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Abstract
Refactoring, as coined by WIlliam Obdyke in 1992, is the art of optimizing the syntactic

design of a software system without altering its external behavior. Refactoring was also

cataloged by Martin Fowler as a response to the existence of design defects that negatively

impact the software’s design. Since then, the research in refactoring has been driven by

improving systems structures. However, recent studies have been showing that developers

may incorporate refactoring strategies in other development related activities that go be-

yond improving the design. In this context, we aim in better understanding the developer’s

perception of refactoring by mining and automatically classifying refactoring activities in

1,706 open source Java projects. We perform a differentiated replication of the pioneer-

ing work by Tsantalis et al. We revisit five research questions presented in this previous

empirical study and compare our results to their original work. The original study in-

vestigates various types of refactorings applied to different source types (i.e., production

vs. test), the degree to which experienced developers contribute to refactoring efforts, the

chronological collocation of refactoring with release and testing periods, and the devel-

oper’s intention behind specific types of refactorings. We reexamine the same questions

but on a larger number of systems. To do this, our approach relies on mining refactoring

instances executed throughout several releases of each project we studied. We also mined

several properties related to these projects; namely their commits, contributors, issues, test

files, etc. Our findings confirm some of the results of the previous study and we highlight

some differences for discussion. We found that 1) feature addition and bug fixes are strong

motivators for developers to refactor their code base, rather than the traditional design im-

provement motivation; 2) a variety of refactoring types are applied when refactoring both

production and test code. 3) refactorings tend to be applied by experienced developers who

have contributed a wide range of commits to the code. 4) there is a correlation between

the type of refactoring activities taking place and whether the source code is undergoing a

release or a test period.
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Chapter 1

Introduction

The success of a software system depends on its ability to retain high quality of design

in the face of continuous change. However, managing the growth of the software while

continuously developing its functionalities is challenging, and can account for up to 75%

of the total development cost. One key practice to cope with this challenge is refactoring.

Refactoring is the art of remodeling the software design without altering its functionalities

[14][10]. It was popularized by Fowler, who identified 72 refactoring types and provided

examples of how to apply them in his catalog [14].

Refactoring is a critical activity in software maintenance and is regularly performed

by developers for multiple reasons [42][40][34]. Because refactoring is both a common

activity and can be automatically detected [11][36][42], researchers can use it to analyze

how developers maintain software during different phases of development and over large

periods of time. This research is vital for understanding more about the maintenance phase;

the most costly phase of development [7][12].

By strict definition, refactoring is applied to enforce best design practices, or to cope

with design defects. However, recent studies have shown that, practically, developers in-

terleave refactoring practices with other maintenance and development related tasks [33].

For instance, this previous work [32] distinguished two refactoring tactics when developers

perform refactoring: root-canal refactoring, in which programmers explicitly used refac-

toring for correcting deteriorated code, and floss refactoring, in which programmers use

refactoring as means to reach other goals, such as adding a feature or fixing a bug. Yet,

there is little evidence on which refactoring tactic is more common; there is no consensus
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in research on what events trigger refactoring activities and how these correlate with the

choice of refactoring (i.e., extract method, rename package, etc.); and there is no consensus

on how refactoring activities are scheduled and carried out, on average, alongside other

software engineering tasks (e.g., testing, bug fixing).

The purpose of this study is to further our understanding of how refactoring is per-

formed and the motivation behind different forms of refactorings. Therefore, our work is a

differentiated replication [46]1 of the study of Tsantalis et al. [42]; extending it primarily

by:

• Analyzing the commit and refactoring history of 1,706 curated open source Java

projects. The intention behind mining such a large set of projects is to challenge

the scalability of the previous related work’s conclusions, which relied primarily on

developer’s feedback through interviews and a limited set of projects.

• Performing an automatic classification of commits which contain refactoring opera-

tions with the goal of identifying the developer’s motivation behind every application

of a refactoring; what caused the developer to refactor? To the best of our knowl-

edge, no prior studies have automatically classified refactoring activities, previously

applied by a diverse set of developers, belonging to a large set of varied projects.

In this study we revisit the following research questions:

1. RQ1 Do software developers perform different types of refactoring operations on

test code versus production code?

This research questions seeks any patterns that developers specifically apply to either

production or test codes.

2. RQ2 Is there a subset of developers, within the development team, who are respon-

sible for refactoring the code?

1Similarity and differences between the two studies are described in Section 2.
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We answer whether the task of refactoring is equally distributed among all developers

or it is the responsibility of a subset. We also verify whether it is proportional to the

developers overall contribution to the project, in terms of commits.

3. RQ3 Is there more refactoring activity before project releases than after?

To answer this research question, we monitor the refactoring activities for a time

window centered by the release date, then we compare the frequency of refactoring

before and after the release of the new version.

4. RQ4 Is refactoring activity on production code preceded by the addition or modifi-

cation of test code?

Similarly to the previous research question, we compare the frequency of refactoring

before and after the version’s testing period.

5. RQ5 What is the developer’s purpose of the applied refactorings?

We determine the motivation of the developer through the classification of the com-

mit containing these refactoring operations. It identifies the type of development

tasks that refactorings were interleaved with, e.g., updating a feature, or debugging.

The results of our study will help strengthen our understanding of what events cause

the need for refactorings (e.g., bug fixing, testing). Based on some of the results in this

paper, tools that help developers refactor can better support our empirically-derived reality

of refactoring in industry. One recent area of research that is growing in popularity is

automating the construction of transformations from examples [3] [31] [38], which may

be used for refactoring. The result of this may help improve the application and output of

these technologies by helping researchers 1) choose appropriate examples based on what

motivates the refactoring and 2) train these tools to apply refactorings using best practices

based on why (e.g., bug fix, design improvement) the refactoring is needed.

Additionally, recommending or recognizing best practices for refactorings requires us

to understand why the refactoring is being carried out in the first place. It may not be
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true that best practices for refactorings performed for bug fixes are the same as those per-

formed to improve design or support a new framework. This work adds to the empirical

reality originally constructed by Tsantalis et al [42] and represents a step forward in a

stronger, empirically-derived understanding of refactorings and promote potential research

that bridges the gap between developers and refactoring in general.

