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Abstract

The edge betweenness centrality of an edge is defined as the ratio of shortest paths between all pairs of

vertices passing through that edge. A graph is said to have k-uniform edge betweenness centrality, if there

are k different edge betweenness centrality values. In this thesis we investigate graphs that have k-uniform

edge betweenness centrality where k = 2 or 3, and precisely determine the edge betweenness centrality values

for various families of graphs.
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1 Introduction

The betweenness centrality of a vertex v is the ratio of the number of shortest paths between two other vertices u

and w which contain v to the total number of shortest paths between u and w, summed over all ordered pairs of

vertices (u,w). This idea was introduced by Anthonisse [2] and Freeman [7] in the context of social networks, and

has since appeared frequently in both social network and neuroscience literature [8, 21, 5, 9, 13, 12, 10, 6, 16, 23].

Here are some definitions that will be used later on. We note that, for undirected graphs, shortest paths from

x to y are regarded as the same as shortest paths from y to x, though the associated contribution to the sum

B′G(e) is double-counted. Many results on edge betweenness were obtained by Gago [10, 12], and [13]. The case

where k = 1 was studied by Newman, Miranda, Flórez, and Narayan [19].



2 Background

Consider points, which we will call vertices, interconnected with one another with the use of some edges.

We can see that there are some edges which are more important to the graph as a whole than others. Some

edges are considered more important because if we, for example, take those important edges away; we will be

left with a set of a few distinct clusters of vertices which we will call communities.

When separating a graph into communities we use the Girvan-Newman Algorithm. This method says:

• Calculate all edge betweenness centralities

• Remove the edge with the highest edge betweenness centrality

• Recalculate all edge betweenness centralities

• Repeat step 2 until there are no edges left

We will be studying graphs that have k-uniform edge betweenness centrality, meaning that the graphs have

exactly k edge betweenness centrality values. In the case where k=1, when using the Girvan-Newman Algorithm

the choice of the first edge to remove can be done arbitrarily (no edge is better than any other edge). In general,

for graphs with k-uniform edge betweenness centrality there is a choice between k types of edges to remove in

the first step.



Now consider a more intricate graph: We can see that this graph is separated into five communities. The

separation is based on the Girvan-Newman Algorithm. This is actually a graph of a social network of bottlenose

dolphins. Each node is a dolphin with the circles and squares as the primary separation and the different colored

circles as a secondary separation.

Consider the following graph where the vertices are the ones being weighed. As we can see here, this is a graph

of relationships within the popular TV show, Game of Thrones. As the larger nodes represent the vertices with

the biggest betweenness centrality. Similarly as with the edges, the Girvan-Newman Algorithm would work here

as well.



3 Definitions

Definition 3.1. The edge betweenness centrality of an edge e in a graph G, denoted B′G(e) (or simply B′(e)

when G is clear), measures the frequency at which e appears on a shortest path between two distinct vertices x

and y. Let σxy be the number of shortest paths between distinct vertices x and y, and let σxy(e) be the number

of shortest paths between x and y that contain e. Then B′G(e) =
∑
x,y

σxy(e)
σxy

(for all distinct vertices x and y).

We will also define the total edge betweenness centrality of a graph to be B′(G).

Definition 3.2. A graph G has k-uniform edge betweenness centrality, or is edge-betweenness-k-

uniform, if B′G(e) has exactly k values over all edges e in G.

Definition 3.3. A circulant graph Cn(L) is a graph on vertices v1, v2, ..., vn where each vi is adjacent to

v(i+j)(modn) and v(i−j)(modn) for each j in a list L.

Definition 3.4. A diametrical edge is an edge on a circulant graph Cn(L) between two vertices vi − vi+n
2

with the vertex number being (mod n). This edge, in effect, cuts the graph in half.



4 Results

For our research, we have looked at different circulant graphs and their properties. First, consider a circulant

graph on n vertices with edges around the perimeter as well as diametrical edges throughout. To have a

diametrical chord, the value of n will have to be even. We will first consider the cases where n is a multiple of

4. We will look at the diametrical chord.

Lemma 1: On a circulant graph of the form Cn(1, n2 ), making a path from v1, we can traverse to vi, where

2 ≤ i ≤ k and 3k ≤ i ≤ 4k, strictly using the outer perimeter.

Proof. We have a graph with 4k vertices with 4k edges around the perimeter. Separate the graph into quarters

such that the dividing vertices end up being v1, vk, v 4k
2

, and v3k. We are able to say that these vertices will

always exist and will divide the graph as stated because the total number of vertices is 4k and 4k
4 = k which

is the number or vertices in each quarter. If we wish to traverse from v1 to any vertex vi where i < k, we

can easily go around the perimeter and have the shortest edge without needing to traverse a diametrical chord.

Say we wish to find the shortest path between v1 and vk. We can see that v1 and v 4k
2

are equidistant from vk.

This means traversing the diametrical chord would be an extra step, adding an edge to the path. Thus, to find

the shortest path would mean not traversing the diametrical chord and instead traversing the perimeter. The

same will hold for a path between v1 and v3k. Hence, it will always be true that the shortest paths between

v1 and vi, where 2 ≤ i ≤ k and 3k ≤ i ≤ 4k, can always be traversed with a path exclusively on the perimeter.

Theorem 2: If you have a circulant graph Cn(1, n2 ) where n = 4k edges, the edge betweenness centrality

of the diametrical chord will be n− 2.

Proof. We will proceed by proof by induction. Consider a circulant graph with 8 vertices of the form C8(1, 4).

We will number the vertices counter-clockwise. Consider the diameter edge of v1 − v5.

There is only one way to get a chord from v1 − v5 and it is through the colored edge so it will have an edge

betweenness centrality of B′1(e) = 1. From v1 − v4 there are two paths with one of them going through the

colored edge:

v1 − v5 − v4



Figure 1: C8(1, 4)

v1 − v8 − v4

This would make the edge betweenness centrality for v1 − v4 to be 1
2 . There are three such other cases from

v1−v6, v8−v5, and v2−v5. So the total edge betweenness centrality on two edges is B′2(e) = 4( 1
2 ) = 2. Consider

shortest paths on three edges. As we can see by the graph, any path between two vertices on three edges can

be traversed by two edges from the other direction. Thus there are no shortest paths of length 3. If we add the

total centralities and multiply it by 2 to take into consideration the backwards path, we get 2(1 + 2) = 6 and

we notice 6 = 8− 2.

