class 3, Credit 3 (F)

0890-405 Construction CAD IV
Students learn to apply 4-D CAD techniques to a multi-level, multi-level construction project situated on a site with substantial topographic and structural features. Students will function as a team to create a complete project model. Concepts of structural systems will be integrated into the construction of the building models. Students will extract and refine a series of orthographic views from the site and building models such that a comprehensive set of working drawings is produced. (0890-230) Lab 12, Credit 4 (W)
0890-265 Construction Materials &Methods II
This course is a continuation of the Construction Materials and Methods I course. Students learn standard classification systems and use reference sources to investigate materials and products. Students select construction materials and products and integrate their selections into design solutions. The course focuses on non-structural materials and products associated with the construction industry. (0890-255) Class 2, Lab 3, Credit 3 (W)

0890-270 Introduction to Manufacturing Materials
A study of engineering-related materials/characteristics, structure, and properties as they apply to design and fabrication. The emphasis will be on metallic, polymeric, ceramic, and composite materials as related to atom movement and phase changes. (0890-225, 250) Class 2, Lab 3, Credit 3 (W)

0890-275 Principles of Structural Systems
Students learn the basic concepts of loads and stresses and how the structural members of a construction project support loads. This overview includes the practical aspects of how structural elements are assembled and incorporated into construction projects. (0890-208, corequisite (0890-255)) Class 3, Credit 3 (F)

0890-299 Co-op: Computer Aided Drafting Technology
Credit 0 (SU)

0890-310 Advanced Construction CAD
Students develop the CAD drafting skills gained in previous courses by adding skills in design development. The project, a building of two or more stories, requires the synthesis of information and principles both from previous courses and from reference sources. The use of these reference sources is an important part of the instruction. (0890-230, 265, 275) Lab 15, Credit 5 (S)

0890-315 Electrical/Mechanical CAD Design
This course includes an electrical/mechanical design project in which students apply the knowledge, concepts, and techniques learned in previous CAD courses. Students create a basic design that includes a printed-circuit board (PCB) interfacing with a chassis and/or mechanical assembly. Students are given engineering design projects to choose from and must decide all the parameters of the design. The course uses a team approach whereby the students simulate a professional drafting team. (0890-235, 370) Lab 15, Credit 5 (S)

0890-320 Presentation Graphics
Students gain specialized skills and knowledge in production of presentation graphics using CAD. Using their general CAD skills as a starting point, they learn to produce various types of 3-D views, fly throughs, virtual reality, and web graphics for presentation of construction projects to clients, agencies, boards, and the public. (0890-310) Lab 15, Credit 5 (F)

0890-325 3-D Solid Modeling
This course covers advanced concepts in solid modeling and also provides students the opportunities to work in teams. Students are given a project that is divided between them. Each student is required to create a part of the project using advanced 3-D CAD techniques. Components used on the project must be researched and downloaded from the web and other digital sources. Students will also use the “no-dimensioning” technique creating 3-D solid modeling assemblies for size and fit. (0890-315) Lab 15, Credit 5 (F)

0890-350 Introduction to Material Processes
The course covers the application processes and techniques to engineering-related materials in the manufacturing of products. Processes emphasized will be machining, cutting, casting, molding, forging, forming, and joining. (0890-270) Class 3, Credit 3 (S)

0890-355 Site Utilities, Mechanical &Electrical Systems for A/E/C
Students learn to identify the basic equipment, requirements and operation of site utilities, mechanical and electrical systems for construction projects. The systems include water supply, sanitary sewers and treatment, storm drainage, solid waste handling, gas, power, telephone, cable services, fire protection, heating ventilating, air conditioning, lighting, communication systems and conveying systems. Students become acquainted with the graphic representation of this equipment and these systems on construction documents. (0890-220,265) Class 3, Credit 3 (S)

0890-360 Internet CAD Applications
Students apply the concepts learned in Internet Technologies I to the hyper-text markup language (NTML) used in CAD applications. Students store their previous CAD projects on their own web page for other students to access. Students use Xerox Corporation software, Intranet Docs, to import, scan, index, search, view, manipulated, and print/plot CAD files. (08905-251) Class 2, Lab 3, Credit 3 (F)

0890-370 Mechanical Components
This course covers mechanical components and devices as they apply to the design and manufacturing of industrial products. The emphases will be on driving systems (belts, chains, pulleys, and gears), couplings, bearings, cams, and linkages. Students will be required to give presentations on the operation of driving systems. (0890-315, 350) Class 3, Credit 3 (F)

0890-375 Construction Regulations
Students gain a general knowledge of laws, codes, ordinances, regulations, approval processes and approving agencies or bodies which affect construction projects. Students gain a basic understanding of how these regulations and processes are applied to the work they will perform. (0890-255, 265, 275) Class 3, Credit 3 (F)

0890-399 Independent Study
Credit variable

Computer Integrated Machining Technology

0812-150 Introduction to Computer Numerical Control
Introduces the principles, concepts and terminology of computer numerical-controlled machining (CNC). Students review CNC history, development and applications and learn basic programming formats and techniques. (0813-135) Class 1, Lab 2, Credit 2 (S)

0812-151 Computer Numerical Control I
Introduction to computer-controlled machine tools. Students develop the skills required to program a machine, using several canned cycles, and to write programs that include point-to-point, linear and circular interpolation operations. (0813-134, 0884-210) Class 2, Lab 5, Credit 4 (W)

0812-152 Computer Numerical Control II
Students use on-line computers to prepare and verify programs. Students are introduced to advanced concepts through computer numerical control programming of a CNC milling machine and a CNC lathe. (0812-151) Class 2, Lab 5, Credit 4 (S)

0812-253 Computer Numerical Control III
Introduces students to computer numerical control. Topics include programming, set-up and operation of machining and turning centers with industrial applications. Programming with manual data input, basic graphics and machine language is emphasized. Safety is stressed throughout the course. (0812-152) Class 2, Lab 5, Credit 4 (S)

0813-100 Career Exploration:
Computer Integrated Machining Technology
Provides students with information regarding a career in computer integrated machining technology and precision machining. Activities may include field trips, hands-on experiences, career information presentations and interaction with graduates of the program and professionals in the field. These experiences help students understand work activities, conditions and settings. Lab 3, Credit 1 (F, W, S)

0813-101 Basic Drafting I
Provides instruction in the principles and techniques of basic drafting for students in other technical programs. The emphasis is on understanding how drawings are made and used in industry. (0884-180) Lab 6, Credit 2 (F)

0813-102 Basic Drafting II
A continuation of Basic Drafting I for students who desire or need greater depth of knowledge of drafting in industry. Topics include auxiliary views, sections, applied mathematics, and isometric and pictorial drawings with greater attention to drawing quality (0813-101, 0884-180) Lab 6, Credit 2 (W)

0813-131 Manufacturing Processes I
Students develop the basic skills necessary to use traditional machine tools. Laboratory instruction simulates an industrial environment. Emphasis on safety in the operation of machines is an integral part of the course. (0884-180) Class 1, Lab 8, Credit 4 (F)

0813-132 Manufacturing Processes II
Students develop the basic skills necessary to use traditional machine tools. Laboratory instruction simulates an industrial environment. Emphasis on safety in the operation of machines is an integral part of the course. (0813-131) Class 1, Lab 8, Credit 4 (W)
Students develop the basic skills necessary to use traditional machine tools. Laboratory instruction simulates an industrial environment. Emphasis on safety in the operation of machines is an integral part of the course. (0813-132) Class 1, Lab 8, Credit 4 (S)

Students apply theory required to set up and operate lathes, milling machines, grinders and precision hand tools. Students also are introduced to nontraditional machining. Greater emphasis is placed on accuracy and quality. Safety is stressed throughout all courses. (0813-133) Class 1, Lab 8, Credit 4 (F)

Students apply the theory associated with the set-up and operations of lathes, milling machines, drill presses, grinders, and bench operations. Students also are introduced to nontraditional machining. Greater emphasis is placed on accuracy and tolerance of machine parts. Safety is stressed throughout all courses. (0813-134) Class 1, Lab 8, Credit 4 (W)

Students apply the theory associated with the set-up and operation of lathes, milling machines, drill presses, grinders, and bench operations. Students also are introduced to nontraditional machining. Greater emphasis is placed on accuracy and tolerance of machine parts. Safety is stressed throughout all courses. (0813-135) Class 1, Lab 8, Credit 4

Students develop the skills necessary to read and interpret engineering drawings of details and assemblies. (0884-180) Class 1, Lab 3, Credit 2 (F)

Students develop the skills necessary to read and interpret prints of engineering drawings of details and assemblies. (0813-139) Class 1, Lab 3, Credit 2 (W)

Industrial Materials Introduction to the many materials used in industry and the reasons why the final cost of producing a part is influenced by material selection. Metals, plastics and ceramics are covered from the perspective of physical, mechanical and dimensional properties. (0813-134) Class 3, Credit 3 (W)

Manufacturing Analysis Introduction to manufacturing concepts. Students learn modern methods of planning, producing and controlling manufactured goods. The text and class discussions focus on problem solving and industrial operations. (0813-134) Class 3, Credit 3 (S)

Students learn about basic oxyacetylene and shielded metal arc welding processes as well as how to set up and operate equipment properly. Safety rules pertaining to welding are emphasized. (0813-143) Lab 4, Credit 2 (W)

Students develop the skills necessary to measure to the highest tolerances commonly used in industry. They measure parts or groups of parts using industrial methods and equipment. Analysis of measurements and problem solving are stressed. (0813-132) Class 1, Lab 3, Credit 2 (S)

Students develop skills in gas tungsten arc welding, gas metal arc welding and resistance welding. Emphasizes proper operation of equipment and related safety measures. (0813-153) Lab 4, Credit 2 (S)

Advanced Machining & Processes Students develop advanced-level machining skills. They apply theories associated with precision form and compound-angle grinding, advanced mill and lathe techniques, nontraditional machining processes and electrical discharge machining. Safety is stressed throughout the course. (0813-136) Class 1, Lab 8, Credit 4 (F)

Advanced Precision Measurement Introduction to advanced-level precision measuring equipment and quality control procedures. Students develop additional skills in the use of optical and computer-programmed measuring equipment. (0813-136) Class 2, Lab 2, Credit 3 (W)

Senior Seminar Provides exiting manufacturing processes students with a structured forum for discussions with program faculty members about employee relations and ethics, industrial employment trends, apprentice programs and continued technical skills development. (0813-136) Class 2, Credit 1 (S)

Co-op: Computer Integrated Machining Technology Credit 0 (SU)

Independent Study Credit variable

Deaf Studies

Deaf Studies/american Sign Language courses also satisfy social science and humanities requirement as noted below.

Fundamental (Level B)

Introduction to American Sign Language Introduces knowledge about American Sign Language (ASL) and provides a basic understanding of ASL and discusses principles of sign formation. The course also introduces a brief history of ASL, compares aspects of different visual languages and spoken language. Strategies for learning ASL will be discussed. Class 3, Credit 3 (F, W, S) (Humanities)

American Sign Language I Designed for students who have no previous knowledge of American Sign Language. ASL I includes the linguistic features, cultural protocols and core vocabulary for students to function in basic ASL conversations that include ASL grammar for asking and answering questions while introducing oneself; exchanging personal information; talking about family, friends and surroundings; and discussing activities. Classroom and lab activities include practicing conversations and videotaping. (SIPI/LCBQ:1) Class 4, Credit 4 (F, W, S) (Humanities)

Sign Mime & Creative Movement Focuses on the dominant historical form of expression used by theaters of the Deaf. Topics include principles for effective use of space, creative movement strategies, and expression of original ideas in sign-mime. This course satisfies the Deaf Studies requirement. Class 3, Credit 3 (F, W) (Performing Arts)

Intermediate (Level C)

American Sign Language II Expands the basic principles presented in ASL I. The course teaches students to use linguistic features, cultural protocols, and core vocabulary to function in additional basic ASL conversations including ASL grammar for giving directions; describing others; making requests; talking about family, occupations and routines; and attributing qualities to others. Classroom and lab activities include practicing conversations and videotaping. (0886-199 or equivalent) Class 4, Credit 4 (F, W, S) (Humanities)

American Sign Language III This course is a continuation of ASL II expanding the emphasis on ASL grammar, syntax, spatial referencing and vocabulary development. ASL III teaches further communicative competencies in ASL conversations beyond the basic level that include telling life events, describing events in time, asking for clarification, correcting, conforming, elaborating on information, agreeing and disagreeing, resolving conflicts, and giving directions. Classroom and lab activities include practicing dialogues, short stories, narratives and short conversations. (0886-200 or equivalent) Class 4, Credit 4 (F, W, S) (Humanities)

Structure of American Sign Language Provides students with basic knowledge about the linguistic structure of American Sign Language (ASL). Through an introduction to language components, students examine the phonology, morphology and syntax of ASL. Information regarding historical and cultural aspects of ASL is also introduced and discussed. Class 3, Credit 3 (F, W, S) (Humanities)
Deaf Art/Deaf Artists
Examines art works and artists’ statements, goals and intentions. The artwork and the statements of artists are examined to determine if the artists focus on being Deaf as the subject of their art, or if the focus of their art is related to Deaf issues or other subjects. By examining these connections and influences and comparing the varieties of choices artists have made, a definition of Deaf Art is developed. From the readings and reviews, students develop a list of issues that lead to identification of a person as a Deaf artist or an artist who is Deaf. The question of what is culture and what is art is examined, and comparisons to cultural groups occur. Class 3, Credit 3 (S) (Humanities)

Deaf Theater History
Examines the Deaf experience in theater and the roles that Deaf people have played in theater history. Particular attention is given to the documented achievements of individuals and companies in the 19th and 20th centuries. This course satisfies the Deaf Studies requirement. (0881-202 or 0882-221) Class 3, Credit 3 (S) (Performing Arts)

Organizational Communication & the Deaf Employee
Examines interpersonal and small-group communications in organizational settings in today’s corporate climate, with emphasis on important aspects of communication for Deaf individuals entering a professional career. Students become familiar with the business environments of large and small companies and the implication of company size regarding personnel decisions. Case studies from selected corporations provide insights into elements of communication processes such as networks (electronic and non-electronic), organizational structures, managerial decision making, interviewing, organizational development and conflict resolution. Companies’ perspectives on hiring culturally and ethnically diverse individuals and Deaf individuals are discussed. Laws, such as the ADA, related to the hiring and support of disabled workers are addressed. Class 3, Credit 3 (S) (Humanities)

Deaf Heritage
Provides introductory survey of sociocultural patterns associated with the unique characteristics of Deaf culture and Deaf community; the changing social, linguistic and educational conditions and attitudes influencing Deaf people throughout the past hundred years; and the achievements and accomplishments made by Deaf individuals in various professional fields. Hard-of-hearing and late-deafened individuals involved in the Deaf community will be included. Students learn how technology has impacted the lives of Deaf people. Students also learn the importance of the national organizations of the Deaf, of the achievements of Deaf minorities including women and ethnic/racial individuals, and of Deaf advocacy groups protecting the rights of Deaf people. (0882-200) Class 3, Credit 3 (F, W) (Social Science)

Deaf Culture & Community
Introduces students to aspects of Deaf culture and community. The distinction between these is reviewed, and characteristics of each is identified. Students learn about the language, norms of behavior, values, traditions, and possessions of Deaf people. Deaf culture and community are analyzed from a historical and sociological perspective. Cross-cultural issues relating to the role of hearing people with the Deaf community are also covered. Class 3, Credit 3 (W) (Social Science)

Deaf Women’s Studies
Provides a historical review of Deaf women in their professional and personal lives. The issues covered in this course include the exploration of the social, political and economic conditions affecting Deaf women and how this compares to other women in society. Hard-of-hearing and late-deafened women, and ethnic/racial women with hearing loss, are included in this course. Students will be able to summarize trends from the social/political analysis and apply their learning to their own personal development and empowerment. (0882-200) Class 3, Credit 3 (W,S) (Social Science)

Bridging (Level D)

Introduction to ASL Teaching
Provides overview of how second languages have traditionally been taught, what the current methods and theories are, and their applications to the teaching of sign language. Students are provided opportunities to practice basic teaching techniques, select appropriate materials, design curriculum and evaluation techniques, including how to teach cultural and grammatical features in lessons. Students learn about resources to support their efforts to teach sign language. (0886-249) Class 3, Credit 3 (W, S) (Humanities)

Digital Imaging & Publishing Technology

Overview of Digital Imaging & Publishing Software
This course provides an overview of the major applications, by type and function, in the categories of object-oriented/vector graphics, raster/bitmap graphics, document layout, image manipulation, presentation graphics, multimedia, and print prepress; included are the concepts of application version upgrades, plug-ins and extensions and special-purpose/niche applications. Class 2, Lab 3, Credit 3 (F,W,S)

Digital Design & Typography
Digital photography, graphics and typography blend to communicate quickly and memorably, as well as beautify a layout. The student will learn basic design and typography principles, terminology, guidelines, methods and systems used to solve graphic design problems. Font management and color model specifications are also included. Students will develop design and typography skills that can be applied in a wide variety of digital prepress and presentation media applications. Typography study will emphasize font selection, font management, and typesetting and copyfitting functions as critical elements of successful page layout design. Class 2, Lab 3, Credit 3 (F,S)

Fundamentals of Image Acquisition
This course introduces the student to: reflective and transmission scanning of two-dimensional art per given specifications; acquiring photographic images from Photo-CD, CD-ROM, digital cameras, grabbing video images; acquisition of text and graphics from on-line networks such as the Internet and WWW; acquisition of text with OCR scanning; and applying image size, resolution, and file format specifications to image files. Class 2, Lab 3, Credit 3 (F, W)

Fundamentals of Image Manipulation
This course introduces students to the production and manipulation of raster images with image manipulation software. Topics covered will include the study and application of painting and editing tools and techniques; selection techniques and digital masking & manipulate raster images; and application of image size, resolution and file format specifications. The technology and processes taught in this course will reflect the current trends in the marketplace. Class 2, Lab 3, Credit 3 (F,S)

Fundamentals of Vector Graphic Illustration
This course introduces the student to using digital illustration and page design programs to generate vector-based images. Emphasis is placed on mastering vector-based tools as preparation for intermediate and advanced digital imaging and publishing skill development. Assignments emphasize the use of the computer and its application to preparing images for print and media publication. Page layout, type specification, and graphics integration are covered. Class 2, Lab 3, Credit 3 (W, S)

Fundamentals of Desktop Publishing
This course includes the use of desktop publishing applications to create pages and documents to specification; importing and placing text and graphic files; the application of style sheets, templates and libraries, and color specifications. The application of design and typographic principles, trade terminology and measurement systems, font management, and file management are emphasized. Class 2, Lab 3, Credit 3 (F,W)

Fundamentals of Digital Media Production
In this course students prepare basic digital presentations for computer display. Skills included are: text import, entry and editing; graphic import, editing and basic creation; and acquisition and placement of motion graphic elements. An overview of hardware and software requirements will be presented. Class 2, Lab 3, Credit 3 (F,S)
0878-240 Fundamentals of Network Publishing
This course uses network publishing software to generate and distribute PDF pages; create linked pages to specifications for the World Wide Web. Other topics include an overview of Internet resources, Web page description languages, image standards, and browser software. Class 2, Lab 3, Credit 3 (W,S)

0878-245 Fundamentals of Digital Output
This course includes the fundamentals of file, system and device preparation required for output to PostScript and non-PostScript devices. Other topics include the technologies associated with standard industry output devices, image evaluation, and network communication protocols. Class 2, Lab 3, Credit 3 (W,S)

0878-250 Color Theory & Practice
This course includes the study of the identification of colors; factors affecting color perception and recognition; color correction; and design and production influences on the selection of color specification systems, such as Pantone, Trumatch, and custom colors. Class 2, Lab 3, Credit 3 (W,S)

0878-255 Imaging Processes & Markets
This course presents an overview of the major imaging processes in printing (lithography, gravure, flexography, screen printing, digital, and non-impact) and multimedia publishing (interactive CD-ROM, World Wide Web, electronically delivered documents) together with a study of their respective and overlapping markets and career opportunities. Class 2, Lab 3, Credit 3 (F, W, S)

0878-299 Co-op: Digital Imaging & Publishing Technology
Credit 0 (F, W, S, SU)

0878-300 Desktop Publishing
This course builds on topics presented in Fundamentals of Desktop Publishing. Topics include defining and applying style sheets, templates, and libraries; recognizing and applying proofreaders marks and notations; and defining and applying color model specifications. (0878-210, 0878-230, 0878-245) Class 2, Lab 3, Credit 3 (F, W, S)

0878-302 Database Publishing
This course includes the principles and techniques of database construction, manipulation, and reporting. It provides the opportunity to develop expertise in creating graphically attractive and informationally useful reports both within the layout capabilities of a database application, and through importation into a page layout program, and conversion into a format compatible with a Web server. Topics include database formation, document tagging, template generation, style sheets, HTML coding, and database publishing techniques and procedures. (0878-210, 0878-230, 0878-245) Class 2, Lab 3, Credit 3 (F,S)

0878-304 Publication Publishing
This course includes the use of page layout and special-purpose applications to produce book, magazine, and long format publications. Topics include techniques for defining and applying font selections, page formats, page and section numbering, headers and footers, footnotes, text editing, graphics, color, table of contents, index, glossary, appendix, colophon, and other features typical for book and long document publishing formats. Students are introduced to the repurposing of documents into various formats of digital media, and the creation, manipulation, and use of digital photographs. (0878-300) Class 2, Lab 3, Credit 3 (W)

0878-306 Network Publishing
This course builds on the skills previously learned in Fundamentals of Network Publishing. Topics include Internet resources; network publishing; and Web page authoring, including the use of features such as forms and tables. (0878-220, 0878-240, 0878-250) Class 2, Lab 3, Credit 3 (W,S)

0878-308 Digital Media Publishing
In this course students taken written and illustrative information, create and prepare digital elements that relate to the topic, and organize the result into electronic presentations for CD-ROM or network use. Issues of typography, quality, format, layout and audience are included. Word processing, desktop publishing, vector and raster graphics, and presentation applications will be used. Scripting and markup languages will be introduced. (0878-210, 0878-235, 0878-250) Class 2, Lab 3, Credit 3 (F,S)

0878-310 Image Acquisition
This course builds on the skills previously learned in Fundamentals of Image Acquisition. Topics include determining and applying resolution and magnification settings appropriate to the characteristics of the specified output device; setting highlight and shadow points, removing color cast, unsharp masking, and tone adjustment of acquired images; use of high-end, mid-range, and desktop scanners with their related software; jobs for RGB output; and changing image files for other purposes (reprocessing). (0878-215, 0878-245, 0878-250) Class 2, Lab 3, Credit 3 (F,S)

0878-312 Image Manipulation
This course builds on the skills previously learned in Fundamentals of Image Manipulation. Topics include applying production planning techniques to image manipulation, production quality standards, advanced methods and quality criteria for image manipulation, legal and ethical issues. This is a production-oriented course with the emphasis on producing photographic quality (raster) digital images. (0878-215, 0878-220, 0878-245, 0878-250) Class 2, Lab 3, Credit 3 (F, W)

0878-314 Prepare Photographs for Publishing
This course focuses on editing digital files to produce specific black & white and color reproduction outcomes on a variety of publishing systems, i.e., network printers, film recorders (slides), the Web, CDs, and offset presses. It teaches how to prepare the image files and related workflow procedures, while reinforcing many of the skills learned in the prerequisite courses (0878-300 or 0878-310) Class 2, Lab 3, Credit 3 (S)

0878-316 Black & White & Color Halftone Production
This course focuses on editing digital files to produce specific black/white and color halftone outcomes on a variety of printing systems, i.e., laser printers, network printers, digital presses, direct to plate systems and offset presses. The application of production criteria for the full variety of screening options for image files and the related workflow procedures and designed to reinforce many of the skills learned in the prerequisite courses. (0878-314) Class 2, Lab 3, Credit 3 (W)

0878-318 Color Management Systems
This course includes the study of color management system (CMS) software and color measurement devices as they are used to control color quality in the digital imaging and publishing disciplines. CMS concepts are introduced and applied to imaging equipment (input, display, and output), systems, and documents. (0878-215, 0878-220, 0878-245, 0878-250) Class 2, Lab 3, Credit 3 (F,W)

0878-322 Composite Imaging
This course includes specialized image manipulation techniques applied to produce images that blend images together into a single composite image. Emphasis is given to developing efficient production techniques for this advanced image manipulation concept. (0878-310, 0878-312) Class 2, Lab 3, Credit 3 (W)

0878-324 Image Retouching & Restoration
This course includes specialized image manipulation techniques used to reconstruct, restore, and enhance images. Emphasis is given to developing skills for image evaluation and production work plan strategies. (0878-310, 0878-312) Class 2, Lab 3, Credit 3 (S)

0878-326 Videography
This course introduces students to videography, cameras, videocassette recording, digital non-linear editing, and lighting. Emphasis is on proper operation of video and computer equipment for productions and post production of digital non-linear edited sequences and their adaptation to different presentation formats. Students gain hands-on experience in making a digital video. (0878-210, 0878-220, 0878-225, 0878-235) Class 2, Lab 3, Credit 3 (W)

0878-328 Digital Media Interactive
In this course students create and prepare digital elements and integrate them into interactive presentations for CD-ROM or network use. Issues of file size, quality, format, client/server interaction are included. 2-D/3-D vector and raster, animation, video, and presentation applications will be used. (0878-308) Class 2, Lab 3, Credit 3 (S)

0878-330 Preflight Procedures
This course includes the study of procedures to inspect files for adherence to production standards and specifications; to modify and apply necessary job specifications. Focus will be on font, color, and trapping specifications; picture and graphic file types and linkages; measurements and typographic specifications; output device-specific parameters (all 0878 200-level) Class 2, Lab 3, Credit 3 (F)
0878-356 Display Imaging
This course includes the study and production of captioned prints, prints and transparencies for display use, and mural prints. Emphasis is given to comparative finishing techniques, quality control issues, comparative materials specifications, lab safety, and technical vocabulary. (0878-354) Class 2, Lab 3, Credit 3 (F, S)

0878-356 Copywork
This course includes the set-up and use of optical camera systems to produce copy and duplicate images. Topics will include determination of exposure, copywork magnification, filter factors and the production of copy and duplicate images using provided specifications. (0878-351) Class 2, Lab 3, Credit 3 (W)

0878-361 Production Procedures & Quality Control
Production Procedures & Quality Control reinforces the students’ skills in the core courses. Students are introduced to procedures that are used in an actual printing production environment, understanding the cost of doing business, estimating procedures and quality control requirements. This course prepares the student for continuation on to the applied production print sequence of courses as well as prepare them for success in the working world. (All 0878 200-level) Class 2, Lab 3, Credit 3 (F, W, S)

0878-362 Applied Production I
This elective three-course sequence provides an environment where students and customers interact to produce completed imaging projects and finished print jobs. Students work in a simulated production environment where they can develop their technical skills, work habits, and customer relations. (0878-361) Lab 4, Credit 2 (F, W, S)

0878-363 Applied Production II
This elective three-course sequence provides an environment where students and customers interact in order to produce completed imaging projects and finished print jobs. Students work in a simulated production environment where they can develop their technical skills, work habits, and customer relations. (0878-362) Lab 4, Credit 2 (F, W, S)

0878-364 Applied Production III
This elective three-course sequence provides an environment where students and customers interact in order to produce completed imaging projects and finished print jobs. Students work in a simulated production environment where they can develop their technical skills, work habits, and customer relations. (0878-363) Lab 4, Credit 2 (F, W, S)

0878-371 Beginning DocuTech Operations
This course will focus on the fundamental operating features of the Xerox DocuTech 135 publishing system. It provides an opportunity to understand the job and marked capability of the Do&Tech, xerography, image and paper quality considerations and basic operating procedures. This course is the first of a 2-course sequence that can lead to employment opportunities as a DocuTech operator. (0878-230, 0878-245, 0878-255) Class 2, Lab 3, Credit 3 (F, S)

0878-372 Advanced DocuTech Operations
This course will focus on the advanced operating features of the Xerox DocuTech 135 publishing system. It provides an opportunity to understand the job and market capability of the DocuTech, creation of electronic files and file transfer, and advanced operating procedures. This course is the second of a two-course sequence that can lead to employment opportunities as a Xerox DocuTech operator. (0878-371) Class 2, Lab 3, Credit 3 (W)

0878-399 Independent Study
Credit variable (F, W, S)

English

Academic Writing

Introductory (level A)

0883-101 Writing I
In this developmental course, students learn and practice the writing skills necessary to enter Writing II. Strategies to discover (from personal experience and resource materials), develop and organize thoughts on various topics are presented. Students organize and develop paragraphs and texts in various forms, such as narration, process and summary Students also learn to revise, edit, and present texts for specific groups of readers. Students will be required to develop word-processing skills. (NTID Writing Test score below 40) Class 4, Credit 4 (F, W, S)
Integrated Reading & Writing I
First course in a two-course developmental sequence in which students work on the academic reading and writing skills necessary for all degree programs at NTID. Students develop the language knowledge and procedures needed to continue the development of academic reading and writing skills in the Non-Fiction Reading II and Writing II courses. (NTID Reading Test score below 80 and NTID Writing Test score below 40) Class 5, Credit 5 (F)

Integrated Reading & Writing II
Second course in a two-course developmental sequence in which students work on the academic reading and writing skills necessary for all degree programs at NTID. Students develop the language knowledge, strategies, and procedures needed to continue the development of academic reading and writing skills in the Non-Fiction Reading II and Writing II courses. (NTID Reading Test score below 80 and NTID Writing Test score below 40 and 0883-102) Class 5, Credit 5 (W)

Fundamental (Level B)
0883-161 Writing II
In this developmental course, students learn and practice the writing skills necessary to satisfy the requirements for a diploma or to enter Academic Writing III. Students learn how to use personal experience and resource materials to develop and organize their thoughts on various topics. Students organize and develop paragraphs and brief compositions of various discourse forms, with particular emphasis on description and process. Students also learn to revise, edit, and present texts according to the conventions, format, and mechanics expected by the discourse community for which they write. (NTID Writing Test score between 40 and 49 or 0883-101 or 0883-103) Class 4, Credit 4 (F, W, S)

Intermediate (Level C)
0883-211 Writing III
In this developmental course, students learn and practice the writing skills necessary to satisfy the requirements for an AOS degree, or to enter Academic Writing IV. Students plan, draft, revise and edit short essays of various types, with particular emphasis on classification and exemplification. Students learn how to organize and develop their texts for various topics and purposes, and how to revise, edit, and present texts according to the conventions, format, and mechanics expected by the discourse community for which they write. (NTID Writing Test score between 50 and 59 or 0883-161) Class 4, Credit 4 (F, W, S)

Bridging (Level D)
0883-261 Writing IV
In this developmental course, students learn and practice the writing skills necessary for College of Liberal Arts writing courses. Students gather information from various sources, plan, draft, revise and edit longer essays (of at least 500 words) of various discourse types with particular emphasis on description and exemplification. Students learn how to organize and develop their texts for various topics, purposes, and audiences. Students also learn how to revise, edit, and present texts according to the conventions, format, and mechanics expected by the discourse community for which they write. (Note: Students must earn a grade of C or better in the course if they wish to take the LAPT.) (NTID Writing Test score between 60 and 67 or 0883-211) Class 4, Credit 4 (F, W, S)

Nonfiction Reading
Introductory (Level A)
0885-100 Nonfiction Reading I
In this developmental course, students learn and practice the reading comprehension skills and English language skills necessary to increase comprehension of non-fiction reading materials necessary to begin degree programs at NTID. (NTID Reading Test score below 80) Class 4, Credit 4 (F, W, S)

Fundamental (Level B)
0883-160 Nonfiction Reading II
In this developmental course, students learn and practice the reading comprehension skills and English language skills necessary to increase comprehension of non-fiction reading materials necessary to success in diploma programs at NTID. (NTID Reading Test score between 80 and 97 or 0883-100 or 0883-103) Class 4, Credit 4 (F, W, S)

Intermediate (Level C)
0883-210 Nonfiction Reading III
In this developmental course, students learn and practice the reading comprehension skills and English language skills necessary to increase comprehension of non-fiction reading materials necessary for success in AOS programs at NTID. (NTID Reading Test score between 98 and 124 or 0883-160) Class 4, Credit 4 (F, W, S)

Bridging (Level D)
0883-260 Nonfiction Reading IV
In this developmental course, students learn and practice the reading comprehension skills and English language skills necessary to increase comprehension of non-fiction reading materials necessary for success in AAS and higher degree programs at NTID/RII. (NTID Reading Test score between 125 and 143 or 0883-210) Class 4, Credit 4 (F, W, S)

Literature
Fundamental (Level B)
0883-190 Exploration in Literature
In this developmental course, students are introduced to a variety of literary works (drama, poetry, short story/storytelling and novel or novel excerpts). Students learn basic literary terms and improve their critical reading skills in order to appreciate literature. The exploration and study of literature stimulates discussions of the relationships of literary works to one’s own life. (ACT arts/literature reading score 1-4 or 0883-103 or permission of instructor) Class 4, Credit 4 (F, W, S)

Intermediate (Level C)
0883-200 Analyzing Literature
This developmental course is for students who are familiar with basic literary analysis and are ready to identify, elucidate and discuss traditional literary elements. Instruction and practice focuses on elements such as theme, personal values, conflict, and tone. In addition, students discuss the relevance of literary works to their own life experiences and search for identity. (ACT arts/literature reading score 5-7 or 0883-150 or permission of instructor) Class 4, Credit 4 (F, W, S)

0883-250 Themes & Symbols in Literature
Students in this developmental course with experience in literary analysis apply their knowledge and ability to independently comprehend literary works in preparation for entry to RIT’s College of Liberal Arts literature course work. Students learn how to effectively report in writing the results of such activities as individual literary analyses, critiquing and research study. In addition, students examine the multicultural voices and views expressed through literature. (ACT arts/literature reading score 8-9 or 0883-200 or permission of instructor) Class 4, Credit 4 (F, W, S)

Healthcare Billing & Coding Technology
0820-105 Medical Word Analysis
This course will serve as a foundation for understanding medical terminology emphasizing definitions, pronunciation, plurals, spelling, verbs and adjectives. The course will help the student construct medical terms by learning word elements, their meanings and ways of combining them to build medical terms. Class 3, Credits 3 (F, S)

0820-115 Introduction to Healthcare Billing & Coding Technology
This course will introduce students to the healthcare environment in the United States and provide an overview of the roles and responsibilities of healthcare technology professionals. Students will be exposed to the vocabulary of this profession and be prepared for the primary areas of study encountered throughout the remainder of the program. Class 4, Credit 4 (F)

0820-211 Medical Terminology: Human Anatomy I
This course provides the student with knowledge and skill in medical terminology and human anatomy. This is the first of a four-course sequence. The focus is on the integumentary, skeletal, muscular, and digestive systems. (Human Anatomy and 0820-105) Class 4, Credit 4 (F)
0820-212 Medical Terminology: Human Anatomy II
This course provides the student with knowledge and skill in medical terminology and human anatomy. This is the second of a four-course sequence and the focus is on the cardiovascular, blood and lymphatic, respiratory, and urinary systems. (0820-211) Class 4, Credit 4 (W)

0820-213 Medical Terminology: Human Anatomy III
This course provides the student with knowledge and skill in medical terminology and human anatomy. This is the third of a four-course sequence, and the focus is on the endocrine, nervous, auditory, and opthalmic systems. (0820-212) Class 4, Credit 4 (S)

0820-214 Medical Terminology: Human Anatomy IV
This course provides the student with knowledge and skill in medical terminology and human anatomy. This is the last of a four-course sequence, and the focus is on the female and male reproductive systems, oncology, radiology, and nuclear medicine. (0820-213) Class 4, Credit 4 (F)

0820-221 Medical Office & Billing Procedures I
Students will develop skills in performing basic office functions, specific office procedures and be introduced to professionalism in the work environment. (0804-211; 0804-113; 0820-115) Class 3, Credit 3 (W)

0820-222 Medical Office & Billing Procedures II
This course focuses on health insurance reimbursement programs, billing procedures used for physicians' charges, and accounts receivable activities. The student will learn appropriate responses to a variety of medicolegal situations regarding bill collection, release of patient information/records and confidentiality, subpoenas, workers' compensation cases, and Medicare regulations for reimbursement. (0820-221, 0820-213) Class 3, Credit 3 (S)

0820-250 Ambulatory Disease/Surgery Processes
This course will provide students with knowledge of services rendered in ambulatory surgery centers. Students will be able to identify the disease processes associated with specified body systems that can be surgically treated in ambulatory centers. They will identify and describe diagnostic tests, diagnostic procedures and definitive procedures associated with ambulatory care. (0820-214) Class 4, Credit 4 (W)

0820-251 Ambulatory Care Coding
Students will receive an overview of ambulatory healthcare in preparation for learning to code services provided at ambulatory care sites. They will apply documentation review guidelines when evaluating ambulatory care records and learn to code using ICD-9-CM, CPT, and HCPCS. (0820-222; prerequisite 0820-250) Class 4, Credit 4 (W)

0820-261 Cancer Registry I
In this course the student will be introduced to the cancer registry profession, given an overview of an approved cancer program, develop an understanding of cancer registry structure, perform patient care evaluations, follow quality control methods in data reporting, identify required elements needed in a computerized registry, and learn ICD-O coding. Class 4, Credit 4 (W)

0820-262 Cancer Registry II
Students continue to learn and apply skills in completing files contained in the cancer registry. They will learn to stage cancers, compare cancer treatments, analyze oncology reports and abstract pertinent information, and conduct follow-up procedures. Focus will also encompass the cancer program annual report, data analysis, and epidemiology as it relates to the cancer registry. (0820-261) Class 4, Credit 4 (S)

0820-270 Outpatient Reimbursement
This course will provide knowledge of the payment system used for care rendered to outpatients. Students will develop skill in selecting appropriate ambulatory patient groups following reimbursement guidelines and demonstrate ability to maintain and update the computerized reimbursement system. (0820-251) Class 4, Credit 4 (S)

0820-299 Co-op: Healthcare Billing & Coding Technology
A cooperative work experience will occur the quarter following completion of the academic courses for the diploma, AOS, and AAS degrees. Each experience will provide performance of technical procedures for which the student has developed knowledge and skill during the preceding academic quarters. The co-op sites will include medical and claims processing offices and other related work environments. It is anticipated that each cooperative work experience will require ten (10) weeks at no less than 35 hours per week. (Completion of courses in the applicable preceding academic quarters) Credit 0 (F, W, S)

0820-399 Independent Study
Credit variable

Humanities

Fundamental (Level B)

0880-180 Perspective on the Humanities
Familiarizes students with the basic concepts and terminology in the study of the humanities (history, fine arts and philosophy). Students learn about the nature of intellectual and academic inquiry and the questions asked in these three disciplines. (ACT arts/literature reading score 1-4) Class 3, Credit 3 (F/W)

0880-190 Introduction to Deaf Studies*
Introduces students to major concepts and issues in the field of Deaf Studies. The course integrates the fields of history, anthropology, linguistics, creative arts and literature as they apply to Deaf culture and the Deaf community. The course is designed to foster students’ active participation as a means of developing strong leadership and advocacy skills among NTID students. After completing this course, students will be able to pursue specific areas of interest within the Deaf Studies/ASL program. (ACT arts/literature reading score 1-4 or permission of instructor) Class 3, Credit 3 (F/W)

Intermediate (Level C)

0880-230 The American Past: An Introduction to the History of the United States
Provides an overview of United States history beginning in 1607 and continuing through the 20th century. The course introduces students to issues, ideas, and people influential in shaping our country’s past. It focuses on major political, economic, and social developments, as well as contributions and perspectives of diverse cultural groups. The course increases students’ knowledge of American history and prepares them for further history courses. (ACT arts/literature reading score 5-7 or 0880-180 or permission of instructor) Class 3, Credit 3 (F)

0880-231 European History: 1600 to Present
Introduces political, social, and cultural history from 1600 through the 20th century. Emphasis is placed on the major historical developments that have influenced the development of modern Europe. (ACT arts/literature reading score 5-7 or 0880-180 or permission of instructor) Class 3, Credit 3 (S)

0880-240 The Big Questions: An Introduction to Philosophy
Surveys the quest to understand humanity’s place in the world and the significance of the human experience. Starting with the Greeks and sampling major contributions of the great philosophers, this course explores how and why the great questions were asked. (ACT arts/literature reading score 5-7 or 0880-180 or permission of instructor) Class 3, Credit 3 (WS)

0880-241 The Bible as Literature: A Cultural & Historic Perspective
Provides a basic understanding of the major themes and stories of the Bible. Course focuses on the cultural and historical circumstances in which the biblical literature grew. This course does not approach the literature from any particular belief or lack thereof, so students with a variety of religious interests may enroll. (ACT arts/literature reading score 5-7 or 0880-180 or permission of instructor) Class 3, Credit 3 (F)

0880-246 The Experience of Art
Introduces students to basic elements of art and composition, and helps them to understand the important connections between artists, their cultures, and their historical times. Additionally, this course encourages students to make connections with other courses in the humanities and liberal arts, and reinforces critical thinking skills and academic skills in general. (ACT arts/literature reading score 5-7 or 0880-180 or permission of instructor) Class 3, Credit 3 (F)

0880-247 Deaf Art/Deaf Artists*
Examines art works and artists’ statements, goals and intentions. The artwork and the statements of artists are examined to determine if the artists focus on being Deaf as the subject of their art, or if the focus of their art is related to Deaf issues or other subjects. By examining these connections and influences and comparing the varieties of choices artists have made, a definition of Deaf Art is developed. From the readings and reviews, students develop a list of issues that lead to identification of a person as a Deaf artist or an artist who is Deaf. The question of what is culture and what is art is examined, and comparisons to cultural groups occur. (ACT arts/literature reading score 5-7 or 0880-180 or permission of instructor) Class 3, Credit 3 (S)

* This course satisfies the Deaf Studies/American Sign Language requirement.
Bridging (Level B)
0886-150 Introduction to American Sign Language* Introduces knowledge about American Sign Language (ASL) and provides a basic understanding of ASL and discusses principles of sign formation. The course also introduces a brief history of ASL, compares aspects of different visual languages and spoken language. Strategies for learning ASL will be discussed. Class 3, Credit 3 (F,W,S)

American Sign Language
0886-199 American Sign Language I* Designed for students who have no previous knowledge of American Sign Language. ASL I includes the linguistic features, cultural protocols and core vocabulary for students to function in basic ASL conversations that include ASL grammar for asking and answering questions while introducing oneself, exchanging personal information; talking about family, friends and surroundings; and discussing activities. Classroom and lab activities include practicing conversations and videotaping. (SIP/LCBQ) Class 4, Credit 4 (F, W, S)

Intermediate (Level C)
0886-200 American Sign Language II* Expands the basic principles presented in ASL I. The course teaches students to use linguistic features; cultural protocols, and core vocabulary to function in additional basic ASL conversations including ASL grammar for giving directions; describing others; making requests, talking about family, occupations and routines; and attributing qualities to others. Classroom and lab activities include practicing conversations and videotaping. (0886-199 or equivalent) Class 4, Credit 4 (F,W,S)

0886-201 American Sign Language III* This course is a continuation of ASL II expanding the emphasis on ASL grammar, syntax, spatial referencing and vocabulary development. ASL III teaches further communicative competencies in ASL conversations beyond the basic level that include telling life events, describing events in time, asking for clarification, correcting, conforming, elaborating on information, agreeing and disagreeing, resolving conflicts, and giving directions. Classroom and lab activities include practicing dialogues, short stories, narratives and short conversations. (0886-200 or equivalent) Class 4, Credit 4 (F,W,S)

Communication Studies
Introductory (Level A)
0880-101 Foundations of Critical Thinking Sharpens students’ ability to think clearly, logically and creatively and to communicate knowledge effectively in an academic setting. Critical thinking strategies are learned for examining issues and solving problems. Course topics include problem solving using a five-step model; analyzing and giving directions; classifying and sequencing information; identifying multiple perspectives on an issue; analyzing arguments used to support a position; and creating visual representations of problems and solutions. The importance of thinking critically for effective communication regardless of modality (writing, reading, signing, speaking, listening) is stressed. (ACT reading score 11-12 or permission of instructor) Class 3, Credit 3 (F,W,S)

Fundamental (Level B)
0880-160 Communication Technologies In this information age, an understanding of and skill in the use of technological advances enables individuals to communicate more effectively in academic and professional settings. This course provides students with information and practice in using new telecommunication equipment (e.g., fax, ASCII compatible TTYs), and an introduction to computer-based information systems (e.g., local area networks, the Internet). Special emphasis is on accessing alternative technology that prepares students to live and work in the mainstream of a rapidly changing global community. Ethical aspects of different telecommunication systems are discussed. (ACT reading score 12-13 or permission of instructor) Class 3, Credit 3 (F,W,S)

Intermediate (Level C)
0880-201 Interpersonal Relationships Examines the role of communication as it relates to establishing, maintaining, and ending relationships. Topics include relationship development; self-concept; perceptions and first impressions; stereotyping, prejudice and discrimination; conflict resolution; active and passive listening; personal and social values; self-disclosure, gender-related communication, and communication among deaf and hearing people. (ACT reading score 14-16 or permission of instructor) Class 3, Credit 3 (F,W,S)

0886-249 Structure of American Sign Language* Provides students with basic knowledge about the linguistic structure of American Sign Language (ASL). Through an introduction to language components, students examine the phonology, morphology and syntax of ASL. Information regarding historical and cultural aspects of ASL is also introduced and discussed. Class 3, Credit 3 (F,W,S)

Introduction to ASL Teaching* Provides overview of how second languages have traditionally been taught, what the current methods and theories are, and their applications to the teaching of sign language. Students are provided opportunities to practice basic teaching techniques, select appropriate materials, design curriculum and evaluation techniques, including how to teach cultural and grammatical features in lessons. Students learn about resources to support their efforts to teach sign language. Class 3, Credit 3 (W,S)

0886-250 Introduction to ASL Teaching* Provides overview of how second languages have traditionally been taught, what the current methods and theories are, and their applications to the teaching of sign language. Students are provided opportunities to practice basic teaching techniques, select appropriate materials, design curriculum and evaluation techniques, including how to teach cultural and grammatical features in lessons. Students learn about resources to support their efforts to teach sign language. Class 3, Credit 3 (W,S)

*This course satisfies the Deaf Studies/American Sign Language requirement.
314 National Technical Institute for the Deaf

0880-206 Group Dynamics & Effective Teams
Focuses on the information and skills needed to be a knowledgeable, effective participant in small groups. Topics related to group dynamics and team-building are addressed at the practical and theoretical levels. These topics include characteristics of effective teams, stages of group development, techniques for group self-analysis, how groups operate for different outcomes, group vs. personal goals, the role of diversity, and group decision-making and problem-solving techniques. (ACT reading score 14-16 or permission of instructor) Class 3, Credit 3 (W,S)

0880-207 Organizational Communication & the Deaf Employee
Examines interpersonal and small-group communications in organizational settings in today’s corporate climate, with emphasis on important aspects of communication for Deaf individuals entering a professional career. Students become familiar with the business environments of large and small companies and the implications of company size regarding personnel decisions. Case studies from selected corporations provide insights into elements of communication processes such as networks (electronic and nonelectronic), organizational structures, managerial decision making, interviewing, organizational development and conflict resolution. Companies’ perspectives on hiring culturally and ethnically diverse individuals and Deaf individuals are discussed. Laws, such as the ADA, related to the hiring and support of disabled workers are addressed. (ACT reading score 14-16 or permission of instructor) Class 3, Credit 3 (W,S)

0880-210 Internet Communication
Assists students in gaining a better understanding of computer-based communication systems and related legal and ethical issues. Students learn to skillfully work with systems such as the Internet and Web and available services such as notes, e-mail, newsgroups, bulletin boards, distribution lists, and home pages. Applications to workplace/employment situations, job searches and personal use are examined. RIT policies, applicable copyright laws, cost, benefits, advantages and disadvantages are incorporated into the syllabus. The course is continually updated as new information technologies become available. (ACT reading score 14-16 or permission of instructor) Class 3, Credit 3 (F,W,S)

Bridge (Level D)

0880-250 Professional Presentations
Focuses on knowledge and competencies required for making effective presentations in various professional contexts. Students learn and explore selected communication theories and principles, and the role of language use and register in professional presentations. Issues of audience analysis, critical listening, the use of an interpreter and the use of media are discussed. Reading activities (such as researching appropriate sources for presentation information and materials), writing (such as preparing outlines and presentation scripts) and application of problem-solving strategies to presentation situations are emphasized. (ACT reading score 17-19 or permission of instructor) Class 3, Credit 3 (S)

Performing Arts

Fundamental (Level B)

0881-166 Sign Mime & Creative Movement*
Focuses on the dominant historical form of expression used by theaters of the Deaf. Topics include principles for effective use of space, creative movement strategies, and expression of original ideas in sign-mime. This course satisfies the Deaf Studies requirement. (ACT arts/literature reading score 1-4 or permission of instructor) Class 3, Credit 3 (F, W)

0881-167 Dance Performance
Provides an introduction to dance that gives students access to the language as well as the fundamental movements of dance. The styles and technique of Martha Graham (contraction) and Jose Limon (fall and rebound) are explored. Ensemble work, performance standards and creation of character and theme are stressed. This course satisfies humanities and physical education requirements. (ACT arts/literature reading score 1-4 or permission of instructor) Class 3, Credit 3 (F, W)

0881-168 Jazz
Provides students with a wider range of dance vocabulary, which is created from ballet, modern dance, and ethnic dance traditions. The styles of Bob Fosse and the fall and rebound style of Jose Limon are a basis for this course. This course satisfies humanities and physical education requirements. (ACT arts/literature reading score 1-4 or permission of instructor) Class 3, Credit 3 (F, S)

Intermediate (Level C)

0881-202 History of Theater †
Examines theater from its early origins in primitive societies to contemporary types of theater and issues in dramatic presentation. The role of theater in society and in a variety of cultures is examined with particular attention to the role of deaf performers, directors and play creators in specific historical periods. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (W)

0881-204 Deaf Theater History’
Examines the Deaf experience in theater, and the roles that Deaf people have played in theater history. Particular attention is given to the documented achievements of individuals and companies in the 19th and 20th centuries. This course satisfies the Deaf Studies requirement. (ACT arts/literature reading score 5-7 or permission of instructor; 0881-202 or 0882-221) Class 3, Credit 3 (S)

0881-210 Acting I
Covers fundamental vocabulary for developing the actor’s craft, process, and technique. The vocabulary is Stanislavsky-based and explored through improvisation and simple monologue work. This course is crucial for character development, which is the core of Acting II. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (F,W)

0881-217 Stage Combat
Explores fundamentals of stage combat vocabulary historically, analytically and physically. Focus is on physical scene work related to hand-to-hand combat, and stage fencing. Falls, tumbling, punches, kicks, and the eight basic positions for single rapier engagement are included. A final scene is created from classroom vocabulary and evaluated as part of the final exam. This course fulfills physical education requirements. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (S)

