Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

5-2018

Design and Verification of a Pipelined Advanced Encryption
Standard (AES) Encryption Algorithm with a 256-bit Cipher Key
Using the UVM Methodology

Devyani Madhukar Mirajkar
dxm4222@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation

Mirajkar, Devyani Madhukar, "Design and Verification of a Pipelined Advanced Encryption Standard (AES)
Encryption Algorithm with a 256-bit Cipher Key Using the UVM Methodology" (2018). Thesis. Rochester
Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.


https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9794?utm_source=repository.rit.edu%2Ftheses%2F9794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

DESIGN AND VERIFICATION OF A PIPELINED ADVANCED ENCRYPTION STANDARD (AES)
ENCRYPTION ALGORITHM WITH A 256-BIT CIPHER KEY USING THE UVM METHODOLOGY

by
Devyani Madhukar Mirajkar

GRADUATE PAPER

Submitted in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE
in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING
KATE GLEASON COLLEGE OF ENGINEERING
ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK

MaAy, 2018



To my family and friends, for all of their endless love, support, and encouragement throughout

my career at Rochester Institute of Technology



Declaration

I hereby declare that except where specific reference is made to the work of others, that all
content of this Graduate Paper are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other University. This Graduate
Project is the result of my own work and includes nothing which is the outcome of work done in

collaboration, except where specifically indicated in the text.

Devyani Madhukar Mirajkar

May, 2018



Acknowledgements

"No endeavor achieves success without the advice and co-operation of others."

I would like to thank my advisor, Prof. Mark A.Indovina, for his invaluable guidance,support,
encouragement and also for his cooperation all throughout the semester. It is due to his enduring
efforts, patience and enthusiasm, which has given a sense of direction and purposefulness to this

Graduate Research Project and ultimately made it a success.



Abstract

Encryption is the process of altering information to make it unreadable by anyone except those
having the key that allows them to change information back to the original readable form. En-
cryption is important because it allows you to securely protect the data that you don’t want any-
one else to have access to. Today, the Advanced Encryption Standard (AES) is the most widely
adopted encryption method. Till date there are no cryptanalytic attacks discovered against AES.
Hence the verification of the hardware implementation of the AES Core is of utmost importance.
In this research paper, the design and verification of a pipelined AES hardware module using a
256-bit cipher key is discussed in detail. The verification environment is developed using the
Universal Verification Methodology (UVM) and SystemVerilog. The verification environment
will validate the implementation of the AES Encryption Algorithm by comparing the outputs of

the hardware design Design Under Test and a reference model developed in C.
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Chapter 1

Introduction

The study of Cryptosystems is known as Cryptology. It is divided into two subsystems:
1. Cryptography
2. Cryptanalysis

Cryptology

Cryptography Cryptanalysis

Figure 1.1: Cryptosystem Block Diagram

Figure 1.1 shows the Cryptosystem block diagram. Cryptography is the process of masking



messages so as to keep it confidential for information security. The word Cryptography is derived
by combining the two greek words namely Krpfo meaning “Hidden” and Graphene meaning
“Writing”. These concealed messages can be accessed only by the authorized people. It fortifies
the digital data. Cryptography is implemented with the help of mathematical algorithms which
helps in storing and transmitting the data in a particular format so that the people who has the
key to access the data can only get the information. Electronic Commerce, Secured Military
Communication, Computer Passwords etc are some of its applications. Plain text, Cipher text,
Algorithm, Key, Encryption, and Decryption are the most common terms used in Cryptography.
‘Plain text’ is the original text or message which is transmitted to the authorized recipients,
which is presented in a sealed format. ‘Cipher text’ is nothing but the unintelligible text, which
cannot be decoded. The plain text gets converted to a cipher text with the help of mathematical
computations which are defined in an ’Algorithm’. The transmitter and the receiver may have
same or different "Key’ to encrypt or decrypt the messages. The process of breaking this *Cipher

text” is known as Cryptanalysis. Figure 1.2 shows the flow of Encryption and Decryption Process.

A
Key Cipher Key
| Text

:_' Sender (A) :ﬁ—b{ Encryption I v :=| Decryption }—‘—D: Receiver (B) !

e ﬁain ¥ I‘—;iain
Text Text

Figure 1.2: Flow of Encryption and Decryption Process

The main purpose of Cryptography is to serve the following information security services.

The four cryptographic concerns are listed as follows :



1. Confidentiality- This service hiddes the information from an unauthorized person. It is
basically concerned with the privacy and secrecy of data. It is a security service that
keeps the information secured from an unauthorized person. It is sometimes referred to as
privacy or secrecy. This can be achieved either through cryptographic algorithms or else

by physically securing the data. It is one of the basic information security service provided

by Cryptography.

2. Datalntegrity- Data Integrity security service recognizes any alteration to the given data.
The data might get changed or altered by an unlicensed person. The data may get modified
by an unauthorized entity deliberately or may be by chance. It basically checks whether
the data is unimpaired from the last time when it was created, transmitted and stored by
a licensed person. It cannot restrain the data from getting modified, but it gives a way for

identifying whether the data has been damaged in an unlicensed manner.

3. Authentication- Authentication identifies the source who is sending the data. The data
which is sent by the source is validated and verified first and then this information is given
to the receiver. It basically confirms that the message which has arrived at the receiver’s end
has come from the authorized sender and the data is unaltered. It also provides information

with respect to the creation and transmission of data in terms of data and time.

4. Non — repudiation- This service guarantees that an individual or person cannot decline
the possession of a foregoing activity. It guarantees that the sender of the data cannot
contradict the creation or transmission of the given data to the receiver. This service is
favorable in those circumstances where there are chances of disagreement with respect to
exchange of data. For example, a handwriting expert may be used by a legal service as a

means of non-repudiation of signatures.

Three types of cryptographic techniques used in general. They are :



1. Symmetric-key cryptography
2. Hash functions

3. Public-key cryptography

* Symmetric-key Cryptography: Here the symmetric key refers to a secret key. The sender
and the receiver shares the same key. The sender encrypts the plain text into the cipher text
by using this secret key and forwards the text to the receiver. The receiver on reception of

data uses the same key to decrypt the cipher text to the original text.

* Public-Key Cryptography: This technique has two keys, namely public and private key.
The public key is the one which is used by the sender to encrypt the data, which may be
freely circulated, whereas the private key associated with it is a secret key. Encryption uses

public key whereas decryption process uses private key.

* Hash Functions: No key is used in this algorithm. A fixed-length hash value is evaluated as
per the plain text that makes it impossible for the contents of the plain text to be retrieved.

Hash functions are also used by operating systems to encrypt passwords.

All the features of human life are driven by communication and information. Hence, it is nec-
essary to protect useful information from malicious activities such as attacks. Cryptographic
Attacks are of two types, namely, Passive and Active Attack. This classification is done on the
basis of the type of attacker. The main aim of the Passive Attack is to acquire unauthorized ac-
cess to information. It basically involves stealing of information. It is very difficult to identify
Passive attacks. Obstructing encrypted information and trying to break the encryption is one of
the example of passive attack. Active information alters the text by performing some process
on the information. This processing can be done by deleting the data, initiating unauthorized

transmission of information, changing the information in an illegal activity etc.



Breaking the Cryptosystem is the main aim of the attacker and somehow retrieve the original
text from the encrypted text. So as to get the original text, the attacker just needs to obtain
decryption key. As soon as the key is known to the attacker, the cryptosystem is considered to be
broken or cracked. They are different types of attacks which are used to break the system. They
are: Ciphertext Only Attacks (COA), Known Plaintext Attack (KPA), Chosen Plaintext Attack
(CPA), Brute Force Attack (BFA), Dictionary Attack (DA), Timing Attacks, Power Analysis
Attack, Faulty Analysis Attack, etc.

Cryptography involves the study of secret communication. This study is implemented with
the help of mathematical algorithms which is termed as ’Encryption’ to encode the informa-
tion and 'Decryption’ to retrieve the original text from the encoded one. The different types of
Encryption include Data Encryption Standard (DES), Triple DES, RSA, Blowfish, Twofish and
Advanced Encryption Standard (AES). AES is the most widely accepted encryption standard and
is approved by the US Government to secure classified data. AES has three different key lengths
1.e, 128-bit, 192-bit or 256-bit key, making it more stronger than the 56-bit key of DES. AES
Encryption is preferred over the other encryption standards because it is more secure, faster from
hardware and software implementation point of view and also it supports larger key sizes.

This paper gives the details regarding the Design and Verification of AES Encryption using
256-bit Cipher key using System Verilog and UVM methodology. UVM along with the SV brings
a lot of automation, maintainability, and re-usability to the verification process. Hence, the AES
encryption module is verified using UVM and SV. The verification is carried out using hardware
implementation along with a C-model so as to compare the results from the Design Under Test
(DUT) which is AES Encryption module and Software C-model. The UVM Verification Envi-
ronment consists of different reusable components, commonly known as Universal Verification
Components. Configuration, Encapsulation and High Re-usability are some of the pros of using

these components.
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1.1 Research Goals And Contributions

The main aim of this research paper is to build a completely working modular testbench with the
help of C-model and Randomization Technique. The main contribution towards this project is
that, a layered testbench is developed using the reusable components like agent, driver, monitor,

sequencer, etc, in SystemVerilog and UVM methodology. The research goals include:

* Understanding the Encryption Algorithm and trying to implement that using 256- bit Ci-

pher key.

* To analyze Area and Power Optimization of 256 bit key size and comparing them with the

other key lengths.

* To check whether original text is being retrieved with the help of C-model.

1.2 Organization

The structure of the thesis is as follows:

 Chapter 2: This chapter consists of Research Work related to AES Encryption and Decryp-
tion. It also discusses few techniques related to Key Module Generation, SBox Implemen-

tation, Area and Power Optimization.
* Chapter 3: This chapter briefly describes the Block Cipher Schemes.
* Chapter 4: Advanced Encryption Standard Algorithm is briefly discussed in this chapter.
» Chapter 5: This chapter outlines the Block Cipher Modes of Operation.

* Chapter 6: Design and Verification Methodology using the testbench components are dis-

cussed in this chapter.



1.2 Organization

» Chapter 7: Results are discussed in this chapter.

* Chapter 8: The conclusion and possible future work are briefly discussed in this chapter.



Chapter 2

Bibliographical Research

Design and Verification of a given hardware module is very important as the efficiency of a
system is the major concern now-a-days. This chapter discusses the previous work related to the
Design and Implementation of AES Encryption and Decryption process and the improvements
made in the AES hardware implementation so as to improve power, area, efficiency, etc of the
system [1].

Pipelined hardware implementation for the round keys can also be done in a parallel way
while performing the encryption process. Parallel implementation helps in reducing the delay of
each encryption round as well the delay of the input plain text [2]. The various steps involved in
the encryption process and its implementation are validated on FPGA. The time for converting
the plain text into cipher text was 200ns and device utilization is within 50% [3]. So as to
achieve high throughput and a cost effective AES module, a new module was designed for the
Key Expansion process which is known as “on-the-fly’ key expansion structure. The throughput
achieved was 1.16Gbps with the cost of only 19476 which is equivalent to NAND?2 gates [4].

Some AES applications require varible key size, so for such applications a novel architecture

is proposed in the paper [5]. The proposed design integrates encryption/decryption key genera-



tion in one single module for different key sizes. The datapath for encryption and decryption is
also integrated. Thus the circuit area gets optimized. Security of the data and its confidentiality
plays an important role in Cryptography. Hence in [6] a design is proposed in which data is
encrypted using AES and then uploaded on a cloud. The proposed model uses Short Message
Service (SMS) alert mechanism for avoiding unauthorized access to user data. Even the security
and compression of the encrypted text can be achieved by using Arithmetic Coding along with
AES Algorithm which is discussed in [7]. The process is very simple, it encodes the data then
performs the AES Encryption and then at the receiver’s end it decodes the data. This process is
carried out at the same time. With the help of Matlab, the data is encoded, encrypted, decrypted
and decoded.

The implementation of the AES Algorithm can have different architectures namely, Pipelined,
Parallel, Rolled, Unrolled, etc. Rolled Architecture is discussed in [8]. The keys are stretched
only once and stored in a memory while the encryption process is carried out. With this architec-
ture, low power consumption was achieved of about 22.85mW. In [9], an efficient algorithm for
key pool generation by using Sudoku puzzle solving mechanism is being discussed. It creates a
pool of key for individual user. This key pool is shared only to the authorized people. It chooses
the keys randomly from the key pool while the encryption process is initiated. White- box im-
plementation is discussed in [10]. The authors have designed a toolbox which is more secure and
helpful for AES encryption process. Various mathematical Equations are illustrated in [10] so
as to give the details of the tool box implementation. An eight stage Parallel processing method
is used in SubByte transformation S-box and an eight stage parallel computation is applied in
MixColumn transformation round [11]. The architecture of this implementation is studied in
[11].