The remainder of this paper is organized as follows. Section 2 enumerates the previous

related studies. In Section 3, we give the design of our empirical study. Section 4 presents

the study results while discussing our findings compared to the previous replicated paper’s

results. The next section reports any threats to the validity of our experiments, before finally

concluding in Section 7.
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Chapter 2

Related Work

This thesis’s focuses on mining commits to detect refactorings, then classifying the com-

mits to identify the motivation behind the detected refactorings. Thus, in this section, we

are interested in refactoring detection tools, along with the recent research on commit clas-

sification. Finally, we report studies that analyze the human aspect in the refactoring-based

decision making.

2.0.1 Refactoring Detection

Several studies have discussed various methodologies to identify refactoring operations be-

tween two versions of a software system. Our technique takes advantage of these tools to

discover refactorings in large bodies of software. Dig et al. [11] developed a tool called

Refactoring Crawler, which uses syntax and graph analysis to detect refactorings. Prete

et al. [36] proposed Ref-Finder, which identifies complex refactorings using a template-

based approach. Hayashi et al. [18] considered the detection of refactorings as a search

problem, the authors proposed a best-first graph search algorithm to model changes be-

tween software versions. Xing and Stroulia [47] proposed JDevAn, which is a UMLDiff

based, design-level analyzer for detecting refactorings in the history Object-Oriented sys-

tems. Tsantalis et al [42] presented Refactoring Miner, which is a lightweight, UMLDiff

based algorithm that mines refactorings within git commits. The authors extended their tool

[40] to enhance the accuracy of the 14 refactoring types that can be detected through struc-

tural constraints. Silva et al. [39] extended Refactoring Miner by combining the heuristics
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based static analysis with code similarity (TF-IDF weighting scheme) to identify 13 refac-

toring types. Table 2.1 summarizes the detection tools cited in this study.

Table 2.1: Refactoring Detection Tools in Related Work.

Study Year Refactoring Tool Detection Technique No. of Refactoring

Dig et al. [11] 2006 Refactoring Crawler Syntactic & Semantic analysis 7
Weissgerber and Diehl [45] 2006 Signature-Based Refactoring Detector Signature-based analysis 10

Xing and Stroulia[48] 2008 JDevAn Design Evolution analysis Not Mentioned
Hayashi et al.[18] 2010 Search-Based Refactoring Detector Graph-based heuristic search 9

Prete et al.[36], Kim et al.[23] 2010 Ref-Finder Template-based rules reconstruction technique 63
Tsantalis et al.[42][43], Silva et al.[40] 2013 & 2016 & 2018 RefactoringMiner Design Evolution analysis 14

Silva and Valente [39] 2017 RefDiff Static analysis & code similarity 13

2.0.2 Refactoring Motivation

Silva et al. [40] investigate what motivates developers when applying specific refactoring

operations by surveying Github contributors of 124 software projects. They observe that

refactoring activities are mainly caused by changes in the project requirements and much

less by code smells. Palomba et al.[34] verify the relationship between the application of

refactoring operations and different types of code changes (i.e., Fault Repairing Modifica-

tion, Feature Introduction Modification, and General Maintenance Modification) over the

change history of three open source systems. Their main findings are that: 1) developers

apply refactoring to improve comprehensibility and maintainability when fixing bugs, 2)

improve code cohesion when adding new features, and 3) improve the comprehensibility

when performing general maintenance activities. On the other hand, Kim et al. [22] do not

differentiate the motivations between different refactoring types. They surveyed 328 pro-

fessional software engineers of Microsoft to investigate when and how they do refactoring.

When surveyed, the developers cited the main benefits of refactoring to be: improved read-

ability (43%), improved maintainability (30%), improved extensibility (27%) and fewer

bugs (27%). When asked what provokes them to refactor, the main reason provided was

poor readability (22%). Only one code smell (i.e, code duplication) was mentioned (13%).

Murphy-Hill et al. [33] examine how programmers perform refactoring in practice by

monitoring their activity and recording all their refactorings. He distinguished between
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high, medium and low-level refactorings. High-level refactorings tend to change code el-

ements signatures without changing their implementation e.g., Move Class/Method, Re-

name Package/Class. Medium-level refactorings change both signatures and code blocks

e.g., Extract Method, Inline Method. Low level refactorings only change code blocks e.g.,

Extract Local Variable, Rename Local Variable. Some of the key findings of this study

are that 1) most of the refactoring is floss, i.e., applied to reach other goals such as adding

new features or fixing bugs, 2) almost all the refactoring operations are done manually by

developers without the help of any tool, and 3) commit messages in version histories are

unreliable indicators of refactoring activity because developers tend to not explicitly state

refactoring activities when writing commit messages. It is due to this third point that, in this

study, we do not rely on commits messages to identify refactorings. Instead, we use them

to identify the motivation behind the refactoring. Tsantalis et al. [42] manually inspected

the source code for each detected refactoring with a text diff tool to reveal the main drivers

that motivated the developers for the applied refactoring. Beside code smell resolution,

they found that introduction of extension points and the resolution of backward compati-

bility issues are also reasons behind the application of a given refactoring type. In another

study, Wang generally focused on the human and social factors affecting the refactoring

practice rather than on the technical motivations [44]. He interviews 10 industrial develop-

ers and found a list of intrinsic (e.g., responsibility of code authorship) and external (e.g.,

recognitions from others) factors motivating refactoring activity.

All the above-mentioned studies have agreed on the existence of motivations that go

beyond the basic need of improving the system’s design. Refactoring activities have been

solicited in scenarios that have been coined by the previous studies as follows:

• Bug fix: refactoring the design is a part of the debugging process.

• Design improvement: refactoring is still the de facto for increasing the system’s mod-

eling quality and design defect’s correction.

• Feature add/update: refactoring the existing system to account for the upcoming
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functionalities.

• Non-functional attributes enhancement: refactoring helps in increasing the system’s

visibility to the developers. It helps in better comprehending and maintaining it.

Since these categories are the main drivers for refactoring activities, we decided to cluster

our mined refactoring operations according to these groups. In order to perform the classi-

fication process, we review the studies related to commit and change history classification

in the next subsection.

