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Abstract

Learning to Rank Relevant Files for Bug Reports Using Domain
knowledge, Replication and Extension of a Learning-to-Rank

Approach

Nasir Safdari

Supervising Professor: Dr. Mohamed Wiem Mkaouer

Bug localization is one of the most important stages of the bug fixing process. Bad practices

make the debugging a tedious task. Investigating bugs can contribute up to a large portion

of the aggregate cost for a software project. An automated strategy that can provide a

ranked list of source code files with respect to how likely they contain the root cause of

the problem would help the development teams to decrease the search space and leads to

increase in the productivity. In this work, I have replicated the bug localization approach

presented in [26] that applies the learning-to-rank technique to rank the relevant files for

each bug. This technique applies domain knowledge by evaluating the textual similarity

between bug reports and source code files and API specification documents plus bug fixing

and code alteration history. For a given bug report, the ranking function is constructed

based on the linear combination of weighted features where the features are trained on

previously solved bug reports. In addition to replication of the mentioned technique, I have

extended the study by evaluating the role of different text preprocessing techniques such

as Stemming and Lemmatization and also a randomized selection of training folds on the

overall performance of the ranking model. I found that Lemmatization of the words and
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randomized selection of the training folds have an adverse effect on the performance of the

ranking model and consequently having lower accuracy and precision of the results.



vii

Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 Ranking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Text Preprocessing Methods and Cosine Similarity . . . . . . . . . 18

5.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Source Code Files Lexical Similarity . . . . . . . . . . . . . . . . 20
5.3.2 API Specifications Lexical Similarity . . . . . . . . . . . . . . . . 21
5.3.3 Collaborative Filtering Score . . . . . . . . . . . . . . . . . . . . . 22
5.3.4 Class Name Similarity . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.5 File Alteration History . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.6 Feature Values Normalization . . . . . . . . . . . . . . . . . . . . 25

5.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Training Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5.1 Tuning the Capacity Parameters . . . . . . . . . . . . . . . . . . . 27
5.5.2 Training Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



viii

5.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



ix

List of Tables

6.1 Comparison of average model parameters. . . . . . . . . . . . . . . . . . . 31



x

List of Figures

2.1 Lifecycle of a bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 System Architecture for training and testing [27] . . . . . . . . . . . . . . 17
5.2 Tomcat Bug Report 30949 . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 API specification for Member Interface from Tomcat project . . . . . . . . 22

6.1 MAP Comparison with other state-of-the-art bug localization tools [26]. . . 32
6.2 Accuracy@k graph on Tomcat [26]. . . . . . . . . . . . . . . . . . . . . . 32
6.3 Accuracy@k graph comparing the original study and the current one. . . . 33
6.4 Accuracy@k graph comparing Lemmatization vs. Stemming . . . . . . . . 35
6.5 Accuracy@k graph comparing training on Random vs. Sorted folds. . . . . 36



1

Chapter 1

Introduction

One of the most critical aspects of Software Engineering is Software Maintenance. It is

crucial to make sure that a software product is developed by following the proper princi-

ples and standards. For instance, in an organization it is common that a project is carried

on by a team of several members; each of them assuming an specific role. Depending on

the scope of the project, each task is assigned to an individual who has the required skills

and abilities in the role.

Once a software project is completed, it needs to be maintained in order to ensure its qual-

ity. Even though all the requirements are fulfilled, there is still room for improvement. In

almost all cases, there are instances in which someone needs to maintain the software to

keep or enhance its quality. For example, once a software product is released there is a

possibility that it can have any type of vulnerabilities or flaws. From here it comes the term

”software bug”. A bug can be injected intentionally or unintentionally for some reasons.

In fact, there are several ways to detect those bugs but it could be time-consuming if it is

manually done. To speed up the process some methods have been proposed to address that

issue.

In order to train a model to solve a ranking problem, Learning to Rank approach has been

proved to be an effective method[23, 26, 2]. This approach has been applied in several

domains such as search engines and information retrieval. In this study, a bug report can be

observed as a query and the source code files can be searched as a directory of documents.

Thus, searching the source code file/files that are known to be the root cause of a bug, can

be constructed as a regular structure in Information Retrieval (IR) [15].
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Since in this approach, the source code files (directory of documents) can be ranked with

respect to how relevant they are to the root cause of a bug, the mentioned approach can be

viewed as a ranking problem. In order to evaluate the relevancy of the bug report to each

source code file, the ranking function is constructed based on the combination of weighted

features. Although a bug report might have some shared textual similarities with its rele-

vant source code files, mainly there is a vast difference between the natural language used

in the bug report and the programming language used in the source code[3]. This lexical

gap between the technical syntax used in the programming language and the natural lan-

guage used in the bug report can be bridged by using the API specification documents that

contain the formal explanation of the class and its methods relationships and responsibili-

ties.

Another practical solution to bridge the mentioned lexical gap is to parse the source code

files into each method, since in general, the size of a class might be quite large and it can

contain numerous methods. out of all those methods, it less often occurs that all of them

correspond to the cause of the bug, therefore, this process can help to find the cause in a

more precise manner. Furthermore, another domain that can help improve with the lexical

similarity between the source code files and bug report is the change history of the source

code file. It has been observed that if a source code file is involved with a high number of

flaws, it might be the cause of multiple bugs[28]. One crucial implication to take out from

the mentioned observation is that if the bug reports that are fixed before the current bug is

reported, the textual similarity between the former bug reports and the current bug report

describes the association between the files that have been fixed for similar bug reports. in

other words, textual similarity between the current bug report and the previously fixed bug

reports implies that those file/files that were fixed for the previous bug reports might be the

cause of the abnormal behavior described in the current bug report. The mentioned lexical

features were all dependent on the textual features of the query (bug report). Besides query-

dependent features, to capture the query-independent features, the bug-fixing recency and
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bug-fixing frequency of each source code file are also calculated. those two features pro-

vide information about the file revision history that can help determine the faulty source

code files.