To aim real life applications, high speed and cost effective AES implementation is very much

important. ASIC and FPGA are the two best platforms where the AES algorithm can verified and
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validated efficiently. Memory modules such as Dual Port RAMs are used to store various trans-
formations used in AES algorithm and also the clock plays a vital role in reducing the execution
time for conversion of data to the encrypted one [12]. Throughput and area of 128, 192 and 256-
bits AES have been measured in [13]. Results show that the key size is linearly increasing with
the throughput where as it is exponentially increasing with the area of the system. Low Power
Techniques can be studied in [14]. With a improved S-Box architecture, power optimization
can be easily obtained in AES algorithm. Cryptographic Algorithms are more prone to attacks.
Because of this, the original text which has to be transmitted to the receiver in encrypted format
becomes insecure. Fault-resistant implementation of AES is of utmost importance. In [15] a new
design is proposed that restricts the fault attacks on these cryptographic algorithms by verifying
differential bytes of input and output in the encryption process and the key expansion process,
respectively.

A new method is invented for performing the encryption process on an image and the details
regarding the steps for the image to get converted to an encrypted image are being discussed in
[16]. The speed of operation, efficiency, security and frequency of this new technique is also
compared. Similarly, a pipelined implementation for the image encryption and decryption can
be studied from [17] . This AES architecture increases the throughput of the system thereby
reducing the latency and improving the security and data rate. In [18], a ’look-ahead’ technique
is proposed so as to improve the speed of operation of AES Key Generator Module due which
the last round key can be available first. An efficient parallel architecture is designed in [19] for
a crypto chip. It achieves a high throughput of 29.77 Gbps in encryption.

The Dual stage Architecture for AES algorithm is proposed in [20].The power consumption
and critical path delay using the proposed architecture gives high performance. Direct Optimized
Routing (DOR) Scheme uses eleven clock cycles for encryption process whereas the Dual Stage

Scheme takes just six clocks to perform the operation. In [21], terms and transformations related
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to cryptography and encryption are examined and analyzed. AES processor to generate crypto-
graphically secured information can be studied in [22]. The processor designed is resistant to
all cryptanalytical attacks and thus keeps the information secured. It removes the mathematical
equations by optimizing the AES algorithm. So far the various design implementations very
discussed. Even the designed module needs to be tested and verified. Verification using Sys-
temVerilog and UVM is more efficient compared to the traditional one as it has various add-on
features in its verification environment. SystemVerilog describes the basic language constructs,
features and use in detail. It includes several techniques and examples on how to build a ba-
sic layered test bench using Object Oriented Programming (OOP). SystemVerilog incorporates
OOP, dynamic threads, and inter-process communication [23]. UVM testbench architecture and
classes are inherited from other methodologies that have proven effective for verification of dig-
ital designs [24]. In [24], AES IP verification is carried out using UVM methodology. It is
verified using automatic testcase generation. Thus better results can be gained through automatic
testcase generation. AES Algorithm is designed and verified using SystemVerilog [25]. Even in
[25], the authors have made a comparison between the hardware and software implementation
of the AES Algorithm. The results proved in [25] shows that the hardware model is sixty times

faster than the software model when processing the AES operation.



Chapter 3

Block Cipher

The Encryption process is carried out by taking a block of Plaintext bits and converting that into
a block of Ciphetext bits using the Encryption Key. Both the blocks of plain text and ciphertext
are of same size. Block length size is normally fixed. Block size does not directly affect the
strength of encryption process. Cipher strength depends up on the key size. The Block Cipher

Scheme can be seen in figure 3.1

3.1 Block Size

Following points must be considered while selecting the block size.

* Prevent using smaller block size — For example if the size of the block is n-bits, then the
possible plain text combinations are going to be ’2n’. ’Dictionary Attack’ is initiated by
the attacker when the attacker recognizes the plain text blocks respective to the cipher text
blocks which were previously sent. The attacker builds a dictionary plain text and cipher

text pairs by and send those pairs through encryption key.

» Larger block size must be ignored — If the size of the blocks are larger enough, then the
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Encryption Key

Block of Plain Text » Encryption Process I:{> Block of Ciphertext

Figure 3.1: Block Cipher Scheme

cipher is unproductive to manage. In such cases, plain texts must get padded before getting

encrypted.

» Multiples of 8 bit — As the data handling capacity of a CPU is a multiple of 8, the block
size/length which are multiples of 8 are preferred as it becomes more convenient from

implementation point of view.

3.2 Different Block Cipher Schemes

There is a vast number of block ciphers schemes that are in use. Many of them are publically

known. Most popular and prominent block ciphers are listed below.

* Digital Encryption Standard (DES) — It is a symmetric-key algorithm which is used for
Encrytion. Now-a-days, DES is not widely used as its block cipher identified as broken

due to small key length.

* Triple DES — Triple DES is an advancement over DES algorithm. It is a symmetric-key

algorithm and was also widely used once upon a time. Triple DES has three individual
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keys with 56 bits each.

* Advanced Encryption Standard (AES) — It is the most widely used Encryption standard

today, and is more secured as compared to other block cipher schemes.

* RSA — RSA is a public-key encryption algorithm. This scheme passes the encrypted data
to the web. For encrypting the data, it uses pair of keys and hence, it is termed as a

asymmetric algorithm.

* IDEA — In this cipher scheme the block and key length are fixed. The block length is of

64 bits and the key length is 128 bits.

* Blowfish — Blowfish cipher scheme was developed as a substitute for DES. It is also a
symmetric scheme in which the original text gets divided into blocks of 64 bits by the

cipher and the encryption is done independently.

* Blowfish is known for both its tremendous speed and overall effectiveness as many claim

that it has never been defeated.

» Twofish — In this cipher scheme the block size is of fixed length i.e, 128 bits and key length

is of variable size. It is the advanced version of Blowfish Algorithm.

* Serpent — The speed of encryption using this scheme is slower but it is more secure as
compared to others. This scheme has a fixed block length of 128 bits and key sizes of 128,
192, and 256 bits respectively.

3.3 Block Cipher Padding

Blocks that have fixed length let’s say 32-bits or 64-bits are operated by the block ciphers. Plain

texts must not always be a multiple of the block length. If the size of the plain text is 128-bits
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then two blocks of 64 bits are generated, so in this case block cipher padding is not required.
But if the plain text length is of 160-bits, then two blocks of 64-bits are generated with the third
block remaining with 32 bits. In this case, the third block will need padding and hence, the block
will be padded up with unnecessary information which will be equal to the block size i.e, 64-bits.
Adding redundant information to the block is known as ’Padding’. Padding makes the system

inoperative and uncertain.



Chapter 4

Advanced Encryption Standard

4.1 Overview

This chapter briefly discusses the Federal Information Processing Standards (FIPS-197) docu-
ment which was passed by the National Institute of Standards and Technology (NIST). This
document gives the details of the Advanced Encryption Standard (AES). All the mathematical
equations related to the different AES transformations are being discussed in this chapter using
the FIPS-197 document.

The AES is a subset of the Rijndael algorithm. The Rijndael algorithm is preferred as it gives
better results with respect to security, performance, efficiency and simplicity. AES is a symmetric
cipher algorithm. In such case, a single key is used for both encrypting and decrypting the data
unlike the asymmetric ones in which there are two types of keys used namely, public and private
key for encrypting and decrypting the data respectively[26].

This algorithm processes only on fixed size of the input blocks. It supports block length of
128 bits and cipher keys with lengths of 128, 192 or 256 bits for the encryption process. Rijndael

scheme supported block lengths and cipher key lengths of different sizes but the the NIST did



4.2 Inputs, Outputs and the State 17

Table 4.1: AES Variations
‘ AES Version ‘ Key Length (Nk words) ‘ Block Size (Nb words) ‘ No of Rounds (Nr rounds) ‘

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

not allow the features in AES algorithm[26]. The AES architecture is shown in figure 4.1

4.2 Inputs, Outputs and the State

AES algorithm have blocks of 128 bits of input plain text and output ciphertext. It has cipher
key input is a series of 128, 192 or 256 bits. In other words the length of the cipher key, Nk, is
either 4, 6 or 8 words which represent the number of columns in the cipher key[26]. The AES
algorithm is classified into three versions based on the cipher key length. The number of rounds
of encryption depends on the cipher key size[26]. The AES Encryption process is illustrated in
the figure 4.2

The AES versions varying with key length, block size and number of rounds is tabulated in
4.1.

A byte is capable of handling the operation of the AES algorithm. Therefore, the plain text,
ciphertext and the cipher key are ordered and processed as arrays of bytes. For an input, an output
or a cipher key is denoted by a, the bytes in the following array are referenced as a, , where n

ranges as follows depending on the block length and key length[26]:

Block length = 128 bits, 0 <=n< 16

Key length = 128 bits, 0 <=n < 16

Key length = 192 bits, 0 <=n <24

Key length = 256 bits, 0 <=n <24
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Figure 4.1: AES Architecture
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Input Bytes State Array Output Bytes
n0 | in4 | s |ing2 s00 |s01 [s02 |s03 N0 ind | e | in12
in1 | in5 | o |in13 s10 |s11 |12 |s13 int | in5 | o |in13
= —=>
inZ2 | in6 |in10 | in14 s20 |s21 |s2,2 |s2.3 in2 | in6 |in10 [ in14
in3 | in7 |in11 in15 s30 |s31 |s32 |s33 in3 | in7 |in11 in15

Figure 4.3: State Population and Results

The respresentation of the byte values is done by concatenating their individual bit values be-
tween braces in the order {b7, b6, b5, b4, b3, b2, bl, b0}. These bytes are considered as finite
field elements using a polynomial representation[26]:

byx” 4 bexS + bsx® + byx* + b3x> + box*> + by x' + box = Y. bix' ; where i ranges from 0 to 7

For example, { 10001001} (or {85} in hexadecimal) identifies the polynomial x” 4 x> + 1[26].

Two dimensional array of 4x4 bytes are used for processing the AES algorithm. This two
dimensional array is called as State, and any individual byte within the State is referred to as s,
where letter ‘r’ represent the row and letter ‘c’ denotes the column. The state is filled with the
plain text at the start of the encryption process. Then the cipher performs a set of substitutions
and permutations on the State[26]. After the cipher operations are processed on the State, the
final value of the state is replicated to the ciphertext output as shown in the following figure 4.3.

The input array is replicated into the State at the start of the cipher, according the following
scheme[26]:

s[ryc] = in[r+4c] for0 < r<4and0 < c <4,

and at the end of the cipher the State is replicated into the output array as shown below[26]:
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4.3 Cipher Transformation

Either the individual bytes of the State or an entire row/column is operated by the Cipher key.
At the beginning of the cipher, the input is replicated into the State as discussed in Section 4.2.
Then, an initial Round Key addition is performed on the State. Round keys are generated from
the cipher key with the help of the Key Expansion module.The key expansion module produces
a series of round keys for each round of transformations that are performed on the State[26].
The different transformations performed on the state are same for all the AES versions but
the number of the rounds are different depending on the cipher key length. The final round in
all AES versions performs one less transformation on the State and hence it is slightly different
from the first Nr —1 rounds. Each round of AES cipher except the final round consists of all the

following transformation[26]:

SubBytes( )

ShiftRows( )

MixColumns( )

AddRoundKey ()

4.3.1 SubBytes () Transformation

The 16 input bytes are substituted with the help of a S-Box table for a given design. The resultant
is a matrix consiting of four rows and four columns. SubBytes Transformation is shown in figure

4.4.
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Figure 4.4: SubBytes Transformation
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SHIFT ROWS

0,0 |s01 [s02 |s0.3 1 ) 0.0 |s01 [s02 |s03
s1.0 |s11 [s12 |s13 $1.0 |s11 [s12 |s13
520 |s2.1 [s22 |s23 > b « 520 |s21 [s22 |s23
$30 |s31 [s32 |s33 $30 |s31 [s32 |s33
STATE ARRAY 3|3 P * STATE ARRAY

Figure 4.5: ShiftRows Transformation

4.3.2 ShiftRows () Transformation

Each of the four rows of the matrix is shifted to the left. If there are any missing entries, then

they are re-inserted on the right side of row. Shift is carried out as follows —

First row is not shifted.

Second row is shifted one position to the left.

Third row is shifted two positions to the left.

Fourth row is shifted three positions to the left.

The resultant is a new matrix consisting of the same 16 bytes but shifted with respect to

each other.