2.0.3 Commits Classification

A wide variety of approaches to categorize commits have been presented in the literature.

The approaches vary between performing manual classification [40][28][21][9], to devel-

oping an automatic classifier [29] [16], to using machine learning techniques [20] [19]

[2] [30] [27] [26] and developing discriminative topic modeling [49] to classify software

changes. These approaches are summarized in Table 2.2.

Hattori and Lanza [17] developed a lightweight method to manually classify history

logs based on the first keyword retrieved to match four major development and mainte-

nance activities: Forward Engineering , Re-engineering, Corrective engineering, and Man-

agement activities. Also, Mauczka et al.[28] have addressed the multi-category changes in

a manual way using three classification schemes from existing literature. Silva et al.[40]

applied thematic analysis process to reveal the actual motivation behind refactoring in-

stances after collecting all developers’ responses. Further, in Chavez et al. [9], manual

inspection and classification of refactoring instance in a commit as root-canal refactoring

or floss refactoring have been proposed. An automatic classifier is proposed by Hassan

[16] to classify commits messages as a bug fix, introduction of a feature, or a general

maintenance change. Mauczka et al. [29] developed an Eclipse plug-in named Subcat to

classify the change messages into Swanson’s original category set (i.e., Corrective, Adap-

tive and Perfective [41]), with additional category "Blacklist". He automatically assesses if

a change to the software was due to a bug fix or refactoring based on a set of keywords in
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the change messages. Along with the progress of methodology, Hindle et al. [19] proposed

an automated technique to classify commits into maintenance categories using seven ma-

chine learning techniques. To define their classification schema, they extended Swanson’s

categorization [41] with two additional changes: Feature Addition, and Non-Functional.

They observed that no single classifier is best. Another experiment that classifies history

logs was conducted by Hindle et al. in [20]. Their classification of commits involves the

non-functional requirements (NFRs) a commit addresses. Since the commit may possibly

be assigned to multiple NFRs, they used three different learners for this purpose beside

using several single-class machine learners. Amor et al. [2] had a similar idea to [19] and

extended the Swanson categorization hierarchically. They, however, selected one classi-

fier (i.e. Naive Bayes) for their classification of code transaction. Moreover, Maintenance

requests have been classified into type using two different machine learning techniques

(i.e. Naive Bayesian and Decision Tree) in [27]. Another work [30] explores three popular

learners to categorize software application for maintenance. Their results show that SVM

is the best performing machine learner for categorization over the others. Recent work [26]

automatically classified commits into three main maintenance activities using three classi-

fication models , namely, J48 , Gradient Boosting Machine (GBM) , and Random Forest

(RF). They found that RF model outperforms the two other models.

2.0.4 Study Replication

Biegel et al. [6] replicated Weissgerber and Diehl’s work [45], which considers a signature-

based refactoring detection technique using CCFinder to determine the similarity between

the body of old and new code elements. Biegel et al. then extend the replicated experi-

ment by plugging in the two similarity metrics (JCCD [5] and Shingles [8]) to investigate

their influence on the signature-based detection technique. Bavota and Russo [4] present a

large-scale empirical study as a differentiated replication of the study by Potdar and Shi-

hab [35] in the detection of Self-Admitted Technical Debt (SATD). In particular, they ran

a study across 159 Java open source systems as compared to 4 projects analyzed in [35]
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to investigate their (1) diffusion (2) evolution over time, and (3) relationship with soft-

ware quality. Although they aim to address same research questions reported in [35], they

use different experimental procedures to answer these questions. For instance, to explore

the evolution of SATD (i.e. the percentage of SATD removed after it’s introduced), Pot-

dar and Shihab perform an analysis at the release-level, whereas Bavota and Russo use

commit history to detect SATD. Our work represents a replication and an extension of the

work by Tsantalis et al. [42]. In summary, for each research question, 1) we replicate

the small-scale/qualitative analysis by analyzing three projects: Hadoop, OrientDB, and

Camel; 2) we extend the study by performing large-scale/quantitative analysis on a larger

set of projects. For the qualitative analysis, we randomly selected Hadoop, OrientDB and

Camel among 11 candiate projects, which were hand-selected in a previous study based on

their popularity, coverage of a wide variety of domains such as IDE, DBMS, and integration

[26]. Revisiting the qualitative analysis allows a direct comparison with the results of the

previous studies [33, 42]. Additionally, the extended analysis over a larger set of projects

not only challenges the scalability of the qualitative analysis, but also allows the discov-

ery and exploration of refactoring trends that may not have appeared due to the previous

study’s limited set of projects and interviewed developers.

We summarize the similarities and differences between this study and the original study

as follows:

• Project size: To increase the generalizability of the results, our study is conducted in

1,706 open source Java projects compared to the 3 projects analyzed in [42].

• Refactoring detection tool: Since the approach relies on mining refactorings, we use

the Refactoring Miner tool, which detects 14 refactoring types. Tsantalis et al. [42]

developed and used the previous version of this tool that supports only 11 refactoring

operations.

• Refactoring operations on production and test code (RQ1): For each of the 3 projects,
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both studies identify test-specific and production-specific code entities through pack-

age organization analysis followed by keyword analysis. Just like Tsantalis et al.[42],

we conduct a manual inspection of the results related to the qualitative analysis. For

the quantitative analysis, we follow a pattern matching approach to distinguish be-

tween production and test files.

• Refactoring contributors (RQ2): Both studies explore which developers are respon-

sible for refactorings by comparing the percentage of refactorings performed by the

top refactoring contributors with all the rest.

• Refactoring activities around the release points (RQ3). Tsantalis et al. [42] select

windows of 80 days around each project major release date, dividing each release

into two groups of 40 days to count refactorings before and after the release points.

In our work, we consider all of the project releases, making sure that there is no

overlap between refactorings for each release.

• The relationship between refactoring and testing (RQ4): Both this and the replicated

study investigates whether the refactoring activity on production files is accompanied

by the addition or modification of test files by detecting them in the commit history;

focusing on testing periods with intense activity and setting the end of testing period

as a pivot point in the window analysis.