By applying the learning-to-rank approach, the weights for each feature can be automati-

cally trained on the bugs that are previously solved. In this process, the previously solved

bugs are used as the training set for a specific learning-to-rank algorithm that acts as a

ranking function which is able to learn the weights based on different values of the linear

combination of features. Unlike a previous study[28] that used a specific version of the

source code as the directory of the documents to be searched, by checking out the before

fix version of the source coed for each bug report, in this study the training data remains

more conforming as the search space to locate the root cause of each bug.

Bug reports are provided by users who face the abnormal behavior in the software. When

a user reports a bug, he/she writes a short explanation of how things went wrong while

trying to use specific features of the software. Those bug reports are in natural language

format and they must be preprocessed before using them in a learning to rank Algorithm.

In addition to the bug reports, source code file and API specification documents also need

to be preprocessed before they can be used as inputs for the learning-to-rank algorithm. In

general, one of the most important tasks in the text preprocessing stage is that words in a

corpus or a bag of word need to be reduced to their basic shape. How to process the words

to get to their basic shape affects the final results. There are different methods to reduce

each word to its basic shape and most common ones are: Stemming and Lemmatizing.

There will be more details about the text preprocessing methods in methodology section.

Since learning to rank is a supervised machine learning method, the data needs to be di-

vided into training, validation, and testing sets. there are different approaches to split the

dataset into those sets. How to split the dataset intensively affects the performance of the

algorithm and consequently the ultimate results in terms of precision and accuracy.

The purpose of this research is to replicate the bug localization approach presented in [26]
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and extend the study by evaluating the effect of different natural text preprocessing tech-

niques and also a randomized selection of training folds on the overall performance of

learning to rank algorithm used in the original study.

The remainder of this thesis is organized as follows: Chapter 2 provides some background

information about the life cycle of a software bug. Chapter 3 discusses the related research.

Chapter 4 poses the problem statement. Chapter 5 explains the details of methodology used

in this study. Chapter 6 provides the results of the experiments. Chapter 7 talks about few

threats to the validity before concluding the work in Chapter 8.
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Chapter 2

Background

This section talks about the different activities involved in the bug life cycle. This process

starts when the development team receives the bug report and then the bug is assigned to

the specific team member who is more familiar with the connection between the bug report

and part of the source code that might be the cause of the abnormal behavior carried out

by the bug. Next the assigned team member/members will go through the bug localization

process and ultimately find the cause of the abnormal behavior and solve the problem. Fig-

ure. 2.1 portrays the life cycle of a bug.

Bug management:

In software development, it is crucial to have a repository in which developers can report

a particular bug or issue. Not only does it help them keep track of bugs but also it helps

to recommend improvements to various bug reports. Since the bug repository is publicly

available to anyone, the quality of a particular software project can be enhanced. [12]

Bug triage:

It is the process in which bug reports are prioritized and assigned to an appropriate bug

fixer. When a bug report is received, several factors are taken into consideration in order

to process the request. First, a bug report can be classified based on its importance. If the

importance is higher, it will be highly considered to be fixed earlier than the other bugs.

Another crucial factor is severity, which also affects its importance. Combined together, it

leads to having the bug being prioritized from low to high priority.

Bug localization:
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Once a bug becomes resolved by the developer, the bug status makes a transition from re-

solved to be verified. After it is verified, then the bug is defined as closed so that no more

occurrences of the bug will be reported.

Bug tracking systems:

In software development, developers use a popular platform in which they can report the

different types of bugs that a software product can contain. It facilitates the bug tracking,

and at the same time help them fix those bugs in an efficient way. There are plenty of rec-

ognized bug tracking systems such as Bugzilla, RedMine, JIRA, and others.

Bugzilla:

For this study, Bugzilla is taken into consideration as the leading platform of Issue Track-

ing system. It is a defect tracking system that allows software developers track and report

different types of bugs. Actually, it is a free repository and contains many useful features

that it became one of the most popular bug tracking systems used by many developers.

One of the advantages is that Bugzilla can be installed in most operative systems (OS). It

runs for Windows, Mac, and Linux. It facilitates the way in which bug fixers choose the

appropriate environment for deployment. Another plus is that it is totally free so it prevents

any extra cost.

Bugzilla classifies its features between users and administrators. Some essential features

include the ability to search for a specific bug in a Google-like search. It helps the user find

the bug following certain criteria. For instance, if the developer wants to look for the bug

which ID is ”123456”, he or she can input its ID to retrieve important information such

as: (reference: https://bugzilla.readthedocs.io/en/latest/using/editing.html#life-cycle-of-a-

bug)

• Status: It shows all the possible statuses of a particular bug. It helps the developer

distinguish whether the bug has been fixed or not.

• Product: Based on the software product. For instance: platform, UI.
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Figure 2.1: Lifecycle of a bug

• Component: The various sections or modules that compose a software product are

defined as components.

• Version: It means that whenever a software product is revised to correct previous

errors, developers release a newly modified software.

• Hardware: It is where the bug was originally found.

• Importance: It is based on the grade of severity and priority.

• Target Milestone: Specifies to whom the bug is assigned to.

• Assigned To: As the name states, it is to whom the actual bug was assigned to.

• QA Contact: Here, the person in charge of fixing/posting the bug will be shown here.

• URL: If there is any web link associated with the bug, it will be shown.
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• Whiteboard: In this field, developers specify words or terms to make the bug tracker

system more organized.

• Keywords. Essential words to identify the characteristics of a particular bug.

• Depends on: The bug which is dependent on another one.

• Blocks: It refers to the bug that blocks another one.

There are different types of status for a bug that are classified as ”Open bugs” and ”Closed

bugs”. For open bugs, the first one on the list is UNCONFIRMED, which means that there

is a bug recently added into the database and it is not marked as valid yet. Once here, the

bug state can transition to either CONFIRMED or RESOLVED. The CONFIRMED state

refers to a bug which has been validated and it can be IN PROGRESS if a developer is

working on it then it becomes RESOLVED.