0881-218 Dance History †
Examines early examples of dance in Western and non-western societies, initially as a form of religious and dramatic expression. Development of ethnic styles; formalization of ballet in France, England and Russia; the evolution of modern dance; and the role of dance in visual theater are explored. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (S)

0881-222 Scenic Technology I †
Provides hands-on exploration of basic construction techniques utilized in theater productions. Students gain an understanding of scenic construction methods and technology, as well as the safe and proper use of equipment. Readings on the production process and formal critiques are also required. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (F,W,S)

0881-223 Scenic Technology II †
This project-oriented class focuses on props. Students use and apply the skills learned in Scenic Technology I to individual projects. The course also allows students the opportunity to work with more advanced materials. This course prepares students for more specialized work in Theatre Practicum. (ACT arts/literature reading score 5-7 or permission of instructor; 0881-222) Class 3, Credit 3 (W, S)

0881-224 Scene Painting †
Provides an introduction to the craft of scene painting. Techniques, communication with designers, and use of appropriate materials and tools are emphasized. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (W, S)

0881-231 Costume Technology I
Provides hands-on exploration of basic costume techniques utilized in theater. Students gain an understanding of costume construction techniques and terminologies, as well as the role of the costume shop in the production process. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (F, W)

0881-232 Costume Technology II
Advanced course in costume construction develops students’ sewing skills, problem-solving, and knowledge of costume history. The course prepares students for design courses, application of skills to a historical garment, and costume assistantship through Theatre Practicum. (ACT arts/literature reading score 5-7 or permission of instructor; 0881-231) Class 3, Credit 3 (W)

* This course satisfies the Deaf Studies/American Sign Language requirement.
† This course satisfies the humanities requirement.
0881-233 Stage Make-up †
Introductory course explores basic stage make-up techniques (e.g., corrective, aging, gender change, scarring, bruising, and fantasy). Student designers and actors learn through demonstration and hands-on experience. The course prepares students for Theatre Practicum and running crew. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (F)

0881-241 Lighting Technology I
Teaches the basic understanding of lighting software, equipment, and practices that are utilized in theater production. This course prepares students for supervised practicum experience. (ACT arts/literature reading score 5-7 or permission of instructor) Class 3, Credit 3 (F, W, S)

0881-242 Lighting Technology II †
Introduces the student to the mechanics and the guidelines of lighting design. The structure of this course is designed to take the student through the step-by-step process of building a solid design foundation prerequisite to all lighting design application. This course is a prerequisite to all lighting studio/design courses. (ACT arts/literature reading score 5-7 or permission of instructor; 0881-241 or permission of instructor) Class 3, Credit 3 (W, S)

Bridging (Level D)

0881-250 Introduction to Performing Arts †
Studies the characteristics and elements of theater/performing arts, emphasizing the principles that have guided theater productions through history. The course examines the ways that theater influences and is influenced by cultures and by individual life experience. Particular attention is paid to the development of performing arts by and for Deaf persons. This course satisfies part of the humanities requirement. (ACT arts/literature reading score 8-10 or permission of instructor) Class 3, Credit 3 (F, W)

0881-253 Arts Management
Addresses the skills required to manage artistic/theatrical projects and programs while maintaining artistic vision. Topics include the relationship of art and management, communication skills, fund raising in private and public sectors, and marketing strategies. (ACT arts/literature reading score 8-10 or permission of instructor) Class 3, Credit 3 (S)

0881-256 Script Analyst
Explores the prominent questions an actor/dancer/designer must research before and during the time a text can develop into playable action. The course uses texts from world literature, American Sign Language literature, and dance choreography. Particular attention is paid to the physical, emotional, and mental actions a character reveals to his/her audience. (ACT arts/literature reading score 8-10 or permission of instructor) Class 3, Credit 3 (F, S)

0881-257 Introduction to Dramatic Literature †
Introduces students to the play script as literature, genres of dramatic literature, critical periods in the development of dramatic literature, and the use of analytical literary vocabulary. (ACT arts/literature reading score 8-10 or permission of instructor) Class 3, Credit 3 (F)

0881-258 Introduction to Play Creating †
Uses a workshop approach to explore what being a playwright/play creator means. Class topics include exploring each writer's values and points of view, bringing those viewpoints to life on the stage, developing rounded characters, structuring action, creating dialogue, and taking a play through workshop critique. The goals of the course for each student are 1) to develop a more finely-tuned theatrical sensitivity, and 2) to have a playable scene, act, or one-act play by the end of the quarter. These plays may be scripted in English, American Sign Language or visual theater systems. (ACT arts/literature reading score 8-10 or permission of instructor) Class 3, Credit 3 (F)

0881-259 Creative Translation for Stage * †
Focuses on different translation forms used by theater, mime, and dance companies. Students learn to distinguish between English and American Sign Language (ASL). They translate stories, poems, and plays into American Sign Language and other Sign Languages. Theatrical integrity dealing with translation issues and visual access are central goals. (ACT arts/literature reading score 8-10 or permission of instructor; 0881-210 or 256) Class 3, Credit 3 (F)
0879-202 Laboratory Science Technology Laboratory Applications II
This is the second of a six-course sequence that focuses on the application of laboratory processes and procedures. This course continues to reinforce an expectation of high standards for science laboratory techniques. Students are introduced to the concept of quality control. Laboratory experiences focus on developing and practicing performance independence and quality control schemes while performing basic sampling and testing procedures. (0879-201) Class 1, Lab 2, Credit 2 (S)

0879-203 Laboratory Science Technology Laboratory Applications III
This is the third of a six-course sequence that focuses on the application of laboratory processes and procedures. This course focuses on safety regulations (OSHA, FDA, TSCA), monitoring and reporting as applied to the sampling, testing and disposal of substances. (0879-202) Class 1, Lab 2, Credit 2 (F)

0879-204 Laboratory Science Technology Laboratory Applications IV
This is the fourth of a six-course sequence that focuses on the application of laboratory processes and procedures. This course focuses on the application of laboratory information management systems (LIMS), chain of custody, data archiving and reporting. (0879-203) Class 1, Lab 2, Credit 2 (W)

0879-205 Laboratory Science Technology Laboratory Applications V
This is the fifth of a six-course sequence that focuses on the application of laboratory processes and procedures. This course focuses on professional and ethical behavior standards in the science laboratory environment. Qualities of valued team members and their contribution to the overall performance of the laboratory are introduced, practiced and critiqued. (0879-204) Class 1, Lab 2, Credit 2 (S)

0879-206 Laboratory Science Technology Laboratory Applications VI
This is the sixth of a six-course sequence that focuses on the application of laboratory processes and procedures. This course focuses on individual student needs related to the reinforcement of knowledge and skill areas identified in co-op evaluations as requiring more effort. (0879-205; co-requisite 0879-250) Class 1, Lab 2, Credit 2 (F)

0879-218 Introduction to Laboratory Science Technology Microbiology
This general microbiology course includes basic concepts for the evaluation of bacteria, virus, fungi (molds and yeasts), algae, and protozoa. The students learn laboratory procedures in the selection of media, collection of samples, techniques in sterilization, asepsis, staining, cultural, microscopic, biochemical, and molecular identification and anti-microbial susceptibility. The student develops knowledge of the processes microorganisms are responsible for which are vital to our lives. (0885-161; co-requisite 0885-181) Class 2, Lab 3, Credit 3 (W)

0879-241 Laboratory Science Technology Microbiology
This microbiology course focuses on concepts related to microorganisms common in food and environmental settings. The emphasis is on the major families of microorganisms that are important in food processing, preservation, distribution, utilization and public health. Students will study the organism’s role in ecology, recycling and biogeochemical cycles and the testing procedures for microbes in water, air, soil, sewage and the pathogens that affect humans. Students will develop knowledge and skills in the collection of samples, identification procedures and in understanding the laws related to public health and sanitation. (0885-181, 0885-218; co-requisite 0885-182) Class 3, Lab 3, Credit 4 (S)

0879-250 Laboratory Science Technology Senior Seminar
This course provides a forum in which peer, faculty, and professionals discuss current topics in food and environmental science. Students also have an opportunity to synthesize their cooperative work experience with previous course experiences. Additional topics include communications, the importance of professional societies and federal/state/local agencies, environmental, and agricultural policies that regulate the food and environmental industries. (This is a required course open only to second-year LST students.) (0879-299) Class 2, Credit 2 (S)

0879-270 Concepts of Surveying & Mapping
Students have the opportunity to use surveying equipment in the field to obtain and record angle, distance, and elevation measurements. Using the information gathered students perform calculations and prepare sketches depicting the precise location of data points. Students learn about various types of topographic and geological mapping. (0879-321 or 311) Class 2, Lab 3, Credit 3 (S) (F)

0879-280 Sampling & Testing Soils & Ground Water
Students begin to learn about soil and ground water and how it is contaminated. Content includes vocabulary, origin, identification, classification, characteristics, and methods for sampling and testing. Students use standard references and classifications. (0879-321 or 311) Class 2, Lab 3, Credit 3 (S) (F)

0879-299 Co-op: Laboratory Science Technology Credit 0 (SU)

0879-301 Instrumentation I
In this course students learn and apply basic concepts and principles in science using simple laboratory instruments, procedures and techniques. Procedures and techniques including sample preparation, calibration, precision measurement, safety, and data collection and analysis are introduced. Protocols governed by regulations and information management standards are introduced and practiced. Selected instrumentation presented in this course include analytical balance, multiple pipettes, spectrophotometers, and electrophoresis apparatus. (0879-202, 0885-182, 0884-231) Class 1, Lab 2, Credit 3 (F)

0879-302 Instrumentation II
This is the second course in the sequence of instrumentation courses. In this course students learn and apply advanced concepts and principles in science using sophisticated laboratory instruments, procedures and techniques. Procedures and techniques including sample preparation, calibration, precision measurement, safety, and data collection and analysis are introduced and reinforced. Protocols governed by regulations and information management standards are discussed and practiced. Selected instrumental procedures presented in this course include gas and liquid chromatography, plasma and mass spectrophotometry, and atomic absorption. (0879-301, 203, 0885-211, 0884-232) Class 1, Lab 2, Credit 3 (W)

0879-303 Instrumentation III
This course is the third and last in the sequence of instrumentation and analysis courses. In this course students learn and apply advanced concepts and principles in science using sophisticated laboratory instruments, procedures and techniques. Procedures and techniques including sample preparation, calibration, precision measurement, safety, and data collection and analysis are introduced and reinforced. Protocols governed by regulations and information management standards are discussed and practiced. Selected instrumental procedures presented in this course include the following: advanced gas chromatography and HPLC, mass spectrophotometry, and automated and computer-based instrumentation. (0879-302, 204, 0885-212) Class 1, Lab 2, Credit 3 (W)

0879-311 Food Laboratory Science I
This first course in a two course sequence that prepares students to follow standard protocols to perform laboratory procedures commonly used in the food industry. Product analysis includes testing for protein and moisture. Emphasis is placed on precise and accurate data collection, data analysis and presentation, and practicing laboratory information management systems (LIMS). Federal regulations governing the food industry are examined and applied. Additional topics related to prepared foods and food additives are presented. (0879-301, 0885-211, 0884-231) Class 3, Lab 3, Credit 4 (W)

0879-312 Food Laboratory Science II
This second course in a two course sequence prepares students to follow standard protocols to perform laboratory procedures commonly used in the food industry. A continuation of product analysis includes testing for fats, carbohydrates, and crude fiber. Emphasis is placed on precise and accurate data collection, data analysis and presentation, and practicing laboratory information management systems (LIMS). Federal regulations governing the food industry are examined and applied. Additional topics related to vitamins, and allergens in food are presented. (0879-311, 212, 302) Class 3, Lab 3, Credit 4 (S)

0879-321 Environmental Laboratory Science I
This first course in a two course sequence prepares students to follow standard protocols to perform laboratory procedures commonly used in environmental laboratories. Standard sampling and testing methods are introduced and practiced, e.g., gravimetric analysis, pH applications, and chemical analysis using spectrophotometry. Emphasis is placed on precise and accurate data collection, data analysis and presentation, and practicing laboratory information management systems (LIMS). Federal regulations governing sampling and testing procedures are examined and applied. Additional topics related to quality control schemes, regulatory protocols, and protocols governing sample collection are presented. (0879-301, 0885-211, 0884-232) Class 3, Lab 3, Credit 4 (W)
Intermediate (C level)

0884-205 Trigonometry for Coordinate Analysis I
Students will study right angle trigonometry with an emphasis on concepts and applications related to computer integrated machining technology (CIMT) and computer aided drafting technology (CADT). Topics include Pythagorean Theorem, trigonometric ratios in right triangles, coordinate geometry calculations, circle properties, tapers and bevels, V-blocks, dovetails, and angle cuts. Development of numerical and geometric estimation and interpretation of visual data is emphasized. (0884-170 and 0884-180 or permission of department) Class 2, Lab 2, Credit 3 (S)

0884-206 Trigonometry for Coordinate Analysis II
This course is a continuation of Trigonometry for Coordinate Analysis I and continues the development of problem-solving using right angle trigonometry, with an emphasis on concepts and applications related to computer integrated machining technology (CIMT). Topics include complex machine applications, compound angles, slots and pockets, irregular-shape grooves, Law of Sines, Law of Cosines, and 3-D coordinate geometry. (0884-205 or permission of department) Class 2, Lab 2, Credit 3 (F)

0884-210 Applications of Algebra
An intermediate algebra course consisting of a lecture and a lab component in which exponents, rational expressions, polynomials, roots and radicals, and non-linear functions are studied. Technology, in particular the graphing calculator, is an integral part of the learning and problem solving in this course. (0884-180 or equivalent) Class 3, Lab 2, Credit 4 (F,W,S)

0884-220 Elements of Trigonometry
This course includes topics from trigonometry with an emphasis on the study of right and oblique triangles, rotational angles, trigonometric functions and their graphs. An introduction to trigonometric identities is also provided. (0884-210 or permission of department) Class 3, Lab 2, Credit 4 (F,W,S)

0884-231 Laboratory Mathematics I
This course addresses classic laboratory calculations and elementary descriptive statistics in the context of modern information technology and computing power. Use of hand-held calculators and computer spreadsheet software to exchange, analyze and chart electronically-stored data is a central focus. Study is closely coordinated with work in associated technical courses. Application areas encountered in this course may include gas laws, preparation and dilution of solutions, and analysis of chemical composition. (0884-210) Class 2, Lab 2, Credit 4 (S)

0884-232 Laboratory Mathematics II
This course continues study of computations relating to laboratory procedures in the context of modern information technology and computing power. Emphasis is on the capture and analysis of realistic laboratory data and the preparation of formal reports. Topics studied include the use of statistical procedures in quality control. (0884-231) Class 2, Lab 2, Credit 3 (F)

0854-235 Industrial Statistics
This course introduces students to statistical methods used in industry. Students learn form calculation skills, basic statistical concepts, techniques for graphical representation of data, and how to draw inference and interpret results. (0884-210) Class 3, Lab 2, Credit 4 (F)

Bridging (D level)

0884-250 Preparation for Statistics
An introductory statistics course consisting of a lecture and a lab component in which statistics concepts, elements of probability, and probability distributions, and bivariate data are studied. The course emphasizes number sense and algebraic concepts as they relate to statistics and probability. Technology, in particular the graphing calculator, is an integral part of the learning and problem solving in this course. (0884-210 or equivalent) Class 3, Lab 2, Credit 4 (S)

0884-260 Explorations in College Algebra
Students will study topics from algebra with an emphasis on functions and graphs. Topics include the algebra of functions and the study of inverse functions. Rational, radical, exponential and logarithmic functions and systems of linear equations are also studied. Exploration of mathematical concepts through use of a graphing calculator is an integral feature of the course. (0884-210 or permission of department) Class 4, Credit 4 (W, S)
0827-105 Introduction to Optical Finishing Technology I
A sampling of optical finishing technology, including an overview of the care, admissions and graduate requirements, sources of employment, and expectations of students in the program. Students learn the titles, roles and responsibilities of vision-care personnel, including the M.D., O.D., dispensing optician and optical finishing technologist. Class 2, Credit 2 (F)

0827-106 Introduction to Optical Finishing Technology II
The function and use of optical laboratory equipment necessary to the production of single-vision eye wear. Students learn the basic concepts of sphere, cylinder, axis and geometric center. Class 2, Credit 2 (W)

0827-107 Introduction to Optical Finishing Technology III
Introduces the concept of writing functions of given vertometer parts. Students learn the process of writing step-by-step sequential procedures for equipment operation. They practice determining lens powers from vertometer readings and calculating decentration from given prescription information. They also learn the meanings of various optical terms found on prescription forms. (0827-106) Class 2, Credit 2 (S)

0827-111 Optical Finishing Technology Math I
Focuses on the rules of transposition, including transposition of lens powers. Students learn to apply mathematical functions, solving for binocular and monocular P.D.s, near-vision prescriptions, and bifocal segment height and inset. The concepts of plus and minus cylinder prescription powers are discussed, and definitions and determinations of lens powers from given base curves, cross curves and inside curves are taught. (0884-180) Class 4, Credit 3 (S)

0827-112 Optical Finishing Technology Math II
Students learn how to select and determine appropriate base curves, cross curves and inside curves of given lens powers. Students learn mathematical formulas used in determining effective diameter, smallest lens blank and prism. They also learn to apply mathematical functions related to vertometer power readings, heat treat times and lens gauge readings. (0884-180; 0827-111) Class 4, Credit 3 (F)

0827-115 Prescription Analysis I
Teaches students the meaning of various optical terms found on prescription forms. Students learn what information should be on a complete prescription and how to analyze single-vision and multifocal prescriptions for laboratory processing. Class 4, Credit 3 (S)

0827-117 Lens Design
Teaches students how to design lens systems based on specific optical factors such as frame selection, lens material, lens thickness, index of refraction, size of lens, lens power, blank manufacturer and cosmetic appeal. Students learn trade names of lenses, percentages of lens transmission, multifocal segment placement, and occupational and recreational lens forms. (0827-111, 112) Class 5, Credit 3 (S)

0827-121 Optical Finishing Techniques I
Teaches students basic techniques of using the vertometer to analyze single-vision lenses, layout marker, heat treat units, and pattern maker, automatic edging machines and development of hand-beveling skills. (0827-112; 116, 162) Class 6, Credit 5 (F)

0827-122 Optical Finishing Techniques II
Teaches students the theory and techniques of centering, power verification and spotting of single-vision and selected multifocal lenses. Students also are taught the mechanics of lens centration using layout markers. (0827-121) Class 2, Lab 2, Credit 3 (W)

0827-123 Optical Finishing Techniques III
Teaches students how to automatic-edge lenses using a variety of edging machines. The concepts and techniques of Vee-beveling, rimless bevels and hide-a-bevel are emphasized. (0827-122) Class 4, Lab 6, Credit 4 (W)

0827-161 Optical Finishing Terminology I
Emphasizes comprehension, spelling and application of terminology related to the optical profession, including the laboratory environment, function and disorders of the eye, and optics/lens characteristics. Class 5, Credit 3 (F,W,S)

0827-162 Optical Finishing Terminology II
Emphasizes the comprehension, spelling and application of terminology related to the vertometer, lensometer, pattern maker, heat treat units, and ceramic and diamond head beveling wheels. (0827-161) Class 5, Credit 3 (F,W,S)

0827-163 Optical Finishing Terminology III
Emphasizes the comprehension, spelling and application of terminology related to lens tolerances, functions, procedures, and operation and troubleshooting of selected auto edge machines. Students complete a paper describing the procedures used in making prescription eyeglasses. (0827-162) Class 5, Credit 3 (F,W,S)

0827-224 Optical Finishing Techniques IV
Emphasis is on individual fabrication of given prescriptions. Students are given a variety of single-vision and multifocal prescriptions to be completed during the quarter. Finished prescriptions are evaluated using ANSI standards. (0827-123) Class 9, Credit 5 (S)

0827-225 Optical Finishing Laboratory Simulation I
Provides practice in the total processing of actual eyeglass prescriptions from uncut stage through completion and final inspection. Students practice assembling lenses into frames and symmetrical alignment of the finished product. Students assume the duties of supervisors and rotate positions to demonstrate competence in all phases of operation. Class 9, Credit 5 (W)

0827-226 Optical Finishing Laboratory Simulation II
Focuses on the rules of transposition, including transposition of lens powers. Students learn to apply mathematical functions, solving for binocular and monocular P.D.s, near-vision prescriptions, and bifocal segment height and inset. The concepts of plus and minus cylinder prescription powers are discussed, and definitions and determinations of lens powers from given base curves, cross curves and inside curves are taught. (0884-180) Class 4, Credit 3 (S)

0827-251 Optical Finishing Technology Seminar
Students learn how attitude, aptitude and personal/social factors contribute to successful employment. Students also receive instruction regarding such topics as the Americans with Disabilities Act (ADA), effective person-to-person interviewing, interviewing using telecommunications techniques, corporate culture, and the American Board of Opticianry Testing. Class 2, Credit 2 (W)

0827-270 Orientation to Lens Surfacing
This course is an overview of the basic concepts and procedures needed to produce prescription lenses. Students are introduced to the basic operation of the surfacing layout marker, lens blocking system, surface curve generator and finishing/polishing machine(s). Students will also learn terminology and techniques to assess the quality of finished lens surfaces. Class 2, Lab 2, Credit 3 (S)

0827-280 Applications of Lens Surfacing
In this course students continue to learn and expand on skills introduced in Orientation to Lens Surfacing. Students are introduced to the process of producing lens power through the procedures of lens surfacing. Emphasis is on the advanced operation of the lens layout marker, lens blocking system, surface curve generator, and cylinder machine(s). Students will learn terminology and techniques used to assess lens surfaces. (0827-170) Class 2, Lab 4, Credit 4 (F)

0827-299 Co-op: Ophthalmic Optical Finishing Technology
Credit 0 (SU)

0827-399 Independent Study
Credit variable
Pre-baccalaureate Studies

0853-200 Freshman Seminar
Provides entering pre-baccalaureate and baccalaureate students with opportunities to enhance academic, personal and social skills needed for success in the mainstream college environment. Students have opportunities to explore and negotiate the college environment, learn how to effectively use support services, confront questions of identity and social role, and establish relationships with faculty and students in their program. Emphasizes integration into the academic and social systems of both the NTID community and the mainstream college environment. Class 3, Credit 2 (F,W)

0853-210 Learning Strategies
This course is designed to help students evaluate their strengths and weaknesses and to improve their learning efficiency and effectiveness through appropriate training. Students have the opportunity to improve their learning skills in areas such as reading, test taking, questioning and general study habits. Activities include lectures, discussions, and individual conferences. Class 2, Credit 2 (F, W, S)

0855220 Processes of Science
This course is offered to cross-registered science and engineering students who are interested in raising their academic achievement level and to other students who wish to improve their skills and increase their knowledge in these areas. The course helps students evaluate their strengths and weaknesses in areas of thinking such as comparing, analyzing, reasoning, and problem solving. With an emphasis on making thinking overt, strategies are modeled and practiced. Expansion of both background knowledge and scientific vocabulary are additional benefits. Class 3, Credit 3 (S)

0853-310 Computing Fundamentals
This pre-programming course is intended to prepare students to enter the information technology or computer science majors. The course provides a programming-language-independent study of the fundamental concepts, logical structures and algorithms inherent to computer programming. Teaching strategies emphasize learning techniques that encourage the development of critical thinking and problem-solving skills. Class 4, Credit 4 (F,W)

Science

Introductory (Level A)

0885-100 Exploration of Science
This course provides an opportunity for students who have little or no experience with lab science to acquire basic science skills in preparation for success with Level B science courses. Course activities focus on precision as a core scientific concept. Students develop observation and scientific measurement skills while improving their ability to describe their experiences with greater accuracy and detail. Laboratory activities and highly structured lab reports serve as the core of the course. Basic thought processes of science are modeled, and basic writing skills and math skills are emphasized. Students practice successful learning strategies and basic laboratory computer skills. Class 2, Lab 2, Credit 2 (F)

Fundamental (Level B)

0885-151 Processes of Science: Astronomy
Covers introductory science processes using the content of astronomy as a vehicle to establish an appreciation of the scientific method, critical thinking and problem solving. The basic processes of observing, classifying, comparing, and measuring using metric units are addressed in both class and laboratory using the concepts of astronomy. Class 2, Lab 3, Credit 3 (S)

0885-152 Processes of Science: Meteorology
Covers introductory science processes using the content of meteorology as a vehicle to establish an appreciation of the scientific method, critical thinking and problem solving. The basic processes of observing, classifying, comparing, and measuring using metric units are addressed in both class and laboratory using the concepts of meteorology. Class 2, Lab 3, Credit 3 (F)

0885-153 Processes of Science: Environmental Studies
Covers introductory science processes using the content of environmental studies as a vehicle to establish an appreciation of the scientific method, critical thinking and problem solving. The basic processes of observing, classifying, comparing, and measuring using metric units are addressed in both class and laboratory using the concepts of environmental studies. Class 2, Lab 3, Credit 3 (F, W)

0885-154 Processes of Science: Physics of Matter
This course focuses on introductory science processes using the content of physical properties of matter as a vehicle to establish an appreciation of the processes of science. The basic processes of observing, collecting data, classifying, comparing, analyzing and forming hypotheses will be addressed using the concepts of physics. (0884-180 or equivalent) Class 2, Lab 2, Credit 3 (F,W)

0885-155 Processes of Science: Biological Studies
This course focuses on introductory science processes using the content of biological studies as a vehicle to establish an appreciation of the processes of science. The basic processes of observing, collecting data, classifying, comparing, analyzing and forming hypotheses will be addressed using the concepts of biology. Students will investigate microorganisms, metabolism, nutrition, physiology and embryology, and prepare laboratory reports with appropriate detail and accuracy. Class 2, Lab 2, Credit 3 (F, W)

0885-156 Processes of Science: Forensics
This course focuses on introductory science processes using the content of forensic studies as a vehicle to establish an appreciation of the processes of science. The basic processes of observing, collecting data, classifying, comparing, analyzing and forming hypotheses will be addressed using the concepts of forensics. Students will analyze crime scenes, perform tests on blood, fingerprints, chemicals and DNA, and prepare laboratory reports with appropriate detail and accuracy. Class 2, Lab 2, Credit 3 (F,W,S)

0885-161 Fundamentals of Human Biology I
Provides students with the fundamentals of human biology beginning at the molecular level. Cell structure and function including metabolic reactions important to life are presented. Skills necessary for success in future science courses are emphasized. Laboratory activities involving microscopic observation of living cells and basic chemical interactions complement classroom activities. Class 3, Lab 3, Credit 4 (F, W)

0885-162 Fundamentals of Human Biology II
Provides students with the fundamentals of human biology beginning with organization at the tissue level. Body systems and their interrelationships are presented on a structural, functional, and homeostatic level. Skills necessary for success in future science courses are emphasized. Laboratory activities, including the use of prepared specimens, complement classroom activities. (0885-161) Class 3, Lab 3, Credit 4 (S)

0885-171 Fundamentals of Physics I
A first course in physics for students with interest, but little background in laboratory science. The focus is on development of critical thinking scientific processes and basic laboratory skills. (Permission of the department) Class 4, Lab 1, Credit 4 (W)

0885-172 Fundamentals of Physics II
A second course in a two-course physics sequence for students with interest, but little background in laboratory science. The focus will be on development of critical thinking, scientific processes and basic laboratory skills. (0885-171) Class 4, Lab 1, Credit 4 (S)

0885-181 Fundamentals of Chemistry I
This course is an introduction to the fundamental theories and principles of chemistry governing the structure and behavior of matter at the atomic level. The language of chemistry is introduced. Teaching activities focus on atomic structure, the classification of matter, nomenclature, and chemical bonding. Laboratory activities use basic chemistry equipment, scientific measurement, and laboratory methods. Class 3, Lab 3, Credit 4 (W)

0885-182 Fundamentals of Chemistry II
This course is the continuation of an introduction to the fundamental theories and principles of chemistry governing the structure and behavior of matter at the atomic level. Classification of reaction types, balancing simple chemical equations, and basic carbon chemistry are introduced. Teaching and laboratory activities focus on basic physical and chemical properties of solids, liquids, and gases; identification of acids and bases; and basic solution chemistry. Laboratory activities use fundamental chemistry equipment, scientific measurement, and laboratory methods. Class 3, Lab 3, Credit 4 (S)
Intermediate (Level C)

0885-200 Optical Finishing Physics
Studies light, reflection and refraction. These principles are applied to the study of the behavior of spherical and plano mirrors, prisms and lenses. The usefulness and application of dielectric power, the lens maker’s equation, image and object dimensions and focal length measurements are addressed. Also included are basic optical instruments and a study of the electromagnetic spectrum. Emphasis is on geometrical (ray) optics. Includes a comprehensive laboratory experience that supplements and closely follows classroom instruction. (0884-120 and 0884-170 or equivalent) Class 4, Lab 1, Credit 4 (W)

0885-201 Physics I
Physics I is the first course in a series designed to provide a broad background in general physics. Required for students entering NTID engineering technology programs. Students are provided with hands-on laboratory experience in a supervised setting. Topics, which are presented in a lecture/lab format, includes motion, Newton’s Laws of Motion, forces, analysis of vectors, work, power and mechanical energy. (Permission of the department) Class 4, Credit 4 (S)

0885-202 Physics II
Physics II is the second course in a series designed to provide a broad background in general physics. Appropriate for students entering NTID engineering technology programs. Students are provided with hands-on laboratory experience in a supervised setting. Topics, which are presented in a lecture/lab format, include thermal energy, nature of light, reflection and refraction, static electricity, electric currents, series and parallel circuits, magnetic fields and electromagnetic induction. (0885-201 or equivalent) Class 4, Credit 4 (F, W, S)

0885-203 Advanced Topics in Mechanics
The third physics course for students in NTID’s construction technology program. Students are provided with hands-on laboratory experience in a supervised setting. Topics, which are presented in a lecture/lab format, include motion, equilibrium, strength of materials, fluid statics and dynamics, sound, elastic potential energy and wave motion. (0885-201 or equivalent) Class 4, Credit 4 (F, W, S)

0885-205 Physics for Science & Engineering I
Introduces students to the basic laws of motion (both linear and two-dimensional), circular motion, the notion of force and force/mass interactions, and basic materials science topics such as elasticity. In addition, the intent objectives to which students were introduced in Fundamentals of Physics I and II (or with which they enter Physics for Engineering Technology) are reinforced and practiced. (Permission of the department) Class 4, Lab 1, Credit 4 (F)

0885-206 Physics for Science & Engineering II
Introduces students to the basics laws of energy and the transfer and conversion of energy, both mechanical and thermodynamic. In addition, the intent objectives to which students were introduced in Fundamentals of Physics I and II (or with which they enter Physics for Engineering Technology) are reinforced and practiced. (0885-205 or equivalent) Class 4, Lab 1, Credit 4 (W)

0885-207 Physics for Science & Engineering III
Introduces students to the basic laws of magnetism and magnetic fields, electric charge and electric fields, current electricity and DC circuits. In addition, the intent objectives to which students were introduced in Fundamentals of Physics I and II (or with which they enter Physics for Engineering Technology) are reinforced and practiced. (0885-206 or equivalent) Class 4, Lab 1, Credit 4 (S)

0885-211 Principles of Chemistry I
This course builds on the knowledge learned in Fundamentals of Chemistry I and II by preparing students to classify reactions and evaluate evidence to ascertain the reaction type. Predictions can then be made with respect to qualitative and quantitative composition of reactions. Theory governing the physical properties and characteristics of states of matter are examined. Stoichiometry is introduced, while chemical laboratory measurement and rules of chemical nomenclature are extended. Laboratory activities include investigations of different types of chemical reactions using basic instrumental laboratory technology. (0885-182 or equivalent, 0884-231) Class 3, Lab 3, Credit 4 (F)

0885-212 Principles of Chemistry II
This course expands on the mathematical determination of chemical composition and quantities established in Principles of Chemistry I. Laws governing the behavior of gases and related computation are used to determine their chemical composition and quantities. Quantitative solution chemistry is introduced. Principles and conditions which affect chemical equilibrium are investigated. Application of scientific measurement techniques, including unit conversion, and rules of organic compound nomenclature are extended. Investigations involving data collection and quantitative analysis provide a framework for laboratory activities. (0885-211 or equivalent, 0884-231) Class 3, Lab 3, Credit 4 (W)

Bridging (Level D)

0885-251 Biological Concepts I
Develops and/or enhances knowledge and skills necessary for success in a college-level general biology course. Themes include chemistry in living systems, movement through membranes, macromolecules, metabolism, enzymes. Laboratory activities complement each theme. (Permission of instructor) Class 3, Lab 3, Credit 4 (F.S)

0885-252 Biological Concepts II
Develops and/or enhances knowledge and skills necessary for success in a college-level general biology course. Themes include molecular genetics, microevolution, cell functions, cell nutrition, regulation of homeostasis. Laboratory activities complement each theme. Successful completion of Biological Concepts I is suggested but not required. (0885-251 or permission of instructor) Class 3, Lab 3, Credit 4 (W)

0885-261 Concepts in Chemistry I
This course is for students enrolled in programs requiring review or preparation for College of Science chemistry courses. Includes principles of measurement, composition of matter, energy changes, behavior of gases, atomic structure and bonding. Laboratory work includes experiments related to topics covered. (Permission of instructor) Class 3, Lab 3, Credit 4 (F)

0885-262 Concepts in Chemistry II
A continuation of Introduction to Concepts in Chemistry I Solutions in which equilibrium principles are studied. Also included are stoichiometric solution calculations involving ionization and solubility, product constants and acid-base pH calculations, Laboratory work includes qualitative analysis of common cations and anions. (0885-261 or equivalent) Class 3, Lab 3, Credit 4 (W)

0885-263 Concepts in Chemistry III
Introduces quantitative analysis utilizing both gravimetric and volumetric techniques. Topics include evaluation of analytical data, gravimetric analysis, acid-base titrations, redox titrations, and principles of calorimetry and spectrophotometry. (0885-262 or equivalent) Class 3, Lab 3, Credit 4 (S)

0885-281 Human Genetics &Evolution
Introduces basic human genetics, basic human evolution and the relationship between 20th century, discoveries in genetics and current human evolution dogma. The history of scientific discovery in both fields is paired with a study of current concepts in microbiology and bridges between genetics and evolution are explored. This presentation/discussion/laboratory course includes topics in human reproductive history, cytology, embryology, molecular biology of the gene, the origin of life, human origins, heredity, genetic variations, population genetics, bioengineering, and old world and new world evolutionary theory. (Permission of instructor) Class 3, Lab 3, Credit 4 (F)

0885-282 Scientific Basis of Social Responsibility
Interactive course designed to provide students with both tools and confidence to become more literate in the sciences. An interdisciplinary teaching team of biologists, chemists and physicists challenge students to analyze contemporary social issues and/or problems that have a basis in science, utilizing basic principles in each of these areas of science. Potential topics include alternative medicine; biogenetics; calories, life-style and exercise; euthanasia; and organ transplants. Following analysis of the issue/problem, students formulate position statements and/or potential solutions utilizing new concepts and scientific tools. They articulate these decisions and outcomes to each other in print and through presentations. Laboratory exercises and community interactions provide hands-on opportunities to experience contemporary science and technology. (Permission of instructor) Class 3, Lab 3, Credit 4 (S)
These social issues are related to the global environment, health care and family. (0882-200 or permission of instructor) Class 3, Credit 3 (W,S)

Intermediate (Level C)

0882-200 Introduction to Social Sciences: Sociology, Anthropology & Psychology Explores the understanding of human behavior and everyday life using important social science concepts. The disciplines of sociology, anthropology and psychology are applied in the study of business, art, education and the family. (ACT social studies/science reading score 6-8 or 0882-150 or permission of instructor) Class 3, Credit 3 (F, W, S)

0882-205 American Family in Crisis Studies contemporary social problems that influence the individual and family at different stages in the human life cycle. The course begins with the topic of child abuse and child neglect and moves to the study of problems often encountered by teens in their search for identity. The final portion of the course deals with the topic of divorce and its implications for adults and children. (0882-200 or permission of instructor) Class 3, Credit 3 (F, W, S)

0882-206 Issues in Parenting & Early Childhood Helps prepare students for the responsibilities, as well as the rewards, that come with parenthood. Introductory topics include conception, pregnancy, labor and delivery. Practical issues covered involve bathing, diapering, feeding and caring for newborns. Critical issues such as language development, discipline, self-esteem, child care options and the costs associated with having a child are also included. This course focuses on common issues faced by all parents with special consideration given to issues unique to deaf parents in raising their hearing or deaf children. (0882-200 or permission of instructor) Class 3, Credit 3 (F, W, S)

0882-210 The Black Experience Helps students pursuing an AOS, AAS, or BS degree gain an understanding of the experiences of Black people in America. This course offers a historical perspective of Black people from their origins in Africa to their settlement in America. This perspective includes the period of slavery, the reconstruction period, the civil rights struggle, and modern day race relations among Black people and other groups in America. (0882-200 or permission of instructor) Class 3, Credit 3 (W, S)

0882-215 Current Social Problems Studies social issues that impact individuals who live in the United States and Canada. Important issues covered include cultural pluralism, the inequity among various ethnic and racial groups, and public and political policies. These social issues are related to the global environment, health care and family. Special consideration is given to how these issues impact on the Deaf community. (0882-200 or permission of instructor) Class 3, Credit 3 (W, S)

0882-221 Deaf Heritage Provides introductory survey of sociocultural patterns associated with the unique characteristics of Deaf culture and Deaf community; the changing social, linguistic and educational conditions and attitudes influencing Deaf people throughout the past hundred years; and the achievements and accomplishments made by Deaf individuals in various professional fields. Hard-of-hearing and late-deafened individuals involved in the Deaf community will be included. Students learn how technology has impacted the lives of Deaf people. Students also learn the importance of the national organizations of the Deaf, of the achievements of Deaf minorities including women and ethnic/racial individuals, and of Deaf advocacy groups protecting the rights of Deaf people. (0882-200 or permission of instructor) Class 3, Credit 3 (F, W)

0882-222 Deaf Culture & Community Introduces students to aspects of Deaf culture and community. The distinction between these is reviewed and characteristics of each are identified. Students learn about the language, norms of behavior, values, traditions, and possessions of Deaf people. Deaf culture and community are analyzed from a historical and sociological perspective. Cross-cultural issues relating to the role of hearing people with the Deaf community are also covered. (0882-200 or permission of instructor) Class 3, Credit 3 (W)

0882-223 Deaf Women’s Studies Provides a historical review of Deaf women in their professional and personal lives. The issues covered in this course include the exploration of the social, political and economic conditions affecting Deaf women and how this compares to other women in society. Hard-of-hearing and late-deafened women, and ethnic/minority women with hearing loss, are included in this course. Students will be able to summarize trends from the social/political analysis and apply their learning to their own personal development and empowerment. (0882-200 or permission of instructor) Class 3, Credit 3 (W, S)

0882-230 Introduction to Political Science & Economics This course guides students through American political systems and the three branches of government. It explores the relationship between political and economic system development and introduces students to basic political and economic principles that have profound implications in our everyday lives. Principles to be explored include the economic implications of SSI/SSDI, public assistance in the form of welfare, grants-in-aid for college, Medicare and Medicaid. The course helps students navigate economic and political assumptions that define increases or decreases in governmental involvement in issues such as education, rehabilitation and taxation. (ACT social studies/science reading score 6-8 or 0882-150 or permission of instructor) Class 3, Credit 3 (F, W, S)

0882-231 Contemporary Economic Issues Introduces students to general economic principles involving basic analysis of opportunity cost, microeconomics, macroeconomics, income distribution and economic justice, and global economic changes. The opportunity cost concept emphasizes the idea that in choosing one economic alternative, we must forgo other choices. The microeconomics section encourages students to answer questions involving supply/demand, consumer sovereignty, factors of production and consumerism. Students explore policy implications of the money supply, government spending on social programs such as SSI/SSDI, government subsidies of the arts, and building prisons versus rehabilitation programs. The impact of foreign trade and international markets is also explored. (0882-200 or permission of instructor) Class 3, Credit 3 (S)

0882-241 Contemporary Political Systems & Issues This course guides students through the American political system, the three branches of government, and the electoral process. The course explores the relationship between politics, government, nationhood and individual empowerment through the political process. Activism and partisanship are studied and compared. A historical overview of major political systems such as democracy, communism, oligarchy, military rule and monarchy. Students navigate the economic and political assumptions that define increases or decreases in governmental involvement in issues such as education, rehabilitation and taxation. (0882-230 or permission of instructor) Class 3, Credit 3 (F, W, S)

0882-242 Law & Society Introduces students to general issues regarding the American legal system, jurisprudence, and the responsibilities of free society and individual citizens of that society. The course provides an overview of the historical aspects of the American constitution, legislative intent of law making and how laws are made and interpreted at the local, state and federal levels. The course explores the roles of lawyers and other practitioners within the legal system, and specifically addresses situations with criminal law, juvenile justice, tort law, consumer and mercantile laws, family law, and individual rights and liberties. (0882-230 or permission of instructor) Class 3, Credit 3 (F, W, S)
Bridging (Level D)

0882-285 Civil Rights & Deaf People
Reviews the history of oppressed groups in the United States and their struggle for equality. Parallels will be drawn between various groups with a focus on Deaf people. Patterns of oppression and empowerment will be compared and contrasted for Black Americans, women, lesbians and gays, and Deaf people. Specific strategies and techniques employed to gain civil rights are covered. Court cases are reviewed and discussed. (ACT social studies/science reading score 9-13 or permission of instructor) Class 3, Credit 3 (S)

0882-295 Social Sciences, Humanities & Technology: A Capstone Seminar (AOS)
Provides a culminating focus for AOS-degree students with respect to concepts and issues introduced in earlier arts and sciences and technical course work. Students develop a project related to a social issue or technological advancement and, using both traditional and electronic research, prepare a paper and presentation. This course is offered in a seminar format. Students must: 1) be within two quarters of graduation with an AOS degree, and 2) have completed (or be within one quarter of completing) all degree-related NTID arts and sciences requirements for the AOS degree. Class 3, Credit 3 (F, W, S)

0882-296 Social Sciences, Humanities & Technology: A Capstone Seminar (AAS)
Provides a culminating experience for AAS-degree students with respect to concepts introduced in earlier arts and sciences, liberal arts and technical course work. Students apply skills of analysis, abstract reasoning, problem solving, statistical measurement and computer technology to explore a topic related to their technical major or career goal. Using traditional and electronic research methods, each student prepares a paper and presentation on the topic. This course is offered through a seminar format. Students must: 1) be within two quarters of graduation with an AAS degree, and 2) have completed (or be within one quarter of completing) their degree-related requirements in the College of Liberal Arts. Students must have completed Writing and Literature 1 and II. Class 4, Credit 4 (F,W,S)

Speech and Language

The following speech and language courses are non-credit

0860-001 Individual Speech/Language Instruction
This course focuses on improvement of spoken language. Goals of the course are individualized based on student need. Instruction may include aspects of speech production such as voice, articulation, pitch, or loudness and aspects of language including grammar and vocabulary.

0860-002 Pronunciation Rules & Strategies
This course focuses on the pronunciation of new vocabulary. Students learn pronunciation rules and how to use the Merriam-Webster Dictionary in order to pronounce new and multi-syllable words correctly.

0860-003 Vocabulary Development
This course focuses on the use of strategies to improve vocabulary. Students develop strategies to determine word meaning through use of contextual clues and knowledge of prefixes, suffixes, and roots.

0860-004 Understanding Word Categories & Relationships
In this course students enhance their word knowledge by exploring similarities and differences in word meanings. Students study word relationships by using techniques such as semantic maps, classification schemes, and hierarchical trees. Students will apply skills to use of search engines on World Wide Web.

0860-005 Improving Conversations
This course provides information and practice designed to improve students’ effectiveness and comfort with spoken English conversations. Students analyze typical conversations, partners, and situations to determine how they are affected by communication differences. Students practice and practice the dynamics of a conversation, including how to initiate topics, maintain and change topics, and successfully close conversations.

0860-006 Communication for a Job Interview
This course focuses on the development of job interviewing skills. Frequently asked questions will be reviewed so that appropriate answers can be formulated. Self-instruction opportunities will be available. Students will have several practice interviews as part of this course.

0860-007 Video Resume Preparation
This course will focus on developing a video resume that effectively communicates one’s qualifications for employment. The student is able to determine the most effective communication strategy of the video and to develop an appropriate script with the assistance of a communication instructor, their employment adviser, and a technical instructor. With the assistance of professionals in instructional television, a professional, captioned videotape will be produced.

0860-008 Making Formal Presentations
The purpose of this course is to provide students with the skill and experience necessary to make formal presentations to groups. Students practice organizing information and making presentations to an audience using speech or simultaneous communication.

0860-009 Communication Strategies
This course focuses on techniques and strategies to enhance effective communication. Students will work on identifying communication strengths and difficulties to increase their success. They will have opportunities to use strategies to prevent and repair communication misunderstandings. For example, they will practice using and responding to requests for clarification.

0860-010 Understanding Figurative Language
In this course, students will enhance their understanding of literal vs. extra-literary meaning by analyzing direct and indirect speech acts, English idioms, similes, and metaphors. Students will work on both comprehension and production of these language forms in context.

0860-011 Cultural Variations in Communication
This course will provide students an opportunity to explore how culture influences communication. They will study how differences in sex, hearing status, social status, education, and ethnicity affect communication.

0860-012 Speech for Telephone Communication
This course is designed to provide a student with individual speech training to aid his or her telephone communication. This is accomplished through a weekly one-hour class with an instructor, which can be supplemented by a weekly one-hour assignment. This assignment, completed in the Self-Instruction Lab, utilizes audiotape cassettes for listening, speaking, and self-monitoring.

Deaf Studies Certificate

The following courses are part of a certificate in Deaf Studies offered primarily for employees and volunteers in the private and public sectors and as a foundation for those wishing to pursue further education in the fields of interpreting or deaf education.

0876-211 American Sign Language I
Students are introduced to approximately 300 basic conversational signs and grammatical principles needed to engage in survival-level conversations with deaf people. Fingerspelling and background information on Deaf culture and community are included. Each class period will have small group, large group and pair interactions. Credit 2 (F,W,S, SU)

0876-212 American Sign Language II
Basic principles presented in ASL I are expanded. Students develop their ability to use linguistic features, culture protocols, and core vocabulary to function in basic ASL conversations that include ASL grammar for giving directions, describing others, making requests, talking about family, occupations and routines, and attributing qualities to others. Videotaping of participants for evaluation and feedback is included as an instructional strategy. (0876-211 or equivalent sign skill) Credit 2 (F, W, S)

0876-213 American Sign Language II
Continuation of ASL II expanding the emphasis on SL grammar, syntax, spatial referencing, and vocabulary development. Students develop further communicative competency in ASL conversations beyond the basic level that include: telling life events, telling time, asking for clarification, and giving directions. Classroom activities include practicing dialogues, short stories, narratives, and short conversations. Fingerspelling and background information on Deaf culture and community are included. Students will be videotaped. Each class period will have small group, large group and pair interactions. (0876-212 or equivalent sign skill) Credit 2 (F,W,S)
0876-241 Aspects & Issues of Deafness I
Develops knowledge and understanding of the effects of hearing impairment, particularly with regard to the audiological, psychological, educational and vocational implications. Class activities include a simulated deafness experience, films, lectures, and discussions. Credit 3

0876-242 Aspects & Issues of Deafness II
Examines deafness from a cultural perspectives, focusing on what constitutes culture, what characterizes deaf culture, dynamics of interaction between the deaf and the larger community, and historical perspectives on deaf heritage. Films, individual case studies, cultural simulation, discussions, and lectures are implemented. (Recommended: 0876-241) Credit 3

0876-311 American Sign Language IV
Students continue sign language skill development as the language is used among deaf community members. Students are exposed to many new signed expressions: grammar, syntax and lexical items of ASL. Videotapes, dialogues, language games, lectures, and readings are used in presentation of this content. (0876-213) Credit 2

0876-312 American Sign Language V
Students continue their study of grammar, syntax, and lexical items of ASL. Cultural aspects of the deaf community are considered as they relate to the language of deaf people. (0876-311) Credit 2
Academic Policies and Procedures

RIT's educational mission is to prepare men and women for living and working in a democratic and technologically advanced society by offering curricula that meet those needs, within an educational community that supports and encourages individual achievement in an atmosphere of pluralism and diversity. Moreover, it sets high standards that challenge students to develop values that will enhance their lives professionally and enable them to contribute constructively to society.

Academic advising
Academic advising is an integral part of a student's education at RIT. Advising is provided through the student's home department. Please consult the individual college sections of this bulletin for more specific information.

Confidentiality of records
In accordance with the Family Education Rights and Privacy Act of 1974 (commonly known as the Buckley Amendment), RIT students have the right to inspect, review and challenge the accuracy of their official educational records. Students are also accorded the right to receive a formal hearing if dissatisfied with responses to questions regarding the content of the record.

RIT policy ensures that only proper use is made of such records. Therefore, with the exception of copies made for internal use (those provided to faculty and staff who have a legitimate need to know their contents), in most cases no copy of a student's academic record (transcript) or other non-public information from student records will be released to anyone without the student's written authorization. The determination of those who have a "legitimate need to know" (e.g., academic advisers, government officials with lawful subpoenas) will be made by the person responsible for the maintenance of the record. This determination will be made carefully, in order to respect the student whose record is involved. If an employer, for example, requests a transcript, he or she will have to obtain a written request from the student or former student.

The Buckley Amendment allows RIT to declare certain pieces of information as "directory" and therefore releasable without the specific permission of a student. Such "directory information" could include a student's name, date and place of birth, major field of study, participation records in official RIT activities and sports, weight and height of a member of an athletic team, dates of attendance at RIT, degrees and awards received. Students may make written request of the Office of the Registrar that such directory information not be released. Because requests for nondisclosure will be honored by RIT for only one year, requests to withhold such information must be submitted to the Office of the Registrar annually.

Copies of the full act and RIT's written policies relating to compliance with the law are on file in the Office of the Registrar. Also available is information regarding a student's right to file a complaint with the U.S. Department of Education concerning the alleged failure of RIT to comply with the requirements for this act.

Transcripts
A student's official academic record is maintained by the RIT Office of the Registrar and is normally reflected through a transcript. All requests for transcripts must be in writing and should include the student's full name or name used while at RIT, student identification number, dates of attendance and signature to assure proper identification of the record requested. Transcripts are usually prepared and available within one week after the request is received.

Under no circumstances will a partial transcript be issued, nor will a transcript be issued to a student who is indebted to RIT. Transcripts issued directly to a student will be over-stamped "This official transcript issued directly to the student." Transcripts from high schools and universities that have been received in support of admission applications and/or transfer credit evaluation will not be reissued by RIT.

