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ABSTRACT 
Kate Gleason College of Engineering 

Rochester Institute of Technology 
 

Degree:  Doctor of Philosophy   Program: Microsystems Engineering 

Authors Name:  Andrew R. Bucossi 

Advisors Name: Brian J. Landi 

Dissertation Title: Fabrication and Analysis of Multifunctional Carbon Nanotube 
Conductors 

Carbon nanotube (CNT) bulk conductors have been proposed as an alternative 
material to metals for power and data transmission applications due to their light weight, 
flexure tolerance, and chemical stability.  However, current fabrication technologies 
prevent bulk CNT wires from matching the electrical properties of individual CNTs, 
providing opportunity for researchers to improve CNT wire fabrication.   

In this work, CNT conductors have been advanced using high-purity laser-
vaporized single wall carbon nanotubes (SWCNTs).  Acid dispersion and extrusion of 
SWCNTs into a coagulant bath was used to fabricate wires and systematic modification 
of the process has determined that coagulation dynamics govern the resulting wire 
properties.  Extrusion of highly aligned and dense, acid-doped SWCNT wires yielded 
wires with record-setting electrical conductivities of 5.1 MS/m.  An extrusion apparatus 
has been designed and built to scale up the fabrication process and has reduced variability 
in wire conductivity from 30% to 6% for samples 10’s of meters long.  The high-current 
behavior of extruded SWCNT wires and commercially available CNT yarns has been 
investigated in a variety of ambient conditions.  Comparison of electrical testing 
scenarios has determined that voltage-controlled testing is the proper method of 
characterizing CNT wires at high currents.  Maximum current densities of 420 MA/m2 
for extruded SWCNT wires were reached in helium, 10x greater than that reached in 
helium by commercial CNT yarns and exceeding fuse-law behavior for aluminum wires 
of equivalent diameter.   

Further work to enhance CNT electrical conductivity was conducted using IBr 
chemical doping.  Electrical enhancement of commercial CNT sheets and dopant 
adsorption were correlated and determined to be solvent dependent. A mechanism is 
proposed where low-dipole moment solvent systems favor the IBr-CNT interaction over 
the IBr-solvent and the solvent-CNT interactions.  The optimal IBr doping conditions 
from the work were applied to commercial CNT yarns leading to an improvement in 
conductivity of 13.4x to a value of 1.4 MS/m. High voltage testing in air shows a 36% 
increase in maximum current, compared to as-received commercial CNT yarns.  This 
dissertation research demonstrates the importance of SWCNT purity and selection of 
coagulation conditions to promote high-density, aligned SWCNT wires.  Delivery of 
chemical dopants with high electrochemical potential through solvents which favor 
dopant-CNT interactions enhances electrical conductivity and maximum current density, 
achieving CNT wires capable of competing with metal conductors for electrical 
transmission applications.  
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Chapter 1. Introduction 

1.1 Carbon Nanotube Fundamentals 

The term carbon nanotube (CNT) is broadly used to refer to nano- to microscale 

tubes of predominantly sp2 hybridized carbon.  Depending on the specific synthesis 

parameters, CNTs have been classified into two categories based on the number of 

concentric carbon layers which form the CNT.  Those which can be described as a single 

graphene sheet rolled into a cylinder are termed single-wall carbon nanotubes 

(SWCNTs).  Those with multiple layers – sometimes discrete and sometimes covalently 

bonded to each other – are called multi walled carbon nanotubes (MWCNTs). 

Due to their simple structure, individual SWCNTs have been theoretically studied 

extensively.  The basis of their electrical properties is derived from graphene sheets 

(Figure 1, left panel) due to their similar structure.  Near the fermi level of graphene (see 

Figure 1, right panel), the shape of the dispersion relation takes on that of a straight-sided 

cone (called a Dirac-cone) and thus can be approximated linearly, in contrast to 

traditional direct-bandgap semiconductors whose dispersion relation can be approximated 

parabolically.  The linear dispersion relation of graphene leads to relativistic effects in the 

effective motion of charge carriers due to their zero effective mass.  Electrical conduction 

in graphene was first described theoretically by Wallace in 1946 [1]. 
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Figure 1. (left) Schematic structure of graphene.  (right) The dispersion relation of 

graphene, reproduced from [2]. 

Early approximations of the electronic structure of SWCNTs relied on applying 

periodic boundary conditions to the structure of graphene, mimicking the circular nature 

of the of the SWCNT wall.  This technique is referred to as the zone-folding 

approximation.  This approximation predicts that the dispersion relation for a SWCNT 

will be multiple 2D ‘slices’ of that of graphene.  Depending on diameter, some SWCNTs 

will cut the Dirac-cone through its center, and thus will have zero band gap.  These 

SWCNTs are classified as metallic, while those with a non-zero band gap under the zone-

folding approximation are classified as semiconducting.  The shortcoming of the zone-

folding approximation is that it does not account for the curvature in a SWCNT wall, 

ignoring the strain in the C-C bonds.  Thus the approximation predicts the electronic 

energies with greater accuracy for SWCNTs with larger diameters [3].  When taking the 

curvature of a SWCNT into account, a bandgap inversely proportional to the square of 

the SWCNT diameter is found for some metallic SWCNTs and has been corroborated 
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experimentally using scanning tunneling microscopy [4].  This observation segregates the 

electronic properties of SWCNTs based on their chirality, or the angle at which a 

graphene ribbon would be rolled to form the SWCNT. SWCNTs that maintain their zero-

bandgap and are truly metallic are known as ‘armchair’ SWCNTs.  

When the fermi energy of a CNT lies within the valence or conduction band, 

SWCNTs are predicted to have a quantized conductance of 4e2/h = 150 µS (where e is 

the electron charge and h is planks constant) which is derived from the Landauer formula 

for conductance of quasi-one dimensional system [5].  This conductance should in theory 

be realized in armchair SWCNTs at room temperature due to their zero-bandgap nature 

[3].  Indeed, values close to this conductance have been measured experimentally [6] and 

SWCNTs with experimentally common diameters are theorized to have ballistic transport 

(long mean free paths) [7].  The conductance prediction of 150 µS is independent of 

length or diameter of a SWCNT, necessitating an assumption of the physical dimensions 

of a synthesized SWCNT in order to convert into a value of conductivity in S/m.  The 

conductivity predicted for a 1 nm diameter and 1 µm long SWCNT in this manner is then 

1.9x108 S/m, exceeding that of copper (5.9x107 S/m [8]), a metal commonly used for 

electrical transport.  Other estimates for the conductivity of individual metallic SWCNTs 

predict a resistance of 4.2 kΩ/µm per CNT using a tight-binding model [9].  Assuming a 

1 nm diameter and 1 µm length leads to a 3.0x108 S/m conductivity.   

Experimental measurements of the electrical conductivity of individual SWCNTs 

place their conductivity on the same order of magnitude as copper.  Kong et al. [10] 

measured a 250 kΩ resistance at room temperature of a SWCNT deposited over electrical 
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contacts 5 µm apart.  Assuming a diameter of 1.5 nm (typical of the SWCNTs 

synthesized for this paper) the conductivity is 1.3x107 S/m.  Resistances as low as 30 kΩ 

were measured in this experiment.  Assuming the same dimensions, that equates to a high 

conductivity of 9.4x107 S/m.  When limiting their measurements to SWCNTs which did 

not show a gate effect (presumably metallic SWCNTs), Yao et al. [11] found a minimum 

resistance of 17 kΩ for a SWCNT 1 nm in diameter over a length of 250 nm, which 

converts to a conductivity of 1.9x107 S/m. 

There is little debate then that individual CNTs can reach conductivities 

competitive with metals for electrical transport applications.  However, an important 

aspect of conductivity or resistivity is that a bulk structure’s overall conductance can be 

scaled using its dimensions, as given b: 

𝐶𝐶 = 𝜎𝜎
𝐴𝐴
𝐿𝐿

 

Where C is conductance, σ is conductivity, A is the cross-sectional area of the 

conductor, and L is the length of the conductor.  This law holds well for metal conductors 

larger than nanoscale.  For individual SWCNTs however, electrical properties are 

strongly dependent on their diameter which influences the bandgap, and conductance is 

independent of length for CNTs shorter than the mean free path of charge carriers.  At the 

bulk scale ( > 10 µm), CNT conductors made from large numbers of individual CNTs 

cannot be scaled in cross-sectional area easily without changing their morphology or 

density and thus influencing their electrical transport properties, making the connection 
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between conductance and conductivity difficult.  This will be discussed further in the 

section on measuring electrical properties, and throughout this proposal.   