Now consider n = 4k where k is a positive integer. The circulant graph will be C4k(1, 4k2 ). Imagine an edge

from v1 to v 4k
2 +1. There will be only one path from v1 to v 4k

2 +1. So the edge betweenness centrality for paths

on one edge is B′1(e) = 1. We will notice that a − b = 1 − 4k
2 + 1 ≡ 4k

2 (mod 4k). Now look at shortest paths

with two edges. There will be a total of 8 paths between 4 different pairs of vertices:

• v1 − v 4k
2

:

v1 − v 4k
2 +1 − v 4k

2

v1 − v4k − v 4k
2

• v1 − v 4k
2 +2:

v1 − v 4k
2 +1 − v 4k

2 +2



v1 − v2 − v 4k
2 +2

• v2 − v 4k
2 +1:

v2 − v1 − v 4k
2 +1

v2 − v 4k
2 +2 − v 4k

2 +1

• v4k − v 4k
2 +1:

v4k − v1 − v 4k
2 +1

v4k − v 4k
2
− v 4k

2 +1

Their total edge betweenness centrality will be B′2(e) = 4( 1
2 ) = 2. We notice that between two points v1 and

v 4k
2

we have 1− 4k
2 ≡

4k
2 − 1 (mod 4k). Now look at shortest paths between two points on three edges. There

will be a total of 18 paths between 6 pairs of vertices.

• v1 − v 4k
2 −1

:

v1 − v 4k
2 +1 − v 4k

2
− v 4k

2 −1

v1 − v4k − v 4k
2
− v 4k

2 −1

v1 − v4k − v4k−1 − v 4k
2 −1

• v1 − v 4k
2 +3:

v1 − v 4k
2 +1 − v 4k

2 +2 − v 4k
2 +3

v1 − v2 − v 4k
2 +2 − v 4k

2 +3

v1 − v2 − v3 − v 4k
2 +3

• v2 − v 4k
2

:

v2 − v 4k
2 +2 − v 4k

2 +1 − v 4k
2

v2 − v1 − v 4k
2 +1 − v 4k

2

v2 − v1 − v4k − v 4k
2



• v3 − v 4k
2 +1:

v3 − v 4k
2 +3 − v 4k

2 +2 − v 4k
2 +1

v3 − v2 − v 4k
2 +2 − v 4k

2 +1

v3 − v2 − v1 − v 4k
2 +1

• v4k − v 4k
2 +2:

v4k − v 4k
2
− v 4k

2 +1 − v 4k
2 +2

v4k − v1 − v 4k
2 +1 − v 4k

2 +2

v4k − v1 − v2 − v 4k
2 +2

• v4k−1 − v 4k
2 +1:

v4k−1 − v 4k
2 −1
− v 4k

2
− v 4k

2 +1

v4k−1 − v4k − v 4k
2
− v 4k

2 +1

v4k−1 − v4k − v1 − v 4k
2 +1

We will see that there are three edges between each set of two vertices and only one of the edges will go through

the colored edge between v1 to v 4k
2 +1. Looking at each set of three edges, we can see that the path from v1 to

v 4k
2 +1 appears in only one of the three edges for each pair of vertices. We can also see that for each vertex pair,

the edge v1 to v 4k
2 +1 appears as either the first connecting edge, the second connecting edge, or the third. We

also note that to get across the graph, one would need to traverse a single diametrical chord. Since there is only

one diametrical chord that needs crossing for each set of edges and there are three different edges between the

vertex pairs, the colored edge can only be traversed as one of the three edges crossed. This would then make

B′3(e) = 6( 1
3 ) = 2. Here we notice 1 − 4k

2 − 1 ≡ 4k
2 − 2 (mod 4k). For a circulant graph on 4k vertices, there

will be shortest paths between vertices on 1, 2, ..., 4k4 = k edges. This is because moving from vertex labeled v1

counter-clockwise, we will get 1
4 around the circle until we reach a vertex where there is a shorter way to get to

that extra vertex. We also notice, that as we increase the number of edges in the path, we decrease the modulus

that the difference of the two vertices is equal to by 1 as well. We will also find that total edge betweenness

centrality, accounting for paths from a to b and b to a, we have B′(e) = 2(1 + 2(k − 1)).



As we can see, this does follow the pattern that B′(e) = n− 2. Hence, by induction, this will hold for all k.

Now we are going to consider the short outer chord on the same graph.

Lemma 3: On a circulant graph of the form Cn(1, n2 ), there will be paths with at most k edges.

Proof. Consider a graph on 4k vertices with 4k edges around the perimeter. We have k = n
4 . Consider a path

on k + 1 edges. Since from n
2 there are k edges to the left and k edges to the right, trying to traverse k + 1

edges would not be the shortest path. It would be shorter to traverse k edges from v1 in either direction than

to traverse v1 − vn
2

to the desired vertex. So the maximum length of shortest paths would end up being k = n
4 .

For this reason, the vertices v3k+1 and vk+2 are not traversed along with the colored edge since there is a shorter

path which does not contain it.

Now consider the paths between two vertices on k edges. The vertex pairs we will traverse are as follows:

v1 − v3k

v4k − v3k−1

v4k−1 − v3k−2

...

v3k+2 − v2k+2

There will be a total of 2(k − 1) different vertices with k − 1 different betweenness centralities.

Lemma 4: On a circulant graph of the form Cn(1, n2 ), there will be 2(m − 1) different vertex paths with

m vertices and there will be m− 1 different betweenness centralities.

Proof. If we have a path with m vertices, we will have m−1 edges between them. We know that the edge v1−v2

will appear in one of m− 1 different locations. As the edge v1 − v2 moves from the beginning to the end of the

path, the edge betweenness centrality decreases. This method will give the first m−1 distinct centralities which

start from vertices v1, v4k, v4k−1, · · · ,v3k+2. The other m− 1 vertices behave in an opposite manner from the

first m− 1. These paths start from v2k+1, v2k, · · · ,vk+3. These paths then end on vertices vk, vk−1, · · · , v2. As



we can see, as the edge v1−v2 moves from the beginning to the end of the path, the edge betweenness centrality

increases unlike stated previously. These paths also do not double count. Hence, we will have 2(m−1) different

paths with m− 1 different betweenness centralities.

Theorem 5: If you have a circulant graph Cn(1, n2 ) where n = 4k edges with k ∈ Z, the edge betweenness

centrality of the short chord will be 2k2.

Proof. We will proceed by proof by induction. Consider a circulant graph with 12 vertices of the form

C12(1, 6).We will number the vertices counter-clockwise. consider the chord v1 − v2.

Figure 2: C12(1, 6)

We have that there is only one way to traverse each of the following paths and all of them go through the colored

edge:

v1 − v2

v1 − v2 − v3

v12 − v1 − v2

v1 − v2 − v3 − v4

v12 − v1 − v2 − v3

v11 − v12 − v1 − v2



Each of these will give us a edge betweenness centrality of 1 totaling to B′1(e) = 6. Now look at the path v1−v8.