• Refactoring motivation (RQ5): Both studies postulate the main motivations behind

the applied refactoring. We add an automatic classification of commit messages using

Random Forest classifier. The previous work [42] performs a systematic labeling of

the refactoring instances by manually inspecting the text diff reports along with their

commit logs.
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Chapter 3

Methodology

To answer our research questions, we conducted a three phased approach that consisted of:

(1) selection of GitHub repositories, (2) refactoring detection and (3) commits classifica-

tion.

Figure 3.1: Approach Overview.
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Table 3.1: Refactoring Types (Extracted from Fowler [14]).

Refactoring Type Description

Extract Method A code fragment that can be grouped together. Turn the fragment into a method whose name explains the purpose of the method.
Move Class A class isn’t doing very much. Move all its features into another class and delete it
Move Attribute A field is, or will be, used by another class more than the class on which it is defined
Rename Package The name of a package does not reveal its purpose. Change the name of the package
Rename Method The name of a method does not reveal its purpose. Change the name of the method
Rename Class The name of a class does not reveal its purpose. Change the name of the class
Move Method A method is, or will be, using or used by more features of another class than the class on which it is defined
Inline Method When method’s body is just as clear as its name. Put the method’s body into the body of its callers and remove the method
Pull Up Method You have methods with identical results on subclasses. Move them to the superclass
Pull Up Attribute Two subclasses have the same field.Move the field to the superclass
Extract Superclass There are two classes with similar features. Create a superclass and move the common features to the superclass
Push Down Method The Behavior on a superclass is relevant only for some of its subclasses. Move it to those subclasses
Push Down Attribute A field is used only by some subclasses. Move the field to those subclasses
Extract Interface Several clients use the same subset of a class’s interface, or two classes have part of their interfaces in common. Extract the subset into an interface

3.0.1 Phase 1: Selection of GitHub Repositories

To perform this study, we randomly selected 57,447 projects from a list of GitHub reposito-

ries [1], while verifying that they were Java based since that is the only language supported

by Refactoring Miner. After scanning all projects, those with no detected refactoring were

discarded, and 3,795 projects were considered. To ensure that the selected projects prop-

erly fit in answering the above-mentioned research questions. We apply further selection

criteria using Reaper [?], an open source tool for selecting curated, and well engineered

Java project, based on user-set rules. Candidate repositories were selected by ranking them

based on the number developers who made commits to the project, the number of commits,

the number of versions, the Stargazers count, number of forks, and number of subscribers.

Similar to [37][40], we filter out the projects that have less than the 1st quartile for all of

these engagement metrics to ensure that these projects have a significant maintenance ac-

tivity, and maintained by a large set of developers for a significant period of time. The final

selection results in 1,706 projects analyzed that have a total of 1,208,970 refactoring types.

An overview of the projects is provided in Table 3.2.
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Table 3.2: Projects Overview.

Item Count

Total projects 57,447
Projects with releases 521
Projects with identified refactorings 3,795
Refactoring commits 322,479
Refactoring operations 1,208,970
Production-based refactoring operations 950,739
Test-based refactoring operations 258,231

Analyzed Projects - Refactored Code Elements
Code Element # of Refactorings

Class 329,378
Method 718,335
Attribute 97,516
Package 18,334
Interface 8,096

3.0.2 Phase 2: Refactoring Detection

For the purpose of extracting the entire refactoring history of each project, we used the

Refactoring Miner tool, proposed by Tsantalis et al. [40]. Refactoring Miner is designed

to analyze code changes (i.e., commits) in git repositories to detect any applied refactoring.

The list of detected refactoring types by this tool is described in Table 3.1. Two phases are

involved when detecting refactorings using the Refactoring Miner tool. In the first phase,

the tool matches two code elements in top-down order (starting from classes and continuing

to methods and fields) based on their signatures, regardless of the changes that occurred in

their bodies. If two code elements do not have an identical signature, the tool considers

them as added or deleted elements. In the second phase, however, these unmatched code

elements (i.e. potentially added or removed elements) are matched in a bottom-up fashion

based on the common statements within their bodies. The purpose of this phase is to find

code elements that experienced signature changes. It is important to note that Refactoring
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Miner detects refactoring in a specific order, applying the refactoring detection rules as

discussed in Tsantalis et al. [43].

We decided to use Refactoring Miner for consistency, since it was both proposed and

used by the authors of the study we replicated. Additionally, Refactoring Miner has shown

promising results in detecting refactorings compared to the state-of-art available tools [40]

and is suitable for a study that requires a high degree of automation since it can be used

through its external API. The Eclipse plug-in refactoring detection tools we considered,

in contrast, require user interaction to select projects as inputs and trigger the refactoring

detection, which is impractical since multiple releases of the same project have to be im-

ported to Eclipse to identify the refactoring history. It is important to note that, while we

were conducting this study, a more recent tool named refDiff was developed with the same

goal in mind; to mine refactorings from open source repositories. In future studies, it might

be possible for us to use this tool for comparison purposes.

Table 3.3: Classification Categories.

Category Description

Feature Implementation of a new/up-
dated feature(s).

BugFix Application of bug fixes.
Design Restructuring and repackag-

ing the system’s code ele-
ments to improve its internal
design.

Non-Functional Enhancement of non-
functional attributes such as
testability, understandability,
and readability.
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3.0.3 Phase 3: Commits Classification

Our classification process has three main steps: (1) choice of the classifier, (2) data prepro-

cessing, and (3) preparation of the training set.