Experimental measurements of the tensile strength of individual CNTs was 

conducted on arc synthesized MWCNTs attached individually to AFM tips inside an 

SEM, which were tensile loaded until failure [12].  Applied force in this study was 

calculated by measuring the deflection of one of the AFM tips.  Several of the MWCNTs 

broke without becoming detached at the AFM tips, breaking in their outermost layers 

with inner layers “pulling out.”  The authors of [12] claim the strength of this outer layer 

is then 11 to 63 GPa, accounting for only that layer’s thickness.  This yields 

approximately 2 MPa using the CNT’s entire cross section.   

1.2 Carbon Nanotube Network Conduction 

The high aspect ratio and delocalized orbitals of CNTs lead to strong van der 

Waals forces between CNTs, even of differing diameters [13], [14], causing CNTs to 

agglomerate into nano- or microscale bundles and bulk structures that can be kilometers 

in scale.  Bundling affects the electrical properties of the bulk material since the 

symmetry of the individual CNTs is impacted by their environment.  Theoretical work 

has shown that a bandgap of 0.1 eV is induced in armchair SWCNTs (which have an 

otherwise zero bandgap) when bundled in perfect alignment with other armchair 

SWCNTs of the same diameter [15], [16].   

The electronic properties of CNTs are also affected by the presence of other 

species.  In CNT research, ‘doping’ refers to atoms, ions, or molecules that are non-

covalently bound (physisorbed) into CNT networks or to the surface of individual CNTs.  
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The mechanism of conductivity change in CNT networks due to doping is still largely 

unknown, and chemical doping effects are somewhat unpredictable.   

An important dopant of CNTs is O2 since most CNT samples have been handled 

in an oxygen rich environment, unless exposure to air has been specifically controlled.  

The sensitivity of CNT electrical properties to oxygen (and difficulty of deoxygenation) 

was first noted in 2000 [17].  In this study, SWCNT bundles and films were mounted in a 

vacuum test chamber while the electrical resistivity was measured.  The SWCNT samples 

were exposed to pure oxygen, air, or vacuum.  At room temperature, high concentrations 

of oxygen yielded a lower SWCNT sample resistance, and the initial resistance was 

recovered when returning to an air environment.  The difference in sample resistance 

between vacuum and oxygen-rich environments was dependent on temperature.  The 

researchers found that oxygen was not fully desorbed from a sample under vacuum until 

temperatures were in excess of 110 °C.  Ultraviolet light exposure under vacuum has also 

been demonstrated to remove oxygen adsorbates and increase sample resistance [18].   

 Simulation work has shown that N2 and O2 adsorb onto SWCNTs with 

similar adsorption energies and separations (0.2 eV and 2.3 – 2.8 Å respectively).  At 

crossed (90°) SWCNT junctions, adsorbed O2 molecules contribute to improved inter-

SWCNT conduction more so than adsorbed N2 molecules.  The effect is stronger for 

junctions of semiconducting SWCNTs than metallic SWCNTs.  The researchers also find 

that neither adsorbed O2 or N2 have a strong effect on intra-CNT electrical transmission 

[19].  Similarly, water has been shown through simulation experiments to have a very 
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weak effect on individual SWCNT electrical properties but that water’s weak but long 

ranged effect on SWCNT networks may enhance the conductivity of the network [20].   

 In chemical vapor deposition (CVD) synthesis, a carbon containing gas is 

flowed into a furnace which contains a metal catalyst.  There are several ways of 

introducing the catalyst, and the one of interest here is to have the catalyst in a solid form 

on a silicon substrate which simply sits in the furnace with the gas passing over it.  

Commonly used temperatures range from 700 °C to 1100 °C.  After the carbonaceous gas 

is fed into the reaction chamber at the chosen temperature, the catalyst substrate is 

collected and if synthesis was successful, there will be a layer of CNT material loosely 

bound to the side of the substrate which contained catalyst.  Thin films of the catalyst are 

deposited on the silicon substrate and then annealed to break the film into small droplets.  

This annealing step was shown to be necessary – CNTs will not grow directly from the 

catalyst film, implying the geometry of the catalyst plays an important role [21].   

In laser synthesis, the catalyst is vaporized along with the carbon and so it is 

impossible to control the geometry of the metal which the CNTs grow on.  Only the 

production of SWCNTs is observed.  In this method, a target is made from pressing 

mixed graphite powder with powdered metal catalyst.  The target is placed in a furnace in 

a flowing inert atmosphere, and a laser, often pulsed, is fired at the target [22].  The heat 

generated by the laser is enough to vaporize the carbon and the metal.  Downstream of 

the target a cold metal collector allows the synthesis products to condense for collection.  

CNT growth occurs when the carbon and metal condense out of the vapor phase.  

Condensation of carbon without catalyst can yield a variety of structures as demonstrated 
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from fullerene synthesis.  The preferred structure is graphene sheets since there is 

minimal strain on the bonds.  Nucleation of metal particles during condensation is slow, 

and so it is much preferred for existing particles to grow rather than new ones form.  

Once several particles have grown in size, their coalescence begins to occur.  When both 

carbon and metal are present in the vapor, the nucleation of carbon structures is much 

faster than that of the metal and so the metal atoms condense onto the carbonaceous 

nuclei rather than form their own.  Coalescence of the metal particles becomes unlikely 

since they are attached to much larger carbon structures which block their interaction.  

This is what prevents growth of the catalyst particle.  As carbons condense on the metal 

and diffuse through to the site of CNT formation, the tube grows.  Once this tube is 

initially formed, it is possible for the catalyst particle to grow from condensation of 

additional metal atoms without catalyzing the growth of additional CNT walls.  This is 

because the lowest energy state for carbons diffusing though the metal is joined with the 

pre-existing graphitic cylinder, and not beginning a new shell.  This explains why it is 

possible to find catalyst particles in the synthesis products which are large enough to 

catalyze MWCNTs even though only SWCNTs have been synthesized.  [23] 

1.3 Carbon Nanotube Wire Fabrication 

CNT wire fabrication techniques can be grouped into three categories: dry 

spinning, wet spinning, and densification.  Dry spun fibers can be produced from two 

common methods which depend upon the synthesis method of the constituent CNTs.   

The first dry spinning method is a single-step method and uses the CNT aerogel 

produced from a floating catalyst CVD method.  The aerogel is a sparse network of CNTs 
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which is low density enough to flow with the carrier gas out of the synthesis furnace 

where it can be increased in density mechanically by spinning.  This is the method 

utilized by Nanocomp Technologies to produce their commercially available CNT fibers 

[24].  Continuous fiber drawing from this method was first demonstrated by Li et al. from 

Cambridge University in 2004 [25].  In this study, CNT synthesis took place at 1050 to 

1200 °C using a hydrogen carrier gas, ethanol carbon source, ferrocene iron catalyst 

source, and thiophene as a sulfur source to increase catalyst activation.  By controlling 

the H2 flow rate and thiophene concentration, the authors were able to control the 

distribution of the number of carbon layers in the CNTs.  Fibers were capable of being 

spun under many different conditions, including other oxygen containing carbon 

feedstock gases.  The maximum conductivity measured was 8.3x105 S/m and maximum 

tensile strength was 1 GPa.  These measurements assumed a fiber density of 2 g/cm3.   

Later research by the same group, using similar synthesis conditions, applied an 

acetone vapor to the fibers which densified them upon evaporation, likely due to the 

capillary forces present.  The winding rate (rate at which the fiber was pulled from the 

synthesis furnace) was also modified in this study.  Increased winding rate resulted in 

lower linear density (mass per length of fiber) but higher density (i.e., the fiber decreased 

in volume and increased in density), greater strength, and better alignment as measured 

by polarized Raman spectroscopy.  The authors note a bimodal distribution in the specific 

strength of these yarns, where longer gauge length samples have lower strengths while 

shorter samples often obtained specific strengths as high as 6.5 N/tex (tex is a unity of 
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linear mass density equivalent to 1 g/km).  This is likely due to a nonuniform process 

which produces fibers with weak points. [26] 

Fibers were also fabricated by researchers at Tianjin University using similar 

synthesis conditions [27].  A mixed acetone and ethanol carbon feedstock allowed for a 

higher yield rate of CNT fiber, while the H2 carrier gas, thiophene and ferrocene catalysts 

were also used.  The fibers produced in this study were densified by submersing them in 

a water bath and then mechanically rolled (calendered) instead of using an acetone spray.  