There are two ways to traverse it with one of them going through the colored edge:

v1 − v2 − v8

v1 − v7 − v8

This means the edge betweenness centrality of v1 − v8 is 1
2 . There is one other such path from v7 − v2. So the

total edge betweenness centrality on two edges is B′2(e) = 2
(
1
2

)
= 1. Now look on the paths on three edges. We

will have the four following paths:

v1 − v2 − v3 − v9, v1 − v2 − v8 − v9, v1 − v7 − v8 − v9

v12 − v1 − v2 − v8, v12 − v1 − v7 − v8, v12 − v6 − v7 − v8

v7 − v1 − v2 − v3, v7 − v8 − v2 − v3, v7 − v8 − v9 − v3

v6 − v12 − v1 − v2, v6 − v7 − v1 − v2, v6 − v7 − v8 − v2

We can see that in each set of paths, there are three different ways to get between each set of two vertices. We

can also see that the first and last path sets have B′(e) = 2
3 and the second and third path sets have bc = 1

3 .

So the total edge betweenness centrality on three edges is B′3(e) = 2
(
2
3

)
+ 2

(
1
3

)
= 2. Now if we total the

betweenness centralities we found and multiply that value by two to account for reverse paths, we get the total

edge betweenness centrality of C12(1, 6) to be B′(e) = 2(6 + 1 + 2) = 18.

If we look at C16(1, 8) we find that

B′1(e) = 10, B′2(e) = 1, B′3(e) = 2, and B′4(e) = 3

B′(e) = 2(10 + 1 + 2 + 3) = 2(16) = 2(42) = 2k2 = 32

Then looking at C20(1, 10) we find

B′1(e) = 15, B′2(e) = 1, B′3(e) = 2, B′4(e) = 3, and B′5(e) = 4

B′(e) = 2(15 + 1 + 2 + 3 + 4) = 2(25) = 2(52) = 2k2 = 50



From here consider Cn(1, n2 ) where n = 4k edges with k ∈ Z. For B′1(e) we will have triangular numbers such

that B′1(e) =

(
k + 1

2

)
. Now consider the paths that only have 1 option for traversing. We have the following:

v1 − v2

v1 − v2 − v3

...

v1 − · · · − vk+1

v4k − v1 − v2

v4k − v1 − v2 − v3

...

v4k − · · · − vk

v4k−1 − v4k − v1 − v2

...

v4k−1 − · · · − vk−1

...

v3k+2 − · · · − v2

The way these paths are moving we see that it is like rotating the entire circle. Imagine the triangular numbers.

First there is 1 dot which represents the path v1−v2 making the edge betweenness centrality

(
2

2

)
= 1. Then the

next level has 2 dots which represent 1-2-3 and 4k-1-2 making the edge betweenness centrality 1+2 =

(
3

2

)
= 3.

This pattern will continue and the total edge betweenness centrality with only 1 path will be B′1(e) =

(
k + 1

2

)
.

Now consider the edge betweenness centrality on paths between two vertices on two edges which use the dia-

metrical chord. Consider the path from v1 to vn
2 +2. That path can be traversed in two ways:

v1 − v2 − vn
2 +2



v1 − vn
2 +1 − vn

2 +2

We can see that there are two different ways to traverse the same path and only one of them goes through the

edge v1− v2. This will give us a edge betweenness centrality of 1
2 . Now there is a similar path from vn

2 +1 to v2:

vn
2 +1 − v1 − v2

vn
2 +1 − vn

2 +2 − v2

Similarly as before, there are two ways to get between these two vertices with one way going through the colored

edge. It will add a edge betweenness centrality of 1
2 . These will be the only paths on two edges that go through

the colored edge because if we were to try to go to any other vertex while traversing a diametrical chord, we

would be using more than 2 edges. Hence, the edge betweenness centrality from a path on 2 edges becomes

B′2(e) = 2
(
1
2

)
= 1.

Now consider the edge betweenness centrality on paths between two vertices on three edges which use the

diametrical chord. Consider the path from v1 to vn
2 +3. The path can be traversed in three ways:

v1 − v2 − v3 − vn
2 +3

v1 − v2 − vn
2 +2 − vn

2 +3

v1 − vn
2 +1 − vn

2 +2 − vn
2 +3

We can see here that two of the three different paths have the colored edge v1 − v2. This will then give a edge

betweenness centrality of 2
3 . Consider the path from vn to vn

2 +2:

vn − v1 − v2 − vn
2 +2

vn − v1 − vn
2 +2 − vn

2 +2

vn − vn
2
− vn

2 +1 − vn
2 +2

Here we can see that the colored edge v1 − v2 only appears once so the edge betweenness centrality from this

set of paths will be 1
3 . Consider the path from vn

2 +1 to v3:

vn
2 +1 − v1 − v2 − v3



vn
2 +1 − vn

2 +2 − v2 − v3

vn
2 +1 − vn

2 +2 − vn
2 +3 − v3

Similarly as the second set of points shown above, we can see that the colored edge v1 − v2 only appears once

so the edge betweenness centrality from this set of paths will be 1
3 . Now look at the path from vn

2
to v2:

vn
2
− vn − v1 − v2

vn
2
− vn

2 +1 − v1 − v2

vn
2
− vn

2 +1 − vn
2 +2 − v2

Similarly as the first set of points from above, two of the three different paths have the colored edge v1 − v2.

This will then give a edge betweenness centrality of 2
3 . We can say that these are the only such paths because

if we try to traverse to a different vertex across the circle from v1 outside of the already tested vertices, it will

require more edges and hence be part of a different set of vertices. Adding the centralities together we get

B′3(e) = 2
(
2
3

)
+ 2

(
1
3

)
= 2.

Now consider the edge betweenness centrality of paths between two vertices on four edges with the use of a

diametrical chord. Consider the path from v1 to vn
2 +4. The path can be traversed in ways:

v1 − v2 − v3 − v4 − vn
2 +4

v1 − v2 − v3 − vn
2 +3 − vn

2 +4

v1 − v2 − vn
2 +2 − vn

2 +3 − vn
2 +4

v1 − vn
2 +1 − vn

2 +2 − vn
2 +3 − vn

2 +4

We can see that the colored edge v1 − v2 appears in 3 of the different paths. This means the edge betweenness

centrality will be 3
4 . Now look at the paths from vn to vn

2 +3:

vn − v1 − v2 − v3 − vn
2 +3

vn − v1 − v2 − vn
2 +2 − vn

2 +3

vn − v1 − vn
2 +1 − vn

2 +2 − vn
2 +3



vn − vn
2
− vn

2 +1 − vn
2 +2 − vn

2 +3

Here we can see that only two of the paths have the colored edge v1 − v2. This will have a edge betweenness

