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Abstract
The widespread adoption of mobile devices, coupled with the ease of developing mobile-

based applications (apps) has created a lucrative and competitive environment for app de-

velopers. Solely focusing on app functionality and time-to-market is not enough for devel-

opers to ensure the success of their app. Quality attributes exhibited by the app must also

be a key focus point; not just at the onset of app development, but throughout its lifetime.

The impact analysis of bad programming practices, or code smells, in production code

has been the focus of numerous studies in software maintenance. Similar to production

code, unit tests are also susceptible to bad programming practices which can have a negative

impact not only on the quality of the software system but also on maintenance activities.

With the present corpus of studies on test smells primarily on traditional applications, there

is a need to fill the void in understanding the deviation of testing guidelines in the mobile

environment. Furthermore, there is a need to understand the degree to which test smells

are prevalent in mobile apps and the impact of such smells on app maintenance. Hence,

the purpose of this research is to: (1) extend the existing set of bad test-code practices by

introducing new test smells, (2) provide the software engineering community with an open-

source test smell detection tool, and (3) perform a large-scale empirical study on test smell

occurrence, distribution, and impact on the maintenance of open-source Android apps.

Through multiple experiments, our findings indicate that most Android apps lack an au-

tomated verification of their testing mechanisms. As for the apps with existing test suites,

they exhibit test smells early on in their lifetime with varying degrees of co-occurrences

with different smell types. Our exploration of the relationship between test smells and tech-

nical debt proves that test smells are a strong measurement of technical debt. Furthermore,

we observed positive correlations between specific smell types and highly changed/buggy

test files. Hence, this research demonstrates that test smells can be used as indicators for

necessary preventive software maintenance for test suites.
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Chapter 1

Introduction

Given the wide availability of Android-based smartphones [2, 1], developers are presented

with the opportunity to build mobile apps that can not only reach a vast userbase but also

provide users with sophisticated functionality that can tap into hardware features (such as

camera, gyroscope, GPS, etc.). This fact is supported by the number of apps currently avail-

able on the Google Play Store; as of December 2017, there were roughly 3.5 million apps

available on the store [52, 53]. Furthermore, the high-competitiveness of the mobile indus-

try engenders developers to update their apps frequently, and so it becomes challenging for

the quality of the software to be maintained.

Quality is a critical driver in all software systems; to such an extent that the success of

a system ultimately depends on the quality aspects it exhibits. As such, software project

teams utilize a combination of multiple testing strategies [48] during the development and

maintenance lifecycle of their software systems. One such popular quality assurance strat-

egy, utilized by software developers, is unit testing. In the object-oriented paradigm, unit

testing involves the investigation of every atomic unit in the codebase for quality issues.

Through this approach, quality is engraved into the software system much earlier in the

development lifecycle and hence positively impacts not only the quality of the system, but

also software projects timeline and cost [29]. To this extent, developers are encouraged

to write unit tests for the functionality they are implementing in their software systems.

With the rise of continuous integration, many project teams have started the integration of

unit tests into their build process for real-time visibility of the system quality [9].To further
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highlight the importance of unit tests, many of the modern Integrated Development En-

vironments (IDE), such as Android Studio1, IntelliJ IDEA2, and Microsoft Visual Studio3,

provide developers with the necessary infrastructure, and framework Application Program-

ming Interfaces (API) to build and evolve test suits in their codebase.

The test code, just like traditional source code, is subject to bad programming prac-

tices, also known as anti-patterns, defects and smells [14]. Smells, being symptoms of bad

design or implementation decisions, has been proven to be responsible for decreasing the

quality of software systems from various aspects, such as making it harder to understand,

more complicated to maintain, and more prone to changes and bugs [32] [22] [12] [37]. In

this context, several studies on code smells are driven, in general, by optimizing their iden-

tification and also proposing more accurate detection strategies [31, 27, 37]. Other studies

focused on prioritizing their correction based on their severity in deteriorating the quality

of software [55]. Smells also were recently designed as measurements of technical debt

[13]. Technical debt is coined as sub-optimal decisions, made by developers, to achieve

incomplete but functional goals while saving development effort. Recent studies have been

investigating the relationship between technical debt and code smells since both of them

negatively impact software quality.

The concept of test smells was initially introduced by van Deursen et al. [57]. Fur-

ther research in this field has also resulted in the identification of additional test smell

types [17], analysis of their evolution and longevity [4] [44], along with patterns to elimi-

nate them [35]. However, as described in Chapter 3, studies around test smells were limited

to traditional Java systems. Similarly, there was a growth in research demonstrating how

the existence of code smells deteriorate the quality of software designs [5][56]. Although

there is a considerable growth of the number of mobile-driven projects, there are no existing

studies that analyzed the impact of these bad programming practices on the maintenance

of both production and test files, namely their proneness to change and bugs in the mobile

1https://developer.android.com/studio/
2https://www.jetbrains.com/idea/
3https://www.visualstudio.com/vs/

https://developer.android.com/studio/
https://www.jetbrains.com/idea/
https://www.visualstudio.com/vs/
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environment. Moreover, several studies have designed strategies on how to detect these

smells [50, 8, 16, 40], yet, there is no comprehensive and open-source tool to detect all the

types of test smells. As a means of overcoming these challenges, we have extended the set

of existing test smell to cover the existing violation of the xUnit testing guidelines [36].

To analyze the lifecycle and impact of these smells, we conducted a large-scale empiri-

cal study on JUnit4-based unit test suites for 656 open-source Android apps. Further, we

defined a series of research questions to support and constrain our investigation to better

understand, initially, the existence and distribution of test smells, and more precisely to

investigate whether the existence of test smells is an indicator of poor testing quality. Our

main findings show that: (1) almost all apps, containing unit tests, had test smells in their

test files, introduced in the initial stages of development, their frequency differs per smell

type, while their occurrence is similar to traditional Java applications, (2) smells, once in-

troduced into an app tend to remain in the app throughout its lifetime, (3) the existence of

test smells acts an indicator of technical debt, and (4) a subset of smell types are found to

be more severe in terms of the probability of introducing changes/bugs in test files.

The remainder of this manuscript is as follows: Chapter 2 outlines our motivation for

this study along with the research questions we aim to answer, while Chapter 3 enumerates

over the related work. Chapter 4 provides the necessary background about existing test

smells and our proposed set of test smells. Provided in Chapter 5 are details about the

design and methodology of our experiments. In Chapter 6 we answer and discuss the

findings of our research questions. We discuss the validity aspects of our study in Chapter 7

and then conclude the paper with Chapter 8 where we summarize our findings and provide

insight into our future work.

4https://junit.org

https://junit.org
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Chapter 2

Research Objective

2.1 Motivation

This fast spread of mobile apps has resulted in developers encountering multiple challenges

from multiple perspectives including security, privacy, and maintainability. However, the

amount of research carried out to support mobile software developers is limited when com-

pared to traditional and web applications. From a smells perspective, past research on

Android has been more towards analyzing traditional code smells [42, 30, 18, 46], and

Android code smells [21] and its negative impact on maintainability tasks [5, 13, 38, 62].

To the best of our knowledge, an in-depth study of the evolution and severity (change-

proneness and bug proneness) of test smells on Android apps has not yet been conducted.

Moreover, recent studies have been proving that traditional code smells are being modeled

as a possible measurement for technical debt [11, 19]. Whereas, to the best of our knowl-

edge, no study has been conducted to verify whether test smells can be seen as an indicator

of test debt. In this study, we expand on the set of coding best practices for unit tests, and

we also aim to understand the current trend of Android developers when it comes to unit

testing. This study will also provide us with insight if Android developers and traditional

application developers follow a same/similar pattern with regards to unit testing.
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2.2 Contribution

Our primary contribution through this study is to enhance the testing experience of devel-

opers. We achieve this by:

1. Expanding on the set of existing test smells by proposing additional bad test code

practices that negatively impact the quality of the test suite.

2. Building a comprehensive open-source tool, tsDetect, to detect bad test code prac-

tices.

3. Empirically validating whether smelly test cases can serve as indicators for the dete-

rioration of software quality and so, potentially unwanted system behavior.

tsDetect (including source code, documentation, and real-world smell examples) along

with the dataset, that was part of our study, is available on our project website.1. We

welcome and encourage the developer/research community to provide us with feedback

and extensions of tsDetect.

2.3 Research Questions

We investigate the design of unit tests by studying the occurrence of test smells in An-

droid apps and their impact on the overall quality of the apps through a set of quantitative,

comparative and empirical experiments that answer the following research questions:

• RQ1: How likely are Android apps to contain unit test smells and what character-

istics and relationships do the smells exhibit? Through multiple experiments, we

show the widespread existence of the existing and newly introduced test smells in

Android apps, including the distribution and occurrences of each smell type.

1https://testsmells.github.io/

https://testsmells.github.io/
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• RQ2: To what extent does the severity of test smells increase the risk of test files

change- and bug-proneness? This question investigates the degree to which, the

existence of test smells may lower the maintainability of test suites. We approximate

this impact using two dimensions. (1) Change proneness - Due to the lack of doc-

umentation, lack of using standard JUnit API, redundant test cases, etc. smelly test

files tend to be harder to stabilize. (2) Bug proneness - Harder to update test cases

lead to potential issues related to their inability to identify real faults in the system

under test. It can also lead to faults in the test files, i.e., the outcome of the test cases

is no longer constrained by the behavior of the system and may be influenced by

other factors. This phenomenon is known as the flakiness of test cases, and smells

have been proven to provoke it [46]. To evaluate these two dimensions, we perform

the analysis of test files revision history along with the issues reported in the projects

issue tracker. Then, we report on the probability of each test smell type influencing

the increase of bugs and changes to unit test files.

• RQ3: Do test smells act as an indicator of technical debt within the test suite?