Fiber production took place at a rate of 5-20 m/min.  The resulting fibers had a 

conductivity of 5x105 S/m and tensile strength of 1.25 GPa.   

Vilatela and Windle argued in a perspective [28] that their direct spun CNT fibers 

(those in [25], [26]) are best characterized and compared to fibrous materials, rather than 

solid metals.  They adopt linear-density based measurements (specific tensile strength 

and conductivity) to characterize their fibers.  The yarn-like characteristics include 

splaying behavior when cut, kinking, and a fibrous pull-out failure.  The CNT yarns have 

100 % knot efficiency, meaning that unlike other fibers, the tensile strength is the same 

when tested with or without an overhand knot incorporated into the fiber.   

By changing the sulfur source from thiophene to carbon disulfide, the Cambridge 

group was able to directly spin fibers with smaller diameters and fewer impurities [29].  

Using Raman spectroscopy, the authors predict that the constituent CNTs are single-

walled and of metallic electronic type.  However, the authors do not give any fiber 

mechanical or electrical characterization in this work. 
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Commercially available direct-spun fibers were characterized by Wu et al. [24].  

NCTI 1 tex yarns were measured on a mechanical analyzer with in-situ 4 point electrical 

measurements. Fiber diameters were taken as the average of 10 widths measured via 

SEM.  The resistance of a yarn segment increased during tensile loading.  Yarns had a 

strength of 190 MPa.  During cyclic loading below the elastic limit of the yarns, an 

irreversible resistance increase was measured on the initial loading, then the resistance 

cycles with loading without hysteresis. Some fibers were found to recoil upon failure. 

By synthesizing CNTs for direct spinning using butanol, ferrocene, and thiophene 

in hydrogen at 1250 °C and altering the thiophene percentage of the precursor mixture, 

different numbers of CNT walls can be targeted [30].  In this study, an aerogel of CNTs 

forms in the carrier gas which can be pulled from the reactor at a higher speed than the 

carrier gas flow.  This pulling action aligns the CNTs and condenses them into fibers.  By 

increasing carrier gas flow or decreasing precursor feed rate, the CNT aerogel is made 

sparser and the fiber drawing induces increased alignment.  Fibers with improved 

alignment has specific tensile strengths of ~0.9 N/tex, greater than those with poor 

alignment.  Once oriented, both SWCNT and MWCNT targeted precursor ratios had 

roughly equal tensile strengths, while the non-oriented SWCNT fibers were stronger than 

non-oriented MWCNT fibers.  A diameter reduction factor of ~11x was achieved though 

volatile liquid densification which did not affect alignment or resistance, and slightly 

improved tensile strength. 

Another group of researchers from Shanghai [31] have produced fibers and films 

from a direct-spinning method using an ethanol carbon feedstock, nitrogen carrier gas, 
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ferrocene catalyst source, and thiophene for catalyst activation.  Formation of the 

cylindrical CNT film was sensitive to the composition and flow rate of the carrier gas and 

feedstock solution.  Acetone spray was not used to condense the film into a fiber, which 

was instead submerged in water or ethanol and removed for condensation.  An 

unquantified force was required to submerge the gaseous CNT film which may have 

stretched it simultaneously.  Water condensed fibers had a rectangular cross section of 

160 µm X 5-9 µm (800 – 1440 µm2). Ethanol condensed fibers had a rectangular cross 

section of ~ 45 µm X 20 µm (900 µm2). Ultimate tensile strength (UTS) is 362 MPa with 

an elongation of 20-30 % for these fibers.  The water condensed fibers were densified by 

rolling (calendaring) which changed the fiber dimensions to 220 µm X 500 nm (110 µm2) 

with approximate densities of 1.3 – 1.8 g cm-3.  The thickness was determined by SEM, 

which can be ambiguous.  In figure 4 of [31], we can see that this determination is 

somewhat subjective.  Wide angle X ray diffraction measured an alignment of ~81 %.  

After densification, the ultimate tensile load was only increased by 1.2x, but the tensile 

strength was increased 12x to 3.7 – 5.3 (avg 4.3) GPa (independent of gauge length) due 

to the cross section reduction. Elongation at failure was gauge length dependent, but for a 

fixed gauge length, densification reduced elongation from 20 % to 10 %.  Highest 

conductivity obtained was 2.27x106 S/m. 

In additional work by the same group [32], films were not pulled through a bath 

but instead condensed on an Al foil wetted with ethanol wrapped around a collection 

drum.  An HCl soak was used to remove the film from the drum.  Raman G/D ratio was 

2.74.  Increased winding rate improved CNT alignment (quantified for different 
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collection rates by polarized Raman).  The well aligned samples had average tensile 

strength of 2.8 GPa at strains of 6 – 10 %.  The well-aligned sample was subjected to 

densification by rolling (with ~0 gap between rollers), and the thickness of this sample 

reduced from 550 nm to 120 nm while the width increased ~20 %.  UTS increased to 8.0 

– 10.8 GPa with an average 9.6 GPa.  From figure 5 of [32], the strain at failure for these 

samples appears to be 6 – 11 %.  From figure S3 of [32], it appears that the actual 

breaking force of the densified samples is lower than it is prior to densification.  It is 

important to note that the structures in [32] were not cylindrical fibers but flat ribbons, 

and that they may retain some HCl doping from their processing. 

Direct spun fibers have been processed and characterized in a variety of ways.  

Their stability in aqueous, saline, and acid environments has been studied where they 

were found to be highly corrosion resistant [33].  They have been hybridized with silver 

nanoparticles by depositing a silver nanoparticle suspension on the fibers and allowing 

the solvent to evaporate [34].  The Ag-CNT hybrids had greater conductance than the raw 

fibers and demonstrated a decrease in conductance at lower temperatures [35].  Fibers 

soaked in 1,5-Hexadiene and exposed to UV radiation improved in tensile strength due to 

the incorporated polymer [36]. 

The second method of dry spinning CNT wires and fibers is a two-step process in 

which CNTs are grown by CVD onto a substrate to form a vertically aligned array.  In 

certain conditions, such as specific lengths, densities, and entanglements, of the array, a 

wire can be pulled from the array as depicted by figures in reference [37].  When the 

areal density (number of CNTs per area) and length of the CNTs allows for it, drawing 
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can be done continuously due to the attractive inter-CNT van der Waals forces.  In the 

first example of this process [38], the authors report that running a current through the 

wire under vacuum increases the conductivity and tensile strength of the fibers, but do 

not quantify either.  In the first quantitative report on this type of CNT fiber [37], yarns 

were spun from aligned arrays of MWCNTs approximately 10 nm in diameter.  The 

resulting yarns were between 1 and 10 µm in diameter with tensile strengths as high as 

300 MPa and maximum conductivity of 3x104 S/m.  The authors demonstrate that these 

yarns can be twisted and braided at the microscale.   

The effect of different yarn twisting rates has been studied and found that higher 

degrees of twist act to densify the yarns when analyzed by focused ion beam cutting and 

imaging with scanning electron microscopy (SEM) [39].  The researchers in this study 

found that there was an optimal twist density for high tensile strength, above which CNTs 

in the fiber were not well aligned enough to contribute positively to the fiber strength.  

The maximum strength reported was 560 MPa. 

Another study drew fibers from aligned arrays of 35 nm MWCNTs grown on a 

substrate at lower temperatures by using a ferrocene catalyst instead of a deposited 

catalyst [40].  The resulting yarns were densified by including a twist after fiber spinning, 

yielding a 300 MPa tensile strength.  The authors found that arrays which contained wavy 

(not straight) CNTs were not capable of being spun into fibers.  In another study using 

fibers spun from aligned arrays, researchers were obtained a conductivity of 7x104 S/m 

by using acetone immersion and evaporation to densify the fibers [41].  These fibers were 

also submerged in a suspension of silver nanoparticles which deposited on the fiber 
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surface, increasing conductivity to 4.3x106 S/m after multiple treatments.  600 MPa 

strengths were also obtained from fibers produced from this method using ethanol for 

solvent densification, and in this work, the authors noted that a heat treatment under 

argon caused the wires to retain the shape in which they were heated [42].  The properties 

of aligned array spun fibers are sensitive to the CNT synthesis conditions and the fiber 

spinning and densification conditions.  