For closed bugs, there is the RESOLVED state meaning that a decision has been done. In

this state, once it is verified by the QA, the bug can be either given reopened and get some

open status or verified and marked as VERIFIED. The VERIFIED is the final in the bug

status, and it is when the QA has made the appropriate decision to verify the bug.

There is a resolution set depending on the status of a bug. First, the FIXED resolution

indicates there is a fix for the bug that also has been tested. Next, when the responsible

person determines that a bug is not a bug, the resolution will be given to INVALID. An-

other resolution can be also when a bug does not have any possibility to be solved, then it

becomes WONTFIX. If there is a bug that is duplicate of another, then its resolution will

be marked as DUPLICATE. Finally, the WORKSFORME resolution is given when there is

no idea how to fix the particular bug, so if enough information is encountered then the bug

could be reopened. Ref. (https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#bug status)

Bugzilla was developed by Mozilla. It is constantly maintained and updated based on any

feedback to the platform. Its key characteristics are that it decreases downtime, increases

productivity, improves communication, and elevates the customer satisfaction.
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Many popular software projects use Bugzilla as its bug defect tracker system. To men-

tion a few, there are: Eclipse, Linux Kernel, GNOME, KDE, Apache Project, LibreOffice,

OpenOffice, and its company itself called Mozilla.
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Chapter 3

Related Work

Bug management:

Other works have studied crash reports as bug report characteristics that help keep track of

bugs. Authors in [24] emphasize about correlations in crash reports that can improve bug

management. In this work they propose five rules to detect correlated crash types automat-

ically, in which two of them are added to the present work. One rule based on the time

crash occurs, and the second one based on the textual similarity of crash types. Also, by

using crash correlation groups, they use an algorithm that helps locate and rank any buggy

files. In addition, they present a method that identifies bug duplicates. It is said that due to

the huge amount of crash reports generated, similar crash reports are grouped together in

order to speed up the process because sometimes crash reports may refer to the same bug.

They conduct the study on Firefox and Eclipse.

Authors in [10] mention that sometimes there are too many bug reports generated in bug

tracking systems from which a considerable percentage pertains to bug duplicates. So, their

approach tends to tackle that problem by proposing a method to classify the incoming bug

reports into the appropriate category; in this case the ones that are bug duplicates taken

into account the important features that a bug report contains for detection. In addition,

since several bug reports have contextual similarities such as two reports having the same

description but in different words, they propose a formal model to mitigate this issue. They

conduct their study using 29,000 bug reports from the Mozilla project.

When detecting bug report duplicates, it is important to use a textual similarity approach
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in which the descriptions between two bug reports can be compared efficiently. In [7], au-

thors present three approaches: String-based, Corpus-based, and Knowledge-based. First,

for the String-based, the measures are classified into two categories. Character-based and

term-based, each one having seven algorithms to be used for analyzing the text. Second,

the Corpus-based similarity, which is a semantic similarity having six measures. It analyzes

the text based on a context from words already stored in a large dataset. Third, Knowledge-

based similarity which focuses on the degree of the semantic link among words and has

five measures. This one is grouped into two categories: similarity, and relatedness. In this

case, the semantic context is taken from semantic networks.

In this work [6], the authors point out that a huge amount of crash reports are generated

on a daily basis which makes it difficult to manage. To mitigate that problem, they pro-

pose a two-level group approach in which crash reports that are linked to the same bug

are grouped together. By doing so, it facilitates the triage process and reduces the time of

bug fixing. However, if a crash report refers to multiple bugs, it would become a tedious

process. So for each crash report, the stack traces are helpful to identify the bug to see

whether is a duplicate or not. In order to evaluate the similarity between stack traces of

the crash reports, they used the Levenshtein distance. They conduct an empirical study on

ten Firefox releases. It is mentioned that their approach helped decrease bug fixing time by

more than 5%.

Similar to research that has been conducted before, authors in [21] present an approach to

decrease the number of bug report duplicates by extending the BM25F formula for larger

queries. In the study, they increase the accuracy improvement by 10-27% in the recall rate.

Not only do they take into consideration the textual features, but also category features as

well in order to enhance the accuracy of the results. They studied the bug repositories from

Mozilla, Eclipse, and OpenOffice.

Bug triage:

Other researchers that have conducted studies on bug triage [9] focus on historical bug-fix
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information that means that each developer that have fixed bugs previously, have a gener-

ated historical information that contains all his/her activities of fixing bugs.

Some bug triage methods are effective when team size is moderate but they may not be ef-

fective when the project size increases. In order to solve that issue, authors [16] propose an

automated bug triage tool named BugFixer that facilitates the bug fixing process for larger

projects.

They conducted the study on three large-scale software projects (Eclipse, Mozilla, Net-

beans) plus two smaller projects. Based on the outcome, it shows that Bugfixer performs

better when having larger projects. So, traditional approaches have revealed that when it

happens, their methods do not achieve the expectations. It is mentioned that developer ex-

pertise cannot be learned from historical data. In some cases the tool performance may not

be efficient as expected since it may fail to provide good recommendation for some bug

reports.

Similar studies suggest a semi-automated approach to speed up the process of bug triage

when new bug reports are assigned to developers. Authors in [1] use machine learning to

rank a list of potential developers that can fix a bug. They used Bugzilla as the main bug

repository that includes two projects: Eclipse, and Firefox. To validate their approach, they

used a third project called GCC but the results were not promising since the outcome is

lower than the expected.