The grading system
RIT uses a single-letter grading system. All grades are determined and issued by the faculty in accordance with the RIT Institute Policies and Procedures Manual and the particular standards of the attempted courses. Individual instructors have an obligation to carefully describe the standards and grading practices of each course.

The accepted RIT letter grades are as follows:

A Excellent \hspace{1em} I Incomplete *
B Good \hspace{1em} R Registered †
C Satisfactory \hspace{1em} S Satisfactory †
D Minimum Passing \hspace{1em} W Withdrawn
E Conditional Failure * \hspace{1em} X Credit by Exam
F Failure \hspace{1em} Z Audit

* E and I grades are considered "temporary" and will revert to a grade F unless changed by the faculty within a prescribed period of time.
† R and S grades are restricted to specific types of courses.

For more specific descriptions and procedures concerning the above, see Section D5.0, Institute Policies and Procedures Manual, available in the Office of Student Affairs or on reserve at Wallace Library. The manual is available online: www.rit.edu / -620www / manual / .
Course registration
To be officially registered at RIT, a student must be academically eligible, have been properly enrolled in a course and have made the appropriate financial commitment. The registration process is uncomplicated and can be accomplished in a variety of ways. Typically, students start choosing courses six to eight weeks before the academic term begins and can use a touch-tone telephone, the World Wide Web, the campus computer network, fax machine, mail or register in person at several locations across campus, including the Office of the Registrar. The registration period ends with the first six weekdays of the term, also called the "Drop/Add" period. Specific dates and procedures can be found in the quarterly Schedule of Courses booklet. RIT reserves the right to alter any of its courses at any time.

Students at RIT are free to choose their own courses and course loads. Colleges offering the courses are equally free to restrict enrollment to particular groups of students (for example, students in specific year groups or students who have already satisfied course prerequisites). Most courses also are restricted in class size. Students are strongly encouraged to seek out academic advice and plan their academic careers carefully.

Failure to make appropriate financial commitment, satisfy New York State Health Immunization requirements or fulfill course prerequisites can result in the loss of courses for which a student has registered and/or prohibition of future registrations.

Auditing courses
Courses that are taken on an audit basis will not count toward a student’s residency requirement, may not be used to repeat a course taken previously and do not satisfy degree requirements. Permission to audit a course is granted only by the college offering that course. Any changes in registration between credit and audit must be completed prior to the end of the Drop/Add period.

Withdrawal from courses
A student may withdraw from a course up to the end of the sixth week of the quarter. A grade of "W" will be assigned and the course retained on the student’s permanent academic record. Under exceptional situations, a dean may approve a course withdrawal following the sixth week. For policies pertaining to withdrawal from the Institute and tuition refund, see page 353.

Dean’s List eligibility
Matriculated students who earn at least 12 credit hours in an academic term, have a quarterly grade point average of 3.40 or better; have not been placed on probation due to a low cumulative grade point average; and do not have any grades of I, D, E or F in that term are eligible for selection to the Dean’s List of their college. Students who are pursuing their degree on a part-time basis are assessed for Dean’s List consideration based upon course work over a three-quarter period. Criteria for part-time students are essentially the same as those for full-time students. However, at least 18 credit hours must be earned during the three-quarter period, and each student must have accumulated at least 24 credit hours in his or her RIT career.

Academic probation and suspension
All matriculated students at RIT are expected to meet or exceed certain minimal academic standards. Failure to do so will result in being placed on academic probation or suspension. All such actions are taken by college deans at the end of each quarter; once the action is made, it may be changed or revoked only by a dean. The RIT educational policy governing probation and suspension is quite specific (see RIT Institute Policies and Procedures, Section D5.0, page 6). Three grade point averages (GPAs) are calculated and used in probation/suspension decisions:

Program Quarterly GPA = grade average of all courses taken in a term that are applicable to a student’s degree requirements.

Principal Field of Study GPA = grade average of all courses a student has taken within his or her specialized field (usually from the student’s home college).

Institute Cumulative GPA = grade average of all course work taken as either an undergraduate or graduate student at RIT.

Academic probation
A student will be placed on probation if either his or her Program Quarterly GPA or Principal Field of Study GPA (based upon at least 20 credit hours attempted) falls below 2.0" (a C average). To be removed from probation, both averages must improve to at least a 2.0.

*The physician assistant program requires a 2.8 grade point average.

Academic suspension
A student will be suspended from the Institute if any of the following occurs:

1. A student on probation fails to be removed from that status within two quarters following the initial probation; or
2. While on probation, the student’s Institute Cumulative GPA falls below 2.0, and the student’s physician assistant program requires a 2.8 grade point average; or
3. After being removed from probation, a student’s Institute Cumulative GPA falls below 2.0, and the student is unable to raise that average to at least a 2.0 within one quarter (the physician assistant program requires a 2.8 grade point average); or
4. A student’s Program Quarterly GPA falls below 1.0; or
5. A student is allowed to return to his or her original program from suspension and then goes on probation.

Suspended students generally must wait at least a year before reapplying for admission into an RIT degree program. While suspended, a student may not enroll in any RIT course work unless the suspension is waived by an academic dean, and then may be limited to taking courses on a non-matriculated basis.

Class attendance
Students are expected to fulfill the attendance requirements of their individual classes. Absences, for whatever reason, do not relieve students from responsibility for the normal requirements of the course. In particular, it is the student’s responsibility to make individual arrangements prior to missing class. Attendance at class meetings on Saturdays or at times other than those regularly scheduled may be required.

Student retention
Based on an average of the three most recent cohort survival statistics, RIT’s student graduation rate is 58 percent for students entering at the first-year level and graduating from a four- or five-year program.

Excluding part-time and nondegree students, 87 percent of first-year, full-time day students register for their second year; and 86 percent of third-year students continue through graduation.

The statistics reported herein have been computed in a manner consistent with data reported to the State Education Department through the Institute’s Office of Institutional Research and Policy Studies.
RIT wants you to succeed in your college experiences. The Institute provides a variety of counseling and academic services to allow you to achieve your personal as well as educational goals.

Counseling services can help you with questions regarding your orientation to new college experiences, your academic program requirements, career planning and job placement, or other areas of concern to you. Personal and spiritual guidance is also available on campus.

You may find there are times when you need some special support to succeed in your classes. RIT provides a number of tutoring services, study centers, and learning resources, from the library to the computer labs. Media resources are also available to assist in class assignments.

Center for Campus Ministries

The Center for Campus Ministries is unique in the campus community. Recognizing the balance of mind and spirit, the center’s interfaith staff provide worship and observances in the diverse religious and cultural traditions represented within the campus community. These include Nondenominational, Baptist, Catholic, Hillel, and Lutheran. In a time of intellectual and spiritual growth, the center establishes an affirming environment for students, faculty and staff to explore and discuss values informed by religious beliefs.

The Killian J. and Caroline F. Schmitt Interfaith Center

RIT’s Interfaith Center, a gift of Killian and Caroline Schmitt and other generous donors, is located on the east side of the Student Alumni Union. It is the focal point for the diverse religious traditions within the Institute, housing two chapels, meetings rooms and offices for the campus ministry staff.

For more information, contact the coordinator of the Interfaith Center by phone at 585-475-2135 (voice/TTY) or e-mail at efs0368@rit.edu.

Center for Student Transition and Support

The Center assists new students with their transition and adjustment to RIT and, through specifically designed programs and services, works to foster the academic achievement, social integration and personal success of women, international, and first-year students. This is accomplished through four program areas: RIT Women’s Center, International Student Services, New Student Orientation and the First-Year Enrichment Program. International Student Services and the Women’s Center are located in the Student Alumni Union. The Orientation and First-Year Enrichment Programs are located in Grace Watson Hall. For more information about center programs and services, call 585-475-6943 (voice/TTY) or visit www.rit.edu/studenttransition.

First-Year Enrichment Program

As an extension of the new student orientation program, the First-Year Enrichment Program offers first-time students transitioning from high school to college an introduction to higher education learning, an opportunity to make connections with faculty and staff, and the chance to meet others and become involved members of the RIT community.

This required two-quarter course, which satisfies the wellness requirement for graduation, is designed to maximize the student’s potential to achieve personal success and to adjust responsibly to the personal and interpersonal challenges presented by collegiate life. During the course students and instructors will explore selected topics in the following theme areas: college and transition, high-risk behavior and survival skills, personal awareness and growth, physical well-being, and active learning strategies. Each of these areas is complemented with co-curricular activities and programs to enhance the educational experience and many of these topics are revisited as students continue their education. Instructors will serve as performance coaches to their students. They will be proactive, reaching out to students, assisting with transitional issues, helping to focus academic and personal development goals, and fostering connection with their academic programs, college, and the Institute.

The First-Year Enrichment and Orientation Program is housed in Grace Watson Hall. For more information visit www.rit.edu/studenttransition on the Web.

International Student Services

The Office of International Student Services is the primary resource for over 1,200 hearing and deaf international students from 90 countries and for members of the campus community seeking cross-cultural information. The program provides assistance with immigration regulations and travel documents, helps international students adjust to the academic and cultural expectations in the United States and provides cross-cultural programming for international students and the campus at large. The staff works closely with Global Union, international student clubs and International House, (the special-interest house in the residence halls for both international and American students). Off-campus programs are coordinated with the Rochester International Council. For more information, call 585-475-6943 (voice/TTY) or visit the International Student Services Web site, www.rit.edu/internationalservices.
New student orientation

RIT provides all entering students with programs designed to prepare them for a successful transition and adjustment to college life and to further acquaint them and their families with the RIT community. Our programs will provide the opportunity to:

- Meet the faculty and dean of the student’s college
- Address the academic and social issues involved in beginning college or transferring from one college to another
- Attend academic planning sessions
- Experience living on campus and learn about student services
- Understand the family’s role in promoting student achievement and success
- Learn about financing a college education
- Participate in community and social activities

Our Fall Orientation Program is offered prior to the start of classes. The program provides opportunities to receive academic and advisement, learn about support services and residential living, and meet faculty, staff, and other incoming students. The orientation program is required for all entering first year students.

Orientation is not just a week-long program but a year-long experience filled with opportunities for new students to become fully acquainted with, and comfortable in, the RIT community.

Women’s Center

The Women’s Center at RIT provides information, programming, support and advocacy to address a wide variety of issues affecting women, including academic, social, psychological, physical and spiritual needs of women; domestic violence, sexual assault, sexual harassment and personal safety; and exploration of gender-related issues. The Women’s Center strives to provide a visible and accessible location and a supportive environment where students are encouraged to engage in dialogue, exchange viewpoints and find assistance.

Through its programs, speakers and workshops, the center addresses these topics: sexual assault, domestic violence, sexual harassment and personal safety; women and leadership; women in sports; gender and communication; life skills and financial management; current issues in feminism; and current issues in men’s studies. The center also sponsors the Women’s Mentoring Program, which connects new students with upperclass students.

The Women’s Center is committed to developing and supporting graduate and undergraduate student leaders. Working in the center provides students with the opportunity to learn about gender issues, develop practical skills and collaborate with diverse campus and community organizations. Many types of volunteer opportunities are available. Students interested in paid work positions or volunteer work are encouraged to contact the center’s coordinator.

The Women’s Center is located in room A450 of the Student Alumni Union. The phone number is 585-475-7464 (voice/TTY), and e-mail may be sent to ritwom@rit.edu.

Cooperative Education and Career Services

The Office of Cooperative Education and Career Services supports the Institute’s special emphasis on learning through experience. The cooperative education program was started at RIT in 1912. Since that time it has grown into one of the largest in the world.

Last year more than 1,300 employing organizations across the country participated in the program, hiring more than 2,600 RIT students involved in mandatory and optional co-op programs. Co-op gives the student the opportunity to obtain practical work experience and enhances knowledge acquired in the classroom.

In the Office of Cooperative Education and Career Services each student has a program coordinator who provides assistance with career advising and the job search from the beginning of the co-op process right through career entry upon graduation. The office also provides a variety of job search seminars, career and employer research materials, on-line job postings for co-op and full-time positions, on-campus interview opportunities and a reference service for graduating students.

Services of the office remain available to alumni for a lifetime. Students are encouraged to visit the department Web site at www.rit.edu/co-opcareers for more information.

Office staff spend considerable time developing opportunities with employers nationwide, as well as monitoring and fostering current relationships. These linkages with business and industry enhance RIT’s ability to provide an education that meets the needs of the job market and aids students and graduates in their pursuit of successful careers.

Counseling Center

The Counseling Center, located in the August Center, offers a variety of services to RIT students. These services include:

- Personal/ Psychological Counseling
- Career Counseling
- Career Resource Center
- DISCOVER (Computer-Assisted Career Guidance)
- Developmental Programs and Groups
- Testing
- Consultation
- Referral Services

RIT Counseling Center hours

Counseling Center hours are 8:30 a.m. to 4:30 p.m., Monday through Friday. Services are confidential and free. For more information about services, please call 585-475-2261 (voice) or 585-475-6897 (TTY) or visit the Counseling Center Web site at www.rit.edu.

Personal/psychological counseling

Individual and group counseling are available for students who could benefit from meeting with a counselor to explore, for example, more effective ways of dealing with conflict and stress, managing feelings and emotions, developing satisfying relationships, communicating with others or coping with personal crises. Individual counseling is generally limited to a maximum of 12 sessions per year.

Career exploration counseling

Counselors can assist students in making thorough appraisals of their interests, abilities and personality traits so that they can use this information in developing educational and vocational plans. Tests of aptitude, interest and personality may be used in this assessment process.

Career exploration resources

Located in the reception area of the RIT Counseling Center, the career resources contain occupational information on a variety of careers, vocational and educational reference books, and DISCOVER. The center and its resources are available on a walk-in basis.
DISCOVER
DISCOVER is a career guidance system that uses a computer to help students learn more about:
- the career planning and decision-making process
- themselves, especially their interests, abilities and work-related values
- careers that may be appropriate based on interests, abilities and/or values
- the world of work, including descriptions of more than 40 occupations
- graduate and professional school opportunities

Developmental programs and groups
The Counseling Center staff offers groups each quarter that assist students in their personal development. These groups offer a supportive environment in which to explore a variety of issues that typically affect the lives of students-such as forming relationships, handling loss, managing stress, clarifying values and choosing careers.

In addition, center staff members will present special programs to student groups and organizations. Presentations include communication skills, team building, leadership development and goal setting.

Testing
The Counseling Center may administer a number of psychological tests and interest inventories as part of the counseling process. In addition, it administers a number of national tests; advance credit exams (CLEP) also are given.

Consultation
Staff members of the Counseling Center will provide consultation services to interested student groups, faculty and organizations regarding a number of areas within their scope and expertise.

Educational Technology Center
The Educational Technology Center provides services that enhance and support the educational environment.

ETC’s Media Production Services produces educational and informational media for faculty and staff. These include video, multimedia/ Web, graphics, and photography/ digital imaging production. Media Production Services also captions video and other media.

The Classroom Learning Technologies department deals with many aspects of classroom technology. Support covers the delivery and setup of projectors (slide, overhead, and video/data) as well as TV/VCR/DVD carts; access to and training on installed classroom equipment; and the operation of equipment in the academic auditoriums. ETC also supports the installation and maintenance of computer and video projection equipment and podiums in classrooms and lecture halls.

The Media Resource Center (MRC) provides media support to faculty, staff, and students. The MRC staff works with faculty to identify media within the collection and locate new media to support their curriculum needs. The MRC collection consists of a variety of media formats, including videotape, DVD, audiotape, and an art history slide collection. Media are available for use in the classroom or the MRC viewing area.

A satellite downlink service is also available for those who would like to view a live teleconference broadcast or have it recorded.

ETC is located on the lower level of Wallace Library. More than 70 students assist with production, campus technology support, and office duties. Individuals are invited to drop in and explore these resources. For further information, call 475-2551 or visit www.rit.edu / -613www / etc.

English Language Center
The English Language Center offers both full- and part-time study of English to non-native speakers. Class offerings include conversation, grammar, writing, vocabulary, reading, pronunciation, presentation skills, business communication and TOEFL preparation. For more information about the center’s program offerings, visit the English Language Center (1301 Eastman), call 585-475-6684 (voice/TTY) or visit the Web site at www.rit.edu / -370www or e-mail lxdelc@rit.edu.

Full-time program
The intensive English language program consists of 20 hours of class instruction and five hours of language lab per week at beginning, intermediate and advanced levels. There is a fee for this program. This intensive study program meets the immigration requirements for the Certificate of Eligibility I-20 for F-1 student status.

Before a course of study can be selected, students are tested to determine their levels of English proficiency and to diagnose their specific language needs.

Part-time program and individualized instruction
In addition to the full-time program, students may register for one or more English language courses. The English Language Center also offers private English classes tailored to individual needs. Pronunciation and conversation as well as grammar, writing, reading and vocabulary may be studied in this manner. There is a fee for instruction.

Foreign language instruction
The English Language Center offers a program in which international students give private and group lessons in their native languages. The international student is supervised by a trained language instructor who assists in curriculum development and provides language teaching methodology. In addition to language, the international student can give lessons on the culture and customs of his or her country. Some of the languages offered in the past include Chinese, Japanese, Spanish, Portuguese, Hindi, Tagalog, Korean, French, and German. For more information about learning a new language or teaching your native language, call the English Language Center at 585-475-6684 or pick up an application at 1301 Eastman.

Translation service
The English Language Center’s translation service provides quick and efficient translation of documents, reports, letters and manuals for RIT students, faculty and staff as well as businesses in the Rochester area. For a fee, documents of all types, general to technical, can be translated. Call 585-475-6684.

Honors Program
The RIT Honors Program, featuring seminar-style classes and individualized research and study options, provides a supportive and encouraging environment for students of intellectual curiosity and academic distinction. Students benefit by working closely and sharing academic experiences both in and out of the classroom with other Honors students and faculty.

The Honors Program is designed for students who 1) seek to challenge themselves in exemplary learning experiences such as undergraduate research projects, Honors seminars, and study abroad; 2) wish to extend and share their knowledge through participation in professional associations and conferences; 3) hope to join other outstanding students and faculty in a wide range of special activities throughout the year, including field trips, social events, and community service projects. Honors activities and courses are designed to enhance the professional dimension of the student’s collegiate experience. The major components of the Honors Program include professional opportunities within the student’s home
college, enhanced general education courses, and complementary learning experiences. Special features include:

- **Honors Curriculum:** special courses, seminars, projects, and advising in the student’s home college. The Honors courses in the general education curriculum bring Honors students together.
- **Research and Experiential Learning:** the Honors Program offers opportunities to work with faculty on applied and interdisciplinary research projects as well as enhanced cooperative education experiences and internships.
- **Honors Advising:** each college has designated an experienced faculty member to serve as its Honors Program Advocate. The advocate will work with students one-on-one, advising them as they develop plans for professional and experiential learning opportunities such as research placements, co-ops, internships, and study abroad.
- **Study Abroad:** Honors students are encouraged to pursue study abroad to add an international perspective to their education. Honors students work with the director of the Honors Program for guidance on how to include study abroad in their academic career.
- **Honors Residence:** Students may choose to live in Honors housing in the residence halls. This option increases interaction with other Honors students outside the classroom.

Requirements: Students in the Honors Program are expected to participate in the Honors courses and co-curricular activities in their college and replace approximately half of their liberal arts requirements with Honors courses. Honors students are also required to participate in two complementary learning experiences per year. All students who wish to continue in the program are subject to an annual review by the Honors Advisory Committee. Program continuation is subject to grade point average and other requirements.

Admission: Applicants who submit RIT’s Application for Undergraduate Admission by February 1 are invited to apply for Honors Program admission if their high school grades, rank, and test scores place them among the top five percent of the applicants to the university. This normally requires grades and class rank of 95 percent or higher and SAT I scores totaling 1350 or higher. Students who are invited to apply for admission to the Honors Program are asked to submit supplemental application materials, including a teacher recommendation, two admission essays, and a listing of academic awards, college-level courses, and special enrichment programs in which they have participated. Late entry into the Honors Program is also possible after a student’s second or fifth quarter at RIT.

Scholarship Availability: All students enrolled in the RIT Honors Program receive an Honors Program Scholarship. The current value of this scholarship is $1,000 per year.

For more information about the Honors Program, contact Dr. Catherine Hutchison Winnie, Bausch & Lomb A-130, telephone: 585-475-7634; fax: 585-475-7633; e-mail: honors@mail.rit.edu; Web site: www.rit.edu/~620www/honorsprogram/

Information and Technology Services

Computing services at RIT are provided by Information and Technology Services (ITS), which manages the VMScalage (networked Digital VAX and Alpha computers), several UNIX systems including both Sun and Compaq Alpha machines, and an IBM enterprise server for administrative computing.

The campus-wide network includes wireless capabilities in open public areas such as the Student Union, Crossroads Cafe, and the Wallace Library and a presence in every college. In addition, faculty, staff, and students have dial-in access from off campus and protected over ITS Virtual Private Network (VPN).

Network features

Popular features of the network system are e-mail and access to the Internet, including Internet 2, a second-generation Internet technology with increased broadband capabilities for better access to digital libraries, virtual laboratories, scientific instruments, and other research applications. Many faculty have incorporated these features into their curricula, resulting in innovative and interesting courses not available elsewhere. ITS partnered with several on-campus departments such as Student Affairs and Student Government to launch myRIT, the Institute’s internal Web portal found at https://my.rit.edu.

Users can customize their own site on the portal with personal Web links in addition to enjoying several standard features like access to Student Government and RIT sporting events, University News, and the Student Information System, where individual student course information and grades are posted.

ITS also manages numerous computer labs and “smart” classrooms (in cooperation with the Educational Technology Center) containing Windows NT, Macintosh, and SGI workstations and printers. Most of these facilities are available to students for general computing use and to faculty for reserved class work. Lab assistants provide first-level support to help people use the hardware and software available in the labs.

Computer security and safeguards

Computing system use is guided by the RIT Code of Conduct for Computer and Network Use. This document, located at http://www.rit.edu/computerconduct, reflects current issues related to computer abuse and cybersecurity. ITS has put into place multiple safeguards to protect the Institute network environment and the integrity of individual user accounts.

Computer accounts are issued to students, staff, and faculty so that they can perform activities supporting educational goals and internal RIT functions. Students can obtain an account at the ITS Help Desk or at the reference desk at the Wallace Library by showing their RIT identification card. Forms for faculty and staff accounts may be available at home departments or can be obtained by contacting the Help Desk.

Computer training and consulting services

ITS also provides consulting services, seminars, and computer training courses and makes available Mobile Learning Assistants to help faculty, staff, and students with specific computer tasks. ITS offers computer-based training modules that run the range of technology topics from Microsoft Suite to Visual Basic, UNIX, and C++.

Student employment information

ITS employs more than 200 students in its organization, making it one of the largest employers of students at RIT. This gives students the opportunity to work with information technology professionals during the students’ college careers. Contact Student Employment at: http://www.rit.edu/~967www for more information about job opportunities in ITS.
Modern access to the campus computer network
Both asynchronous and DialIP remote Internet connection services are available (1.44 to 56 Kbps): 585-427-2000.

Contacting the Help Desk
The ITS Help Desk is located in the Gannett Building (7B) in room 1113.
 Contact Help Desk staff via telephone or TTY: 585-475-HELP (4357) (voice) 585-475-2810 (TTY)
 E-mail: helpdesk@rit.edu

Service hours:
 Fall, winter, and spring quarter hours:
 - Monday through Thursday-8 a.m. to 8 p.m
 - Friday-8 a.m. to 5 p.m.
 - Saturday-closed
 - Sunday-noon to 6 p.m.

Summer quarter hours, holidays, and quarter breaks:
 - Monday through Friday-9 a.m. to 5 p.m.
 - Weekends-closed

Detailed information on ITS computer and networking systems and services may be obtained from the ITS Help Desk—the department’s central location for computer and networking information/services—and at http://www.rit.edu/its.

Learning Development Center
The Learning Development Center offers academic support to students, faculty, and staff. The LDC consists of four programs: the College Program, the Disabilities Services Office, the Higher Education Opportunity Program, and the RIT/TRIO Student Support Services.

College Program
The College Program offers workshops, classes, and labs for all levels of students, from freshmen to graduates. In addition to basic skill development, it offers courses that teach students how to improve study techniques and how to assess and make the most of their individual learning abilities.

Reading and writing department:
The writing lab provides individualized instruction designed to improve students’ writing abilities. Instructors work with students at every stage of the writing process. This is a “drop-in” lab; no appointments or referrals are necessary. Individual and small group assistance is available for reading text books and for speed-reading strategies.

Mathematics department:
The department is concerned with supporting students’ progress in the learning of mathematics. General offerings include assessment for placement in appropriate courses, tutoring, and instruction in a variety of formats. An individualized math course offering diagnostic testing and carefully prepared review materials is offered. The math lab offers free tutoring in most math courses as well as “math-related” areas such as chemistry, physics and statistics. The lab has review packets on a variety of topics in algebra, trigonometry, and calculus as well as a list of math videos available in Wallace Library. Review sessions are offered each quarter on Techniques for Differentiation and Integration for Calculus I and II.

Study skills department:
The focus of this department is on the development of good study skills to promote academic success. Diagnostic evaluation, individual instruction and mentoring, and tailor-made courses for various RIT groups are available. A series of mini workshops, the Lunch ’n’ Learn Series, is offered each quarter. Topics covered include time management, listening and note-taking, text reading, test-taking and preparation, and memory improvement.

See the study skills Web site: www.rit.edu/-369www /college-programs/Ing-pwr/index.htm.

College restoration program:
The college restoration program is a full-time specialized program of instruction, with matriculated status, for students who have experienced academic difficulty and suspension from a college.

A course of action can be recommended only after the reason for academic difficulty has been established. If it is determined (after an interview and diagnostic and achievement tests have been administered) that CRP can be helpful, a very structured program, including one or two content courses and LDC instruction, is arranged.

The student meets regularly with an LDC faculty mentor to clarify directions and goals, to discuss relationships between the skills courses and to review progress.

The entire program is designed to strengthen the student’s self-confidence. Successful completion of this program could qualify students for readmission to the college or department of their choice or for entrance into another educational program.

Although the college restoration program does not guarantee a participant readmission to his or her former college or admission as a transfer student at another school, the center provides recommendations and resumes of student achievement in the program to colleges upon request of the student.

For more information, contact the Learning Development Center at 585-475-6682 (voice/TTY).

Academic assessment program:
The academic assessment program helps students determine why their academic performance is not what they, or others, would like it to be. The variety of factors that may interfere with academic performance ranges from personal issues and interpersonal problems to unclear college major and career path choices to ineffective or underdeveloped study skills.

Outcomes of the assessment process include identification of the problem or problems and may include referrals to various campus support services. For more information or an appointment, contact the Learning Development Center at 585-475-6682.

Learning support services:
Learning support services is committed to helping individuals recognize and access their natural learning abilities and offers academic coaching for students who anticipate difficulties navigating the complexities of the academic environment. LSS recognizes that each student is unique and responds to this by offering three levels of check-ins: weekly, bi-weekly or daily.

Students may select their level of participation on a quarterly basis. This is a fee-based service. For more information, contact the LSS chair at 585-475-5296.

Academic accommodations office:
This office provides the academic accommodations for students who have been approved for these services by the disabilities services coordinator. The most frequently used services include extended-time testing, readers, scribes, note-taking, and textbook taping.

College Program services are free to RIT students. For more information concerning these services, contact the Learning Development Center at 585-475-6682 (voice/TTY).

Disability Services Coordinator’s Office
RIT is committed to the support of members of our learning community who have disabilities. All students with disabilities who request accommodations must send appropriate documentation of the disability to the Disability Services Coordinator’s Office. The coordinator will: 1) assess students’ documentation; 2) review students’ requests for accommodations; 3) recommend appropriate and reasonable accommodations; and 4) refer students to the appropriate service providers. The office works closely with the disability liaisons of each of the colleges at RIT to ensure support for students.
with disabilities within each college. The office coordinates services with Residence Life and works with Campus Safety, who supervise the mobility van to provide transportation around campus for those who are mobility impaired. For more information, call the disabilities services coordinator at 585-475-7804 (voice) or -6888 (TTY).

Higher Education Opportunity Program
The Higher Education Opportunity Program is a New York State and RIT funded service that qualifies students for additional financial and academic support for up to five full years, not including periods during which students may be enrolled in cooperative education. This supplemental assistance is available for students who need extra time to complete their academic requirements. While both New York State and RIT provide financial support, HEOP students must also qualify for the New York State Tuition Assistance Program (TAP) and federal Pell Grant program and be personally responsible for loan and college work-study contributions. The HEOP program is dedicated to each individual student’s academic success and personal growth.

To qualify, a student must meet strict academic and financial guidelines set by the New York State Education Department prior to attending college. Any student who has taken college courses following high school graduation, matriculated or not, is ineligible. Students must have graduated from high school or the equivalent and be New York State residents. Transfer students are eligible if they are coming from a like program at another institution in the state: HEOP, EOP, SEEK or College Discovery. Transfers must apply to and be accepted with disabilities within each college. The office coordinates services with Residence Life and works with Campus Safety, who supervise the mobility van to provide transportation around campus for those who are mobility impaired. For more information, call the disabilities services coordinator at 585-475-7804 (voice) or -6888 (TTY).

North Star Center for Academic Success and Cultural Affairs
The North Star Center for Academic Success and Cultural Affairs provides services and develops initiatives to enhance the student experience of Latino American, African American, and Native American RIT Students. The North Star Center provides personal advising, advocacy, leadership development opportunities, diversity education, cultural programming, and a connection to campus and community resources. A peer mentoring program provides academic and social support by connecting new students in various majors with upperclass students. The Luftos Carson Book Fund makes textbooks available to students served by the center. The Frederick Douglass Scholarship provides financial assistance and recognition to students who demonstrate leadership and community service.

The North Star Center disseminates information to students and families about internships, scholarships, and job opportunities. In addition, collaboration with several campus units and student organizations brings prominent speakers and community leaders to campus to meet with students, faculty, and staff. North Star Center staff advise the Black Awareness Coordinating Committee and work closely with the Latin American Student Association, Caribbean Students Association, and other student groups. The Web address is www.rit.edu/northstar.

NTID Resources for Deaf and Hard-of-Hearing Students
The National Technical Institute for the Deaf offers an array of educational and service activities for deaf and hard-of-hearing students.

These activities and services include career counseling, mental health counseling, student life programming, communication skills development in the form of speech-language instruction, speechreading, listening/audiological services and a state-of-the-art learning center.

NTID Learning Consortium
The NTID Learning Consortium is a partnership among academic departments and educational programs throughout NTID and RIT. The goal of this partnership is supporting student success in the college curriculum. Resources of the NTID Learning Center and the Self-Instruction Lab are an integral part of this consortium.

The NTID Learning Center (www.rit.edu /nlcwww/) represents a creative combination of human, physical and technological resources through which consortium partnerships can be realized.

Learning Center resources include:

- regular tutorial and curricular support staffed by faculty and advanced students and directly tied to discipline-specific curricula and classroom activities.
- Tutoring is offered in a range of disciplines, including English, science and math, technical program majors, speech and language, ASL and computer software applications.
(tutorial and curricular support for students is available on a walk-in, scheduled or assigned basis, either individually or in small groups; educational workshops (either tied to credit-bearing courses or independent experiences) addressing skills, knowledge and attitudes important for success in college and beyond; a computer resource area supporting both tutorial activities and course assignments, as well as independent student work; a “smart classroom” that supports instructional innovation through incorporating computer and multimedia-based technologies and serves as a site for distance learning innovations; a video resource room supporting video conferencing; designated areas for individual and small-group tutoring and studying.

The Self-Instruction Lab (www.rit.edu/ -482www / sill/) is available to students as well as faculty and staff to support signed and spoken language communication. The lab offers flexible scheduling to meet learner needs as well as materials and equipment to support individual learning styles. Each of the lab’s state-of-the-art instructional carrels is equipped with a color TV monitor and a VCR. The lab offers instructional materials in videotape, videodisc, CD-ROM, and audiotape formats that are designed to supplement classroom instruction and support independent practice and study. Video production capabilities also are available.

Speech and Language Department services

The Department of Speech and Language provides curricular and cocurricular learning activities that focus on the development of a full range of communication competencies. These activities include individual speech/language assessment and instruction; speech/language lab activities supporting technical vocabulary and communication and second language learning; individualized use of multimedia and computerized visual feedback systems; and communication seminars and workshops. Through these activities, students can work on conversational interactions, job-related communication skills, technical and formal presentations, and job interviews.

The services of the department are open to all RIT students and are available through individual appointments with faculty or on a walk-in basis through the new Integrated Communication Lab located in the Johnson Building. The Spoken Language Learning and Practice Lab (SLLPL) has individual workstations for pronunciation practice, computers for speech and language practice and visual feedback, and stations for videotape recording and playback. The faculty in the department are certified by the American Speech-Language-Hearing Association, and the program is accredited by the ASHA Professional Services Board.

Audiology Department services

The Audiology Department offers workshops through the NTID Learning Center on a variety of topics related to assistive technology and communication (i.e., telecommunications, job interviews, communication strategies) as well as individual instruction on a noncredit basis in the areas of speechreading, listening and strategies to facilitate communication in social and work environments. Professional hearing and hearing aid evaluations are available through the department’s nationally accredited clinic, and hearing aids are provided at significantly reduced prices. In addition, faculty are available to discuss issues related to hearing loss, tinnitus, hearing aids and assistive technology. FM systems can be loaned to students for the academic year. Most of these services are free for all full-time RIT students and available to part-time students for modest fees.

The Hearing Aid Shop (LB-3130) sells hearing aid accessories and batteries and schedules appointments for hearing tests, hearing aid evaluation and other services with audiology faculty. Students using hearing aids can purchase earmolds, have their hearing aids computer analyzed and sent for repair, and borrow assistive signaling and listening devices.

The Eye and Ear Clinic provides on-site ophthalmology and otology services, color and visual field testing, educational advocacy and counseling for all full-time students. Appointments with medical doctors and visual specialists are scheduled through the Hearing Aid Shop. For more information, call 585-475-6473 (voice/TTY).

NTID Counseling Services

NTID Counseling Services is committed to the goal of helping students realize their full potential for a successful college experience. In pursuit of this goal, each NTID-sponsored student is assigned a professionally trained counselor who provides a full complement of counseling, advising, assessment, advocacy and referral services. The counseling faculty are trained in counseling and career development theory and techniques, hold individual certifications from the National Board for Certified Counselors and follow the guidelines and for ethical standards set forth by the American Counseling Association. Counselors assist students with student orientation, educational and career planning, adjustment to college life, study skill development, access and referral to on-campus and community resources, and a wide range of personal and interpersonal concerns. Counseling faculty also assist in coordinating special services for physically challenged students.

For additional information about NTID Counseling Services, call 585-475-2876 (voice/TTY) or send a fax to 475-5934.

NTID Mental Health Services

The RIT Counseling Center provides confidential mental health counseling to all hearing, deaf and hard-of-hearing students requesting assistance. Members of the center work closely with RIT’s Student Health Center, Center for Residence Life, NTID Counseling Services Department, Campus Safety and other related campus units.

Some concerns that students may need help in resolving include depression, anxiety, family conflicts, intimate relationships, and sexual and personal identity matters. Workshops, discussion groups and group counseling experiences on topics such as stress management, dating/relationships and assertiveness training also are offered to assist students’ mental health growth and development.

Psychological testing and assessment are available to students whose personal social problems affect their academic performance. Consultation often is done with faculty and staff members so that students are assisted in planning remedial programs that emphasize their academic as well as personal needs.

A 24-hour emergency crisis intervention service for students experiencing mental or emotional trauma is provided in conjunction with other relevant campus units. For additional information, contact the RIT Counseling Center at 585-475-2261 (voice) and 585-475-6697 (TTY).

NTID Student Life Team

The Student Life Team is committed to providing quality cocurricular programs designed to help students enhance their quality of life, sense of relevancy to their studies, and overall satisfaction with and success in college.

Through collaboration with other units within NTID and RIT, the use of creative program strategies and a strong commitment to utilizing student paraprofessionals, the SLT emphasizes cultural diversity, minority student support, leadership development, deaf culture and ASL, and contemporary social issues.

To learn more about the team and programs you may want to get involved with, please contact 585-475-6639 (TTY) or stop by the office suite on the first floor of Ellington Hall.
NTID Center for Human Performance Support Team

The NTID Center for Human Performance Support Team is committed to providing quality services that maximize access for deaf and hard-of-hearing students who are engaged in the First Year Enrichment course, Wellness for Life course, Wellness Activity courses, intercollegiate athletics, intramurals and recreation programs. Members of the team work closely with RIT’s Center for Human Performance, Center for Student Transition and Support, and Student Health Center.

The support team members teach the First Year Enrichment course, Wellness for Life course, Wellness Activity courses, signing for themselves. They also provide advising and tutoring and coordinate notetaking services. Consultation and advising for deaf and hard-of-hearing student athletes and RIT intercollegiate coaches. The support teams collaboration with the NTID Admissions Department allows potential NTID student athletes the opportunity to meet with members of the support team and RIT intercollegiate coaches and visit the athletic facilities.

Opportunity for deaf and hard-of-hearing students to develop leadership and professional skills exists through the peer educator / paraprofessional program under the direction of the Center for Human Performance Support Team. Through collaboration with other NTID and RIT units, the student paraprofessionals utilize a variety of creative strategies and programing efforts that support access, inclusion, team building, and education.

For additional information regarding NTID Center for Human Performance Support, call 585-475-6104 (voice/TTY) or 585-475-6530 (TTY).

NTID Summer Vestibule Program

First-year experiences for many students start with the Summer Vestibule Program, an orientation program for new deaf students that assists and prepares them for complex tasks of career awareness, decision making, adjustment to college life, and assessment of academic skills and competencies. During SVP, students learn about the programs offered at NTID and the other colleges of RIT, while faculty and staff members evaluate students' skills, abilities and motivation. Through this process, students gain information that assists their selection of an appropriate program and design of their individual academic plan.

Acceptance into SVP does not automatically guarantee admission to the program the student selects during SVP. The final decision on acceptance into a program of study for the fall quarter is the responsibility of each academic department. Admission to a program depends on successfully completing SVP, having requisite skills to begin the program and availability of space in the program.

During SVP, students participate in various activities; including orientation to college services and academic expectations; career sampling; career planning; and placement assessment in mathematics and English. Recreational and leisure activities, including intramural sports, dances, picnics, swimming and captioned movies, also are a part of SVP.

While most deaf and hard-of-hearing students do attend SVP, there are some who are not required to attend based on clear career goals, previous college experience and past academic performance. An admissions committee reviews each student’s credentials to determine if SVP is appropriate.

NTID Student Orientation Assessment and Registration program (SOAR)

The Student Orientation Assessment and Registration program is designed for deaf and hard-of-hearing students who have been accepted into an RIT bachelor’s degree program. SOAR provides students with information on how to use the various NTID educational access services available to them, acquaints them with RIT’s campus and services, and allows them to meet other new students and their department’s chairperson and faculty members, who will assist them with fall quarter class registration.

Online Learning

A recognized leader in the delivery of online asynchronous (any time, anywhere) education, RIT began offering online education in the late 1980s and offered its first full degree in 1992.

Today RIT offers 30 degree and certificate programs—nine graduate degrees, four undergraduate degrees, three graduate certificates, and 14 undergraduate certificates—all of which can be earned without ever coming to campus. RIT offers more than 300 courses online each year. Students are encouraged to select and apply to an academic program but may enroll in courses without being a matriculated student.

All courses offered online meet the same rigorous objectives set for traditional classroom experience. Faculty who teach an online course often teach the same class in a traditional format. However, just as each professor establishes the learning outcomes for a traditional course, his or her individual style and goals exist in the online classroom. Most classes establish a weekly schedule for learning activities or a project-based learning approach with deliverables due after certain outcomes have been accomplished. These may include projects, exams, team-based projects, required asynchronous discussion, or building or using computer programs to demonstrate capabilities. Most classes also include required readings from textbooks, electronic reserves (from the library), Web pages, or downloadable documents (PDFs). Students interact with one another online to exchange ideas and collaborate.

All courses use Internet and Web-based technologies for the underlying course structure. Students log into the computer software frequently during the week and must have unrestricted access to the Internet, a computer, a telephone, and access to a VCR and TV monitor to participate in courses. Not all courses use the same technologies; some will take advantage of toll-free phone conferences, while others will use text-based chat. Others utilize CD-ROMs. Some use Web-based simulations, and some may require additional software.

Students have full access to customer and technical support through a toll-free phone number and e-mail. Online learners also have full access to the library and library services. Other online services include registration, access to student records, online ordering for all course materials through the campus bookstore, and academic advising. Registration can be completed online at http://onlinelearning.rit.edu; via the RIT Information Center/SSS touchtone telephone; fax; and mail.

RIT Online Learning serves students throughout the United States and in 40 other countries. Those living near Rochester can choose to take both online and traditional courses as a way of increasing flexibility and remaining on target to completing a degree.

For more information, see Online Learning at http://onlinelearning.rit.edu or call us at 1-800-CALL-RIT (225-5478, voice/TTY) or 585-475-5089 or 585-475-5896 (TTY).
Study Abroad Program

To prepare students for success in an increasingly global society, RIT offers a range of study abroad opportunities. Study abroad programs led by RIT faculty are in most cases offered in the summer. Many programs include a new summer program at RIT’s campus in Dubrovnik, Croatia, and intensive language study programs in Japan and Germany—offer credit toward liberal arts requirements. Other programs are designed for specific colleges and majors; for example, the College of Imaging Arts and Sciences, the College of Business, and the College of Engineering.

Through a partnership with Syracuse University, RIT students can also enroll in SU study abroad programs while receiving RIT course credit and financial aid. Syracuse summer programs are available in more than a dozen regions, including Western Europe, Australia, Singapore, China, South America, and the Caribbean. During the academic year, programs in Florence, London, Strasbourg, Madrid, and Hong Kong are popular destinations for students who can study abroad for a semester or a full year. RIT also has a new affiliated program with SUNY Oswego in Germany for students in computer science.

For more information about study abroad, contact Dr. Catherine Hutchison Winnie, Bausch & Lomb A-130, telephone 585-475-7634; fax 585-475-7633; e-mail: studyabroad@mail.rit.edu; Web site: www.rit.edu / -620www / saprogram.htm.

Veteran Enrollment Services

Active service persons, reservists, members of the National Guard, veterans and their dependents often begin their educational programs through RIT’s Veteran Enrollment Services. Transition from the military to a successful civilian career is dependent upon proper preparation, and education is the key to this transition process.

The veterans’ enrollment services counselor is available to handle inquiries and assist veterans with VA- and college-related information in the Office of Part-time Enrollment Services on the first floor of the Bausch & Lomb Center. The office is easily accessible for both day and evening students. It is open from 8 a.m. to 6 p.m., Monday through Thursday, and until 4:30 p.m. on Friday. Students may visit the office or telephone 585-475-6641 to speak with the counselor.

Active-duty service men and women can apply through their commanding officers or the nearest post education service officer for active-duty benefits such as ACES tuition assistance or New G.I. Bill. The amount to be paid to these service members is equal to the monthly amount for single veterans, not to exceed the cost of tuition. Active-duty students represent the fastest growing group of benefit eligibles. Information on the Internet about RIT’s online learning opportunities may be of major interest to them.

Reservists eligible for the Montgomery G.I. Bill for Reserves, ACES, student loan repayment program and/or other educational incentives are encouraged to apply through their commands for a Notice of Basic Eligibility, DOD Form 2204. When received, the Notice of Basic Eligibility is forwarded to the Veterans Administration to ensure prompt payment. Questions regarding Reserve G.I. Bill benefits, loan repayment, tutorial or other programs that reservists and members of the National Guard may be entitled to can be directed to the office or to the service member’s command.

Vocational Rehabilitation, offered to service-connected disabled veterans, is a priority program. These veterans are eligible for tuition, fees, books, supplies and other costs directly related to attending the program approved by the U.S. Department of Veterans Affairs. Additional monies are sent to these veterans each month to help offset the cost of living while attending school. Vocational Rehabilitation, the monthly supplement and disability benefits make RIT an attractive choice for the disabled veteran.

Veterans eligible for Veterans Educational Assistance Program, Chapter 32, should bring a certified copy of the DD214 to the office, where the benefit paperwork can be initiated. These benefits, also payable by the U.S. Department of Veteran Affairs, are prorated relative to the service member’s contribution.

Chapter 30, commonly referred to as the New G.I. Bill, is a significantly different benefit from the aforementioned. While service members have contributed out of their monthly pay, they must have completed the initial term subsequent to separation in order to be eligible for the full amount of their C.I. Bill. This monthly amount is paid directly to the veteran and is self-certified once the enrollment has been reported by the institution.

All veterans and participants in veterans’ dependent programs are eligible for counseling assistance and tutoring. Evaluations of military training for possible transfer credit are available as well. Veterans often find that this evaluation provides them with transfer credit that can be applied in their major or as elective credit toward graduation. Evaluations are processed as recommendations of transfer credit and are subject to academic department approval. Veterans are encouraged to discuss their evaluations with the academic department before enrolling.

Wallace Library

Wallace Library is the primary information resource center on campus. A balanced combination of electronic networks and quality-oriented staff, coupled with a modern and accessible building, make RIT’s up-to-date library a multimedia facility.

Contained within the library are the Educational Technology Center; the Media Resource Center; the RIT Archives; and the Cary Library, which contains more than 20,000 volumes on the history of printing, rare book illustration, book design and other aspects of the graphic arts.

The library’s Web-based workstations provide access to a wide selection of resources. Users can access Wallace’s catalog, search many electronic commercial databases and surf the Internet. The library’s staff offers hands-on instruction for using various electronic and Internet resources. They will schedule specialized class instruction upon request. Interlibrary loan services and in-house book requesting are available on-line. The Vax Internet Area (VIA) provides access to graphic interface workstations, image scanning and a host of interactive CD titles.

A variety of seating options and small-group study rooms are available, which together can accommodate more than 1,000 users.

For library hours, call 585-475-2046 (voice); for Reference Desk, call 475-2563 (voice/TTY) or 475-2564 or e-mail 610wmlref@rit.edu; for Circulation Desk, call 475-2562 (voice) or 475-2662 (TTY).
What goes on in the classroom is one part of a college education; what happens outside the classroom is just as important. RIT is a remarkable and diverse university with faculty and staff who are concerned about students' success and who are very interested in challenging them to achieve their full potential. The Student Affairs Division hosts an array of stimulating and enjoyable programs and activities that complement classroom learning, provide recreation, and encourage growth and development toward becoming successful professionals and citizens.

The division consists of nine centers that provide the programs and services that are integral to the learning process and complement the academic curriculum. The centers are: Campus Life, Campus Ministries, Counseling, Learning Development, Human Performance, Residence Life, Student Health, Student Transition and Support, and the English Language Center.

Life on campus is a living-as well as a learning-experience. Students, with the counseling of trained resident staff, have their own governing organizations and develop social programs. A wide variety of athletic, social and professional activities are available to all students.

Student Housing

The residence halls

RIT recognizes the significance of the on-campus living experience and its role on the student's academic and social development. The Center for Residence Life therefore, in keeping with the educational mission of the Institute, has as its overall purpose the general well-being and growth of students. To ensure this goal, the atmosphere, conditions and services within RIT's residence halls provide for much more than just a place to sleep. The antiquated term “dorm” is no longer an accurate description. The residence halls offer a living experience.

Many activities, programs and services are provided to residents by professional and paraprofessional staff members. Events are planned and regularly conducted on each floor and, on a larger scale, in each quad area. Social and developmental activities are specifically designed to help students meet one another, make friends, and become familiar with campus resources and generally to ease their transition to college life. Programs are continually offered throughout the year on a variety of topics, including study skills, communication abilities, personal safety and avoiding drug abuse. Many other topics also are covered, each designed to better prepare students to grow and mature as complete individuals.

Serving approximately 3,000 students, the residence halls offer many living options to meet diverse individual needs, interests, backgrounds and maturity levels. Students may choose living arrangements according to their own lifestyles: for example, same gender, coeducational, wellness, non-smoking, alcohol-substance free, intensified study, over 21 years of age, and mainstream (hearing and deaf / hard-of-hearing students living on the same floor). Also available are living options in Greek fraternities and sororities and Special Interest Houses such as Art House, Computer Science House, Engineering House, the House of General Science, International House, Photo House and Unity House. Special membership in Greek or Special Interest Houses is required, and dues may be charged.

RIT Housing Operations offers a variety of room types to the residence hall population. Entering students are assigned to doubles. A limited number of single rooms are available for upperclass students. Occasionally, entering students initially may be assigned to temporary housing until on-campus housing becomes available. This is a temporary arrangement, and as space becomes available, students are quickly reassigned to institute housing.

Incoming students—upon receiving the acceptance packet—must complete and return the Residence Hall Contract included in this mailing. First-year students are required to live in residence halls, unless they live with their families within a 30-mile radius of RIT. At the end of the first year in the residence halls, students participate in an annual housing selection process in order to reserve RIT housing for the following academic year. Campus apartments, the RIT Inn, and limited residence hall spaces are available through this process. RIT's housing contract is for the full academic year (fall, winter, and spring quarters). If a student should become enrolled in a co-op program as part of educational study, he or she is charged only for the period of actual occupancy. Additionally, all residence hall students must participate in a board (meal) plan. Charges for meal plans are included in the Expenses and Financial Aid section of this bulletin.

Within the residence halls, all rooms and corridors are carpeted, and each room is provided with beds, desks, chairs and dressers according to the number of students assigned to that room. Window coverings and closet space also are provided. Each corridor has its own bathroom equipped with showers, and floors have two community lounges, one with a television and kitchenette and the other with tables, chairs, and couches used for studying. All residence hall rooms are equipped with cable television access and free, direct, high-speed Ethernet connections to the campus computer systems and the Internet. In the Ellingson, Peterson, and Bell residential area, suites are available in which three bedrooms are connected by a common bathroom. Several laundry facilities are available in the residence halls. Students can use their flex debit or coins to operate the machines.

Apartment housing

RIT Housing Operations manages one of the nation’s largest university-operated apartment systems, with approximately 3,000 students residing in nearly 1,000 individual townhouse and apartment units. Apartment housing is an option for upperclass students in the five apartment complexes owned and operated by RIT.
While undergraduate students compose the majority of apartment residents, a mixture of graduate and international students as well as single and married students can be found in each apartment complex. Apartment contracts run from September through May, but residents are permitted to leave for co-op employment and summer without penalty.

All apartments are equipped with refrigerator and stove but are otherwise unfurnished, except for University Commons, which is fully furnished. Furniture, however, may be leased from local rental companies. Four of the five Institute apartments are located less than a mile from the center of campus, one complex is located three miles south of the campus. All apartment complexes are serviced by RIT’s shuttle bus system. A brochure describing the five complexes-Colony Manor, Perkins Green, Riverknoll, Racquet Club, and University Commons—is available from Housing Operations, Grace Watson Hall, 63 Lomb Memorial Drive, Rochester, NY, 14623-5603; 585-475-2572 (voice) or 475-2113 (TTY).