The ShiftRows transformation is shown in figure 4.5
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‘02° 03" 01 01 SB(dys) SB(dy;) SB(d;) SB(d;)

_ |01 02" 03" ‘o1 SB(dyp) SB(ds) SB(dz) SB(dia)
R=MCESR(SB State)) =01 01 02 03'|®| sB(ds) SB(d,) SB(d.) SB(dy)
‘03" 01" 01" 02 SB(d,) SB(d,;,) SB(dg) SB(d,)

Figure 4.6: Matrix Multiplication Representation

4.3.3 MixColumns () Transformation

State Columns are operated by the Mix Column transformation. Each column is equivalent
to a finite field GF (28 ). Every column is multiplied by modulo x*+1 with a fixed four-term
polynomial a(x) = {03}x> + {01}x% + {01}x + {02} over the GF(2® )[26]. The MixColumns
transformation can be expressed as a matrix multiplication as shown below in figure 4.6:

The MixColumns transformation is shown in figure 4.7.

Each column of four bytes is now transformed using a special mathematical function as

mentioned above.

4.3.4 AddRoundKey () Transformation

The round key values are added to the State by simply using the XOR operation in the Ad-
dRoundKey transformation[26]. The Key Expansion module generates blocks of Nb words
which is present in every round key. The round key values are added to the columns of the
state in the following way[26]:

[50.095T.005%.6055.05] = [50.6:51,6552.05 53 .c] @ Wround +np+c| for 0 < ¢ <Nb

The 16 bytes of the matrix are now considered as 128 bits and are XORed to the 128 bits
of the round key. If this is the last round then the output is the ciphertext. Otherwise, the
resulting 128 bits are interpreted as 16 bytes and we begin another similar round. AddRoundKey

Transformation is shown in figure 4.4.
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Figure 4.7: MixColumn Transformations
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State Arrays Round Keys State Arrays

Figure 4.8: AddRoundKey Transformation

4.4 AES Key Expansion

Every encryption round required four words of round keys. Thus in all 4*(Nr + 1) round keys
are considered for the first AddRoundKey transformation. All the round keys are obtained from
the cipher key itself[26].

There is no limitation on the cipher key selection as per the FIPS-197 document. The Key
Expansion module expands the cipher key into the round keys. The SubWord( ) function is
same as the SubByte transformation as it uses the S-Box to substitute each of the four bytes in a
word[26]. The RotWord( ) function takes a word [a0,al,a2,a3] as input and perform a cyclic shift
and returns the word [al,a2,a3,a0][26]. The round constant word array, Rconl[i], contains a 32
bit value given by [{02}-1,{001},{00},{00}] [26]. The KeyExpansion module for the AES256
where Nk=8 is slightly different as an additional SubWord function is applied to the previous

round key, w[i-1], prior to the XOR with w[i- Nk][26].
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Block Cipher Modes of Operation

Block cipher modes of operation permits the ciphers to encrypt the large blocks of data. It is
a setup method in which the data gets encrypted and even it does not have to adjust with the
security issues. Same key (shared key) is used for encrypting as well decrypting the data. Usage
of same key is not actually advisable but using an algorithm for uniform data inputs, uniform
ciphertext results can be obtained at the output.

Usage of shared key can help the attacker by getting the information regarding the segregation
of texts due to which the attacker can able to crack the cipher and retrieve the original text. To
avoid such situation, one can manipulate the ciphertext ouptut. This achieved by combining the
plain text with respective ciphertexts and the resultant is used as the input cipher for the next
blocks. Thus same blocks of ciphertexts are ignored from getting generated from same input
plain texts. This methodology is known as Block Cipher Modes of Operation. Different types of

Block Cipher Modes of Opeation are discussed below in detail.
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Block of Plain Text Block of Plain Text Block of Plain Text
Key —> Encryption Key — Encryption Key — Encryption
Block of Ciphertext Block of Ciphertext Block of Ciphertext

Figure 5.1: Encryption using ECB mode

5.1 ECB (Electronic Codebook) Mode

In this mode of operation, encryption is done by processing the plain texts individually. Even the
decryption process is carried out in the same way. Hence, it is feasible to encrypt many threads at
the same time. The ciphertext is not hazy in this mode and hence the message is not considered to
be secured as it can get easily cracked[27]. ECB is the most easy mode of operation. Encryption
process using ECB is shown in figure 5.1

The encrypted text must be equal to the multiple of single block size. Hence, sometimes the
texts are stretched by adding extra one bit to it and by padding zeros to the rest of the block. The

ECB mode ciphers are more susceptible to attacks.

5.2 CBC (Cipher-Block Chaining) Mode

In this mode, the encryption process is carried out by XORing the plain text and the initialization
vector and with the help of encryption algorithm, ciphertext is generated. This ciphertext is fed
as an input to the next block of encryption. Hence, every succeeding ciphertext block depends
on the previous one. The initialization vector is of the same size as that of the plain text. This

mode came into operation in the year 1976[27].
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Only one thread can be processed at a time during encryption. This mode is used in many

applications. Encryption process using CBC is shown in figure 5.2

5.3 PCBC (Propagating or Plaintext Cipher-Block Chaining)

Mode

PCBC mode is same as the CBC mode. Before performing the encryption process, this mode

combines the bits from the previous and the present plain text blocks. If one output ciphertext is

impaired, then the next plain text block and all the other following blocks will get impaired. Due

to this the ciphertext will not get decrypted properly.

In this mode also only one thread can be processed at a time during encryption. Encryption

process using PCBC is shown in figure 5.3
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Figure 5.3: Encryption using PCBC mode

5.4 CFB (Cipher Feedback) Mode

The CFB mode is identical to the CBC mode. In this mode encryption is done taking the cipher-
text data from the previous cycle and then feed the output to the plain text block. This mode is
not vulnerable to attacks. Same encryption algorithm is used at the recieving end for decrypting
the data.

If one output ciphertext is impaired, then the next plain text block and all the other following
blocks will get impaired. Due to this the ciphertext will not get decrypted properly. Only one
thread can be processed at a time during encryption[27]. Encryption process using CFB mode is

shown in figure 5.4

5.5 OFB (Output Feedback) Mode

Output Feedback mode creates random bits (keystream bits) for encrypting the data. As the
random bits are generated, the operation of block cipher is identical to the operation of stream

cipher. As the random bits of data is generated continuously, single thread processsing can be
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Figure 5.4: Encryption using CFB mode

only done during encryption.
The disadvantage of OFB mode is that it continuously encrypts the initialization vector due
to which the plain text will not get encrypted properly[27]. Encryption process using OFB mode

is shown in figure 5.5

5.6 CTR (Counter) Mode

CTR mode also creates random bits (keystream bits) for encrypting the data like the OFB mode.
As the random bits are generated, the operation of block cipher is identical to the operation of
stream cipher. ’nonce’ means the number which is distinct. The values from the counter are
combined with the nonce which gives the encrypted text as output. The nonce is equivalent to
initialization vectors used in the previous modes.

Multiple threads can be processed simultaneously. It is the most widely used block cipher

mode[27]. The CTR mode is also known as the Segment Integer Counter mode (SIC).
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Design and Test Methodology

The Advanced Encryption Standard is introduced to secure the electronic data.The AES-256
pipelined cipher module uses AES algorithm which is a symmetric block cipher to encrypt the
plain text data. Encryption converts data to an unintelligible form called ciphertext. Encryption
is performed using 256 bits of cryptographic keys. The hardware module is pipelined specially
so as to perform the round transformation. As it is a pipelined design, power optimization can
be achieved and high throughput can also be gained This module is optimized for speed as it
pipeline hardware to perform repeated sequence called round. The pipelined Cipher is shown in

figure 6.1

6.1 Design Implementation

* The Design for Test (DUT) is designed by using one clock , asynchronous reset, inputs

valid signal, outputs valid signal.

* Sub Bytes: As discussed earlier, it uses SBox Look-up Table (LUT ) to substitute every

byte in the 128 bit plain text data.
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Shift Rows: This module is used to arrange data in the state array and shifting rows of this

array.

Mix Columns: This Module is used to perform Mix Columns Transformation as explained

in the chapter four.

Add Round Key: This module is used for xoring input data and round key generated from

the key expansion module.

Round: This module connects SubBytes-ShiftRows-MixColumns- AddRoundKey mod-

ules

Round Key Gen: This module is used to handle the operation of round key generation
from input. The key generation stages must be balanced with the 4 round stages (SuBytes-
ShiftRows-MixColumns- AddRoundKey) in order to let the round key and the data meet
at the AddRound Key module Round key generation includes RotWord, SubBytes, Xor

operations using RCON which are specified in the FIPS 197 document.

Key Expansion: The key Expansion Module is used to generate round key from cipher
key using Pipelined architecture. For AES-256, number of rounds required is fourteen, so

fourteen round key generation module will be instantiated.

Top Pipelined Cipher: It is the top module of the design which forms rounds and connects
Key Expansion module using the pipelined architecture. It instantiates Key Expansion
module which will provide every round with round key as per the discussed algorithm.
First cipher key will be xored with plain text and then by instantiating all rounds. After
that, connect them with key expansion module, this is the final round and it does not contain
mixcolumns as per the FIPS 197 document. As the final round has only three stages a delay

register should be introduced to get balanced with key expansion module.
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Figure 6.1: Pipelined Cipher
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6.2 Test Methodology

The Universal Verification Methodology (UVM) is the widely used in today’s era for the veri-
fication of VLSI circuits. The UVM class library helps in implementing the layered testbench
architecture. All the components of the UVM testbench are obtained from an existing UVM
class.

UVM has different simulation phases that are arranged in terms of steps of execution. They

are implemented in testbench as methods. The important UVM phases are:
* build_phase- This method is used for creating and configuring the testbench.

 connect_phase- the different sub components in a class are combined using the connect_phase

method.
* run_phase- Simulation is carried out using this method.

* report_phase- The results that are generated from the simulation are displayed using this

method.

UVM macros are used to execute some methods inside the UVM classes and variables. Those

macros are discussed as follows:

* uvm_component_utils: A new class type is filed when registers a new class type when the

class derives from the class uvm_component.

* uvm_object_utils: It is same as the uvm_component_utils, but the class is obtained from

the class uvm_object.
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Comparator refmod

scoreboard

Deitpi i __
agent out

Figure 6.2: UVM Testbench

» uvm_field_int: The different functions like copy(), compare() and print() can be used using

this macro.

* uvm_info: This macro helps in printing messages during run time.

e uvm_error: This macro helps in sending information with error logs.

In this research paper, a AES-256 Encryption module is the Design for Test (DUT) and is ver-
ified using the UVM verification methodology. The UVM testbench is illustrated in figure6.2.
The DUT interacts with the testbench top.sv and in this way the DUT is verified using UVM
environment.

Sequencer produces sequences of data which is send to the DUT. This helps in stimulating
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the DUT. There is an interaction between the sequencer and the driver as the sequencer sends
packets of data which are known as transactions. The driver translates the data packets into
signals which are fed to the DUT. The DUT can only identify the data coming from the interface.

The data which is coming from the interface must be encapsulated for verification of the
stimulus. The driver converts transactions to signals, another block named as driver_out performs
the exact opposite operation of the driver. The monitor observes the interaction between the
driver and the DUT and recovers the transaction. It also helps in comparing the results fo the
DUT with the reference model. In this paper, the reference model is a C-model which is compiled
and tested. It simulates the DUT at a high level of abstraction.

The class agent has three components namely sequencer, driver and monitor. Build phase
function is defined in the agent so as to construct hierarchies and even the fucntion for connect
phase is defined for connecting the different components of the testbench. Agents are classified

into two types. They are :

* Active Agent- All the three components are a part of active agent.

* Passive Agent- It has only the monitor and the driver.

Comparator component is used to make a comparison between the outputs generated from C-
model (refmod) and the DUT. It monitors whether the signals generated from the DUT are correct
or not. The Environment class env is built by agents and the scoreboard. The simple_test which
the test class is executing the test cases. The DUT and the UVM testbench is instantiated in the
top module i.e, top.sv.

The SystemVerilog DPI interface is used for calling the functions from C/C++, Java, etc. The
SV and the foreign layers of the DPI interface are totally independent from one another. AES
Encryption C-model is used a reference model in this paper. The function int main() is defined in

the file AES.cpp and it is called in the refmod.sv module. Thus the results can be easily compared
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due to which the efficiency of the AES Encryption module which is the Design Under Test can

be estimated.
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Result and Discussion

The AES Encryption model is verified using the System Verilog and UVM methodology. The
functional and the code coverage was been obtained using the cover groups. Figure 7.1 shows
the pipelined implementation of the AES Encryption module. Thirty clock cycles are required to
get the encrypted text.

The comparsion between the ciphet text obtained from the DUT and the C-model is shown
in figure 7.2 .