Bug localization:

Authors in [19] explain that when a software product is released, it is usual that several

bugs appear. Also, it is mentioned that in most cases developers submit bug reports that

later are detected as duplicates. Thus, in order to speed up the bug duplicate detection,

they developed a tool using NLP that helps in the detection of duplicates. For the tool,

there are various techniques used in the detection process such as tokenizing, stemming,

and stop words removal. However, it is stated that when the data that to be processed is

very large, the operation could be complex. One way to avoid that is to filter out data that

is not important and have only the data that is relevant. In addition, when using an NLP
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algorithm the bug reports are ranked based on their similarity so that only the high-ranked

are shown. For their case study, they analyzed defect reports at Sony Erickson Mobile

Communications using two approaches. In the first approach, they chose bug reports that

were classified as duplicates in each report using batch runs. In the second approach, they

conducted interviews with testers and analysts in order to evaluate their tool. It is concluded

that the tool is very useful even though only 40% of duplicates can be detected.

There is another approach when locating bugs. Authors in [25] propose an idea to locate

bugs at a code change level. It means that whenever there is a modification within the

code, developers can identify those changes that can help find the bug. They proposed a

tool named Locus which provides a better understanding of how bugs can be fixed faster

than the traditional approaches. Three ranking models are taken into consideration such

as the NL (Natural Language) Model, CE (Code Entity) Model, and Boosting Model. For

the NL, tokens are extracted from bug reports in which only the summary and description

sections are considered. Meanwhile in the CE, which refers to the code entity, components

such as package names, class names, and methods names are treated as single tokens before

preprocessing. Now for the boosting model, they used the algorithm used by Google and

adapted it according to the study. In this model, the goal is to find the highest suspicious-

ness score that leads to a file to be buggy.

Similarly, other authors [28] point out that locating source code that needs to be modified

can be tedious. For this reason, they propose a method named ”BugLocator” which is used

to locate targeted buggy-files. It is an automated process that reduces waiting time and

cost, and increases user satisfaction. According to their study, the method outperforms bet-

ter than other suggested approaches by using a large dataset of bugs from four open source

projects (Eclipse, AspectJ, SWT, and ZXing).

Many research works have been focused on either Information-Retrieval (IR) or Machine

Learning (ML) techniques for bug localization. Authors in [13], instead, propose a com-

bined approach to detect the most likely buggy files in projects which is advanced IR tech-

nique with Deep Neural Network (DNN). They evaluated their idea with real-word projects
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over existing bug localization approaches. It is showed that their technique ranks higher

among other similar studies. DNN also addresses lexical mismatch that the other IR tech-

niques contain.

Other authors [20] propose a tool named BLUiR (Bug Localization using Structured Infor-

mation Retrieval), which improves the bug localization techniques. As shown in the results,

BLUiR outperforms better than any other tools. First, it takes a bug report as a query, simi-

lar to other approaches, and then extract the summary and description that later is tokenized.

Those tokens are converted into queries and are processed for the structured retrieval. Next,

the source code files are treated as documents, which later the Abstract Struct Tree is ap-

plied; elements such as classes, methods, variables, comments are tokenized and converted

to structured documents that later are indexed then sent to the Structured Retrieval. With

the process of bug reports and source files combined, a list of ranked files are generated.

In [5], in order to improve bug localization, authors present a technique that is based on

the bug report similarities using two approaches: at bug and source code level. However,

it needs to be combined with other techniques to be effective. For the bug description, it

mainly identifies what methods have relation with the bug report. Meanwhile in source

code level, it recognizes the methods by using textual similarity.
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Chapter 4

Problem Statement

Either as a living creature or in the software world, bugs are not very popular. However,

they both are inevitable parts of their environments. Software development teams spend a

lot of time fixing bugs on a regular basis. Currently, the process of debugging and correcting

defects in a software is a tedious, time consuming, and expensive task. A lot of real-world

software projects get an expansive number of bug reports day by day, and addressing them

requires much time and effort. Maintenance of software is a resource-consuming activ-

ity; even with the increasing automation of software development activities, resources are

still scarce. It has been reported that most of the software cost is devoted to evolution and

system maintenance of existing source code [8]. Investigating bugs can contribute up to a

large portion of the aggregate cost for a software project. Therefore, there is a squeezing

requirement for automated strategies that makes development teams work easier. This issue

has persuaded extensive work proposing automated troubleshooting answers for different

cases. The debugging process summary is explained as when a developer is provided with

a bug report and then he/she must replicate the defect and perform several reviews of the

source code to find the root of the cause. In addition, bug reports can be very different since

they are provided by many people who are dealing with the software and any one of them

have different inputs for the bug reports, this makes the process of debugging even more

difficult.

An automated mechanism for estimating possible locations in the source code while con-

sidering how likely they are to contain the cause of the bug would help developers to reduce

their search and increase the productivity.
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Chapter 5

Methodology

5.1 Ranking Model

Learning-to-rank is a category of supervised machine learning algorithms that are used to

solve ranking problems in information retrieval[14]. In general, there are two stages of

learning to rank: first is the learning stage and second is the deployment (testing) stage.

This method works at the first stage by preparing the training set. more details on how

to prepare the training set are explained in section 6. The result of the learning stage are

the weights for the features that the algorithm learns to optimize. In general, the learning

to rank algorithm tries to construct a model to minimize the cost (error) by fitting weights

for the features that result in optimized ranking. At the deployment stage, for each bug

report (query), the learned weights are applied to the features and each source code file

(document) receives a score based on its feature values and then the list of the source code

files are sorted based on their scores.

f(r, s) = wTΦ(r, s) =
k∑

i=1

wi ∗ Φi(r, s) (5.1)

As formulated by equation 5.1 [26], for each bug report r and any source code file s in

the before-fix version of the source code, f(r,s) is a function that provides the final score

based on the weighted sum of k features. Φi(r, s) calculates the individual score based on

the relationship between r and s for each feature. The most important component in the

equation are parameters wi that are trained by a learning to rank algorithm on previously

solved bug reports. Fig. 5.1 describe the overall architecture of the system.
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Figure 5.1: System Architecture for training and testing [27]

5.2 Experiment Setup

5.2.1 Vector Space Model

The classic Vector Space Model (VSM) can be applied to convert the text into vectors of

term weights. The reason to convert the text into vectors is that, mainly machine learning

algorithms accept inputs in the form of matrices. We can take the bug report as a query and

source code files as the directory of the documents to be searched for, then VSM can be

used to convert the text of the bug report and source code files into vectors. Those vectors

of term weights can be represented as one-row matrix representing the textual features of

each bug report or source code file. In any document d (bug report or source code file), the

term weights wt,d of each term t contained in d is calculated as:

wt,d = TFt,d × IDFt (5.2)
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In the above equation, TFt,d is the number of times term t appears in document d. IDFt

is the inverse document frequency = log N
DFt

. TF-IDF is one of the widely used methods to

convert text into vectors of term weights in information retrieval [15].