centrality of 2
4 . Consider the path from vn−1 to vn

2 +2:

vn−1 − vn − v1 − v2 − vn
2 +2

vn−1 − vn − v1 − vn
2 +1 − vn

2 +2

vn−1 − vn − vn
2
− vn

2 +1 − vn
2 +2

vn−1 − vn
2−1 − vn

2
− vn

2 +1 − vn
2 +2

Here we can see that only two of the paths have the colored edge v1 − v2. This will have a edge betweenness

centrality of 1
4 . Consider the path from vn

2 +1 to v4:

vn
2 +1 − v1 − v2 − v3 − v4

vn
2 +1 − vn

2 +2 − v2 − v3 − v4

vn
2 +1 − vn

2 +2 − vn
2 +3 − v3 − v4

vn
2 +1 − vn

2 +2 − v2 − vn
2 +3 − vn

2 +4

Like the third set of points we can see that only two of the paths have the colored edge v1 − v2. This will have

a edge betweenness centrality of 1
4 . Consider the path from vn

2
to v3:

vn
2
− vn − v1 − v2 − v3

vn
2
− vn

2 +1 − v1 − v2 − v3

vn
2
− vn

2 +1 − vn
2 +2 − v2 − v3

vn
2
− vn

2 +1 − vn
2 +2 − vn

2 +3 − v3

Like the second set of points we can see that only two of the paths have the colored edge v1− v2. This will have

a edge betweenness centrality of 2
4 . Consider the path from vn

2−1 to v2:

vn
2−1 − vn−1 − vn − v1 − v2



vn
2−1 − vn

2
− vn − v1 − v2

vn
2−1 − vn

2
− vn

2 +1 − v1 − v2

vn
2−1 − vn

2
− vn

2 +1 − vn
2 +2 − v2

Like the first set of points we can see that only two of the paths have the colored edge v1− v2. This will have a

edge betweenness centrality of 3
4 . We can say that these are the only such paths because if we try to traverse to a

different vertex across the circle from v1 outside of the already tested vertices, it will require more edges and hence

be part of a different set of vertices. Adding the centralities together we get B′4(e) = 2
(
3
4

)
+ 2

(
2
4

)
+ 2

(
1
4

)
= 3.

So when we look at the centralities individually, no paths will have bc = 1. Since there are k − 1 different

spots where the path can be located, the betweenness centralities will decrease from k−1
k , k−2

k , · · · , 1k . When

all 2(k − 1) centralities are added up, we end up getting

B′k(e) = 2

(
k − 1

k

)
+ 2

(
k − 2

k

)
+ · · ·+ 2

(
1

k

)
=
k(k − 1)

k
= k − 1

When we add all of the different betweenness centralities for the different edge lengths we will get

B′(e) = 2(B′1(e) +B′2(e) +B′3(e) + · · ·+B′k(e))

B′(e) = 2

((
k + 1

2

)
+ 1 + 2 + 3 + ...+ k − 1

)
= 2

((
k + 1

2

)
+

k−1∑
i=1

i

)

B′(e) = 2

(
(k + 1)!

2!((k + 1)− 2)!
+

(k − 1)((k − 1) + 1)

2

)
= 2

(
(k + 1)!

2!(k − 1)!
+

(k − 1)(k)

2

)
B′(e) = 2

(
k(k + 1)

2
+

(k − 1)(k)

2

)
= 2

(
k2 + k

2
+
k2 − k

2

)
B′(e) = 2

(
k2 + k + k2 − k

2

)
= 2

(
2k2

2

)
= 2k2

Thus it will hold for all k.

Now we will be looking at a slightly different type of circulant graph, still with two different chords. We

will be looking at the combination of two circulant graphs. Namely C2n and Cn. We have found that there are

two distinct centralities on such graphs.

Theorem 6: Consider the combination of two graphs C2n and Cn such that every other vertex on the outer graph



C2n is connected with the inner graph Cn. The edge betweenness centrality of such a graph will be B′(G) = n2.

They will also always be bi-uniform in edge centrality.

Proof. We will proceed with proof by induction. Consider the case of C6 ∪ C3 as follows:

Figure 3: C6 ∪ C3

Consider the edge v1− v2. To find the edge betweenness centrality of this edge, look at all of the shortest paths

which go through this edge. We can see that v1 − v2 and v1 − v3 give us an edge centrality value of 1 each

towards the whole and v1 − v4 gives us a value of 1
2 . Total, the edge centrality would be (2.5) ∗ 2 = 5. Now

consider the edge v2− v6.We have that the path v2− v6 gives us an edge centrality of 1 towards the whole while

v2− v5 and v6− v3 gives us a value of 1
2 . Total the centrality for this edge would be (2) ∗ 2 = 4. This makes the

total edge betweenness centrality for the graph to be 5 + 4 = 9 = 32.

Now consider a graph of C2n ∪ Cn. It would be the vertices v1, v2, v3, ..., v2n connected in a cycle with edges

between v2 − v4, v4 − v6, ..., vk − vk+2, ..., v2n−2 − v2n. We would have the edge v1 − v2, v2n − v1 − v2,

v2n−1 − v2n− v1 − v2, · · · ,vn+3 - vn+4 − · · · − v1 − v2. When the beginning vertex ’backs-up’ from beginning

with v1, we can say that the last backup will start with vn+3. If we look at all of the vertices, we can see that

since vn+1 is directly across the graph from v1, we will have vn+2 be directly across the graph from v2. Since

the graph has symmetry, the path v2 − vn+2 can be traversed either way around the perimeter of the graph.

Hence, we see that going from v2 − vn+3 would only have one shortest path meaning that it would be the last



backup. The edge betweenness centrality will also include the half from the path v2 − vn+2. To get the total

B′ of this edge, we have 2n − (n + 3) + 1 edges which give us a centrality of 1. Then we have the single path

of v2 − vn+2 giving us an edge centrality of 1
2 . This will be the only such edge because if we try to go to any

other vertex vi where 3 ≥ i ≥ n+ 2 we will be able to skip over the vertex v2 using the edge v1 − v3. Thus we

see the edge betweenness centrality of the outer edge being

B′1(e) = 2

(
2n− (n+ 3) + 1 +

1

2
+ 1

)
= 2

(
(n− 2)

1

2
+ 1

)
= 2n− 1

Now consider the case of the inner edge. By the makeup of the graph, we see that we have an edge which

connects each of the vertices in a circular pattern. Then we have an edge that connects every other vertex

starting from v1− v3, v3− v5, and so on. Because of this, we will see a pattern as to where the edge v1− v3 will

appear. We will look at the pattern by looking at whether we traverse a long edge (denoted 2) or a short edge

(denoted 1). When we see the edge v1− v3 we will denote it 2. We are now looking at every edge that will give

us an edge betweenness centrality of 1 which means the edge v1 − v3 will always be present. We would be able

to find paths which look like:

2, 12,21,22, 22, 121, 122, 122, · · ·

For the first case, we would just have 2. For the second case we would have 2, 12, and 21. For the third case

we would have 2, 12, 21, 22, 22, and 121. We can see here that there is a pattern for every other case.