The second major method of CNT fiber or wire production is often referred to as 

‘wet spun’ or ‘extruded’ because these wires are made from a fluid suspension of CNTs 

and extruded through an orifice (or ‘spinneret’) into a material which causes the CNTs in 

the suspension to coagulate into a solid.  The first demonstration of wires made using this 

technique was in 2000 [43], when researchers dispersed SWCNTs in water using 

surfactants to stabilize the dispersion.  This dispersion was then extruded through a 

syringe needle into a co-flowing stream of polymer solution containing 5 wt % 

polyvinylalcohol.  Solid fibers were formed containing both SWCNTs and polymer.  The 

diameter of fibers was close to that of the syringe needle but also depended on the 

injection rate of the SWCNT dispersion and flow rate of the polymer coagulant bath.  The 

tensile strength of these fibers was 150 MPa and the electrical conductivity was 1x104 

S/m, which are likely influenced by the presence of polymer in the fiber.  Later work by 

the same group studied the kinetics of the fiber coagulation under the same conditions 

[44].  To probe the kinetics of this process, wires were extruded into glass tubes with 

flowing coagulant.  Each tube has a section of reduced diameter to cause increased flow 

rate at varying distances from the extrusion tip.  The increased flow rate caused 
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incompletely coagulated sections of the fiber to fracture due to shear stress.  It is possible 

that a similar set-up could be used to induce controlled tensioning of extruded wires to 

improve their properties.   

CNT fibers can also be extruded from polyelectrolyte dispersions and coagulated 

in water, HCl, or NaI3 [45].  The highest conductivity wires from these dispersions were 

coagulated in NaI3 and had a conductivity of 2.1x104 S/m and a tensile strength of 100 

MPa.  However, the most commonly reported dispersant for forming wet spun wires is 

chlorosulfonic acid (CSA).  CSA and other high-acidity acids have been shown to non-

covalently protonate CNTs in solution, overcoming their van der Waals forces and 

dissolving the CNTs [46].  It is important to note that CSA dispersion of CNTs is 

thermodynamically favorable and does not require sonication.  This enables dispersions 

of CNTs to be obtained at much higher concentrations than previously discovered.  

Depending on the acidity of the solvent and the volume fraction of CNTs, different 

phases are spontaneously favorable (see Figure 2).  
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Figure 2. Experimental phase diagram of volume fraction of SWCNTs in 

increasingly acidic solvent [47], [48]. 

From this figure we can see where isotropic (I – dispersed CNTs), solid (S – 

aggregated bundles of CNTs), and liquid crystal (LC – aligned CNTs in the liquid phase) 

are thermodynamically favorable.  The isotropic phase requires very low concentrations 

(volume fractions) due to high aspect ratios of the CNTs which causes collisions.  As we 

can see from the phase diagram, increasing acidity aids in formation of isotropic and 

liquid crystalline dispersions.  This makes highly acidic solvents favorable.  These high 

concentration dispersions form liquid crystals of CNTs [49].  The alignment and 

crystallinity of CNTs in these dispersions allows for greater control over the alignment of 

CNTs in solid structures when the acid is passivated or removed [50].  The solids 

produced in this method are also not contaminated with surfactants, which can be 

difficult to remove.   
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HiPco SWCNTs dispersed in sulfuric acid have been coagulated in water yielding 

fibers with 4.2x105 S/m conductivity [51].  Fibers have been formed from acid 

dispersions under several conditions.  The first were made from HiPco SWCNTs 

coagulated dispersed in concentrated sulfuric acid and extruded into dilute sulfuric acid 

and had conductivities as high as 5.0x105 S/m and tensile strengths up to 126 MPa [52].  

Later improvements on the wet spinning process included co-flowing sulfuric acid 

coagulant and CSA used as the dispersant.  These factors increased the wire conductivity 

to 8.3x105 S/m and tensile strength to 150 MPa [47].  Further improvements in wire 

performance were made by using double walled CNTs dispersed in CSA and extruded 

into acetone [53].  After extrusion, the wires contained residual CSA, which acted as a 

dopant.  This was determined by an increase in resistance after a thermal anneal.  Doping 

with iodine reversed, and further decreased, the fiber resistivity.  As-extruded fibers 

(prior to anneal) had an average conductivity of 2.9x106 S/m and a tensile strength of 1.0 

GPa.  This substantial improvement in conductivity is largely due to the selection of CNT 

type in the starting dispersion, which motivates the study of CNT wires extruded from 

dispersions of other CNT types as discussed throughout this proposal.   

The final method of wire fabrication is radial densification.  This technique 

involves pulling material through a funnel-shaped drawing die to form it into a cylinder 

or reduce its diameter.  Drawing dies have been used on as-synthesized CVD CNT 

material to form wires (without reported electrical or mechanical properties) [54].  When 

radial densification has been applied to rolled sheets of CNT material, conductivities of 

1.3x106 S/m when doped and 2x105 S/m without KAuBr4 doping. 
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Figure 3. Review of wire and fiber properties from the literature review as of 2015. 
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1.4 Research Opportunities and Dissertation Objectives 

 

As the previous section has demonstrated, substantial gaps in our understanding 

of electrical conduction in CNT networks exist due to the complexity of electrical and 

morphological factors.  The contribution of network morphology, CNT type, and 

chemical doping on electrical conduction cannot be predicted.  This lack of theoretical 

understanding of CNT networks prohibits the design of optimal CNT conductors and 

opens opportunities for experimental work to modify and measure the performance of 

such conductors.  Furthermore, while research has been done on the behavior of CNTs 

and other rod-like molecules in dispersion, little quantitative work has been done on the 

coagulation of these dispersions.  This leaves another area of CNT behavior without 

scientific understanding to guide the development of optimal CNT wires.  With these two 

areas of CNT theory unsatisfactorily developed, there is further opportunity to engineer 

and construct CNT wire production and treatment techniques which create CNT 

constructs with improved electrical and mechanical properties. 

Research Opportunities 
• Develop understanding of the coagulation of CNT dispersion and its effects on 

extruded wire properties. 
• Engineer high conductivity CNT wires with high current carrying capabilities 
Dissertation Objectives 
• Enhance the conductivity of extruded CNT wires through the use of high-

conductivity, laser vaporized SWCNTs and optimized processing parameters. 
• Develop control over extruded wire properties through systematic modification of 

factors which influence CNT dispersion coagulation. 
• Improve the use of chemical dopants on CNT networks through developing 

understanding of the doping delivery mechanism. 
• Determine proper high-current characterization techniques and use failure analysis 

to determine the relevant factors in enhancing the maximum current of CN wires. 
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These gaps in scientific understanding and CNT conductor performance 

combined with the resources available at RIT create the opportunity to conduct novel 

research in four related areas, each with their own objectives.  Fabricating high 

conductivity wires through CSA dispersion and extrusion could benefit from the use of 

high conductivity laser vaporized SWCNTs.  An objective of the dissertation is to 

develop control over properties of these extruded wires through systematic modification 

of factors such as the coagulant temperature and properties and CNT type, which 

influence CNT dispersion coagulation.  Chemical doping techniques will be improved by 

identifying novel dopants of interest and quantifying their interactions with CNT 

conductors and the electronic doping mechanism.    
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Chapter 2. Characterization of Carbon Nanotube Wires 

CNT wires are non-uniform, anisotropic structures.  This makes their comparison 

to bulk metals and polymers through material-specific metrics such as conductivity and 

tensile strength difficult.  The following sections elaborate on experimental techniques 

and frequently-used measurements used in quantifying CNT and CNT bulk structure 

properties. 

2.1 Measurements on CNT Wires 

2.1.1 Resistance 

Electrical measurements on CNT wires are conducted using a 4-pt method to 

eliminate the effect of contact resistance [55].  In this method, the probes are frequently 

non-uniformly spaced but inline, with the outer two probes inducing a set current and the 

inner two probes measuring the voltage drop.  The set current is swept over a range of 

values to ensure that the material is ohmic and the resistance of the wire is calculated 

from the slope of the resulting line using Ohm’s law.   

Electrical measurements on CNT papers and films are conducted using the van 

der Pauw method for flat, simply connected structures of arbitrary shape [56], [57].  In 

short, this technique involves placing four electrical probes (A, B, C, and D) around the 

perimeter of the paper or film in order.  A current is induced from A to B and the voltage 

drop is measured from C to D and a resistance (denoted RH) is calculated.  Then the 

current is induced from A to D and the voltage measured between B and C, and a second 
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resistance value calculated (denoted RV).  The sheet resistance is then related to these 

resistances by the van der Pauw equation: 

𝑒𝑒
−𝜋𝜋𝑅𝑅𝐻𝐻
𝑅𝑅𝑆𝑆 + 𝑒𝑒

−𝜋𝜋𝑅𝑅𝑉𝑉
𝑅𝑅𝑆𝑆 = 1 

where RS is the sheet resistance.  The sheet resistance is calculated numerically. This 

method relies on several assumptions: that the device measured is thin (no conduction 

occurs normal to the plane of the probes), that the probes are infinitely small, the device 

is simply connected (no holes), and that the device is isotropic and homogeneous.  The 

first two assumptions are reasonably valid for thin films and large CNT papers where the 

thickness is several orders of magnitude less than the surface area and the probe tips are 

small.  However, many CNT papers and films are not homogeneous and isotropic, and 

the fibrous nature of their composition cannot preclude any holes in their structure. 