The intuition behind this research question resides in validating whether the inten-

tional deviation of optimal test files design, due to taking shortcuts in programming,

can be in the form of test smells. To address this research question, we observe the

co-location of self-admitted technical debt (SATD) in unit test files, with their infec-

tion with specific smell types. Thus, we validate whether test smells can act as an

indicator of the presence of technical debt in test files.

• RQ4: What is the degree to which tsDetect can correctly detect test smells? Since

we are introducing a smell identification tool, it is critical to verify the accuracy of

our detection rules. A precision and recall exercise of tsDetect, using qualitative

analysis, was utilized to measure the correctness of tsDetect’s smell detection ability,

for each smell type.
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Chapter 3

Related Work

Test smells had been initially introduced by van Deursen et al. in the form of 11 unique

smells [57]. In contrast with design smells that are defined as violations to Object Oriented

design principles, test smells are originated from bad development decisions varying from

creating long and hard to maintain test cases, to testing multiple production files using the

same test cases. Also, van Deursen et al. [57], found that refactoring test code is different

from refactoring production code. Similarly to Fowler’s catalog, [14], the authors associ-

ated a refactoring strategy for each smell type they reported. These high-level definitions

of smells and their refactoring strategies has allowed extensive research to formalize them

better and to ease their detection and correction.

Van Rompaey et al. [59] proposed a set of metrics for the detection of two test smells

- General Fixtures and Eager Test. They aimed to find out the structural deficiencies en-

capsulated in a test smell. In [60], the authors extended their approach to demonstrate that

metrics can be useful in automating the detection of test smells and confirmed that test

smells are related to test design criteria.

Similarly, Reichhart et al. [50] represented test smells using structural metrics in or-

der to construct detection rules by combining metrics with pre-defined thresholds. This

approach allowed the automation of the detection of a subset of smell types that had mea-

surable properties.

Breugelmans et al. [8] built a tool, TestQ, which allows developers to visually explore

test suites and quantify test smells. TestQ enables developers to inspect the design of a test

suite at a high level and helps quickly identify test smell hotspots. Similarly, Koochakzadeh
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et al. [23] built a Java plugin for the visualization of redundant tests.

In other studies, Greiler et al. [16] introduced new test smells related to test fixtures

- General Fixture, Test Maverick, Dead fields, Lack of cohesion of test methods, Obscure

in-line setup and Vague header setup. The researchers also built a detection tool as part of

their research.

Neukirchen et al. [40] created T-Rex, a tool that detects any violations of test cases

to the Testing and Test Control Notation (TTCN-3) [15]. It serves as an assessment for

existing test suites and suggests structural changes to refactor smelly test cases, which does

not follow TTCN-3 specifications.

Pinto et al. [47] observed the evolution of test cases over time and have shown that

coverage, alone, is not a useful metric to decide about the healthiness of the testing suite,

as the system tends to build a natural resistance to the older and unchanged test cases over

time. The older the test cases, the lesser chances for them to detect bugs. [7].

Tufano et al. [56] aimed at determining the developer’s perception of test smells and

came out with results showing that developers could not identify test smells very easily

thus resulting in a need for automation. The results also showed that when a test code is

committed to the repository that’s the time when test smells are usually introduced.

Bavota et al. [5] conducted a human study and proved the strong negative impact of

smells on test code understandability and maintainability. Another empirical investigation

by the same authors [6] indicated that there is a high diffusion of test smells in both open-

source and industrial software systems with 86% of JUnit tests exhibiting at least one test

smell. The second study shows that test smells have a strong negative impact on program

comprehension and maintenance. These empirical studies highlight the importance for the

community to develop tools to detect test smells and automatically refactor them.

Palomba et al. [46] investigated the impact of test smells on flaky test cases, their

empirical study measured the distribution of flaky tests among several projects and their

collocation with test smell. The experiments have confirmed the negative impact of specific

smell types like ‘Indirect Testing’ and ‘Test Run War’.
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Chapter 4

Test Smells

Test smells are defined as bad programming practices in unit test code (such as how test

cases are organized, implemented and interact with each other) that indicate potential de-

sign problems in the test source code [58]. Such issues not only have a negative impact on

software maintainability but could also have an adverse effect on the testing performance

(e.g., flaky tests [46]). In the subsequent subsections, we provide definitions of the unit

test smells detected by tsDetect and analyzed in our empirical study. We first provide brief

definitions of existing test smells and then provide detailed definitions for the set of pro-

posed test smells. Furthermore, we provide an insight into the tsDetect’s detection logic

for each smell in Table 4.1. It should be noted that test smells, like traditional code smells,

are subjective and open to debate [33]. We welcome both feedback and extensions to the

detection logic for the proposed smells.

4.1 Literature Test Smells

Provided below is a brief description of literature test smells [57], used in this study.

4.1.1 Assertion Roulette

Occurs when a test method has multiple non-documented assertions.

4.1.2 Eager Test

Occurs when a test method invokes several methods of the production object.
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Table 4.1: Test smell detection rules

Test Smell Detection Rule

Assertion Roulette
A test method contains more than one assertion statement without an
explanation/message (parameter in the assertion method)

Conditional Test Logic
A test method that contains one or more control statements (i.e if,
switch, conditional expression, for, foreach and while statement)

Constructor Initialization A test class that contains a constructor declaration

Default Test
A test class is named either ‘ExampleUnitTest’ or
‘ExampleInstrumentedTest’

Duplicate Assert
A test method that contains more than one assertion statement with the
same parameters

Eager Test A test method contains multiple calls to multiple production methods
Empty Test A test method that does not contain a single executable statement
Exception Handling A test method that contains either a throw statement or a catch clause

General Fixture
Not all fields instantiated within the setUp method of a test class are
utilized by all test methods in the same test class

Ignored Test A test method or class that contains the @Ignore annotation
Lazy Test Multiple test methods calling the same production method
Magic Number Test An assertion method that contains a numeric literal as an argument
Mystery Guest A test method containing object instances of files and databases classes

Redundant Print
A test method that invokes either the print or println or printf
or write method of the System class

Redundant Assertion
A test method that contains an assertion statement in which the
expected and actual parameters are the same

Resource Optimism
A test method utilizes an instance of a File class without calling the
exists(), isFile() or notExists() methods of the object

Sensitive Equality A test method invokes the toString() method of an object
Sleepy Test A test method that invokes the Thread.sleep() method

Unknown Test
A test method that does not contain a single assertion statement and
@Test(expected) annotation parameter

4.1.3 General Fixture

Occurs when a test case fixture is too general, and the test methods only access part of it.
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4.1.4 Lazy Test

Occurs when multiple test methods invoke the same method of the production object.

4.1.5 Mystery Guest

Occurs when a test method utilizes external resources (such as a file or database).

4.1.6 Resource Optimism

Occurs when a test method makes an optimistic assumption that the external resource (e.g.,

File), utilized by the test method, exists

4.1.7 Sensitive Equality

Occurs when the toString method is used within a test method.

4.2 Proposed Test Smells

In this section we extend the existing test smells defined in literature by including a new set

of test smells inspired from bad test programming practices mentioned in unit testing based

literature ([35, 41, 24, 54]), the JUnit user guide and API, and Android developer documen-

tation1. It should be noted that other than for the Default Test smell, the set of proposed

test smells apply to both traditional Java and Android apps. For these newly introduced

test smells, we provide their formal definition, an illustrative example, and our detection

mechanism. The examples associated with each test smell were obtained from the dataset

that we analyzed in this study. Where possible, we provide the entire code snippet, but in

some instances, due to space constraints, we provide only the code statements relevant to

the smell. Complete code snippets and detection rules are available on our project web-

site. Furthermore, as elicited later in the experiments, we demonstrate the severity of these

1https://developer.android.com/

https://developer.android.com/
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newly introduced smells by showing their impact on change and bug proneness of their

infected files.

4.2.1 Conditional Test Logic

Test methods need to be simple and execute all statements in the production method. Con-

ditions within the test method will alter the behavior of the test and its expected output, and

would lead to situations where the test fails to detect defects in the production method since

test statements were not executed as a condition was not met. Furthermore, conditional

code within a test method negatively impacts the ease of comprehension by developers. An

example is provided in Listing 4.1.
/*

** Test method contains multiple control statements **
*/
@Test
public void testSpinner() {

/* ** Control statement #1 ** */
for (Map.Entry<String, String> entry : sourcesMap.entrySet()) {

String id = entry.getKey();
Object resultObject = resultsMap.get(id);
/* ** Control statement #2 ** */
if (resultObject instanceof EventsModel) {

EventsModel result = (EventsModel) resultObject;
/* ** Control statement #3 ** */
if (result.testSpinner.runTest) {

System.out.println("Testing " + id + " (testSpinner)");
AnswerObject answer = new AnswerObject(entry.getValue(), "", new CookieManager(), "");
EventsScraper scraper = new EventsScraper(RuntimeEnvironment.application, answer);
SpinnerAdapter spinnerAdapter = scraper.spinnerAdapter();
assertEquals(spinnerAdapter.getCount(), result.testSpinner.data.size());
/* ** Control statement #4 ** */
for (int i = 0; i < spinnerAdapter.getCount(); i++) {

assertEquals(spinnerAdapter.getItem(i), result.testSpinner.data.get(i));
}

}
}

}
}

Listing 4.1: Example - Conditional Test Logic.