Consider the case where n is odd. We assume that this will work for n = n − 1 and the edge betweenness

centrality is B′ =
(
n−2
2

)
. We will have the addition of 22 · · · 2 where the number of 2’s is n−1

2 . The value 2 could

be in any of those spots so this would add n−1
2 to the edge centrality. We would also have 122 · · · 21 where the

number of 2’s is n−3
2 . The value 2 could be in any of those spots so this would add n−3

2 to the edge centrality.

In the case of n − 1, we know the edge betweenness centrality is B′ =
(
n−2
2

)
. So based off pattern, we know

edge betweenness centrality for n is B′ =
(
n−1
2

)
and we will show why. Since all future cases encompass past

cases, we can say:

B′n(e) = B′n−1(e)+?(
n− 1

2

)
=

(
n− 2

2

)
+?(

n− 1

2

)
=

(
n− 2

2

)
+
n− 1

2
+
n− 3

2



n2 + 3n+ 6 + n− 1 + n− 3 = n2 − 3n+ 2

Multiplying all of the value out we do get this equation to be true.

Consider the case where n is even. Similarly as with the odd case, we know B′n(e) = B′n−1(e)+?. However, here

we will have different additions to the edge centrality. We will have the addition of 122 · · · 2 and 22 · · · 21 where

the number of 2’s in both is n−2
2 . So if we input this in the previous equation we get(

n− 1

2

)
=

(
n− 2

2

)
+?

(
n− 1

2

)
=

(
n− 2

2

)
+
n− 2

2
+
n− 2

2

since these fractions are equivalent to the previous ones, we will see that the equation will be true, hence making

the statement true that the paths with B′ = 1 are triangular numbers. Now consider the paths which add an

edge centrality of B′ = 1
2 . We know that we will get a half when the two end vertices of the path are directly

across from each other in the graph. This will happen first with v1 − vn+1. Then we have the paths:

v2n − vn, v2n−1 − vn−1, · · · , vn+3 − v3

We have vn+3 − v3 as the last path because going further would not contain the edge v1 − v3 and hence, we

would not need to count it. So to find the total centrality these halves would give us we do:

B′ =
1

2
(n+ 1)− (3) + 1 =

n− 1

2

We add in a 1 at the end to make up for taking out an extra path when subtracting. So summing the total

edge centrality of the inner edge we get:

B′2(e) = 2

((
n− 2

2

)
+
n− 1

2

)
= 2

(
(n− 2)(n− 1)

2
+
n− 1

2

)
= (n2 − 3n+ 2) + (n− 1) = n2 − 2n+ 1

Summing both edge centralities we will find:

B′(G) = (n2 − 2n+ 1) + (2n− 1) = n2

Hence, the equation for the centrality of the outside edge will hold for all values of n.

Proposition 7: On the graph of C2n ∪ Cn, there will always be two distinct centralities in the graph.



Each edge is connected to two vertices. There are two different kinds of vertices in this graph. One type of

vertex, call it va, connects only two edges to one another. An example in the previous figure is v1. The other

type of vertex, call it vb, connects 4 different edges to one another. An example in the previous figure is v2. So

in such a graph there will only ever be these two types of vertices because every other vertex is connected by

the inner cycle. From this, we only have two different types of edges. Those connected with two vertices such

as vb or those connected with both vertices va and vb. That would make this type of graph bi-uniform meaning

it will always have a total of two distinct centralities. The uniformness of a graph is correlated to the number

of different types of vertices and hence the number of different types of edges.

We just looked at circulant graphs with two different chords. Now consider circulant graphs with three different

chords. We will still be focusing on graphs with 4k vertices. In the case of C4k(1, k, 2k) we cannot look at all k

values at once because the same rules do not apply throughout. So we will look at odd and even k separately.

We will first consider the case of an even k.

Corollary 8: Consider a circulant graph C4k(1, k, 2k) with k ∈ Z and of the form 2m with m ∈ Z. The

edge betweenness centrality of the graph will be

C4k = k2 + 4k − 1

Proof. We will prove each of the three different edges has a different edge betweenness centrality and we will

show how to get each of them. Consider the following figure:

To find the total edge centrality we will consider three different sets of edges. We will look at v1 − v2 for the

outer edge, v1−v5 for the middle edge, and v1−v9 for the diametrical edge. We will first consider the edge from

v1 to v2. There are a few paths which add a value of 1 to the total edge centrality. Those paths are v − 1− v2,

v1 − v3, and v16 − v2. This adds 3 towards the edge centrality. Now consider paths on two edges. Those paths

are v1 − v6, v1 − v14, v1 − v10, v5 − v2, v9 − v2, v13 − v2. Each of these paths will add a value of 1
2 to the edge

centrality. This will add a total of 3 to the edge centrality. Now consider paths on three edges. Those paths will

be v1 − v7, v16 − v6, v1 − v11, v16 − v10, v9 − v3, v8 − v2, v13 − v3, and v12 − v2. While each of these paths does

have only 3 edges, there are six different ways to traverse between the two vertices. This happens because it can



Figure 4: C16(1, 4, 8)

be traversed through the middle edge as well as the diametrical edge. So each set of vertices either provides 2
6

or 1
6 . All of these paths will give a total of 12

6 = 2. In total, the edge betweenness centrality of the edge v1 − v2

will be 3 + 3 + 2 = 8. When looking at how the centrality of this outer edge is derived, there is a pattern that

can be seen in the table:

1 path 2 path 3 path 4 path 5 path

C16 3 3 12
6

C24 6 3 6 24
8

C32 10 3 6 9 40
10

We can see that the 1-path values increase by adding 2, then 3, and so on. Then we can see that the right

off diagonal is multiples of 3. Finally, we see that the last term of each edge centrality can be derived from

the value of m and turns out to simplify to equal m. Looking at the patterns together, we can see that the

centrality for the outer edge will be

B′1(e) =
(2m)2

2
=
k2

2
(1)



So if we go back to C16 and input the values into the derived equation we get

42

2
= 8

Hence we see that the formula holds in this case.