2.1.2 Length 

Many wire metrics are normalized on a per-length basis.  This simply requires 

measuring the length of a wire sample using calipers, rulers, or calibrated microscopy.  

Error in these measurements comes from wires which are not pulled taught or over-

strained during length measurement.  Since most samples characterized are typically 3-10 

cm in length, the error in this metric is often insignificant. 

2.1.3 Cross Section 

The cross-sectional area of a sample is used in calculating the electrical 

conductivity and tensile strength of a material.  Some wires and papers are assumed to 

have a specific cross-sectional geometry, for example densified CNT wires and 
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commercial Cu wires are assumed to have a circular cross section, and the cross-sectional 

area is extrinsically measured by measuring a diameter, thickness, etc.  For fibrous 

materials, the cross section can be irregular, requiring estimation from multiple images, 

or a cut and image technique.  Cut-and- image techniques must to cut perpendicular to the 

major axis of the conductor and try to preserve the original geometry of the conductor, 

which often relies on embedding in a hard material such as epoxy, focused ion beam 

milling, or laser cutting.  Imaging can then be done by SEM or optical microscopy with 

extra care taken to be sure the cross section is mounted perpendicular to the optical axis. 

2.1.4 Mass 

Thin filaments of CNT wires such as those produced from extrusion and dry 

spinning can weigh less than 1 g/m.  Thus to determine the mass of small samples used 

for evaluating wire properties requires the use of a high resolution microbalance.  These 

types of thin, flexible CNT wires are often compared to yarns rather than wires.  Yarns in 

the textile industry are characterized by their linear mass density (mass per length) and a 

commonly used unit is the tex, which is equivalent to 1 g/km or 1 mg/m. 

2.1.5 Breaking Force  

Breaking force is defined as the maximum amount of tensile force which can be 

applied to a test structure.  This is measured by a load cell in a dynamic mechanical 

analyzer (DMA).  NPRL has a TA Q800 DMA with a maximum applied force of 18 N 

and a resolution of 10 µN, and an Instron 5944 Mechanical Analyzer with a load cell 

maximum of 2 kN and a resolution of 1 µN. 
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2.2 Standard Material Metrics 

2.2.1 Electrical Conductivity 

Conductivity (σ) is a metric used to describe the ability of an isotropic, uniform 

metal, semiconductor, or conductive polymer to conduct electricity.  In these materials, it 

can be determined from a sample by measuring the resistance and accounting for the 

sample’s geometry as described in equation (1): 

 𝜎𝜎 =
𝐿𝐿
𝑅𝑅𝐴𝐴

 (1) 

Where L is the sample length, R is the sample resistance, and A is the cross-

sectional area.  Due to the anisotropic, nonhomogeneous nature of bulk CNTs, the more 

general, vector based definition should be applied: 

 𝐽𝐽 = 𝜎𝜎𝐸𝐸�⃑  (2) 

Where 𝐽𝐽 is current density and 𝐸𝐸�⃑  is the applied electric field.  In scenarios where 

current density depends on the location within the sample (nonhomogeneous) and the 

direction of the applied electric field (anisotropic), conductivity becomes a 9-dimensional 

tensor value.  This fact, coupled with the difficulties associated with measuring the cross-

sectional area of a carbon nanotube wire make conductivity a difficult metric for use in 

comparing CNT wires.  However, often in wire applications engineering requirements 

will specify maximum volumes and resistances for interconnects.  Therefore, using the 

definition in equation (1) with an approximate CNT wire cross section can make the 

engineering conductivity of a given CNT wire a useful design metric.  
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In wire densification, a given mass of CNT material constitutes a conductor which 

is pulled through radial densification dies.  While the diameter of the conductor is 

reduced due to removal of void space, its resistance stays the same.  An improvement in 

conductivity is then demonstrated, which can be useful for engineering design 

specifications, but the ability of the CNTs to conduct electricity has not been influenced, 

as it would have been with chemical doping or CNT type modification.  Therefore, 

engineering conductivity measurements are not useful in comparing the ability of CNT 

wires fabricated using different materials and processing techniques.  For these types of 

comparisons, it is more instructive to use specific conductivity which is defined in the 

following section. 

2.2.2 Specific Conductivity 

The electrical performance of the wires was quantitatively compared by 

measuring the resistance per length (R/L) which is related to electrical conductivity by 

cross-sectional area, and to specific conductivity by the wire’s mass per length (M/L), as 

described in equation (3): 

 
𝜎𝜎𝑠𝑠 =

𝜎𝜎
𝐷𝐷

=
�𝐿𝐿𝑅𝑅��

1
𝐴𝐴�

�𝑀𝑀𝐿𝐿 � �
1
𝐴𝐴�

=
𝐿𝐿2

𝑅𝑅𝑀𝑀
 (3) 

 

where 𝜎𝜎𝑠𝑠 is the specific conductivity in S m2 kg-1, 𝜎𝜎 is the electrical conductivity in S/m, 

𝐷𝐷 is the density in kg m-3, 𝐿𝐿 is the wire length in m, 𝑅𝑅 is the wire end-to-end resistance in 

Ω, 𝐴𝐴 is the wire cross-sectional area in m2, and 𝑀𝑀 is the wire mass in kg. 
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2.2.3 Tensile Strength 

Specific tensile strength (also known as breaking tenacity) is a measurement that 

does not require cross-sectional area measurement, is related to the wire’s breaking force 

by its mass per length (M/L) and is defined as shown in equation (4): 

 
𝑇𝑇𝑠𝑠 =

𝑇𝑇
𝐷𝐷

=
𝐹𝐹 �1

𝐴𝐴�

�𝑀𝑀𝐿𝐿 � �
1
𝐴𝐴�

=
𝐹𝐹𝐿𝐿
𝑀𝑀

 (4) 

where 𝑇𝑇𝑠𝑠 is the specific tensile strength in N m kg-1, T is the tensile strength in Pa, 𝐹𝐹 is 

the ultimate force applied to the wire before breaking in N, and 𝑀𝑀 is the wire mass in kg. 

2.3 Carbon Nanotube Characterization Techniques 

2.3.1 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) has been widely applied to CNT samples as a 

measure of purity, quality, and temperature stability [58], [59].  TGA involves heating a 

sample in a controlled manner while simultaneously measuring the mass of the sample.  

For carbonaceous samples in air, oxidation often causes mass loss.  Results are plotted 

with mass as a percentage of the initial sample mass before heating as a function of 

temperature (Figure 4).  Often, the derivate mass percent (%/°C) is given as a function of 

temperature to better visualize points of maximum decomposition rate.  In a CNT sample, 

distinct peaks in the derivate mass percent indicate oxidation of carbonaceous impurities 

and oxidation of CNTs at different temperatures, while the residual mass (weight % at 

highest temperature) is used to indicate the mass of oxidized metals in the sample.  

Presence of chemical dopants can alter the TGA spectra of CNT samples [60]. 
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Figure 4.  TGA data from a sample of arc-synthesized SWCNTs. 

2.3.2 Raman Spectroscopy 

Due to their optical and electronic properties, CNTs lend themselves to study via 

Raman spectroscopy.  Raman scattering occurs when light is scattered by a molecule and 

energy is either lost to or gained from the molecule, resulting in scattered photons of a 

different energy than the incident light.  This energy is lost or gained from allowed 

vibrational modes (phonons) in the sample.  Raman spectroscopy typically uses 

monochromatic light to irradiate a sample and measures the intensity of light scattered as 

a function of the Raman shift (the difference in wavelength between incident and 

scattered light).   Several resonant Raman effects take place in CNTs and their intensity 

and Raman shift are influenced by the CNT’s environment, making Raman spectroscopy 

a useful characterization tool. 

A typical Raman spectrum of a bulk SWCNT sample is shown in Figure 5.  

Several of the features in this spectrum can be instructive.  The first is a set of peaks at 
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100 – 300 cm-1, known as the radial breathing modes (RBM).  This name comes from the 

resonant vibrational mode that consists of expansion and contraction of the SWCNT in 

the radial direction.  The wavenumber of the peaks in the RBMs is correlated to the 

diameter of the SWCNT [61], [62], and these peaks are suppressed for samples of 

MWCNTs [63].  