The RIT Inn and Conference Center
The RIT Inn is a unique housing option for slightly more than 300 upperclass students. The inn blends college housing with many of the perks of a first-rate hotel. This smoke-free facility offers furnished, air-conditioned double rooms with campus data network access and cable. In addition, there is an indoor/outdoor pool, fitness room, sauna, whirlpool, and coffee shop that accepts students’ food debit cards. Free shuttle service is provided for students residing at the inn, which is located three miles south of campus.

The Housing Connection
A service of RIT Housing Operations, the Housing Connection is designed to meet the general housing needs of the RIT community. It provides free referrals for students looking for on- or off-campus housing accommodations in the Rochester area and offers the only on-campus clearinghouse for apartment residents in need of additional roommates, providing a continual updated listing of available roommates and their specific interests.

Housing Connection provides free maps, information pamphlets and telephones for users of this service. A trained staff member will assist students in their research for housing or roommates. For more information, call 585-475-1559 (voice/TTY) or visit the Web site, www.rit.edu/~hcwww.

Major Student Organizations

Student Government
The Student Government is the representative body for students. It works with RIT administration, faculty and staff to communicate the needs and desires of the student body and to communicate the decisions of the administration to RIT students. It encourages the student body to formulate and express its opinion, provides a series of services to student organizations, recognizes approximately 108 clubs and eight major organizations and actively engages in the university’s open governance system.

All full-time and part-time undergraduate and graduate students become members of the Student Government when they pay the Student Activities Fee. For more information, please call 585-475-2204 (voice/TTY).

NTID Student Congress
The NTID Student Congress (NSC) is an organization comprised of deaf and hard-of-hearing students who represent and provide programs for members of their community. NSC helps interested students communicate their needs, ideas and concerns about campus life to faculty members, administrators and other student organizations within RIT; provides opportunities for developing new leadership skills; and encourages student activities and integration by provid-

Students interested in getting involved may stop in at the NTID Student Congress office or call 585-475-6277 (TTY) for more information.

Off-Campus and Apartment Student Association (OCASA)
OCASA is the representative student government for all RIT students who do not reside in a residence hall. The Off-Campus and Apartment Student Association, formed in 1978, is composed of students who live with their parents, in the RIT-operated apartment complexes or in off-campus apartments. OCASA provides input from off-campus students to the RIT administration.

The OCASA main office, located in the Student Alumni Union RITreat, offers complementary services that include an area with typewriters, PCs and Macintosh computers, a copier, fax machine and various office supplies. Also available are a microwave, refrigerator, coffee, tea and hot chocolate. A daily newspaper and a variety of magazines are on hand. Each of two satellite offices in Colony Manor and Racquet Club apartments offers Macintosh and PC computers, a copier and a TV lounge.

Stop in at the OCASA office or call 585-475-6680 (voice/TTY) for more information.

College Activities Board (CAB)
The College Activities Board is a student-run organization responsible for providing a balanced program of social and recreational events for the campus community. CAB presents major concerts, festivals and off-campus trips each quarter. For information on CAB programs, stop by the office in the Student Alumni Union or call 585-475-2509 (voice/TTY).

Black Awareness Coordinating Committee (BACC)
The Black Awareness Coordinating Committee is organized to foster an awareness of the role of African American men and women in the total society and to create a greater understanding among African American students at RIT. Each year the committee sponsors various social and cultural programs designed to achieve these objectives. For more information, please call 585-475-5624 (voice/TTY).

Residence Halls Association (RHA)
Residence Halls Association represents all residential students and is a liaison between the student body and the administration. This association functions as the “residential community government,” developing changes in policies and procedures that will benefit the resident population. RHA also provides students with a variety of services, facilities, programs and equipment. RHA is located in the tunnel under Baker Hall and can be contacted at 585-475-6655 (voice/TTY).

Global Union
The diversity of RIT’s student body warrants a medium that encourages different ethnic groups to intermingle and communicate. The Global Union was formed to satisfy this need. It promotes interaction, cooperation and mutual support among all students. It intends to unify all its affiliated organizations and encourage pluralism and understanding. The Global Union provides a platform for expression for campus international and minority communities. It is RIT’s multicultural student organization. For more information, call 585-475-2567.

Greek Council
Greek Council is the governing body that represents all members of the fraternity and sorority community. It deals with issues on their behalf in conjunction with the Panhellenic, Interfraternity and Pan-Hellenic Councils. The council is responsible for regulating standards and practices that affect the entire Greek system. It oversees the recognition procedure
for special-interest groups that have the intention of becoming fraternities and sororities, as well as recognition procedures for local and national Greek-letter organizations. Programs sponsored or cosponsored by the council include Greek Week, system-wide philanthropy/community service projects, a Greek league parallel to the intramural program, social programs and national educational speakers. For additional information, call the Greek Council Office at 585-475-7028 (TTY), or the Center for Campus Life at 585-475-7123 (voice/TTY) or 7058 (TTY).

- Alpha Epsilon Pi
- Alpha Kappa Alpha
- Alpha Phi Alpha
- Alpha Sigma Alpha
- Alpha Sigma Theta
- Alpha Xi Delta
- Delta Phi Epsilon
- Delta Sigma Phi
- Delta Sigma Theta
- Gamma Sigma Alpha
- Kappa Delta Rho
- Kappa Phi Theta
- Lambda Alpha Upsilon
- Lambda Pi Chi
- Phi Delta Theta
- Phi Kappa Psi
- Phi Kappa Tau
- Sigma Alpha Mu
- Sigma Nu
- Sigma Sigma Sigma
- Tau Kappa Epsilon
- Triangle
- Zeta Tau Alpha

WITR

WITR is an FM radio station operated by RIT students. It is licensed by the Federal Communications Commission as a noncommercial, educational station. It is also licensed to be on the air 24 hours a day with a power of 910 watts, which covers the Rochester area.

Students make up the staff, working in five major departments: engineering, news and public affairs, programming and promotions. WITR Radio has been operating for 34 years with two major goals: to provide a programming service to the RIT and surrounding community and to provide a noncommercial training ground for participating staff.

Participation in WITR can be an educational and enriching experience. It offers students practical experience in broadcasting, engineering and management. WITR disc jockeys gain the qualifications and experience to work in any radio station. Some former and current members now work full or part time at several commercial radio stations, while other members have attained positions with recording studios or are active representatives of record companies such as A&M, MCA, Sony, Mercury, and Polydor.

WITR promotes RIT events and public-service activities, including both on- and off-air participation in many events. It is a major source of local music in the Rochester community. WITR is the primary broadcast source of RIT sports, such as hockey, and campus events, such as the president's annual Institute address.

Student Government clubs

For more information about the following clubs, please contact the Student Government Office at 585-475-2204 (voice/TTY) or stop by the office in the RITreat. Look for the quarterly Club Day in the Student Alumni Union. The following is a list of recognized clubs that were active during the 2001-02 school year:
- Aero-Design Club
- Alpha Phi Omega
- Alpine Ski Team
- Amateur Radio Club
- American Institute of Graphic Arts (AIGA)
- American Marketing Association
- American Society of Civil Engineers (ASCE)
- Anime Club
- Archery Club
- Asian Culture Society
- Bowling Club
- Brothers and Sisters in Christ (BASIC)
- Campus Crusade for Christ (CCC)
- Caribbean Student Association
- Catholic Young Adult Newman Network (CYANN)
- Ceramics Guild
- Chinese Student Association
- College Republicans
- Criminal Justice Student Association (CJSA)
- Cross Country, Women's
- Ebony Club
- Economics Club
- Electronic Gaming Society
- Empty Sky Go Club
- Equestrian Club
- Fast Action Paintball
- Feminist Action on Campus for Every Student (FACES)
- Fencing Club
- Formula SAE
- Friends of Veterans
- Gamma Epsilon Tau
- Glass Club
- Gospel Ensemble
- Habitat for Humanity
- High Energy Applied Physics (HEAP)
- Hillel/ Jewish Student Union
- Hispanic Deaf Club
- Horizontal Ultimate Frisbee
- Hospitality Association
- Imaging Science & Technology (IS&T)
- Information Technology Student Organization (ITSO)
- Institute of Industrial Engineers (IIE)
- International Business Group
- Intervarsity Christian Fellowship
- Korean Christian Fellowship
- Lacrosse Club (Men's)
Latin American Student Association (LASA)
Life Science Club
MacRIT
Management Information Systems Student Team (MISST)
Microelectronics Engineering Student Association (MESA)
Mini-Baja
Model Railroad Club
National Society of Black Engineers (NSBE)
Organization of African Students (OAS)
Organization for the Alliance of Students for the Indian Subcontinent (OASIS)
Outing Club
Physician Assistant Student Association (PASA)
Political Awareness Club
Pool Club
Pre-Med Student Association
Projectile Motion (Juggling Club)
Publishing Club (PUB)
RISStep Club
RIT Gay Alliance (RITGA)
RIT Players
RIT Roller Hockey Club
RIT Social Action Group (RITSAG)
RIT Student Music Association (RITLSMA)
RIT Swing Dance Club
RIT Web Development Club
Rochester Wargamers Association & Guild (RWAG)
Rugby (Men’s, Women’s)
Society of African American Business Students (SAABS)
Society of Computer Engineers (SCE)
Society of Hispanic Professional Engineers (SHPE)
Society of Manufacturing Engineers (SME)
Student Environmental Action League (SEAL)
Student Illustration Guild
Student Interpreters Club
Student Social Work Organization (SSWO)
Taiwanese Student Association
Tiger Paws Spirit Club
True Gentlemen’s Club
Ultrasound Student Association
Vietnamese Student Association
Volleyball, Men’s
Water Polo, Men’s
Wood Club

Student professional associations
Students can also get involved with departmental and professional associations such as Alpha Chi Sigma, Delta Lambda Epsilon, Delta Sigma Pi, and Sigma Pi Sigma.

A number of national technical associations have student affiliate chapters on campus. Frequently sponsored by parent chapters in Rochester, these societies play an important part in Institute life by bringing together students who have common interests in special subjects. The associations serve a professional and social purpose.

Student publications
RIT students produce some of the most professional collegiate publications in the country. Reporter is published by students weekly, except during examinations and holidays, and serves as the student news magazine. It includes “CalendarIT,” a listing of campus activities. Reporter has consistently won state and national awards. Such publications draw their talented staffs-artists, photographers, writers, managers, and printers-from the entire student body.

Student Alumni Union
The Student Alumni Union is designed specifically to service events sponsored by and for the entire campus community—students, faculty and administrative groups, alumni, and guests. The staff is available to assist and advise various individuals and groups in planning and coordinating their activities. The SAU information desk is located in the main foyer.

The three-level facility, the center of cocurricular activities, features the 500-seat Ingle Auditorium; a complete game room with billiards, foosball, and electronic games; a music practice room; a unisex hair-styling and tanning salon; a candy counter; a Ben & Jerry’s ice cream shop; two separate dining areas consisting of the main cafeteria and the RITskeller; meeting rooms and lounges. Offices housed in the Union also include the Office of Student Ombudsman; Student Affairs; Office of Student Conduct and Mediation Services; the Center for Student Transition and Support (including Orientation, First-Year Experience, International Students); the North Star Center serving African, Hispanic, Asian, and Native American Students; Black Awareness Coordinating Committee, Food Service, College Activities Board, The Center for Campus Life, Student Government, WITR radio station, the RIT Credit Union, Reporter, Off-Campus and Apartment Student Association, Staff Council, Global Union, and other student organization offices.

The RITreat
The RITreat is an area to students in the Student Alumni Union. The following resources can be found in the RITreat:

- Club and organization space
- Computers/typewriters/word processors/fax machine
- Stamp machine
- Office of the Student Ombudsman
- Student Government office
- Mail folders for SG clubs and organizations
- Off-Campus and Apartment Student Association
- Study tables/lounge area
- Center for Campus Life

Social events
Major social events on the activities calendar include major concerts, Brick City Festival, the Stonehurst Regatta, and a spring festival. In addition, the Music of the Week of Welcome during the first week of each fall quarter is dedicated to new and returning students and is highlighted by Convocation. The spring festival in May includes activities centered around RIT’s traditional Spring Concert and Carnival. Finally, Senior Night celebrates graduates and their guests and is one way to say Congratulations and Best Wishes.

Other dances, parties, speakers and events are sponsored by organizations such as the College Activities Board, the Residence Hall Association, NTID Student Congress, Greek Council, the Black Awareness Coordinating Committee, the Off-Campus and Apartment Student Association and various special-interest clubs.

Coffeehouse entertainment is provided by the Center for Campus Life on Thursday evenings from 8 p.m. to 10 p.m. in The Grind (located in the Dining Commons).

Student Volunteer Center
RIT students are known for their volunteerism, generosity, and skills. Come and join us for some fun! There are many opportunities to get involved with local nonprofit agencies. For information on volunteering and service learning opportunities at RIT, call the Student Volunteer Center at 585-475-6056 (voice/TTY).

Cultural Spotlight Series
The Cultural Spotlight Series is sponsored by the Center for Campus Life, the College Activities Board and the Performing Artists Series. Contemporary and traditional events are programmed year round. Past series have included performances by artists such as Maya Angelou, Oliver Stone, Rod Blumenau Jazz Trio, the Tibetan Monks, Ladysmith Black Mambazo, the Rochester Philharmonic with Jeff Tyzik, and the Rev. Hezekiah Walker and the Love Crusade Choir.
Creative Arts Program

RIT Singers
An Institute-sponsored vocal ensemble, the RIT Singers is composed of 50 to 60 members and is open to students, faculty and staff. No auditions are necessary; new members are welcome during the first three weeks of each quarter. The ensemble performs classical and popular music and gives several concerts yearly as well as joint concerts with the orchestra and jazz ensemble. For more information, call 585-475-6087.

RIT Men's Octet
Selected through auditions, this is an ensemble of eight singers. Rehearsals for both on-and off-campus appearances are adjusted to fit ensemble members' schedules. For more information, call 585-475-6087.

RIT Select Women's Ensemble
Selected through auditions, this is an ensemble of eight to 12 singers. Rehearsals for both on- and off-campus appearances are adjusted to fit ensemble members' schedules. For more information, call 585-475-6087.

RIT Gospel Ensemble
This group of approximately 25 members has developed a repertoire of black spirituals, modern gospel songs, interdenominational anthems and hymns. The group performs for religious services on campus as well as for special events. For more information, call Campus Life, 585-475-6650 (voice/TTY).

RIT Philharmonia
The Philharmonia is open to all RIT students, faculty, staff and musicians from the surrounding area. The repertoire includes masterworks from the Baroque to the 20th century. Past performances have included a pops concert and chamber music. For more information, contact the director at 585-475-2014 or through his office at 06-A 305 Liberal Arts to let him know you're interested in joining.

RIT Jazz Ensemble
Instrumentalists with a background in jazz and jazz rock will want to check out the Jazz Ensemble. The group performs quarterly on-campus concerts. For more information, call 585-475-5275 (voice/TTY).

RIT Concert Band
The Concert Band is open to all RIT students who play traditional band instruments. Performing repertoire of varying styles, the ensemble presents quarterly concerts and performs for campus activities and academic functions. For more information, call 585-475-5275.

RIT Dance Company
The company provides an opportunity for deaf and hearing students to work together in modern dance and ballet classes. Each year students and faculty create new pieces and present them in performance. For more information, call 585-475-6250 (voice/TTY).

Panara Theatre
Main Stage-Student and faculty produce major plays and performances each year. They feature deaf and hearing actors, dancers and technical staff. (Box office, 475-6254 voice/TTY) Lab Theater-This includes experimental, new or unusual productions. New directors and student writers also use the space for developing their skills. For information, call 585-475-6250 (voice/TTY).

NTID performing arts course offerings
For information regarding acting, mime, technical theater, lighting, play creating, script translation or dance classes, call NTID's Performing Arts program, 585-475-6250 (voice/TTY).
Literary Series
A joint activity of the Institute Creative Arts Committee, College of Liberal Arts and various other campus organizations, the Literary Series brings both well-known and developing writers to campus. Students who wish to participate should call 585-475-2475 (voice/TTY).

Visiting Artists & Critics Series
This series is sponsored by the College of Imaging Arts and Sciences, the Creative Arts Program and the Student Affairs Office. Many of the country’s leading artists and critics are included in the program, which deals with the issues of technology in art today. For more information, call 585-475-2646 (voice/TTY).

Margaret’s House

Child care programs
Margaret’s House is a NYS licensed and nationally accredited child care center offering full-day quality care and education for children eight weeks to eight years of age. It includes a district-approved full-day kindergarten as well as after-school, vacation and summer programs. It is open to children of RIT students, faculty, and staff, and to members of the greater Rochester community. Margaret’s House is located on campus and is open year round. Call for information and registration material.
- Infant and toddler programs: eight weeks to 36 months
- Preschool programs: three- and four-year-olds
- Full-day kindergarten/after-school programs: five- to eight-year-olds
 Contact Roberta DiNoto at 585-475-5176 (voice/TTY) or rxdhcc@rit.edu.

Kids on Campus programs
Kids on Campus provides a variety of academic and recreational summer programs to students entering first grade through high school. Programs are characterized by a dynamic, project-oriented approach to learning.
- “Lil” Kids on Campus: for youngsters entering grades 1 through 4
 Full-day program offered July through August
- Kids on Campus: for youngsters entering grades 5 through 8
 Full-day program offered during July
- Kaleidoscope: for high school students
 Independent academic workshops in a variety of content areas, offered throughout the summer
 Kids on Campus programs are offered to all Rochester-area students. Call for information and registration material.
 Contact Susan Kurtz at 585-475-5987 or sfkldc@rit.edu.

Center for Human Performance

Wellness courses
Wellness for Life, Wellness Challenge Exam

Fitness
Aerobics, Aquathenics, Conditioning, Weight Training, Jogging, Keiser Power Cycle Pacing, Swimming for Fitness, Water Polo, Swing Dance, Dancercise

Lifetime recreation and leisure
Archery, Badminton, Dancing (Ballroom, Latin, Jazz & Tap), Dance Performance 1 & 2, Diving, Fencing, Frisbee (Ultimate), Golf, Horseback/English, Horseback/Western, Ice Skating, In-Line Skating, Ice Hockey Drills, In-Line Skating Drills, Juggling, Basketball, Softball, Volleyball, Soccer/Indoor, Skiing (downhill), Snow Boarding, Swimming, Tennis, Yoga, Massage, Officiating, Billiards, Bowling, Racquetball, Scuba, Crew, Multicultural Dance

Life support and safety
CPR, Care and Prevention of Athletic Injuries, First Aid, Life Guarding, Water Safety Instruction

Martial arts
Aikido, Cardiokickboxing, Karate, Kung Fu, Qigong, Tai Chi, Martial Arts Self-Defense, Brazilian Capoeira

Interactive adventures
Canoeing, Cross-country Sking, Bouldering, Rock Climbing (indoor/outdoor/ top rope setup), Snowshoeing, Hiking, New Games, Orienteering, Kayaking

Military sciences
Army ROTC (Leadership Drills, Leadership Lab), Air Force ROTC (Physical Training), Navy ROTC

NTID Support Services for deaf and hard-of-hearing students involved in Center for Human Performance/First-Year Enrichment courses and programs
The NTID Support Team is committed to providing quality services that maximize access for deaf and hard-of-hearing students who are engaged in the First-Year Enrichment, Wellness of Life, and Wellness Activity courses, intercollegiate athletics, intramural and recreation programs. NTID team members teach courses (signing for themselves), provide tutoring, advising, and coordinate note taking services. Consultation/advising is available to deaf and hard-of-hearing, student athletes and RIT intercollegiate coaches. The team serves as a liaison between the NTID Admissions Department and the Center for Human Performance to provide potential deaf and hard-of-hearing student athletes the opportunity to meet with athletic coaches and visit our facilities.
 The team provides opportunities for deaf and hard-of-hearing students to develop leadership and professional skills through the peer education/paraprofessional program. Through collaboration with other units within NTID and RIT, the student para-professionals utilize a variety of creative strategies and programming efforts that support access, inclusion, team building, and education. For additional information regarding support services, call 585-475-6104 (voice/TTY) or 585-475-6530 (TTY).

Intramural activities
An extensive program of intramural activities is offered at RIT. Under the direction of the Center for Human Performance, activities include co-rec, as well as men and women’s teams in basketball, volleyball, softball, ice hockey, flag football, soccer, tennis, and golf. Also offered is a program for individual competitions in racquetball, table tennis, tennis, and badminton.
Recreation

RIT offers some of the finest recreational facilities available in colleges today. Indoor facilities feature four gymnasiums, ice rink, swimming pool, saunas, elevated indoor running track, racquetball courts, physical fitness and weight training center, dance studio, climbing wall, recreational equipment room, wrestling room, boxing room, spinning room, and game room (video games, billiards). Outdoor facilities include nine lighted tennis courts, archery range, nature trails, an all-weather track and numerous athletic fields. The equipment issue room provides towels, locks, and quality equipment for recreation, intramurals, and wellness activity class instruction. The Center for Human Performance provides nutritional counseling and personal trainer services throughout the year.

Intercollegiate athletics

For eight decades, intercollegiate athletics has developed a tradition of excellence at RIT. The Institute’s heritage in competitive athletics is a rich one. It has grown to become highly successful and widely recognized on the regional and national levels.

RIT has won more than 60 percent of its contests in each of the last three years. Some of the men’s team accomplishments have come in soccer (12 NCAA appearances), cross country (nine Eastern College Athletic Conference crowns and six top-10 finishes in the last seven NCAA championships), hockey (two national championships and six ECAC titles), basketball (ECAC crown in 1992-93 and the Chase Scholarship Title in 1994-95 and 1996-97), and lacrosse (seven Empire 8 crowns and an ECAC title).

Women’s teams have also excelled. Volleyball boasts several straight Empire 8 crowns and third place in the 1993 NCAA’s. Women’s softball is a perennial state contender, and women’s tennis is 170-75-1 over the past 23 years. RIT is one of only a handful of schools in New York State to offer women’s ice hockey on the varsity level.

Each year nearly 500 athletes take part in 24 varsity sports offered at RIT. Fall competition features men’s and women’s cross country, women’s volleyball, women’s and men’s soccer, and women’s tennis. Winter sports include men and women’s basketball, swimming, hockey, and indoor track and men’s wrestling. Spring competition features baseball, men and women’s crew, men’s and women’s track, men’s and women’s lacrosse, softball, and men’s tennis.

A National Collegiate Athletic Association (NCAA) Division III member institution, RIT competes against schools in the Northeast with similar academic and intercollegiate athletics philosophies. Known as the Tigers, RIT teams are also members of the Eastern College Athletic Association (ECAC) and New York State Women’s Collegiate Athletic Association (NYSWCAA) and the Empire 8.

Since varsity sports began at the Institute in 1915-16, RIT teams have won more than 50 conference titles, 20 ECAC crowns, and three NYSWCAA championships. Individually, the Tigers boast six national champions.

Club sports

In addition to intercollegiate sorts and intramural programs, RIT offers several club sports. The program is a division of RIT Student Government and the Center for Human Performance. Its purpose is to provide extramural/intercollegiate competition for recognized club sports, although some are solely for recreational or instructional purposes. Participation is open to students carrying a minimum of 12 credit hours.

The following sports are offered: badminton, outing club, bowling, lacrosse (men), rugby (women and men), alpine skiing, volleyball (men), water polo club, ultimate frisbee, field hockey, equestrian, and roller hockey.

Student Health Center

The Student Health Center provides primary medical care on an outpatient basis. The staff includes physicians, nurse practitioners, registered nurses, health educators, alcohol/drug counselor and an interpreter for the deaf. Services are available by appointment. Health education programs are provided also.

The Student Health Center is located on the walkway linking the academic and residence hall areas of the campus. Students are seen Monday through Thursday, 8:30 a.m. to 7 p.m., and Friday, 8:30 a.m. to 4:30 p.m. by appointment. Emergencies are seen as need requires. Hours are subject to change and are posted.

The university requires students to maintain health insurance coverage—which they may purchase either on their own or through RIT—as long as enrolled at RIT.

The quarterly student health fee is mandatory for all full-time undergraduate students. All other students may pay either the quarterly fee or a fee for service. Some laboratory work ordered through the Student Health Center is not covered by this fee; there is a charge for this service. Prescription medicines may be purchased from local pharmacies or, for some specific prescriptions, from the Student Health Center. The health fee does not include prescription medications.

Questions about the Student Health Center or health insurance should be directed to the office at 585-475-2255 (voice); -5515 (TTY).

RIT Ambulance

RIT Ambulance is a New York State certified volunteer ambulance service that serves the campus community, including its adjoining apartment complexes. The organization, an auxiliary of the Student Health Center, is governed by RIT students and staff and is staffed by emergency medical technicians. Twenty-four-hour ambulance service is available seven days a week. If, for some reason, the RIT ambulance is not available, there may be a charge for services provided by another corps.

For emergency assistance and/or transport, the RIT ambulance can be dispatched through Campus Safety at 585-475-3333 (voice) and -6654 (TTY).
Health records
Medical records are confidential. Information will not be released without the student’s written consent. Exceptions to this rule are made only when required by the public health laws of New York State.

New York State immunization requirements
New York State Public Law 2165 requires that all matriculated students enrolled for more than six quarter credit hours in a term and born after January 1, 1957, must provide RIT’s Student Health Center with proof that they have received the appropriate immunizations against measles, rubella and mumps. Immunization requirements include two measles vaccinations, at least one month apart, with a live virus, after January 1, 1968, and after the first birthday; and one vaccination each against mumps and rubella (after January 1, 1969, and after the first birthday). Additional information concerning the necessary documentation and where it must be sent is included with the Admissions Office acceptance packet or available from the Student Health Center office.

Campus Stores
RIT operates two campus stores. The main store, Campus Connections, is located on the west side of the Student Alumni Union and sells everything from clothing to textbooks to computers. For current information about hours and special sales, call 585-475-6033. You can also visit the Campus Connections Web site at http://finweb.rit.edu/bookstore.

Campus Connections accepts cash, checks, Mastercard, VISA and RIT flexible debit cards for payment. Certain students may have arrangements with a government agency to pay for some of their books and supplies; this is handled at our service counter on the first floor.

The Candy Counter in the lobby of the Student Alumni Union sells candy, tobacco products, health and beauty aids, film, daily newspapers, snack items, ice cream and drinks. The Candy Counter accepts cash, checks, Mastercard, Visa, RIT flexible debit and food debit cards.

Campus Safety
The Campus Safety Department is open 24 hours a day and is located in Grace Watson Hall. To report an emergency on campus, call 333 (voice) or 475-3333 from the RIT apartment complexes. The department provides the following services:

Escort Service
Campus Safety strongly encourages students to use the Escort Service. The mobile Escort Service is available to anyone, seven days a week on a timed schedule between 11:30 p.m. and 3 a.m. Simply call the Campus Safety Department at 585-475-2853 or 6654 (TTY), or use one of the blue-light courtesy call boxes located across the campus.

Lost and Found and Operation ID
All lost and found property is stored by the Campus Safety Department. Each year Campus Safety disposes of a great deal of unclaimed property because it is not identifiable and the owners do not claim it. Students are encouraged to take advantage of the Operation ID program, which helps in the recovery of lost property by marking valuables and by registering them with Campus Safety.

Emergency notification
There may be times when emergency notifications need to be made. If this should occur, contact the Campus Safety Department at 585-475-2853 or 6654 (TTY). Campus Safety will locate the student and relay the message.

Campus courtesy call boxes
Campus courtesy call boxes, identified by a blue light, are located across the campus. These call boxes provide a direct line to Campus Safety 24 hours a day. The location of the call is automatically recorded at the Campus Safety Communications Center, making it possible for hearing-impaired individuals to use the call boxes also. The call boxes may be used to request an escort, assist a motorist, report any suspicious persons or activities, or request access to a locked building or room.

Presentation programs
Throughout the year, Campus Safety hosts a variety of prevention programs on various topics, including fire safety (video and slide presentations), crime prevention (video presentation), personal safety, alcohol awareness/DWI and date/acquaintance rape.

Safety and security report
Additional information about Campus Safety services, security procedures and crime statistics can be found in the "RIT Campus Safety Annual Report," which can be obtained by calling 585-475-7799. Services are also explained on RIT’s Web site at finweb.rit.edu/campussafety.

Sexual assault information hotline
Confidential counseling services are available to anyone in need by calling 585-546-2777 (voice/TTY).

RIT provides a variety of security services and prevention programs to everyone on campus. Although each individual is ultimately responsible for his or her own personal safety, learning and practicing some basic precautions can enhance one’s well being.

Transportation services
Campus Safety, in conjunction with the Rochester Genesee Regional Transit Authority, provides an on- and off-campus shuttle service 365 days a year. Schedules are available at all apartment offices, the Student Alumni Union information desk, the library, Campus Connections, Campus Safety, and the NTID information area. Schedules are also posted on the RIT Web page (finweb.rit.edu/campussafety). In addition, Campus Safety operates a van service for those with impaired mobility, Monday through Friday, 7 a.m. to 6 p.m., during fall, winter, and spring quarters. The Transportation Division also provides vans for the use of student groups, clubs, and organizations. For more information, call the Campus Safety Transportation Office at 585-475-7300 or 585-475-6006.

Vehicle registration
All vehicles operated on campus must be registered with Campus Safety, and stickers must be properly displayed on each vehicle. Institute fines are imposed for operators in violation of Institute parking and traffic regulations. The vehicle registration process can be initiated online at finweb.rit.edu/campussafety.

Handicap parking permits
Campus Safety honors ADA-approved handicap parking permits from every state. Handicap parking permits may be issued from Campus Safety to students who live in RIT housing. Commuters, Faculty and staff should go to their local municipalities for handicap permits.

Public safety
Campus Safety conducts programs in fire safety practices and evacuation techniques (which are reinforced through fire drills held in accordance with New York State Education Laws), safety in the workplace, environmental health, and defensive driving certification (recognized by New York State for insurance and point reductions).
Commission for Promoting Pluralism

The Commission for Promoting Pluralism was established to formulate a plan of action that would address seriously and deliberately the subject of pluralism and community building in every part of the university. Its evolution is the result of an identified need for RIT constituents to deepen their respect and appreciation for all people in the RIT community and beyond. This institutional focus attempts:

- to proactively identify and eliminate barriers that restrict equality through the RIT community;
- to develop and implement programs that promote commitment to equality and justice in campus-wide activities;
- to develop and nurture a support system that increases participation by all members of the RIT community.

Expectations for Community Behavior

- RIT is a learning community where time, energy and resources are directed toward learning and personal development.
- Members of the community live and work together to foster their own learning, as well as the learning of others, both in and outside the classroom.
- Within the community, members hold themselves and each other to high standards of personal integrity and responsibility.
- Individual members continually strive to exceed their personal best in academic performance and the development of interpersonal and professional skills and attributes.
- As a member of the community, each person continually conducts himself/herself in a manner that reflects thoughtful, civil, sober and considerate behavior.
- As a member of the community, each person respects the dignity of all persons and acts to protect and safeguard the well-being and property of others.
- As a member of the community, each individual contributes to the continued advancement and support of the community, personally challenging behavior that is contrary to the welfare of others.
- Members of the community create a campus culture that values diversity and discourages bigotry, while striving to learn from individual differences.

Summary of Conduct Policies

The following broad areas of conduct for students, although not all-inclusive, indicate, in general terms, the standards of student conduct that are important to the educational mission of RIT and to the quality of campus life. The RIT Conduct Code and disciplinary process is printed in its entirety in the Student Rights and Responsibilities Handbook. All policies and procedures relating to student and organization conduct are printed in this document and should be reviewed by all RIT students.

Human rights and dignity

Students are expected to follow RIT’s Policy Prohibiting Discrimination and Harassment. All students should practice high regard for the rights and dignity of other people, preventing all types of discrimination. RIT attempts to resolve conflicts between individuals and groups with differing backgrounds and views through discussion and clarification of values and attitudes. Students should not physically or verbally abuse any person on RIT premises or at RIT-sponsored or supervised events.

Computer use

Students are expected to follow RIT’s Code of Conduct for Computer and Network Use. A variety of computing resources is available at RIT, ranging from application-specific microcomputers to central multiuser systems. Computer abuse is expensive and can have far-reaching consequences. Students should not intentionally disrupt the educational process through deletion of another’s course assignment, dampen the creative process through theft of intellectual property, violate an individual’s privacy or institutional confidentiality, or infringe on copyright.

Off-campus conduct

The conduct of RIT students off campus will be held to the same standards and policies as on campus. Any off-campus action that interferes with the completion of the educational mission of RIT or any member of the RIT community is subject to disciplinary action.

Academic honesty

Students are expected to follow RIT’s Policy on Academic Dishonesty. Students should not engage, or allow others to engage, in any form of academic dishonesty. These acts include, but are not limited to, plagiarism in any form or using information and materials not authorized by the instructor during an examination.

Dishonesty includes furnishing false information to RIT and forgery. Alteration or use of RIT documents or instruments of identification with intent to defraud are prohibited.

Disruption of RIT activities

Students should refrain from unreasonable disruption or obstruction of teaching, research, administration, organizational activities, disciplinary proceedings or any other RIT activities.

Parking and traffic

All drivers on campus should follow RIT’s Parking and Traffic Regulations. New York State motor vehicle and traffic laws are in effect on campus. RIT may enact supplemental parking and traffic regulations for RIT-owned properties. The regulations are intended to promote order and ease of movement of pedestrians and motorists and to safeguard people and property.

Regard for property

Students are expected to exercise appropriate care for RIT property and the property of others. Theft, damage or unauthorized possession of either RIT property or the property of a member of the academic community on RIT premises is subject to disciplinary action.

Library materials and laboratory facilities are of utmost importance to the completion of RIT’s academic mission. Consequently, students should show considerable care in the handling of these items.

RIT officials

Students must furnish proof of enrollment through valid student identification card upon request from RIT officials. Students should comply with the directions or instructions of RIT officials acting in performance of their duties.

Safety

Safety is an issue about which all students should care deeply—not only the safety of oneself, but the safety of others. Students should behave sensibly to protect the welfare of others and to minimize hazardous situations. Safety is of critical importance at all places on the campus, but particularly important in the apartments and residence halls, where the carelessness of one individual can affect the lives of hundreds. Willful violations of safety, such as causing false fire alarms,
will result in immediate disciplinary action according to judicial procedures.

Sexual harassment/sexual misconduct
RIT acknowledges that an individual student's sexual attitudes and values are a matter of choice; nonetheless, responsible sexual behaviors must take into account the dignity, privacy and rights of others. RIT’s Policy Prohibiting Discrimination and Harassment and the RIT Sexual Assault Policy should be observed at all times. Moreover, no individual should be subjected to exploitative actions.

Study environment
Students need a campus environment that is conducive to studying, especially in facilities that are designed primarily for study. Individuals should respect the rights of others to study and should be understanding of different study habits.

Student-sponsored events
In the planning and scheduling of events, students should consider the safety and overall welfare of members of the academic community. Students should not knowingly conduct events that might inhibit the completion of the academic mission of the Institute or any member thereof.

Student Alcohol and Drug Policy
RIT is a learning community. The best environment for learning occurs when the community promotes and supports healthy and responsible behavior among its members. Students are ultimately responsible for their behavior and must assume full consequences for it. This includes the responsible and legal use of alcohol. The goal of the RIT’s Student Alcoholic and Drug Policy is to promote individual responsibility and advance the goals and expectations stated in the previous section, “Expectations for Community Behavior.”

This policy applies to all student members of the RIT community and their guests. It also applies to all student activities on the RIT campus and to all RIT-sponsored events where students are present. Faculty, staff and their guests are governed by a separate policy.

RIT students are subject to federal, state and local laws regarding alcohol and drug use. Serious civil and criminal legal liabilities can result from possession, use, serving, sale or unlawful manufacturing of drugs and/or alcohol. RIT will not protect individuals or groups from law enforcement by legal authorities with respect to drugs and alcohol use or abuse.

Individuals or organizations who hold private parties or sponsor private events where alcohol is served or consumed must assume full personal responsibility and liability for compliance with the law and for conduct related to the consumption of alcohol by attendees, participants and guests. Officers of organizations that sponsor parties or events, or other hosts or people whose apartment, residence hall room or office is the site where drinking occurs, will be held responsible for complying with the provisions of this policy.

Provisions Governing the Possession and Use of Alcohol
1. Alcohol may not be illegally used, possessed, manufactured or exchanged on RIT-owned or -operated property or at RIT-sponsored events. No alcohol may be sold or exchanged for money on RIT property or at RIT-sponsored events without a New York State liquor license. The RITskeller will continue to be a licensed premise and will be permitted to serve alcohol to individuals who are at least 21 years of age.
2. The consumption or possession of alcoholic beverages is prohibited in all RIT residence halls (including Greek houses and house basements), regardless of age or circumstances.
3. The consumption or possession of alcoholic beverages is permitted in RIT-operated apartments only by those residents of the apartment who are at least 21 years of age. Alcohol possession and consumption is not permitted in common or public areas within apartment complexes. Parties in apartments are to be limited to invited guests of a number that is defined by building occupancy codes and that can be accommodated without disturbing the community. These numbers may be found in the RIT apartment contract for a particular facility or obtained from Apartment Management.
4. The guests at all privately sponsored parties where alcohol is to be served must be invited by direct personal invitation only. General “come all” posters, flyers, or mass electronic invitations will not be permitted for events designated as private parties. Only the Ritskeller or an institutionally designated space can be used for a community-wide event where alcohol is to be served to students or student groups.
5. Campus Safety and other RIT officials have the right to terminate events and take appropriate actions if they determine that it is probable that Institute policies and/or New York State law is being violated at any gathering on the RIT campus, in RIT-operated facilities, or at campus-sponsored functions.
6. Bulk containers of beer (kegs or beer balls) are prohibited in all RIT-operated apartments. Such containers are permitted only in institutionally designated party areas where alcohol can be served for parties or special events or in areas that are covered by a New York State liquor license.
7. Open containers of alcohol are not permitted outdoors on the RIT campus without prior authorization. Authorization will be given in situations where alcohol is to be served in conjunction with an officially sponsored RIT student event. The authorization process for use of alcohol in these situations is coordinated through the Center for Campus Life in the Student Alumni Union. (See “Registration Procedures for Events Where Alcohol is Served/Consumed on the RIT Campus” for specifics.)
8. All student events and parties where alcohol is served, possessed or consumed must abide by all existing Institute policies and procedures regarding the use, possession, sale and distribution of alcohol and may be further restricted by existing municipal and state ordinances. Prior to planning any activity or event alcohol is to be served, individuals/groups should consult the Center for Campus Life located in the Student Alumni Union regarding the provisions and restrictions governing alcohol use at RIT activities and events.
9. Student-sponsored parties/events where alcohol is served may be held in designated areas on the RIT campus. (Private parties held in RIT-operated apartments are covered in item 3.) Alcoholic beverages can be served at these student-sponsored parties and events on campus only by RIT Food Service or by an approved third-party vendor. Registration and authorization for such events can be obtained through the Center for Campus Life in the Student Alumni Union. The center coordinates the procedures for securing authorization from the State Liquor Board to sell/serve alcohol; this process takes a minimum of 10 business days.
10. Behavior which is dangerous to oneself or others and/or disturbs the learning and/or living environment in RIT-operated facilities or at any RIT-sponsored activity/event...
is strictly prohibited. Such behavior will result in Campus Safety intervention and campus judicial action.

11. Serving, selling or providing alcohol to persons who are under 21 years of age, or possession of alcohol by someone under 21 years of age, is prohibited by both New York State law and RIT regulations. Any person who exhibits behavior which suggests that excessive drinking has occurred cannot be served or permitted continued access to alcohol. Individuals who serve such individuals alcoholic beverages will face Campus Safety intervention, campus judicial action and possible civil and criminal prosecution.

12. Use of false or altered identification or other misrepresentation of one’s age in order to possess or consume alcohol is explicitly forbidden.

13. In order to avoid the dangerous and possibly fatal effects of alcohol poisoning, an individual who has “passed out” or shows other signs of serious effects from alcohol consumption should immediately be brought to the attention of Campus Safety, RIT Ambulance, the Residence Life staff or some other person able to assist or to get assistance. Seeking such help is encouraged by RIT.

14. Students violating the RIT Student Alcohol and Drug Policy will be subject to the campus judicial process published in the “Student Rights and Responsibilities Handbook” and to the judicial actions and sanctions described in this policy. All guests or visitors to the campus must also comply with the provisions of this policy or risk removal from the campus and possible future restrictions from campus property.

Provisions Governing the Possession and Use of Illegal Drugs

1. RIT explicitly prohibits use, possession, sale, manufacturing or trafficking of illegal drugs on RIT owned or operated property, or at RIT sponsored events.

2. In order to avoid the dangerous and possibly fatal effects of drug overdose, an individual who has “passed out” or shows other signs of serious effects from drug use should immediately be brought to the attention of Campus Safety, RIT Ambulance, the Residence Life staff or some other person able to assist or to get assistance. Seeking such help is encouraged by RIT.

3. Students violating the RIT Student Alcohol and Drug Policy will be subject to the campus judicial process, published in the “Student Rights and Responsibilities Handbook,” and to the judicial actions and sanctions described in this policy: RIT students will be held responsible for the behavior of their guests. All guests or visitors

Sanctions regarding violations of BIT student alcohol policy

If a student or student organization violates the RIT Alcohol Policy, the following judicial outcomes should be anticipated

<table>
<thead>
<tr>
<th>BEHAVIOR</th>
<th>CONSEQUENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possession of alcohol</td>
<td></td>
</tr>
<tr>
<td>• in residence halls and Greek houses regardless of age</td>
<td>First offense: Disciplinary probation</td>
</tr>
<tr>
<td>• under 21 years of age</td>
<td>Second offense: Deferred disciplinary suspension/</td>
</tr>
<tr>
<td>• possession of bulk alcohol</td>
<td>deferred removal and possible referral for a chemical dependency screening</td>
</tr>
<tr>
<td></td>
<td>Third offense: Disciplinary suspension or removal from housing with appropriate conditions</td>
</tr>
<tr>
<td>Behavior that suggests the excessive consumption of alcohol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First offense: Probable deferred disciplinary suspension/</td>
</tr>
<tr>
<td></td>
<td>deferred removal; possible referral to alternative educational sanction program; possible referral for a chemical dependency screening</td>
</tr>
<tr>
<td></td>
<td>Second offense: Disciplinary suspension and/or removal from housing with appropriate conditions</td>
</tr>
<tr>
<td>Serious policy violations (including serving alcohol to minors, hazing events involving alcohol or dangerous behavior as a result of alcohol)</td>
<td>First offense: Probable disciplinary suspension and/or removal from housing with appropriate conditions</td>
</tr>
<tr>
<td>DWI on campus</td>
<td>First offense: Referral to local law enforcement agency and disciplinary suspension</td>
</tr>
<tr>
<td>Student organizational violations related to alcohol</td>
<td>First offense: Educational and/or community related sanctions; possible disciplinary suspension of organization and/or removal of recognition</td>
</tr>
</tbody>
</table>

These guidelines are examples of responses that will most likely result when there have been violations of the RIT Alcohol Policy. Each incident is handled individually. The prior judicial background of the student(s) involved and the impact of the incident on the student and the RIT community is considered when decisions are rendered. In some cases, even first offenses, the impact of an incident may call for a more serious response.

A sanction of deferred suspension or higher will require the dependent student to notify his or her parents or legal guardians about the decision and have the parents/legal guardians contact the Office of Student Conduct and Mediation Services for verification.
to the campus must also comply with the provisions of this policy or risk removal from the campus and possible future restriction from campus property.

Registration procedures for student-sponsored events where alcohol is served/consumed on the RIT campus

(The following procedures do not apply to private parties held in RIT-operated apartments.)

1. Student-sponsored events where alcoholic beverages are to be served require that an event registration form be initiated and approved. This process takes a minimum of 10 business days prior to the event. Such events can be arranged on a space-available basis. Inquiries regarding the availability of space/rooms for events where alcohol is permitted can be obtained at the Center for Campus Life, 2125 Student Alumni Union.

2. Alcohol can be provided, possessed or consumed by students only in institutionally designated spaces on the RIT campus. RIT Food Service or an approved third-party vendor must dispense all alcohol at these parties/events. Arrangements for private parties where alcoholic beverages are served can be made through the Center for Campus Life in the Student Alumni Union. Only individuals who are at least 21 years of age may register an event where alcoholic beverages are to be served.

3. Campus Safety will determine the security staffing levels for each event where alcoholic beverages are to be served. The required number of officers must be present for the duration of the event. The costs of these officers will be billed directly to the sponsoring/host organization. Campus Safety will discuss requirements for security with the sponsoring individuals or groups prior to the event.

4. The guests at all privately-sponsored parties where alcoholic beverages are to be served must be invited by direct personal invitation only. General “come all” posters, flyers, or mass electronic invitations will not be permitted for events designated as private parties. Only the Ritskeller or an institutionally designated space can be used for a community-wide event where alcoholic beverages are to be served to students or student groups.

5. When alcoholic beverages are served at student-sponsored parties/events, non-alcoholic beverages and food must also be served. Guidelines may be obtained at the Center for Campus Life.

6. Individuals/officers of the student organization sponsoring the event will be held responsible for the behavior of guests. An officer of the organization must be present for the duration of the event. They will also be responsible for assuring that only individuals who are at least 21 years of age are consuming alcohol during the party/event.

7. Student organizers of a party/event should ensure that appropriate transportation is available for individuals who have been consuming alcohol during the party. They should ensure that individuals who have been drinking do not drive while intoxicated.

Sanctions Regarding Violations of RIT Student Drug Policy

<table>
<thead>
<tr>
<th>BEHAVIOR</th>
<th>CONSEQUENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use/possession of illegal drugs</td>
<td>First Offense: Deferred disciplinary suspension; deferred removal or removal from RIT housing; possible referral for a chemical dependency screening; possible alternative education program</td>
</tr>
<tr>
<td></td>
<td>Second Offense: Disciplinary suspension or dismissal; drug treatment while on suspension from the Institute</td>
</tr>
<tr>
<td>Selling or trafficking of illegal drugs</td>
<td>Disciplinary suspension, dismissal or expulsion; referral to local law enforcement agencies</td>
</tr>
</tbody>
</table>

These guidelines are examples of responses that will most likely result when there have been violations of the RIT Drug Policy. Each incident is handled individually. The prior judicial background of the student(s) involved and the impact of the incident on the student and the RIT community are considered when decisions are rendered. In some cases, even though it may be a first offense, the impact of an incident may call for a more serious response.

A sanction of Deferred Suspension or higher will require the dependent student to notify his/her parents or legal guardians about the decision and have the parents or legal guardians contact the Office of Student Conduct and Mediation Services for verification.

RIT Process for Student Misconduct

RIT has established well-defined processes for handling student misconduct cases while protecting the civil and academic rights of all members of the Institute community. Student conduct and appeals processes are administered through the Office of Student Conduct and Mediation Services. Sanctions imposed upon those found responsible for violating the RIT Conduct Code may range from a written warning to restitution to disciplinary suspension, dismissal and expulsion from the Institute. Students suspended from RIT may not enroll in any course work until such time as the suspension is waived by the Office of Student Conduct and Mediation Services.

RIT Mediation Services

RIT Mediation Services provides students the opportunity to resolve conflicts and disputes with trained, third-party mediators at the Institute. The Institute mediators are trained to facilitate confidential mediation sessions with voluntary participants from the RIT community. Information regarding RIT Mediation Services can be obtained from the Office of Student Conduct and Mediation Services.
Admission to Undergraduate Study

Admission to RIT is competitive, but our admission process is a personal one. We are interested in learning about your interests, abilities and goals in order to provide the best information and guidance we can as you select the college that is right for you.

Students applying for freshman admission for the fall quarter (September) may apply through an Early Decision Plan or Regular Decision Plan. The Early Decision Plan is designed for those who consider RIT their first choice college and wish to receive an early notification regarding admission. Early Decision requires that candidates file their applications and all supporting documents by December 15 in order to receive admission notification by January 15.

Freshmen who choose not to apply for Early Decision are considered under our Regular Decision Plan. Regular Decision applicants who have provided all required application materials by February 15 will receive admission notification by March 15. Applications received after February 15 will be reviewed on a “rolling” basis, with notification letters mailed four to six weeks after the application is complete.

All applications for transfer admission and all freshman applications for winter, spring or summer quarter entry are reviewed as they are received, and notification letters are mailed four to six weeks after the application is complete.

Specific instructions for completing the application process are contained in our application packet. Be sure to read the instructions carefully before applying.

Factors considered in the admissions decision include, but are not limited to, past high school and/or college performance (particularly in required academic subjects), admission test scores, competitiveness of high school or previous college, and related experiences (work, military, etc.). Recommendations from those familiar with your academic performance and interviews with admissions counselors are often influential.

If you are accepted for admission, a $200 nonrefundable enrollment deposit reserves a place in your class and is credited to your first-quarter costs at RIT. The due date for this deposit is indicated with each offer of admission.
Application requirements
In order to complete the application process, you need to submit the following:
1. a fully completed application for admission (includes any required supplemental forms)
2. a nonrefundable $50 application fee
3. an official high-school transcript for all freshman applicants and for transfer students with fewer than 30 semester hours or 45 quarter hours completed at the time of application
4. official American College Test (ACT) or Scholastic Assessment Test (SAT-I) results for all freshman applicants
5. official transcripts of all completed college course work and a listing of any courses in progress (and not on the transcript) or courses to be completed before enrolling at RIT.

Applying to NTID
In addition to the five application requirements listed above for admission to RIT, deaf and hard-of-hearing students applying for admission to programs offered at the National Technical Institute for the Deaf (NTID) or to any other college of RIT must also submit a recent audiogram.

All applicants with a hearing loss should check the appropriate box on Part 1 of the application and complete NTID’s Part 2 application in order to qualify for educational access and support services, as well as NTID’s federally-supported tuition rate. Eligibility for NTID access and support services, which is agreed upon by RIT and the U.S. Department of Education, includes these criteria:
- hearing loss-students must have a hearing loss in the better ear (unaided) of 70 decibels (ANSI, 1969) or greater across the 500 and 2,000 Hertz range.
- educational access and support services needs-students must have a hearing loss that without educational access services seriously limits their chances for success in a regular college program. Educational access services include sign language interpreting and note taking.

The NTID Office of Admissions typically sends notification of admission decisions four to six weeks after all application materials have been provided. The admission year is October 1 through June 1 for applicants seeking fall quarter admission. There is not an Early Decision Plan for admission to programs within NTID. Applications are also accepted for winter and spring quarters (see Institute calendar, inside front cover.)

Early admission
Students who complete the prescribed number and distribution of high school units in three years, with the exception of fourth-year English and/or history, may seek admission under an Early Admission Program. Please contact the Undergraduate Admissions Office for details.