4.2.2 Constructor Initialization

Ideally, the test suite should not have a constructor. Initialization of fields should be in

the setUp() method. Developers who are unaware of the purpose of setUp() method

would give rise to this smell by defining a constructor for the test suite. An example is

provided in Listing 4.2.
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public class TagEncodingTest extends BrambleTestCase {
private final CryptoComponent crypto;
private final SecretKey tagKey;
private final long streamNumber = 1234567890;
/*

** Constructor initializing field variable **
*/
public TagEncodingTest() {

crypto = new CryptoComponentImpl(new TestSecureRandomProvider());
tagKey = TestUtils.getSecretKey();

}
@Test
public void testKeyAffectsTag() throws Exception {

Set<Bytes> set = new HashSet<Bytes>();
for (int i = 0; i < 100; i++) {

byte[] tag = new byte[TAG_LENGTH];
SecretKey tagKey = TestUtils.getSecretKey();
/*

** Field variable utilized in test method **
*/
crypto.encodeTag(tag, tagKey, PROTOCOL_VERSION, streamNumber);
assertTrue(set.add(new Bytes(tag)));

}
}
.....

}

Listing 4.2: Example - Constructor Initialization.

4.2.3 Default Test

By default Android Studio creates default test classes when a project is created. These

classes are meant to serve as an example for developers when writing unit tests and should

either be removed or renamed. Having such files in the project will cause developers to

start adding test methods into these files, making the default test class a container of all test

cases. This also would possibly cause problems when the classes need to be renamed in

the future. An example is provided in Listing 4.3.
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/*
** Default test class created by Android Studio **

*/
public class ExampleUnitTest {

/*
** Default test method created by Android Studio **

*/
@Test
public void addition_isCorrect() throws Exception {

assertEquals(4, 2 + 2);
}

/*
** Actual test method **

*/
@Test
public void shareProblem() throws InterruptedException {

.....
Observable.just(200)
.subscribeOn(Schedulers.newThread())
.subscribe(begin.asAction());
begin.set(200);
Thread.sleep(1000);
assertEquals(beginTime.get(), "200");
.....

}
.....

}

Listing 4.3: Example - Default Test.

4.2.4 Duplicate Assert

This smell occurs when a test method tests for the same condition multiple times within the

same test method. If the test method needs to test the same condition using different values,

a new test method should be utilized; the name of the test method should be an indication of

the test being performed. Possible situations that would give rise to this smell include: (1)

developers grouping multiple conditions to test a single method; (2) developers performing

debugging activities; and (3) an accidental copy-paste of code. An example is provided in

Listing 4.4.
@Test
public void testXmlSanitizer() {

.....
valid = XmlSanitizer.isValid("Fritz-box");
/*

** Assert statements are the same **
*/
assertEquals("Minus is valid", true, valid);
System.out.println("Minus test - passed");

valid = XmlSanitizer.isValid("Fritz-box");
/*

** Assert statements are the same **
*/
assertEquals("Minus is valid", true, valid);

System.out.println("Minus test - passed");
.....

}

Listing 4.4: Example - Duplicate Assert.
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4.2.5 Empty Test

Occurs when a test method does not contain executable statements. Such methods are

possibly created for debugging purposes and then forgotten about or contains commented

out code. An empty test can be considered problematic and more dangerous than not having

a test case at all since JUnit will indicate that the test passes even if there are no executable

statements present in the method body. As such, developers introducing behavior-breaking

changes into production class, will not be notified of the alternated outcomes as JUnit will

report the test as passing. An example is provided in Listing 4.5.
/*

** Test method without executable statements **
*/
public void testCredGetFullSampleV1() throws Throwable{
// ScrapedCredentials credentials = innerCredTest(FULL_SAMPLE_v1);
// assertEquals("p4ssw0rd", credentials.pass);
// assertEquals("user@example.com",credentials.user);
}

Listing 4.5: Example - Empty Test.

4.2.6 Exception Handling

This smell occurs when the passing or failing of a test method is explicitly dependent on

the production method throwing an exception. Developers should utilize JUnit’s exception

handling features to automatically pass/fail the test instead of writing custom exception

handling code or throwing an exception. An example is provided in Listing 4.6.
@Test
public void realCase() {

.....
a.getMeasures().add(new Measure(p47, 281.3521, 100.0471, 108.384, 1.63));
/*

** Fails the test when an exception occurs **
*/
try {

a.compute();
} catch (CalculationException e) {
Assert.fail(e.getMessage());
}
Assert.assertEquals("233.2405", this.df4.format(a.getResults().get(0).getUnknownOrientation()));
.....

}

Listing 4.6: Example - Exception Handling.
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4.2.7 Ignored Test

JUnit 4 provides developers with the ability to suppress test methods from running. How-

ever, these ignored test methods result in overhead since they add unnecessary overhead

with regards to compilation time, and increases code complexity and comprehension. An

example is provided in Listing 4.7.
@Test
/*

** This test will not be executed due to the @Ignore annotation **
*/
@Ignore("disabled for now as this test is too flaky")
public void peerPriority() throws Exception {

final List<InetSocketAddress> addresses = Lists.newArrayList(
new InetSocketAddress("localhost", 2000),
new InetSocketAddress("localhost", 2001),
new InetSocketAddress("localhost", 2002)

);
peerGroup.addConnectedEventListener(connectedListener);
.....

}

Listing 4.7: Example - Ignored Test.

4.2.8 Magic Number Test

Occurs when assert statements in a test method contain numeric literals (i.e., magic num-

bers) as parameters. Magic numbers do not indicate the meaning/purpose of the number.

Hence, they should be replaced with constants or variables, thereby providing a descriptive

name for the input. An example is provided in Listing 4.8.
@Test
public void testGetLocalTimeAsCalendar() {

Calendar localTime = calc.getLocalTimeAsCalendar(BigDecimal.valueOf(15.5D), Calendar.getInstance());
/*

** Numeric literals are used within the assertion statement **
*/
assertEquals(15, localTime.get(Calendar.HOUR_OF_DAY));
assertEquals(30, localTime.get(Calendar.MINUTE));

}

Listing 4.8: Example - Magic Number Test.

4.2.9 Redundant Print

Print statements in unit tests are redundant as unit tests are executed as part of an automated

process with little to no human intervention. Print statements are possibly used by devel-

opers for traceability and debugging purposes and then forgotten. An example is provided

in Listing 4.9.
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@Test
public void testTransform10mNEUAndBack() {

Leg northEastAndUp10M = new Leg(10, 45, 45);
Coord3D result = transformer.transform(Coord3D.ORIGIN, northEastAndUp10M);
/*

** Print statement does not serve any purpose **
*/
System.out.println("result = " + result);
Leg reverse = new Leg(10, 225, -45);
result = transformer.transform(result, reverse);
assertEquals(Coord3D.ORIGIN, result);

}

Listing 4.9: Example - Redundant Print.

4.2.10 Redundant Assertion

This smell occurs when test methods contain assertion statements that are either always true

or always false. Developers introduce this smell for debugging purposes and then forget to

remove it. Listing 4.10 provides an example.
@Test
public void testTrue() {

/*
** Assert statement will always return true **

*/
assertEquals(true, true);

}

Listing 4.10: Example - Redundant Assertion.

4.2.11 Sleepy Test

Explicitly causing a thread to sleep can lead to unexpected results as the processing time

for a task can differ on different devices. Developers introduce this smell when they need

to pause execution of statements in a test method for a certain duration (i.e., simulate an

external event) and then continuing with execution. An example is provided in Listing 4.11.
public void testEdictExternSearch() throws Exception {

.....
DictEntry entry = (DictEntry) lv.getItemAtPosition(0);
assertEquals("Searching", entry.english);
/*

** Forcing the thread to sleep **
*/
Thread.sleep(500);
final Intent i2 = getStartedActivityIntent();
.....

}

Listing 4.11: Example - Sleepy Test.
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4.2.12 Unknown Test

An assertion statement is used to declare an expected boolean condition for a test method.

By examining the assertion statement, it is possible to understand the purpose of the test

method. However, It is possible for a test method to be written sans an assertion statement,

in such an instance JUnit will show the test method as passing if the statements within the

test method did not result in an exception when executed. New developers to the project

will find it difficult in understanding the purpose of such test methods (more so if the name

of the test method is not descriptive enough). An example is provided in Listing 4.12.
/*

** Test method without an assertion statement **
** Test method name is not descriptive enough to understand its purpose **

*/
@Test
public void hitGetPOICategoriesApi() throws Exception {

POICategories poiCategories = apiClient.getPOICategories(16);
for (POICategory category : poiCategories) {
System.out.println(category.name() + ": " + category);

}
}

Listing 4.12: Example - Unknown Test.

4.3 tsDetect

To provide developers with a mechanism to detect, both the existing set test smells and

the proposed set of test smells, we implemented an open-source tool for developers to run

against their unit test files. tsDetect is available as a standalone jar file and requires a list of

file paths as input, and will automatically scan the provided list of files for the occurrences

of all test smell types. Internally, tsDetect utilizes JavaParser 2 to parse the Java source file

through the use of an abstract syntax tree (AST). Depending on the type of smell being

detected, we override the appropriate visit() method to perform our analysis/detection.

The design of tsDetect is such that it facilitates the inclusion of detection rules for additional

smell types. The output from tsDetect is in the form of a CSV file. Each row in the CSV file

corresponds to a unit test file, and the associated columns contain boolean values indicating

if the specific smell type is present or not. Refer Appendix A for UML class diagrams.

2https://javaparser.org/

https://javaparser.org/
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Chapter 5

Methodology

To answer our research questions, we conducted a two-phased approach that consists of:

(1) data mining and (2) smell detection. The Data Mining Phase consists of collecting

datasets from multiple sources1 while the Detection Phase involved the analysis of the

collected datasets for the existence of test smells, along with the impact of such smells on

multiple project traits. Due to performance requirements associated with this volume of

data mining, smell detection, and data analysis, the activities associated with both phases

were performed on dedicated virtual machines with 2 CPU’s, 16 GB of RAM and over 2

TB of hard disk space. The details of each phase are described in the following subsections.