Next, the feature at ~1300 cm-1 is known as the D band (for Defect or Disorder). 

The intensity of this feature is dependent on the amount of symmetry-breaking defects in 

a CNT including sp3 bonding, substitutional atoms, vacancies, etc.  The largest feature at 

~1500 cm-1 is the G-band (for Graphitic), which originates from the carbon-carbon bond 

stretching in graphitic materials and is split into G- and G+ features in CNTs due to 

differences in bond stretching axially and circumferentially.  The G-band lineshape is 

dependent on the semiconducting and metallic SWCNT content of a sample [64].  

Finally, the G’ band at ~2700 cm-1 is also a signature of sp2 bonded carbons.  Its exact 

Raman shift location is dependent on the frequency of the incident laser light and is 

sensitive to the presence of p- and n-type dopants in a CNT sample [65].  A quantitative 

measure of defect density in a CNT sample can be given by the ratios of the D/G band 

intensities [66]. 
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Figure 5.  Raman spectrum of a purified bulk laser-vaporized SWCNT paper with 

several features labeled. 

2.3.3 Purity Assessment 

Carbonaceous purity assessment of a SWCNT sample is best determined by the 

methods described in [67], [68].  This method involves dispersion of a purified standard 

sample in an organic solvent and calculation of the optical absorption extinction 

coefficients corresponding to the second semiconducting and first metallic transitions in 

the sample through a dilution series.  Extinction coefficients of the carbonaceous 

impurities are determined at the same wavelengths by using a dilution series on synthesis 

products from the SWCNT precursors without catalyst present.  The ratio of SWCNT 

concentration 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 to carbonaceous impurity concentration 𝐶𝐶𝑆𝑆𝐶𝐶 for a SWCNT sample 

is then: 

 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐶𝐶𝑆𝑆𝐶𝐶
=
𝐴𝐴(𝑀𝑀) ∙ 𝜖𝜖𝑆𝑆𝐶𝐶(𝑆𝑆) − 𝐴𝐴(𝑆𝑆) ∙ 𝜖𝜖𝑆𝑆𝐶𝐶(𝑀𝑀)
𝐴𝐴(𝑆𝑆) ∙ 𝜖𝜖(𝑀𝑀) − 𝐴𝐴(𝑀𝑀) ∙ 𝜖𝜖(𝑆𝑆)

 (5) 
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Where 𝐴𝐴(𝑀𝑀) is the absorbance of at the metallic peak wavelength, 𝐴𝐴(𝑆𝑆) is the 

absorbance of at the semiconducting peak wavelength, 𝜖𝜖(𝑀𝑀) is the metallic peak 

extinction coefficient, 𝜖𝜖(𝑆𝑆) is the semiconducting peak extinction coefficient, 𝜖𝜖𝐶𝐶𝐶𝐶(𝑀𝑀) is 

the extinction coefficient of the carbonaceous impurities at the metallic peak wavelength, 

and 𝜖𝜖𝐶𝐶𝐶𝐶(𝑆𝑆) is the extinction coefficient of the carbonaceous impurities at the 

semiconducting peak wavelength [68]. 
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Chapter 3. Extrusion of Laser Vaporized Single Wall Carbon 

Nanotubes 

Typically, the CNT starting material for extruded CNT wires has been either 

HiPco SWCNTs or few-walled 5 µm long CNTs [47], [52], [53].  High conductivities 

have been measured on papers of SWCNTs produced by laser vaporization [69], making 

them a desirable and unexplored material of choice for wet spinning SWCNT wires.  

Established methods also provide a high degree of control over LV-SWCNT purity [67], 

[68].  The use of a new starting material motivates examination of the in-situ and post 

processing parameters of wire extrusion.  Wires will be fabricated from CSA dispersions 

of both as-produced and purified SWCNT starting materials.  The in-situ parameters of 

coagulant composition and coagulant bath depth will be evaluated for their impact on the 

resulting wire tensile strength and electrical conductivity.  Post processing will also 

explored using mechanical strain during drying to realize SWCNT wires with high room 

temperature electrical conductivity. 

 

Figure 6. Process diagram of factors influencing CNT wire extrusion, with the 

factors investigated in the chapter highlighted in red. 
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3.1 Laser Vaporization and Purification of Single Wall Carbon Nanotubes 

3.1.1 Synthesis of Laser Vaporized SWCNT Materials 

Laser vaporization is a CNT synthesis method which does not produce any 

MWCNTs.  During the synthesis process, a graphite target is placed in a furnace with a 

flowing inert carrier gas ambient.  The graphite target consists of high purity graphite 

flake mixed with metal catalyst particles and is formed by compressing this mixture into 

a cylinder.  Laser pulses are rastered over the surface of the target.  The heat generated in 

the target by these pulses is enough to vaporize both the carbon from the graphite, and the 

metal from the catalyst particles.  Downstream of the target is a cool zone or cold trap.  

As the carrier gas moves towards these areas, it cools and allows for condensation of the 

vaporized carbon and metal.  Condensation of carbon from the vapor to the solid phase 

without catalyst interaction yields various amorphous and nanostructured carbon species.  

Through interaction with condensing metal particles, carbon atoms will diffuse though 

the metal-carbide eutectic and either form a shell or a protruding tube of sp2 hybridized 

carbon that grows as more carbon condenses onto the catalyst particle.  This latter 

scenario describes the growth of a CNT.  The resulting material is called as-produced 

(AP) laser SWCNT material and contains CNTs, amorphous and nanostructured carbon 

impurities, and condensed metal catalyst particles.  The AP laser SWCNT material can be 

approximately 25% SWCNT content by carbonaceous mass as determined by the purity 

assessment technique described in section 2.3.3. 



 

34 

 

 

Figure 7. (a) SEM image of AP laser SWCNT material which includes carbonaceous 

and metal catalyst impurities.  (b) SEM micrograph of laser SWCNTs after a 

purification procedure described in section 3.1.2 

3.1.2 Purification of SWCNT Materials 

To obtain high-purity laser SWCNTs, the AP laser SWCNT material undergoes a 

multiple-step purification process.  This process begins with refluxing the material in an 

acidic medium to functionalize the carbonaceous impurities in the sample, increasing 

their solubility, and dissolve residual metal catalyst particles.  The remaining solids are 

then filtered out and rinsed with water and organic solvents, which removes the water- 

and organic-soluble carbonaceous impurities.  The resulting refluxed and filtered material 

is then thermally oxidized at a temperature below that of the oxidation point of SWCNTs 

to remove additional carbonaceous impurities.  This oxidation of carbon exposes metal 

catalyst particles which had been encased in carbon during synthesis.  These exposed 

metal particles can now be dissolved by soaking in an acid such as HCl.  Typically, 

soaking CNT materials in acid can contaminate the material with residual acid or 

functionalized CNTs, so an additional oxidation or anneal is used to remove them.  

Following this procedure, SWCNT samples have been created with > 99% SWCNT 

600 nm 600 nm

(a) As-Produced (b) Purified
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content by carbonaceous mass as determined by the purity assessment technique 

described in section 2.3.3. 

3.2 Influence of Impurity Presence in Extruded Laser SWCNT Wires 

Carbonaceous and metal catalyst particles are two types of impurities commonly 

found in SWCNT samples which result from their synthesis [67]. Carbonaceous 

impurities include small, amorphous carbon molecules, and nanostructured carbon 

molecules such as grapheme and fullerenes which do not include SWCNTs.  

Carbonaceous impurities are often electrically conductive, but usually not to the same 

degree as SWCNTs.  Metal catalyst particles include nanoparticles of Ni and Co which 

result from the condensation of vaporized metal catalyst during synthesis.  It is unknown 

if the presence of impurities could improve wire conductivity due to their ability to fill 

voids in the wires with conductive materials, or detract from wire conductivity because 

these materials are less conductive than SWCNTs and may inhibit the ability of SWCNTs 

to form liquid crystals in dispersion. 

Two sets of wires were extruded for comparison to determine the effects of 

impurities in a SWCNT dispersion on the electrical conductivity of the resulting wires.  

One set of wires will be extruded from AP laser vaporized SWCNTs which have been 

dispersed in CSA.  The other set was be extruded from an equal mass of purified 

SWCNT material dispersed in CSA.  Comparing these two sets of wires by conductivity 

and specific conductivity will allow for the determination of the effect of impurities in the 

CSA dispersion on the conductivity of the resulting extruded wires. 
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SWCNT soot was synthesized using the laser vaporization technique [70], [71]. 