Transfer credit
Students who have completed studies at another accredited college before coming to RIT will be awarded transfer credit for all prior course work that is judged to be applicable to their RIT program. Usually a grade of C or better is required for a course to transfer.

Deaf students may transfer into an NTID program, or they may qualify for transfer directly into a program in another RIT college with NTID sponsorship. Deaf students accepted to NTID’s Summer Vestibule Program will have their transfer credit evaluated in the fall when they are accepted into a specific program.

Credit by exam
RIT grants credit for satisfactory scores on examinations covering objectives and contents parallel to the RIT courses for which students seek credit. Usually these are advanced placement (AP), college-level examination placement (CLEP), New York State proficiency examinations or RIT-prepared examinations.

Diagnostic testing in mathematics
Students who are not sure about the appropriate mathematics course with which to begin their studies at RIT may contact the department of mathematics and statistics at 585-475-5780 to arrange for a special mathematics diagnostic test.

New York State immunization requirement
New York State Public Law 2165 requires that all matriculated students enrolled for more than six quarter credit hours in a term and born after January 1, 1957, must provide RIT’s Student Health Center with proof that they have received the appropriate immunizations against measles, rubella and mumps. Immunization requirements include two measles vaccinations, at least one month apart, with a live virus, after January 1, 1968, and after the first birthday; and one vaccination against mumps each against mumps and rubella after January 1, 1969, and after the first birthday. Additional information concerning the necessary documentation and where it must be sent is included with the Admissions Office acceptance packet or available from the Student Health Center office.

Admissions services and campus visits
Selecting the appropriate college is a difficult decision, and visiting a campus often helps students form more accurate impressions. We encourage campus visits and personal admission interviews because they allow students to see our outstanding facilities firsthand and get answers to questions they may have while examining personal, academic, and career goals.

Experienced admissions counselors are available to provide information and assist students in exploring academic options. Students may choose to participate in Admissions Open House programs or arrange personal interviews and campus tours. These options are not required for admission.

An appointment for an admissions interview and campus tour may be scheduled by contacting the Undergraduate Admissions Office, Bausch & Lomb Center, 60 Lomb Memorial Drive, Rochester, N.Y., 14623-5604, sending e-mail to visit@rit.edu, or calling 585-475-6631 (Monday through Friday, 8:30 a.m. to 4:30 p.m.).

Deaf students who wish to enter NTID or another RIT college may contact the NTID Department of Admissions, Lyndon Baines Johnson Building, 52 Lomb Memorial Drive, Rochester, N.Y., 14623-5604, or call 585-475-6700 (voice/TTY). Office hours are Monday through Friday, 8:30 to 4:30 p.m.

Part-time and Graduate Enrollment Services
These offices provide central information and counseling services for students interested in enrolling in graduate degree programs or in part-time undergraduate studies offered through RIT’s various schools and colleges. We encourage you to contact them if you need assistance in selecting an academic program, exploring financial aid opportunities, registering for classes or receiving information about any aspect of part-time or graduate study at RIT.

Staff members are available to assist you from 8:30 a.m. to 6 p.m., Monday through Thursday, and from 8:30 a.m. to 4:30 p.m., Friday. We invite you to visit our Web site at www.rit.edu, call 585-475-2229 for enrollment information, or visit the offices on the first floor of the Bausch & Lomb Center on campus.
Freshman Admission Guidelines

<table>
<thead>
<tr>
<th>College</th>
<th>Academic Programs</th>
<th>High School Preparation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science and Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Technology:</td>
<td>Civil, Computer, Electrical, Electrical / Mechanical, Manufacturing, Mechanical, and Telecommunications Engineering Technology programs; Undeclared Option</td>
<td>Algebra, geometry, trigonometry, and physics or chemistry required. Technology courses desirable.</td>
</tr>
<tr>
<td>Environmental Management:</td>
<td>Environmental Management, Safety Technology</td>
<td>Three years of mathematics, including trigonometry, and chemistry or physics required.</td>
</tr>
<tr>
<td>School of Hospitality and Service Management:</td>
<td>Food Management, Hotel & Resort Management, Nutrition Management, Travel Management, Food Marketing and Distribution, Undeclared Option</td>
<td>College preparation program including algebra and at least one year of science. Chemistry required for Nutrition Management program.</td>
</tr>
<tr>
<td>Multidisciplinary Studies:</td>
<td>Applied Arts and Science</td>
<td>Freshmen should apply to RIT Exploration Program in the College of Liberal Arts.</td>
</tr>
<tr>
<td>Packaging Science:</td>
<td>Management, Technical and Printing Options</td>
<td>Algebra and one year science required. Technical option also requires geometry and trigonometry.</td>
</tr>
<tr>
<td>Business</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounting, Finance, International Business Management, Management Information Systems, Marketing, Photographic Packaging Management, Undeclared Business Option</td>
<td>College preparatory program including algebra and at least one year of science. Courses emphasizing writing skills also desirable.</td>
<td></td>
</tr>
<tr>
<td>Computing and Information Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology, New Media/Information Technology</td>
<td>Algebra and geometry required. Technology courses desirable.</td>
<td></td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Algebra, geometry, trigonometry, chemistry, and physics required.</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Art:</td>
<td>Fine Arts Studio, Illustration, Medical Illustration, Undeclared Option</td>
<td>Studio art experience in addition to a balanced academic program with courses in English, social studies, mathematics and science. Mechanical drawing is also desirable for Industrial or Interior Design applicants. Medical illustration program requires two years of science (biology preferred). A portfolio of original artwork is required for all programs, with drawing skills being most important. Craft students should also show examples of work in their area of interest, if possible.</td>
</tr>
<tr>
<td>School of Design:</td>
<td>Graphic Design, Industrial Design, Interior Design, New Media/Design, Undeclared Option</td>
<td>College preparatory program including algebra and at least one year of science.</td>
</tr>
<tr>
<td>School of Engineering:</td>
<td>Ceramics/Ceramic Sculpture, Glass/Glass Sculpture, Metals/Jewelry Design, Woodworking-Furniture Design, Undeclared Option</td>
<td>Algebra and one year science required. Technical option also requires geometry and trigonometry.</td>
</tr>
<tr>
<td>School of Film and Animation:</td>
<td>Film and Animation</td>
<td>College preparatory program including two years of mathematics and one year of science.</td>
</tr>
<tr>
<td>School of Photographic Arts and Sciences:</td>
<td>Advertising Photography, Fine Art Photography, Photожournalism, Biomedical Photographic Communications, Imaging and Photographic Technology</td>
<td>College preparatory program including two years of mathematics (one year for Fine Art Photography) and one year of science. Biology required for Biomedical Photographic Communications.</td>
</tr>
<tr>
<td>School of Print Media:</td>
<td>Graphic Media, New Media/Publishing</td>
<td>Algebra, trigonometry, and one year science (physics or chemistry preferred).</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology, Biotechnology, Bioinformatics Option</td>
<td>Algebra, geometry, trigonometry, biology, and chemistry.</td>
<td></td>
</tr>
<tr>
<td>Biochemistry, Chemistry, Environmental Chemistry, Polymer Chemistry</td>
<td>Algebra, geometry, trigonometry, and chemistry.</td>
<td></td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Algebra, geometry, trigonometry, biology and chemistry.</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>Algebra, geometry, trigonometry, chemistry or physics.</td>
<td></td>
</tr>
<tr>
<td>Biomedical Computing, Diagnostic Medical Sonography (Ultrasound), Physician Assistant</td>
<td>Algebra, geometry, trigonometry, and biology required for all programs. Chemistry or physics recommended for Biomedical Computing, and Ultrasound programs. Chemistry required for Physician Assistant program.</td>
<td></td>
</tr>
<tr>
<td>Undeclared Science Option</td>
<td>Premedical Studies</td>
<td>Algebra, geometry, trigonometry, biology, chemistry, and physics are recommended.</td>
</tr>
<tr>
<td>Center for Imaging Science:</td>
<td>Imaging Science</td>
<td>Algebra, geometry, trigonometry, and chemistry required. Calculus and physics desirable.</td>
</tr>
</tbody>
</table>

1. Students attending high schools in New York State should note that algebra, geometry, and trigonometry are the equivalent of mathematics Course I, II, and III.
2. A one-year program for students wishing to explore alternatives before selecting a specific degree program within this RIT college or school.
3. A one-year program for students undecided on a major who wish to explore program options in one more of RIT’s colleges.
4. Students interested in premedicine, predentistry, preveterinary, or preoptometry may select my major in the College of Science.
<table>
<thead>
<tr>
<th>College</th>
<th>Program at RIT</th>
<th>Co-op</th>
<th>Entry Term</th>
<th>Appropriate Associate Degree Programs for Transfer</th>
<th>Transfer Course Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Science and Technology</td>
<td>Engineering Technology: Civil Engineering Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>Civil, Construction, Environmental, Architectural, Transportation or Surveying Technology: Engineering Science</td>
<td>Courses in mathematics, science and engineering technology</td>
</tr>
<tr>
<td></td>
<td>Computer Engineering Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>Computer Technology, Electrical or Electronic Technology or Computer Science</td>
<td>Courses in computer science, math, science and engineering technology</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Engineering Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>Manufacturing, Mechanical, Drafting and Design, Robotics or Electromechanical Technology: Engineering Science</td>
<td>Courses in mathematics, science and engineering technology</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>Electrical Technology Electronic Technology, Engineering Science</td>
<td>Courses in mathematics, science and engineering technology</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>Mechanical, Design and Drafting, Air Conditioning or Electromechanical Technology: Engineering Science</td>
<td>Courses in mathematics, science and engineering technology</td>
</tr>
<tr>
<td></td>
<td>Telecommunications Engineering Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>Telecommunications, Electrical or Electronic Technology: Engineering Science</td>
<td>Courses in mathematics, science and engineering Technology</td>
</tr>
<tr>
<td></td>
<td>Environmental Management: Environmental Management & Technology Safety Technology</td>
<td>1</td>
<td>Any quarter</td>
<td>Biology, Chemistry or Environmental Sciences; Business or Public Administration; Liberal Arts with math/science</td>
<td>Math through Calculus I, micro and macro economics, introductory courses in biology, chemistry and physics</td>
</tr>
<tr>
<td></td>
<td>School of Hospitality and Service Management: Food Management</td>
<td>1</td>
<td>Any quarter</td>
<td>Dietetics or Nutrition, Foodservice Management, Hotel/Restaurant Management, Travel/Tourism Management, Agriculture & Technology, Business or Liberal Arts</td>
<td>Courses in business and economics, foreign language math, science and liberal arts. Science courses are required for Nutrition Management program.</td>
</tr>
<tr>
<td></td>
<td>School of Hospitality and Service Management: Hotel/Restaurant Management</td>
<td>1</td>
<td>Any quarter</td>
<td>Dietetics or Nutrition, Foodservice Management, Hotel/Restaurant Management, Travel/Tourism Management, Agriculture & Technology, Business or Liberal Arts</td>
<td>Courses in business and economics, foreign language math, science and liberal arts. Science courses are required for Nutrition Management program.</td>
</tr>
<tr>
<td></td>
<td>School of Hospitality and Service Management: Travel Management</td>
<td>1</td>
<td>Any quarter</td>
<td>Dietetics or Nutrition, Foodservice Management, Hotel/Restaurant Management, Travel/Tourism Management, Agriculture & Technology, Business or Liberal Arts</td>
<td>Courses in business and economics, foreign language math, science and liberal arts. Science courses are required for Nutrition Management program.</td>
</tr>
<tr>
<td></td>
<td>Multidisciplinary Studies: Applied Arts and Science</td>
<td>2</td>
<td>Any quarter</td>
<td>Transfer from associate degree programs considered on individual basis.</td>
<td>Courses in liberal arts sciences and math/science</td>
</tr>
<tr>
<td></td>
<td>Packaging Science: Management Option Technical Option</td>
<td>1</td>
<td>Any quarter</td>
<td>Business Administration, Marketing, Management, Graphic Arts, Engineering Science, Liberal Arts with math/science</td>
<td>Courses in business, management, marketing, mathematics, science and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Accounting</td>
<td>1</td>
<td>Any quarter</td>
<td>Accounting or AS degree in Business Administration</td>
<td>Courses in economics, accounting, liberal arts science and mathematics</td>
</tr>
<tr>
<td></td>
<td>Finance International Business Management</td>
<td>1</td>
<td>Any quarter</td>
<td>AS degree in Business Administration</td>
<td>Courses in economics, liberal arts science and mathematics</td>
</tr>
<tr>
<td></td>
<td>Management Information Systems</td>
<td>1</td>
<td>Any quarter</td>
<td>Data Processing/Management Information Systems or AS in Business Administration</td>
<td>Courses in liberal arts, math, science, economics, finance and computer science</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td>1</td>
<td>Fall preferred</td>
<td>Computer Science Engineering Science</td>
<td>Courses in computer science, calculus, liberal arts, calculus-based physics, chemistry or biology</td>
</tr>
<tr>
<td></td>
<td>Information Technology: New Media/Information Technology</td>
<td>1</td>
<td>Any quarter</td>
<td>Computer Applications, Computer Science</td>
<td>Courses in programming, computer applications, calculus, lab sciences, liberal arts</td>
</tr>
<tr>
<td>Business</td>
<td>Computer Engineering</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Electrical/Computer Option</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Industrial and Systems Engineering</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Option</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Mechanical/Aerospace Option</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Mechanical/Automatic Option</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Microelectronic Engineering</td>
<td>1</td>
<td>Fall preferred</td>
<td>AS degree in Engineering Science (plus computer Science electives for computer engineering applicants)</td>
<td>Pre-engineering courses such as calculus, calculus-based physics, chemistry and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Transfer Adjustment Electrical Engineering only</td>
<td></td>
<td>Summer only</td>
<td>AAS degree in Electrical Technology with one year of engineering calculus</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td>Computing and Information Sciences</td>
<td>School of Art: Fine Arts Studio Illustration</td>
<td>4</td>
<td>Fall only</td>
<td>Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>Medical Illustration</td>
<td>4</td>
<td>Fall only</td>
<td>Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>School of Design: Graphic Design</td>
<td>4</td>
<td>Fall only</td>
<td>Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>Industrial Design</td>
<td>4</td>
<td>Fall only</td>
<td>Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>Interior Design</td>
<td>4</td>
<td>Fall only</td>
<td>Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>New Media/Design & Imaging</td>
<td>4</td>
<td>Fall only</td>
<td>Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
<td>Courses in studio art, art history and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>Transfer Adjustment All Art and Design programs</td>
<td></td>
<td>Summer only</td>
<td>Summer courses can lead to third-year status in most programs.</td>
<td>Courses in art history, studio art and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>School for American Crafts: Ceramics/Ceramic Sculpture, Glass/Glass Sculpture</td>
<td>4</td>
<td>Fall only</td>
<td>Transfer as a third-year student is uncommon; as comparable programs are not generally available at other colleges. A portfolio of original artwork is required</td>
<td>Courses in art history, studio art and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
<tr>
<td></td>
<td>Metals/Jewelry Design, Woodworking/Furniture Design</td>
<td>4</td>
<td>Fall only</td>
<td>Transfer as a third-year student is uncommon; as comparable programs are not generally available at other colleges. A portfolio of original artwork is required</td>
<td>Courses in art history, studio art and liberal arts. Portfolio of original artwork is required to determine admission, studio art credit and year level within the program.</td>
</tr>
</tbody>
</table>

1 Cooperative Education: 1-required, 2-optimal, 3-internship or practicum required, 4-no specific requirement
<table>
<thead>
<tr>
<th>College</th>
<th>Program at RIT</th>
<th>Co-op</th>
<th>Entry Term</th>
<th>Appropriate Associate Degree for Transfer</th>
<th>Transfer Course Recommendations without Associate Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Arts and Sciences</td>
<td>School of Film and Animation:</td>
<td>2</td>
<td>Fall preferred</td>
<td>No common program available</td>
<td>Courses in liberal arts, science, design, drawing, and 3D modeling and animation</td>
</tr>
<tr>
<td></td>
<td>Biomedical Photographic Communications</td>
<td>3</td>
<td>Fall preferred</td>
<td>No common program available</td>
<td>Courses in biology, photography and liberal arts. Portfolio required for photo credit.</td>
</tr>
<tr>
<td></td>
<td>Imaging and Photographic Technology</td>
<td>1</td>
<td>Fall preferred</td>
<td>No common program available</td>
<td>Courses in college physics, mathematics, photography and liberal arts. Portfolio required for photo credit.</td>
</tr>
<tr>
<td></td>
<td>Imaging Systems Management</td>
<td>3</td>
<td>Fall preferred</td>
<td>AS in Business Administration or Management or AAS in Photography</td>
<td>Courses in business, economics and liberal arts</td>
</tr>
<tr>
<td></td>
<td>Advertising photography, Fine Art Photography, Photojournalism</td>
<td>4</td>
<td>Fall preferred</td>
<td>Applied Photography. Portfolio required for photo credit.</td>
<td>Courses in liberal arts, photography, design and art history. Portfolio required for photo credit.</td>
</tr>
<tr>
<td></td>
<td>Transfer adjustment: Available in all photography programs</td>
<td></td>
<td>Summer only</td>
<td>Transfer adjustment leading to second- or third-year status in most programs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>School of Print Media:</td>
<td>1</td>
<td>No summer entry</td>
<td>Transfer from associate degree programs considered on an individual basis.</td>
<td>Courses in liberal arts, college math, physics and chemistry, business</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>Criminal Justice</td>
<td>2 or 3</td>
<td>Any quarter</td>
<td>Liberal Justice, Human Services or Liberal Arts</td>
<td>Courses in criminal justice or related areas, liberal arts, math and science.</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>2</td>
<td>Any quarter</td>
<td>AS degree in Business Administration or Liberal Arts</td>
<td>Courses in business, liberal arts, math, science and computer science</td>
</tr>
<tr>
<td></td>
<td>Professional and Technical Communication</td>
<td>1</td>
<td>Any quarter</td>
<td>Liberal Arts with emphasis in communication and a technical field such as business, photography or computer science.</td>
<td>Courses in liberal arts, math, science and computer science.</td>
</tr>
<tr>
<td></td>
<td>Psychology</td>
<td>1 or 3</td>
<td>Any quarter</td>
<td>Liberal Arts with science or social science</td>
<td>Courses in liberal arts, sciences, social sciences</td>
</tr>
<tr>
<td></td>
<td>Public Policy</td>
<td>1</td>
<td>Any quarter</td>
<td>Liberal Arts, Environmental Studies, Economics, Government, Science</td>
<td>Courses in liberal arts, sciences, and math</td>
</tr>
<tr>
<td></td>
<td>Social Work</td>
<td>3</td>
<td>Any quarter</td>
<td>Human Services or Liberal Arts with Human Services minor</td>
<td>Courses in liberal arts, math and science.</td>
</tr>
<tr>
<td></td>
<td>NTID"</td>
<td></td>
<td></td>
<td></td>
<td>Transfer requirements vary by program.</td>
</tr>
<tr>
<td></td>
<td>Biology</td>
<td>2</td>
<td>Fall preferred</td>
<td>Biology or Liberal Arts with biology option</td>
<td>Courses in liberal arts, Sciences or math.</td>
</tr>
<tr>
<td></td>
<td>Biomedical Computing</td>
<td>2</td>
<td>Fall preferred</td>
<td>Computer Science, Liberal Arts with biology option or General Science</td>
<td>Courses in liberal arts, sciences, math and computer science.</td>
</tr>
<tr>
<td></td>
<td>Biotechnology</td>
<td>2</td>
<td>Fall preferred</td>
<td>Biotechnology or Liberal Arts with biology</td>
<td>Courses in liberal arts, sciences and math.</td>
</tr>
<tr>
<td></td>
<td>Biochemistry, Chemistry, Environmental Chemistry Option, Polymer Chemistry</td>
<td>2</td>
<td>Any quarter</td>
<td>Liberal Arts with chemistry option; Chemical Technology, Laboratory Technology</td>
<td>Courses in liberal arts, chemistry, math and physics.</td>
</tr>
<tr>
<td></td>
<td>Diagnostic Medical Sonography</td>
<td>3</td>
<td>Fall preferred</td>
<td>Liberal Arts with science option; Allied Health; Radiologic Technology</td>
<td>Courses in liberal arts, sciences, and math.</td>
</tr>
<tr>
<td></td>
<td>Environmental Science</td>
<td>2</td>
<td>Fall preferred</td>
<td>Biology, Chemistry, Environmental Science, Liberal Arts with science option</td>
<td>Courses in liberal arts, Sciences and math.</td>
</tr>
<tr>
<td></td>
<td>Applied Mathematics</td>
<td>2</td>
<td>Any quarter</td>
<td>Liberal Arts with mathematics option; Computer Science, Engineering Science, Sciences</td>
<td>Courses in math, computer science and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Computational Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Statistics</td>
<td>2</td>
<td>Any quarter</td>
<td>Liberal Arts with mathematics option; Computer Science, Engineering Science, Sciences</td>
<td>Courses in math, computer science and liberal arts.</td>
</tr>
<tr>
<td></td>
<td>Physician Assistant</td>
<td>3</td>
<td>Fall only</td>
<td>Liberal Arts with science option; Allied Health areas</td>
<td>Courses in liberal arts, sciences and math.</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>2</td>
<td>Fall preferred</td>
<td>Liberal Arts with mathematics option</td>
<td>Liberal arts, physics, math, chemistry</td>
</tr>
<tr>
<td></td>
<td>Center for Imaging Science:</td>
<td>2</td>
<td>Fall preferred</td>
<td>No common program available.</td>
<td>Courses in calculus or higher mathematics, college chemistry, calculus-based physics and liberal arts.</td>
</tr>
</tbody>
</table>

1 Cooperative Education: 1- required, 2- optional, 3- internship or practicum required, 4- no specific requirement.
2 For more information about transferring into one of NTID’s programs, contact NTID’s Department of Admissions, 585-475-6700 (voice/TTY).
3 Students interested in premedicine, predentistry or preveterinary may select any major in the College of Science. An advisor will assist in selecting appropriate course work.
Expenses and Financial Aid

Costs and Payment Procedures:
Matriculated Day College Students

Charges for tuition, fees, room and board are computed on a quarterly basis. Quarterly bills are mailed approximately four weeks before the beginning of the quarter. Payment sent by mail should be made by check, payable to Rochester Institute of Technology. Due dates for the 2002-03 school year are as follows:

- Fall quarter: August 22, 2002
- Winter quarter: November 27, 2002
- Spring quarter: March 5, 2003
- Summer quarter: May 29, 2003

Students who have not participated in the early registration process for the quarter will be expected to make payment or the appropriate payment arrangements of the quarterly charges (tuition, fees, room and board) at the time of registration. Students may pay the quarterly charges in a single payment at registration or by the partial payment plan. Partial payments are due twice per quarter: 50 percent (plus a $25 processing fee) at registration and the remainder by the end of the fourth week of classes.

Students whose college costs are paid by the G.I. Benefit Plan or their employer are required to submit the properly authorized deferment form. Quarterly bills will be mailed to the student's permanent address.

A late payment fee will be charged to all student accounts that become past due. This includes, but is not limited to, the deferred payment plan and company deferred payment plan.

Tuition assessment policies
1. Matriculated day college students are charged the day rate for ALL courses taken, including Evening Division courses and courses taken while on co-op.
2. Students on co-op will not be charged tuition for those quarters unless they are also enrolled in classes.
3. Nonmatriculated students are charged for the type of course taken (evening rate for Evening Division courses; day rate for day courses; graduate rate for graduate courses).
4. Students taking courses during summer quarter should refer to the Summer Quarter Bulletin for policies and procedures.

Other fees
In addition to the fees specified below, certain groups of students may incur other fees, as follows:

- Orientation fee: $80 (one-time charge for new transfer students)
- Orientation fee: $165 (one-time charge for new freshman students)
- Quarterly photo facilities fee: $98 (charged to all full-time photo students; $49 per quarter charged to all part-time photo students)

FEE SCHEDULE 2002-03 (MATRICULATED DAY COLLEGE STUDENTS EXCEPT NTID) *

<table>
<thead>
<tr>
<th>Service</th>
<th>Per Quarter</th>
<th>Per Year-3 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time Undergraduate (12-18 Credit Hrs.)</td>
<td>$6,490</td>
<td>$19,470</td>
</tr>
<tr>
<td>Part-time Undergraduate (Less than 12 Credit Hrs.)</td>
<td>466/ Cr. Hr.</td>
<td>466/ Cr. Hr.</td>
</tr>
<tr>
<td>Student Activities Fee (Mandatory Charge)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time Undergraduate</td>
<td>56</td>
<td>168</td>
</tr>
<tr>
<td>Part-time Undergraduate</td>
<td>28</td>
<td>84</td>
</tr>
<tr>
<td>Student Health Fee (Mandatory Charge)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time Undergraduate</td>
<td>59</td>
<td>177</td>
</tr>
<tr>
<td>Residence Hall Room Charges †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Occupancy</td>
<td>1,420</td>
<td>4,260</td>
</tr>
<tr>
<td>Single Occupancy</td>
<td>1,634</td>
<td>4,902</td>
</tr>
<tr>
<td>Board/Meal Plans ‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-Meal Plan (Debit account optional) + 3 meal options</td>
<td>1,121</td>
<td>3,363</td>
</tr>
<tr>
<td>Any 14 Plus (Includes $60 debit per qtr.) + 3 meal options</td>
<td>1,089</td>
<td>3,267</td>
</tr>
<tr>
<td>Any 12 Plus (Includes $100 debit per qtr.) + 3 meal options</td>
<td>1,089</td>
<td>3,267</td>
</tr>
<tr>
<td>Any 5/5 Plus (Includes $140 debit per qtr.)</td>
<td>1,089</td>
<td>3,267</td>
</tr>
<tr>
<td>All Debit (upperclassmen only)</td>
<td>1,089</td>
<td>3,267</td>
</tr>
</tbody>
</table>

* See page 135.
† Additional single-occupancy rates are available depending on square footage of rooms.
‡ Additional meal plans are also available providing for different meal and debit account amounts.

Information can be obtained from RIT Food Service upon request.
Costs for books and supplies

These costs vary with the program followed and, to some extent, the electives chosen. In programs with minimal expenses (e.g., liberal arts, business, hospitality), books and supplies will average $600 or more annually; in the arts and crafts, costs may range from $900 to $1,100; and in photographic illustration, a realistic allowance is $2,000 per year in addition to cameras.

Student sickness insurance plan

All full-time day college undergraduate students and most international students (see below) are automatically enrolled in the RIT-offered student insurance plan each year. The insurance charge appears on student accounts as soon as they reach full-time status each academic year (co-op is considered full time). A prorated charge appears if full-time status is first achieved in winter, spring or summer quarters. Students may waive enrollment if they are covered by another medical insurance.

RIT requires all international students to maintain medical insurance that provides coverage in the United States and meets certain minimum benefit requirements. To ensure this, RIT will semi-annually enroll all international students on F-visas in the RIT’s Basic Student Sickness and Accident Plan (Student Insurance Plan) based on their active registration status during the fall/winter and spring/summer periods. A semi-annual premium charge will be assessed to the student account. Certain international students will be eligible for an automatic exemption from this insurance plan as determined by the Undergraduate Admissions Office. A special waiver process exists for other international students who maintain alternative medical insurance and want to waive the RIT plan. Information and waiver forms are available through the Office of Student Transition and Support.

Waiving the RIT medical insurance will not affect a student’s eligibility to receive services at the RIT Student Health Center.

Monthly payment plan

For the 2002-03 academic year, RIT will offer a monthly payment plan. This combines the elements of a prepayment and deferred payment plan. For further information, contact the Bursar’s Office at 585-475-6186 or check our Web site at www.finweb.rit.edu/bursar.

Vocational Rehabilitation

1. Students receiving Vocational Rehabilitation support for fees and tuition must file authorization with RIT’s VR billing supervisor before registration. If authorization has not been received before registration, students must either obtain from their VR counselors a letter of commitment stating the dollar amount that is authorized and present it to the VR billing supervisor or be prepared to pay for the charges in question. If authorization is received after a student has paid the charges, he or she will receive a refund.

2. Students must pay all charges not paid by VR before the quarterly due date.

3. VR counselors should specify each charge that they are covering on their authorization forms.

4. Clarification of VR authorization and/or billing procedures should be addressed to:
 - Rochester Institute of Technology
 - NTID/VR Supervisor
 - Bursar’s Office
 - 25 Lomb Memorial Drive
 - Rochester, N.Y. 14623-5603

NTID students receiving monthly Social Security benefits can make arrangements to pay at the Bursar’s office. Students need to sign a promissory note quarterly with the Bursar’s office. For additional information, call 585-475-2080 (voice/TTY) or -5489 (voice/TTY).

Financial standing

Students, former students and graduates are in good financial standing when their account is paid in full in the Bursar’s Office. Those whose account is not paid in full will not receive transcripts, diplomas or other forms of recognition or recommendation from the Institute.

THE INSTITUTE RESERVES THE RIGHT TO CHANGE ITS PRICES AND PRICING POLICIES WITHOUT PRIOR NOTICE.

Costs and Payment Procedures: Evening Division Students

Charges at RIT are computed on a quarterly basis. Quarterly bills are mailed approximately four weeks before the beginning of each quarter. Payments sent by mail should be made by check, payable to Rochester Institute of Technology. Registration and billing procedures are published each quarter in the “Schedule of Courses.” Due dates for the 2002-03 school year are as follows:

- **Fall quarter** August 22, 2002
- **Winter quarter** November 27, 2002
- **Spring quarter** March 5, 2003
- **Summer quarter** May 29, 2003

FEE SCHEDULE (Matriculated Evening Division students)

Upper Level Courses

- $307/ Credit Hour
 - (Courses in 400, 500, 600 series)

Lower Level Courses

- $280/ Credit Hour
 - (Courses in 100, 200, 300 series)

Other fees

Some courses require additional charges to cover laboratory, studio or supply fees. (Consult the registrar's quarterly schedule for those courses with additional fees.)

Tuition assessment policies

1. Matriculated students are assessed the tuition rate associated with their program, regardless of the courses taken.
2. Nonmatriculated students are assessed tuition consistent with the program(s) in which their course(s) are offered.
3. Students taking courses during summer quarter should refer to the Summer Quarter Bulletin for policies and procedures.

Refund Policies

The acceptable reasons for withdrawal with full refund during the quarter are:

1. **Active military service**: A student called to active military service during the first eight weeks of the term may receive a full tuition refund. If called after the eighth week, he or she may elect to complete the course by making special arrangements with both the instructor and department or may withdraw and receive a full tuition refund. If he or she withdraws, the course must be repeated at a later date.

2. **Academic reasons**: Students sometimes register before grades for the previous quarter are available. If such a student later finds that he or she is subject to academic suspension or has failed prerequisites, the student will be given a full refund upon withdrawal.

3. If part-time students drop a course during the official drop/add period (first six days of classes in any quarter), they may contact the Bursar’s Office for a full refund for the course dropped.
A full-time student must officially withdraw from all courses or take a leave of absence from the Institute in order to be eligible for a partial tuition refund. Students must complete a leave of absence or withdrawal, which can be initiated with their academic department. A partial refund will be made during a quarter if withdrawal/leave of absence is necessitated for one of the following reasons:

1. Illness, certified by the attending physician, causing excessive absence from classes
2. Withdrawal for academic or disciplinary reasons at the request of the Institute during a quarter
3. Transfer by employer, making class attendance impossible
4. Withdrawal for academic, disciplinary or personal reasons at the request of the student, approved by the student's adviser or department representative and the bursar.

Partial refund schedule: Tuition

Partial refunds will be made according to the following withdrawal schedule and percentage of tuition reduction:

- During official drop/add period (first six days of classes): 100 percent tuition reduction
- From the end of the official drop/add period through the end of the second week of classes: 70 percent tuition reduction
- During the third week of classes: 60 percent tuition reduction
- During the fourth week of classes: 50 percent tuition reduction
- During the fifth week of classes: 25 percent tuition reduction
- Sixth and subsequent weeks: no tuition reduction

NOTE: NONATTENDANCE DOES NOT CONSTITUTE AN OFFICIAL WITHDRAWAL.

A student is not "officially withdrawn" until he or she receives a copy of the withdrawal form. The date on which a withdrawal form is properly completed will be the date of "official withdrawal" used to determine the refundable amount.

If the student drops his or her course load from full-time (12 or more credits) to part-time (less than 12 credits) status during the official drop/add period, he or she may contact the Bursar's Office for a refund based on the difference between the full-time tuition charge and the total per-credit charge for the part-time load.

No refund will be made for classes dropped after the official drop/add period unless the student is officially withdrawing from the Institute.

Advance deposits are not refundable.

If institutional charges are reduced due to withdrawals, financial aid programs are reimbursed before a cash refund is issued to the student. The student is also responsible for any unpaid balance at the time of withdrawal. Aid programs are reimbursed in the following sequence: Federal Direct Loans, Perkins Loans, Federal Pell Grants, Federal SEOG, other financial aid, state aid, institutional aid. If a credit balance still remains, the student is then issued a refund.

For further information or comments regarding refund policies and specific withdrawal dates, contact the Bursar's Office.

Appeals process

An official appeals process exists for those who feel that individual circumstances warrant exceptions from published policy. The inquiry in this process should be made to Richard B. Schonblom, bursar.

Room and board*

To complete a withdrawal from RIT, a resident student or a nonresident student on a meal plan must check out with the Center for Residence Life and the Food Service administrative office, located in the Student Alumni Union, room A520 (lower level). Refunds, when granted, are from the date of official check-out.

Partial refund schedule:

Room
1. During the first week of classes: 90 percent of unused room charge
2. During the second week of classes: 75 percent of unused room charge
3. During the third week of classes: 60 percent of unused room charge
4. During the fourth week of classes: 50 percent of unused room charge
5. Fifth and subsequent weeks: no refund

Board
1. Within the first four weeks: 75 percent of the unused meal/ debit charges is refunded.
2. After the fourth week (during week five through the end of week eight): 50 percent of the unused meal/ debit charges is refunded.
3. During the last two weeks of classes: no refund is given.

* Room and board policies are established by the Center for Residence Life and Food Service.

Any student who intentionally defrauds or attempts to defraud the Institute of tuition, fees, or other charges, or who gives false information in order to obtain financial aid, is subject to legal liability, prosecution, and Institute disciplinary action.

Financial Aid

We feel strongly that no qualified student should refuse to consider RIT because of cost. With this in mind, RIT offers a full range of traditional financial aid programs and a number of innovative financing plans as well.

In 2001-2002, approximately 80 percent of our full-time undergraduate students received financial aid awards from RIT. These students qualified for over $110 million in financial assistance from federal, state and institutional sources. Many families also took advantage of RIT's monthly, interest-free payment plan and a four-year prepayment plan that guarantees participants no increase in tuition (the RIT Tuition Prepayment Plan).

Your financial need

Eligibility for need-based financial aid at RIT begins with three basic requirements: graduation from high school or its equivalent, enrollment in a degree program (matriculation), and demonstration of financial need. Most financial aid programs also require at least half-time enrollment.

Financial need is the difference between the cost of education and the amount a student and his or her family are expected to contribute toward those educational costs (the expected family contribution). The formula used to calculate the expected family contribution is called the federal methodology, and use of the formula is required when colleges are determining a student's financial need for any federal financial aid programs. Financial aid programs are designed to supplement the expected family contribution.
The Free Application for Federal Student Aid (FAFSA) should be completed in order to determine a student’s financial need. Information on the FAFSA is used to calculate the expected family contribution. All colleges and universities who award federal financial aid use the FAFSA. The FAFSA is available in high school guidance offices, college financial aid offices and in most public libraries. Students can also complete the FAFSA on line at www.fafsa.ed.gov.

Determination of Financial Aid eligibility can be complex; therefore, families are encouraged to contact the Office of Financial Aid with any questions or concerns. It is impossible for families to determine their eligibility for financial aid on their own. If students are denied financial aid from one source that does not necessarily mean that they will be denied financial aid from another source. Students and families are encouraged to pursue all available sources of financial aid.

Application
The process of applying for financial aid should begin in January of the year the student plans to attend college. It is important that freshman and transfer applicants file the FAFSA by March 1 in order to receive full consideration. Current RIT students should file the FAFSA and the RIT aid application by April 1 in order to receive full consideration. Students must reapply for financial aid each year by completing the FAFSA and the RIT aid application. Additionally, students must maintain minimum standards of satisfactory academic progress as described on page 356. The Office of Financial Aid will make every effort to provide a similar amount of financial aid provided students apply on time and demonstrate a similar amount of financial need.

Notification
Freshman and transfer students may expect notification of financial aid awards beginning March 15. Current RIT students may expect award notification beginning in June.

Types of aid
At RIT there are five general categories of financial aid: scholarships, grants, entitlements, loans and employment. An applicant for financial aid is considered for each of these categories.

- Scholarships are generally awarded on the basis of academic record. RIT awards many such scholarships each year. Other typical scholarship sources are competitions, corporations, private donors, foundations, fraternal organizations, unions, and local and state governments.
- RIT offers academic merit scholarships to both freshmen and transfer students. Presidential scholarships and Computing Medal scholarships are awarded to freshmen. Trustee scholarships and Phi Theta Kappa scholarships are awarded to transfer students. Winners are chosen on the basis of their academic record, recommendations, extracurricular activities and requirements for their intended major. Please contact the Undergraduate Admissions Office for more details on these programs.
- Grants are gifts of financial assistance that are awarded on the basis of demonstrated need. RIT awards institutional grants that vary from $500 to $13,000 for the academic year. RIT also awards grants under the federally funded Supplemental Education Opportunity Grant (SEOG) program. The federal Pell Grant and New York Tuition Assistance Program (TAP) are additional examples of grants. Many other states offer grants, as well.
- Entitlements are a special type of grant. They are funded by state and federal governments. Eligibility for entitlements can be based on special characteristics of a recipient. Examples of entitlements based on special student qualifications are the G.I. Bill and vocational rehabilitation benefits. Entitlements do not have to be repaid.
- Student loans are monies provided through a formal financial obligation that must be repaid. You need to be aware of the interest charges, the method of payment after graduation and the effect that loans will have on your ability to meet all of your future financial obligations. Student loans are generally not repaid until after graduation or termination of study.

Many students will utilize the Subsidized Federal Direct Loan or the Unsubsidized Federal Direct Loan in meeting their costs. RIT also awards Federal Perkins Loans. These programs are administered by the Office of Financial Aid for eligible students as part of financial aid awards.

Parents are also eligible to participate in several educational loan programs designed to make funds available for college expenses. Federal PLUS Loans are available to supplement other aid programs in meeting educational costs. While this parent loan is not based on need, the amount borrowed in any year cannot exceed educational costs minus other financial aid received.

RIT has also developed special loan programs with private lenders to assist families in meeting educational expenses. These loans are available to both parents and students, using variable or fixed rates of interest. Additional information is available from the Office of Financial Aid.

Employment opportunities are also available to assist RIT students in meeting college expenses. Whether or not students seek financial aid, they may choose to defray some of their expenses through student employment while attending the Institute.

As part of a financial aid award at RIT, students may be offered employment in the Federal Work-Study program. More than 4,000 students are employed on campus each year. The Student Employment Office also helps a number of students secure part-time employment off campus. Full-time salaried employment through RIT’s cooperative education program can also contribute to meeting college expenses. RIT students on co-op earned in excess of $20 million from employment each year. Students are encouraged to contact the Office of Cooperative Education and Career Services for additional salary data.

N T I D Grant-in-Aid
Federal Grant-in-Aid funds, awarded on the basis of financial need, are an important source of financial aid for NTID-sponsored students who do not have adequate financial resources from the sum of their parental and personal contributions and assistance from outside agencies to cover educational costs.

Outside Scholarships
The Office of Financial Aid encourages students to apply for scholarships awarded by private organizations. This is an excellent source of funding and may reduce the need to borrow. In many cases, no alterations to a student’s financial aid award are necessary. If we are required by federal regulations to amend a financial aid award as a result of receipt of an outside scholarship, we will make every effort to reduce the student’s loan or work award before reducing RIT need-based grants.

Payment plans
The RIT Monthly Payment Plan combines the elements of a deferred payment plan and a prepayment plan to allow students and their families to finance educational costs over a 12-month period with no interest or finance charges. Participating families make their first payment by July 1 preceding the academic year in which it would be utilized. Fixed costs include tuition, fees, residence hall charges and RIT meal plans. The enrollment deposit required of all new undergraduates and the advance housing deposit, required of returning students, will be credited against annual charges. Financial aid may also be deducted from student charges to

Expenses and Financial Aid 355
reduce the amount financed through the plan. Applications cannot be accepted after the first day of fall quarter classes for the academic year.

Additional information as well as applications for the monthly payment plan may be obtained from the Bursar's Office.

RIT also offers a Tuition Prepayment Plan, a prepaid plan that guarantees no tuition increases for the equivalent of four years (12 academic quarters) of undergraduate education. Cost for the plan is established each year but is generally less than four years of tuition at the current rate. The plan is available to matriculated full-time undergraduate RIT students who are not receiving any form of RIT need-based grants. Additional information is available from the Office of Financial Aid or the Bursar's Office.

NTID-sponsored students may contact the NTID / VR Billing Department at 585-475-2080 (voice/TTY) or 585-475-5489 (voice/TTY) for more information about payment options.

Academic Progress Requirements for State Aid Programs

New York State Tuition Assistance Program (TAP)

In order to receive a Tuition Assistance Program grant, an individual must be admitted as a full-time matriculated student, meet New York State residency and income requirements, and pursue the program of study in which he or she is enrolled, and must make satisfactory progress toward completion of his or her program of study. The three tables on page 357 list the approved standards of satisfactory progress for associate, bachelor's, and graduate degrees, respectively.

In addition to accruing degree credits and earning a minimum grade point average as specified in the tables on page 357, TAP recipients must:

- Complete 6 credits per quarter to receive TAP payments 2 to 4
- Complete 9 credits per quarter to receive TAP payments 5 to 7
- Complete 12 credits per quarter to receive TAP payments 8 to 12.

Completion of a course is defined as meeting course requirements and receiving a letter grade of A, B, C, D, or F.

In addition, state regulations mandate that if a student repeats a course in which a passing grade acceptable to the institution was previously received, the repeated course does not count toward the minimum 12-credit-hour course load required for TAP and other state programs.

Waiver of academic progress standards for TAP

Students who have been denied Tuition Assistance Program benefits due to failure to maintain satisfactory standards of academic progress may request one-term waiver of those standards. State regulations require that these waivers be granted only under extraordinary circumstances. Accordingly, waivers are normally granted for the reasons listed below. Students failing to meet satisfactory progress standards will be given the opportunity to contact an institutional representative in the Office of Financial Aid to discuss their situation. The institutional representative will require documentation as appropriate and establish deadlines for submission of this documentation.

Under the regulations established by the Commissioner of Education, the decision of the institutional representative will be final. Students, who in the judgment of the institutional representative, satisfactorily meet the criteria for the waiver may have one waiver at the undergraduate level. One waiver also may be granted at the graduate level. Those wishing to apply for waivers must do so during the quarter in which notification of TAP denial was sent.

Reasons for which a waiver may be granted include the following:

1. Verifiable illness of the student or member of the student's immediate family during the quarter in which academic standards were not met
2. Death of a member of the student's family during the quarter in which standards were not met
3. Divorce/ separation within the student's immediate family creating a demonstrable financial/ emotional disruption sufficient to affect progress
4. Students may submit waiver applications for circumstances that the student feels were extenuating. Applicants must explain why circumstances were extenuating and beyond their control.

These regulations are subject to legislative change.

Academic Progress Requirements for Federal Aid Programs

Federal regulations require financial aid recipients to maintain minimum standards of satisfactory academic progress for continued receipt of federally sponsored aid. All students receiving federal assistance must maintain matriculated status in a degree program. Regulations require a maximum time frame for degree completion, a quantitative measurement (credits earned toward a degree), and a qualitative measurement (cumulative grade point average). The annual review of academic progress considers all terms of enrollment, including terms in which no federal aid was received.

Full-time students who have never attended another college are allowed a maximum of six academic years (18 full-time academic quarters) to attain the bachelor's degree. Those pursuing associate degrees are allowed three academic years (nine academic quarters) for degree completion.

Students enrolled in eligible certificate or diploma programs in colleges other than NTID must complete credit hours on a full-time equivalent basis. Certificates/diploma program students are allowed a maximum of 150 percent of the published number of quarters required to complete their program.

Academic progress is reviewed at the end of spring quarter each year and includes a review of cumulative grade point average and degree credits completed. Minimum cumulative grade point average standards for full- and part-time students in RIT or NTID programs are as follows:

Completion of:

- First quarter-Minimum Cumulative GPA = 1.0
- Second Quarter-Minimum Cumulative GPA = 1.2
- Third Quarter-Minimum Cumulative GPA = 1.4
- Fourth Quarter-Minimum Cumulative GPA = 1.6
- Fifth Quarter-Minimum Cumulative GPA = 1.8
- Quarters 6 to 18-Minimum Cumulative GPA = 2.0
Full-time students in colleges other than NTID are expected to complete 30 degree credits every three academic quarters as detailed below:

Completion of:
- First Academic Year (3 Academic Qtrs.)- 30 degree credits required
- Second Academic Year (6 Academic Qtrs.)- 60 degree credits required
- Third Academic Year (9 Academic Qtrs.)- 90 degree credits required
- Fourth Academic Year (12 Academic Qtrs.)- 120 degree credits required
- Fifth Academic Year (15 Academic Qtrs.)- 150 degree credits required
- Sixth Academic Year (18 Academic Qtrs.)- 180 degree credits required

Part-time students must accumulate credit hours on a full-time equivalent basis.

Students enrolled in certificate, diploma or associate degree programs at NTID must meet the same grade point average standards as are required for other RIT colleges. However, for NTID programs, the qualitative standard is based on successful completion of 66 percent of annual credit hours attempted. In addition, the maximum time frame for program completion is equal to attempting a maximum of 150 percent of the published credit hours required for a particular NTID certificate, diploma or degree.

Expenses and Financial Aid

Student loan recipients should also note that all Federal Direct Loan Programs have specific annual and cumulative maximum amounts. The loan limits are listed in the Undergraduate Financial Aid Programs 2002-03 chart and in the U.S. Department of Education “Student Guide.” Copies of the guide are available in the Office of Financial Aid.

Notification and appeal

Students whose academic progress is not in compliance with federal requirements will be notified of the deficiency and advised of the appeal process. Copies of the policy are available upon request.

Academic Progress Requirements for RIT Grants and Scholarships

Academic progress requirements for full-time students receiving RIT-sponsored grants and scholarships that are need-based are consistent with the requirements for federal aid programs. Academic requirements and award duration

Standard of Satisfactory Progress for the Purpose of Determining Eligibility for New York State Student Aid*

Associate Degree-Quarter System

<table>
<thead>
<tr>
<th>Before being certified for this payment</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
</tr>
</thead>
<tbody>
<tr>
<td>a student must have accrued at least this many credits</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>20</td>
<td>32</td>
<td>44</td>
<td>56</td>
<td>68</td>
<td>80</td>
</tr>
<tr>
<td>with at least this grade point average</td>
<td>.50</td>
<td>.75</td>
<td>1.00</td>
<td>1.20</td>
<td>1.30</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Bachelor's Degree-Quarter System†

<table>
<thead>
<tr>
<th>Before being certified for this payment</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
<th>13th</th>
<th>14th</th>
<th>15th</th>
</tr>
</thead>
<tbody>
<tr>
<td>a student must have accrued at least this many credits</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>20</td>
<td>32</td>
<td>44</td>
<td>56</td>
<td>68</td>
<td>80</td>
<td>92</td>
<td>104</td>
<td>116</td>
<td>132</td>
<td>148</td>
<td>164</td>
</tr>
<tr>
<td>with at least this grade point average</td>
<td>.50</td>
<td>.75</td>
<td>1.00</td>
<td>1.20</td>
<td>1.30</td>
<td>2.00</td>
</tr>
</tbody>
</table>

† Only students in the HEOP program at RIT are eligible for more than 12 quarters of undergraduate awards

Graduate Degree-Quarter System

<table>
<thead>
<tr>
<th>Before being certified for this payment</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>a student must have accrued at least this many credits</td>
<td>0</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>with at least this grade point average</td>
<td>2.00</td>
<td>2.50</td>
<td>2.70</td>
<td>2.80</td>
<td>2.90</td>
<td></td>
</tr>
</tbody>
</table>

* Information correct as of March 2002
Additional Eligibility Requirements

Transfer students
Cumulative grade point average requirements are the same as for nontransfer students (i.e., students must obtain a 2.0 GPA at the end of six academic quarters). Transfer students also are expected to accumulate 30 degree credits for each three-quarter academic year. However, the maximum number of quarters allowed for full-time students to accumulate remaining degree credits may be reduced. For every 10 credits, or fraction thereof, granted as transfer credit by RIT, the maximum number of quarters to accumulate remaining degree credits is reduced by one. For example, a student transferring from another college and granted 30 transfer credits would have 15 rather than 18 quarters to accumulate remaining degree credits; the same student transferring to an associate degree program would be allowed six rather than nine quarters to complete the degree. The calculations used in the reduction in maximum quarters allowed for degree completion apply to both federal aid programs (18 academic quarters maximum) and RIT-sponsored awards (14 academic quarters maximum).

Part-time students
Students registering for six to 11.5 credits per quarter and receiving federal financial assistance must meet the same grade point average requirements as full-time students (i.e., attainment of a 2.0 GPA after six academic quarters). The established time frame for part-time students is 12 academic years (36 half-time quarters) for completion of bachelor’s degree requirements. Associate degree candidates are allowed six academic years (18 half-time quarters) for degree completion. At the end of each three-quarter academic year, 15 credits must be accumulated toward the degree. Quarters in which a student is registered for less than six credit hours will be counted on a prorated basis toward the maximum time frame.

Student responsibilities
Recipients of financial aid are responsible for reporting any significant changes in their financial situation during the year to the director of Financial Aid, who will review and may revise the applicant’s financial aid accordingly.

Financial Aid Refund Policy

Return of federal funds
In accordance with federal regulations, the Office of Financial Aid calculates quarterly federal aid eligibility for students who withdraw, drop out, are suspended, or take a leave of absence prior to completing 60 percent of a quarter. “Withdrawal date” is defined as the actual date the student initiated the withdrawal process, or the student’s last date of recorded attendance, or the midpoint of the quarter for a student who leaves without notifying the institution. Recalculation is based on the percent of earned aid using the following formula: number of days completed up to the withdrawal date/total days in the quarter. Aid returned to federal programs is then equal to (100 percent minus the percentage earned) multiplied by the amount of federal aid disbursed.

Funds are returned to the federal government in the following sequence: Federal Direct Unsubsidized Loans, Federal Direct Subsidized Loans, Federal Parent Loans, Federal Perkins Loans, Federal Pell Grants, Federal SEOG, other federal aid.