5.1 Data Mining Phase

Similar to prior research [26, 25, 3], for this study we utilized F-Droid’s2 index of open-

source Android apps. From the 2,596 repositories listed on F-Droid (at the commencement

of this study), we narrowed our selection to only repositories hosted in publicly accessible

Git-based version control systems. Our dataset only consisted of repositories that were not

duplicated/forked; we did this by ensuring that the source URL’s and commit SHA’s were

unique. For each of the cloned repositories, we retrieved: (1) the entire commit log3, (2) list

1The data mining activities occurred during December 2017 and took around two weeks
2https://f-droid.org/
3App history commits, based on the first and most recent commit of the ‘AndroidManfiest.xml’ file, range

from February 2008 to December 20017

https://f-droid.org/
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Figure 5.1: Overview of the Data Mining Phase

Table 5.1: Overview of data obtained in the Data Mining Phase

Item Value

Total cloned repositories 2,011
Cloned apps available on Google Play 1,222
Cloned apps hosted on GitHub 1,835
Cloned apps utilizing GitHub’s issue tracker 808
Total number of commit log entries 1,037,236
Total number of Java files affected by commits 6,379,006
Total volume of repositories cloned 53.8 GB
Total volume of test files collected 3.63 GB

of all files affected by each commit, (3) all available tags, and (4) the complete version his-

tory of all identified test files and their corresponding production files. Further, for projects

hosted on GitHub4, we retrieved popularity metrics (including the number of Stargazers,

Forks, Subscribers, and Releases) and issue tracker details associated with each project.

4https://github.com/

https://github.com/
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Finally, we crawled the Google Play Store5 to retrieve the Review Score associated with

the cloned apps.Depicted in Figure 5.1 is an overview of the Data Mining Phase process,

while Table 5.1 provides an overview of the data collected.

5.2 Detection Phase

Start
Cloned

repositories Detect test files

Successful
AST

parsing
Candidate test files

Select files
having at least 1
unit test method

Detect associated
production file

Successful
AST

parsing
Test & production files

Detect test
smells

Detected test smells

Stop

yes

yes

Figure 5.2: Overview of the Detection Phase

The primary purpose of this phase is to detect test smells occurring in unit test files.

However, as this is an empirical study, prior to the detection of test smells, we perform ad-

ditional activities to detect: (1) unit test files, contained in the apps project repository, and

(2) the production files associated with the detected test files. As depicted in Figure 5.2,

we first identify candidate unit test files, which exist throughout the lifetime of the app.

Next, we identify the production files associated with the detected test files, and finally,

feed in the list of identified test and production files into tsDetect. In the subsequent sub-

sections, we describe in detail each of the detection activities. An overview of the data

collected/analyzed in this phase is provided in Table 5.2 and 5.3.

5https://play.google.com/store/

https://play.google.com/store/
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Table 5.2: Overview of data obtained in the Detection Phase

Item Value

Apps containing test files 656
Candidate test files detected 206,598
Test files with an associated production file 112,514
Test methods analyzed 1,187,055
Test files associated with a GitHub issue 5,693

Test smells

Test files not exhibiting any test smells 5,915
Test files containing 1 or more smells 175,866
Test files containing only 1 type of smell 22,927
Test files containing 2 to 5 types of smells 95,565
Test files containing 6 to 10 types of smells 33,898
Test files containing over 10 types smells 3,317

Table 5.3: Statistical summary of test file and smell occurrence

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

Test Files Per App 1 1 2 17.75 10 510
Smells Per File 0 2 3 3 5 13

5.2.1 Test File Detection

Ideally, when writing JUnit test cases, developers should follow a naming convention when

creating unit test files. The recommended naming conventions 6 consists of either prepend-

ing or appending the word ‘Test‘ to the name of the production file that is to be tested (i.e.,

Test*.java and *Test.java). For example, if the file ‘Example.java’ contains test methods,

then it should be named ‘TestExample.java’ or ‘ExampleTest.java’.

Following the above naming recommendations, we utilized a tool-based automation

approach in identifying unit test files. First, our tool identified all ‘.java’ files where the

6http://junit.org/junit4/faq.html#running_15

http://junit.org/junit4/faq.html#running_15
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filename either started or ended with the word ‘Test’. Next, for each of the identified Java

source files our the tool utilized JavaParser to obtain an AST from the file. The use of

AST’s in software repository mining and analysis studies is a technique that is frequently

utilized by researchers ( [51, 34]). The purpose of using the AST was twofold; firstly, we

were able to eliminate Java files that contain syntax errors and secondly, we were able to

detect if the file contained JUnit-based unit test methods accurately. For a file to contain a

unit test method, the method should either have an annotation called ‘@Test’ (JUnit 4) or

the method name should start with ‘test’ (JUnit 3). The result of this activity resulted in a

set of candidate unit test files. From this resultset, we only considered unit test files that

had one or more unit test methods as valid unit test files.

5.2.2 Production File Detection

Our purpose for identifying the production file, associated with a unit test file, was to detect

if the unit test file contains an Eager Test and/or Lazy Test smell. Ideally, mappings between

test and production files would be contained in an oracle. However, due to the vast quantity

of apps in our study, a manual construction of an oracle is not feasible. Hence, we had

to automate the mapping process. First, for each unit test file, we identified its associated

production file(s) by searching the apps repository tree for a file that has the same name as

the test file, but without the word ‘Test’. Next, for each of the identified production files,

we utilized JavaParser to obtain an AST from the file to ensure that the file is syntactically

correct. Finally, we utilized the results obtained from this activity as input for tsDetect.

As a means of quality assurance, we ran SQLite’s Random() function on our resultset to

select 50 random pairing of test and production files as a means of verifying the mapping

process; to the best of our knowledge, all 50 pairings were deemed valid.

5.2.3 Test Smell Detection

After the identification of all unit test files and their associated production files, we ran ts-

Detect to detect the occurrence and distribution of test smells in the unit test files. Utilizing
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JavaParser, tsDetect parses the Java source file and builds an AST for the same. Depend-

ing on the type of smell being detected, we override the appropriate visit() method to

perform our analysis/detection. Results provided by tsDetect were saved in a database for

analysis/interpretation.

5.3 Traditional Java Applications

Table 5.4: Volume and popularity traits of the mined Java apps

Item Value

Volume traits

Test files with 1 or more smells 82,261
Test methods analyzed 634,877
Test files associated with a GitHub issue 103,608

Popularity traits

Average number of stargazers per app 4,242
Average number of commits per app 3,214
Average number of forks per app 1,773
Average number of subscribers per app 467
Average number of contributors per app 103

Even though Android apps are the primary focus of this study, we mine traditional Java

applications as a means of performing a comparison on the distribution of test smells be-

tween these environments. To this extent, we mined the GitHub repositories of 18 popular

open-source Java applications. To ensure a recent, yet active and sizeable dataset key se-

lection criteria for the Java applications included: (1) the utilization of GitHub to track and

manage issues with a minimum of 100 closed, non-pull request based issues, (2) utilization

of JUnit as the testing framework, (3) a repository age of not less than five years, and (4)

over 750 commits during the lifetime of the application. We utilized GitHub and Open
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Hub7 to manually search for projects that satisfy the key requirements mentioned above.

We ceased our search once we had enough applications that provided use with roughly

50% more smelly test files than our Android dataset. Table 5.4 provides an overview of

some volume and popularity traits of the Java applications. Our approach to mining and

analyzing the Java applications was similar to our Android mining and analysis approach.

We first mined each app to retrieve all revisions of the apps’ unit test files (and their asso-

ciated production files). From these mined source code files, we identified the test smells

that occur in the lifetime of the app by analyzing the files with tsDetect.

7https://www.openhub.net/

https://www.openhub.net/
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Chapter 6

Analysis & Discussion

In this chapter, we present answers to our research questions by analyzing the occurrence

and impact of test smells in the studied apps.

6.1 RQ1: How likely are Android apps to contain unit test
smells, and what characteristics and relationships do
the smells exhibit?

We address RQ1 through a series of sub-RQ’s, related to various aspects of test smells such

as their existence, evolution, co-occurrence, and distribution among traditional and mobile

software systems. By running tsDetect on the version history of all unit test files (identified

by enumerating over the app’s git commit log), we were able to obtain the history of test

smells occurring during the lifetime of the app. We then utilized this data in the following

sub-RQ’s when formulating our analysis.

6.1.1 RQ1.1: Are Android apps, that contain a test suite, prone to test
smells?

Out of the 656 apps, which contained unit tests, only 21 apps (approximately 3%) did not

exhibit any test smells. Analyzing the smell free apps, we observed that the non-smelly

apps contained significantly less unit test files, within the lifetime of the app, than the

smelly apps. The low count of unit test files in the non-smelly apps cannot be attributed

to the size of the project as the count of Java files occurring in the lifetime of smelly and
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Table 6.1: Statistical summary of the distribution of source code files in smelly and non-
smelly apps

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

Non-Smelly Apps - Distinct Test Files 1 1 1 1.1 1 2
Non-Smelly Apps - Distinct Java Files 37 154 183 332.1 276 1255
Smelly Apps - Distinct Test Files 1 1 3 18.3 10 510
Smelly Apps - Distinct Java Files 1 28.5 106 325 330 5780

non-smelly apps was similar. Hence, a possible explanation for the absence of the test

smells in the 21 apps can be due to low unit testing coverage in the app. Table 6.1 reports

on the statistics of the distribution of production test and source code files in smelly and

non-smelly apps.

A typical train of thought concerning smells is that as the test suite of an app increases

so does the occurrences of smells; due to the addition of more test methods (i.e., test cases)

to exercise new production code. We verify this claim via a hypothetical null test; where

we define the following null hypothesis:

Null Hypothesis 1 The existence of unit test smells, in an app, does not change as func-
tionalities of the app continues to grow over time.