5.2.2 Text Preprocessing Methods and Cosine Similarity

A similar methodology explained in [12] was applied for text pre-processing. In order for

the bug reports and source code files to be converted into vectors of term weights, first they

need to be preprocessed and cleaned; put into a format that the machine learning algorithms

will accept. The first step is to tokenize each body of text by splitting it into its constituent

set of words. After that, punctuation and stop words are removed since they do not play

any role as features for the learning to rank algorithm. Next, all the words are converted

to lower case and then stemmed using the Porter Stemmer in the NLTK package. The goal

of stemming is to reduce the number of inflectional forms of words appearing in the bug

reports or source code files; it will cause words such as ”performance” and ”performing”

to syntactically match one another by reducing them to their base word– ”perform”. This

helps decrease the size of the vocabulary space and improve the volume of the feature space

in the corpus.

In addition to stemming, another method that is used to reduce the number of inflectional

words in bug reports and source code files is Lemmatization. In Lemmatization, the part

of the speech of a word should be first determined and the normalization rules will be

different for different part of speech. In this process, the inflections are chopped off based

on defined rules and it relies on some lexical knowledge base to provide the correct basic

form of words. while in stemming, it works like a sharp knife sometimes chopping off too

little or too much from the words. For instance, the plural word geese changes to goose

and words meanness and meaning remain untouched while stemming convert both of them

to ”mean”. Finally, each corpus is transformed into vector space model (VSM) using the

tf-idf vectorizer in Python’s SKlearn package to extract the textual features.
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After converting the text in a bug report r or a source code file s into vectors of term weights,

the standard cosine similarity method can be used to calculate the textual similarity between

a bug report and a source code file using their vectors of term weights.

CosineSim(r, s) =
−→r .−→s

||−→r || ||−→s ||
(5.3)

Equation 5.3 calculates how similar two documents are in the vector space by multiplying

the dot product of those two vectors and divide it by their magnitude. It is important to note,

this is a measure of orientation and not the magnitude. Here, the magnitude of each vector

of term weights in the document d is not the only element in calculating the similarity. The

angle between two vectors determines the similarity of the two vectors. For instance, if

we have a vector that is quite long and another vector that is shorter and the angle between

those vectors are small, then Cosine similarity tends to ignore the high length and calculates

the measurement based on the angle between those two vectors. In practice, if we have a

document that contains the word ”book” 100 times and another document that contains

the same word 25 times, the Euclidean distance between the vector representation of term

weights of those two document will be higher but the angle will still be small since they

are pointing to the same direction, and that determines the similarity score when we are

comparing documents.

5.3 Feature Extraction

This section will discuss how features are extracted from the specific relationship of each

bug report with every single source code file in a software project. It is important to note

that in this study, a total of six different features that were discussed in the original paper

[26] extracted based on the domain knowledge understanding of how a bug report can be

related to a source code file. Out of those six features, the first three of them are using the

CosineSim(r,s) to measure some lexical similarity.
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Figure 5.2: Tomcat Bug Report 30949

5.3.1 Source Code Files Lexical Similarity

Measuring the lexical similarity between the bug report and a source code file can help

understand the direct relationship of the textual features between the bug report and source

code files. It often occurs that the size of source code is large; it contains multiple methods

and different code blocks. While measuring the lexical similarity between a bug report and

source code file, it is a fact that the root cause for a bug is placed in one or few methods and

not the whole class. As a result, when the source code file is large, the length of its VSM

representation of term weights will be longer in compare to the same vector for the bug

report. This can result in a small cosine similarity score between the large file and the bug

report. This problem can be addressed by segmenting the source code file into each method

and then calculate the cosine similarity scores for each method and the whole class. after

that we can take the maximum of all those scores. This way, we can make sure that the

lexical similarity is calculated for each method and the whole class and the final score is

the maximum of those calculated scores. The VSM representation of a bug report contains

its both summary and description. the summary of a bug report includes a brief description

of the abnormal behavior experienced by the user. The description part is a more detailed



21

explanation of what went wrong when the user experienced the abnormal behavior in the

software. Figure. 5.2 shows a sample bug report from Tomcat project.

Φ1(r, s) = max({CosineSim(r, s)} ∪ {CosineSim(r,m)|m ∈ s}) (5.4)

As shown in equation 5.4, cosine similarity score is calculated for each method m in

the file s.

5.3.2 API Specifications Lexical Similarity

One way to improve the lexical similarity between two documents is to make sure that both

them are constructed in a similar format. for instance, source code is written in program-

ming languages like Java. In case the source code is not well documented by appropriate

comments, then the cosine similarity may not be able to direct us to the root cause of an

abnormal behavior explained in a bug report. Since bug reports are generally written in

natural language format (e.g. English), they are not in the same format as programming

languages. Bug reports sometimes contain some snippets of the source code, or the name

of a class or the name of a method but often, they explain the problem with the software in

natural language format and they do not provide relevant information that can be found by

measuring the textual similarity between the bug report and source code file. As a result,

we can see that the source code files lexical similarity explained in the previous section can

provide a good similarity score if those files come with enough comments or the bug report

provide enough source code snippets that correspond to the root cause files.