Choice of the classifier

Selecting the proper classifier for optimal classification of the commits is rather a chal-

lenging task[13]. Developers provide a commit message along with every commit they

make to the repository. These commit messages are usually written using natural language,

and generally convey some information about the commit they represent. In this study we

were dealing with a multi-class classification problem since the commit messages are cat-

egorized into four different types as explained in Table 3.3. Since it is very important to

come up with an optimal classifier that can provide satisfactory results, several studies have

compared K-Nearest Neighbor (KNN), Naive Bayes Multinomial, Linear Support Vector

Classifier (SVC), and Random Forest in the context of commit classification into similar

categories [26, 25]. These studies found that Random Forest gives satisfactory results. We

investigated each classifier ourselves and came to the same conclusion using common sta-

tistical measures (precision, recall, and F-score) of classification performance to compare

each. Therefore, we used Random Forest as our classifier. One important observation we

had for the selection of the classifier was that the precision, recall, and F-score results from

the Linear SVC and Random Forest are pretty close. However, while applying the trained

model on a new dataset, Linear SVC didn’t provide satisfactory results. After further inves-

tigation, we figured out that since linear SVC is an inherently binary classifier and in this

case it uses One-vs-Rest strategy for multi-class classification, it provides less satisfactory

results when applied to a new dataset. Table 3.4 shows the performance comparison of

different classifiers we evaluated in this study.
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Table 3.4: Comparison of Different Classifiers.

Classifier Precision Recall F1-Score

Random Forest 0.99 0.99 0.99
Linear SVC 0.99 0.98 0.99
Naive Bayes Multinomial 0.95 0.94 0.94
K-Nearest Neighbor 0.88 0.85 0.85

Data Preprocessing

We applied a similar methodology explained in [25] for text pre-processing. In order for

the commit messages to be classified into correct categories, they need to be preprocessed

and cleaned; put into a format that the classification algorithms will accept. The first step

is to tokenize each commit by splitting the text into its constituent set of words. After

that, punctuation, stop words, and numbers are removed since they do not play any role as

features for the classifier. Next, all the words are converted to lower case and then stemmed

using the Porter Stemmer in the NLTK package. The goal of stemming is to reduce the

number of inflectional forms of words appearing in the commit; it will cause words such

as "performance" and "performing" to syntactically match one another by reducing them

to their base word– "perform". This helps decrease the size of the vocabulary space and

improve the volume of the feature space in the corpus (i.e., a commit message). Finally,

each corpus is transformed into vector space model (VSM) using the TF-IDF vectorizer in

Python’s SKlearn package to extract the features.

Building the Training Set

We started to build the training set by extending an existing labeled dataset [28], and manu-

ally classifying 3500 commit messages from Java open source projects. We used the same

model for the manual classification of the commits as explained in [19]. Next, we asked

a set of four software engineering graduate students to check and evaluate those commit

messages. Each student was assigned to evaluate one category of the commit messages
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and we asked them to mark the commit messages that do not belong to any category as

unknown. The unknown category gathers all commits that were hard to manually classify.

A commit was considered hard to classify if it was too short, ambiguous, or the software

engineering students could not reach an agreement about how it should be classified. We

used the unknown category’s commits to train the classifier to recognize confusing com-

mits so that similarly hard-to-classify commits ended up in their own category, causing our

classifier to be more accurate. Also, in order to mitigate the subjectivity involved in the

manual classification, we followed the method explained in [26]. We randomly selected

commit messages from three different categories and had those commits evaluated again

by one of the members of the graduate student team who did not evaluate those commits

from those three categories during the first pass. It is important to note that by manual

classification we provide the correct class label for each commit type. Finally, we divided

the dataset randomly into 75% training set and 25% testing set to evaluate the performance

of different classifiers explained at the beginning of this section.
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Chapter 4

Analysis & Discussion

This section reports our experimental results and aims to answer the research questions in

Section 1. The dataset of refactorings along with their classification is available online1 for

replication and extension purposes.

Because our study examines many systems and many refactorings, we present the re-

sults for each research question as both an agglomeration of all data in the study (i.e., in the

subsections labeled automated) and as a sample of three systems (i.e., in the subsections la-

beled manual). These three systems were chosen based on the criteria used in [26]; system

characteristics are illustrated in Table 4.1. Additionally, these systems contained a signifi-

cant (95% confidence level) number of refactorings and test files. Therefore, we report both

a global view and a fine-grained view of our results to provide a stronger understanding of

the data.

Table 4.1: Characteristics of Three Software Projects under Study.

Software Project All Commits Ref Commits Refactorings Contributors Refactoring Contributors

apache/hadoop2 17,510 1,462 4,207 114 73
orientechnologies/orientdb3 16,246 1,737 5,063 113 35
apache/camel4 30,781 2,863 8,422 368 73

1Link omitted for double-blind review
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4.1 RQ1: Do software developers perform different types
of refactoring operations on test code and production
code?

To answer this research question, we start by scanning all the changed files in the set of

analyzed commits. Then, we identify test files by tagging any file in the project’s nested

repositories whose code element (class, method) identifier contains test. Therefore, any

refactoring operations performed on test files, are considered test refactorings.

Automated

Table 4.2: Refactoring Frequency in Production and Test Files in all Projects Combined.

Refactoring Type In Production Files In Test Files

Extract Method 17.79% 12.36%
Move Class 15.86% 17.08%
Move Attribute 5.81% 4.00%
Move Method 3.00% 2.16%
Inline Method 3.07% 1.71%
Pull Up Method 6.51% 3.90%
Pull Up Attribute 2.99% 2.71%
Extract Superclass 0.94% 0.74%
Push Down Method 0.75% 0.27%
Push Down Attribute 0.31% 0.32%
Extract Interface 2.82% 0.24%
Rename Package 1.86% 0.61%
Rename Method 28.51% 39.02%
Rename Class 10.54% 14.88%

An overview of the detected refactorings is provided in Table 4.2. We found that

around 77% of all mined refactorings were applied, on average, to production files, and

23% applied to test files. For comparison, the previous study, Tsantalis et al. [42], found

that, on average, 73% of refactorings were applied to production files while 27% were
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applied to test files. Furthermore, we found that the topmost applied refactorings (shown in

bold in Table 4.2) are respectively Rename Method, Extract Method, and Move Class. Our

topmost used refactoring types overlaps with the findings of the previous study [40] since

they ranked Extract Method, and Move Class as their most popular types. The absence

of Rename Method from their findings can be explained by the fact that their tool did not

support its detection when they conducted their study.

As stated prior, the difference in the distribution of refactorings in production/test files

between our study and the previous one is also due to the size (number of projects) effect

of the two groups under comparison. To mitigate this, we selected three samples in which

both the number refactorings and the number of test files are statistically significant with

respect to whole set of projects (95% confidence level). The project details are enumerated

in Table 4.1.