Based on a Shapiro-Wilk Normality Test on our dataset of unit test file and test smell

occurrence, we observed that the dataset is of a non-normal distribution. To this extent, we

performed a Spearman rank correlation coefficient test to assess the association between the

volume of test smells and test files occurring throughout the history of the apps. As shown

in Table 6.2, not surprisingly, we obtained a strong positive and statistically significant

correlation between the two variables. Therefore, we can reject the Null Hypothesis 1 and

statistically confirm that test smells exhibited by an app increase as the unit test files in the

app increase.
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Table 6.2: Spearman’s correlation calculation on test smells and test files. Bold indicates
that the obtained result was statistically significant (p< 0.05).

Variable #1 Variable #2 Correlation (ρ)

Total Test Smells Total Test Files 0.90

Table 6.3: Correlation analysis between test smells and app popularity traits. Bold indicates
that the obtained result was statistically significant (p< 0.05).

Variable #1 Variable #2 Correlation (ρ)

To
ta

lT
es

tS
m

el
ls

Total Authors 0.38
Total Forks 0.33
Total Tags 0.43
Total Releases 0.23
Total Stargazers 0.35
Total Subscribers 0.35
Total Google Play Reviewers 0.28
Google Play Review Score 0.08

We further extended the study on test smell occurrence by investigating the degree

of correlation between test smells and certain project popularity traits. An overview of

our findings is provided in Table 6.3. Even though we obtained statistically significant

correlation values, the correlations were in the positive weak (ρ ≥ 0.3) to moderate (ρ ≤

0.5) range. The count of Authors, Forks, Stargazers, and Subscribers associated with a

repository indicate the popularity of the project [20]. This positive correlation acts as an

indicator for app developers to ensure that their test suites are in a state that requires less

maintenance effort. Developers need to ensure that the test code not only provides the

maximum possible coverage but is also comprehensible (self-documentable). Failure by

developers to easily and quickly understand the test suite codebase results in more time and

errors in maintenance activities, which in turn would have negative consequences on the

popularity of the app. Interestingly, we observed the absences of a correlation between an
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apps test smells and its Google Play Review Score. This phenomenon might not necessarily

be due to lack of test smells; one possible reason could be lack of test coverage.

The results we presented on app popularity and test smells are exploratory and require

further granular research. Popularity can be subjective, and future research should comple-

ment the quantitative results we presented with qualitative data.

Table 6.4: Volume of apps and files exhibiting each smell type

Smell Type
Smell Exhibition In
Apps Files

Assertion Roulette 52.28% 58.46%
Conditional Test Logic 37.32% 28.67%
Constructor Initialization 20.47% 11.70%
Default Test 42.20% 0.32%
Duplicate Assert 31.81% 31.33%
Eager Test 42.99% 38.68%
Empty Test 16.38% 1.08%
Exception Handling 84.57% 49.18%
General Fixture 25.51% 11.67%
Ignored Test 15.28% 3.00%
Lazy Test 39.06% 29.50%
Magic Number Test 77.01% 34.84%
Mystery Guest 36.38% 11.65%
Redundant Assertion 12.91% 3.87%
Redundant Print 14.02% 0.92%
Resource Optimism 15.75% 9.79%
Sensitive Equality 21.10% 9.19%
Sleepy Test 12.60% 2.04%
Unknown Test 47.09% 34.38%

RQ1.2: What is the frequency and distribution of test smells in Android apps over
time?

To further aid our discussion on the occurrence of test smells, in the analyzed apps, we

calculated the distribution of each test smell type from the total quantity of detected test
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Table 6.5: Co-occurrence of test smells
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smells (Figure 6.1), the volume of apps and unit test files that exhibit each smell type

(Table 6.4), and the co-occurrence of test smells (Table 6.5). We observed that the smell

Assertion Roulette occurred the most when compared to the other smells. Further, we also

observed that this smell also occurred in over approximately 50% of the analyzed apps

and unit test files. As claimed by [49], a reason for the high occurrence of the Assertion

Roulette this could be due to developers verifying the testing environment prior to the

behavior of the testing class. The high occurrence of the Exception Handling smell could

be attributed to developers using IDE productivity tools to auto-generate the skeleton test

method. For example, IntelliJ IDEA provides the ability to auto-generate the skeleton

for test methods based on a pre-defined template. As such, developers might be utilizing

templates in which the test method throws a general exception. Since an Eager Test smell

is attributed to a test method exercising multiple production methods, a high occurrence of

this smell can also be due to developers either testing the environment or initiating/setting-

up the object under test. This phenomenon is further evident by the high co-occurrence

(over 80%) of the Eager Test smell with the Assertion Roulette smell. Another smell with a

high distribution is the Magic Number Test smell. Typically, test methods utilize assertion

statements to compare the expected result returned by a production method against the

actual value; therefore justifying the high occurrence of this smell. Furthermore, it also

shows that developers tend to favor using numerical literals as parameters in the assertion

methods. Further evidence of this is the high co-occurrence of this smell with the smell

Assertion Roulette (approximately 88%).

Interestingly, the smell Unknown Test shows a moderate-to-high value in the distribu-

tion of smells and occurs in nearly half of the analyzed apps. This means that developers

tend to write unit test methods without an assertion statement or utilizing JUnit’s excep-

tion handling features. However, we noticed that this smell has a high co-occurrence (over

55%) with the smell Exception Handling; a possible reason for this event is that developers

determine the passing/failing of a test method based on the exception thrown by the called

production method. The other smells that show a moderate distribution include Duplicate
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Assertion, Lazy Test, and the Conditional Test Logic smells. These three smells also occur

in less than half of the analyzed apps.

The remainder of the detected smells have a low distribution. We observed that the

Mystery Guest and Resource Optimism smell have a similar distribution occurrence and

also share a similar co-occurrence with each other. This means that even though developers

do not frequently utilize external resources, they tend to assume that the external resource

exists when they do consume the resource. Not surprisingly, the Default Test smell has

an exceptionally high co-occurrence with the Exception Handling and Magic Number Test

smells. This phenomenon can be explained by examining the default unit test files auto-

matically added by Android Studio; the default file contains a single exemplar test method

that contains an assertion method with numeric literals as parameters and throws a default

exception. However, the minor co-occurrences with other smells imply that developers

also tend to update the default files with custom test cases. Even though the distribution

of the Redundant Print smell is low, it has a high co-occurrence with the Conditional Test

Logic smell. A possible reason for this behavior can be attributed to developers utilizing the

print methods for debugging purposes when building/evaluating the conditional statements

contained in the test methods.

6.1.2 RQ1.3: Do specific test smells have an impact on test suite char-
acteristics?

To further understand the degree to which test smells can impact software maintenance

activities of an Android app, we studied the impact of each test smell type on specific

characteristics of the apps test suite. Our investigation followed a similar approach to [43].

First, for each smell type, we obtained the apps that exhibited the smell. Next, for each

smelly app, we obtained the total number of JUnit classes contained in the app. From these

classes, we obtained the total number of methods and lines of code (LOC). Additionally,

we also obtained the count of co-located smells exhibited by the class for each smell type.

Finally, we computed the correlation between the number of instances of the specific smell
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and the derived characteristics.To facilitate our investigation, we defined the following Null

Hypotheses:

Null Hypothesis 2 The existence of a specific test smell does not have an impact on an
app’s test suite characteristics.

Table 6.6: Correlation analysis between test smell instances and system characteristics

Smell Type
Correlation (ρ) with

JUnit Classes Methods Lines of Code Co-Located Smells

Assertion Roulette 0.84 0.85 0.87 0.80
Conditional Test Logic 0.73 0.73 0.74 0.73
Constructor Initialization 0.48 0.48 0.47 0.45
Default Test -0.38 -0.52 -0.56 -0.35
Duplicate Assert 0.71 0.72 0.74 0.71
Eager Test 0.79 0.80 0.80 0.79
Empty Test 0.46 0.46 0.43 0.44
Exception Handling 0.79 0.70 0.67 0.81
General Fixture 0.66 0.66 0.65 0.64
Ignored Test 0.46 0.47 0.46 0.42
Lazy Test 0.75 0.77 0.77 0.75
Magic Number Test 0.63 0.56 0.54 0.66
Mystery Guest 0.53 0.48 0.49 0.54
Redundant Assertion 0.39 0.39 0.38 0.37
Redundant Print 0.38 0.37 0.38 0.39
Resource Optimism 0.49 0.50 0.50 0.51
Sensitive Equality 0.56 0.58 0.58 0.56
Sleepy Test 0.44 0.43 0.43 0.44
Unknown Test 0.79 0.81 0.80 0.73

Table 6.6 provides the result of computing the Spearman rank correlation coefficient for

each characteristic. Not surprisingly the majority of the smell types yielded positive and

statistically significant (i.e., p< 0.05) values. The Default Test smell is the only smell that

exhibits a weak negative correlation. This is not surprising since this smell is associated

with the sample unit test file included by Android Studio and does exercise code in produc-

tion files. All other smells exhibit positive weak (0.3 ≤ ρ < 0.5) to strong (0.5 ≤ ρ < 1.0)

correlations [28] with test suite characteristics. Given these results Null Hypothesis 2 can
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be rejected. As such, developers need to pay careful attention to the quality of the code that

they write for unit tests, much in the same way they do for production tests, as a means to

reduce the effort required to maintain the test code.

6.1.3 RQ1.4: How do test smells exhibited by Android apps compare
against traditional Java applications?

Most of the prior research in this area has focused on test smells exhibited by traditional

Java applications. As part of this study, we performed a comparison of test smells occurring

in Android and traditional Java applications to understand the degree to which the distri-

bution of test smells in these environments differ. From Figure 6.1, it is observed that both

environments contain a high distribution of the Exception Handling, Assertion Roulette,

Magic Number Test and Eager Test smells. For most of the other test smells, we noticed

that the difference in occurrence is minor. Given that native Android apps are Java-based

and also utilize the same JUnit framework along with best practices, the similarity in the

distribution of test smells in both environments is not surprising. Furthermore, when com-

pared to past research [6, 45] we observed that our findings, for the common set of test

smells, are also similar.