Late disbursement
If the student is otherwise eligible, the first disbursement of Federal Direct Unsubsidized Loan or Federal Direct Unsubsidized Loan proceeds is allowed up to 90 days after the student has ceased to be enrolled. Subsequent disbursements are not allowed.

State scholarships
Regulations vary. Any adjustments are done in accordance with the specific requirements of the sponsoring state.

Privately funded grants and scholarships
In the absence of specific instructions from the sponsor, 100 percent of the quarterly award will be credited to the student’s account.

RIT grants and scholarships
If a credit balance remains after all federal, state and private adjustments, a percentage of the remaining credit balance is returned to the RIT scholarship account according to the following formula:

\[
\text{Scholarship Plus} = \frac{\text{Scholarship} \times \text{Remaining Credit Balance}}{\text{Student Payments}}
\]
<table>
<thead>
<tr>
<th>RIT FINANCIAL AID</th>
<th>WHO IS ELIGIBLE?</th>
<th>CRITERIA FOR SELECTION</th>
<th>HOW MUCH?†</th>
<th>HOW AND WHEN TO APPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIT grants and need-based scholarships</td>
<td>Full-time students who demonstrate financial need.</td>
<td>Awards based on academic record and financial need.</td>
<td>Amounts vary depending on student’s financial need.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>Presidential Scholarships Computing Medal Programs</td>
<td>Prospective freshmen who apply for admission by February 1 and meet selection criteria.</td>
<td>Awards based on academic record, recommendations, activities and requirements for intended major. Awards are not dependent upon financial need.</td>
<td>Amounts range from $1,000 to $8,000 per academic year. Awards based on three quarters of full-time study per academic year and are renewable with a GPA of 3.0 or higher.</td>
<td>Must apply for admission to RIT by February 1 to be considered.</td>
</tr>
<tr>
<td>SAE Scholarships National Merit Scholarships</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIT-Urban League, Bero/PYRD and Minority Transfer Scholarship Programs</td>
<td>Awarded to African American, Latino, or Native American students meeting selection criteria.</td>
<td>Applicants must demonstrate financial need, academic achievement and leadership potential.</td>
<td>$3,000 per academic year for full-time study. Renewable.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>RIT Phi Theta Kappa Scholarships</td>
<td>Transfer students elected to Phi Theta Kappa at previous college.</td>
<td>Must document Phi Theta Kappa membership.</td>
<td>$2,000 per academic year for full-time study. Renewable with GPA of 3.0 (B) or higher. Maximum of 7 quarters.</td>
<td>Contact RIT Undergraduate Admissions Office for scholarship information.</td>
</tr>
<tr>
<td>RIT Endowed Scholarships</td>
<td>Full-time RIT students meeting selection criteria.</td>
<td></td>
<td>Amounts vary.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>RIT Nathaniel Rochester Society (NRS) Scholarships</td>
<td>Awarded to RIT upperclassmen with high academic achievement.</td>
<td>Winners selected from second-year students enrolled full-time who have completed minimum 60 credit hours at RIT with a GPA of 3.4 or higher. Winners selected by NRS Scholarship Committee.</td>
<td>Maximum award is $2,000 for six quarters of academic study.</td>
<td>Contact NRS Scholarship Committee through Dean’s Office in each RIT college. File scholarship application in March.</td>
</tr>
<tr>
<td>RIT Trustee Scholarship</td>
<td>Transfer students meeting merit criteria.</td>
<td>Awarded to transfer students with a CPA of 3.2 or higher (as computed by RIT) and entering RIT at third-year level or higher in their program.</td>
<td>$3,000-4,500 per academic year. Renewable.</td>
<td>Provide all required admissions credentials by: March 1 for summer/fall entry; October 1 for winter entry; January 1 for spring entry.</td>
</tr>
<tr>
<td>NTID Grant-in-Aid</td>
<td>Full-time students enrolling in RIT’s National Technical Institute for the Deaf (NTID).</td>
<td>Must demonstrate financial need due to insufficient support from outside sources.</td>
<td>Minimum award is $1,000; maximum award varies.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>RIT-N.Y. State Higher Education Opportunity Program (HEMP)</td>
<td>Must be a NYS resident, attend a NYS college sponsoring the program, and meet opportunity program guidelines.</td>
<td>Must meet economic and educational eligibility criteria of the program. Contact RIT HEOP Office at 585-475-2221.</td>
<td>HEOP awards are based on individual need and available funding; undergraduates only.</td>
<td>Students must be accepted to RIT through HEOP. Must file FAFSA * form</td>
</tr>
<tr>
<td>RIT/ROTC Room Subsidy</td>
<td>Army, Air Force, and Navy ROTC cadets awarded full-time three- or four-year scholarships prior to enrollment.</td>
<td>Award amount may be affected by Pell Grant, veteran’s benefits, and other scholarships.</td>
<td>Varies up to value of a double room and standard meal plan.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>RIT/ROTC Grant Subsidy</td>
<td>Holders of certain Air Force scholarships. Awarded prior to enrollment.</td>
<td>Air Force ROTC Type II or Type VIII or cadets normally qualify.</td>
<td>Normally $5,000. May be affected by Pell Grant, veteran’s benefits, and other scholarships.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>RIT Employment Program</td>
<td>All students enrolled at least half time in a degree program.</td>
<td>No financial need requirement. Hiring criteria may vary.</td>
<td>Varies, depending on hours worked and wage rate.</td>
<td>Contact RIT Student Employment Office.</td>
</tr>
<tr>
<td>RIT Part-time Studies Grant</td>
<td>Matriculated students registered for 1-11 credits each term in an undergraduate program.</td>
<td>Need considered, but no fixed income maximum.</td>
<td>Amounts vary.</td>
<td>File FAFSA ‡ by priority deadline. §</td>
</tr>
<tr>
<td>Aid for Part-time Studies (N.Y. State Funded)</td>
<td>Matriculated undergraduates registered for 6-11 credits per term.</td>
<td>Financial need (based on taxable income as defined in current guidelines).</td>
<td>$2,000 maximum per academic year. Funding dependent upon state allocation.</td>
<td>Submit Aid for Part-time Studies Application to RIT Financial Aid Office.</td>
</tr>
</tbody>
</table>

* Information is correct as of March 2002.
† Scholarship amounts indicated are based on RIT tuition rates. Awards may be prorated for NTID-sponsored students.
‡ Free Application for Federal Student Aid
§ Priority deadline is March 1 for entering freshmen and transfer students and April 1 for continuing students. RIT aid application is also required for returning students. Filing by these deadlines will ensure priority consideration for all RIT programs. Applications filed after this date will receive consideration as long as funds are available.
<table>
<thead>
<tr>
<th>FEDERAL FINANCIAL AID PROGRAMS*</th>
<th>WHO IS ELIGIBLE?</th>
<th>CRITERIA FOR SELECTION</th>
<th>HOW MUCH?</th>
<th>HOW AND WHEN TO APPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Pell Grant</td>
<td>Undergraduate students who are pursuing their first bachelor’s degree and meet federal need criteria.</td>
<td>An expected family contribution that qualifies the student for an award, as determined by a system approved by Congress.</td>
<td>Awards may range from $400 to $4,000, depending on the cost of attendance and the amount of money appropriated in the federal budget.</td>
<td>File FAFSA; † Forms available at financial aid offices and high school guidance departments.</td>
</tr>
<tr>
<td>Federal Supplemental Educational Opportunity Grant (FSEOG)</td>
<td>Undergraduate students who are pursuing their first bachelor’s degree, and meet federal need criteria.</td>
<td>Students with high financial need. (Normally those who qualify for Federal Pell Grant.)</td>
<td>$100 to $4,000 per year.</td>
<td>File FAFSA. ‡</td>
</tr>
<tr>
<td>Federal Perkins Loan</td>
<td>College students who meet financial need requirements established by the federal government.</td>
<td>An expected family contribution that qualifies the student for an award, as determined by a system approved by Congress.</td>
<td>Up to $4,000 per year. ($20,000 limit for undergraduate study.) Awards are subject to the availability of funds.</td>
<td>File FAFSA. ‡</td>
</tr>
<tr>
<td>Federal Work-Study Program</td>
<td>College students in full-time and part-time degree programs with financial need. Most jobs provided through departments on campus.</td>
<td>An expected family contribution that qualifies the student for an award, as determined by a system approved by Congress.</td>
<td>Varies, depending on hours and wage rate. RIT wage scale begins at $5.65/hour.</td>
<td>File FAFSA. ‡</td>
</tr>
<tr>
<td>Federal Direct Loan Program</td>
<td>(1) Subsidized Federal Direct Loans are based on demonstrated need. Federal government pays the interest while you attend school on at least a half-time basis and for six months afterward (grace period).</td>
<td>An expected family contribution that qualifies the student for an award, as determined by a system approved by Congress.</td>
<td>Undergraduates limited to $2,625 for first year, $3,500 for second year, $5,500 for third, fourth and fifth years; cumulative borrowing limit of $23,000. Independent undergraduates have additional unsubsidized eligibility of $4,000 for first and second years, $5,000 for third, fourth and fifth years; additional cumulative borrowing limit of $23,000.</td>
<td>File FAFSA. ‡ Forms available at financial aid offices and high school guidance departments.</td>
</tr>
<tr>
<td></td>
<td>(2) Unsubsidized Federal Direct Loans are available to those unable to demonstrate need. Loans accumulate interest during periods of enrollment.</td>
<td>Cost of attendance minus other financial aid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Direct Parent Loan for Undergraduate Students (PLUS)</td>
<td>Parents of dependent undergraduate students.</td>
<td>Parents of dependent undergraduate students with good credit histories. FAFSA † is not required.</td>
<td>Student’s total cost of attendance minus financial aid.</td>
<td>Contact RIT for PLUS loan application. Completed form should be submitted to Financial Aid Office.</td>
</tr>
<tr>
<td>Reserve Officer Training Corps (ROTC) Scholarships</td>
<td>Army, Navy, and Air Force offer financial assistance to qualified students.</td>
<td>Competitive; selection based upon high school record and other criteria.</td>
<td>Up to full tuition, plus fees, an allowance for books, and a monthly stipend awarded to qualified men and women.</td>
<td>Contact high school guidance counselor or call Army ROTC, 585-475-2881; Air Force ROTC, 585-475-5196; Navy ROTC, 585-275-4275.</td>
</tr>
<tr>
<td>Veterans Administration</td>
<td>Eligible veterans and children of deceased veterans or service-connected disabled veterans.</td>
<td>Contact any Veterans Administration Office for information, details and forms.</td>
<td>Varies.</td>
<td>Contact any Veterans Administration Office in your area or call 1-800-635-6534.</td>
</tr>
<tr>
<td>Aid to Native American Indians</td>
<td>U.S. Bureau of Indian Affairs offers grants to needy applicants who are at least 1/4 American Indian, Eskimo or Aleut.</td>
<td>Must meet eligibility requirements.</td>
<td>Awards may vary depending on need and availability of funds.</td>
<td>Applications are available from: U.S. Department of Interior Bureau of Indian Affairs Federal Bldg. Room 523 100 South Clinton Street Syracuse, New York 13202</td>
</tr>
</tbody>
</table>

* Additional information covering federal financial aid programs is provided in U.S. Department of Education Student Guide. Contact RIT Financial Aid Office to request a copy.

† Free Application for Federal Student Aid Application for Federal Student Aid. "Priority deadline is March 1 for entering freshmen and transfer students and April 1 for continuing students. RIT aid application is also required for returning students. Filing by these deadlines will ensure priority consideration for all RIT programs. Applications filed after this date will receive consideration as long as funds are available."
<table>
<thead>
<tr>
<th>STATE OF NEW YORK FINANCIAL AID PROGRAMS</th>
<th>WHO IS ELIGIBLE?</th>
<th>CRITERIA FOR SELECTION</th>
<th>HOW MUCH?</th>
<th>HOW AND WHEN TO APPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition Assistance Program (TAP)</td>
<td>U.S. citizen or permanent resident and also N.Y. State resident enrolled (matriculated) for 12 credits or more in degree program; cannot be in default on any guaranteed education loan. Must attend a college or school in N.Y. State.</td>
<td>Undergraduate students who are dependent or independent and married OR have tax dependents: $80,000 NET taxable income or less. Single independent with no dependents: $10,000 NET taxable income or less. Income adjusted for number of family members in full-time college attendance.</td>
<td>TAP awards based on net taxable income. Awards for first-time recipients range from $500 to $5,000 per year for dependent undergraduates or independent students with dependents. Single independent students’ (without dependents) awards range from $500-$3,025.</td>
<td>In addition to the FAFSA®, you must file a N.Y. State TAP application. The Express TAP Application will be sent to you as a result of filing the FAFSA. Toll-free number for additional information is 1-888-NYS-HESC.</td>
</tr>
<tr>
<td>Regents Award for Child of Veterans (CV) and Child of Correction Officer Awards (CO)</td>
<td>Children of veterans who are deceased, disabled, or missing in action as a result of service during World War I, World War II, Korean Conflict, or Vietnam (CV), or who died as a result of injuries sustained in line of duty (CO).</td>
<td>Must meet eligibility requirements. Contact your local Division of Veterans Affairs for information or call 1-800-635-6534 (N.Y State Division of Veteran Affairs).</td>
<td>$450 per year, for up to five years, depending on the normal length of the program.</td>
<td>Same as TAP, above. In addition, file the CV or CO Award Supplement available on request from NYSHESC. May 1, 2003, deadline for 2002-03.</td>
</tr>
<tr>
<td>Memorial Scholarships for Children and Spouses of deceased Police Officers and Firefighters</td>
<td>Child or spouse of person who died in service.</td>
<td>Must meet eligibility requirements. Must submit documentation supporting eligibility as noted in special supplement.</td>
<td>Award amounts are based on tuition and non-tuition costs of attendance. In combination with certain other state and federal grants, may equal the average cost of attendance at the State University of N.Y.</td>
<td>Same as TAP, above. In addition, file the appropriate award supplement, available on request from NYSHESC. May 1, 2003, deadline for 2002-03 awards.</td>
</tr>
<tr>
<td>Aid to Native Americans</td>
<td>Member on the official tribal roll of a N.Y. State tribe or child of a member.</td>
<td>Must provide documentation.</td>
<td>Up to $775 per year for a maximum of four years or five years in certain programs.</td>
<td>Contact: Native American Indian Education Unit, N.Y. State Education Dept., Education Building Annex, Rm. 478, Albany, NY 12234, 518-474-0537.</td>
</tr>
<tr>
<td>Vietnam Veterans Tuition Award Program</td>
<td>Recipients must meet New York residency requirements and have served in the armed forces in Indochina or the Persian Gulf during specified periods of hostility.</td>
<td>Students who complete all eligibility requirements including filing for TAP and Pell grants may receive up to maximum minus any TAP awarded.</td>
<td>Awards are $2,000 per year for full-time study or $1,000 per year for part-time study. Awards are available for undergraduate or graduate study.</td>
<td>Same as TAP, above. In addition, file the Vietnam Veterans Tuition Award Supplement or Persian Gulf Veterans Tuition Award Supplement to establish eligibility. Call NYSHESC at 1-888-NYS-HESC for information.</td>
</tr>
<tr>
<td>Persian Gulf Veterans Tuition Award Program</td>
<td>Recipients must meet New York residency requirements and have served in the armed forces in Indochina or the Persian Gulf during specified periods of hostility.</td>
<td>Students who complete all eligibility requirements including filing for TAP and Pell grants may receive up to maximum minus any TAP awarded.</td>
<td>Awards are $2,000 per year for full-time study or $1,000 per year for part-time study. Awards are available for undergraduate or graduate study.</td>
<td>Same as TAP, above. In addition, file the appropriate award supplement, available on request from NYSHESC. May 1, 2003, deadline for 2002-03 awards.</td>
</tr>
<tr>
<td>Regents Professional Opportunity Scholarship</td>
<td>U.S. citizen and permanent New York State resident. Must agree to practice in state facility for 18 months for each year of aid received.</td>
<td>Recipients must be chosen in the following order of priority: 1. Economically disadvantaged minority group members historically underrepresented in the approved profession. 2. Minority group members underrepresented in profession. 3. Candidates enrolled in or graduates of SEEK, EOP, HEOP.</td>
<td>$1,000 to $5,000 per year. TAP and some other benefits may supplement this award.</td>
<td>Contact: Bureau of HEOP/VATEA Scholarships, N.Y. State Education Dept., Education Building Annex, Rm. 1071, Albany, NY 12234, 518-486-1319.</td>
</tr>
<tr>
<td>New York State Primary Care Service Corps Scholarship</td>
<td>U.S. citizen and permanent New York State resident. Must agree to practice in state facility for 18 months for each year of aid received.</td>
<td>Awards based on academic performance, work experience and interest in institutional work.</td>
<td>Up to $15,000 per year, depending on educational expenses. Must be within 24 months of graduation or certification in order to apply.</td>
<td>Contact: N.Y. State Primary Care Service Corps, Corning Tower, Rm. 1084, Empire State Plaza, Albany, NY 12237, 518-473-7019.</td>
</tr>
<tr>
<td>Robert C. Byrd Honors scholarship Program (federally funded)</td>
<td>U.S. citizen and permanent New York State resident, attending New York State or out-of-state college.</td>
<td>Must demonstrate outstanding academic achievement & show promise of continued academic achievement. Scholarships are based on SAT or ACT scores.</td>
<td>$1,500 per year. 310 awards statewide (10 to each of 31 Congressional Districts).</td>
<td>Contact: Bureau of HEOP/VATEA Scholarships, N.Y. State Education Dept., Education Bldg. Annex, Rm. 1071, Albany, NY 12224, 518-486-1319.</td>
</tr>
<tr>
<td>New York Scholarships or Academic Excellence</td>
<td>U.S. citizen or eligible non-citizen. Permanent New York State resident must attend New York college or school.</td>
<td>Secondary school academic record.</td>
<td>$1,500 to top graduating senior of each high school in the state. $500 to other academically gifted students.</td>
<td>Contact high school guidance office.</td>
</tr>
<tr>
<td>New York Lottery Leaders of Tomorrow Scholarship</td>
<td>U.S. citizen. Graduate of New York State high school. Must attend New York State college or school.</td>
<td>Must maintain B average for seven semesters of high school. Demonstrate leadership skills, involvement with extracurricular and community activities.</td>
<td>One award for each high school in the state. $1,000 per year. Maximum of four years.</td>
<td>Contact high school guidance office.</td>
</tr>
</tbody>
</table>
362 Expenses and Financial Aid

Named Scholarships

Each year the university awards “named” scholarships made possible through the generosity of hundreds of individuals and organizations. Awards are made by RIT’s Financial Aid Office or RIT academic departments in accordance with the special criteria of each scholarship. All applicants for financial aid are automatically considered for scholarships for which they meet the established criteria.

Harriet Thayer Adams Scholarship
Max Adler Scholarship
Afga Creative Alliance
George Alden Scholarship Fund
Mary R. Alexander Scholarship
Fanny Knapp Allen Scholarship
Althea & Sons Scholarship
American Color Graphics Scholarship
Amzian, Al Scholarship
Avery-Dennison Corp. Scholarship
Avis Mason Andrews Graduate Scholarship
Robert Anderson Scholarship
Betsy L. Andrews Scholarship
Claire L. Andrews Scholarship
Ezra R. Andrews Scholarship
Kate Rider Andrews Scholarship
Randall Andrews Scholarship
Howard Applegate Scholarship
Lee Augustine Memorial Scholarship
Avanti-Case Hoyt
Ralph Avery Scholarship
Joseph Bader Scholarship
David Baldwin Scholarship
Thomas Ward Ball Scholarship
George & Theresa Barlow Endowed Scholarship
John & Mary Bartholomew Scholarship
Bausch & Lomb Scholarship
John Bausch Scholarship
Clarence & Birdice Beal Scholarship
Alice Beardsley Scholarship
Bennett Award
Ruth L. Bernhardt Scholarship
Fanny R. Bigelow Scholarship
Roscoe Bills Scholarship
Howard Bingman Eastman Kodak Scholarship
Helen & Frederick Blaessig Memorial Scholarship
Joseph & Helen Blatecky Scholarship
Harriet Blickwede Scholarship
Austin Bonis Scholarship
Boston Litho Club Scholarship
Donald & Joris Boyce Scholarship
Farid Bozorgi Scholarship
Braverman Scholarship
Joseph Briggs Endowed Scholarship
Chester W. Brink Scholarship
Stephen Briody Scholarship
Harold Brodie Scholarship
Steffan Brown Scholarship
Nettie Bullis Scholarship
Business Alumni Scholarship
Orilla Butts Scholarship
Harold Cadmus Memorial Scholarship
Deborah Cahn Memorial Scholarship
Caldwell Manufacturing Scholarship
Richard Capilla Scholarship
Chester Carlson Scholarship
Howard F. Carver Scholarship
Howard T. Case Scholarship
Theodore Chapman Scholarship
Donald E. Chase
John & Ruth Christie Scholarship
Citi Corp Citibank Scholarship
Adele Hathaway Clark Scholarship
Florence Clark Scholarship
H. E. Clark Scholarship
Class of ’69 Scholarship
Albert G. Coenen Scholarship
Eugene Colby Scholarship
Wells Coleman Scholarship
Coleman Corporation Scholarship
Ward D. Collister Scholarship
Computer Consoles Scholarship
Comstock Foundation Scholarship
Consolidated Paper Award
Continental Corporation Scholarship
Lillian Cowin Scholarship
Cray Foundation Scholarship
Walter Crighton Scholarship
Alvin Cronig Scholarship
Bryan Culver Scholarship
Curtice Burns Scholarship
Alfred L. Davis International Student Scholarship
Alfred L. & Rub C. Davis Continuing Education Scholarship
Alfred L. & Ruby C. Davis Leadership Award
Nancy J. Davis Scholarship
James DeCaro Scholarship (NTID)
De Ridder Corporation Scholarship
Del Rosso Family Scholarship
Ronald Dodge Engineering Scholarship
Ronald Dodge NTID Scholarship
Doolittle/ Merril Scholarship
Joseph Dyer Scholarship
ECI Systems & Engineering
Eberly Family Scholarship
Eisenhart Memorial Scholarship
Ellington Foundation Scholarship
Isabel & Benjamin Emerson Scholarship
Fred Emerson Foundation Scholarship
Raymond Englert Scholarship
Engineer Women of Rochester Scholarship
Epson Photographic Awards
Gerald Ephraim Scholarship
Eyes Foundation Scholarship
Max Factor Scholarship
John Doane Fay Scholarship
Rose & George Feigenbaum Scholarship
William & Mildred Feinblom Scholarship
William & Mildred Feinblom Scholarship
Ruth H. Fenyvesy Scholarship
Fisons Corporation Scholarship
Flora J. Foley Scholarship
Food / Hotel/ Tourism Hospitality Foundation Scholarship
Maurice & Maxine Forman Scholarship
Ron Francis Scholarship
Freedom Forum Scholarship
R. T. French Scholarship
Richard A. Freund Scholarship
Dr. Robert Frisina Award
Karl Fuchs Scholarship
Fuji Corporation Scholarship
Harold & Sarah Gaffin Scholarship
Garlinghouse Scholarship
Gegeheimer / McClure Scholarship
Frank Geist Scholarship
General Motors Scholarship
Sarah Margaret Gillam Scholarship
Jean Gillings Scholarship
Gilter Family Scholarship
George & Anne Gleason Memorial Scholarship
E. B. Gleason Scholarship
Kate Gleason Scholarship
Arthur King Goldsmith Scholarship
Good Samaritan Association Scholarship
Allen & Gloria Goen Scholarship
George Gordon Scholarship
Isaac Gordon Scholarship
Gould Pumps Inc. Award
Graflex Scholarship
Philip L. Graham Scholarship
Gravure Foundation Scholarship
Hakes Assoc. Scholarship
Edward Haberl Scholarship
Ezra Hale Scholarship
William B. Hale Scholarship
Mildred F. Hall Scholarship
Sil Hall Scholarship
Carter Harmon Scholarship
Harris Semiconductor Scholarship
Dr. Howard N. Harrison Scholarship
Franz Havestock Scholarship
G. Sherwin Haxton Scholarship
Safford Hazel Scholarship
Healthcare Purchasing Scholarship
William R. Hearst Scholarship
Heidelberg/RIT Scholarship
Sol Heumann Scholarship
John & Catherine Hill Scholarship
Francis Sallie Ann Hilliard Scholarship
Laura Church Hillman Scholarship
Hites Foundation Scholarship
Hofffend Scholarship Fund
Hogadone & Larrand Wood Scholarship
Charles C. Horn Scholarship
Frank Horton Scholarships
F. R. Huberle Memorial Scholarship
Jerr Hughes Scholarship
Arthur Ingle Scholarship
Louis & Sylvia Jackson Scholarship
Sharyn & Steven Janis Scholarship
Jack Jenkins Endowment Scholarship
Lucille R. Jennings Scholarship
Jepthon Trust Scholarship
Leo Joachim Scholarship
Helen Lucille Jones Memorial Scholarship
John Wiley Jones International Scholarship
Michael Jones Memorial Scholarship
Abraham & Teresa Katz Scholarship
Henry & Mary Kearse Memorial Fund
Stephen J. Kersting Memorial Scholarship
Paul Kessler Printing Award
Katherine Keynes Scholarship
Drew & Francis King Scholarship
Ruth Klew Award
David Klieman Scholarship
Koberl Design Excellence Award
Lowell Koening Scholarship
E. M. Kohler Scholarship
Karl Fuchs Scholarship
Fuji Corporation Scholarship
Harold & Sarah Gaffin Scholarship
Garlinghouse Scholarship
Gegeheimer / McClure Scholarship
Frank Geist Scholarship
General Motors Scholarship
Sarah Margaret Gillam Scholarship
Jean Gillings Scholarship
Gilter Family Scholarship
George & Anne Gleason Memorial Scholarship
E. B. Gleason Scholarship
Kate Gleason Scholarship
Arthur King Goldsmith Scholarship
Good Samaritan Association Scholarship
Allen & Gloria Goen Scholarship
George Gordon Scholarship
Isaac Gordon Scholarship
Gould Pumps Inc. Award
Graflex Scholarship
Phillip L. Graham Scholarship
Gravure Foundation Scholarship
Hakes Assoc. Scholarship
Edward Haberl Scholarship
Ezra Hale Scholarship
William B. Hale Scholarship
Mildred F. Hall Scholarship
Sil Hall Scholarship
Carter Harmon Scholarship
Harris Semiconductor Scholarship
Dr. Howard N. Harrison Scholarship
Franz Havestock Scholarship
G. Sherwin Haxton Scholarship
Safford Hazel Scholarship
Healthcare Purchasing Scholarship
William R. Hearst Scholarship
Heidelberg/RIT Scholarship
Sol Heumann Scholarship
John & Catherine Hill Scholarship
Francis Sallie Ann Hilliard Scholarship
Laura Church Hillman Scholarship
Hites Foundation Scholarship
Hofffend Scholarship Fund
Hogadone & Larrand Wood Scholarship
Charles C. Horn Scholarship
Frank Horton Scholarships
F. R. Huberle Memorial Scholarship
Jerr Hughes Scholarship
Arthur Ingle Scholarship
Louis & Sylvia Jackson Scholarship
Sharyn & Steven Janis Scholarship
Jack Jenkins Endowment Scholarship
Lucille R. Jennings Scholarship
Jepthon Trust Scholarship
Leo Joachim Scholarship
Helen Lucille Jones Memorial Scholarship
John Wiley Jones International Scholarship
Michael Jones Memorial Scholarship
Abraham & Teresa Katz Scholarship
Henry & Mary Kearse Memorial Fund
Stephen J. Kersting Memorial Scholarship
Paul Kessler Printing Award
Katherine Keynes Scholarship
Drew & Francis King Scholarship
Ruth Klew Award
David Klieman Scholarship
Koberl Design Excellence Award
Lowell Koening Scholarship
E. M. Kohler Scholarship
Mohan Patel Scholarship
Barbara Paul Memorial Scholarship
William Farley Peck Scholarship
Gerald & Pamela Pelano Scholarship
Martha Perry Scholarship
David J. Phelan Scholarship
Philips ECG Inc. Scholarship
Edward A. Pike Scholarship
A. C. Powers Memorial Scholarship
Praxis Biologics Scholarship
David Presto Scholarship
Pulver Endowed NTID Scholarship
Q.C.I. Corporation Scholarship
Queens Group Scholarship
Quintech Scholarship
Redcom Scholarship
Bill Reedy Memorial Scholarship
Kenneth & Margaret Reek Scholarship
Russell Reilly Scholarship
R. Bruce Reinecker Scholarship
Jack Renfro Scholarship
Rexham Scholarship
RGS Scholarship
Edward J. Ries Memorial Scholarship
RIT Greek Organization Scholarship
RIT International Student Association
RIT Women's Club Scholarship
RIT Women's Council NTID Scholarship
Frank Ritter Memorial Scholarship
Robbins & Meyers Scholarship
Archibald & Mary Robinson Scholarship
Rochester Community Savings Bank Scholarship
Rochester Sales & Marketing Executives Scholarship
Rochester Telephone Scholarship
Rock-Tenn Packaging Scholarship
Ian Rodgers Memorial Scholarship
Albert F. Rogers Scholarship
Roosevelt Paper Scholarship
Robert Root Award
Willis Jennings Rose Scholarship
Rebecca Rosenberg Scholarship
Bud & Joan Rusitzky Scholarship
Laura Bradford Russell Scholarship
David & Fannie Rutty Memorial Scholarship
Stuart L. Saikkonen Memorial Scholarship
Sakurai USA Scholarship
Esther G. Sanders Scholarship
Nelson & Celeste Sanford Memorial Scholarship
Elizabeth Sargent Scholarship
Ryoichi Sasakawa Scholarship
Paul & Katherine Schmidt Scholarship
Charles W. Schmitt Scholarship
Kilian & Caroline Schmitt International Fellowship
William J. Schmitt Memorial Scholarship
Ruth S. Schumacher Fund
Marlene E. Scott Memorial Scholarship
Scripps-Howard Endowed Scholarships
Wilfrid & Isabel Searjeant Scholarship
Eric Senna Scholarship
Sarah Shelton Scholarship
Helen Monar Short Scholarship
Igor Shot Scholarship
F. Ritter Shumway Scholarship
S. Richard Silverman International Scholarship
Fred Simmons Scholarship
Louis & Nellie Skalny Scholarship
Steven Skrynski Scholarship
Susan Smigel International Student Scholarship
Harry Speck Scholarship
Karl Sperber Scholarship
Sprint Company Scholarship
Alfred L. Stern Fund
Stouffer Corporation Scholarship
Hattie M. Strong Scholarship
Pearl Hewlett Stutz Scholarship
William Swart Award
Michael Swartzman Memorial Scholarship
Southwest Printing Management Fund
George Tanzer Memorial Scholarship
James Tennant Memorial Scholarship
Eloise Thornberry Scholarship
Hollis Todd Scholarship
Kenneth & Barbara Tornval Scholarship
Kate Louise Trahey Scholarship
Clarence Tufts Scholarship
Turri & Brown Scholarship
Clifford & Ruth Ulp Memorial Scholarship
James Ventimiglia Scholarship
Frank Vreka Scholarship
Joseph Waldinsperger Scholarship
Dewitt Wallace Scholarship
A. Stephen Walls Scholarship
Walls, Olsen Memorial Scholarship
Wall Street Journal Scholarship
Waste Management Scholarship
J. Watumul Indian Scholarship
Louis A. Wehle Scholarship
Bill Weil Memorial Scholarship
David Weinstein Scholarship
Harold J. Weisburg Scholarship
Mark & Beulah Welch Scholarship
Cy Welcher Scholarship
Edwin Welser Fund
Weyerhaeuser Fellowship
Western New York Village Superintendents Scholarship
Nelson Whitaker Scholarship
Whitman Famil Scholarship
Ron & Joanne White Scholarship
Eloise Wilkin Memorial Scholarship
Becky Wills Scholarship
James Wilson Memorial Scholarship
Thomas B. Wilson Scholarship
Wallace & Paula Wilson Scholarship
John J. Wittman II Scholarship
Joseph & Loretta F. Wolf Scholarship
Louis Wolk Scholarship
Rose Wollner Scholarship
Women in Printing Scholarship
William D. Wright Scholarship
Xerox Endowed Scholarship
Donald Zrebiec Scholarship
Jeffrey W. Zielasko Scholarship

 Expenses and Financial Aid 363
Trustees

Richard T. Aab; President, RTA Associates, LLC

*Theodore J. Altier; Retired Chairman and Treasurer, Altier and Sons Shoes, Inc.

*Burlton S. August; LHD '95, Honorary Chairman, Board of Trustees, Rochester Institute of Technology; Retired Vice President and Present Director, Mono Muffler Brake, Inc.

Daniel J. Bader; BBUB '87, ICSS '85, President, Helen Bader Foundation, Inc.

*Bruce B. Bates; Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Senior Vice President, Salomon Smith Barney, Inc.

Richard T. Bourns; Retired Senior Vice President, Eastman Kodak Company

Donald N. Boyce; BBUB '67, Retired Chairman of the Board, IDEX Corporation

*Joseph C. Briggs; Retired Vice President, Marketing, Lawyers Cooperative Publishing Company

*Paul W. Briggs; Retired Chairman of the Board and Chief Executive Officer, Rochester Gas & Electric Corporation

Mary Lu Brooke

William A. Buckingham; BBUB '64, Chairman, Board of Trustees, Rochester Institute of Technology; Retired Executive Vice President, M&T Bank

Nancy H. Burke; President, Women's Council of Rochester Institute of Technology

Ann L. Burr; Retired Executive Vice President, Time Warner Cable

**Catherine B. Carlson

*Colby H. Chandler; Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Chairman of the Board and Chief Executive Officer, Eastman Kodak Company

Joseph P. Clayton; President and Chief Executive Officer, Sirius Satellite Radio

Thomas A. Curley; MBA '77, Vice Chairman, Board of Trustees, Rochester Institute of Technology; President and Publisher, USA Today

Sudhakar G. Dixit; MBA '74, President, Founder, and CEO, Newtex Industries, Inc.

*Robert H. Downie; President, EC Ossias L.L.

*Ada Frances Duffus

*Richard H. Eisenhart; Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Chairman, R. H. Eisenhart, Inc.

*Walter A. Fallon; Retired Chairman of the Board and Chief Executive Officer, Eastman Kodak Company

*Margie Fitch

Gerald L. Gitner; Chairman, Trans World Airlines

James S. Gleason; Chairman, The Gleason Works

B. Thomas Golsano; Chairman and Chief Executive Officer, Paychex, Inc.

*Fred H. Gordon Jr; Retired Executive Committee, Mixing Equipment Company, Inc.

*Lucius R. Gordon; LHD '99, Retired Chairman of the Board, Mixing Equipment Company, Inc.

Arthur A. Gosnell; Chairman and Chief Executive Officer, Stonehurst Capital, LLC

*Thomas H. Gosnell; LHD '96, Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Chairman of the Board and Chief Executive Officer, Lawyers Cooperative Publishing Company

Klaus Gueldenpennig: MBA '77, MSEE '74, President and Chairman of the Board, Redcom Laboratories, Inc.

**William B. Hale; Retired Vice President, Lawyers Cooperative Publishing Company

Brian H. Hall; MBA '78, President and Chief Executive Officer, Thomson Legal and Regulatory Group

*Alfred M. Hallenbeck; Partner, Ward Norris Heller & Reidy LLP

Gilbert J. Hatch; BSME '72, MSME '80, President, Office Systems Group, Xerox Corporation

Susan R. Holiday; MBA '85, President and Publisher, Rochester Business Journal

Jay T. Holmes; Retired Vice President and Chief Administrative Officer, Bausch & Lomb, Inc.

Maurice F. Holmes; Retired Corporate Vice President and Chief Engineer, Xerox Corporation

*John D. Hostetter; Retired President, Industrial Management Council of Rochester

Samuel T. Hubbard Jr; President and Chief Executive Officer, High Falls Brewing Company, LLP

*Frank M. Hutchins; Honorary Vice Chairman and Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Retired Chairman of the Board, Hutchins/Young and Rubicam

Bruce R. James; PPR '64, Vice Chairman and Chairman Elect, Board of Trustees, Rochester Institute of Technology; Retired Chairman and Chief Executive Officer, Barclays Law Publishers

*Herbert W. Jarvis; Former President and Chief Executive Officer, Sybrnon Corporation

*Byron Johnson; Senior Partner, Johnson, Mullan & Brundage, P.C.

Eric G. Johnson; President and Chief Executive Officer, Baldwin Richardson Foods Company

Thomas F. Judson Jr; Chairman and Chief Executive Officer, The Pike Company

Roger W. Kobler; ME '84, Retired Chairman and Chief Executive Officer, Rochester Gas & Electric Corporation

Robert J. Kohler Jr; PHS '59, Retired Executive Vice President and General Manager, TRW Avionics & Surveillance Group

Gary J. Lindsay; BBUB '64, President, Marketing, Lawyers Cooperative Publishing Company

Joseph M. Lobozzo II; MBA '95, President and Chief Executive Officer, JML Optical Industries, Inc.

John A. Lopiano; Retired Senior Vice President, Xerox Corporation; Current President, Spinnet Associates

Lawrence J. Matteson; Retired Vice President, Imaging and Information Systems, Eastman Kodak Company

*J. Warren McClure; Retired Vice President/Marketing, Gannett Company, Inc.

*C. Peter McColough; Retired Chairman of the Board, Xerox Corporation

Thomas C. McDermott; Retired Chairman, Chief Executive Officer and President, Goulds Pumps, Inc.

Elizabeth D. Moore; Partner, Nixon Peabody LLP

Michael P. Morley; BBUB '69, Chief Administrative Officer and Executive Vice President, Eastman Kodak Company

*Ann M. Mulligan

Sandra A. Parker; President, The IMC

Wolfgang Pfizenmaier; President, Heidelberg Digital LLP

Albert T. Pimentel, Ph.D.; Retired Headmaster, New York School for the Deaf

Sudan M. Puglia; Vice President, IBM Corporation

Jane Ratcliffe Pulver; Representative, NTID National Advisory Group, Rochester Institute of Technology

Kenneth J. Reed, Ph.D.; SCH '71, President, RIT Alumni Network Board; Research Associate, Eastman Kodak Company

Thomas S. Richards; President, Chairman and Chief Executive Officer, Rochester Gas and Electric Corporation

Harris H. Rusitzky; MS '81, BS '56, President, The Greening Group

Janet F. Sansone, Senior Vice President, Human Resources Consulting, TAB Associates, Inc.

Carl E. Sassano; L '72, President and Chief Executive Officer, Transnation, Inc.

*James E. Shapiro; Vice President for Management and Career Development, University of New Haven

Albert J. Simons, Ph.D.; President, Rochester Institute of Technology

John M. Summers; Chief Executive Officer, Jasco Tools, Inc.

Sharon Ting; Co-Manager, Awareness Program for Executive Excellence; Manager, Coaching & Feedback, Center for Creative Leadership

*Frederick T. Tucker; EL '63, Retired Executive Vice President and Deputy to the Chief Executive Officer, Motorola, Inc.

Judy B. von Bucher

*William A. Whiteside Jr.; Chairman Emeritus, Board of Trustees, Rochester Institute of Technology; Partner, Fox, Rothschild, O'Brien & Frankel

Christine B. Whiteman; Former Chairman, President and Chief Executive Officer, CVC Inc.

Thomas C. Wilmot; President, Wilmorite, Inc.

**Emeritus Board Member

**Honorary Board Member
Deans

Jorge L. Díaz-Herrera, BS, MS, Ph.D.
8. Thomas Galisano College of Computing and Information Sciences

Ivan Gatley, BSc, Ph.D.
College of Science

Thomas D. Hopkins, BA, MA, Ph.D.
College of Business

Donald W. Hudspeth, BC
President/Dean. American College of Management and Technology

T. Alan Huwitz, BS, MS, Ed.D.
National Technical Institute for the Deaf

Wiley R. McKinzie, BA, MS
College of Applied Science and Technology

Andrew Moore, BA, MA, Ph.D.
College of Liberal Arts

Harvey J. Palmer, BS, Ph.D.
Kate Gleason College of Engineering

Joan B. Stone, BS, MS, Ed.D.
College of Imaging Arts and Sciences

Madelon and Richard Rosett Chair
Established: 2000
Donor: Madelon and Richard Rosett
Purpose: To support a professorship of a nationally prominent scholar in any field of business
Held by: Dr. John E. Ettle

B. Thomas Colisano College of Computing and Information Sciences

Motorola Professor of Software Engineering
Established: 1997
Donor: Motorola, Inc.
Purpose: To support a professorship for the department of software engineering
Held by: Michael J. Lutz

Kate Gleason College of Engineering

James E. Gleason Professorship in Mechanical Engineering
Established: 1967
Donor: Estate of James E. Gleason
Purpose: To provide a permanent memorial for Mr. Gleason, who served as a trustee of RIT from 1930 until 1964, and to strengthen RIT in the field in which he received his education
Held by: Dr. Wayne W. Walter

Gleason Professor
Established: 1993
Donor: Gleason Memorial Fund
Purpose: To provide for a faculty member to lead a research and development program in electrical engineering
Held by: Dr. Raghuviree Rao

Motorola Professorship
Established: 1994
Donor: Motorola, Inc.
Purpose: To support RIT’s Microelectronic Engineering Department and to further develop the partnership that has developed between Motorola and the microelectronics program
Held by: Dr. Lynn F. Fuller

Earl W. Brinkman Professor of Screw Machine Technology
Established: 1995
Donor: Brinkman Family Charitable Trust and an anonymous foundation
Purpose: To create a lasting memorial to Earl W. Brinkman, an innovative leader in the screw machine industry who retired from Davenport Machine Company in Rochester, N.Y., in 1979 after devoting 53 years to the company
Held by: Dr. Nabil Z. Nasr

College of Imaging Arts and Sciences

Ann Mowris Mulligan Distinguished Professorship in Contemporary Crafts
Established: 1999
Donor: Arm Mowris Mulligan
Purpose: The holder must have a distinguished record of excellent teaching, wide recognition as a renowned artist and a demonstrated commitment to students’ career development in the craft industry.
Held by: Leonard Urso

Gannett Center for Integrated Publishing Sciences
Established: 1987
Donor: Gannett Foundation
Purpose: The distinguished professor is engaged in research and academic study to address problems in the news and information business.
Held by: Barbara Pellow

Artist-in-Residence Professorship
Established: 1984
Purpose: To work with apprentice woodworkers and participate in conferences and lectures at RIT
Held by: Wendell Castle

Charlotte Freidricks Mowris Professorship in Contemporary Crafts
Established: 1973
Donor: Mrs. Charles F. Mowris
Purpose: To perpetuate interest in the School for American Crafts through the work of faculty and students as talented craftspeople
Held by: Albert Paley

Melbert B. Cary Jr. Professorship in Graphic Arts
Established: 1969
Donor: Mary Flagler Cary Charitable Trust
Purpose: To provide a permanent memorial for Mr. Cary as a former president of the American Institute of Graphic Arts and to perpetuate his interest in the field
Held by: Edward Granger

James E. McGhee Professorship in Photographic Management
Established: 1967
Donor: Master Photodealers and Finisshers Association and friends of Mr. McGhee
Purpose: To provide a permanent memorial for Mr. McGhee, a former vice president of Eastman Kodak Comonav and lifelong friend of the photofinishing industry
Held by: William S. Fischer
366 Administration and Faculty

Paul and Louise Miller
Distinguished Professorship in Newspaper Operations - Management
Established: 1979
Donor: Frank E. Gannett
Newsguarder Foundation
Purpose: To honor the former chairman of the board of the Gannett Company and to perpetuate his interest in good management practices in the newspaper industry
Held by: Professor Michael Kleper

Roger K. Fawcett
Distinguished Professorship in Publications Color Management
Established: 1991
Donor: World Color Press, Fawcett family and industry colleagues
Purpose: The endowed chair, the only one of its kind in the nation, was established to address color quality and productivity in both the magazine and newspaper publishing industries, as well as promotion of RIT color research activities.
Held by: Frank Romano

College of liberal Arts

Caroline Werner Gannett
Professorship in the Humanities
Established: 1974
Donor: Mrs. Frank E. Gannett
Purpose: To perpetuate Mrs. Gannett's lifelong interest in education, especially in those fields of study that have a humanistic perspective
Held by: Dr. Robert Manning

Arthur J. Gosnell
Professorship in Economics
Established: 1985
Donor: Family and friends of Arthur J. Gosnell
Purpose: To perpetuate the memory of Arthur J. Gosnell through recognition of the importance of good teaching in economics and by facilitating research into public policy questions
Held by: Dr. Amit Batabyal

Ezra A. Hale
Professorship in Applied Ethics
Established: 1989
Donors: William B. and Patricia F. Hale and Lawyers Cooperative Publishing Company
Purpose: To establish a permanent memorial to a long-time and valued friend of RIT, Ezra A. Hale, and to provide instruction in applied ethics in keeping with his beliefs in sportsman-like conduct, fair play, and honesty
Held by: Dr. Wade L. Robison

William A. Kern
Professorship in Communication
Established: 1971
Donor: Rochester Telephone Corporation
Purpose: To commemorate the 100th anniversary of that company and to provide a memorial for a former president of the company and a man who served as an RIT trustee from 1959 to 1964
Held by: Dr. Diane S. Hope

College of Science

Richard S. Hunter
Professorship in Color Science, Appearance and Technology
Established: 1983
Donors: Mr. and Mrs. Richard S. Hunter
Purpose: To enable RIT to increase its research and educational efforts in the areas of color science, technology, and appearance science in order to benefit the industry and science of color
Held by: Dr. Roy S. Berns

Frederick and Anna B. Wiedman
Professorship
Established: 1985
Donor: Frederick Wiedman Jr.
Purpose: To establish a permanent memorial to Frederick and Anna B. Wiedman, lifelong residents of Rochester and long-time friends of RIT
Held by: Dr. John R. Schott

Xerox
Professorship in Digital Color Imaging Systems
Established: 1996
Donor: Xerox Corporation
Purpose: Established to expand color imaging activities within the Chester F. Carlson Center for Imaging Science. The Xerox Professor teaches courses in color imaging systems, mentors graduate students in imaging and color science, and initiates new funded research and collaborates with existing faculty and research associated with the Munsell Color Science Laboratory.
Held by: Dr. Noboru Ohta

Division of Academic Affairs

Frederick H. Minett
Professorship
Established: 1978
Purpose: Brings distinguished Rochester-area professionals to share professional knowledge and experience with RIT students and faculty
Held by: Open

Faculty

College of Applied Science and Technology

Wiley R. McKinzie, BA, MS-Dean; Professor
Linda A. Tolan, BS, MS-Associate Dean, Associate Professor
Stacy A. Siegel, BS, MS-Assistant Dean

Civil Engineering

Technology/Environmental Management and Safety

Civil Engineering Technology
Abi Aehavere, BS, University of Lagosy, MS, Massachusetts Institute of Technology; Ph.D., University of Alberta; PE- Assistant Professor
G. Todd Dunn, BS, Dartmouth College; MSCE, University of California; PE-Associate Professor
Robert H. Easton, BS, U.S. Military Academy; MSCE, Iowa State University; PE-Professor
William C. Larsen, BS, MSCE, Dartmouth College; PE-Associate Professor
Robert E. McGrath Jr., BSE, Rensselaer Polytechnic Institute; MSCE, Syracuse University; PE-Professor Emeritus
Mark Piterman, MCE, Odesa Marine Engineers Institute-Professor Emeritus
Maureen S. Valentine, BSCE, Tufts University; MCE, Virginia Polytechnic Institute; PE-Chairman, Civil Engineering Technology, Environmental Management and Safety; Associate Professor
Scott B. Wolcott, AAS, State University of New York Canton; BS, MS, State University of New York Buffalo; PE-Assistant Professor

Environmental Management and Safety
Josh Goldowitz, BS, State University of New York Binghamton; MS, University of Arizona-Associate Professor
John Morell, BS, Syracuse University; MS, Ph.D., State University of New York College of Environmental Science and Forestry, PE-Associate Professor
Joseph M. Rosenbek, CSP, CHCI, MS, MS, Central Missouri State University-Professor
Jennifer L. Wadham, OIH, BA, Roberts Wesleyan College, MS, University of Rochester-Assistant Professor

Civil Engineering Technology, Environmental Management & Safety Adjunct Faculty
Steve Bowman, BS, The American University; MS, George Washington University
Gregory Jones, BS, Auburn University, MS, Rochester Institute of Technology

William Kent, BA, MS, State University of New York at Buffalo
Alan Knauf, BSEE, Massachusetts Institute of Technology; JD, University of Michigan Law School
Ed Mullen, BS, Clarkson University
George Thomas, BS, Clarkson University; MS, Johns Hopkins University
Tom Wickerham, BA, Thiel College

Electrical, Computer and Telecommunications Engineering Technology

Walter J. Bankes, BS, Kent State University; MS, University of Arizona-Professor
Richard Bower, PE, BSEE, Union College; MBA- State University of New York College at Utica-Visiting Assistant Professor
Richard C. Cliver, BSEE, Rochester Institute of Technology, MSEE, University of Rochester-Assistant Professor
Thomas Dingman, BSEE, MS, Rochester Institute of Technology
Michael Eastman, BT, MS, Rochester Institute of Technology-Assistant Professor
Ronald Fulle, BA, State University of New York at Oswego; MS, University of Colorado at Boulder-Assistant Professor
James J. Hurney, BSEE, Carnegie Institute of Technology; MBA, MSET, Rochester Institute of Technology-Visiting Assistant Professor
Mark J. Indellatoe, BSEE, Manhattan College; MS, Polytechnic University-Associate Professor
William P. Johnson, BA, Kings College, BSEE, Syracuse University-Professor
David G. Krispin, Jr., BE, MS, Youngstown State University-Associate Professor
Warren L. J. Koontz, BSEE, University of Maryland; MSEE, Massachusetts Institute of Technology; Ph.D., Purdue University-Associate Professor
Carol A. Richardson, BSEE, University of Wyoming; MSEE, Union-Chair, Electrical, Computer and Telecommunications Engineering Technology; Professor
Charles L. Swain, BSEE, Pennsylvania State University; MS Elmhurst College: MSEE, Pennsylvania State University-Associate Professor
Anthony P. Trippe, PE, BS, Rochester Institute of Technology; MS, Fairleigh Dickinson University (DBA US. international University)-Assistant Professor
Thomas Young, BA, Hunter College; MS, New York University; MSEE, Rochester Institute of Technology-Professor
George H. Zion, BS, MS, Rochester Institute of Technology-Professor
Manufacturing and Mechanical Engineering Technology/Packaging Science

Ronald F. Amberger, BME, Rensselaer Polytechnic Institute; ME, Pennsylvania State University; PE-Professor
Charles L. DeRoller, BS, ME, Rochester Institute of Technology-Associate Professor
Jon E. Frecleton, BSME, University of Rochester; MS, Nazareth College-Visiting Professor
Louis B. Gennaro, BS, U.S. Military Academy; MS, Northeastern University-Professor
Martin Gordon, BSME, MSME, MBA, State University of New York Buffalo-Assistant Professor
Daniel Johnson, BS, MS, Rochester Institute of Technology-Associate Professor