Graphite targets pressed at 20,000 psi and containing 3 wt % Ni (submicron diameter) 

and 3 wt % Co (<2 µm diameter) were placed in a 1150 °C tube furnace under flowing 

Ar.  Laser pulses from a Light Age model RD-C Epicare 755 nm laser were rastered over 

the surface of the graphite target at a 2 Hz pulse rate.  A portion of the resulting as-

produced SWCNTs (AP-SWCNTs) was purified to remove residual catalyst and 

carbonaceous impurities using a previously published technique [72].   In short, 300 mg 

batches of soot were refluxed in 300 mL deionized (DI) water, 72 mL nitric acid, and 30 

mL hydrochloric acid for 16 hours before filtration over 90 mm Pall Zefluor 

polytetrafluoroethylene filter membranes (1 µm pore size) and rinsing with DI water.  

The resulting SWCNT paper was rinsed with alternating washes of acetone and DI water 

until the effluent was colorless before removal from the filter membrane.  SWCNT 

papers were subsequently thermally oxidized by ramp-stop to 560 °C at 10 °C/min from 

room temperature under flowing air and then soaked in concentrated hydrochloric acid 

for 1 hr.  Purified SWCNT papers were dried for 16 hrs in a vacuum oven at ~100 °C 

before being dispersed. 

Dispersions were fabricated by combining the appropriate mass of AP-SWCNTs 

or purified SWCNTs (weighed on an Ohaus EP214C Explorer Pro Analytical Balance) 

with chlorosulfonic acid (CSA), (Sigma-Aldrich) in a glove box.  Dispersions were 

mixed by five alternating cycles of 10 min in a Resodyne LabRAM acoustic mixer at 

50% power and 20 min in a Thinky AR-100 planetary centrifugal mixer.  The SWCNTs-

CSA dispersions were transferred to glass syringes with stainless steel hubs and 24 gauge 
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stainless steel syringe needles (Cadence) for extrusion.  The dispersion was extruded 

through the syringe tip, which was submerged < 5 mm into the surface of a coagulant 

bath consisting of a single liquid (various grades, Sigma-Aldrich), and the coagulating 

wire was allowed to sink to the bottom of the coagulant vessel.  The depth of each 

coagulant bath was varied by using glass vessels of different heights.  The length of the 

extruded wires was greater than three times the depth of the coagulant bath, and the 

middle third of each segment was cut and mounted on glass slides for characterization.  A 

standard operating procedure for extruded wire production can be found in Appendix B. 

Electrical resistance was measured using an inline four-point probe connected to a 

National Instruments NI PXI-5652 source/measure unit and NI PXI-4071 digital multi 

meter at room temperature (~20 °C).  The wire mass and length were measured using a 

Mettler-Toledo XP2U microbalance with 0.1 µg resolution and a Fowler caliper with a 

resolution of 0.01 mm respectively. SEM images of SWCNT materials prior to dispersion 

and extruded wires were taken on a field emission Hitachi S900 with an accelerating 

voltage of 2 kV and an emission current of 10 µA. Wire cross sections were determined 

using image analysis of multiple SEM images from each segment of wire.  Tensile testing 

of wire segments was conducted on a TA Instruments Q800 dynamic mechanical 

analyzer using a film tension clamp by applying a constant force ramp rate of 0.01 N/min 

at 20 °C to determine the ultimate tensile strength at failure.   

Laser-synthesized SWCNTs were selected for this study due to the established 

control over purity [71], [72], high reported intrinsic conductivity [69], and for their 

unexplored potential for wet spun CNT wires.  Carbonaceous and metal catalyst particles 
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are two types of impurities commonly found in SWCNT samples which result from their 

synthesis [72]. Two sets of wires were extruded for comparison to determine the effects 

of impurities in a SWCNT dispersion on the electrical conductivity of the resulting wires.  

The first set of wires was extruded from a dispersion containing 38.3 mg AP-SWCNTs 

per mL CSA (i.e., 2.1 wt % AP-SWCNT material in dispersion).  An SEM of the AP-

SWCNTs used to create this dispersion is presented in Figure 7a.  AP-SWCNT samples 

contain 20-30% SWCNTs by carbonaceous mass [71].  Small bundles of SWCNTs can 

be seen in the SEM image as well as a large volume fraction of impurities.  The second 

set of wires was extruded from a dispersion containing 40.0 mg purified SWCNTs per 

mL CSA (i.e., 2.2 wt % purified SWCNT material in dispersion).  An SEM image of the 

purified SWCNTs used to create the second dispersion is shown in Figure 7b, 

demonstrating excellent SWCNT quality and a dramatic reduction in the amount of 

impurities over the AP-SWCNT sample.  Purified SWCNT samples contain > 99% 

SWCNTs by carbonaceous mass [71].  Wires were extruded from both dispersions into 

20 °C acetone coagulant baths which had a depth of 4.5 cm.  SEM images of wires 

extruded from AP-SWCNTs and purified SWCNTs are shown in panels a and b of Figure 

8, respectively.  The presence of carbonaceous impurities in the wires extruded from the 

AP-SWCNT dispersion is evident in the high magnification SEM images (Figure 8c) 

since bundles of SWCNTs cannot be seen on the wire surface. In comparison, well 

resolved bundles of SWCNTs are observed on the wires extruded from the purified 

SWCNT dispersion (Figure 8d).   
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The average specific conductivity of wires produced from the AP-SWCNT 

dispersion was 40 S m2 kg-1 while those produced from the purified SWCNT dispersion 

was 1000 S m2 kg-1.  The masses of the 4-5 cm SWCNT wire samples that were 

electrically characterized were accurately measured in the range of 20-200 µg using an 

ultramicrobalance with resolution of 0.1 µg.  Increased specific conductivity in wires 

extruded from the purified SWCNT dispersion is attributed to larger mass and volume 

fractions of highly conductive SWCNTs.  Thus, the presence of residual impurities from 

synthesis has negatively impacted conductivity by preventing SWCNTs from forming 

dense, aligned bundles upon coagulation.  Therefore in the following studies, all wires are 

extruded from dispersions of purified SWCNTs in order to study the coagulation 

dynamics of wires with the highest possible conductivity. 
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Figure 8. (a) Extruded wire made from a SWCNT-CSA dispersion of AP laser 

SWCNT material. (b) Extruded wire made from a SWCNT-CSA dispersion of 

purified SWCNT material. (c) and (d) are higher magnification images of the 

surfaces of the wires in (a) and (b) respectively.  

3.3 Coagulation in Various Solvents 

3.3.1 Single-Solvent Approach 

Previous work has demonstrated several successful coagulants for CNT wire 

extrusion, including water, acetone, diethyl ether, and sulfuric acid [52], [53].  However, 

a direct and controlled comparison of the electrical and mechanical properties of the 

wires into these and other various liquids does not yet exist.  The selection of liquid used 

as a coagulant influences the rate of diffusion of CSA from the SWCNT liquid crystals 

600 nm600 nm

80 µm 80 µm(a) (b)

(c) (d)
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into the liquid, thus influencing the act of coagulation.  Coagulation dynamics are a factor 

heavily responsible for a wire’s morphology and microstructure, which influence its bulk 

properties.  Therefore, selection of the liquid or liquids which comprise the coagulant 

bath is an aspect of wire extrusion which can be engineered to produce higher 

conductivity wires and is of interest for further investigation. 

Previous work has demonstrated several successful coagulants for CNT wire 

extrusion, including water, acetone, diethyl ether, and sulfuric acid [52], [53].  In the 

present work, extrusions are conducted into eight liquids (acetone, acetonitrile, 

chloroform, N,N-Dimethylacetamide (DMA), deionized water, dimethyl sulfoxide 

(DMSO), ethanol and hexanes) at room temperature in vials with a height of 8 cm to 

compare the effects of coagulant bath composition on the extruded wire properties.  SEM 

images of the resulting wires from six of these solvents are presented in Figure 9.  Data 

from attempted extrusions into hexanes and water is not available since these solvents did 

not produce coherent wires.  In the case of hexanes, the SWCNT-CSA dispersion formed 

droplets which remained fluid in the liquid hexanes rather than coagulating into a solid. 