Now consider the circulant graph C4k(1, k, 2k). There will be several paths that can only be traversed in one

way. They are as follows:

v1 − v2

v1 − v3

v4k − v2

...

v4k−(m−2) − v2

These paths follow the circumference of the graph to it will take all such paths with 1 edge all the way up to m

edges. This will give us
∑m
i=1 i towards the edge centrality. Using the pattern of going through the desired edge

and moving across the first middle edge for some paths, the diametrical edge for more paths, and the second

middle edge for the final paths will get all of the other edges. The centralities for those edges will be as follows:

(3 + 6 + 9 + · · ·+ 3(m− 1)) +
2m(m+ 1)

2(m+ 1)

The patterns for these values can be seen from the above table. When we combine the sums of the edge

centralities together we get the following:

B′1(e) =

m∑
i=1

i+ 3 + 6 + 9 + · · ·+ 3(m− 1) +
2m(m+ 1)

2(m+ 1)

B′1(e) =

m∑
i=1

i+

m−1∑
i=1

3i+
2m(m+ 1)

2(m+ 1)

B′1(e) =
m(m+ 1)

2
+ 3

(m− 1)(m− 1 + 1)

2
+m

B′1(e) =
m2 +m+ 3m2 − 3m+ 2m

2
=

4m2

2
=

(2m)2

2
=
k2

2

As we can see, our results match equation 1 above. We see that this technique will work for C4k. So we can see

here that equation 1 holds for all even values of k.



Consider C16(1, 4, 8) again. Now consider the edge v1 − v5 which we will call the middle edge. There will be

one edge which will give the value of 1 towards the centrality of the middle edge and that edge is v1 − v5.

There will be no such other edges for any number of vertices because going to any other vertices near the

two chosen vertices can be done in multiple ways using different middle edges to ’cross over’ that part of the

graph. Next we have paths 2 edges. These would be v1 − v6, v1 − v4, v5 − v2, and v5 − v16. These paths will

provide 1
2 each towards the edge centrality with a total of 2 altogether. Next consider the paths with three

edges. Those paths will be v1 − v7, v16 − v6, and v15 − v5. While each of these paths does have only 3 edges,

there are six different ways to traverse between the two vertices. This happens because it can be traversed

through the middle edge as well as the diametrical edge. Each set of vertices provides 1
6 . All of these paths

will give a total of 3
6 = 1

2 . In total, the edge betweenness centrality of the edge v1 − v5 will be 1 + 2 + 1
2 = 3.5.

When looking at how the centrality of this middle edge is derived, there is a pattern that can be seen in the table:

1 path 2 path 3 path 4 path 5 path

C8 1 2
4

C16 1 2 3
6

C24 1 2 2 4
8

C32 1 2 2 2 5
10

We can see that there is always only 1 path which gives a value of 1. Then, after the first iteration, we

see that the second path, which previously gave a value of 1
2 gives a value of 2 and the fraction moves over to

be m+1
2(m+1) . Using this information, we can see that the value of the edge centrality should be

B′2(e) = 1 + 2(m− 1) +
(m+ 1)

2(m+ 1)
=

2k − 1

2
(2)

So if we look back to C16 we can check the value of the edge centrality to be

1 + 2(2− 1) +
(2 + 1)

2(2 + 1)
= 3 +

3

6
= 3.5

So we can see that the formula holds in this case. Now consider the circulant graph C4k(1, k, 2k). There is only

1 path which can only be traversed in one way. It is v1 − vk+1. For the paths that can be traversed in two



different ways, they will look like the following:

v1 − vk+2

v1 − vk

vk+1 − v2

vk+1 − v4k

This pattern will stay throughout and there will be no other paths which give 1
2 to the edge centrality because

there are no other ways to have 3 vertices and 2 edges through the specific middle path. We will see a similar

trend with 3 edges each giving 1
3 , all the way until m edges. When we get to m+ 1 edges, we don’t get 2 from

it but (m+1)
2(m+1) because half of the paths can be traversed like above but the other half can each be traversed on

the outer edge. So if we calculate the total edge centrality we get

B′2(e) = 1 + (2 + 2 + ...+ 2) +
(m+ 1)

2(m+ 1)

B′2(e) = 1 + 2(m− 1) +
(m+ 1)

2(m+ 1)

B′2(e) = 1 + 2(m− 1) +
1

2

So we can see here that equation 2 holds for all even values of k.

Consider C16(1, 4, 8) again. Now consider the edge v1−v9 which we will call the diametrical edge. There will be

one edge which will give the value of 1 towards the centrality of the diametrical edge and that edge is v1 − v9.

There will be no such other edges for any number of vertices because going to any other vertices near the two

chosen vertices can be done in multiple ways using different diametrical edges to ’cross over’ that part of the

graph. Next we have paths 2 edges. These paths are v1 − v8, v1 − v10, v9 − v2, and v9 − v16. These paths

will provide 1
2 each towards the edge centrality with a total of 2 altogether. Next consider the paths with three

edges. Those paths will be v1− v11, v16− v10, v15− v9, v1− v7 , v2− v8, and v3− v9. While each of these paths

does have only 3 edges, there are six different ways to traverse between the two vertices. This happens because

it can be traversed through the middle edge as well as the diametrical edge. Each set of vertices provides 1
6 .

All of these paths will give a total of 6
6 = 1. In total, the edge betweenness centrality of the edge v1 − v9 will

be 1 + 2 + 1 = 4. When looking at how the centrality of this diametrical edge is derived, there is a pattern that



can be seen in the table:

1 path 2 path 3 path 4 path 5 path

C8 1 4
4

C16 1 2 6
6

C24 1 2 2 8
8

C32 1 2 2 2 10
10

We can see that there is always only 1 path which gives a value of 1. Then, after the first iteration, we

see that the second path, which previously gave a value of 1 gives a value of 2 and the previous value moves over

to be 2(m+1)
2(m+1) on m+ 2 edges. Using this information, we can see that the value of the edge centrality should be

B′3(e) = 1 + 2(m− 1) +
2(m+ 1)

2(m+ 1)
=

2k

2
(3)

So if we look back to C16 we can check the value of the edge centrality to be

1 + 2(2− 1) +
2(2 + 1)

2(2 + 1)
= 3 +

6

6
= 4

So we can see that the formula holds in this case. Now consider the circulant graph C4k(1, k, 2k). There is only

1 path which can only be traversed in one way. It is v1 − v2k+1. For the paths that can be traversed in two

different ways, they will look like the following:

v1 − v2k+2

v1 − v2k

v2k+1 − v2

v2k+1 − v4k

This pattern will stay throughout and there will be no other paths which give 1
2 to the edge centrality because

there are no other ways to have 3 vertices and 2 edges through the specific middle path. We will see a similar

trend with 3 edges each giving 1
3 , all the way until m edges. When we get to m+ 1 edges, we don’t get 2 from



it but 2(m+1)
2(m+1) because half of the paths can be traversed like above but the other half can each be traversed on

the outer edge. So if we calculate the total edge centrality we get

B′3(e) = 1 + (2 + 2 + ...+ 2) +
2(m+ 1)

2(m+ 1)

B′3(e) = 1 + 2(m− 1) +
2(m+ 1)

2(m+ 1)

B′3(e) = 1 + 2(m− 1) + 1

So we can see here that equation 3 holds for all even values of k.