Guy Johnson, BS, Pennsylvania State; MS, Syracuse University-Professor
Seung I. Kim, BS, Hanyang University; MS, University of Illinois; P.D., University of Illinois-Assistant Professor
William Leonard, AAS, State University of New York at Canton; BS, Rochester Institute of Technology-Visiting Instructor
Tri-Lin Li, MS, Tsinghua University-Associate Professor
Carl A. Lundgren, BS, Rensselaer Polytechnic Institute; MBA, University of Rochester-Associate Professor
Robert A. Merrill, BS, Clarkson College; MS, Northeastern University; PE-Professor
Samian Ramakumar, BS, EPG, College of Technology-Bharathiar; ME, Rochester Institute of Technology-Associate Professor
Elizabeth A. Scholler, BSE, University of Pittsburgh; MS, PhD, University of Illinois; EIT Professional
Certification-Assistant Professor
James F. Scudder, BME, Cornell University; PE-Assistant Professor
John A. Stratton, BS, Rochester Institute of Technology; MS, Rensselaer Polytechnic Institute; PE-Chair, Professor

Packaging Science

Daniel L. Goodwin, BS, MS, Ph.D., Michigan State University-Professor
Deanna M. Jacobs, BS, State University of New York at Plattsburgh; MS, State University of New York at Geneseo; MA, Rochester Institute of Technology-Associate Professor
Karen L. Proctor, BS, Michigan State University; MBA, Rochester Institute of Technology-Associate Professor
Maria Rubino, BS, Kutztown State University; MS, Michigan State University; Ph.D., University of Manitoba-Associate Professor
Fritz J. Yambach, BS, Michigan State University; BS, MBA; Utah State University-Associate Professor

Engineering Technology

Adjunct Faculty
Phillip J. Batchelor, BSME, Marquette University; MSME, University of Illinois
Dominic T. Bozelli, BS, University of Notre Dame; MS, Rochester Institute of Technology; MS, State University of New York at Brockport
David H. Crumb, BS, Florida State University; MBA, Michigan State University-Assistant Professor
Francis M. Donoy, BS, MA, State University of New York at Buffalo; Ph.D., Michigan State University-Chair; Professor
James Jacobs Jr., BA, Purdue University; MS, Troy State University; Ph.D., State University of New York at Buffalo--Associate Professor
Elizabeth A. Kmiecinski, RD, BS, Ohio State University; MBA, University of Kentucky-Assistant Professor
Dianne C. Mau, BS, Rochester Institute of Technology; MS, State University of New York College at Brockport-Assistant Professor
James Myers, BS, MS, Rochester Institute of Technology; Ph.D., Michigan State University-Assistant Professor
Warren G. Sackler, BA, Michigan State University; MA, New York University-Associate Professor
Edward A. Steffens, BS, MBA, Rochester Institute of Technology-Assistant Professor
Edward S. Stockham, AB, PhD., University of Pennsylvania-Professor
William W. Valence, BA, MA, Kent State University; Ph.D., Ohio University-Program Chair, Health Systems Administration; Associate Professor
Clintom J. Wallington, Ph.D., University of Southern California-Professor
Carol B. Whitleck, RD, BS, Pennsylvania State University; Ph.D., University of Massachusetts-Professor
Gladywn Winkworth, BS, State University of New York at Albany; MS, State University of New York College at Brockport-Visiting Assistant Professor

Hospitality and Service Management

Stanley Bissell, BA, Ohio Wesleyan University; MA, University of Auckland; MS, State University of New York College at Geneseo-Associate Professor
Barbara A. Cero-Iocco, RD, BS, MS, State University of New York Buffalo-Assistant Professor
David H. Crumb, BS, Florida State University; MBA, Michigan State University-Assistant Professor
Francis M. Donoy, BS, MA, State University of New York at Buffalo; Ph.D., Michigan State University-Chair; Professor
James Jacobs Jr., BA, Purdue University; MS, Troy State University; Ph.D., State University of New York at Buffalo--Associate Professor

Reserve Officer Training Corps

Army ROTC

Lt. Col. Daniel Stafford, BS, University of Rhode Island; MBA, Long Island University-Professor
Col. Paul Hansen, AAS, Monroe Community College; BS, State University of New York at Albany; MS, State University of New York College at Brockport-Assistant Professor
Major Jon Horne, BA, Colorado State University; MA, University of Phoenix-Assistant Professor
Gary Mastroleo--Personal Administrator
Major Donald Powell, BA, State University of New York College at Geneseo-Professor
SSG James K. Tibbit, AS, Columbia College--Logistics Manager
Master Sergeant Robert Yelder, AS (pending), El Paso College-Senior Enlisted Instructor

Air Force ROTC

Cal. Thomas Burgie, BS, Air Force Academy; MS, Air Force Institute of Technology-Professor
Captain Christopher E. Cost, BS, University of Maryland; MS, Troy State University-Assistant Professor
Staff Sergeant Regina Gourdie, NCOIC, Information Management
Major Jeffrey Kaplicka, BS, Pennsylvania State University-Assistant Professor
Maj. Jon E. Lumberg, BA, University of Virginia; MS, University of Maryland-Assistant Professor
Staff Sergeant Marc Monroe, NCOIC, Cadet Personnel
College of Business

Thomas D. Hopkins, BA, Oberlin College; MA, Ph.D., Yale University-Dean
Wayne J. Morin, MBA, Siena College; MPA, Cornell University; Ph.D., Michigan State University-Associate Dean

Accounting Program
La Mari J. Jackson, BS, Central State University; Ohio; MS, State University of New York at Brockport; J.D., University of Buffalo School of Law-Lecturer
Khondkar E. Karim, B. Com. (Hons.), M.Com., University of Dhaka; MSA, Eastern Michigan University; DBA, Mississippi State University; CPA-Associate Professor
Francis E. Kearns, BD, Harvard University; AB, Cornell University; MBA, Ph.D., State University of New York at Buffalo; CPA, New York-Associate Professor
Robert L. Klein, BS, SUNY College at Brockport; MBA, Rochester Institute of Technology; CPA, New York-Lecturer
Michael J. Lacinia, BBA, Western Michigan University; MBA, Michigan State University; Ph.D., Purdue University; CPA, Michigan-Associate Professor
Bruce L. Oliver, BBA, MBA, University of Cincinnati; Ph.D., University of Washington-Professor
Daniel D. Tessoni, BBA, St. John Fisher College; MS, Clarkson College of Technology; Ph.D., Syracuse University; CPA, New York-Associate Professor

Finance Program
Steven C. Gold, BA, BS, Rutgers; MA, Ph.D., State University of New York at Binghamton-Professor
Chun-Kueng (Stan) Hoi, MBA, Ph.D., Arizona State University-Associate Professor
Jeffrey P. Lessard, BA, BS, University of New Hampshire; MBA, Plymouth State College; MA, Ph.D., University of Arkansas-Associate Professor
Ashok J. Robin, MBA, Ph.D., State University of New York Buffalo-Professor

Management and International Business Programs
David C. Baldridge, BS, MBA, University of Michigan; Ph.D., University of Connecticut-Assistant Professor
Robert J. Barbato, BA, LeMoyne College; Ph.D., Michigan State University-Associate Professor
Richard DeMartino, BA, Roanoke College; MPA, Ph.D., University of Virginia-Assistant Professor
Andrew J. DuBrin, AB, Hunter College; MS, Purdue University; Ph.D., Michigan State University-Professor

Decision Sciences Program
John E. Ettlie, BS, MS, Ph.D., Northwestern University-Professor
David M. Reid, BS, University of Salford; MS, University of Manchester; Ph.D., University of Edinburg-Professor; Director, Center for International Business & Economic Growth
Sandra L. Rothenberg, BS, Syracuse University; MS, Ph.D., Massachusetts Institute of Technology-Associate Professor
Donald O. Wilson, BS, Oklahoma State University; MS, MPA, University of Southern California; Ph.D., University of California at Irvine-Assistant Professor; Director, Graduate Business Programs
Stelios C. Zyglidopoulos, Ph.D., Singapore University; Associate Professor

Management Information Systems Program
Jack S. Cook, BS, MA, MBA, University of South Dakota; MS, Ph.D., Washington State University-Associate Professor
Carlos Ferran-Urdaneta, BS, MS, Universidad Metropolitana; Ph.D., Boston University---Assistant Professor
Daniel A. Joseph, BS, Niagara University; MA, State University of New York at Albany; MBA, Ph.D., State University of New York at Buffalo--Assistant Professor
Victor J. Perotti, BS, MA, MA, Ph.D., Ohio State University-Assistant Professor
Qiang (John) Tu, BS, MS, Xi'an Jiaotong University; Ph.D., University of Toledo-Assistant Professor

Marketing Program
Deborah Colton, BA, State University of New York at Buffalo; MBA, Rochester Institute of Technology; MBA, University of South Carolina-Associate Professor
Eugene H. Fram, BS, MS, University of Pittsburgh; Ed.D., State University of New York at Buffalo Professor
Weichong Tong, BS, Beijing University; MBA, University of Business and Economics; Ph.D., George Washington University-Assistant Professor
Clide Hull, BA, Yale University; MB, MBA, Ph.D., Indiana University-Assistant Professor
Patricia Sorce, BA, Kent State University; MS, Ph.D., University of Massachusetts-Associate Professor
Philip R. Tyler, BS, Rochester Institute of Technology; MBA, DBA, Michigan State University-Associate Professor
Stanley M. Widrick, BS, Clarkson College; MBA, State University of New York at Buffalo; Ph.D., Syracuse University-Professor

B. Thomas Golisano College of Computing and Information Sciences

Jorge L. Diaz-Henera, BS, Venezuela; MS, Ph.D., University of Lancaster, England-Dean

Computer Science
Margaret Reek, BT, MS, Rochester Institute of Technology-Acting Department Chair; Professor
Julie Adams, BBA, Siena College; Ph.D., MSEE, University of Pennsylvania-Associate Professor
Peter G. Anderson, BS, Ph.D., Massachusetts Institute of Technology-Associate Professor
Jessica Bayless, Ph.D., University of Rochester-Professor
Hans-Peter Bischof, BS, MS, University of VIM; Ph.D., University of Osnabrück-Assistant Professor
Warren Carithers, BS, MS, University of Arkansas/Associate Professor
Henry Edlinger, BS, University of Rochester, MS, Syracuse University-Undergraduate Program Coordinator
James Heliotis, BS, Cornell University; Ph.D., University of Rochester-Assistant Professor
Nancy Doubleday, BS, MS, Rochester Institute of Technology-Instructor

Information Technology
Edith Lawson, BS, University of Wisconsin at Stevens Point; MS, Rochester Institute of Technology-Department Chair; Associate Professor
Michael Axelrod, BS, Boston University; MFA, Rochester Institute of Technology-Professor
Kevin Briere, BA, State University of New York at Geneseo; MS, Cornell University and Rochester Institute of Technology- Professor

John A. Biles, BA, MS, University of Kansas-Undergraduate Program Coordinator; Professor
Dianne P. Bills, BA, University of Rochester; MS, Rochester Institute of Technology-Associate Professor; Associate Department Chair; Coordinator, Graduate Programs
Charles B. Border, BA, Phillips Law School; MS, State University of New York at Buffalo; Ph.D., State University of New York at Buffalo-Assistant Professor
Deborah Coleman, BA, Empire State College; MS, Rochester Institute of Technology-Associate Professor
Nancy Doubleday, BS, MS, Rochester Institute of Technology-Associate Professor

Stephen Jacobs, BA, MA, New School for Social Research-Assistant Professor
Daryl Johnson, BS, St. John Fisher College; MS, Rochester Institute of Technology-Associate Professor
Donald A. Joy, BS, University of California at Berkeley; MS, University of Massachusetts; Ph.D., University of Massachusetts-Professor
Jai Kang, MA, Kent State University; MS, Georgia Institute of Technology; Ph.D., State University of New York at Buffalo-Assistant Professor
370 Administration and Faculty

Mechanical Engineering Department
Dianne M. Amuso, BS, Western New England College; MS, Rochester Polytechnic Institute-Lecturer
Stephen Boedo, BA, State University of New York at Buffalo; MS, Ph.D., Cornell University-Assistant Professor
Richard G. Budynas, BME, Union College; MS, University of Rochester; Ph.D., University of Massachusetts; P.E.-Professor
Agamemnon L. Crassidis, BS, MS, Ph.D., State University of New York at Buffalo-Assistant Professor
Hany A. Ghoneim, BS, MS, Cairo University, Egypt; Ph.D., Rutgers University-Professor
Amitabha Ghosh, B.Tech., M.Tech., Indian Institute of Technology, India; Ph.D., Mississippi State University-Professor
Surendra K. Gupta, B.Tech., Indian Institute of Technology, India; MS, University of Notre Dame; Ph.D., University of Rochester-Professor
Charles W. Haines, AB, Earlham College; MS, Ph.D., Rensseelaer Polytechnic Institute--Associate Department Head; Professor
Satish G. Kandlikar, BE, Barathwada University, India; M.Tech., Ph.D., Indian Institute of Technology--Professor
Mark Kempinski, BS, Purdue University; MS, Ph.D., State University of New York Buffalo-Professor
Kevin Kohersberger, BS, MS, Ph.D., Virginia Polytechnic Institute and Stak University-Associate Professor
Jeffrey D. Kozak, BS, Gannon University; MS, Ph.D., Virginia Polytechnic and State University of Virginia-Assistant Professor
Alan H. Nye, BS, MS, Clarkson College; Ph.D., University of Rochester-Professor
Ali Ogut, B.C.E., Hacettepe University, Turkey; MS, Ph.D., University of Maryland-Professor
Elizabeth Paciorek, BS, State University of New York at Buffalo; MS, University of Rochester-Lecturer
Brett J. Pokines, BS, MS, State University of New York Buffalo; Ph.D., Virginia Polytechnic Institute and State University-Assistant Professor
Risa J. Robinson, BS, MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Assistant Professor
William T. Scarbrough, BS, MS, Rochester Institute of Technology-Lecturer
Frank Sciremammano Jr., BS, MS, Ph.D., Universite de Rochester-Professor
Josef S. Torok, BS, University of Akron; MS, Ph.D., Ohio State University-Professor
Benjamin Varela, BS, Institute of Technology of Juarez, Mexico; MS, Ph.D., New Mexico State University-Assistant Professor
Panchapakesan Venkataraman, B.Tech., Indian Institute of Technology; MS, Ph.D., Rice University-Associate Professor
Wayne W. Walter, BE, State University of New York Maritime College; MS, Clarkson College; Ph.D., Rensselaer Polytechnic Institute; P.E.-Professor
Eugene M. Gleason Professor
John D. Wellin, BS, Rochester Institute of Technology; MS, University of Rochester-Visiting Assistant Professor

Microelectronic Engineering Department
Dale E. Ewbank, BS, MS, Rochester Institute of Technology-Visiting Professor
Lynn F. Fuller, BS, MS, Ph.D., State University of New York at Buffalo-Professor
William J. Grande, BS, New Jersey Institute of Technology; MS, Ph.D., Cornell University-Assistant Professor
Karl D. Hirschman, BS, MS, Rochester Institute of Technology; Ph.D., University of Rochester-Professor
Bruce W. Smith, BS, MS, Ph.D., Rochester Institute of Technology-Associate Dean for Graduate Studies; Professor
I. Renan Turkman, Diplome d'Ingeneur (MS); Docteur-Ingenieur, Institut Nationale des Sciences Applique's, Toulouse, France-Professor

The John D. Hromi Center for Quality and Applied Statistics
Peter Bajorski, MS, University of Wroclaw; Ph.D., Technical University of Wroclaw-Associate Professor
Anne M. Barker, BA, Nazareth College; MS, Rochester Institute of Technology-Ph.D., University of Rochester-Professor
Thomas B. Barker, BS, MS, Rochester Institute of Technology-Associate Professor
Stephen M. LaLonde, BS, State University of New York at Potsdam; MS, Ph.D., Syracuse University-Assistant Professor
Daniel R. Lawrence, BA, BS, University of Akron; MA, Ball State University; MS, Rochester Institute of Technology-Ph.D., University of Toronto-Associate Professor
Joseph G. Voelkel, BS, Rensselaer Polytechnic Institute; MS, Northwestern University; Ph.D., University of Wisconsin at Madison-Associate Professor

College of Imaging Arts and Sciences
Joan B. Stone, BS, St. Lawrence University; MS, Syracuse University; Ed.D., University of Rochester-Dean
Frank J. Cost, BS, Eisenhower College, MS, Rochester Institute of Technology-Professor, Associate Dean

School of Art
Thomas Lightfoot, BA, BFA, University of Connecticut; MFA, Institute Allende, San Miguel de Allende, Gto., Mexico; MA Ed., Art, Ed.D.Art, Columbia University Teachers College-Administrative Chair, School of Art; Associate Professor
Donald Arday, BFA, Cleveland Institute of Art; MFA, Syracuse University-Associate Professor
Robert Ann Bell, BFA, University of Massachusetts at Amherst; MFA, State University of New York College at Alfred-Professor
Bob Cole, BA, MS, University of Maryland-Professor
Robert Dorsey, BFA, Rochester Institute of Technology; MFA, Syracuse University-Associate Professor
William Finewood, BA, State University College of Geneseo; MFA, Syracuse University-Professor
Robert Heischman, BFA, Miami University; UCFArt, Ruskin School of Art-Professor
Glen Hintz, BA, Lafayette College; MS, The Medical College of Georgia-Associate Professor
Keith Howard, Painting Diploma, National Art School, Australia; Master's in Studio Art, New York University-Associate Professor
Margaret Lucas, BA, Hampton Univeristy; MA; Virginia Commonwealth University; Ed.D., Pennsylvania State University-Professor
James Perkins, BA, Cornell University; ABD, University of Rochester MFA, Rochester Institute of Technology-Associate Professor
Luron Shesrud, BFA, MFA, Rochester Institute of Technology-Professor
Alan Singer, BFA, Cooper Union; MFA, Cornell University-Associate Professor
Bruce Soderwick, BS, BFA, State University of New York; MFA, Southern Illinois University-Professor
Carole Woodlock, BFA, Albert Art College of Art; MFA, Concordia University-Assistant Professor

Foundation Studies
Michael Amy, BA, Vrije Universiteit Brussel; MA, Ph.D., New York University-Assistant Professor
Joyce Hertzson, BFA, Rhode Island School of Design; MFA, Indiana University-Associate Chair, Foundation; Professor
Robert J. Bell, BFA, University of Massachusetts at Amherst; MFA, State University of New York College at Alfred-Professor
Eileen Bushnell, BA, University of Massachusetts; MFA, Indiana State University-Assistant Professor
Bob Cole, BA, MS, University of Maryland-Professor
Robert Heischman, BFA, Miami University; UCFArt, Ruskin School of Art-Professor
Linda Hightower, BA, Columbus College; MFA, Georgia State University; Ph.D., University of Georgia-Associate Professor
Steve Loar, BS, Murray State University; MA, Northern Illinois University-Associate Professor
Clifford Wun, BFA, Rhode Island School of Design; MFA, Maryland Institute College of Art-Associate Professor

School of Design
Nancy A. Ciolek, BFA, MFA, Indiana State University-Administrative Chair, School of Design; Associate Professor
Deborah Beardslee, BFA, Syracuse University; MFA, Virginia Commonwealth University-Associate Professor, Coordinator, Graduate Graphic Design
Mary Ann Beglau, BS, Ohio State University; MFA, Kent State University-Associate Professor
Peter Byrne, BFA, Alberta College of Art &Design; MFA, York University-Associate Professor
Nancy A. Chwiecko, BA, St. Lawrence University; MFA, Rochester Institute of Technology-Associate Professor
Theresa M. Hannigan, BFA, MS, Rochester Institute of Technology-Associate Professor
Chris B. Jackson, BFA, Alfred University; MFA, Rochester Institute of Technology-Assistant Professor
Robert M. Kahute, BID, BFA, Syracuse University-Associate Professor; Program Clair, Graphic Design
Heinz Klinkon, BFA, MFA, Rochester Institute of Technology-Associate Professor
Patti J. Lachance, BFA, Herron School of Art of Indiana and Purdue Universities at Indianapolis; MFA, Rochester Institute of Technology-Associate Professor, Program Chair, Industrial and Interior Design

Joyce Hertzson, BFA, Rhode Island School of Design; MFA, Indiana University-Associate Chair, Foundation; Professor
Robert J. Bell, BFA, University of Massachusetts at Amherst; MFA, State University of New York College at Alfred-Professor
Eileen Bushnell, BA, University of Massachusetts; MFA, Indiana State University-Assistant Professor
Bob Cole, BA, MS, University of Maryland-Professor
Robert Heischman, BFA, Miami University; UCFArt, Ruskin School of Art-Professor
Linda Hightower, BA, Columbus College; MFA, Georgia State University; Ph.D., University of Georgia-Associate Professor
Steve Loar, BS, Murray State University; MA, Northern Illinois University-Associate Professor
Clifford Wun, BFA, Rhode Island School of Design; MFA, Maryland Institute College of Art-Associate Professor

School of Design
Nancy A. Ciolek, BFA, MFA, Indiana State University-Administrative Chair, School of Design; Associate Professor
Deborah Beardslee, BFA, Syracuse University; MFA, Virginia Commonwealth University-Associate Professor, Coordinator, Graduate Graphic Design
Mary Ann Beglau, BS, Ohio State University; MFA, Kent State University-Associate Professor
Peter Byrne, BFA, Alberta College of Art &Design; MFA, York University-Associate Professor
Nancy A. Chwiecko, BA, St. Lawrence University; MFA, Rochester Institute of Technology-Associate Professor
Theresa M. Hannigan, BFA, MS, Rochester Institute of Technology-Associate Professor
Chris B. Jackson, BFA, Alfred University; MFA, Rochester Institute of Technology-Assistant Professor
Robert M. Kahute, BID, BFA, Syracuse University-Associate Professor; Program Clair, Graphic Design
Heinz Klinkon, BFA, MFA, Rochester Institute of Technology-Associate Professor
Patti J. Lachance, BFA, Herron School of Art of Indiana and Purdue Universities at Indianapolis; MFA, Rochester Institute of Technology-Associate Professor, Program Chair, Industrial and Interior Design

Charles F. Lewis, B. Arch., Pratt Institute; M. Arch., State University of New York Buffalo-Professor; Program Chair, Industrial and Interior Design
Bruce I. Meader, BFA, MFA, Carnegie Mellon University-Associate Professor
Robert Meyers, BFA, Bowling Green State University; MFA, Kent State University-Associate Professor
David Morgan, BFA, Brigham Young University; MA, Rhode Island School of Design-Assistant Professor
Marinemon O’Loughlin, BA, St. Bonaventure University; BFA, MFA, Rochester Institute of Technology-Associate Professor; Coordinator, New Media Design and Imaging
R. Roger Remington, BFA, Rochester Institute of Technology; MS, University of Wisconsin-Professor
James Ver Hague, BS, Massachusetts Institute of Technology; MS, Rensselaer Polytechnic Institute; BA, MFA, State University of New York-Buffalo-Professor

School for American Crafts
Richard Tannen, BS, Cornell University; Certificate of Mastery in Woodworking and Furniture Design, Boston University-Administrative Chair, Professor
Andy Buck, BA, Virginia Commonwealth University; MFA, with Honors Furniture Design, Rhode Island School of Design-Assistant Professor
Wendell Castle, BFA, MFA, University of Kansas-Professor; Artist-in-Residence; Chair in Contemporary Crafts
Juan Carlos Caballero-Perez, BFA, MFA, Metal Sculpture and Jewelry Rochester Institute of Technology-Associate Professor
Robin Cass, BFA, Rhode Island School of Design; MFA, New York State School of Glass at Alfred University-Associate Professor
Julia Gallaway, BFA, New York State School of Ceramics at Alfred University; MFA, University of Colorado Assistant Professor
Richard A. Hirsch, BS, State University of New York College at New Paltz; MFA, Rochester Institute of Technology-Professor
Max L. Lenderman, BS, MS, Indiana State; MFA, University of Kansas-Professor
Albert Paley, BFA, MFA, Tyler School of Art, Temple University-Professor; Artist-in-Residence; The Charlotte Fredericks Mowris Professor in Contemporary Craft; Ph.D. (Honorary), University of Rochester
Michael Rodgers, BA, Western Illinois University; MFA, Sculpture/ Glass University of Illinois-Assistant Professor
Leonard A. Ursa, BFA, MFA, State University of New York College at New Paltz-Professor

School of Film and Animation
Howard Lester, BA, MFA, University of California at Los Angeles-Administrative Chair; Professor
Cat Ashworth, BFA, Arizona State University; MFA, State University of New York-Buffalo-Assistant Professor
Carl Battaglia, BA, Boston College; MFA, Syracuse University-Professor
Jack Beck, BA, Denison University; MFA, University of Iowa-Assistant Professor
Charles Boyd, BA, MFA, Pennsylvania State University-Assistant Professor
Adrienne Carageorge, BA, Florida State; MFA, Ohio University-Associate Professor
Stephanie Maxwell, BA, University of California at Los Angeles; MFA, San Francisco Art Institute-Assistant Professor
Duane Palyka, BS, BFA, Carnegie Mellon University; MFA, University of Utah-Associate Professor
Johnny Robinson, BFA, MFA, Syracuse University-Animation Chair; Assistant Professor
Marla Schwepe, BA, University of Iowa; MFA, Ohio State University-Associate Professor
Malcolm Spaul, BA, St. Lawrence University; MFA, Rochester Institute of Technology-Professor

School of Photographic Arts and Sciences
Andrew Davidhazy, BFA, MFA-Administrative Chair, Imaging and Photographic Technology; Professor
Denis Defibaugh, BS, MS-Program Chair, Advertising Photography; Associate Professor
William DuBois, BFA, M.Ed.-Administrative Chair, Photographic Arts; Professor
William S. Fischer, BS, MS-Program Chair, Imaging Systems Management, Associate Professor
Elaine O’Neil, MS-Program Chair, Fine Art Photography; Professor
William Osterman, BFA, MFA-Coordinator, Imaging Arts MFA; Associate Professor
Michael R. Peres, BA, MS-Program Chair, Biomedical Photography; Professor
Douglas Ford Rea, BS, MFA-Program Chair, Photojournalism; Professor
James Reilly, BA, MA-Director, Image Permanence Institute; Professor

Faculty
Patricia Ambroggi, MFA, Visual Studies Workshop-Associate Professor
Owen Butler, BFA, Rochester Institute of Technology-Associate Professor
Guenter Cartwright, BA, University of Oregon; MFA, Buffalo-Associate Professor
Program Chair
Andrew Davidhazy, BFA, MFA, Rochester Institute of Technology-Professor
Dimas Defibaugh, BS, MS, Rochester Institute of Technology-Professor
Denis Defibaugh, BS, MS, Rochester Institute of Technology-Program Chair
Stephen Driedel, BS, University of Miami; BS, MS, Rochester Institute of Technology-Associate Professor
William W. DuBois, BFA, Ohio University; M.Ed., Bowling Green State University-Administrative Chair, Professor
William S. Fischer, BS, MS, Rochester Institute of Technology-James E. McGhee Professor; Program Chair
Mark Haven, AB, Lebanon Valley College-Associate Professor
Bruce Kahn, SB, University of Chicago, Ph.D., University of Nebraska-Associate Professor
John E. Karpen, BS, MS, Rochester Institute of Technology-Professor
Angela Kelly, MA, Columbia University-Associate Professor
Russell C. Kraus, BA, William Paterson College; Ed.D., University of Massachusetts at Amherst-Professor
Houri LeVant, BS, Institute of Design, Illinois Institute of Technology; MS, Rochester Institute of Technology-Professor
Doug Manchee, BA, MA, San Francisco State University-Associate Professor
Glenn Miller, BS, Rochester Institute of Technology-Associate Professor
Elaine O’Neil, BFA, Philadelphia College of Art; MS, Illinois Institute of Technology-Institute of Design-Professor
William Osterman, BFA, Ohio University; MFA, University of Oregon-Program Chair; Associate Professor
Michael R. Peres, BS, Rochester Institute of Technology; BA, Bradley University; MS, Rochester Institute of Technology-Program Chair; Associate Professor
Douglas Ford Rea, BS, Union College; MFA, Rochester Institute of Technology-Professor
John Retallack, BFA, Rochester Institute of Technology-Associate Professor
Elliot Rubenstein, BA, MS, St. Johns University; MFA, State University of New York-Buffalo-Professor

Nitin Sampat, BS, University of Bombay, India; MS, Rochester Institute of Technology-Associate Professor
Christie Sisson, BS, Rochester Institute of Technology-Instructor
Loret Steinberg, MFA, Indiana University-Associate Professor
Nancy Stuurt, BA, BS, Rochester Institute of Technology-Associate Professor
Allen Vogel, Philadelphia College of Art-Associate Professor
Jeffrey Weiss, BS, University of Michigan-Associate Professor
E. Kenly White, BA, Princeton University; MA, MFA, University of New Mexico-Associate Professor
Thomas Zigon, BS, MS, Rochester Institute of Technology-Associate Professor

School of Print Media
Barbara Pellow, BA-Administrative Chair; Professor
William H. Birkett, BS, MBA, CMA-Program Chair; Professor
Len Leger, BS, MS-Graduate Coordinator; Associate Professor

Faculty
Barbara Birkett, BA, Aquinas College; MFA, University of Michi an; MBA, Rochester Institute of Technology; CPA, Maryland-Associate Professor
William H. Birkett, BS, University of Illinois; MBA, University of Michigan, CMA-Professor; Program Chair
Robert Y. Chung, BA, Eastern Washington State University; MS, Rochester Institute of Technology-Professor
Twyla Cummings, BS, MS, Wright State University; Ph.D., Union Institute-Associate Professor
Franziska Frey, Ph.D., Swiss Federal Institute of Technology-Associate Professor
Edward Granger, BS, MS, PhD, University of Rochester-Visiting Professor
Herbert H. Johnson, BS, Rochester Institute of Technology-Associate Professor
Len Leger, BS, State University of New York College at Potsdam; MS, University of Rochester-Graduate Coordinator; Associate Professor
C. R. Myers III, BA, University of Rochester; MS, Rochester Institute of Technology-Professor
David Pankow, BA, MA, Brooklyn College; MLS, Columbia University-Professor
Barbara Pellow, BA, BS, Michigan Technological University-Gannett Professor
Michael P. Riordan, BS, MS, Rochester Institute of Technology-Associate Professor
Frank J. Romano, BA, City University of New York-Professor; Administrative Chair
Patricia Russotti, BS, Empire College; MS, Ed.D, Indiana University-Associate Professor
Mark Watts, BFA, MFA, Rochester Institute of Technology-Associate Professor
College of Liberal Arts

Andrew M. T. Moore, BA, MA, DPhil., Oxford-Dean
Glenn J. Kist, AB, MA, Ph.D.-Deputy Dean, Professor
Laurence H. Winnie, BA, MA, Ph.D.-Associate Dean
Bruce A. Austin, BA, MA, Ph.D.-Program Chairperson, Professional and Technical Communication; Professor
John Klofas, BA, MA, Ph.D.-Program Chairperson, Criminal Justice; Professor
Kathleen C. Chen, BA, MA, Ph.D.-Program Chairperson, Psychology; Professor
Virginia Costenbader, BA, MS, Ph.D.-Director, School Psychology; Professor
James J. Winebrake, Ph.D.-Program Chairperson, Public Policy; Associate Professor
Roy W. Rodenbiser, BA, M.Ed., MSW, Ed.D.-Program Chairperson, Social Work; Associate Professor
Michael J. Vernarelli, AB, MA, Ph.D.-Program Chairperson, Economics; Professor
Anat Batabyal, BS, MS, Ph.D.-Arthur J. Gosnell Professor in Economics
Diane S. Hope, BS, MS, Ph.D.-William A. Kern Professor in Communication
Robert Mannine, BA, MA, Ph.D.-Caroline Werner Gannett Professor in the Humanities
Wade L. Robison, BA, Ph.D.-Ezra A. Hale Professor in Applied Ethics
Katherine Schumacher, BA, MA-Visiting Assistant Professor, Language; Writing Director
Andrea C. Walter, BA, MA, Ed.D.-Director, RIT Exploration Program; Professor, Literature

Humanities Division

Department of Communication
Bruce A. Austin, BA, Rider College; MS, Illinois State University; PhD., Temple University-Department Chair, Professor
Susan B. Barnes, BFA, Pratt Institute; MFA, Ph.D., New York University-Associate Professor
Grant C. Cos, BA, University of Massachusetts, Amherst; MA, Emerson College; PhD., Kent State University-Associate Professor
Diane Hope, BS, State University of New York at Brockport; MS, Ph.D., State University of New York at Buffalo-William A. Kern Professor in Communications; Professor
Keith Bernard Jenkins, BA, University of Arkansas; MA, PhD., Florida State University-Associate Professor
Michael Mazaneck, BA, MA, California State University at Fresno; Ph.D., University of Iowa-Visiting Assistant Professor
David R. Neumann, BA, Ithaca College; MA, PhD., Bowling Green State University-Associate Professor
Rudolph Pugliese, BA, State University of New York at Oneonta; MA, State University of New York at Brockport; Ph.D., Temple University-Associate Professor, Communication
Patrick M. Scanlon, BA, State University of New York at Albany; Ph.D., University of Rochester-Associate Professor, Communication

Department of Fine Arts
Tina Lent, BA, MA, University of California at Los Angeles; Ph.D., University of Rochester-Department Chair; Associate Professor
C. J. Atkins, BM, Indiana University- DMA, Eastman School of Music; MM, New England Conservatory-Professor
Charles D. Collins, AB, Rutgers University; MA, Ph.D., University of Iowa-Professor
Peter W. Fenan, BA, College of the Holy Cross; MA, PhD., University of Michigan-Associate Professor
Roger Freeman, BA, University of Washington; MA, Ph.D., Ohio State University-Visiting Assistant Professor
Lisa Freeman, BA, Oberlin College; MA, Ph.D., Emory University-Associate Professor
Jonathan Kruger, BA, Carthage College; MM, DMA, Eastman School of Music, University of Rochester-Associate Professor
Michel E. Ruhling BA, Goshen College; MA, University of Notre Dame; MM, University of Missouri; Ph.D., Catholic University of America-Associate Professor
Edward Scheel, B. Mus, Ed., Westminster College; MM, Westminster Choir College-Associate Professor
Howard Wetherald, BA, Brown University; MA, Oberlin College-Professor

Department of History
Frank Annunziata, AB, Manhattan College; MA, City College of the City University of New York; Ph.D., Ohio State University-Department Chair; Professor
Richard Chu, BA, Taiwan University; MA, University of California at Berkeley; Ph.D., Columbia University-Professor
Thomas Cornell, BA, Southwestern University, Memphis; MS, Georgia Institute of Technology; Ph.D., Johns Hopkins University-Department Chair; Associate Professor, History
Rebecca O. Edwards, BA, College of the Holy Cross; Ph.D., University of Rochester-Associate Professor
Nabil M. Kaylani, BA, American University of Beirut; MA, Ph.D.; Clark University-Professor, History
Glenn J. Kist, AB, MA, Xavier University; Ph.D., Loyola University of Chicago-Professor
Pellegrino Nazzaro, BA, PI, Giannone; Ph.D., University of Naples-Professor

Kenneth R. Nelson, AB, University of Connecticut; MA, Georgetown University; Ph.D., University of Virginia-Professor
Richard Newman, BA, State University of New York Buffalo; MA, Brown University; Ph.D., State University of New York Buffalo-Assistant Professor
Laurence H. Winnie, BA, Hobart College; MA, Ph.D., University of Michigan, Ann Arbor-Associate Dean

Department of Language and Literature
Mary Lynn Broc, BA, St. Louis University; MA, PhD., University of Connecticut-Department Chair and Professor, Literature
Sam Abrams, AB, Brooklyn College; MA, University of Illinois-Professor, Literature
Doris A. Borrelli, BA, Ph.D., Cornell University-Visiting Assistant Professor
Anne Coon, BA, MA, PhD., State University of New York at Buffalo-Professor, Literature
Irene Susana Corromina, BA, McGill University; MA, PhD., University of Pennsylvania-Associate Professor, Spanish
Bahak Elahi, BA, San Diego State University; MA, University of California, San Diego; PhD., University of Rochester-Professor, Literature
Diane J. Forbes, BA, State University of New York College at Geneseo; MA, PhD., Pennsylvania State University-Associate Professor, Language
Lisa M. Hermsen, BA, Briar Cliff University; MA, University of Missouri-Columbia; PhD., Iowa State University-Assistant Professor, Writing
Penelope M. Kelsey, BA, Manchester College; Ph.D., University of Minnesota-Associate Assistant Professor, Literature
Barbara MacCameron, MA, University of Colorado; MS, Syracuse University-Lecturer
Katherine Maybery, BA, Smith College; MA, Ph.D., University of Rochester-Professor, Literature
Stanley D. McKenzie, BS, Massachusetts Institute of Technology; MA, Ph.D., University of Rochester-Professor, Literature
David Murdoch, BA, Shurtleff College; MA, Redlands University; Ph.D., Occidental College-Professor, Literature
Joseph M. Nassar, BA, MA, University of Toledo; PhD, State University of New York Binghampton-Professor, Literature
Andrew W. Perry, BA, State University of New York at Oswego; MA, State University of New York at Brockport-Lecturer
Mark L. Price, BA, MA, Miami University-Associate Professor, Literature
Amir Ray, BA, State University of New York at Buffalo; MA, PhD., University of Michigan-Associate Professor, Literature

Linda Reinfeld, BA, University of California at Los Angeles; MA, PhD., University of Buffalo-Lecturer
John Roche, BA, University of Connecticut; MA, PhD., University of Ireland; Ph.D., State University of New York-Assistant Professor, Literature
Sandra E. Saari, AB, Carleton College; MA, PhD., Occidental College-Professor, Literature
Katherine Schumacher, BA, Indiana University; MA, Cornell University-Visiting Assistant Professor, Language; Writing Director
Thomas M. Stone, BA, Northern Arizona University; MA, Bucknell University; MA, University of Rochester-Lecturer
Andre C. Walter, BA, Duquesne University; MA, University of Pittsburgh; Ed.D., University of Rochester-Department Chair, Literature

Department of Philosophy
John T. Sanders, BA, Purdue University; MA, PhD., Boston University-Department Chair; Professor
Laura Bernhardt, BA, Knox College; AM, PhD.; University of Illinois-Visiting Assistant Professor
Evelyn Brister, BA, Austin College; MA, University of Florida; PhD., Northwestern University-Visiting Assistant Professor
John Capps, BA, St. John’s College, Annapolis; MA, PhD., Northwestern University-Associate Professor
Timothy H. Estrom, MA, PhD., University of Edinburgh, Scotland-Professor
Dane R. Gordon, BA, MA, University of Cambridge; BD, University of London; MA, University of Rochester-Professor Emeritus

Dennis Plaisted, BA, University of California at Los Angeles; MA, JD, University of Southern California; Ph.D., University of California at Santa Barbara-Visiting Assistant Professor
Wade L. Robison, BA, University of Maryland; PhD., University of Wisconsin-Professor
Brian Schroeder, BA, Edinboro College; MDiv, Princeton Theological Seminary; MA, PhD., State University of New York at Stony Brook-Associate Professor
David B. Suits, BA, Purdue University; MA, PhD., University of Waterloo-Associate Professor
Department of Biological Sciences
Larry Buckley, BA, University of Missouri-St. Louis; MS, Southern Illinois University at Edwardsville; Ph.D., Southern Illinois University at Carbondale-Assistant Professor
Jean A. Douthwright, BA, Skidmore College; MS, Pennsylvania State University; Ph.D., University of Rochester-Professor
Irene M. Evans, BA, University of Rochester; MS, Wesleyan University; Ph.D., University of Rochester-Associate Professor
Maureen C. Fenan, BS, Fordham University; MS, Ph.D., University of Connecticut-Associate Professor
G. Thomas Frederick, BS, MS, Ph.D., Ohio State University-Professor
David A. Lawlor, BA, University of Texas; MS, Ph.D., University of Texas Health Science Center at San Antonio-Associate Professor
Jeffrey S. Lodge, BA, University of Delaware; Ph.D., University of Mississippi-Associate Professor
Douglas P. Merrill, BS, Ph.D., State University of New York College of Environmental Science and Forestry, Syracuse University-Professor
Robert H. Rothman, BA, Ph.D., University of California at Berkeley; MA, California State, San Diego-Professor
Michael A. Savka, BSF, West Virginia University; MS, Ph.D., University of Illinois at Urbana-Champaign-Professor
Franz K. Seichab, BS, Cornell University; MS, State University of New York College at Geneseo; Ph.D., State University of New York College of Environmental Science and Forestry, Syracuse University-Professor
Gary R. Skuse, BA, University of Rochester; Ph.D., Syracuse University-Professor
Roy E. Smoke, BS, Shippensburg University; MS, Ph.D., University of North Dakota-Director of CBET
Hvl C. Sweet, BS, Union College; Ph.D., University of Texas at Austin-Professor
Nancy Wanek, BS, University of Wisconsin; MS, Ph.D., University of California-Associate Professor

Department of Chemistry
B. Edward Cain, BA, Harau College, State University of New York Binghamton; Ph.D., Syracuse University-Professor
Paul Craig, BS, Oral Roberts University; Ph.D., University of Michigan-Associate Professor
Thomas J. Gennett, BA, Union College; MS, Ph.D., State University of New York at Potsdam; Ph.D., University of Vermont-Professor
Joseph P. Hornak, BS, Utica College of Syracuse University; MS, Purdue University; Ph.D., University of Notre Dame-Professor
Marvin L. Illingsworth, BS, Lafayette College; Ph.D., University of Massachusetts-Professor
Andrews Lanener, BS, Ph.D., State University of New York Buffalo-Professor
Massoud J. Miri, BS, MS, Ph.D., University of Hamburg-Associate Professor
Terence C. Morrill, BS, Syracuse University; MS, San Jose State University; Ph.D., University of Colorado-Professor
John P. Neenan, BS, Wayne State University; Ph.D., University of California at Santa Barbara-Professor
Robert H. Paine, BS, University of Rochester; MS, Worcester Polytechnic Institute; Ph.D., University of Rochester-Associate Professor
Christina G. Reinhardt, Lafayette College; Ph.D., University of Rochester-Professor
Paul L. Rosenberg, BS, Bridgewater State College; Ph.D., University of New Hampshire-Associate Professor
K.S.V. Santhanam, BSc., MCA., Ph.D., Sri Venkateswara University-Visiting Professor
Thomas W. Smith, BS, John Carroll University; Ph.D., University of Michigan-Professor
Gerald A. Takacs, BS, University of Alberta; Ph.D., University of Wisconsin-Professor
Laura Ellen Tubbs, BA, Hood College; Ph.D., University of Rochester-Professor
Kay G. Tumer, BS, Bucknell University; Ph.D., Ohio State University-Professor
James J. Worman, BS, Moravian College; MS, New Mexico Highlands University; Ph.D., University of Wyoming-Professor

Environmental Science Program
M. Ann Howard, BS, Cornell University; JD, Rutgers University-Associate Professor, Science, Technology, and Society
Karen Brinberg, BS, Carleton College; MEM, Ph.D., Duke University-Assistant Professor
John M. Waud, BS, Lehigh University; MS, University of Pennsylvania; Ph.D., Lehigh University-Program Director, Professor

Department of Mathematics and Statistics
William Basener, BA, Marist College; Ph.D., Boston University-Assistant Professor
Mauricio P. Bautista, BS, Ateneo de Manila University; MS, Ph.D., Purdue University-Associate Professor
Marcia P. Birken, BA, Mt. Holyoke College; MS, New York University-Professor
Bernard Brooks, BS, University of Toronto; MS, Ph.D., University of Georgia-Assistant Professor
Tamara A. Burton, BS, University of South Carolina; Ph.D., University of North Carolina at Chapel Hill-Assistant Professor
Patricia A. Clark, BS, SM, Massachusetts Institute of Technology; Ph.D., University of Rochester-Professor
Matthew Coppenbarger, BS, University of Arizona; MA, Ph.D., University of Rochester-Visiting Assistant Professor
Daniel M. Crystal, BS, MS, State University of New York Albany-Professor
Eva Culakova, BS, Comenius University, Slovakia; MA, PhD., University of Rochester-Associate Professor
Alejandro B. Engel, BS, Universidad de Chile; Ph.D., State University of New York at Buffalo-Professor
David L. Farnsworth, BS, Union College; MA, Ph.D., University of Texas-Professor
George T. Georgantas, AB, University of Rochester, AM, Washington University; Ph.D., State University of New York at Buffalo Professor
Marvin H. Gruber, BS, Brooklyn College; MA, Johns Hopkins University; MS, Rochester Institute of Technology; MA, Ph.D., University of Rochester-Professor
Laxmi N. Gupta, BS, MS, Agra University, India; MS, Rochester Institute of Technology; Ph.D., State University of New York at Buffalo-Professor
Tanes 1. Halavin, BS, Clarkson University; MA, Ph.D., State University of New York at Buffalo-Professor
David S. Hart, BS, Syracuse University; MA, University of Rochester-Associate Professor
Rebecca E. Hill, BS, Frostburg State College; MA, West Virginia University; MS, Rochester Institute of Technology-Professor
Edward T. Hoeffler, BA, Elmhurst College; AM, Washington University; Ph.D., State University of New York at Buffalo-Professor
Snehadhani Kumar, BS, MS, University of Washington; Ph.D., University of Delaware-Associate Professor
Wanda S. Lojasiewicz, MS, Ph.D., University of Cracow, Poland-Associate Professor
Carl V. Luttre, BS, Michigan State University; MA, Ph.D., University of Kentucky-Assistant Professor
Sophia A. Maggelakis, BS, MS, Ph.D., Old Dominion University-Professor
Carol E. Marchetti, BS, Case Institute of Technology; MS, Weatherhead School of Management; MA, PhD., University of Rochester-Associate Professor
James E. Marenco, BS, MA, California State University; Ph.D., Colorado State University-Associate Professor
David J. Mathison, BA, St. Olaf College MS, Syracuse University; MA, Ph.D., University of Rochester-Professor
Douglas S. Meadows, BS, Stanford University; MS, New York University; Ph.D., Stanford University-Professor
Mahmood Munir, BA, MS, Southern Illinois University; Ph.D., Monash University-Assistant Professor
Darren E. Narayan, BS, State University of New York at Binghamton; MS, Ph.D., Lehigh University-Professor
Edward A. Newburg, BS, MS, Purdue University; Ph.D., University of Illinois-Professor
Richard J. Orr, BS, John Carroll University; MS, Case Institute of Technology; MS, State University of New York at Buffalo-Professor
Michael Radin, BA, Rowan University; MS, Ph.D., University of Rhode Island-Assistant Professor
David Ross, BA, Columbia College; Ph.D., Courant Institute of Mathematical Sciences-Associate Professor
James C. Runyon, BE, Cornell University; MSEE, University of Rochester-Professor
Harry M. Schey, BS, Northwestern University; AM, Harvard University; Ph.D., University of Illinois-Professor
Hossein Shahmohamad, BS, MA, California State University, Long Beach; Ph.D., University of Pittsburgh-Professor
Paul W. Wilson, BA, MA, University of Cincinnati; Ph.D., University of Illinois-Professor
Elmer L. Young, BA, Amherst College; MS, Ph.D., Ohio State University-Associate Professor

Department of Physics
John D. Anderson, BS, State University of New York at Buffalo; MA, Ph.D., University of Rochester-Professor
David John Axon, BS, Ph.D., University of Durham-Professor
Peter A. Cardega, BS, Loyola College; Ph.D., Clemson University-Professor
Tracy A. Davis, BA, BS, Wofford College; Ph.D., Clemson University-Associate Professor
Alan B. Entenberg, AB, Washington University; Ph.D,-University of Rochester-Professor
Scoot V. Frankin, BA, University of Chicago; Ph.D., University of Texas-Professor
Ronald E. Jodoin, BS, Worcester Polytechnic Institute; Ph.D., University of Rochester-Professor
Lames R. Kern, BS, Indiana University of Pennsylvania; MA, Indiana University; Ph.D., Clemson University-Professor
Michael Kotlarchyk, BS, MS, Ph.D., Massachusetts Institute of Technology-Professor
Veni W. Lindberg, BS, University of Alberta; MS, Ph.D., Case Western Reserve University-Professor
Linda S. Meichle, BS, Massachusetts Institute of Technology; MS, PhD., University of Illinois-Associate Professor
David L. Morabito, BS, MS, Rochester Institute of Technology; MA, University of Rochester; Ph.D State University of New York at Buffalo-Visiting Assistant Professor
Gabriela Popa, Diploma, University of Bucharest; Ph.D., Louisiana State University-Visiting Associate Professor
Clinical Faculty
Christine A. Brown, MT (ASCP)-Program Administrator, School of Medical Technology; Boston Veterans Administration Medical Center, Boston
George Busch, M.D., Director, School of Medical Technology, Boston Veterans Administration Medical Center, Boston
Virginia Kotlarz, Ph.D., MT (ASCP)-Program Director, School of Medical Technology, Daemen College, Buffalo
Theodore K. Mayer, M.D., Ph.D.-Director of Medical Technology, Rochester General Hospital, Rochester
Nancy Mitchell, BS, MT (ASCP)-Program Director, School of Medical Technology, Rochester General Hospital, Rochester

Brenda DiCuffa, CNMT-Chief Technologist, Department of Nuclear Medicine, Sisters of Charity Hospital, Cincinnati
David Ellis, M.D.-Chief Radiologist, Department of Radiology, St. Peters Hospital, Albany
John Elphin, CNMT-Chief Technologist, Department of Nuclear Medicine, Robert Packer Hospital, Sayre, Pa.
Kelli Fumare, CNMT- Department of Nuclear Medicine, F.F. Thompson Hospital, Canandaigua
Dave Galleher, CNMT-Chief Technologist, Geneva General Hospital, Geneva
Kim Gunn, CNMT-Chief Technologist, Department of Nuclear Medicine, Mount St. Mary’s Hospital, Lewiston
Debra Goodman, CNMT-Chief Technologist, Department of Nuclear Medicine, The Genesee Hospital, Rochester
Mario Grosso, M.D.-Radiologist, Department of Radiology, Geneva General Hospital, Geneva
Horst Haber, M.D.-Radiologist, Department of Nuclear Medicine, Seton Health System, Saint Mary’s Hospital, Troy
William Hampton, M.D.-Chief Radiologist, Department of Diagnostic Imaging, Park Ridge Hospital, Rochester
Steven Herbert, M.D.-Director, Division of Nuclear Medicine, Genesee Hospital, Rochester
Kevin Hopkins, CNMT-Chief Technologist, Department of Nuclear Medicine, Strong Memorial Hospital/ Highland Hospital, Rochester
Norman Jaffe, M.D.-Director, Department of Nuclear Medicine, Onondaga Hill Cardiovascular Group, Syracuse
Jamie Kennedy, CNMT-Chief Technologist, Department of Nuclear Medicine, St. Peters Hospital, Albany
Richard Kessler, M.D.-Director, Department of Nuclear Medicine, Sisters of Charity Hospital, Buffalo
Gail Lowritz, CNMT-Chief Technologist, St. Mary’s Hospital, Park Ridge Hospital, Rochester
Debra Nangreave, CNMT-Department of Nuclear Medicine, Genesee Memorial Hospital, Batavia
David Paul, M.D.-Director, Department of Nuclear Medicine, Genesee Memorial Hospital, Batavia
Kenneth Pearson, M.D.-Chief of Radiology, De armament of Nuclear Medicine, Highland Hospital, Rochester
Christopher Pettine, CNMT-Chief Technologist, Clifton Springs Hospital, Clifton Springs
Gretchan Rhelberg, CNMT-Chief Technologist, Department of Nuclear Imaging, Rochester General Hospital, Rochester