Manual

We now examine on a per-system basis. In Hadoop, RefactoringMiner detected a total of

4124 refactorings, 3131 (76%) of them were applied on production code, while 993 (24%)

were test code refactorings. Out of the total 5044 detected refactoring in OrientDB, 4369

(87%) were production code refactorings and 675 (13%) were test code refactorings. In

Camel, there were 6283 (76%) production code refactorings and 2039 (24%) were test code

refactorings out of 8322 total detected refactorings. For each project, we use the Mann–

Whitney U test to compare between the group of refactorings applied to production and test

files. We found that the number of applied refactorings in production files is significantly

higher than those applied to test classes with a p-value=0.0030 (resp. 0.0013, 0.0019) in

Hadoop (resp. OrientDB and Camel). Furthermore, we use the Kruskal Wallis H test to

analyze whether developers use the same set of refactoring types with the same ratios when

refactoring production and test files. In OrientDB (resp. Camel) the hypothesis of both

groups having the same distribution was rejected with a p-value=0.0024 (resp. 0.0366). As

for Hadoop, it was not statistically significant (p-value=0.0565).
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Table 4.3: Frequency of Refactorings per Type on Production and Test Files in Hadoop,
OrientDB and Camel.

Production Code Test Code

Refactorings Hadoop OrientDB Camel Hadoop OrientDB Camel

Extract Method 951 1,615 1,248 392 163 229
Move Class 220 200 416 66 90 229
Move Attribute 174 141 403 17 1 90
Move Method 220 101 326 29 21 21
Inline Method 142 280 116 23 13 43
Pull Up Method 176 267 489 41 38 171
Pull Up Attribute 187 127 171 62 8 76
Extract Superclass 27 31 57 17 11 10
Push Down Method 3 46 36 0 14 9
Push Down Attribute 2 19 16 0 2 5
Extract Interface 28 33 58 3 0 2
Rename Package 27 47 54 0 1 6
Rename Method 832 1,120 2,007 300 208 790
Rename Class 142 342 886 43 105 358
Total 3131 4369 6283 993 675 2039

Our findings are aligned with the previous study; we found that developers refactor pro-

duction files significantly more than test files. We also could not confirm that developers

uniformly apply the same set of refactoring types when refactoring production and test

files.
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4.2 RQ2: Which developers are responsible for refactor-
ings?

Automated

Figure 4.1a and 4.1b show violin plots with the commit distribution of both the most fre-

quent refactoring contributor (i.e., Figure 4.1a) and the rest of the refactoring contribu-

tors (i.e., Figure 4.1b) on refactoring and non-refactoring commits for all 1,706 systems.

We also provide plots 4.2a and 4.2b to compare their contributions. From the figure,

we see that all refactoring contributors perform refactoring and non-refactoring commits.

However, we notice that a single developer has taken over the responsibility for applying

refactorings due to the significant number of refactoring commits performed in compari-

son to non-refactoring commits. All the rest of the refactoring contributors are performing

more non-refactoring commits and less refactorings than the main refactoring contributors.

Across the large-scale projects, we cannot conclude the key role of the top 1 refactoring

contributors to examine in contrast with the results found in the previous study.

(a) Top 1 Refactoring Contributors (b) All the Rest of Refactoring Contributors

Figure 4.1: Top 1 and all the Rest of Refactoring Contributors for all Projects Combined

Manual

Figure 4.3 portrays the distribution of the refactoring activities on production code and test

code performed by project contributers for each system we examined.

The Hadoop project has a total of 114 developers. Among them are 73 (64%) refactor-

ing contributors. As we observe in Figures 4.3a and 4.3b, not all of the developers are major
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(a) Refactoring Commits for Top 1 and all the
Rest

(b) Non-Refactoring Commits for Top 1 and all
the Rest

Figure 4.2: Total Refactoring and Non-Refactoring Commits for Refactoring Contributors
for all Projects Combined

refactoring contributors. The main refactoring contributor has a refactoring ratio of 25% on

production code and 10% on test code. Figure 4.3c and 4.3d present the percentage of the

refactorings for the OrientDB production code and test code. Out of the total 113 develop-

ers, 35 (31%) were involved refactoring. The top contributor has a refactoring ratio of 57%

and 44% on respectively production and test code. For Camel, in Figures 4.3e and 4.3f, 73

(20%) developers were on the refactoring list out of 368 total committers. The most active

refactoring contributor has high ratios of 51% and 48% respectively in production and test

code. It is important to note that very few developers applied refactorings exclusively on

either production code or test code for the three projects under study. Interestingly, we

found that the most active refactoring contributors of each project were either development

lead or experienced developers.
Refactoring is performed by a subset of developers, in both production and test files. Their

public profiles show they they are senior developers that are experienced with the project.

Our results are in agreement with [42], which also found that the top refactoring contribu-

tors had a management role within the project.
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Figure 4.3: Refactoring Contributors in Production and Test Files in Hadoop, OrientDB
and Camel.
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4.3 RQ3: Is there more refactoring activity before project
releases than after?

Automated

In the previous study [42], they manually filtered minor releases and selected only major

project releases within an 80-day window, divided into two groups of 40 days before and af-

ter each release. To perform our study, we have considered all release dates of the projects.

In order to avoid any overlap between refactoring operations, we split the analysis into the

periods before and after the release at the midpoint between two release points because the

time between two releases is not evenly spaced.

Figure 4.4a and 4.4b present the distribution of refactoring activity before and after

all project releases on production and test code. As shown in Figure 4.4a, production-

based refactorings are more frequent before release than after. Similarly, in Figure 4.4b,

test-based refactorings are more frequent before release dates. We are also interested in re-

porting the results in detail by comparing refactoring density in three situations: (1) when

refactorings after the releases are greater than before, (2) when refactorings after the re-

leases are fewer than before, and (3) when refactorings after the releases are equal to the

one before. We found that the first situation is more frequent than the other two. Addi-

tionally, frequency distribution of refactoring types before and after the release for both

production and test files is depicted in Figure 4.7

(a) Production Files - Release Point Comparison. (b) Test Files - Release Point Comparison.