6.1.4 RQ1.5: When are test smells first introduced into the project?

Our study on the introduction of test smells into a project involved the analysis of commits

to identify when the first commit of a smelly test file occurs and the number of smells

introduced when a unit test file is added to the project.

For each app in our study, we identified the very first instance of a smelly unit test file

and then identified when this file was introduced (i.e., committed) into the apps’ project

repository. Given the vast diversity of the analyzed apps, we considered the introduction

point, of a smelly test file, as the ratio of the absolute commit position to the total commits

of the app:

First Smelly Commit Position = (FirstSmellyCommitAbsolutePosition
TotalAppCommits

)
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As shown in Table 6.7, the introduction of a smelly test file occurs earlier on in the

project; approximately at the 23% of the apps commits. For each identified first commit of

Table 6.7: Statistical summary on the 1st smelly commit

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

1st Smelly Commit Position (percentile) 0 1.5 9.1 23.6 39.7 98.3
Smell Types in 1st Commit of a Test File 0 2 3 2.9 4 7
Smell Types in 1st Commit of a Smelly Test File 1 2 3 3.1 4 7

a unit test file, we identified the number of test smells (if any) that were exhibited by these

files. As shown in Table 6.7, on average, a unit test file is added to a project with 3 test

smells.

Table 6.8: Type of smell occurring in the 1st commit of a smelly test file

Smell Type Occurrence in 1st commit

Assertion Roulette 54.66%
Conditional Test Logic 17.43%
Constructor Initialization 8.78%
Default Test 3.85%
Duplicate Assert 18.47%
Eager Test 37.08%
Empty Test 2.04%
Exception Handling 52.10%
General Fixture 14.67%
Ignored Test 3.66%
Lazy Test 30.64%
Magic Number Test 31.91%
Mystery Guest 7.14%
Redundant Assertion 2.95%
Redundant Print 2.02%
Resource Optimism 3.59%
Sensitive Equality 6.07%
Sleepy Test 1.56%
Unknown Test 25.37%
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To understand the types of smells that occur in a unit test file when the file first starts to

exhibit test smells, we analyzed the first smelly version of each unit test file. Our analysis

showed that when a test file becomes smelly, on average, three types of smells are added to

the test file (Table 6.7). Further analysis showed that Assertion Roulette is the frequently

occurring smell, followed by the Exception Handling smell; both smells occurring in over

50% of the identified smelly files. Table 6.8 lists down the frequency distribution of each

smell type occurring in the first smelly commit of the set of unit test files.

Table 6.9: Frequency distribution of smelly commits

Item Frequency

Position (percentile) of 1st smelly commit

20 1.12%
33 1.12%
6 0.93%
16 0.93%
1 0.75%

Smell types in 1st commit of a test file

3 23.15%
2 20.37%
1 15.92%
4 14.40%
5 8.88%

Smell types in 1st commit of a smelly test file

3 24.49%
2 21.70%
1 17.21%
4 15.26%
5 9.38%

The frequency distribution table, Table 6.9, provide further information on the intro-

duction of test smells. The table provides the top 5 commit positions of a smelly file and

the top 5 smell types that initially occur in a unit test file. It was observed that the majority
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(approximately 82%) of the unit test files had 1 or more test smell types when the unit test

file was added to the project repository.

6.1.5 RQ1.6: What is the general trend of test smells exhibited by apps
over time?

Next, we investigated the trend of test smells in our studied apps. To achieve this measured

how frequently smells increase, decrease or remain at a steady level during the lifetime

of an app and for each instance of a smelly unit test file. Additionally, we performed a

comparison of the number of unit test files (and the associated test smells) that are updated

by developers for multiple apps across a common timeline.

Table 6.10: Statistical summary of smell trend in app and uni test files

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

Smell trend in apps

Steady State 0 0 2 239.1 22 38650
Smell Increase 0 0 0 10.76 2 1451
Smell Decrease 0 0 0 9.474 1 1403

Smell trend in unit test files

Steady State 0 0 2 14.77 6 1933
Smell Increase 0 0 0 0.71 0 292
Smell Decrease 0 0 0 0.64 0 291

For each unit test file, we obtained the total number of smells that the file exhibited

every time it was committed to the repository. We then compared the number of smells

exhibited in each version of the file in chronological order, and recorded the number of

times the smells in the file increases, decreases or remains the same (i.e., steady). Our

finding indicated that the number of smells exhibited by a file remains constant throughout

all updates to the file. Next, we calculated the cumulative totals of each type of smell trend

for all unit test files of an app. Using this data, we were able to obtain a view of how
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frequently smells in an app change over time. As shown in Table 6.10, on average, when

a smelly test file undergoes updates during its lifetime, approximately 14 times the smell

count remains constant. Similarly, the test smells exhibited by the app as a whole, remains

steady during the lifetime of the app.

0
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Figure 6.2: Test smell density trend for selected apps across overlapping years

Even though our dataset of Android apps spans across eight years, for this experiment,

we selected a date range that contained the same set of apps (i.e., all the commits made for

these apps overlap during this time). We identified that the period 2015 to 2017 contained

the most number of common apps, 66, over the longest period. Due to the diversity of

the apps in our study, we opted to utilize test smell density (i.e., count of total test smells

exhibited by test files divided by LOC of the test files) as the comparison metric. For each

app, we obtained the test smell density that occurred within each year. In Figure 6.2, apps

are represented on the x-axis, while the test smell density values are represented on the y-

axis. As time progress, the test smell density, of a majority of the apps, remain more-or-less

constant.

6.1.6 RQ1.7: Does developer experience have a part to play in the
existence of test smells?

Our investigation into the type of users that introduce test smells into unit test files involved

determining the experience of the developer at the time of performing a commit of a smelly
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file. To this extent, we calculated the Developer Commit Experience (DCE) for each devel-

oper for every commit performed by the developer. For each commit made by a developer,

we obtain the total number of commits performed by the developer prior to the current

commit. We then divide this value by the total number of app commits (regardless of the

person who performs the commit). The DEC for developer a at commit i is calculated as:

DCEa,i =

i∑
n=1

ca,n

TotalAppCommits

where ca,n is the nth commit performed by developer a.

It is by design that the DCE of a developer changes over the development lifetime of the

app. This approach ensures that as the app grows, we can accurately capture the experience

of the developer during the apps lifetime. A higher DCE value indicates that the developer

performing the commit has contributed more to the development of the app, and hence

more experienced.

Table 6.11: Statistical summary of DCE for test files

Item Min. 1st Qu. Median Mean 3rd Qu. Max.

DCE - Smelly Test File 0 0.01 0.04 0.08 0.11 0.41
DCE - Non-Smelly Test File 0 0.02 0.06 0.10 0.18 0.49

As shown in Table 6.11, there is not much of a difference in average DCE values for

developers that commit smelly and non-smelly files. A Spearman rank correlation coeffi-

cient test to assess the association between test smells and DCE produced a week negative

statistically significant correlation (Table 6.12). Hence, it is our understanding that devel-

opers, regardless of project experience, are probably unaware of test smells. They either

introduce smells into test files or do not fix smells already in existence in the test files being

updated.
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Table 6.12: Spearman’s correlation calculation on test smells and DCE. Bold indicates that
the obtained result was statistically significant (p< 0.05).

Variable #1 Variable #2 Correlation (ρ)

Total Test Smells DCE -0.06

RQ1 Summary: Test smells are widespread in the test suites of Android apps with Assertion

Roulette not only being the most commonly occurring smell, but also having the most

number of co-occurrences with other smell types, and also the most common smell type

first introduced into a project. We also observed that test smells are introduced early on

in the projects lifetime and that the experience of the developer does not influence the

presence of smells. Further, when compared to non-Android Java applications, the top four

smells occurring in both environments are the same with similar distribution ratios.

6.2 RQ2: To what extent does the severity of test smells in-
crease the risk of test files change- and bug-proneness?

To measure the severity of test smells, we define the following hypothesis concerning a unit

test files’ change-proneness (resp. bug-proneness):

Hypothesis 1 The probability of changes (resp. bugs) affecting smelly test files is higher
than the non-smelly test files’ probability of change (resp. bugginess).

To verify this hypothesis, we calculated its Odds Ratio (OR), similar to [22], to compare it

with the null hypothesis that advocates the higher chances of change (resp. bugginess) of

non-smelly test files compared to those of smelly test files. An OR value of 1 means that

there is no difference in the probability of change (resp. bug) proneness whether the file is

smelly or not, while an OR > 1 favorites Hypothesis 1 i.e., the odds of code changes (resp.

bugs) to occur within smelly files is higher while an OR < 1 rejects Hypothesis 1.

To calculate the ORs, we analyzed our apps repository to extract the needed sets defin-

ing the events of each hypothesis. To obtain the dataset for our change-proneness analysis,
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we first obtained the number of revisions (i.e., commits) each test file undergoes during the

lifetime of the project. Next, for each smell type, we divide the revision resultset into two

parts - test files exhibiting the specific test smell and those that do not. To obtain the dataset

for our bug-proneness analysis, we collected issues, raised by developers, and labeled with

the bug tag. GitHub provides developers the ability to close issues using a commit by speci-

fying a predefined keyword in the commit message. The CommitID is then associated with

the issue and is available as part of the issues metadata. For each app, we extracted the list

of closed issues from the apps issue tracker. Next, we filter in unit test files associated with

CommitIDs specified in the issue tracker data. Approximately 23% of the detected unit test

files, associated with apps tracking test-related issues, had associated issues. Finally, for

each smell type, we clustered the infected files into two groups depending on whether the

test file has an issue-related history or not.