Proper Validation of the Cipher text was done. But with the help of traditional testbench,
comparison is done between the encrypted vectors obtained from the layered testbench. In the

Traditional testbench, a check functionality is created for the state, key and the out which is

Figure 7.1: Pipelined Flow
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DUT out = dec 194241a5a7c3b41309047

Model out = dec80d5248a394241a5a7c3b41309047

DUT out = b83dd9a5ca82lelfl4b356dT48bT53eb

Model out = b83dd9a5caB82lelfl4b356df48bT53eb

DUT out = 6426d49452b647274Tct59a32ab66027

Model out = 6426d49452b647274Tcf59a32abee027

DUT out = 453chlab233ec2dclsca

Model out = 624c2ef56cecd53cbldb233ec2dclscd

Figure 7.2: DUT and Model Comparison
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@ (negedge clk);

P

if (out | h fefeaadedfdeld4fd7fO1435)
begin $dis

#10;

if (out !
begin

Sdisplay("Comparison Successful");
¢finish:
end

always #5 clk = ~clk;

Figure 7.3: Traditional Testbench Code

shown in figure 7.3. Here, two cases of state and the key values are fed to the design and the
expected outputs are checked. If it does not matches, then the simulator will throw an error by
displaying "E’ else it will display ’Comparison Successful’.

The two cases of the state, key and outputs are obtained from the 7.4, 7.5, 7.6.

The AES Encryption is also Synthesized on a different technology nodes using two different
synthesis options, RTL logic synthesis and DFT Synthesis with a full scan methodology. Area,
Power, Timing and DFT coverage analysis for the 32nm, 65nm, 180nm is tabulated in 7.1

Using the Cadence Integrated Metrics Center (IMC) environment, coverage metrics were
analyzed and explored. The overall coverage obtained is 91.73% which comprises of both the
code and functional coverage. The code coverage is 91.53% where as the functional coverage

achieved is 100%. This is illustrated in figure 7.7.
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Table 7.1: Area, Power, Timing and DFT Coverage of AES Encryption

‘ ‘ 32nm ‘ 65nm ‘ 180nm ‘
Combinational Area (um?) 476719.24 | 453223.44 | 3225184.36
Area Buf/Inv Area (um?) 29857.02 22775.04 | 124646.86
Non-Combinational Area (um?) | 114198.58 | 114186.24 | 879234.04
Total Area (um?) 8424818.15 | 567409.69 | 4104418.40
Internal Power (W) 8.96E-03 0.0110 0.0875
Power Switching Power (W) 1.613E-03 | 3.196E-03 0.0668
Leakage Power (W) 0.0459 2.435E-05 | 1.686E-05
Total Power (W) 0.0565 0.0412 0.1543
Timing Slack (ns) 17.6770 18.6740 16.1080
DFT Coverage (%) 100 100 100%
Latency (Clock Cycles) 30 30 30
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Chapter 8

Conclusion

This research paper presented a pipelined architecture implementation of 128-bit AES Encryp-
tion using a 256-bit cipher key. When targeting the 65nm technology, the maximum frequency of
the system is 754MHz. Power consumption for the same technology was 41.2mW after perform-
ing power analysis for the full AES Encryption process. Validation of the original text using the
decryption function was not performed due to the fact that the results producted by the hardware
module matched the C-model. The Encrypted text obtained was cross-verified with the tradi-
tional testbench for few cases. 100% functional coverage was obtained. Security and Efficiency
are the two characteristics which are examined by the cipher designers. Hence, the challenge
is to design a cipher which provides plausible security while maintaining the efficiency for the

AES Encryption Process.

8.1 Future Work

The Latency of the pipelined implementation is thirty clock cycles. In future, work can be done

to reduce the latency of Encryption Process. Validation of the Original text is required as the end
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user must get the plain text without errors. This can be achieved by just adding a decrypt function
in C-model. Future research can be done by designing a faster and smaller hardware design for
AES. Security and efficiency in power consumption and chip area are now being considered by
cipher designers. In some designs, efficiency needs to be sacrificed in order to achieve higher
security. Therefore, the challenge is to design a cipher which provides reasonable security while

maintaining the efficiency
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Appendix I

Source Code

I.1 C-Model

#include <stdio .h>

#include <stdlib .h>

typedef unsigned char byte;

typedef unsigned int word;

//void encrypt_128_key_expand_inline_no_branch(word state ][],
word key[]);

//void encrypt_192_key_expand_inline_no_branch(word state ][],
word key[]);

void encrypt_256_key_expand_inline_no_branch(word state[], word

key [1);



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1.1 C - Model

52

word rand_word () ;

void

void

rand_word_array (word w[], int bit_num);

print_verilog_hex (word w|[],

int bit_num);

extern "C" int main(int state_model, int key_model)

/[

const int num_case = 100;
int bit_num;

int 1i;

word state [4];

word key [8];

bit_num = 128;

printf ("AES—%d test cases:\n\n", bit_num);

for(i=0; i<num_case; i++) {

rand_word_array (state , 128);

rand_word_array (key, bit_num);

printf("plaintext: ");
print_verilog_hex (state ,
printf ("\n");

printf ("key: ")

128);

print_verilog_hex (key, bit_num);

printf ("\n");

encrypt_128_key_expand_inline_no_branch(state ,

printf("ciphertext:");

print_verilog_hex (state ,

128);

{

key) ;



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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53

printf ("\n\n");

bit_num = 192;

printf ("AES—%d test cases:\n\n", bit_num);

for(1=0; i<num_case; i1++) {
rand_word_array (state , 128);
rand_word_array (key, bit_num);
printf("plaintext: ");
print_verilog_hex (state , 128);
printf("\n");
printf ("key: ")
print_verilog_hex (key, bit_num);
printf("\n");
encrypt_192_key_expand_inline_no_branch(state ,
printf("ciphertext:");
print_verilog_hex (state , 128);
printf("\n\n");

} o/

bit_num = 256;
printf ("AES—%d test cases:\n\n", bit_num);
for (i=0; i<num_case; i++) {

// rand_word_array (state , 128);

// rand_word_array (key, bit_num);

key) ;



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
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54

state [0] = state_model;

state[1] = state_model;
state [2] = state_model;
state [3] = state_model;
key[0] = key_model;

key[1] = key_model;
key[2] = key_model;

key[3]

printf("plaintext:

key_model;

")

print_verilog_hex (state , 128);

printf("\n");

printf ("key:

")

print_verilog_hex (key,

printf ("\n");

encrypt_256_key_expand_inline_no_branch(state ,

printf("ciphertext:");

bit_num) ;

print_verilog_hex (state , 128);

printf("\n\n");

return O;

word rand_word ()

word w = 0;

{

key) ;



86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

1.1 C - Model

int 1i;

for(i=0; i<4; i++) {
word x = rand () & 255;
w = (w << 8) | x;

}

return w;

}

void rand_word_array (word w[], int bit_num) ({

int word_num = bit_num / 32;
int 1i;
for(1=0; i<word_num; i++)

w[i] = rand_word () ;

void print_verilog_hex (word w[],
int byte_num = bit_num / 8§;
int i;
byte b = (byte x)w;
printf ("%d’h", bit_num) ;
for(i=0; i<byte_num; i++)

printf ("%02x", b[i]);

int bit_num)

{
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56

#include

#ifndef
#define

#endif

#define

typedef

#define

"sbox .h"

LOCAL

LOCAL

byte unsigned char

unsigned int word;

sub_byte (w) {

byte b = (byte =x)&w;

b[0]
b[1]
b[2]
b[3]
}
#define
#define
#define

#define

pO =

pl =
p2 =

table_O[b[0]x*4]

table_O[b[1]*4]
table_O[b[2]*4]

table_O[b[3]*4]

rot_up_8(x) x =
rot_16(x) X =
rot_down_8(x) x =
table_lookup { \
tO[b[0]]; \
tO[b[1]]; \
tO[b[2]]; \

;0\
;0\
;0\
;0\

(x << 8)
(x << 16)

(x >> 8)

(x >> 24)
(x >> 16)

(x << 24)
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26
27
28
29
30
31
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33
34
35
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37
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44
45
46
47
48
49
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p3 = tO[b[3]];

}

#define final mask

p0 &= OxFF; \

pl &= OxFF00; \

rot_16(p2); \

p2 &= 0xFF0000;

rot_down_8(p3);

if (is_final_round)

\
\

p3 &= 0xFF000000;

} else { \

rot_up_8(p0);

rot_16(pl);

rot_down_8(p2);

}

#define rot

{

rot_up_8(p0);

rot_16(pl);

rot_down_8(p2);

\

\

\

{

void encrypt_128_key_expand_inline (word

int nr =
int 1i;
word kO

state [0]

10;

key[0], kI

A= kO;

key[1],

k2

\

state [], word key[])

key[2], k3

key[3];

{
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70
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state[1] ~= kl1;
state [2] "= k2;
state [3] ~= k3;
word #t0 = (word =)table_O;
word y, pO, pl, p2, p3;
byte b = (byte =*x)&y;
byte rcon = 1;
for(i=1; i<=nr; i++) {

word temp = k3;

rot_down_8(temp) ;

sub_byte (temp) ;

temp = rcon;

int

J = (char)rcon;

j <<= 1;

j "= (j > 8) & OxIB;

0x1B)
rcon = (byte)j;
kO "= temp;
k1 ~= kO;
k2 ~= kl1;
k3 ~= k2;

word z0 = kO, z1 =

int

is_final _round

/1 if (rcon&0x80 != 0) then (]

kl, z2 = k2,

i == nr;

z3

k3;

N=
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y = state [0];

table_lookup;

final _mask;

20 A= po,

z3 "=

y = state[1];

table_lookup;

final _mask;

zl = p0,

z0 "=

y = state [2];

table_lookup;

final mask;

z2 "= p0,

z1 M=

y = state [3];

table_lookup;

final _mask;

state [0]
state [1]
state [2]

state [3]

z1 ~

z2 N

pl,

pl,

pl,

22 A= p2,
23 A= p2,
z0 A= p2,

zl "= p3;
z2 "= p3;
z3 "= p3;
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/+void encrypt_128_key_expand_inline_no_branch(word state[],

word key[]) {

int nr

int 1i;

word kO = key[O], k1 = key[1l], k2 = key[2],

= 10;

state [0] *= kO;

state [
state [

state [

1] ~= kl;
2] A= K2
3] A= k3

word #t0 = (word =)table_O;

word pO, pl, p2, p3;

byte *b;

byte rcon = 1;

for(i=1; i<nr; i++) {

word temp = k3;

rot_down_8(temp) ;

sub_byte (temp) ;

temp = rcon;

int j = (char)rcon;
j <<= 1;
j "= (j >> 8) & OxIB;

0x1B)

/1

if (rcon&0x80

k3 = key[3];

= 0) then (]

N=
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144
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rcon = (byte)j;

kO ~= temp;
k1l "= kO;
k2 "= kl;
k3 "= k2;

word z0 = kO, z1 = k1, z2 = k2, z3 = k3;
b = (byte =)state; table_lookup; rot;
z0 A= p0, z3 ~= pl, z2 "= p2, z1 "= p3;
b += 4; table_lookup; rot;
zl A= p0, z0 *= pl, z3 "= p2, z2 "= p3;
b += 4; table_lookup; rot;
z2 "= p0, z1 *= pl, z0 "= p2, z3 ~= p3;
b += 4; table_lookup; rot;
state [0] = z0 ™ p3;
state[1] = z1 ~ p2;
state [2] = z2 N pl;
state [3] = z3 ™ pO;

}

word temp = k3;

rot_down_8(temp) ;

sub_byte (temp) ;

temp "= rcon;

kO ~= temp;
k1l "= kO;
k2 7= kl1;
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147 k3 A= k2;

148 byte xa = (byte =)state, =t = table_0;

149 b = (byte #)&KO0;

150 b[0] A= t[a[0]=4], b[1] *= t[a[5]=4], b[2] *= t[a[10]%4], b
[3] "= tla[l5]«4];

151 b = (byte #)&kI;

152 b[0] A= t[a[4]%4], b[1] *= t[a[9]=4], b[2] *= t[a[l4]=4], b
[3] "= t[a[3]=4];

153 b = (byte #)&k2;

154 b[0] A= t[a[8]%4], b[1] A= t[a[13]=4], b[2] A= t[a[2]%4], b
[3] "= tla[7]=4];

155 b = (byte #)&k3;

156 b[0] A= t[a[12]%4], b[1] A= t[a[1]%4], b[2] "= t[a[6]%4], b

[3] 7= tla[l1]=4];

157 state [0] = kO;
158 state[1] = kl;
159 state [2] = k2;
160 state [3] = k3;
161 }