Figure 4.4: Refactoring Density - Release Point Comparison.
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(a) After > Before - Release Point Comparison. (b) After < Before - Release Point Comparison.

Figure 4.5: Refactoring Density - Release Point Comparison (Production Files).

(a) After > Before - Release Point Comparison. (b) After < Before - Release Point Comparison.

Figure 4.6: Refactoring Density - Release Point Comparison (Test Files).

Manual

In order to study refactoring activities along the lifetime of the three projects, our approach

involved two steps: (1) Selecting release date, and (2) identifying refactorings chronolog-

ically executed around the selected release dates. In the first step, we randomly selected

seven public release dates for each project under study, making sure that they did not over-

lap or only slightly overlap, on a 20 day window that can reach up to 40 days; similar to

previous work [42]. In the second step, we select the commits that are collocated in the 40

day window, centered by each release date. We extract the refactorings using Refactoring

Miner and examine refactoring events for each version supported in the release; counting

the number of refactoring operations performed before and after a release.

Starting with the Hadoop project, as Figure 4.8 shows, there are significant peaks in

refactoring activity on the same day of the release and two days after the release day.



29

Table 4.4: Percentage of Refactorings on Production and Test Files in all Projects Com-
bined.

Comparison Type Production Code Test Code

After > Before 31% 34%
After < Before 66% 62%
After = Before 3% 4%

Further analysis showed constant refactoring activities in the 20 days window before and

20 days window after the release day in multiple release points. In comparison with the

previous study results, no significant refactoring patterns were identified around the period

of release dates.

Next, we examine the OrientDB project. It is apparent from Figure 4.9 that there are

constant refactoring activities within a three week period before and after the release day.

A significant increase to a peak of 41 refactoring events can be observed 14 days before the

release day, but it is only observed for one release and it cannot be generalized.

Finally, the Camel project observation was not different from the two previous ones.

Figure 4.10 demonstrates a similar behavior of constant refactoring activity in the 40 days

leading up to the release day and throughout the 53 days after the release day. What is

different about Figure 4 is the significant peak of about 105 refactoring events on the 40th

day after the release point. From there, refactoring activity returned to normal with no

significant peaks. Moreover, between 41 and 60 days before the project release day, there

is no notable observation about refactoring activity.
Tsantails et al [42] showed that refactoring activity is high before the major release dates

than after. This is consistent with the findings presented here for large-scale projects, but

we noticed no significant, generalizable patterns in refactoring activity before and after

projects major release dates for small-scale projects.
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Figure 4.8: Refactoring Activity Comparison (Release)- Hadoop.

Figure 4.9: Refactoring Activity Comparison (Release)- OrientDB.

Figure 4.10: Refactoring Activity Comparison (Release)- Camel.
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4.4 RQ4: Is refactoring activity on production code pre-
ceded by the addition or modification of test code?

Automated

Since identifying the end of testing periods for each project require manual work, we could

not perform the analysis to conclude the relationship between refactoring and testing for

large-scale projects.

Manual

Our methodology to study the relationship between refactorings and the test code changes

is composed of three steps: (1) detecting test activity peaks, (2) selecting testing periods

based on testing peaks, and (3) identifying refactorings chronologically executed during

the testing periods. For each of the three projects, we first apply the same procedure for

identifying test files as in our methodology for RQ1. We then rank commits having the

highest number of added/changed test files. By monitoring commits that have high volume

of testing activity, we identified commits that were hotspots; commits with significant code

churn. We selected a window of 40 days around the end of testing periods for each system,

splitting the window into groups of 20 days before and after the testing point. Lastly, we

counted refactoring occurrences around each of the testing periods.

We begin with the Hadoop project. Figure 4.11 presents the experimental data and

depicts the refactoring events around the five testing periods. From the graph, we can

see high refactoring activity around the testing periods(including the same day of testing

periods). There is a clear trend of increasing the number of refactoring events one week

before the end of testing periods.

Next, we examine OrientDB. Figure 4.12 provides the results. From the chart, we

can observe that, by far, the greatest refactoring activity happened the same day the test

period ended. Comparing the two results of Hadoop and OrientDB, we see that there is a

substantial increase in refactoring events before and on the same day of testing periods.

Finally, we examine the Camel project. There is common pattern between the Hadoop
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and the Camel projects in terms of active refactoring activity around testing periods. Com-

paratively, refactoring activity in Camel peaks earlier and higher than Hadoop (about 32

and 24 refactoring events, respectively).
This outcome is contrary to that of Tsantalis et al. [42] who found that there are high

refactoring activity during testing period than after. In our study, we found that there is a

substantial refactoring activity before and after the end of testing periods.
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Figure 4.11: Refactoring Activity Comparison (Test)- Hadoop.

Figure 4.12: Refactoring Activity Comparison (Test)- OrientDB.

Figure 4.13: Refactoring Activity Comparison (Test)- Camel.
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4.5 RQ5:What is the purpose of the applied refactorings?

Automated

To answer this research question, Figure 4.14 shows the categorization of commits, from all

projects combined. Interestingly, the feature and design categories had the highest number

of commits with a slight advantage to the first category, since its ratio was 27%, while

the design category had a ratio of 25%. Surprisingly, bugFix was the third most popular

category for refactoring-related commits with 14%, in front of the non-functional category,

which had a ratio of 8%. It is important to note that the unclassified commits are those

gathered by the unknown category that we have explained earlier, in Section 3.0.3.

Feature
27%

Unclassified
26%

Design
25%

BugFix
14%

Non-Functional 8%

Figure 4.14: Percentage of Classified Commits per Category in all Projects Combined.

Although there was a limited evidence which refactoring tactic is more common [32],

if we consider feature and bugFix categories to be containers for floss refactorings, while

design and non-functional commits are labeled root-canal, then the percentage of floss

operations is higher than the percentage of root-canal operations. This aligns with the

survey results of Murphy-Hill et al. [33], stating that floss refactoring is a more frequent

refactoring tactic than pure refactoring (i.e, root-canal refactoring). This observation agrees

with the findings of Silva et al. [40] as they also conclude that refactoring activity is mainly

driven by changes in the requirements (new feature and fix bugs requests) and much less by
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code smell resolution.