Now if we take the sum of all 3 centralities, we will be able to find the equation for finding the total edge

betweenness centrality of the whole graph. Combine equations 1,2, and 3 as follows:

B′(G) = 2

[
k2

2
+

2k − 1

2
+

2k

2

]

B′(G) = k2 + 2k − 1 + 2k = k2 + 4k − 1 (4)

Now we will consider the case of the odd k. We will see that the equation for these centralities is slightly

more involved because it has to do with m rather than k directly.

Corollary 9: If you have a circulant graph C4k(1, k, 2k) with k ∈ Z and of the form 2m + 1 with m ∈ Z, the

edge betweenness centrality of the graph will be

C4k = 2

(
2m3 + 10m2 + 14m+ 4

m+ 2

)

Proof. We will go about proving each of the three different edges has a different edge betweenness centrality

and we will show how we get each of them. Consider the following circulant graph:

To find the total edge betweenness centrality we will find the edge betweenness centrality of the outer edge

by looking at the shortest paths through v1 − v2, then we will look at the middle edge by finding the shortest

paths through v1 − v4, and finally we will look at the diametrical edge v1 − v7 to find the number of shortest

paths there. Consider the edge v1 − v2. There is only one path that can go through v1 − v2 with only one way

to take that path. That path will be v1− v2. This will add a value of 1 to the total centrality of the edge. Now



Figure 5: C12(1, 3, 6)

consider paths that can each be traversed in two different ways. Those paths will be v1 − v5, v1 − v8, v7 − v2,

and v10−v2. Since in each pair of paths, the edge v1−v2 appears once. This means each path pair will give the

value of 1
2 to the total edge centrality. These 4 paths combined add 2 to the total value of the edge centrality.

Finally, there are 4 different paths which can be traversed in 3 different ways. Those paths are v1− v11, v1− v3,

v12− v2, and v4− v2. For each set of 3 paths, the edge v1− v2 appears only once which means each set provides

1
3 each. So these edges provide 1 1

3 to the total edge centrality. In total, the edge betweenness centrality of the

edge v1− v2 will be B′1(e) = 2(1 + 2 + 1 1
3 ) = 2(41

3 ) = 8 2
3 . When looking at how the centrality of this outer edge

is derived, there is a pattern that can be seen in the table:

1 path 2 path 3 path 4 path 5 path 6 path

C12 1 2 1 1
3

C20 3 3 4 2 1
4

C28 6 3 6 6 3 1
5

C36 10 3 6 9 8 4 1
6

We can see that the 1-path values increase by adding 2, then 3, and so on. Then we can see that the main

diagonal is multiples of 3 and that pattern will continue down the table. We can also see that the diagonal to



the right of the main diagonal is multiples of 2 which will continue down the table. The last addition to the

edge centrality which contains the fraction also has a pattern. The whole number increases by 1 every time and

the denominator also increases by 1 each time. Looking down the columns of the table, we can see that the

number stops changing after the second value and that is because there are no other such paths no matter how

many vertices are added to the graph. Looking at the patterns together, we can see that the centrality for the

outer edge will be

B′1(e) = 4

m∑
i=1

i+
1

m+ 2
=

4m(m+ 1)

2
+

1

m+ 2
= 2m(m+ 1) +

1

m+ 2
(5)

So if we go back to C12 and input the values into the derived equation we get

2

(
2(1)(1 + 1) +

1

1 + 2

)
= 2

(
4

1

3

)
= 8

2

3

So we can see that the formula holds in this case. Now consider the circulant graph C4k(1, k, 2k). There will be

several paths that can only be traversed in one way. They are as follows:

v1 − v2

v1 − v3

v4k − v2

...

v4k−(m−2) − v2

These paths follow the circumference of the graph to it will take all such paths with 1 edge all the way up to m

edges. This will give us
∑m
i=1 i towards the edge centrality. The value we get from the other sets of paths will

be as follows:

(3 + 6 + 9 + · · ·+ 3(m− 1)) + (2m) +

(
m+

1

m+ 2

)
The patterns for these values can be seen from the above table. When we combine the sums of the edge centrality

all together we get the following:

B′1(e) =

m∑
i=1

i+ 3 + 6 + 9 + · · ·+ 3(m− 1) + 2m+m+
1

m+ 2



B′1(e) =

m∑
i=1

i+

m−1∑
j=1

3j + 2m+m+
1

m+ 2

B′1(e) =
m(m+ 1)

2
+ 3

(m− 1)((m− 1) + 1)

2
+ 3m+

1

m+ 2

B′1(e) =
m2 +m+ 3m2 − 3m+ 6m

2
+

1

m+ 2

B′1(e) =
4m2 + 4m

2
+

1

m+ 2

B′1(e) = 2m2 + 2m+
1

m+ 2
= 2m(m+ 1) +

1

m+ 2

As we can see, our results match equation 5 above. We see that this technique will work for C4k. So we can see

here that equation 5 holds for all odd values of k.

Consider again C12(1, 3, 6). We will consider the edge v1 − v4 which we will call a middle edge. There will be

one edge which will give the value of 1 towards the centrality of the middle and and that edge is v1− v4. There

will be no such other edges for any number of vertices because going to any other vertices near the two chosen

vertices can be done in multiple ways using different middle edges to ’cross over’ that part of the graph. Next

we have paths with 2 different ways to traverse them. These would be v1 − v5 and v12 − v4. These are the only

two such paths because if we try to go from v2 and cross over the middle edge, there would be an extra third

way to traverse that path by going along the outer edge. So the two above paths with provide 1
2 each giving

a total of 1 to the edge centrality. Now look at the special cases. We have the two paths v2 − v4 and v1 − v3.

These paths can be traversed the same as v1 − v5 but they can also be traversed along the edge of the graph.