Table 6.13 shows the computed OR results corresponding to the bug and change-

proneness of smelly test files clustered by smell type. It is interesting to note that ORs

and their significance vary depending on the smell type. Test files infected with Assertion

Roulette are found to be more change-prone and especially bug-prone than test files without

smells. This result is not surprising since these infected test files are responsible for testing

multiple functionalities and are usually linked to multiple functions. Thus, an issue reported

in any of these functions would require going through a large number of assert statements

in the test file to fix the related test cases. Also not surprising is the high change and bug

probability for test files exhibiting the General Fixture smell. This smell originates when

the setUpmethod is too general (i.e., test methods do not require all the actions performed

by the setUp method). As new test methods are added or existing methods modified, to

the test class, the setUp method will need to be updated to ensure that the test methods

execute successfully and not result in unexpected runtime exceptions. Additionally, break-

ing changes introduced to production methods (possibly due to bug resolution activities),

called from the setUp method, also impact the OR value of this smell. The Sleepy Test

smell scored the highest number of change probability; this is because these test files are
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Table 6.13: Odds Ratio for bug and change-proneness. Bold indicates that the obtained
result was statistically significant (p< 0.05).

Smell Type
Odds Ratio

Change
Proneness

Bug
Proneness

Assertion Roulette 1.63 2.27
Conditional Test Logic 1.19 0.46
Constructor Initialization 1.40 0.28
Default Test 0.12 0.95
Duplicate Assert 1.36 0.72
Eager Test 1.28 0.95
Empty Test 1.17 1.21
Exception Handling 1.10 0.58
General Fixture 2.19 1.09
Ignored Test 0.75 0.45
Lazy Test 1.47 0.83
Magic Number Test 1.02 0.92
Mystery Guest 1.35 0.70
Redundant Print 1.63 1.24
Redundant Assertion 0.81 0.37
Resource Optimism 2.04 0.41
Sensitive Equality 1.22 0.66
Sleepy Test 2.58 0.56
Unknown Test 1.52 0.44

using delays to simulate an external event (waiting for a response) prior to continuing with

the test execution. This delay is intended by developers to simulate the nature of third

party communication gaps and delays (e.g., waiting for server response). This manual and

very subjective process is behind the high odds of change associated with this smell. Also,

external resources can easily introduce bugs to the test file since developers do not have

control over their behavior, which is ironically not tested. Test files exhibiting the Default

Test smell, on the other hand, has been found to be significantly reluctant to change; a rea-

son for this could be attributed to it being a default test file added by Android Studio, and

developers are either unaware of it or do not add app specific test methods to it. Test files
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infected with the Conditional Test Logic smell are complex by nature as they contain many

controls statements (loops, ternary conditional statements, etc.), so they also have shown a

higher probability to change over time. However, surprisingly such files are less likely to

be prone to bugs. Similarly to code smells’ impact, test files infected with Unknown Test

smell tends to be hard to understand, and thus to maintain.

Table 6.14: Overall Odds Ratio for bug and change-proneness for unit test files. Bold
indicates that the obtained result was statistically significant (p< 0.05).

Proneness Type Odds Ratio

Change 1.28
Bug 0.57

An overall Odds Ratio computation for unit test files (Table 6.14) indicated that test files

exhibiting test smells are more sensitive to undergo changes in their lifetime in comparison

with their proneness to faults.

RQ2 Summary: Our investigation statistically showed that test files exhibiting smells are

more likely to change during its lifetime with files exhibiting the Assertion Roulette smell

highly prone to changes and bugs. However, further research into bug-proneness is required

as developers may not always indicate if/when a test file is updated to address a bug.

6.3 RQ3: Do test smells act as an indicator of technical
debt within the test suite?

As a reminder, technical debt is the implementation of less than optimal solutions to deliver

a software product within a less than required timeline or budget. Since there is no consen-

sus on how to measure technical debt, we have decided to extract technical debt instances

where developers intentionally admit the existence of a shortage in their implementation,

also known as Self-Admitted Technical Debt (SATD). In this exploratory study, we inves-

tigate the presence of SATD in unit test files and the degree to which it acts as an indicator

of smells in test files. SATD occurs when developers knowingly inject bad programming
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practices into the codebase to meet a specific requirement [19]. In this context, we utilized

JavaParser to perform an automated (case insensitive regular expression) search of unit test

files for the presence of SATD keywords within the files’ comments. Our search process

utilized the set of SATD keywords defined by [10].

Table 6.15: Distribution of test smell types in unit test files containing SATD

Smell Type Distribution
Percentage

Assertion Roulette 15.81%
Conditional Test Logic 8.90%
Constructor Initialization 2.67%
Default Test 0.00%
Duplicate Assert 12.11%
Eager Test 6.29%
Empty Test 0.65%
Exception Handling 10.35%
General Fixture 4.61%
Ignored Test 2.16%
Lazy Test 5.33%
Magic Number Test 10.77%
Mystery Guest 3.20%
Print Statement 0.55%
Redundant Assertion 0.64%
Resource Optimism 2.75%
Sensitive Equality 3.12%
Sleepy Test 0.65%
Unknown Test 9.46%

Results from our analysis indicated that approximately 10.26% of unit test files con-

tained one or more SATD keywords. These files were distributed across 25% of the ana-

lyzed apps. Interestingly, when we analyzed the SATD-based files for test smells, 96% of

the files exhibited test smells. From this, we observed that the smell Assertion Roulette

occurred the most. The high occurrence of this smell is not surprising since it is one of

the most frequently occurring test smell in all test files. Table 6.15 provides a complete
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Table 6.16: Occurrence of each SATD keyword

SATD
Keyword

Occurrence

todo 77.70%
needed? 10.94%
fixme 6.19%
workaround 2.29%
hack 2.23%
unused? 0.60%
wtf? 0.05%
kludge 0.00%
stupidity 0.00%
yuck! 0.00%

breakdown on the smell type distribution. We also observed that the SATD keyword ‘todo’

occurred the most; Table 6.16 lists the breakdown on SATD keyword occurrence. Exam-

ples of test cases exhibiting SATD are provided in Listings 6.1, 6.2, 6.3 & 6.4.
@Test public void testSetLocale() {

setUpTypical();
subject.setLocale(LOCALES[0].getLanguage());
// todo: how to verify?

}

Listing 6.1: Test method exhibiting an Unknown Test smell

// FIXME This test doesn’t really work as expected
public void testGetLastKnownLocation() throws InterruptedException {

.....
// TODO See if that solves sporadic test failures.
Thread.sleep(500)
.....

}

Listing 6.2: Test method exhibiting a Sleepy Test smell

public void testLooksLikeURL() {
.....
assertFalse(StringUtils.lastPartLooksLikeURL("abc.def"));
// TODO: ideally this would not look like a URL, but to keep
// down the complexity of the code for now True is acceptable.
assertTrue(StringUtils.lastPartLooksLikeURL("abc./def"));
// TODO: ideally this would not look like a URL, but to keep
// down the complexity of the code for now True is acceptable.
assertTrue(StringUtils.lastPartLooksLikeURL(".abc/def"));

}

Listing 6.3: Test method exhibiting an Assertion Roulette smell
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public void testInvalidMoves() {
// TODO
// fail("TODO");

}

Listing 6.4: Test method exhibiting an Empty Test smell

Our investigation into SATD also resulted in a brief analysis of refactoring on unit test

files. We observed that approximately 3% of all unit test file commits were related to refac-

toring. We arrived at this conclusion by performing a search on the commit message for the

keywords including ‘refactor’, ‘refactoring’ and ‘refactored’. While we agree that such an

approach is not entirely reliable, it does provide a starting point for future investigations.

Future studies in this area can include following a similar approach to [39].

RQ3 Summary: Our findings indicate that unit test code, similar to production code is

also subject to technical debt. Furthermore, the presence of test smells acts as a reliable

indicator of technical debt in the test suite. However, further research in this area is needed

to understand the precise impact test smells on technical debt. We recommend developers

take into consideration these initial findings during development.

6.4 RQ4: What is the degree to which tsDetect can cor-
rectly detect test smells?

To evaluate the effectiveness of tsDetect in correctly detecting test smells, we performed a

qualitative analysis to obtain the precision and recall of our tool. We enlisted 39 subjects

from the Department of Software Engineering at Rochester Institute of Technology 1 to

manually construct an oracle to which we could compare the detection results of our tool.

Subjects included undergraduate and graduate students and faculty members. All the sub-

jects volunteered to help with the experiment and were familiar with Java programming.

The experience of these subjects with Java development ranged from 2 to 11 years, which

included exposure to developing unit tests. Prior to the commencement of the experiment,

1https://www.se.rit.edu/

https://www.se.rit.edu/
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subjects were provided with a 75-minute lecture on test smells along with reference ma-

terials. From our dataset of unit test files, we selected 65 random files by executing the

SQLite Random() function. Subjects were randomly grouped into groups of 3, to reduce

the effect of subjective bias. Each group was provided with ten test files (along with the

associated production files). Each group was also provided with a template that they used

to indicate the type of test smell that the file exhibited. Duration of this experiment was

three days, and all of the 13 groups submitted their results within this period. We per-

formed a cross-validation exercise to reduce the impact of subjects on the evaluation by

providing each smell type to at least two groups. Subjects were asked to justify their deci-

sions, and the experiment organizers reviewed their explanations. We next ran our tool on

the same set of test files and then compared our results against the oracle. For each smell

type, we constructed a confusion matrix and calculated the Precision, Recall, Accuracy,

and F-Score. Table 6.17 reports on the correctness of detecting each smell type. For repro-

ducibility purposes, we provide the anonymized qualitative analysis package (files used in

the experiment) on our website.