To better analyze the existence of any patterns on the types of refactorings applied in

each category, Figure 4.15 presents the distribution of refactoring types in every category.

The Rename Method type was dominant in all categories except for the design. Extract

Method was also popular among all categories. Next, two class-level types, namely Re-

name Class and Move Class, were ranked respectively third and fourth generally in all

categories. Then the remaining refactoring types were applied with similar frequency. Sur-

prisingly, the popular Move Method type was not among the topmost used refactoring

except for the design category.

Table 4.5: Refactoring Level Percentages per Category.

Category High Medium Low

BugFix 56.97% 35.31% 7.72%
Feature 59.57% 31.85% 8.58%
Design 69.17% 19.71% 11.12%
Non-Funtional 57.89% 32.01% 10.09%

The first observation that we can draw is that method-level refactorings are employed

more than package, class, and attribute-level refactorings, but without any statistical sig-

nificance (bugFix p-value=0.1356, design p-value=0.2388, feature p-value=0.20045, non-

functional p-value=0.2004). Another important observation is the dominance of the high

level refactorings compared to medium and low-level refactorings. As shown in table 4.5,

the high-level refactorings percentages was the highest among all categories, its highest

percentage was in the design category; this can be explained by the fact that developers

tend to make a lot of design-improvement decisions that include remodularizing packages

by moving classes, reducing class-level coupling, increasing cohesion by moving meth-

ods, and renaming elements to increase naming quality in the refactored design. Medium-

level refactorings are typically used in bugFix, feature, and non-functional, as develop-

ers tend to split classes and extract methods for 1) separation of concerns, 2) helping in
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easily adding new features, 3) reducing bug propagation, and 4) improving system’s non-

functional attributes such as extensibility and maintainability. Low-level refactorings that

mainly change class/method code-blocks are the least utilized since moving and extracting

attributes are intuitive tasks that developers tend to manually perform.

Manual

Feature
67%

Unclassified 3%
Design 2%

BugFix
13%

Non-Functional
15%

Feature
59%

Unclassified 7%

Design 2%

BugFix
17%

Non-Functional
15%

Feature
59%

Unclassified 6%

Design 2%

BugFix
9%

Non-Functional
24%

Figure 4.16: Percentage of Classified Commits per Category in Hadoop, OrientDB and
Camel.

Overall, as can be seen from Figure 4.16, feature category constitutes the primary driver

for applying refactorings in all of the three projects. Feature addition motivation made up

67% in Hadoop and 59% in both OrientDB and Camel. In contrast, we have found that

design is the lowest motivation, accounting for only 2%, across all of the three projects.

Bugfix and non-functional attribute enhancement categories are the second refactoring mo-

tivations, that constitute slightly above a quarter of the motivation behind refactorings.

These findings shed light on how refactorings are applied in real settings. Results indi-

cate that developers intersperse refactoring with other programming activity (e.g., feature

addition or modification, bug fixing) more frequently than performing pure refactorings.
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Our classification has shown that developers not only apply a variety of refactorings to im-

prove the design, like in the previous study, but are driven by preparing the system’s design

to accommodate features or make it less prone to bugs. Thus, we empirically confirm the

results of the previous studies that highlight the popularity of floss refactoring. We also

found that high-level refactorings are still widely used in all categories.
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Chapter 5

Threats to Validity

External Validity. The first threat is that the analysis was restricted to only open source,

Java-based, Git based repositories. However, we were still be able to analyze 1,706 projects

that are highly varied in size, contributors, number of commits and refactorings. Also,

recent studies [49] [24][15] indicate that commit comments could capture more than one

type of classification (i.e. mixed maintenance activity). In this work, we only consider

single-labeled classification, but this is an interesting direction that we can take into account

in our future work.

Internal Validity. In this thesis, we analyzed 14 refactoring operations detected by

Refactoring Miner which can be viewed as a validity threat because the tool did not con-

sider all refactoring types mentioned by Fowler et al. [14]. However, a previous study [33]

reported that these 14 types amongst the most common refactoring types. Moreover, we

did not perform a manual validation of refactoring types detected by Refactoring Miner

to assess its accuracy. However, a previous study [43] report that this tool has a precision

of 98% and significantly outperforms the previous state-of-the-art tool, which gives us a

confidence in using the tool. Refactoring Miner does not support the detection of the refac-

toring patterns (e.g., developers applied sequences of refactoring operations to the same

part of code) and also the tool may miss the detection of some refactorings in large scale

software projects. Further, the set of commit messages used in this study may represent a

threat to validity, because it may not indicate refactoring activities. To mitigate this risk,

we manually inspect a subset of change messages and ensure that projects selected are

well-commented and use meaningful commit messages.
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Chapter 6

Conclusion & Future Work

In this thesis, we revisited five research questions that explore different types of refactor-

ing activity and applied them to larger scale software projects. The empirical study we

conducted included: the proportion of refactoring operations performed on production and

test code, the most active refactoring contributors, the inspection of refactoring activity

along the lifetime of 1,706 Java projects, the relationship between refactorings and testing

activity, and the main motivations of refactoring. In summary, the main conclusions are:

1. Developers are using wide variety of refactoring operations to refactor production

and test files.

2. Specific developers are responsible for performing refactoring, and they are either

technical managers or experienced developers.

3. Significant refactoring activity is detected before and after major project releases.

There is a strong correlation between refactoring activity and active testing periods.

4. Refactoring activity is mainly driven by changes in requirements and design improve-

ment. The rename method is a key refactoring type that serves multiple purposes.

As future work, we aim to investigate the effect of refactoring on both change and

fault-proneness in large-scale open source systems. Specifically, we would like to investi-

gate commit-labeled refactoring to determine if certain refactoring motivations lead to de-

creased change and fault-prone classes. Further, since a commit message could potentially

belong to multiple categories (e.g., improve the design and fix a bug), future research could
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usefully explore how to automatically classify commits into this kind of hybrid categories.

Another potentially interesting future direction will be to conduct additional studies using

other refactoring detection tools to analyze open source and industrial software projects

and compare findings.
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