This means each of these paths will provide 1
3 towards the edge centrality with a total of 2

3 . Hence, we have

the total edge betweenness centrality of the middle edge to be 2
(
1 + 1 + 2

3

)
= 5 1

3 . When we look at how the

centrality of this middle edge is derived, there is a pattern that can be seen in the table:

1 path 2 path 3 path 4 path 5 path 6 path

C12 1 1 2
3

C20 1 2 1 3
4

C28 1 2 2 1 4
5

C36 1 2 2 2 1 5
6



We can see that there is always only 1 path which gives a value of 1. Then, after the first iteration, we

see that the second path, which previously gave a value of 1 gives a value of 2. We can also see that the paths

which can be traversed along the outer edges give us values of m+1
m+2 . Using this information, we can see that

the value of the edge centrality should be

B′2(e) = 2 + 2(m− 1) +
m+ 1

m+ 2
(6)

So if we look back to C12 we can check the value of the edge centrality to be

2

[
2 + 2(1− 1) +

1 + 1

1 + 2

]
= 2

[
2

2

3

]
= 5

1

3

So we can see that the formula holds in this case. Now consider the circulant graph C4k(1, k, 2k). There is only

1 path which can only be traversed in one way. It is v1 − vk+1. For the paths that can be traversed in two

different ways, they will look like the following:

v1 − vk+1 − vk, v1 − v4k − vk

v1 − vk+1 − vk+2, v1 − v2 − vk+2

v4k − v1 − vk+1, v4k − vk − vk+1

v2 − v1 − vk+1, v2 − vk+2 − vk+1

This pattern will stay throughout and there will be no other paths which give 1
2 to the edge centrality because

there are no other ways to have 3 vertices and 2 edges through the specific middle path. We will see a similar

trend with 4 vertices and 3 edges each giving 1
3 , all the way until m+ 1 vertices and m edges. When we get to

m + 2 vertices and m + 1 edges, we don’t get 2 from it but 1 because half of the paths can be traversed like

above but the other half can each be traversed on the outer edge. The reason for the consistent fraction at the

end is because with m + 1 edges, there can only be m + 1 different paths. So when there are m + 2 different

paths on m+ 1 edges, there will only be m+ 1 different paths giving the value m+1
m+2 to the edge centrality. So

if we calculate the total edge centrality we get

B′2(e) = 2 + (2 + 2 + ...+ 2) +
m+ 1

m+ 2
= 2 +

m−1∑
i=1

2 +
m+ 1

m+ 2
= 2 + 2(m− 1) +

m+ 1

m+ 2



So we can see here that equation 6 holds for all odd values of k.

Consider C12(1, 3, 6). We will consider the edge v1 − v7 which we will call a diametrical edge. There will only

be one edge which can be traversed in one way and that is v1 − v7. There will be no such other edges for any

number of vertices because going to any other vertices near the two chosen vertices can be done in multiple ways

using different diametrical edges to ’cross over’ that part of the graph. Next we have paths with 2 different ways

to traverse them. These would be v1− v8, v1− v6, v2− v7, and v12− v7. These are the only such paths because

if we try to add an edge, there would be more than two ways to traverse that path. So we get a value of 1
2 from

each of these paths totaling in a value of 2 towards the edge centrality. If we try to traverse something with 3

edges through the diameter, we will find that it can be traversed by other edges much easier. So if we total the

edge betweenness centrality, we will get 2(1 + 2) = 6. When we look at how the centrality of this diametrical

edge is derived, there is a pattern that can be seen in the table:

1 path 2 path 3 path 4 path 5 path 6 path

C12 1 2

C20 1 2 2

C28 1 2 2 2

C36 1 2 2 2 2

We can see that there will always be only one edge which provides a value of 1. We can also see that ev-

ery other set of paths will provide 2 to the edge centrality. Using this information, we can see that the value of

the edge centrality should be

B′3(e) = 1 + 2m (7)

So if we look back to C12 we can check the value of the edge centrality to be

2[1 + 2(1)] = 2[3] = 6

So we can see that the formula holds in this case. Now consider the circulant graph C4k(1, k, 2k). There is only

1 path which can only be traversed in one way. It is v1 − v2k+1. For the paths that can be traversed in two



different ways, they will look like the following:

v1 − v2k+1 − v2k, v1 − v4k − v2k

v1 − v2k+1 − v2k+2, v1 − v2 − v2k+2

v4k − v1 − v2k+1, v4k − v2k − v2k+1

v2 − v1 − v2k+1, v2 − v2k+2 − v2k+1

We can see that this is similar to how the middle edge behaves. This pattern will stay throughout and there will

be no other paths which give 1
2 to the edge centrality because there are no other ways to have 3 vertices and 2

edges through the specific middle path. We will see a similar trend with 4 vertices and 3 edges each giving 1
3 ,

all the way until m+ 2 vertices and m+ 1 edges. So if we calculate the total edge centrality we get

B′3(e) = 1 + (2 + 2 + ...+ 2) = 1 +

m∑
i=1

2 = 1 + 2m

So we can see here that equation 7 holds for all odd values of k.

If we take the sum of all 3 centralities, we will be able to find the equation for finding the total edge betweenness

centrality of the whole graph. Combine equations 5,6, and 7 as follows:

B′(G) = 2

[(
2m(m+ 1) +

1

m+ 2

)
+

(
2 + 2(m− 1) +

m+ 1

m+ 2

)
+ (1 + 2m)

]

B′(G) = 2

[
2m(m+ 1)(m+ 2) + 1 + 2(m+ 2) + 2(m− 1)(m+ 1) + (m+ 1) + (m+ 2) + 2m(m+ 2)

m+ 2

]
B′(G) = 2

[
2m3 + 6m2 + 4m+ 1 + 2m+ 4 + 2m2 + 2m− 4 +m+ 1 +m+ 2 + 2m2 + 4m

m+ 2

]
B′(G) = 2

[
2m3 + 10m2 + 14m+ 4

m+ 2

]
(8)



5 Future Work

There are many different directions that our work can go from here. Apart from circulant graphs, there are

many other families of graphs that can be explored. Also within the family of circulant graphs there are many

sub-families. Some extensions of our work include but are not limited to:

• Patterns concerning Cnk ∪ Ck where n is a value greater than 2.

• Patterns concerning circulant graphs where all centralities are different.

• Patterns in circulant graphs with more than three chords.

• Patterns between betweenness centrality and edge betweenness centrality.
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[13] S. Gago, J. Hurajová, and T. Madaras, Notes on the betweenness centrality of a graph. (English summary)

Mathematica Slovaca 62 (2012), 1–12.



[14] M. Girvan, M.E.J. Newman, Community structure in social and biologival networks, (2002), 7821–7826.

[15] D. Gleich, https://www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl.

[16] R. Grassi, R. Scapellato, S. Stefani, and A. Torriero, Networks, Topology and Dynamics, Springer (Berlin),

(2009), 161–175.

[17] S̆. Miklavic̆, P. Potoc̆nik, Distance-regular circulants, European Journal of Combinatorics, 24 (2003), 777-

784.

[18] S. Nicoloso, U. Pietropaoli, Isomorphism Testing for Circulant Graphs Cn(a, b), Utilitas Mathematica, 87

(2012), 165.
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