Additionally, without limiting our qualitative analysis of tsDetect to manual validation,

we also performed a comparative exercise of tsDetects ability of smell detection against

state-of-art detection strategies. Within the list of tools described in Chapter 3, TRex was

the only available tool, but its detection rules were specific to identifying violations of the

TTCN-3 standards. Among the other non-available tools, we were successful in acquiring

Test Smell Detector (TSD), a tool used in a few recent test smell studies [4, 46]. Ideally, the

comparison has to be performed with a dataset of manually detected test smells. Since there

are no publicly available test smell datasets, we decided to run both tools against a set of

manually validated smells, identified in the previous experiment. However, the comparison

was limited to smell types recognized by tsDetect and TSD. Our findings indicated that

tsDetect is better equipped to detect smells in specific scenarios than TSD. Listed below

are some scenarios that we encountered where tsDetect performed better than TSD.

Assertion Roulette In Example #1 of Listing 6.5, TSD falsely indicates that the method
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Table 6.17: The correctness of tsDetect in detecting test smells

Smell Type Precision Recall Accuracy F-Score

Assertion Roulette 95% 81% 86% 87%
Conditional Test Logic 98% 100% 99% 99%
Constructor Initialization 94% 97% 94% 96%
Duplicate Assert 96% 100% 97% 97%
Eager Test 96% 92% 93% 94%
Empty Test 100% 100% 100% 100%
Exception Handling 93% 97% 95% 95%
General Fixture 93% 92% 96% 92%
Ignored Test 97% 99% 83% 98%
Lazy Test 96% 82% 89% 89%
Magic Number Test 100% 100% 100% 100%
Mystery Guest 96% 100% 98% 98%
Redundant Assertion 97% 100% 98% 98%
Redundant Print 89% 100% 99% 94%
Resource Optimism 90% 100% 93% 95%
Sensitive Equality 95% 100% 96% 97%
Sleepy Test 96% 100% 98% 98%
Unknown Test 93% 100% 97% 96%

exhibits the smell. The detection is not valid as this method only contains one assertion

statement. In Example #2, TSD falsely indicates that the test method does not exhibit

the smell. The detection is not valid since there are multiple non-documented assertion

statements.
//Example #1
@Test
public void testEncrypt() throws Exception {

String xml = readFileAsString(DECRYPTED_DATA_FILE_4_14);
byte[] encrypted = Cryptographer.encrypt(xml, "test");
String decrypt = Cryptographer.decrypt(encrypted, "test");
assertEquals(xml, decrypt);

}

//Example #2:
@Test
public void testTimestamp() {

Assert.assertEquals("201205292002",ExporterFileNameUtils.getTimeStamp(new Date(1338314522376L), Locale.GERMANY));

Assert.assertEquals("201205292010", ExporterFileNameUtils.getTimeStamp(new Date(1338315008925L), Locale.GERMANY));
}

Listing 6.5: Assertion Roulette Example.
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Eager Test Example #1 in Listing 6.6, contains multiple calls to the production class,

but is not indicated as a smell by TSD. However, it should be noted that the methods

are defined in the parent class of the production class. Example #2 is reported as having

an Eager Test smell, by TSD since the same production class method ‘isArea()’ is called

twice in the same method. However, it can be argued, that this not constitute to an Eager

Test smell since it is the same method and the Eager Test rule definition does not indicate

if the called methods have to be different.
//Example #1
public void testOnUpgrade() {

DbHelper helper = createHelperVersion(1);
assertTablesExist(helper.getReadableDatabase(), TABLES_V1);
helper.close();

helper = createHelperVersion(2);
assertTablesExist(helper.getReadableDatabase(), TABLES_V2);
helper.close();

helper = createHelperVersion(3);
assertTablesExist(helper.getReadableDatabase(), TABLES_V3);
helper.close();

helper = createHelperVersion(4);
assertTablesExist(helper.getReadableDatabase(), TABLES_V4);
helper.close();

}

//Example #2:
public void testRelation()
{

assertFalse(OsmAreas.isArea(new OsmRelation(0,0, null, null)));
Map<String, String> tags = new HashMap<>();
tags.put("type","multipolygon");
assertTrue(OsmAreas.isArea(new OsmRelation(0, 0, null, tags)));

}

Listing 6.6: Eager Test Example.

Lazy Test The example in Listing 6.7 is not reported as having a Lazy Test smell, by

TSD. However, it should be noted that the methods are defined in the parent class of the

production class. The existence of the smell in this scenario can be debated.
public void testOnCreate_v2() {

DbHelper helper = createHelperVersion(2);
assertTablesExist(helper.getReadableDatabase(), TABLES_V2);
helper.close();

}

public void testOnCreate_v3() {
DbHelper helper = createHelperVersion(3);
assertTablesExist(helper.getReadableDatabase(), TABLES_V3);
helper.close();

}

Listing 6.7: Lazy Test Example.

Mystery Guest TSD checks for the Mystery Guest smell by performing a text-based
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search for ‘File’, ‘db’ and ‘File(’. In the sample code provided in Listing 6.8, there is a

string variable that contains the characters ’db’; TSD wrongly identified this test file as

containing the smell.
@Test
public void testParseRadicalName() {

String kanjidicStr = " 565F U5ddb B47 S3 V1527 H9 MN8669 MP4.0326 P1-1-2 I0a3.2 Q2233.7 Ychuan1 Wcheon T2 {
curving river radical (no.47)}";

KanjiEntry entry = KanjiEntry.parseKanjidic(kanjidicStr);
.....

}

Listing 6.8: Mystery Guest Example.

RQ4 Summary: Through manual verification, we established that tsDetect exhibits a high

degree of correctness in detecting smells. Further, we also highlighted instances where

tsDetect outperforms an existing test smell detection tool.
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Chapter 7

Threats to Validity

In this chapter, we present factors that may impact the applicability of our observations in

real-life situations. We classify these factors into three categories [61].

Internal Validity. We report on the uncontrolled factors that interfere with causes and

effects, and may impact the experimental results. The task of associating a unit test file with

its production file was an automated process (performed based on filename associations).

This process runs the risk of triggering false positives when developers deviate from JUnit

guidelines on file naming. However, our manual verification of random associations and

the extensiveness of our dataset acts as a means of countering this risk.

Further, the random selection of files/data performed at different stages in the study

(either as a means of quality control verification or as support for answering research ques-

tions) has a risk of not being representative selections. Even though our lexical-based

SATD analysis utilized keywords from a prior published study, it lacked context-sensitivity

analysis associated with the keyword. Context-sensitivity will reduce the occurrence of

false positives.

Construct Validity. Herewith we report on certain challenges that validate whether

the findings of our study reflect real-world conditions. We assume change-proneness and

bug-proneness as two maintenance measures that reflect a direct maintainability issue with

the source code. Still, the variation of code changes frequency can also be triggered by

several other factors including adding features or performing API updates. To mitigate this

issue, we normalize the change frequency over the project overall lines of code. Also, we

collected changes and bugs from various projects to ensure the scalability of our results.
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For our qualitative analysis, we distributed the evaluation of each test smell among multiple

subjects to avoid subjective bias.

Our detection process can still contain false negatives, which constitutes a threat to our

findings, especially given that we aimed to assess the relevance of the newly introduced

smell types by measuring their impact on maintenance in general through various empiri-

cal experiments. However, our findings have confirmed the usefulness of these introduced

smell types. In the future, we will continue to refine the definition of these smells to in-

crease the detection accuracy.

External Validity. The detection rules utilized by tsDetect was limited to JUnit based

unit tests. tsDetect, at present, does not support other testing libraries/frameworks such as

TestNG and Mockito. The analysis was limited to only open-source, Git-based repositories

indexed on F-Droid. However, we were still able to analyze 656 apps that were highly

diverse in age, category, contributors, size, and rating. Not all the apps that we cloned were

available on Google Play. Hence our correlations against Google Play metadata may not

be representative.

Similarly, not all apps utilize GitHub to track and manage issues/bugs; and for apps

that do use GitHub’s issue tracker, not all developers associate a commit to a tracked issue.

Furthermore, due to cost/logistical constraints, it was not possible to involve developers of

apps, analyzed in this study, to confirm/validate assumptions/findings.
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Chapter 8

Conclusion & Future Work

The objective of this work is to help developers build and maintain better quality test cases

for mobile apps. To do so, we have extended the list of known test smells, based on our

experience and other sources. We conducted a set of qualitative experiments to investigate

the existence of smells in 656 open-source Android apps, we evaluated the correctness of

tsDetect, and we reported the impact of test smells on the bug and change-proneness of test

files. Our main findings indicate a substantial existence of test smells in unit test files. Their

existence represents a threat to test file’s maintainability, as they trigger higher chances of

more fix-oriented files updates. Some smell types such as Ignored, Empty and Default Test

also serve as an indicator of lack of proper testing discipline in the app. Using tsDetect,

we hope developers will be better informed on the type of test smells that occur in Android

apps and will be able to avoid introducing them in their test files. We further hope that

developers will be encouraged to write unit tests early in the project life-cycle and continue

to update the tests as the project evolves.

We plan on extending this study by focusing on expanding the existing set of test smells

to include new Android-specific test smells. We also plan on: (1) conducting further anal-

ysis of apps to understand the co-occurrence relationship between test smells and tradi-

tional code/Android smells, and (2) survey the Android developer community to gauge

their understanding of test smells and the importance that they place on fixing test smells

over (production) code smells. Additionally, we also plan on extending tsDetect to sup-

port other testing libraries/frameworks and also providing a plug-in version of tsDetect for

popular IDE’s.
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Appendix A

tsDetect - Class Diagram

Depicted in Figure A.1 and A.2 are UML class diagrams of tsDetect.
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Figure A.1: UML class digram of tsDetect - Overview
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Figure A.2: UML class digram of tsDetect - Smell Types
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