Ronald Schwartz, M.D.-Director, Department of Nuclear Cardiology, Strong Memorial Hospital, Rochester
Jenny Simmons, CNMT-Chief Technologist, Our Lady of Lourdes, Binghamton
Edward Smith, Sc.D.-Department of Nuclear Medicine, Strong Memorial Hospital, Rochester
Joseph Steinbrecher, CNMT-Chief Technologist, Department of Nuclear Medicine, United Health Services-Wilson Site, Johnson City
Marilyn Sullivan, CNMT-Chief Technologist, Amot-Ogden Medical Center, Elmira
Rosemary Utz, M.D.-Director, Department of Nuclear Medicine, Binghamton

Diagnostic Medical Sonography
Hamad Ghuze, BS, RDMS, Rochester Institute of Technology; MS, University of Rochester-Program Director, Associate Professor
Stephen Guida, BS, RDMS, Rochester Institute of Technology-Technical Coordinator
Deborah Rubens, M.D.-Medical Director

Clinical Faculty
Alexander Allen, M.D.-Medical Director, Lancaster Regional Medical Center, Lancaster, PA
Lisa Allen, BS, RDMS-Chief Sonographer, Maternal Fetal Medicine, State University of New York Upstate Medical University, Syracuse
Spencer Annabel, M.D.-Medical Director, Ultrasound Department, St. Thomas Mercy Hospital, Honolulu, HI
Steven Armstrong, RVT-Chief Sonographer, Genesee Vascular Lab, Rochester
Maryanne Arsenneau, M.D.-Medical Director, Department of Ultrasound, Newark-Wakefield Community Hospital, Newark
Mohammad Ayyub, M.D.-Medical Director, Ultrasound Department, James Memorial Hospital, Wellsville
Victoria Baker, RDMS-Chief Sonographer, Antenatal Testing Unit, Rochester General Hospital, Rochester
Ted Barnett, M.D.-Medical Director, Department of Ultrasound, F.F. Thompson Hospital, Canandaigua
Robert Benazzi, M.D.-Medical Director, Department of Ultrasound, Lakeside Memorial Hospital, Brockport
Kathy Brand, RDMS, RTV-Chief Sonographer, Park Ridge Hospital, Rochester
Patricia Colwell, RDMS-Chief Sonographer, Department of Ultrasound, Crouse Irving Memorial Hospital, Syracuse
Jodi Crowley, BS, RDMS-Chief Sonographer, Radiology Department, Strong Memorial Hospital, Rochester
Robert Donkeye, M.D.-Medical Director, Clifton Springs Hospital, Clifton Springs
Paula Eggers, RDMS-Chief Sonographer, Materess Medicine, Strong Memorial Hospital, Rochester
Diane Franklin, Chief Sonarographer-Lakeside Memorial Hospital, Brockport
Nancy Gadziala, M.D.-Medical Director, Department of Ultrasound, Ida Group P.C. Rochester
Martin Gershowitz, BS, RDMS, RDCS-Chief Sonographer, Ultrasound and Department, Vascular
Brothers Hospital, Poughkeepsie
Jeffrey Gibson, RDMS-Chief Sonographer, Radiology Department/Ultrasound, Rochester
General Hospital, Rochester
Linda Graves, RDMS-Chief Sonographer, Department of Ultrasound, State University of New York Health Science Center, Syracuse
Maria Gruttadauria, RDMS-Chief Sonographer, Highland Hospital, Department of OB / GYN Rochester
William Hampton, M.D.-Medical Director, Park Ridge Hospital, Rochester
Russell Karp, M.D.-Medical Director, Radiology department, Vascular
Brothers Hospital, Poughkeepsie
Karen Kazdzierski, RDMS, RDCS RVT-Chief Sonographer, Ultrasound Department, Tones Memorial Hospital, Wellsville
Robert Lerner, M.D.-Medical Director, Rochester Radiology Associates, Rochester
Robert Lesner, RDMS-Chief Sonographer, Department of Ultrasound, Sisters of Charity Hospital, Buffalo
Karen Maar, RDMS, RVT-Chief Sonographer, Department of Ultrasound, Buffalo General Hospital, Buffalo
James McClelland, M.D.-Medical Director, A.O. Fox Memorial Medical Center, Oneonta
Michael McLaughlin-Chief Sonographer, Department of Ultrasound, F. F. Thompson Hospital, Canandaigua
Kain Nilsen, BS, RDMS-Chief Sonographer, Nicholas Noyes Hospital, Dansville
Lisa Owen, BS, RT, RDMS-Chief Sonographer, Department of Ultrasound, Ide Radiology Group, P.C., Rochester
David Paul, M.D.-Medical Director, Radiology Department, Genesee Memorial Hospital, Batavia
Kenneth Pearson, M.D.-Medical Director, Medical Imaging/Ultrasound, Highland Hospital, Rochester
Andrij Wojtowycz, M.D.-Medical Director, Department of Ultrasound, State University of New York Health Science Center, Syracuse
Albert Zenz, M.D.-Medical Director, Department of Ultrasound, Crouse Irving Memorial Hospital, Syracuse

Center for Materials Science and Engineering
K.S.V. Santhanan, BSc., MA, PhD., Sri Venkateswara University-Interim Director, Center for Materials Science & Engineering; Visiting Professor, Chemistry
John Andersen, BS, SUNY at Buffalo; MS, University of Rochester-Proessor, Physics
Peter A. Cardegna, BS, Loyola College; Ph.D., Clemson University-Professor, Physics

Adjunct Faculty
John F. Carson, MS, Massachusetts Institute of Technology-Eastern Kodak Company, Rochester
Dennis H. Deduce, MS, P.E., Syracuse University-IBM, Endicott
George J. S. Gau, Ph.D., University of California at Berkeley-Eastman Kodak Company, Rochester
Mooi C. Gupta, Ph.D., Washington State University-Eastman Kodak Company, Rochester
Jerome Wagner, BS, Case Institute of Technology; MS, Ph.D., University of Wisconsin-Professor, Physics

Ali Ogut, B.Ch.E., Hacettepe University, Turkey; MS, Ph.D., University of Maryland-Associate Professor, Mechanical Engineering
Philip D. Rack, BS, Georgia Institute of Technology; Ph.D., University of Florida-Associate Professor, Microelectronic Engineering

Ryne P. Raffaele, BS, MS, Southern Illinois University; Ph.D., University of Missouri at Rolla-Professor, Physics

Sainasi Ramanan, BS, BE, M.Tech., Ph.D., Indian Institute of Technology-Associate Professor, Electrical Engineering
Center for Imaging Science
Ian Gatley, BSc, University of London; Ph.D, California Institute of Technology-Director; Professor Jonathan S. Arney, BS, Wake Forest University; Ph.D, University of North Carolina-Associate Professor Roy S. Bens, BS, MS, University of California; Ph.D, Rensselaer Polytechnic Institute-Richard S. Hunter Professor Roger L. Eaton Jr., BS, Haverford College; MS, University of Maryland; Ph.D, University of Arizona-Associate Professor Mark D. Fairchild, BS, MS, Rochester Institute of Technology-Ph.D, University of Rochester-Director, Munsell Color Laboratory; Professor Richard Hailstone, BS, Northern Illinois University; MS, Indiana University-Associate Professor Maria Helguera, BS, National Autonomous University of Mexico; MS, University of Rochester; Ph.D Rochester Institute of Technology-Visiting Professor Joseph Homak, BS, Utica College of Syracuse University; MS, Purdue University; Ph.D, University of Notre Dame-Professor Toel Kastner, BS, University of Maryland; MS, Ph.D, University of California-Associate Professor Ethan D. Montag, BA, BA, University of Pennsylvania; Ph.D, University of California at San Diego-Assistant Professor Zoran Ninkov, BS, University of Western Australia; M.Sc., Monash University; Ph.D, University of British Columbia-Professor Noboru Ohba, BS, MS, PhD, Tokyo University-Xerox Professor Jeff Pelz, BFA, MS, Rochester Institute of Technology-Ph.D, University of Rochester-Associate Professor Joe Pow, BS, University of Rochester; MS, Air Force Institute of Technology-Associate Director Navalgund Rao, BS, MS, BHI, India; Ph.D, University of Minnesota-Associate Professor Harvey Rhody, BSEE, University of Wisconsin; MSE, University of Cincinnati-Ph.D, Syracuse University-Professor John Schott, BS, Canisius College; MS, Ph.D, Syracuse University-Frederick and Anna B. Weidman Professor Anthony Vodacek, BS, University of Wisconsin; MS, Ph.D, Cornell University-Assistant Professor National Technical Institute for the Deaf
Office of the Vice President Robert R. Davila, BA, Gallaudet University; MS, Hunter College; Ph.D, Syracuse University-Vice President for NTID; Professor Gerard G. Walter, BA, St. Vincent College; M.Ed, Ed.D, University of Pittsburgh-Associate Professor Office of the Dean T. Alan Hurwitz, BS, Washington University; MS, St. Louis University; Ed.D, University of Rochester-Dean; Professor Dianne K. Brooks, BS, Howard University; MS, Gallaudet University-Associate Dean Gerald J. Buckley, BS, Rochester Institute of Technology; MSW, University of Missouri; Ed.D, University of Kansas-Associate Dean; Associate Professor Christine M. Licata, BA, MS, Canisius College; Ed.D, George Washington University-Associate Dean; - Associate Professor Geoffrey S. Poor, AA, Seattle Central Community College; BA, Vassar College; MA, Nazareth College of Rochester-Associate Professor Counseling Services Lee H. Twiman, BA, Indiana University: MA, Northern Illinois University; NCC-Associate Professor; Chairperson Robb E. Adams, BA, Hope College; MA, Eastern Michigan University; MS, State University of New York at Brockport; NCC; Ph.D, State University of New York at Buffalo-Associate Professor Gregory J. Connor, BS, Syracuse University; MS, Rochester Institute of Technology; NCC, NCCC-Associate Professor Delph D. Dagel, AAS, Finger Lakes Community College; BS, M.Ed, CAS, State University of New York at Brockport- NCC-Associate Professor Kathy L. Davis, BS, MS, New York State Teaching Certification, NCC, State University of New York at Brockport: Certificate, Rochester Institute of Technology-Assistant Professor Margaret A. Hoblit, BA, San Jose State University; MS, California State University at Sacramento; NCC- Assistant Professor Sara A. Kerstine, BA, University of San Francisco; MS, Western Oregon State University- NCC-Assistant Professor Patricia L. Lago-Avery, BS, Central Michigan University; MS, University of Arizona; NCC-Assistant Professor Cynthia Boda Lucas, BM, State University of New York at Potsdam; MM, State University of New York at Binghamton; MS, University of Rochester-Professional Staff Mary Karol Matchett, BA, Rochester Institute of Technology; MSW, Syracuse University-Professional Staff William E. Moore, BS, St. John Fisher College; MS, State University of New York at Brockport-Professional Staff Jane E. Mullins, BA, MA, Gallaudet University- NCC-Associate Professor’ Mark J. Rosica, BS, State University of New York College at Oswego; MS, Syracuse University; CAS, Gallaudet University-Visiting Assistant Professor Solange C. Skyer, BS, Rhode Island College; MA, Gallaudet University; NCC-Associate Professor Carl A. Spoto, BA, University of Rochester; MS, State University of New York Albany-Associate Professor Anne VanGinkel, BA, University of California at Santa Barbara; MS, Western Oregon State University; NCC-Assistant Professor RTT Counseling Center Donna C. Rubin, BA, Rutgers; MS, Syracuse University-Assistant Professor; Clinical Director William F. Yust, BA, M.Ed., University of Rochester-Assistant Professor Center for Arts and Sciences Laurie C. Brewer, BA, Ph.D, University of Rochester-Professor; Director Cultural and Creative Studies Joseph H. Bohner, BA, CUNY Queens College; MA, Ph.D, University of Wisconsin-Associate Professor; Chairperson Gerald S. Argetinger, BA, Brigham Young University; MA, Ph.D, Bowling Green State University- Associate Professor Jill Bradbury, BA, University of California; MA, Brown University-Lecturer Julie J. Cammeron, BA, Montana State University; M.Ed., Gallaudet University-Associate Professor Karen L. Christie, BS, M.Ed., Lewis and Clark College; Ph.D, University of Pittsburgh-Assistant Professor Barry R. Cullane, BA, University of Windsor; Ed.D, University of Rochester-Associate Professor Luane Davis, BA, CUNY Hunter College; MA, Goddard College-Visiting Assistant Professor Patricia A. Dun, BA, LeMoyne College; MS, University of Rochester-Associate Professor Danlila Peace Freeman, MFA, Ohio State University- Artist in Residence Patrick A. Graybill, BA, MS, Gallaudet University-Visiting Associate Professor Bonnie Meath-Lang, BA, Nazareth College of Rochester; MA, Western Illinois University; Ed.D, University of Rochester-Professor; Artistic Director Stephanie P. Polowe, BA, Wayne State University; MA, State University of New York at Brockport; Ed.D, University of Rochester-Associate Professor J. Matt Sears, BA, MA, Gallaudet University; Ph.D, The American University-Associate Professor Mary C. Vieillard, BA, American University-Artist-in Residence: Acting Thomas F. Warfield, BA, State University of New York Purchase-Lecturer Alan Will, BA, University of Hawaii, MFA, San Diego State University-Artist-in-Residence: Technical Director English Stephen F. Aldersley, BS, University of Surrey; MA, University of Lancaster; MS, College of St. Rose; Ed.D, University of Rochester-Associate Professor Kathleen E. Crandall, BA, MA, California State University at Fresno; Ph.D, Northwestern University- Associate Professor Peter L. Haggerty, BA, Wesleyan University; MA, Rutgers University-Visiting Professor Susan K. Keenan, BA, MA, University of Rochester; M.Ed; Ed.D, Columbia University-Assistant Professor Patricia Kenney, BA, Gallaudet University; BA, MA, California State College at Northridge-Visiting Instructor Larry J. LoMaglio, BA, St. John Fisher College; MA, University of Rochester; Ed.M, State University of New York Buffalo-Associate Professor Eugene Lylak, BA, State University of New York Buffalo; M.Ed; St. Michael’s College; Ed.D, University of Rochester-Associate Professor ’ Elizabeth H. O’Brien, BS, Maryhurst College; MA, Gallaudet University; Ed.D, State University of New York Buffalo-Professor John E. Panara, AS, Monroe Community College; BS, MA, State University of New York College at Brockport-Associate Professor John-Allen Payne, AA, San Diego City College; BA, California State University; MS, San Diego State University; Ph.D, University of Illinois-Associate Professor Kathryn L. Schmitz, BA, Duke University; MS, Rochester Institute of Technology-Professor Kathy Varone, BS, State University of New York College at Fredonia; MS, New York University-Visiting Assistant Professor First-Year Experiences Eleanor D. Rosenfield, BS, Ohio State University; MS, Indiana University-Associate Professor; Coordinator Administration and Faculty 377
Science and Mathematics
Vincent A. Daniele, BS, MS, State University of New York College at Cortland; Ph.D., Syracuse University-Professor; Chairperson
Ann B. Bonadio, BA, Mary Washington College; MS, University of Rochester-Associate Professor
Gary C. Blatto-Vallee, AAS, Rochester Institute of Technology; BS, State University of New York College at Brockport-Visiting Instructor
Joan A. Carr, BA, State University of New York College at Cortland; MS, University of New Hampshire-Associate Professor
Judy C. Egelston-Dodd, BS, MS, State University of New York Albany; Ed.D., State University of New York Buffalo-Professor
Judith E. MacDonald, MA, State University of New York at Geneseo; MS, University of Rochester-Professor
Ann B. Bonadio, BA, Mary Rochester-Assistant Professor
at Geneseo; MS, University of New York College at Cortland; MS, University of New York at Albany-Instructor
Larry K. Quinland, BA, University of Wisconsin at Madison; MA, MS, University of Wisconsin at Milwaukee; Ph.D., Waldon University-Associate Professor
Marie L. Kamn, BS, University of Puerto Rico; MS, Rochester Institute of Technology; Ed.D., University of Rochester-Associate Professor
Victoria J. Robinson, BS, MS, University of Illinois, Urbana-Associate Professor
Marvin C. Sachs, BS, MA, Ed.D., University of Rochester-Associate Professor
Maria Shustorovich, MS, Moscow State Pedagogical Institute-Assistant Professor
Joan B. Stone, BS, St. Lawrence University; MS, Syracuse University; Ed.D., Universiy of Rochester-Professor
Robert W. W. Taylor, BA, University of Southern California; MA, Yale University-Associate Professor
David C. Templeton, BA, Wittenberg University; MA, Northwestern University-Associate Professor
Sharron M. Webster, BS, MS, Rochester Institute of Technology-Visiting Instructor

American Sign Language and Interpreting Education
Rico Peterson, BA, Nazareth College; MFA, University of California, Los Angeles; Ph.D., University of California, Riverside-Associate Professor
Leisa Boling, AAS, National Technical Institute for the Deaf; BS, Nazareth College; MS, National Technical Institute for the Deaf-Assistant Professor
Cynthia Campbell, BS, Rochester Institute of Technology; MS, Syracuse University; DA, State University of New York at Albany-Former Associate Professor
Lynette S. Finton, BA, Augustana College; MS, Rochester Institute of Technology; BS, State University of New York at Empire State College; MA, University of Rochester-Associate Professor
Barbara Ray Holcomb, AAS, MS, Rochester Institute of Technology; BS, State University of New York College at Brockport-Associate Professor
Samuel K. Holcomb, AAS, Rochester Institute of Technology-Lecturer
Baldev Kaur Khalsa, BA, M.A., Western Maryland College-Assistant Professor
Dominique Leoubre, BA, University of Paris, France; BS, Western Connecticut State College; MS, Nazareth College of Rochester-Assistant Professor
Christine Monikowski, BS, Shippensburg State College; MA, Gallaudet University; MA, Ph.D., University of New Mexico-Associate Professor
William J. Newell, BA, St. Edwards University; MA, St. Cloud State University; Ph.D., Greenhwich University-Professor
Colleen Poulton, BA, Gallaudet University; MS, Western Maryland College-Visiting Instructor
June B. Reeves, BS, Mississippi College; MS, Jackson State University-Associate Professor
Jean Rodman, AAS, Rochester Institute of Technology; ME, Boston College-Visiting Instructor
Linda A. Siple, AAS, Monroe Community College; BSW, MS, Rochester Institute of Technology; PhD., State University of New York Buffalo-Professor
Jeanne M. Wells, BA, MacMurray College; MS, Rochester Institute of Technology-Associate Professor

Speech/Language
Paula M. Brown, BA, University of Missouri, Columbia; MA, Kent State University; MS, Ph.D., University of Rochester-Associate Professor; Chairperson
Allen A. Austin, BA, Indiana University at Bloomington; MA, University of Illinois at Urbana-Visiting Professor
Sidney M. Barefoot, AAS, State University of New York College of Environmental Science and Forestry; BS, State University of New York at Geneseo; MS, Pennsylvania State University-Associate Professor
John M. Conklin, AAS, Orange County Community College; BS, State University of New York at Geneseo; MS, State University of New York College at Geneseo-Associate Professor
Karen G. Dobkowski, BS, New York University; MS, Teachers College, Columbia University-Visiting Instructor
Marianne Gustafson, BS, Northwestern University; MS, Syracuse University-Associate Professor
Jacquelyn F. Kelly, BA, Nazareth College of Rochester; MS, University of New York College at Geneseo-Associate Professor
Brenda H. Whitehead, BS, State University of New York College at Geneseo; MA, Western Michigan University-Associate Professor

Center for Baccalaureate and Graduate Studies
Peter Lalley, BS, Siena College; MS, Catholic University of America; Ph.D., State University of New York Buffalo-Professor; Director

Audiology
Lawrence C. Scott, BS, State University of New York College at Geneseo; MS, Southern Illinois University, Carbondale-Associate Professor; Chairperson
Linda B. Bryant, BS, Nazareth College of Rochester; MS, Gallaudet University-Associate Professor
Catherine C. Clark, BA, Bradley University, Peoria; MS, University of Louisville-Assistant Professor
Donald G. Sims, BA, University of Colorado; MS, Ph.D., University of Pittsburgh-Associate Professor
Karen B. Snell, BA, University of Chicago; MA, State University of New York Buffalo; Ph.D., University of Iowa-Associate Professor
M. Josara Wallber, BS, Colorado State University; MS, Idaho State University-Assistant Professor
Valerie R. Yust, BA, College of St. Francis; MS, Gallaudet University-Assistant Professor

Business/Computing Technologies Support
James L. Biser, BS, Manchester College; MA, Michigan State University-Assistant Professor; Chairperson
Jack R. Clarqz, BS, State University of New York College at Brockport; MA, West Virginia University; Ed.D., Syracuse University-Professor
Christopher Catullick, AAS, BA, MS, Rochester Institute of Technology-Visiting Instructor
Ann M. Hager, BS, Nazareth College of Rochester; MA, University of Rochester-Associate Professor
Richard D. Orlando, BS, MBA, Rochester Institute of Technology-Associate Professor
Myra Bennett Pelz, BA, Douglass College of Rutgers; MA, New York University; MS, Rochester Institute of Technology-Associate Professor
Jane C. M. Stanislov, AAS, BS, Rochester Institute of Technology; MS, Stevens Institute of Technology-Instructor
Michael H. Steve, BA, University of Rochester; MS, Ph.D., Florida State University-Assistant Professor
Mark L. Wambach, BA, St. John Fisher College; MS, Rochester Institute of Technology-Assistant Professor

Center for Human Performance Support
Janice L. Strine, AAS, State University of New York Agricultural and Technical College at Cobleskill; BS, State University of New York Empire State College; MS, State University of New York College at Brockport-Assistant Professor

Liberal Arts Support
Linda A. Rubel, BA, Pennsylvania State University; MA, Ph.D., University of North Carolina-Chapel Hill-Assistant Professor; Chairperson
Maureen Barry, BS, D’Youville College-Visiting Assistant Professor
Eileen M. Biser, BA, Rochester College; MS, Rochester Institute of Technology-Associate Professor
Pamela R. Conley, AAS, Rochester College; MS, University of Rochester-Professor

College; MA, University of North Carolina at Chapel Hill; Ph.D.
- Southern Illinois University - Associate Professor
- Pamela Kincheloe, BA, Rollins College; MA, University of North Carolina at Chapel Hill; Ph.D.; Southern Illinois University - Assistant Professor
- Kenneth Lerner, BA, Beloit College; MS, University of Virginia - Visiting Instructor
- Michele A. Polican, BA, Nazareth College; MA, University of Toronto - Instructor
- Gail A. Rothman-Marshall, BA, State University of New York at Albany; MSED, State University of New York at Brockport; Ph.D., State University of New York Buffalo; NCC; CCMHC-Associate Professor
- Rose Marie Toscano, BS, Portland State University; MA, University of Rochester - Associate Professor

Social Work Support
- K. Dean Santos, BA, University of Minnesota, Twin Cities; MSW, San Diego State University - Associate Professor; Staff Chairperson
- Jessica A. LaSala, BS, Rochester Institute of Technology; MS, East Carolina University-Instructor

Science/Engineering Support
- Karen L. Beach, BA, Gustavus Adolphus College; MS, Rochester Institute of Technology - Visiting Assistant Professor
- Gail E. Binder, BA, Drew University; MS, University of Pennsylvania; MS, Rochester Institute of Technology - Associate Professor
- Dominic T. Bozzelli, BS, University of Notre Dame; MS, Rochester Institute of Technology; MS, CAS, State University of New York College at Brockport - Associate Professor
- Thomas L. Callaghan, BS, University of Massachusetts at Amherst; BSME, MS, Rochester Institute of Technology - Assistant Professor
- Warren R. Goldmann, BS, Stanford University; MS, Rochester Institute of Technology - Associate Professor
- Jane K. Jackson, BS, State University of New York Stony Brook; MS, University of Rochester - Assistant Professor
- Sharon L. Rasmussen, BA, State University of New York College at Geneseo; BS, Rochester Institute of Technology - Associate Professor
- Rosemary E. Saur, BA, Gustavus Adolphus College; MA, Ph.D., University of California at Santa Barbara - Associate Professor
- Glenda J. Senior, BS, University of Newcastle Upon Tyne; BS, Rochester Institute of Technology; MS, University of Rochester - Associate Professor
- Delegene Woldmedhin, BS, Haile Selassie University; MS, Addis Ababa University; BA, Idaho State University - Assistant Professor

Imaging Arts and Sciences Support
- Michael A. White, BFA, MFA, Rochester Institute of Technology - Assistant Professor; Chairperson
- Cathleen W. Chou, Certificate, New York University; BA, University of Rochester - Instructor
- Dawn Tower DaBois, BS, MS, Rochester Institute of Technology - Assistant Professor
- Andrea M. McNeill, BS, MS, Rochester Institute of Technology - Instructor
- Sidonie M. Roepke, BFA, MST, MS, Rochester Institute of Technology - Assistant Professor

Center for Institutional Services
- Albert Smith, BS, Wake Forest University; MS, Rochester Institute of Technology - Director

Center for Research, Teaching and Learning
- Jeffrey E. Porter, B.Ed., M.Ed., University of Virginia; Ph.D., Washington University - Associate Professor; Interim Director

Department of Research
- John A. Albertini, BA, Drew University; MS, Ph.D., Georgetown University - Professor; Chairperson
- Gerald P. Berent, BS, University of Virginia; Ph.D., University of North Carolina at Chapel Hill - Associate Professor
- Frank C. Caccamise, BA, St. John Fisher College; MS, Gallaudet University; Ph.D., University of Washington - Professor
- James J. DeCaro, BS, MS, State University of New York Buffalo; Ph.D., Syracuse University - Professor
- Carol Lee De Filippo, BA, Newark State College; MS, Purdue University; MS, Ph.D., Washington University - Associate Professor
- Susan B. Fischer, AB, Radcliffe College; Ph.D., Massachusetts Institute of Technology - Professor
- Susan B. Foster, BA, Northwestern University; BS, University of Maine; M.Ed., Bridgewater State College; Ph.D., Syracuse University - Professor
- Ronald R. Kelly, BS, M.Ed., Ph.D., University of Nebraska at Lincoln - Professor
- Harry G. Lane, BS, Bethany College MS, Rochester Institute of Technology; Ed.D., University of Rochester - Professor
- Gary L. Long, BA, University of Akron; MA,Ph.D., Texas Christian University - Associate Professor
- Marc Marschark, BA, Cornell University; MA, Ph.D., University of Western Ontario - Professor
- Barbara G. McKee, BA, MA, Michigan State University; Ph.D., Syracuse University - Associate Professor
- Kenneth R. Nash, BA, Duquesne University M.Ed., University of Pittsburgh; Ed.D., Columbia University - Associate Professor

Ila Parasnis, BA, MA, Nagpur University; India; MA, Ph.D., University of Rochester - Associate Professor
- Vincent J. Samar, BA, MA, Ph.D., University of Rochester - Associate Professor

Educational Resources
- Marsha Young MS, Pennsylvania State University; Ph.B., Wayne State University - Associate Professor, Chairperson
- E. William Clymer, AAS, BS, MBA, Rochester Institute of Technology; M.Ed., Syracuse University - Associate Professor
- Bary Siegel, BS, MS, Rochester Institute of Technology - Professor

Learning Center
- Jeffrey E. Porter, B.Ed., M.Ed., University of Virginia; Ph.D., Washington University - Associate Professor; Chairperson

Center for Technical Studies
- Thomas Race, BFA, MFA, Rochester Institute of Technology; Ed.D., State University of New York Buffalo - Professor; Director

Applied Computer Technology
- Elissa M. Olsen, AAS, BS, MS, Rochester Institute of Technology - Assistant Professor; Chairperson

Ophthalmic Optical Finishing Technology
- Donald H. Beil, BA, Y. Washington University; MS, Washington State University - Professor
- Karen Beiter, BS, MS, Rochester Institute of Technology - Instructor
- Dean J. Lam-y, AAS, BS, MS, Rochester Institute of Technology - Instructor
- David E. Lawrence, AAS, BET, University of Akron; MS, Rochester Institute of Technology - Assistant Professor
- James R. Mallory, AAS, Kent State University; BET, MS, Rochester Institute of Technology - Associate Professor
- Alan M. Ford, M.B.A, Golden Gate University; M.S., Rochester Institute of Technology - Instructor
- Reed Gershwind, BS, California State University at Northridge; M.B.A, Rochester Institute of Technology - Assistant Professor
- Edward B. Lord, AAS, Rochester Institute of Technology; BA, M.Ed., University of Massachusetts at Amherst - Associate Professor
- Edward J. McGee, A.S., Roosevelt Community College; B.Tech., MBA, Rochester Institute of Technology - Associate Professor

Administration and Faculty 379
Digital Imaging & Publishing Technology
Jean-Guy Naud, BS, MS, Rochester Institute of Technology-Professor; Chairperson
Frank C. Argento, BFA, MFA, Rochester Institute of Technology-Associate Professor
Omobowale Ayorinde, BFA, Massachusetts College of Arts; MFA, Rochester Institute of Technology-Assistant Professor
Gilbert Beverly, BA, National Louis University; MS, Rochester Institute of Technology-Instructor
Julius J. Chiavaroli, B.Arch, University of Notre Dame; MBA, Rochester Institute of Technology; AIA, Licensed Architect-Associate Professor
David Cohn, BFA, Rochester Institute of Technology-Lecturer
David E. Hazelwood, BS, Rochester Institute of Technology-Assistant Professor
Kenneth F. Hoffmann, BS, Seton Hall University; M.Ind.Ed., Clemson University-Professor
Nancy J. Marrer, BA, Franklin Pierce College; MS, Rochester Institute of Technology-Assistant Professor Edward Mineck, BA, University of Connecticut; MFA, Rochester Institute of Technology-Associate Professor
Thomas J. Policano, BS, University of Rochester; MFA, State University of New York Buffalo-Associate Professor
Antonio Toscano, Diploma, Atelier Frochot, Paris, France; BFA, Museum Art School; MFA, Rochester Institute of Technology-Associate Professor

The National Advisory Group
Dr. Paul Ogden, Chairperson; Professor, Deaf Studies, California State University at Fresno
Mark Agudaca, Director, Communication Services for the Deaf, Georgia Sensory Rehabilitation Center
Nancy Can; Director, Office of Services, Bergen Community College, Bergen, NJ
Dr. Juanita Rodriguez Colon, Director, Department of Graduate Studies, School of Education, University of Puerto Rico
Marc Dugan, Former President, Self Help for the Hard of Hearing
Dr. Edward Franklin, Executive Director, Arkansas Association of Two-Year Colleges
Dr. Thomas Holcomb, Professor, Oholone Community College
Shanny Mow, Actor, Playwright, and Director
Jelica Nucki, Case Manager, Deaf-Blind Service Center, Seattle
David Pierce, Vice President of Programming and Operations, Kaleidoscope Network, Inc.
Jane Ratcliffe, Pulver-Member, Board of Trustees, Rochester Institute of Technology; Teacher (Retired)
Peter C. Thorp, Retired Vice President, Citibank-University Relations and Educational Programs

Dr. Sylvia Walker, Professor Emerita, School of Education and the Graduate School of Arts and Sciences, Howard University
Dr. Olga Michele Welch, Professor, Department of Special Services Education, University of Tennessee
Knoxville
Robert Wirth, President and General Manager, Hotel Hassler, Rome, Italy
Barbara Jean Wood, Commissioner, Massachusetts, Commission for the Deaf and Hard of Hearing

U.S. Government Representatives
The Honorable Louise M. Slaughter Member, U.S. House of Representatives, New York State
The Honorable Charles E. Schumer, Member, United States Senate, New York State

Honorary Members
W. Frank Blount-Chief Executive Officer, Australian and Overseas Telecommunication Corporation
The Honorable Hugh L. Carey-Former Governor, New York State

Emeritus Faculty
Irrv Adduci, Professor Emeritus, College of Science
Louis Alexander, Professor Emeritus, Physical Education
Louis Andolino, Professor Emeritus, Liberal Arts
Charles Arnold Jr., Professor Emeritus, Photographic Arts and Sciences
Bekir Arpag, Professor Emeritus, Printing Management and Sciences
David Baker, Professor Emeritus, College of Applied Science and Technology
Robert W. Baker, Professor Emeritus, College of Applied Science and Technology
Art Berman, Professor Emeritus, College of Liberal Arts
Keefer Bond, Professor Emeritus, College of Imaging Arts and Sciences
Philip Bornarth, Professor Emeritus, College of Imaging Arts and Sciences
Edward Brabant, Professor Emeritus, Printing
George Brown, Professor Emeritus, Kate Gleason College of Engineering
Joseph E. Brown, Professor Emeritus, Printing Management and Sciences
Donald Bujnowski, Professor Emeritus, College of Imaging Arts and Sciences
James I. Campbell, Professor Emeritus, College of Liberal Arts
Walter A. Campbell, Professor Emeritus, Printing Management and Sciences
Robert Clark, Professor and Dean Emeritus, College of Science
Douglas A. Coffey, Professor Emeritus, College of Liberal Arts
Sarah Collins, Professor Emeritus, College of Liberal Arts

430 Administration and Faculty

John Compton, Professor Emeritus, College of Imaging Arts and Sciences
Henry F. Cooke, Professor Emeritus, College of Applied Science and Technology
Norman R. Coombs, Professor Emeritus, College of Liberal Arts
Lawrence A. Coo, Professor Emeritus, College of Applied Science and Technology
W. Frederick Craig, Associate Professor Emeritus, Printing Management and Sciences
Elizabeth Crot, Associate Professor Emeritus, College of Liberal Arts
Neil Croom, Professor Emeritus, Photographic Arts and Sciences
Irma Current, Professor Emeritus, Printing Management and Sciences
Margaret D’Ambruso, Professor Emeritus, College of Science
Joseph DeLorenzo, Professor Emeritus, Kate Gleason College of Engineering
William J. DeRitter, Professor Emeritus, College of Liberal Arts
Charles DeRoller, Associate Professor Emeritus, College of Applied Science and Technology
David Dickinson, Professor Emeritus, College of Imaging Arts and Sciences
Stanley M. Dye, Distinguished Lecturer Emeritus, College of Business
F. Kineslev Elder, Professor Emeritus, College of Science
Robert A. Elison, Professor Emeritus, Kate Gleason College of Engineering
Louis Eitzelh, Professor Emeritus, College of Liberal Arts
David Engel, Professor Emeritus, Photographic Arts and Sciences
Lotha; Engelmann, Professor Emeritus, Photographic Arts and Sciences
Janet Farnum, Professor Emeritus, College of Liberal Arts
Joseph Fitzpatrick, Professor Emeritus, College of Liberal Arts
James D. Forman, Professor Emeritus, College of Applied Science and Technology
Hugh Fox, Professor Emeritus, College of Imaging Arts and Science
Clifton Frazier, Professor Emeritus, College of Imaging Arts and Sciences
Jon Freckleton, Associate Professor Emeritus, Kate Gleason College of Engineering
Earl W. Fuller, Professor Emeritus, Physical Education
Lester Fuller, Professor Emeritus, College of Science
Dale F. Gibson, Associate Professor Emeritus, Business
Robert Gilman, Professor Emeritus, College of Science
Peter Giopulos, Professor Emeritus, College of Imaging Arts and Sciences
James Glasenapp, Professor Emeritus, College of Science
Dane Gordon, Professor Emeritus, College of Liberal Arts
Robert Haefner, Professor Emeritus, College of Imaging Arts and Sciences
Paul A. Haefner, Professor Emeritus, College of Science
Frances H. Hamblin, Professor Emeritus, Liberal Arts
Robert Hefner, Professor Emeritus, Kate Gleason College of Engineering
Edwin O. Hennick, Associate Professor Emeritus, Liberal Arts
Academic Probation-A formal warning from your college dean that you are in danger of being suspended or dismissed from RIT because your grade point average (GPA) has fallen below 2.00 (C average). (See page 325 for a more complete description.)

Accredited-An academic program, school or university that has been reviewed by an appropriate educational association and meets its standards of quality in academics and services is accredited. RIT is accredited by the Middle States Association of Colleges and Schools, and several of its academic departments and programs have received additional accreditation by national associations within their discipline.

Audit-Attending a course without receiving an evaluation grade (such as A, B, etc.) or receiving credit. To audit a course, you must formally register for it and have the permission of the department. Audited courses may not be used to fulfill degree requirements, although the course and an audit notation of Z will appear on your official transcript.

Cooperative education (co-op)-The opportunity to work in a fulltime, paid position related to your field of study. Co-op is a formal component of many RIT programs. Co-op experiences are divided into “blocks” of one quarter each and do not carry credit. They are usually scheduled during your final two years of study and should be carefully coordinated with your adviser, the Office of Cooperative Education and Career Services and your employer. Registration is required.

Credit by exam or experience-Academic credit awarded based on evaluation of a comprehensive examination, interview or record review.

Credit hour-The numerical value assigned to courses, internships and other educational experiences. RIT follows a quarterly academic calendar, so its base measure is the quarter credit hour, which generally equals two-thirds of a semester hour.

Curriculum-The set of courses that, when successfully completed, can qualify a student for an academic degree. The curricula for all of RIT’s degree programs have been reviewed with the New York State Education Department.

Discipline-A distinct academic area of study. At RIT, most programs are interdisciplinary, or include course work from a variety of areas of study.

Distance learning-A means of earning a certificate or degree off campus through methods such as cable TV broadcasts and videotapes of lectures; teleconferences; computer conferences; and on-line computer services such as electronic blackboards, picture phones and electronic mail. These technologies enable RIT’s distance-learning students to follow the same course system of study as on-campus students.

Drop/add-Formally changing the set of courses in which you are enrolled in any quarter by adding or removing yourself from an official class list for a course. You may add or drop a course until the end of the sixth class day of a quarter, as specified on the academic calendar. If you do not officially resolve your registration status, you may receive a failing grade for a course you have stopped attending or not receive credit for a course you have begun attending.

Dual degree program-A program combining the course curriculums from a bachelor’s degree program and a master’s degree program. This produces a streamlined curriculum that allows selected students to earn both a bachelor’s and master’s degree at the same time.

Evening program-An academic program specifically designed for students who attend college part time. The RIT Budget Committee has approved specific evening programs as eligible for “evening division” tuition rates.

Full-time student-A student registered for at least 12 quarter credit hours of course work per quarter (excluding audits and credits by exam or experience) or registered for a cooperative education work block during the quarter.

Good standing-A student eligible to enroll in courses (not suspended) as verified by the Office of the Registrar. Certain financial aid programs have specific “standards of progress” by which students are determined to be in “good standing” and therefore eligible for aid. See Academic Progress Requirements beginning on page 386.

Half-time student-A student registered for six to 11 credit hours during a quarter.

Internships/field instruction-An experiential learning program in which students are placed into a public or private agency to work with professionals in their field of study. The student is eligible for academic credit for the work and is supervised and supported by a mentor while in the position.

Lower-division course-An undergraduate course typically taken during the first or second years of study (100 to 300 level).

Matriculated student-A student who has been formally accepted into an academic program and begins a course of study. You must be matriculated in order to receive degrees or other formal awards from RIT.

New student orientation programs-Orientation is held a week before the start of academic classes for students who will enter RIT during the upcoming academic year and their parents. Tours of campus; meetings with key staff, faculty advisors, and fellow students; and opportunities to change majors or courses is some of the many activities offered.

New York State Immunization Certification-New York State Public Law 2165 (June 1989) requires RIT to either verify that students have been immunized according to state health law (see pages 342, 343, and 348 for specifics) or deny them access to RIT facilities. For more information, contact the RIT Student Health Center.

Part-time student-A student registered for at least one course during a quarter, excluding audits and credits by exam or experience.

Residency-Term for the minimum number of credit hours a student must earn at RIT to be eligible for academic certification and completion of degree requirements. The residency requirement ensures that RIT faculty have sufficient opportunity to evaluate your academic abilities.

Summer Vestibule Program-An orientation and evaluation program designed and offered specifically for incoming NTID students with hearing impairments.
Index

A
ASL-English Interpretation 136
Academic
Accommodations Office 330
Assessment Program 330
Programs of Study 331
Progress Requirements 356
Accounting
Major .. 52
Technology, NTID 143
Accreditation
(see also individual programs) 6
Administrative Support Technology,
NTID ... 144
Admission
Applying for, NTID 348
General .. 347
Guidelines, Freshman 349
Transfer ... 350
Requirements, NTID 354
Advertising Design Diploma 84
Advertising Photography 90
Aerospace
Engineering Option 73
Studies, Department of 46
Air Force Reserve Officer Training Corps
(AFROTC) .. 48
Alcohol and Drug Policy 344
Allied Health Sciences Programs 123
American Crafts, School for 77, 83
Apartment Housing 335
Application Requirements 348
Applied
Arts and Science Degrees 40
Computer Technology, NTID 138
Mathematics .. 120
Science and Technology, College of 15
Course Descriptions 164
Statistics .. 121
Army Reserve Officer Training Corps
(ROTC) .. 46
Art and Computer Design, NTID 141
Art, School of .. 77, 79
Arts and Sciences Curriculum
NTID ... 132
Requirements ... 132
Audiology Department, NTID 332
Auditing Courses 325
Automation Technologies, NTID 149
Automotive Engineering Option 74

B
Biochemistry Program 113
Biological Sciences 109
Biology Program 109
Biomedical
Computing Program 123
Photographic Communications 87
Biotechnology Program 110
Black Awareness Coordinating
Committee ... 336
Books and Supplies, Costs 353
Bookstore (see Campus Stores) 353
Buckley Amendment 324
Business
Careers, NTID .. 143
College of ... 50
Course Descriptions 189
Business and Management 44
and Management Studies 42
Technology, NTID 145

C
Campus
and Community 7
Life ... 335
Ministries ... 326
Safety Department 342
Stores .. 342
Visits ... 134, 348
Career Exploration Studies, NTID 111
Ceramics and Ceramic Sculpture 63
Chemistry Programs 111
Child Care Technological
Education ... 17
Civil Engineering Technology 17
Class Attendance 325
College
Activities Board 336
Program ... 330
Restoration Program 330
Skills Restoration Program, NTID 131
Colleges
and Degrees ... 5
Applied Science and Technology 15
Business ... 50
Computing and Information Sciences 57
Engineering .. 65
Imaging Arts and Sciences 77
Liberal Arts ... 95
National Technical Institute
for the Deaf .. 130
Science .. 106
Combined Bachelor’s/ Master’s Degree
Programs .. 51
Chemistry .. 111
Computer Engineering 68
Computer Science 58
Electrical Engineering 71
Graphic Media 93
Industrial and Systems Engineering 72
Mathematics and Statistics 120
Mechanical Engineering 74
Polymer Chemistry 111
Commission for Promoting Pluralism 343
Communication Program 343
Computational Mathematics 121
Computer
Aided Drafting Technology, NTID 151
Engineering ... 68
Engineering Technology 20
Graphics Certificate 45
Integrated Machining Technology, NTID 154
Science .. 58
Use, Code of Conduct 329, 343
Computing
Services (see Information Technology Services)
Computing and Information Sciences
B. Thomas Golisano College of 57
Confidentiality of Student Records 324
Cooperative Education and Career Services
Requirements ... 11
(see also individual programs)
Costs of Attending RIT through NTID 134
Counseling
Center .. 327
Services, NTID 135, 332
Course Descriptions 164
Childcare (see Margaret’s House) 163
Registration ... 325
Crafts ... 83
Creative Arts Program 339
Credit by Exam ... 348
Criminal Justice Program 99
Curriculum
Liberal Arts ... 9
Mathematics and Science 10
D
Day Care (see Margaret’s House) 307
Deaf Studies, NTID 307
Deaf Studies Certificate 157
Deans ... 965
Dean’s List Eligibility 325
Design, School of 77, 80
Diagnostic Medical Sonography
(Ultrasound) Program 127
Digital Imaging and Publishing
Technology, NTID 147
Disability Services Coordinator 330
Distinguished Professorships 365
Drug and Alcohol Policy 344
E
Early Decision Plan 347
Economics Program 100
Educational Technology Center 328
Electrical
Engineering .. 69
Engineering Technology 19
Mechanical Engineering Technology 23
Emergency Management Certificate 37
Engineering
Kate Gleason College of 65
Course Descriptions 202
Science .. 66
Technology .. 16
English Language Center 328
Environmental
Chemistry Option 113
Management Science Certificate 36
Management and Technology 35
Science Program 116
Expenses and Financial Aid 352
Evening Division 353
Extended Studies Diplomas
in Art, Design 84

F
Faculty .. 366
Emeritus .. 379
Fee Schedule ... 352
Film and Animation, School of 77, 85
Film/Video Animation 85
Finance Major 53
Financial Aid .. 354
Academic Progress Requirements 356
Programs (Chart) 359
Refund Policy .. 358
Fine Art Photography 91
Fine Arts
Diploma .. 84
Studio .. 79
First-Year Experiences Program, NTID 132
First-Year Enrollment Program 11, 326
Food
Management ... 31
Marketing and Distribution 32
Foreign Language Instruction 328
Furniture Design, Woodworking and 83
M

Management (also see Quality Management)
- Certificate: 43
- Development Program: 43
- Diploma: 43
- Major: 54
- Web Systems Development Certificate: 55
- Medical Management and Mechanical Engineering Technology: 23
- Margaret’s House (Child Care): 340
- Marketing Major: 55
- and Science General Education Curriculum: 10
- and Science General Education Curriculum: 10
- and Statistics Programs: 19
- Mechanical Engineering: 73
- Aerospace Option: 73
- Automotive Option: 74
- Technology: 26
- Mechanical Technology, AAS: 27
- Mediation Services: 346
- Medical Illustration: 79
- Imaging Technologies: 125
- Laboratory Technology Program: 124
- Mental Health Services, NTID: 135, 332
- Metals and Jewelry Design: 83
- Microelectronic Engineering: 75
- Military Science, Department of: 46
- Ministries, Center for Campus: 332
- Multidisciplinary Studies, Center for: 38

N

National Technical Institute for the Deaf (NTID)
- Course Descriptions: 296
- New Media: 23
- Design and Imaging: 83
- Publishing: 94
- North Star Center for Academic Success & Cultural Affairs: 331
- Notification and Appeal, Academic: 357
- Emergency: 342
- Nuclear Medicine Technology Program: 125
- Nutrition Management: 34

O

Off-Campus and Apartment Student Association
- Officers: 336
- Ophthalmic Optical Finishing Technology, NTID: 156
- Organizational Development Certificates: 40
- Orientation, New Student: 327

P

Packaging Science
- Part-time Employment Services: 348
- Studies: 348
- Engineering Science: 66
- Extended Studies in Art and Design: 84
- Undergraduate Programs: 12

Payment
- Plans: 355
- Procedures: 352, 353
- Performing Arts Certificate, NTID: 157
- Performing Arts Certificate, NTID: 157
- Photography: 90
- Physician Assistant Program: 124
- Physics Program: 122
- Policies and Procedures, Academic: 324
- Polymer Chemistry: 315
- Portfolio Guidelines: 78
- Pre-baccalaureate Studies, NTID: 131, 158

Premedical Studies
- Print Media, School of: 77, 91
- Probation, Academic: 325
- Professional and Technical Communication: 97
- Photographic Illustration: 30
- Professorships, Distinguished: 365
- Programs (see Undergraduate Programs)
- Psychology Program: 101
- Public Relations Communications Certificate: 44
- Publications, Student-Produced: 338
- Public Policy Program: 102

Q

Quality Management Certificate
- 42

R

Refund Policies
- 353
Registration
- 325
Required Courses, NTID
- 132
Research Projects, Sponsored
- 6
Reserve Officer Training Corps (ROTC)
- 46
Residence Halls
- 335
Association
- 336
Retention
- 325
RIT Exploration Program
- 105

S

Safety Technology
- 36
Scholarships
- 357, 362
School for American Crafts
- 77, 83
School of
- Art: 77, 79
- Design: 77, 80
- Film and Animation: 77, 85
- Photographic Arts and Sciences: 77, 94
- Print Media: 77, 91
- Science College of: 106
- Course Descriptions: 275
- Sexual Assault Information Hotline: 342
- Harassment/Misconduct Policies: 342
- Small Business Management Certificate: 42
- Social Work Program: 104
- Software Engineering: 60
- Speech and Language, NTID: 332
- Sports: 341
- Statistics and Mathematics Programs: 119

Student
- Alumni Union: 338
- Clubs and Organizations: 337
- Conduct & Mediation, Office of: 346
- Conduct Policies: 343
- Congress, NTID: 336
- Government: 336
- Health Center: 341
- Housing: 335
- Organizations: 336
- Professional Associations: 338
- Publications: 338
- Records: 324
- Retention: 325
- Sickness Insurance Plan: 353
- Support Services: 331
- Transition and Support, Center for: 336
- Volunteer Center: 338
- Study Abroad Program: 334
- Summer Study Abroad Program, NTID: 333
- Suspension, Academic: 325
Index 385

T
Technical
 Communication Certificate 45
 Education Programs,
 NTID (chart) 137
Telecommunications Engineering
 Technology...................................... 21
 Terminology.................................. 382
 Transcripts 324
 Transfer Credit.............................. 348
 Translation Service 328
 Travel and Tourism Management 33
 Trustees...................................... 354
 Tuition Assistance Program (TAP) 356
 and HEOP 331

U
 Ultrasound (see Diagnostic Medical Sonography)
Undeclared Options
 Engineering 67
 Engineering Technology 17
 RIT Exploration Program 105
 Science 108
Undergraduate Programs,
 Full- and Part-time 12

V
 Vehicle Registration 342
 Veteran Enrollment Services 334
 Visits to Campus 348
 Vocational Rehabilitation 353

W
 Wallace Library 8, 334
 Wellness Education Requirements 11
 Withdrawal from Courses 325
 Women’s Center 327
 Woodworking and Furniture Design 63