This lexical gap can be bridged by using the API specification documents of the soft-

ware project. It is a common practice for the development teams to write API specification

notes to keep track of different classes, super classes, interfaces, and their relationships.
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Figure 5.3: API specification for Member Interface from Tomcat project

The API specification documents can help the current and future development team mem-

bers to understand how different components are related and working together in the soft-

ware project. The API specifications are written in natural language, theretofore, they are

in the same format as bug reports and it can help bridge the lexical gap between the pro-

gramming language of source code files and natural language of bug reports. Fig. 2 is an

example of an API specification for Member interface in Tomcat project. This feature can

be computed as follows:

Φ2(r, s) = CosineSim(r, s.api) (5.5)

5.3.3 Collaborative Filtering Score

In collaborative filtering, the lexical similarity score between the bug reports can be used

to find the corresponding source code file/files for a newly reported bug report. It has been

observed [17] that similar bug reports correspond to the same file/files during the bug fixing
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process. This technique, collaborative filtering, has been used to improve the accuracy of

the recommender systems [16]. As a result, this approach can be used in our case which

is an information retrieval problem. For any given bug report r and a source code file s,

the set of all bug reports that correspond specifically to file s and were fixed before r was

reported, can be called set(r,s). We can compute the collaborative filtering score as follows:

Φ3(r, s) = CosineSim(r, set(r, s)) (5.6)

5.3.4 Class Name Similarity

Sometimes the bug in software is captured by the professional users and when they pro-

vide the report, they trace the abnormal behavior and provide some extra technical details.

Within the extra details, sometimes they mention the name of the class that might be rele-

vant to the root cause of the bug. As mentioned in the original study [26], the hypothesis

is that the length of the class name mentioned in the bug report is relative to how strong

this feature represent its value. In other words, when the class name is longer and more

specific, the feature must provide more accurate clues about the corresponding source code

files. Therefore, this feature is evaluated by the length of the class name mentioned in the

report and it is computed as follows:

Φ4(r, s) =

|s.class|, if s.class ∈ r

0, otherwise
(5.7)

It is important to note that the value of the first three features mentioned in this study

are between 0 and 1 since the cosine similarity function always returns a number between

0 and 1 depending on how similar two documents are; 0 means not similar at all and 1

means both documents are identical. But the length of the class name in this case can be
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variable. In order to create a dataset that is scaled uniformly, all the values need be in the

same range, i.e.([0,1]). As a result, all the features will be normalized automatically. more

details about the normalization process will be provided at the end of this section.

5.3.5 File Alteration History

It has been observed that by evaluating the source code alteration history, we can achieve

information that can help detect and predict files that are more prone to cause bugs [18].

For instance, a source code file that has been fixed several times recently is more likely to

correspond to newly reported bugs.

Bug Fixing Recency

This feature applies this notion that if a source code file was fixed recently, it means that it

is more likely to contain more bugs. For a random bug report r, r.month is the month that

bug report r was created. As explained in section 5.3, set(r,s) is the set of all bug reports

that correspond specifically to file s and were fixed before r was reported. The most recent

previously fixed bug report in the set(r,s) can be called latest(r,s). This feature is calculated

as follows:

Φ5(r, s) = (r.month− latest(r, s).month + 1)−1 (5.8)

This equation shows that bug fixing recency is implemented as the inverse of distance in

months between bug report r and latest(r, s). In other words, the value of this feature is 1

if file s was fixed in the same month as bug report r was reported and it is 0.5 if file s was

fixed one month before r was reported.

Bug Fixing Frequency

As described in section 5.3, set(r,s) is the set of all bug reports that correspond specifically

to file s and were fixed before r was reported. This feature is defined simply as the number

of times a source code file has been fixed before the current bug report being reported.
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Φ6(r, s) = |set(r, s)| (5.9)

The value of this feature will also be quite variable. Therefore, it will be automatically

normalized as described in the next part.

5.3.6 Feature Values Normalization

Most of machine learning algorithms tend to perform better when the values in the dataset

are not in different extreme ranges. Comparing values that are not on the same scale leads

to bad results in a machine learning model. In this case, the first three features have values

between 0 and 1. In order to normalize values in the dataset, all features need to be in the

same range. For any arbitrary feature in the training dataset, let Φ.min be the minimum

observed value and Φ.max be the maximum observed value. While analyzing the data

from the testing set, there might be feature values that are larger than Φ.max or smaller

than Φ.min and all data in the training and testing set will be normalized as follows:

ΦScaled =


0, if Φ < Φ.min

Φ−Φ.min
Φ.max−Φ.min

, if Φ.min ≤ Φ ≤ Φ.max

1, if Φ > Φ.max

(5.10)

5.4 Dataset

For this study, only bug reports that were in resolved fixed, verified fixed, or closed fixed

status from Tomcat project were used. Tomcat is a widely used open source web applica-

tion server and servlet container. Collecting the bug reports for Tomcat project was done
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using Bugzilla. It is a tool for issue tracking activities and user can provide their inputs

using Bugzilla while facing an abnormal behavior in the software. Moreover, Git is the

primary version control system for Tomcat project.

As mentioned briefly in the Introduction section, previous studies used a fixed code revi-

sion for their Bug Localization approaches. But it is a fact that bugs are found in different

versions of the source code. Using the fixed version of the source code can affect the per-

formance of the Bug Localization systems. Some of the problems using the fixed version

of the source code include: the future versions of a software can have important bug-fixing

information for older bugs. Furthermore, a file that corresponds to the root cause of a bug

may not even exist in the fixed version of the source code. For Tomcat project in this study,

a total number of 1054 bug reports are used for training and testing sets. The time range of

the reported bugs is from early 2002 to early 2014. The maximum, median, and minimum

number of files fixed per bug report are 94, 1, and 1 respectively. The median number of

Java files in difference versions of the project source code is 1552 an the number of API

specifications are 389 [26]. It is important to note that the exact version of the source code

for which the bugs were reported is not available all the times. As a result, the version of

the source code that was committed right before the fix was used in this study. It is most

reasonable to use the mentioned revision of the source code since the relevant fix had not

been pushed in the repository and the bug still existed in the version.