162

163 void encrypt_192_key_expand_inline_no_branch(word state[], word

key [1) {
164 int i =1, j;
165 word #t0 = (word =*)table_O;

166 word kO = key[O], k1l = key[1l], k2 = key[2], k3 = key[3], k4



167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
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= key[4], k5 = key[5];
word pO, pl, p2, p3, z0, zl1, z2, z3, temp;
byte xa = (byte x)state, xb, =t = table_0;

byte rcon = 1;

state [0] "= kO; state[l] ~= kl; state[2] "= k2; state[3] "=
k3;

goto a;

for(; 1<=3; i++) { // round 1 ~ round 9
k4 ~= k3; k5 *= k4;
temp = k5;
rot_down_8(temp) ;
sub_byte (temp) ;
temp "= rcon;
j = (int)((char)rcon) << 1;
rcon = (byte) (((j >> 8) & OxIB) »~ j); // if (rcon&0x80
= 0) then (j "= 0x1B)
kO ~= temp; kl ~= kO;

z0 = k4, z1 = k5, z2 = k0O, z3 = kl1;
b = (byte =)state; table_lookup; rot;
z0 A= p0, z3 ~= pl, z2 "= p2, z1 "= p3;

b += 4; table_lookup; rot;
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189 zl A= p0, z0 *= pl, z3 "= p2, z2 "= p3;
190 b += 4; table_lookup; rot;

191 z2 "= p0, z1 ~= pl, z0 "= p2, z3 "= p3;
192 b += 4; table_lookup; rot;

193 state [0] = z0 " p3;

194 state[1] = z1 ™ p2;

195 state [2] = z2 M pl;

196 state [3] = z3 " pO0;

197

198 k2 A= kl1; k3 ~= k2; k4 ~= k3; k5 "= k4;
199

200 z0 = k2, z1 = k3, z2 = k4, z3 = kS5,

201 b = (byte =)state; table_lookup; rot;
202 z0 A= p0, z3 *= pl, z2 "= p2, z1 "= p3;
203 b += 4; table_lookup; rot;

204 z1 ~= p0, z0 "*= pl, z3 "*= p2, z2 "= p3;
205 b += 4; table_lookup; rot;

206 z2 "= p0, z1 *= pl, z0 "*= p2, z3 "= p3;
207 b += 4; table_lookup; rot;

208 state [0] = z0 ™ p3;

209 state[1] = z1 ~ p2;

210 state [2] = z2 N pl;

211 state [3] = z3 ~ pO;

212

213 temp = k5;
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}

rot_down_8(temp) ;
sub_byte (temp) ;
temp "= rcon;

j = (int)((char)rcon) << 1;

rcon = (byte) (((j >> 8) & 0x1B) * j);

= 0) then (j *= OxIB)

kO ~= temp; kl ~= kO; k2 ”= kl; k3 ~= k2;

z0 = k0O, z1 = k1, z2 = k2, z3

= k3;

b = (byte =)state; table_lookup; rot;

z0 A= p0, z3 *= pl, z2 "= p2,
b += 4; table_lookup; rot;

zl ~= p0, z0 ~= pl, z3 "= p2,
b += 4; table_lookup; rot;

z2 "= p0, z1 ~= pl, z0 "= p2,
b += 4; table_lookup; rot;
state [0] = z0 ™ p3;

state[1] = z1 ~ p2;

state [2] = z2 N pl;

state [3] = z3 ™ pO;

// round 10 ~ 12

k4 A= k3; k5 A= k4;

temp

= k5;

z1 "= p3;

z2 "= p3;

z3 "= p3;

if (rcon&0x80
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rot_down_8(temp) ;
sub_byte (temp) ;
temp "= rcon;

j = (int)((char)rcon) << 1;

rcon = (byte) (((j >> 8) & OxIB) »~ j); // if (rcon&0x80

0) then (j ~= 0x1B)
kO A= temp; kl "= kO;

z0 = k4, z1 = k5, z2 = k0O, z3 = kl;

b = (byte =)state; table_lookup; rot;
z0 A= p0, z3 ~= pl, z2 "= p2, zI "= p3;
b += 4; table_lookup; rot;

zl A= p0, z0 *= pl, z3 "= p2, z2 "= p3;
b += 4; table_lookup; rot;

z2 "= p0, zl1 *= pl, z0 "= p2, z3 ~= p3;
b += 4; table_lookup; rot;

state [0] = z0 ~ p3;

state [1] = z1 ~ p2;

state [2] = z2 N pl;

state [3] z3 " pO0;
k2 = kl1; k3 = k2; k4 ~= k3; k5 = k4;

z0 = k2, z1 = k3, z2 = k4, z3 = k5;

b = (byte =#)state; table_lookup; rot;

=
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z0 *= p0, z3 ~= pl, z2 "= p2, zI "= p3;
b += 4; table_lookup; rot;

zl A= p0, z0 *= pl, z3 "= p2, z2 "= p3;
b += 4; table_lookup; rot;

z2 "= p0, zl1 *= pl, z0 "= p2, z3 ~= p3;
b += 4; table_lookup; rot;

state [0] = z0 ~ p3;

state [1] = z1 "~ p2;

state [2] = z2 N pl;

state [3] = z3 ~ pO0;

temp = k5;

rot_down_8(temp) ;

sub_byte (temp) ;

temp "= rcon;

kO A= temp; kl ~= kO; k2 ~= kl; k3 "= k2;

b

(byte #)&0; b[0] *= t[a[0]x4], b[1] A= t[a[5]%4], b[2]

A= t[a[10]%4], b[3] A= t[a[15]%4];

b = (byte #)&k1; b[0] A= t[a[4]«4], b[1] *= t[a[9]=4], b[2]
A= t[a[14]%4], b[3] "= t[a[3]%4];

b = (byte #)&k2; b[0] A= t[a[8]«4], b[1] A= t[a[l13]=4], b
[2] "= t[a[2]=4], b[3] "= t[a[T7]=4];

b = (byte #)&k3; b[0] A= t[a[12]%4], b[1] A= t[a[l]*4], b
[2] A= t[a[6]%4], b[3] A= tla[l1]%4];

state [0] = kO;
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} o/

state[1] = kI1;
state [2] = k2;

state [3] = k3;

void encrypt_256_key_expand_inline_no_branch(word state[], word

key []) {
int i=1, j;
word #t0 = (word =)table_O;

word kO

key[0], kIl

key[1], k2 = key[2], k3

key[3],
k4 = key[4], k5 = key[5], k6 = key[6], k7 = key[7];

word pO, pl, p2, p3, z0, zl1, z2, z3, temp;

byte xa = (byte =x)state, xb, =t = table_0;

byte rcon = 1;

state [0] *= kO; state[1] ~= kl; state[2] "= k2; state[3] "=

k3;

goto a;

for(; i1<=6; i++) { // round 1 ~ round 12

temp = k3; sub_byte(temp); k4 "= temp;

k5 7= k4; k6 "= k5; k7 ~= k6;

z0 = k4, z1 = k5, z2 = k6, z3 = k7;
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306 b = (byte =*x)state; table_lookup; rot;
307 z0 A= p0, z3 ~= pl, z2 "= p2, z1 "= p3;
308 b += 4; table_lookup; rot;

309 zl *= p0, z0 ~= pl, z3 "= p2, z2 "= p3;
310 b += 4; table_lookup; rot;

311 z2 "= p0, z1 *= pl, z0 "= p2, z3 "= p3;
312 b += 4; table_lookup; rot;

313 state [0] = z0 " p3;

314 state[1] = z1 ~ p2;

315 state [2] = z2 M pl;

316 state [3] = z3 " pO0;

317

318 temp = k7;

319 rot_down_8(temp) ;

320 sub_byte (temp) ;

321 temp "= rcon;

322 j = (int)((char)rcon) << 1;

323 rcon = (byte) (((j >> 8) & OxIB) »~ j); // if (rcon&0x80

= 0) then (j *= OxIB)

324 kO ~= temp; kl ~= kO; k2 ”= kl; k3 ~= k2;
325

326 z0 = kO, z1 = k1, z2 = k2, z3 = k3;

327 b = (byte =)state; table_lookup; rot;

328 z0 A= p0, z3 ~= pl, z2 "= p2, z1 "= p3;

329 b += 4; table_lookup; rot;
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zl *= p0, z0 *= pl, z3 "= p2, z2 "= p3;

b += 4; table_lookup; rot;

z2 "= p0, z1 "= pl, z0 "= p2, z3 "= p3;

b += 4; table_lookup; rot;

state [0] = z0 ~ p3;
state[1] = z1 ™ p2;
state [2] = z2 N pl;
state [3] = z3 ~ pO;

}
// round 13 ~ 14

temp = k3; sub_byte(temp); k4 A= temp;
k5 "= k4; k6 = k5; k7 ~= k6;

z0 = k4, z1 = k5, z2 = k6, z3 = k7;

b = (byte =)state; table_lookup; rot;
z0 "= p0, z3 ~= pl, z2 "= p2, zI "= p3;
b += 4; table_lookup; rot;

zl "= p0, z0 ~= pl, z3 "= p2, z2 "= p3;
b += 4; table_lookup; rot;

z2 "= p0, zl1 *= pl, z0 "= p2, z3 ~= p3;
b += 4; table_lookup; rot;

state [0] = z0 "~ p3;

state [1] = z1 ~ p2;

state [2] = z2 N pl;
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state [3] = z3 ~ pO;
temp = k7;
rot_down_8(temp) ;
sub_byte (temp) ;
temp "= rcon;
kO A= temp; kl ~= kO; k2 "= kl; k3 ~= k2;
b = (byte *)&k0; b[0] = t[a[0]=x4], b[1] ~= t[a[5]«4], b[2]
A= tla[10]%4], b[3] ~= tla[l5]=%4];
b = (byte =#)&kl; b[0] = t[a[4]=x4], b[1] ~= t[a[9]«4], b[2]

A= t[a[14]%4], b[3] "= t[a[3]%4];
b = (byte #)&k2; b[0] A= t[a[8]#4], b[l]
[2] A= t[a[2]%4], b[3] A= t[a[7]%4];

b = (byte #)&k3; b[0] "= t[a[12]%4], b[1] ~= t[a[l]x4],

[2] ~= t[a[6]«4], b[3] ~= t[a[ll]=x4];
state [0] = kO;
state [1] = kl;
state [2] = k2;
state [3] = k3;

A= tla[l3]=*4],
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I.2 RTL and Testbench

state ;

module AES (
reset ,
clk ,
scan_in0 ,
scan_en ,
test_mode ,
scan_out0 ,
state ,
key,
out
)
input
reset ,
clk;
input
scan_in0 ,
scan_en,
test_mode;
input [127:0]

/1
/1

/1
/1
/1

system reset

system clock

test scan mode data input
test scan mode enable

test mode select
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input [255:0] key;
output [127:0] out;
reg [127:0] sO;
reg [255:0] kO, kOa, kI;
// wire valid, ready;
wire [127:0] s1, s2, s3, s4, s5, s6, s7, s8,
s9, s10, sl1, sl12, sl13;
wire [255:0] k2, k3, k4, k5, k6, k7, k8,
k9, k10, k11, k12, kl13;
wire [127:0] kOb, klb, k2b, k3b, k4b, k5b, k6b, k7b, k8b,
k9b, k10b, kl11b, klI2b, kl13b;
output
scan_outO ; /l test scan mode data output
always @ (posedge clk)
begin
//if (valid ==1 && ready ==1)

//begin
sO <=
kO <= key:
kOa <= kO;
k1 <= kOa;
end
// end

state ™ key[255:128];
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assign kOb = kO0a[127:0];

expand_key_type_A_256

al (clk, k1, 8 hl, k2, klb),

a3 (clk, k3, 8’h2, k4, k3b),

a5 (clk, k5, 8’h4, k6, k5b),

a7 (clk, k7, 8’h8, k8, k7b),

a9 (clk, k9, 8’h10, k10, k9b),

all (clk, k11, 8°h20, klI2,
al3 (clk, k13, 8°h40, ,

expand_key_type_B_256
a2 (clk, k2, k3, k2b),
a4 (clk, k4, k5, kdb),
a6 (clk, k6, k7, k6b),
a8 (clk, k8, k9, k8b),
al0 (clk, k10, k11, k10b),
al2 (clk, k12, k13, ki12b);

one_round
rl (clk, sO, kOb, sl1),
r2 (clk, sl, klb, s2),
r3 (clk, s2, k2b, s3),
r4 (clk, s3, k3b, s4),

k11b),
k13b) ;