5.5 Training Steps

As explained in the Ranking Model section, the ranking function f(r,s), equation (1), is a

function that provides the final score based on the weighted sum of k features. Φi(r, s)

calculates the individual score based on the relationship between a given bug report r and

each source code file s for each feature.

f(r, s) = wTΦ(r, s) =
k∑

i=1

wi ∗ Φi(r, s) (5.11)
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Each model parameter wi is trained using the learning-to-rank approach. The SVM rank

package [11] was suggested as an optimized implementation of the approach by the origi-

nal paper [26]. The SVM rank basically aims to solve an optimization problem. Here, the

optimization problem is to find values for wi such that the relevant files for each bug are

ranked at the top of the list. In other words, if file p is relevant to be the root cause of the

problem for bug report r and file n is not relevant to be the root cause of the problem for

the same bug, then the objective of the optimization approach is to find parameters wi for

each feature such that f(p,r) > f(n,r).

5.5.1 Tuning the Capacity Parameters

Choosing the size of training set determines the performance of SVM rank. As mentioned

in the previous section, the number of relevant files for a bug is very small; The median

of relevant files is 1. Therefore, the size of the training set is affected by the number of

samples in the set and the number of irrelevant files used for each bug report. On the other

hand, note that the number of irrelevant files is also very large; The median number of Java

files in different versions of the project source code is 1552. Using all the irrelevant files

makes the training time unfeasible in terms of time complexity. After evaluating different

number of samples for the training set using the Mean Average Precision (MAP) and Ac-

curacy@k metrics, using the top 250 irrelevant files that have the highest Cosine similarity

score with the bug report r resulted in the optimal range of performance for Tomcat project.

More details about the evaluation metrics will be provided in the next section.

Another factor that plays an important role in the ultimate performance of the system is

choosing the optimal value for C parameter in the SVM rank algorithm. For the general

SVM algorithm, choosing larger values for C, the optimization process chooses a smaller

margin hyperplane if that hyperplane performs better getting all the training samples clas-

sified correctly and vice versa for smaller values for C. Basically in SVM algorithm, there
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is no specific rule that provides guidance on choosing the optimal value for C parameter.

The C parameter dominates the optimization process in the SVM algorithm on how much

misclassification rate can be avoided in the training sample. However, the C value in SVM

rank is correlated with the number of samples in the training set in general. An effective

way to make sure that the optimal value for C parameter is chosen is using the Gridsearch.

In this approach, different C values are tested to achieve the highest performance.

5.5.2 Training Methods

One training method that is used in the original paper [26] suggests that the bug reports

must be sorted based on their reported time in chronological order. After that, the dataset

is split into k equal size folds, fold1, fold2, ..., foldk; In this study, k is 10. The folds are

organized as fold1 having the oldest bug reports and fold10 having the most recent bug

reports. As mentioned before, for this study, 1054 bug reports from Tomcat project creates

the primary dataset, therefore, each fold will contain 105 samples. The intuition here is that

if the ranking model is trained on foldk and tested on the previous fold, foldk−1, it will

have a better performance. Thus, the ranking model is always trained on the most recent

bug reports.

In addition to the mentioned training approach, choosing the training folds randomly is

also compared to evaluate the role of randomized selection of samples on the overall per-

formance of the ranking model. In related studies [4, 22], the authors applied the random-

ized selection of samples for the training set and they were able to improve the results of

the trained model relatively. The main objective of applying the randomized selection of

samples for the training set is to check if the intuition explained in the original paper on

creating disjoint training folds based on the sorted chronological order can really improve

the overall performance of the ranking model.

The purpose of training is to attain the weights for each feature in a specific fold. Testing a

fold works with multiplying the attained weights by the values of the features on the target
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fold. In other words, the value of each feature in the target fold will be multiplied by the

attained weight of that feature from the training fold. Finally, all the resulted values must

be added together for each file s and each bug report r.

5.6 Evaluation Metrics

The ranking model explained in the Ranking Model section, computes the weighted scoring

function f(r, s), for any given bug report r and each source code file s. This process

provides a list of ranked files for each bug report, called the system ranking. I order to

evaluate the results, the system ranking is compared with the actual ranking in which the

relevant files are at the top of the list. The metrics that are used to evaluate the overall

performance of the proposed approach are described as:

1. Accuracy@k: this metric describes the accuracy in the percentage of the ranking

model when it makes at least one correct recommendation in the top k ranked files

for the bug reports.

2. Mean Average Precision (MAP): this metric is widely used in evaluating different

classifiers and also in information retrieval [15]. MAP measures the quality of the

information retrieval approach when a query might have several relevant documents.

MAP =

|Q|∑
q=1

AvgP (q)

|Q|
, AvgP =

Prec@k

|K|
(5.12)

Prec@k =
number of relevant docs topk

k
(5.13)

In equation 12, Q is the set of all queries; In this case all the bug reports. Average

precision (AvgP), is the Prec@k divided by K; K is the set of the positions of the
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relevant documents in the ultimate ranked list. Prec@k, equation 13, is the overall

precision divided by the k top documents in the ultimate ranked list.
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Chapter 6

Experimental Results

One of the objectives of the experiments in this study is to replicate the bug localization

approach explained in the original paper [26]. It is very important to understand how

domain knowledge can help build features for the proper machine learning algorithm. It

is a sophisticated process to analyze and discover how different textual similarities and

file revision history between the bug report and specific components of a software project

can help find the relevant source code files for a bug. Feature engineering in this study

describes the process in which raw data turns into useful information that can be used as

effective inputs for the proper machine learning algorithm. This learning to rank approach

has been compared with three other state-of-the-art bug localization tools, BugLocator,

VSM, and Usual Suspects, and it has proved its superiority by achieving better results in

ranking the relevant files for each bug. At the time of this study, there is only one other

research [13], to the best of my knowledge, that took advantage of the same approach and

applied Deep Neural Networks as the ranking algorithm and the authors in the mentioned

research were able to improve the results of the ranking model. Figure 3. and Figure 4.

represent the comparison between Learning to Rank approach with three other state-of-the-

art bug localization tools by MAP and Accuracy@k metrics in the original study.

Table 6.1: Comparison of average model parameters.

Tomcat Project w1 w2 w3 w4 w5 w6

Original Study 14.00 3.69 6.38 1.45 0.64 1.67
Current Study 19.23 2.87 4.68 0.97 0.84 1.87
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Figure 6.1: MAP Comparison with other state-of-the-art bug localization tools [26].

Figure 6.2: Accuracy@k graph on Tomcat [26].
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Figure 6.3: Accuracy@k graph comparing the original study and the current one.

One important point to note is that the authors in the original paper implemented this

bug localization approach in Java language. they ran the experiment on six large-scale

open-source Java projects; Those projects are: Eclipse UI, Tomcat, AspectJ, SWT, Birt,

and JDT. However, in this study the experiments are implemented in Python and because

of the time constraints, only Tomcat project was analyzed. Since the target projects are all

Java based, parsing the source code of those projects using Python had some limitations.

The authors in the original study applied the AST parser which is a tool designed to parse

merely Java source code, to segment each method from the Java files. On the other hand,

parsing the Java source code in Python was done using a library called Plyj; This library

has some limitations in terms of detecting specific methods native to Java. As a result, the

performance of the ranking model was slightly affected by the mentioned limitation in this

study. As it is shown in Figure 5. the limitation in parsing the Java source code in this study

has caused the ranking model to perform slightly different from the original study and the

Accuracy@k metric happens to have smaller values. Moreover, the MAP was decreased by



34

0.5 from what the authors achieved previously. Thus the MAP for Tomcat project achieved

in this study is 0.44. In order to provide a better comparison between the studies, Table. 6.1

provides the average model parameters, wi for six different trained weights averaged over 9

folds. The value for each weight represents the importance of it in the ranking model and it

is clear that the first three features have the highest weigh and therefore they have a higher

significance.

In addition to replication of the bug localization approach, the other objective of the exper-

iments in this study is to address the following research questions:

RQ1: Does Lemmatization of the documents (i.e. bug reports and source code files)

make a positive effect on the cosine similarity score and consequently improve the overall

performance of the ranking model?

In the Text Preprocessing section, it was explained that in the Lemmatization process, the

inflections of a word in a document are chopped off based on specific rules and it depends

on some lexical knowledge-base to provide correct basic form of words. However, in

terms of computing the Cosine similarity between the bug report and source code file,

Lemmatization is not able to improve the Accuracy@k and MAP metrics and the overall

performance of the ranking model is also affected by this. In Figure 6. we can see how

Lemmatization affected the results of the ranking model in terms of Accuracy@k metric

and also the MAP achieved using Lemmatization is 0.23. This collapse in the results shows

that Lemmatization is not able to improve the cosine similarity between documents with

different formats (i.e. source code and bug report).

RQ2: Does the randomized selection of samples for the training folds improve the

overall performance of the ranking model?

To answer this question, instead of sorting the dataset and create folds in a chronological

order , 10 random folds were selected and the training was done in the order that the folds

were created. Thus, the training was done on the first fold and the learned weights were

applied on the next fold all the way through the last fold. As it is shown in Figure 7.,
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Figure 6.4: Accuracy@k graph comparing Lemmatization vs. Stemming

training on random folds drastically affects the accuracy of the results. The Accuracy@k

is dropped to 54% for top 20 relevant documents. This low performance of random folds

implies that training on folds that are chronologically sorted have a positive effect on the

overall performance of the ranking model. When the ranking model is always trained on

the most recent bug reports, the learned weights better match the properties of the testing

fold and it improves the overall accuracy.
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Figure 6.5: Accuracy@k graph comparing training on Random vs. Sorted folds.
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Chapter 7

Threats to Validity

There are threats to the validity of this study that we elaborate as follows:

• The experiments in this study and the original paper were all ran on open source

Java-based projects. Sometimes the software development practices in open source

projects are different from those developed by well-managed software companies.

As future work for this study, commercial projects can be evaluated to check the

validity of this approach.

• This approach relies on good documenting practices; The source code needs to be

well documented with proper comments and the project must have enough API spec-

ification documents. As shown in Fig. 6.1, it is clear that projects like Birt and

AspectJ lack that characteristic and the achieved MAP is very low.

• Similar to the previous case, the bug reports need to provide important details that

can help the developers locate the cause of a bug in the project. If the bug report is

too short or does not include necessary information, then it will significantly affect

the performance of the ranking model.

• Tuning the capacity parameters for machine learning algorithms can vary based on

the structure of the dataset and the problem that needs to be solved. For instance,

SVM rank in this study has several parameters that work according to the input data

and the type of the problem. It is often hard to say that one algorithm works best for

a specific problem.
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Chapter 8

Conclusion

Once the development team receives a new bug, they need to find which file/files are the

root cause of the abnormal behavior. When the size of the project is large, developers need

to examine large number of files in order to locate the relevant file/files corresponding to

the bug. This process is often a tedious, costly, and time consuming task. In this study,

I replicated an automated bug localization technique [26] that utilizes domain knowledge

to build features that can be used as inputs for the learning-to-rank approach. The ranking

model is trained on the previously solved bug reports by evaluating the relationship between

bug report and different elements of a software project such as: textual features of the

source code and bug report itself, API specification documents, and file revision history.

In addition, I extended the research by evaluating different text preprocessing techniques

like, Stemming and Lemmatization and also randomized selection of the training folds

on the overall performance of the learning-to-rank algorithm. The experiments show that

Lemmatization and randomized selection of the training folds results in lower accuracy and

precision in ranking the relevant files for a given bug.
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