74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

1.2 RTL and Testbench

75

r5 (clk, s4,
r6 (clk, s5,
r7 (clk, s6,
r8 (clk, s7,
r9 (clk, s8,
r10 (clk, s9,
rl1l (clk, sl10,
rl2 (clk, sll,
r13 (clk, sl12,
final _round
rf (clk, sl13,
endmodule

k4b ,
k5b,
ké6b ,
k7b,
k8b,
k9b ,

k10b,
kllb,
k12b,

k13b,

$5),
s6) ,
s7)
s8),
s9) ,
s10) ,

out) ;

sl1),
s12),
s13);

/+ expand kO,kl,k2,k3 for every two clock cycles =/

module expand_key_type_A_256 (clk, in,

input

input

input

[255:0]
[7:0]

output reg [255:0]

output

wire

reg

[127:0]
[31:0]

[31:0]

clk;

in;

rcon ;

out_

l;

out_2;

kO,
vO ,
kOa ,

k1, k2, k3,

vl, v2, v3;

kla,

k2a,

rcon ,

k4,

k3a,

kS,

kda ,

out_1,

out_2);

k6, k7,

k5a,

kb6a,

k7a;
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wire [31:0] kOb, klb, k2b, k3b, k4b, k5b, ké6b, k7b,
k8a;
assign {kO, k1, k2, k3, k4, k5, k6, k7} = in;
assign vO = {kO[31:24] ” rcon, kO0[23:0]};
assign vl = vO0 * kl;
assign v2 = vl " k2;
assign v3 = v2 " k3;
always @ (posedge clk)
{kOa, kla, k2a, k3a, kd4a, kSa, k6a, k7a} <= {v0, vl, v2

, v3, k4, k5, k6, k7};

S4
S4_0 (clk, {k7[23:0], k7[31:24]}, k8a);

assign kOb = kOa ~ k8a;
assign klb = kla * k8a;
assign k2b = k2a ”* k8a;
assign k3b = k3a ”~ k8a;

assign {k4b, k5b, k6éb, k7b} = {kd4a, kSa, koa,

always @ (posedge clk)
out_1 <= {kOb, klb, k2b, k3b, kd4b, k5b,

ké6b ,

k7a};

k7b };
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assign out_2 = {kOb, klb, k2b, k3b};
endmodule
/+ expand k4 ,k5,k6,k7 for every two clock cycles =/
module expand_key_type_B_256 (clk, in, out_1, out_2);
input clk;
input [255:0] in;
output reg [255:0] out_1;
output [127:0] out_2;
wire [31:0] kO, k1, k2, k3, k4, k5, k6, k7,
v5, vb6, Vv7;
reg [31:0] kOa, kla, k2a, k3a, kd4a, kSa, k6a, k7a;
wire [31:0] kOb, klb, k2b, k3b, kd4b, k5b, k6b, k7b,
k8a;
assign {kO, k1, k2, k3, k4, k5, k6, k7} = in;
assign v5 = k4 "N k5;
assign v6 = v5 " k6;
assign v7 = v6 N k7;
always @ (posedge clk)
{kOa, kla, k2a, k3a, kd4a, kSa, k6a, k7a} <= {kO, k1, k2
, k3, k4, v5, v6, v7};
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S4

S4_0 (clk, k3, k8a);

assign {kOb, klb, k2b, k3b} = {kOa, kla,

assign k4b = k4a * k8a;
assign k5b = kSa ”* k8a;
assign k6b = k6a ~ k8a;
assign k7b = k7a * k8a;

always @ (posedge clk)
out_1 <= {kOb, klb, k2b, k3b, k4b,

assign out_2 = {k4b, k5b, k6b, k7b};

endmodule // AES

k5b,

k2a,

ké6b ,

k3a};

k7b };
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/+ one AES round for every two clock cycles =/

module one_round (clk,

input

input

output reg [127:0]

wire

assign

assign

table_lookup

t0
tl
t2
t3

state_in , key, state_out);

clk;

[127:0] state_in , key;
state_out ;

[31:0] sO, sl1, s2, 83,
z0, z1, z2, z3,
p00, pOl, p02, pO03,
pl0, pll, pl2, pl3,
p20, p21, p22, p23,
p30, p31, p32, p33,
kO, k1, k2, k3;

{kO, k1, k2, k3} = key;

{sO, sl, s2, s3} = state_in;
(clk, sO, p00, pO1, p02, p03),
(clk, sl, plO, pll, pl2, pl3),
(clk, s2, p20, p21, p22, p23),
(clk, s3, p30, p31, p32, p33);
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assign z0 = p00 A
assign z1 = p03 A
assign z2 = p02 A
assign z3 = p01 A
always @ (posedge
state_out <= {
endmodule

pll ~ p22 ~ p33
pl0O ~ p21 " p32
pl3 ~ p20 " p3l1
pl2 ~ p23 ~ p30

clk)
20, z1, z2, z3};

AN

A

AN

kO;
kl1;
k2;

k3;

/+ AES final round for every two clock cycles =/

module final_round (clk, state_in, key_in,

input
input [127:0]
input [127:0]

output reg [127:0]

clk;
state_1in ;
key_in;

state_out ;

wire [31:0] sO, sl, s2, s3,

z0, z1, z2, 23,

kO, kI, k2, Kk3;

wire [7:0] p00, pOl, pO02, pO03,

plO, pll, pl2, pl3,

p20, p21, p22, p23,

p30, p31, p32, p33;

assign {kO, k1, k2, k3} = key_in;

state_out) ;
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assign {sO, sl, s2, s3} = state_in;

S4
S4_1 (clk, sO, {p00, pOl, p02,
S4_2 (clk, sl, {plo, pll, pl2,
S4_3 (clk, s2, {p20, p21, p22,
S4_4 (clk, s3, {p30, p3l, p32,

assign z0 = {p00, pll, p22, p33} A

assign zl {pl10, p21, p32, p03} ~

N
\®)
Il

assign {p20, p31, p02, pl3} ~

assign z3

{p30, pOl1, pl2, p23} ~

always @ (posedge clk)
state_out <= {z0, zl1, z2, z3};

endmodule

p031}),
pl3}),
p23}),
p331);

kO;
kl1;
k2;

k3;
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module table_lookup (clk, state, pO, pl, p2,
input clk;
input [31:0] state;
output [31:0] pO, pl, p2, p3;
wire [7:0] bO, bl, b2, b3;
assign {b0O, bl, b2, b3} = state;
T
t0 (clk, b0, {p0[23:0], pO[31:24]}),
tl (clk, bl, {pl[15:0], pl[31:16]}),
t2 (clk, b2, {p2[7:0], p2[31:8]} ),
t3 (clk, b3, p3);
endmodule

/+ substitue four bytes

module S4 (clk, in, out);

input clk;
[31:0]

input in;

output [31:0] out;

S 0 (clk, in[31:24],

S_1 (clk, in[23:16],

in a word =/

out[31:24]),
out[23:16]),

p3);
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S_ 2 (clk, in[15:8], out[15:8] ),
S 3 (clk, in[7:0], out[7:0] )
endmodule
/% S_box, S_box, S_boxx(x+1), S_box#xx =/

module T (clk, in, out);
input clk;
input [7:0] in;

output [31:0] out;

sO (clk, in, out[31:24]);

assign out[23:16] = out[31:24];

xS
s4 (clk, in, out[7:0]);
assign out[15:8] = out[23:16]

endmodule

/% S box =/

module S (clk, in, out);
input clk;
input [7:0] in;

output reg [7:0] out;

always @ (posedge clk)

AN out[7:07;
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case (in)

8 h00:
8 h01:
8 h02:
8 h03:
87 h04:
8 h05:
8 h06:
8 h07:
8 h08:
8 h09:
8 hOa:
8 h0b:
8 hOc:
8 h0d:
8 hOe:
8 hOf:
8 h10:
8 hll:
8 hl12:
8 h13:
8 hl4:
8 hl5:
8 hl16:
8 hl7:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 h63;
8 h7c;
8 h77;
8 h7b;
8 hf2;
8 hoéb;
8 hof;
8 hch5;
8 h30;
8 °h01;
8 h67;
8 h2b;
8’ hfe;
8 hd7;
8 "hab;
8’ h76;
8 "hca;
8 h82;
8 hc9;
8 h7d;
8 hfa;
8 h59;
8°h47;
8 hf0;
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8 hl18:
8 h19:
8 hla:
8 hlb:
8 hlc:
8 hld:
8 hle:
8 hlf:
8 h20:
8 h21:
8 h22:
8 h23:
8 h24:
8 h25:
8 h26:
8 h27:
8 h28:
8 h29:
8 h2a:
8 h2b:
8 h2c:
8 h2d:
8 h2e:
8 h2f:
8 h30:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 had ;
8 hd4;
8 ha2;
8 haf;
8 h9c;
8 ha4;
8 h72;
8 hcO;
8 hb7;
8 hfd;
8 h93;
8°h26;
8 h36;
8 h3f;
8 hf7;
8 "hcc;
8 h34;
8 ha$5;
8 he5;
8 hfl;
8 h71;
8’ hdS§;
8 h31;
8’ hl15;
8°h04 ;
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8 h31:
8 h32:
8 h33:
8 h34:
8 h35:
8 h36:
8 h37:
8 h38:
8 h39:
8 h3a:
8 h3b:
8 h3c:
8 h3d:
8 h3e:
8 h3f:
8 h40:
8 h41:
87 h42:
8 h43:
8 h44:
8 h45:
8 h46:
8 h47:
8 h48:
8 h49:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 hc7;
8°h23;
8 hc3;
8’hl18;
8 h96;
8 h05;
8 h9a;
8 h07;
8’ hl12;
8 h80;
8 he2;
8 heb ;
8 h27;
8 hb2;
8 h75;
87 h09;
8 h83;
8 h2c;
8 hla;
8 hlb;
8 hbe;
8 h5a;
8 hal;
8°h52;
8 h3b;
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8 hda:
8 h4b:
8 hdc:
8 h4d:
8 hde:
8 h4f:
8 h50:
8 h51:
8 h52:
8 h53:
8 h54:
8 h55:
8 h56:
8 h57:
8 h58:
8 h59:
8 hS5a:
8 h5b:
8 h5c:
8 h5d:
8 h5e:
8 h5f:
8 h60:
8 h61:
8 h62:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8’ hd6;
8 hb3;
8 °h29;
8 he3;
8 h2f;
8 h84;
8 h53;
8 hdl;
8 h00;
8 hed;
8°h20;
8 hfc;
8 hbl;
8 h5b;
8 hba;
8 hcb;
8 "hbe ;
8 h39;
8 h4a;
8 hdc;
8 h58;
8 hcf;
8 hd0;
8 hef;
8 haa;
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8 h63:
8 h64:
8 h65:
8 h66:
8 h67:
8 h68:
8 h69:
8 hba:
8 ho6b:
8 hbc:
8 h6d:
8 hée:
8 ho6f:
8 h70:
8 h71:
8 h72:
8 h73:
8 h74:
8 h75:
8 h76:
8 h77:
8 h78:
8 h79:
8 h7a:
8 h7b:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 hfb;
8°h43;
8 h4d;
8 h33;
8 h85;
8’h45;
8 hf9;
8°h02;
8 h7f;
8 h50;
8 h3c;
8 hof;
8 ha8;
8 h51;
8 ha3;
8 h40;
8 h8&f;
8°h92;
8°h9d;
8 h38;
8 hf5;
8 "hbc;
8 hb6;
8 hda;
8 h21;
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8 h7c:
8 h7d:
8 h7e:
8 h7f:
8 h80:
8 h81:
8 h82:
8 h83:
8 h84:
8 h85:
8 h86:
8 h87:
8 h88:
8 h89:
8 h8a:
8 h8b:
8 h8c:
8 h8d:
8 h8e:
8 h8f:
8 h90:
8 h91:
8 h92:
87 h93:
87 h94:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8’ hl10;
8 hff;
8 hf3;
8 hd2;
8 hcd;
8 hOc;
8’hl13;
8 "hec;
8 h5f;
8 h97;
8 h44;
8 hl17;
8 hc4;
8 ha7;
8 h7e;
8 h3d;
8 ho64;
8 h5d;
8’hl19;
8 h73;
8 h60;
8 h81;
8 h4f;
8 "hdc;
8°h22;
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8 h95:
8 h96:
8 h97:
8 h98:
8 h99:
8 h9a:
8 hob:
8 h9c:
8 h9d:
8 h9e:
8 hof:
8 hal:
8 hal:
8 ha2:
8 ha3:
8 ha4:
8 ha5:
8 ha6:
8 ha7:
8 ha8:
8 ha9:
8 haa:
8 hab:
8 hac:

8 "had:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8’ h2a;
8 h90;
8 h88;
8’ h46;
8 "hee;
8 hb8;
8’ hl4;
8 hde;
8 "hS5e;
8 h0b;
8 hdb;
8 hel;
8°h32;
8 h3a;
8 hO0a;
8°h49;
8 h06;
8°h24;
8 h5c;
8 hc2;
8 hd3;
8 "hac ;
8°h62;
8°h91;
8 h95;
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231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
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8 hae:
8 haf:
8 hb0:
8 hbl:
8 hb2:
8 hb3:
8 hb4:
8 hb5:
8 hb6:
8 hb7:
8 hb8:
8 hb9:
8 hba:
8 "hbb:
8 hbc:
8 hbd:
8 hbe:
8 hbf:
8 hcO:
8 hcl:
8 hc2:
8 hc3:
8 hcéd:
8 hc5:
8 hc6:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 hed ;
8 h79;
8 he7;
8 hc8;
8 h37;
8’ hoéd;
8 h8d;
8 hd5;
8 hde;
8 ha9;
8 "hbc;
8 h56;
8 hf4;
8 hea;
8 h65;
8 h7a;
8 "hae ;
8 h08;
8 hba;
8’ h78;
8 °h25;
8’ h2e;
8 hlc;
8 hat;
8 hb4 ;
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252
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254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
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8 hc7:
8 hc8:
8 hc9:
8 hca:
8 hcb:
8 hcc:
8 hcd:
8 hce:
8 hcf:
8 hdO:
8 hdl:
8 hd2:
8 hd3:
8 hd4:
8 hd5:
8 hd6:
8 hd7:
8 hdS8:
8 hd9:
8 hda:
8 hdb:
8 " hdc:
8 hdd:
8 hde:
8 hdf:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 hco6;
8 he8;
8 hdd;
8 h74;
8 hlf;
8 h4b;
8 hbd ;
8 h8b;
8 h8a;
8 h70;
8 h3e;
8 hb5;
8 h66;
8’ h48;
8 h03;
8 hfo6;
8 "hOe;
8’ho6l ;
8 h35;
8 h57;
8 hb9;
8 h86;
8 hcl;
8 hld;
8 h9e ;
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279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
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8 heOl:
8 hel:
8 he2:
8 he3:
8 hed:
8 he5:
8 heb6:
8 he7:
8 he8:
8 he9:
8 hea:
8 heb:
8 hec:
8 hed:
8 hee:
8 hef:
8 hf0:
8 hfl:
8 hf2:
8 hf3:
8 hf4:
8 hf5:
8 hf6:
8 hf7:
8 hf8:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 hel ;
8 hf8;
8 h98;
8 hll;
87 h69;
8’hd9;
8 h8e;
8°h94;
8’ h9b ;
8 hle;
8 h87;
8 he9 ;
8 "hce;
8 h55;
8 h28;
8 hdf;
8 h8c;
8 hal;
8 h89;
8 h0d;
8 hbf;
8 heb6;
8°h42;
8 h68;
8 h4l;
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300 8 hf9: out <= 8°h99;
301 8 hfa: out <= 8’h2d;
302 8 hfb: out <= 8 hOf;
303 8 hfc: out <= 8’hb0;
304 8 hfd: out <= 8’h54;
305 8 hfe: out <= 8’hbb;
306 8 hff: out <= 8’hl6;
307 endcase

308 endmodule
309
310 /% S box #* x =/

311 module xS (clk, in, out);

312 input clk;

313 input [7:0] in;

314 output reg [7:0] out;
315

316 always @ (posedge clk)
317 case (in)

318 8 h00: out <= 8’hcbH;
319 8 h01: out <= 8’ hf§;
320 8 h02: out <= 8 hee;
321 8 h03: out <= 8’ hf6;
322 8 h04: out <= 8’ hff;
323 8 h05: out <= 8’hd6;

324 8h06: out <= 8’hde;
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345
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8 h07:
8 h08:
8 h09:
8 hOa:
8 hOb:
8 hOc:
8 h0d:
8 hOe:
8 hOf:
8 h10:
8 hll:
8 hl12:
8 h13:
8 hl4:
8 hl15:
8 hl16:
8 hl7:
8 h18:
8 h19:
8 hla:
8 hlb:
8 hlc:
8 hld:
8 hle:
8 hlf:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8’h9l;
8 h60;
8°h02;
8 hce;
8 h56;
8 he7;
8 hb5;
8 h4d;
8 hec;
8 h8&f;
8 hlf;
8 h89;
8 hfa;
8 hef;
8 hb2;
8 h8e;
8 hfb;
8 h4l;
8 hb3;
8 h5f;
8°h45;
8’h23;
8 h53;
8 hed;

8 hob;
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8 h20:
8 h21:
8’h22:
8 h23:
8 h24:
8 h25:
8 h26:
8 h27:
8 h28:
87 h29:
8 h2a:
8 h2b:
8 h2c:
8 h2d:
8 h2e:
8 h2f:
8 h30:
8 h31:
8 h32:
8 h33:
8 h34:
8 h35:
8 h36:
8 h37:
8 h38:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 h75;
8 hel;
8 h3d;
8 hdc;
8 hbc;
8 h7e;
8 hf5;
8 h83;
8 h68;
8 h51;
8 hdl ;
8 hf9;
8 he2;
8 "hab ;
8°h62;
8 h2a;
8 h08;
8 h95;
8°h46;
8°h9d;
8 h30;
8 h37;
8 hOa;
8 h2f;
8 "hOe;
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8 h39:
8 h3a:
8 h3b:
8 h3c:
8 h3d:
8 h3e:
8 h3f:
8 h40:
8 h41:
87 h42:
8 h43:
8 h44:
8 h45:
8 h46:
8 h47:
8 h48:
8 h49:
8 hda:
8 h4b:
8 hdc:
8 h4d:
8 hde:
8 h4f:
8 h50:
8 h51:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8’ h24;
8 hlb;
8 hdf;
8 hcd;
8 hde;
8 h7f;
8 hea;
8’ hl12;
8’ hld;
8 h58;
8 h34;
8 h36;
8 hdc;
8 hb4 ;
8 "h5b;
8 ha4;
8’ h76;
8 hb7;
8 h7d;
8’ h52;
8 hdd;
8 "hS5e;
8’ hl13;
8 hat;
8 hb9;
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407
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8 h52:
8 h53:
8 h54:
8 h55:
8 h56:
8 h57:
8 h58:
8 h59:
8 hS5a:
8 h5b:
8 h5c:
8 h5d:
8 h5e:
8 h5f:
8 h60:
8 h61:
8 h62:
8 h63:
8 h64:
8 h65:
8 h66:
8 h67:
8 h68:
8 h69:
8 hé6a:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 h00;
8 hcl;
8 °h40;
8 he3;
8 h79;
8 hb6;
8 hd4;
8 h8d;
8 h67;
8’ h72;
8°h94 ;
8 h98;
8 "hb0;
8 h85;
8 "hbb;
8 hcs5;
8 h4f;
8 hed;
8 h86;
8 h9a;
8 h66;
8 hll;
8 h8a;
8 he9;
8°h04 ;
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434
435
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442
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444
445
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447
448
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8 ho6b:
8 hbc:
8 h6d:
8 hée:
8 ho6f:
8 h70:
8 h71:
8 h72:
8 h73:
8 h74:
8 h75:
8’ h76:
8 h77:
8 h78:
8 h79:
8 h7a:
8 h7b:
8 h7c:
8 h7d:
8 h7e:
8 h7f:
8 h80:
8 h81:
8 h82:
8 h83:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8’ hfe;
8 hal;
8 h78;
8’h25;
8 h4db;
8 ha2;
8 h5d;
8 h80;
8 h05;
8 h3f;
8 h21;
8 h70;
8 hfl;
8 h63;
8 h77;
8 haf;
8’h42;
8 °h20;
8 he5;
8 hfd;
8 hbf;
8 h81;
8’hl18;
8°h26;
8 hc3;
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455
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457
458
459
460
461
462
463
464
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467
468
469
470
471
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473
474
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8 h84:
8 h85:
8 h86:
8 h87:
8 h88:
8 h89:
8 h8a:
8 h8b:
8 h8c:
8 h8d:
8 h8e:
8 h8f:
87 h90:
8 h9l:
8 h92:
8 h93:
87 h94:
8 h95:
8 h96:
8 h97:
8 h98:
87 h99:
8 h9a:
8 hob:
8 h9c:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 "hbe ;
8 h35;
8 h88;
8 h2e;
8 h93;
8 h55;
8 hfc;
8 h7a;
8 hc8;
8 "hba;
8°h32;
8 heb6;
8 hcO;
8’hl19;
8 h9e;
8 ha3;
8’ h44;
8 h54;
8 h3b;
8 h0b;
8 h8c;
8 hc7;
8 "h6b;
8 °h28;
8 ha7;
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476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
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8 h9d:
8 h9e:
8 hof:
8 hal:
8 hal:
8 ha2:
8 ha3:
8 ha4:
8 ha5:
8 ha6:
8 ha7:
8 ha8:
8 ha9:
8 haa:
8 hab:
8 hac:
8 had:
8 hae:
8 haf:
8 7hb0:
8 hbl:
8 hb2:
8 hb3:
8 hb4:
8 hb5:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 "hbc;
8’hl16;
8 had;
8 hdb;
8 ho64;
8 h74;
8’hl4;
8°h92;
8 hOc;
8 h48;
8 hb8;
8 hof;
8 "hbd;
8’h43;
8 hc4;
8 h39;
8 h31;
8 hd3;
8 hf2;
8 hd5;
8 "h8b;
8 "hobe;
8 hda;
8 h01;
8 hbl;
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503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
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8 hb6:
8 hb7:
8 hb8:
8 hb9:
8 hba:
8 "hbb:
8 hbc:
8 hbd:
8 hbe:
8 hbf:
8 hcO:
8 hcl:
8 hc2:
8 hc3:
8 hc4:
8 hc5:
8 hc6:
8 hc7:
8 hc8:
8 hc9:
8 hca:
8 hcb:
8 hcc:
8 hcd:
8 hce:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 h9c;
8 °h49;
8 hd8;
8 "hac;
8 hf3;
8 hcf;
8 hca;
8 hf4;
8 h47;
8’h10;
8 hof;
8 hf0;
8 hda;
8 h5c;
8 h38;
8 h57;
8 h73;
8 h97;
8 hcb;
8 hal ;
8 he8;
8 h3e;
8 h96;
8 ho6l ;
8 h0d;
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526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
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8 hcf:
8 hd0:
8 hdl:
8 hd2:
8 hd3:
8 hd4:
8 hd5:
8 hd6:
8 hd7:
8 hdS8:
8 hd9:
8 hda:
8 hdb:
8 hdc:
8 hdd:
8 hde:
8 hdf:
8 hel:
8 hel:
8 he2:
8 he3:
8 he4d:
8 he5:
8 he6:
8 he7:

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 hOf;
8 hel;
8 h7c;
8 h71;
8 "hcc;
8 h90;
8 h06;
8 hf7;
8 hlc;
8 hc2;
8 hba;
8 "hae ;
87 h69;
8 hl17;
87 h99;
8 h3a;
8 h27;
8 hd9;
8 heb ;
8 h2b;
8°h22;
8 hd2;
8 ha9;
8 h07;
8 h33;
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557
558
559
560
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562
563
564
565
566
567
568
569
570
571
572
573
574
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8 he8:
8 he9:
8 hea:
8 heb:
8 hec:
8 hed:
8 hee:
8 hef:
8 hf0:
8 hfl:
8 hf2:
8 hf3:
8 hf4:
8 hf5:
8 hf6:
8 hf7:
8 hf8:
8 hf9:
8 hfa:
8 hfb:
8 hfc:
8 hfd:
8 hfe:
8 hff:

endcase

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out

8 h2d;
8 h3c;
8’hl15;
8 hc9;
8 h87;
8 haa;
8 h50;
8 ha$5;
8 h03;
8 h59;
8 h09;
8 hla;
8 h65;
8 hd7;
8 h84;
8 hd0;
8 h82;
8 °h29;
8 hS5a;
8 hle;
8 h7b;
8 hal ;
8 h6d;

8 h2c;
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575 endmodule
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module test;

wire scan_outO;

reg clk, reset;

reg scan_in0, scan_en, test_mode;
reg [127:0] state;

reg [255:0] key;

wire [127:0] out;

AES top(
.reset(reset),
.clk (clk),
.scan_in0O(scan_in0) ,
.scan_en(scan_en),
.test_mode (test_mode),
.scan_outO (scan_out0),
.state (state ),

.key (key),

.out(out)

)
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initial
begin

$timeformat(—9,2,"ns", 16);
‘ifdef SDFSCAN

$sdf_annotate("sdf/AES_tsmc18_scan.sdf", test.top);
‘endif

clk = 1’°b0;

reset = 1°b0;

scan_in0 = 1°b0;

scan_en = 1°b0;

test_ mode = 1°b0;

state = 0;

key = 0;

#100;

@ (negedge clk);
#2:
state = 128 ' h4b4c6f2181¢569¢c0b9d7cd6bac35ecds53 ;
key = 256°
hed23a011a612e48c837798c9f3a52700_5ddbcbc67187549016705acabb4;

#10;
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#270;

end

state = 128 h2e866e5b206ef49625407d67ffdd01ca;
key = 256°
h1d6a873708d7bffb96abf4a26elcadc7_e641be981b0688d1597a8985a44

2

#10;

state = 128 h0;

key = 256 h0;

if (out !== 128 h6a5ad737fefecaa9edfdeld4fd7f01435)

begin $display("E"); $finish; end

#10;

if (out !== 128 had6ddced43210f8a4f43eba8083f9%ebc)
begin $display("E"); $finish; end

$display (" Comparison Successful");

$finish;

always #5 clk = ~clk;

/l repeat (1000)

//@(posedge clk) ;
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// $finish ;
// end

// 50 MHz clock
/]l always
// #10 clk = ~clk

b

endmodule
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I.3 Interface

interface input_if(input reset, clk);
logic [127:0] state;
logic [255:0] key;

logic scan_in0, scan_en, test_mode;

modport port(input reset, clk, state,

endinterface

key) ;
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interface output_if(input reset,
logic [127:0]out;

logic scan_outO;

clk);

modport port(input reset, clk, output out);

endinterface




1.4 Driver 112

I.4 Driver

typedef virtual input_if input_vif;

// typedef virtual output_if output_vif;

NoRENe I e WY B

10

11
12
13
14
15
16

17
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class driver extends uvm_driver #(packet_in);

‘uvm_component_utils(driver)

input_vif vif;

// output_vif vif_o;

event begin_record, end_record;

function new(string name = "driver", uvm_component parent
null);
super.new(name, parent);

endfunction

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
assert (uvm_config_db#(input_vif) :: get(this, "", "vif",
vif));
/1 assert(uvm_config_db#(output_vif):: get(this, "", "
vif_o", vif_o));

endfunction

virtual task run_phase(uvm_phase phase);
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super .run_phase (phase) ;
/] fork
/[l reset_signals ()
fork
get_and_drive(phase);
record_tr () ;
join

endtask

virtual protected task reset_signals();
@(posedge vif.clk);
//vif.reset = 1;

2

vif.state = ’Xx;

vif.key = ’x;

endtask

virtual protected task get_and_drive(uvm_phase phase);

@(posedge vif.clk);

// forever begin
repeat (1000) begin
/1if(vif.reset == 1°b0)begin
seq_item_port. get(req) ;
/] $display ("1 am here");

—> begin_record;
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drive_transfer(req):

// end
end
$finish ;

endtask

virtual protected task drive_transfer (packet_in tr);

vif.state = tr.state;

vif.key = tr.key;

$display("state = %x",vif.state);

$display("key = %x",vif.key);

$display("Time = %t" ,$time) ;

@(posedge vif.clk);

—> end_record;

endtask

virtual task record_tr();

forever begin

@(begin_record);

begin_tr(req,

@(end_record) ;

"driver");
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end_tr(req);

end

endtask

endclass:

driver
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typedef virtual output_if output_vif;

class driver_out extends uvm_driver #(packet_out);

‘uvm_component_utils(driver_out)

output_vif vif;

function new(string name = "driver_out", uvm_component
parent = null);
super.new(name, parent);

endfunction

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
assert(uvm_config_db#(output_vif):: get(this, "", "vif",
vif));

endfunction

virtual task run_phase(uvm_phase phase);
super.run_phase (phase) ;
fork
/lreset_signals ();
// drive (phase);
join

endtask
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/=virtual protected

wait (vif.rese

forever begin

vif.ready <=

t ===

task reset_signals();

1);

’O;

@(posedge vif.reset);

end

endtask =/

/=virtual protected

wait(vif.reset

task drive(uvm_phase phase);

1);

@(negedge vif.reset);

forever begin

@(posedge vif.clk);

vif.ready <=
end
endtask =/

endclass

l;
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I.5 Monitor

class monitor extends uvm_monitor;
input_vif vif;
event begin_record, end_record;
packet_in tr;
uvm_analysis_port #(packet_in) item_collected_port;
‘uvm_component_utils( monitor)
function new(string name, uvm_component parent);
super.new(name, parent);
item_collected_port = new ("item_collected_port"
endfunction
virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
assert (uvm_config_db#(input_vif) :: get(this, "",
vif));
tr = packet_in::type_id::create("tr", this);
endfunction
virtual task run_phase(uvm_phase phase);
super.run_phase (phase) ;

/ sk

fork

, this)

" Vif" ,
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collect_transactions (phase);

record_tr () ;

join =/

endtask

virtual

task collect_transactions (uvm_phase phase);

wait(vif.reset === 1);

@(negedge vif.reset);

forever begin

end

endtask

virtual

//do begin
@(posedge vif.clk);
//end while (vif.valid = 0 [l

—> begin_record;
tr.state = vif.state;
tr .key = vif.key;

item_collected_port. write(tr);

@(posedge vif.clk);

—> end_record;

task record_tr();

vif.ready

0);
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forever begin

end
endtask

endclass

@(begin_record);
begin_tr(tr, "monitor");
@(end_record);

end_tr(tr);
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class monitor_out extends uvm_monitor;
‘uvm_component_utils( monitor_out)
output_vif vif;
event begin_record, end_record;
packet_out tr;

uvm_analysis_port #(packet_out) item_collected_port;

function new(string name, uvm_component parent);
super.new(name, parent);
item_collected_port = new ("item_collected_port", this)

endfunction

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
assert(uvm_config_db#(output_vif):: get(this, "", "vif",
vif));

tr = packet_out::type_id::create("tr", this);

endfunction

virtual task run_phase(uvm_phase phase);
super .run_phase (phase) ;
fork

collect_transactions (phase);
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join

endtask

virtual

fore

record_tr () ;

task collect_transactions (uvm_phase phase);

ver begin

@(posedge vif.clk);

—> begin_record;

tr.out = vif.out;

$display ("out = %x",vif.out);

end

endtask

virtual

//item_collected_port.write(tr);

—> end_record;

task record_tr();
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forever begin

end
endtask

endclass

@(begin_record);
begin_tr(tr, "monitor_out");
@(end_record);

end_tr(tr);
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1.6 Environment

class env extends uvm_env;

agent mst ;
refmod rfm ;
agent_out slv;

comparator #(packet_out) comp;

uvm_tlm_analysis_fifo #(packet_in) to_refmod;

‘uvm_component_utils(env)

function new(string name, uvm_component parent = null);
super.new(name, parent);
to_refmod = new("to_refmod", this);

endfunction

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
mst = agent::type_id::create("mst", this);
slv = agent_out::type_id::create("slv", this);
rfm = refmod::type_id::create("rfm", this);
comp = comparator#(packet_out)::type_id:: create ("comp",
this);

endfunction
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virtual function void connect_phase(uvm_phase phase);
super.connect_phase(phase);
// Connect MST to FIFO
mst.item_collected_port.connect(to_refmod.

analysis_export);

// Connect FIFO to REFMOD

rfm.in.connect(to_refmod. get_export);

// Connect scoreboard
rfm.out.connect(comp. from_refmod) ;
slv.item_collected_port.connect(comp. from_dut);

endfunction

virtual function void end_of_elaboration_phase (uvm_phase
phase) ;
super.end_of_elaboration_phase (phase);

endfunction

virtual function void report_phase(uvm_phase phase);
super.report_phase(phase);
‘uvm_info(get_type_name (), $sformatf("Reporting matched
%0d" , comp.m_matches), UVM_NONE)

if (comp.m_mismatches) begin
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‘uvm_error (get_type_name (), $sformatf("Saw %0d

end
endfunction

endclass

mismatched samples", comp.m_mismatches))
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I.7 Reference Model

import "DPI-C" context function int main(int state, int key);

class refmod extends uvm_component;

‘uvm_component_utils(refmod)

packet_in tr_in;

packet_out tr_out;

/1 integer STATE, KEY;
uvm_get_port #(packet_in) in;

uvm_put_port #(packet_out) out;

function new(string name = "refmod", uvm_component parent);

super.new(name, parent);

in = new("in", this);
out = new("out", this);
endfunction

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
tr_out = packet_out::type_id::create("tr_out", this);

endfunction: build_phase

virtual task run_phase(uvm_phase phase);
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super.run_phase (phase) ;

forever begin

in.get(tr_in);
tr_out.out = main(tr_in.state ,

out.put(tr_out);

end

endtask: run_phase

endclass:

refmod

tr_in .key);
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1.8 Packet

class packet_in extends uvm_sequence_item;

rand bit [127:0] state;

rand bit [255:0]key;

‘uvm_object_utils_begin(packet_in)

‘uvm_field_int(state , UVM_ALL ONI|UVM_HEX)
‘uvm_field_int(key, UVM_ALL ON|UVM_HEX)

‘uvm_object_utils_end

function new(string name="packet_in");

super .new(name) ;

endfunction: new

endclass:

packet_in
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class packet_out extends uvm_sequence_item;

rand bit [127:0] out;

‘uvm_object_utils_begin(packet_out)
‘uvm_field_int (out, UVM_ALL_ON|UVM_HEX)

‘uvm_object_utils_end

function new(string name="packet_out");
super .new(name) ;
endfunction: new

endclass: packet_out
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1.9 Sequencer

class sequence_in extends uvm_sequence #(packet_in);

‘uvm_object_utils(sequence_in)

function new(string name="sequence_in");

super .new(name) ;

endfunction: new

task body;

packet_in tx;

forever begin

tx = packet_in::type_id::create("tx");
start_item (tx);
assert (tx.randomize());

finish_item (tx);

end

endtask : body

endclass:

sequence_in
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class sequencer extends uvm_sequencer #(packet_in);

‘uvm_component_utils(sequencer)

function new (string name = "sequencer", uvm_component
parent = null);
super.new(name, parent);

endfunction

endclass: sequencer
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.10 Top

import uvm_pkg::*;

‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include
‘include

‘include

// Top

"uvm_macros.svh"

"

n

"

./ input_if.sv"
./ output_if.sv"
./ AES.v"
./round.v"

./ table.v"

./ packet_in.sv"

./ packet_out.sv"

./ sequence_in.sv"

./ sequencer.sv"
./ driver .sv"
./ driver_out.sv"

./ monitor.sv"

./ monitor_out.sv"

./ agent.sv"
./ agent_out.sv"
./refmod.sv"
./ comparator.sv"

./env.sv"

./ simple_test.sv"
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24 module test;

25 logic clk;

26 logic reset;

27

28 initial begin

29 $timeformat(—9,2,"ns", 16);
30 ‘ifdef SDFSCAN

31 $sdf_annotate("sdf /AES_tsmc18_scan.sdf", test.top);
32 ‘endif

33 clk = 0;

34 reset = 0;

35 @ (posedge clk);
36 reset = 1;

37 @ (posedge clk);
38 @ (posedge clk);
39 reset = 0;

40

41 end

42

43 always #5 clk = !clk;
44

45 logic [127:0] state;
46 logic [255:0] key;
47 logic [127:0] out;
48
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input_if in(reset,clk);

output_if out_1(reset,clk);

// adder sum(state , key, out);

//AES E(in, out_1);

AES top (
in.reset ,
in.clk,
in.scan_inQ ,
in.scan_en ,
in.test_mode,
out_1.scan_outO ,

in.state ,

in.key,

out_1.out

initial begin

‘ifdef INCA
$recordvars () ;

‘endif

‘ifdef VCS
$vedpluson;

‘endif

‘ifdef QUESTA
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$wlfdumpvars () ;
set_config_int("x", "recording_detail", 1);
‘endif

uvm_config_db#(input_vif) ::

mst.x", "vif", in);

uvm_config_db#(output_vif) ::

slv.x", "vif", out_1);

run_test("simple_test");
end

endmodule

set(uvm_root:: get (),

set(uvm_root:: get (),

"%.env_h.

"%.env_h.




I.11 Test 137

I.11 Test

class simple_test extends uvm_test;
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env env_h;

sequence_in seq;

‘uvm_component_utils(simple_test)

function new(string name, uvm_component parent = null);

super .new(name, parent);

endfunction

virtual function void build_phase(uvm_phase phase);

super.build_phase(phase);

env_h = env::type_id::create("env_h", this);
seq = sequence_in::type_id::create("seq", this);
endfunction

task run_phase(uvm_phase phase);
seq.start(env_h.mst.sqr);

endtask: run_phase

endclass
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