When water is used as a coagulant bath, the dispersion solidified but underwent a violent 

reaction that results in bubbling and a non-coherent wire.  Wires extruded into acetone 

(Figure 9a) were ribbon-like rather than cylindrical and the acetone bath exhibited a color 

change following extrusion with shades of yellow and orange, indicating a reaction 

between CSA and acetone. The SWCNT wires that were coagulated in an acetone bath 

displayed a high degree of uniformity along the wire axis, as well as large, aligned 

bundles of SWCNTs on their surface (Figure 9a inset).  Wires that were coagulated in 
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either acetonitrile Figure 9b) or DMA (Figure 9c) baths are also highly uniform, but 

exhibit less surface bundle alignment than those extruded into acetone (based on the high 

magnification SEM insets in Figure 9 for each). Wires that were coagulated in 

chloroform (Figure 9d) or DMA both have smaller diameters than wires from other 

coagulant baths, likely due to a slow rate of coagulation which allows the wire to become 

thinner and elongated while solidifying due the vertical extrusion setup.  Dispersions 

extruded into chloroform baths which were greater than 8 cm in height have been 

observed to break into segments before completely coagulating.  This also indicates a low 

coagulation rate since the uncoagulated wire does not possess the tensile strength to 

support longer segments of itself.  Wires extruded into DMSO were larger in diameter 

and possessed greater void space in between SWCNT bundles on their surfaces (Figure 

9e).  The increased void space may be attributed to the high boiling point of DMSO 

resulting in slow drying of the wire with residual DMSO remaining between SWCNT 

bundles.  Wires extruded into ethanol display very poor uniformity and a low degree of 

surface bundle alignment (Figure 9f).  During extrusion in ethanol, bubbling on the 

surface of the extruded wire can be observed, indicating a reaction between CSA and 

either ethanol or trace water present in the bath.  Thus any bubbling from a coagulant 

bath reaction with CSA disrupts coagulation and causes wire blistering, leading to non-

uniform wire morphologies and poorly aligned SWCNT bundles.  The SEM comparison 

in Figure 9 indicates that there are marked differences in the morphology of wires due to 

the coagulant composition.  These differences are attributed to varying interactions 

between the coagulant and CSA, including reactions and diffusion rates, which influence 

coagulation of the dispersion into a solid.  
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Figure 9. SEM images of wires extruded from purified laser SWCNT dispersions 

into (a) acetone, (b) acetonitrile, (c) N,N-dimethylacetamide, (d) chloroform, (e) 

dimethyl sulfoxide, and (f) ethanol.  Insets are higher magnification of each wire. 

The mechanical and electrical properties of the SWCNT wires, represented in 

Figure 10, have been measured in order to determine how coagulant selection influences 

the resulting wire properties.  The specific conductivity and specific tensile strength 

results from this analysis are shown in Figure 10a.   
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Electrical conductivity and tensile strength for these wires are presented in Figure 

10b using cross-sectional areas determined from SEM images.  Improved electrical 

performance correlates well with tensile strength when normalized to either wire 

mass/length or cross-sectional area.  Qualitatively, wires with a high degree of uniformity 

and alignment, as seen in in Figure 9, were those with the best electrical and mechanical 

properties.  This observation indicates that improved wire performance is attained 

through the use of coagulation parameters that favor highly uniform and ordered wires.  

The subtle differences between Figure 10a and b are due to variations in wire density 

between wires extruded into different coagulant baths, likely due to the coagulation 

dynamics and residual solvent present.  The coagulant liquid can be removed at higher 

temperatures, but annealing was determined to decrease wire electrical properties due to 

the removal of residual CSA which acts as a chemical dopant.  Thus, in the following 

optimization experiments, acetone is used as the liquid coagulant due to its ability to form 

highly conductive, strong, and uniform wires with minimal residual solvent. 
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Figure 10. Properties of SWCNT wires extruded into various composition coagulant 

baths analyzed by (a) specific conductivity and specific tensile strength and (b) 

electrical conductivity and tensile strength. 

In addition to the empirical model obtained from DoE techniques, a scientific 

understanding of the fluid properties which promote favorable wire coagulation is 

desirable to inform better coagulant selection.  After conducting a survey of liquids for 

use as coagulant baths, the specific conductivities from the study in Figure 10 have been 

compared by several quantitative parameters of each coagulant, such as boiling point, 

polarity, viscosity, density, molecular weight, and surface tension.  The results are shown 

in Figure 11.  In many of these cases, there is only a weak trend, but low-boiling point, 

low-viscosity solvents may be ideal for high specific conductivity.  Future work in this 

area may be improved by selecting a solvent which is available with varying functional 

groups and side-chain lengths which can lead to more direct correlations between solvent 

properties and specific conductivity with minimal changes in confounding factors such as 

reactivity. This comparison may elucidate trends which lead to improved specific 

(b)(a)
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conductivity, aiding in the selection of possibly desirable coagulants which have not been 

previously explored.  This may also provide insight into the mechanism of SWCNT 

dispersion coagulation. 

 

Figure 11. Specific conductivity data from Figure 10 plotted vs (a) boiling point, (b) 

dipole moment, (c) density, (d) viscosity, (e) molar mass, and (f) surface tension. 

 

3.3.2 Design of Experiments Approach 

Due to the large number of factors available for optimization in the extrusion 

process, methodologies from Design of experiments (DoE) have been employed to 

reduce the number of samples required and to resolve the interactions between factors.  A 

combined mixture-process DoE study was conducted which enables determination of the 

effect on specific conductivity of blends of solvents for the coagulant bath and the 
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temperature of the coagulant bath.  Coagulant bath temperature had previously been 

unexplored.  To construct the experimental sample space, eight points on a ternary 

mixture plot were selected.  Acetone and ethanol were selected from the study in Figure 

10 to represent high and low performance coagulant baths.  Chloroform was also used in 

the blends as a middle performance coagulant. The ternary mixture designs were then 

replicated at 0 °C, 25 °C, and 50 °C to determine the effect of coagulant temperature and 

if there is curvature (a temperature squared term) in this effect.  This design is depicted in 

Figure 12, where each red rectangle and grey point represents the experimental 

conditions under which an extrusion was conducted.  The grey points indicate that the 

resulting wire was too non-uniform to measure a specific conductivity.  The numbers 

inside the red boxes are the specific conductivities of the wire extruded under those 

conditions in S m2 kg-1.   

 

Figure 12. Experimental results from conducting a combined mixture-process 

designed experiment which varied both mixtures of acetone, ethanol, and 

chloroform; and temperature.  Results are listed as specific conductivity in units of 

S m2 kg-1. 
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The resulting data was analyzed by transforming the three mixture components 

(which are not linearly independent due to the constraint that the sum of their volume 

fractions must be 1) into two linearly independent terms.  These two terms, along with 

the temperature term, were analyzed using a regression model with the three factors, their 

squares, and their products (for a total of 9 terms plus a constant) as predictors.  None of 

the factors were found to be statistically significant, indicating that the best predictor of 

specific conductivity for an extruded wire within this sample space is the average specific 

conductivity of the entire sample set.  Regardless, the resulting regression model was 

used to predict operating parameters which might lead to the highest specific conductivity 

extruded wires.  The regression model predicted highest specific conductivity at 13 °C, 

and the model predictions at this temperature are available in Figure 13.  The optimal 

combination of coagulants is 14 % acetone in 85 % ethanol at 13 °C with a predicted 

specific conductivity of 1400 S m2 kg-1.  An extrusion was conducted under these 

conditions and had a measured specific conductivity of 1600 S m2 kg-1, outside the 

prediction interval but higher than any other specific conductivity measured in this study.  

This indicates that the DoE methodology was useful in this context for determining 

regions of interest in this design space, but that the extrusion process has too many noise 

factors at this time for accurate prediction by regression modeling.    
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Figure 13. Modeled response surface resulting from regression analysis of the 

experimental data in Figure 12. 

3.4 Mechanical Tension Processing 

Mechanical tensioning, or physical stretching, is a technique employed in both 

metallurgy and polymer processing to induce alignment and ordering at the molecular 

and nanoscale level.  Since CNT wires elongate under stress before breaking, mechanical 

tensioning of extruded SWCNT wires can be used to alter wire morphology, possibly 

reducing diameter and mass per length, changing wire uniformity, and altering electrical 

and mechanical properties by influencing inter-tube contacts and alignment.  The 

mechanical tension used to strain extruded SWCNT wires can be induced at several 
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points during the wire fabrication process as described in the following sections.  

Exploring the potential of mechanical tension processing to alter and improve wire 

performance is a goal of the proposed research. 

3.4.1 Strain Induced During Wire Coagulation 

SWCNT wires can be extruded vertically, with the extrusion tip fixed at the top of 

a coagulant bath several cm in depth.  The extruded SWCNT-CSA dispersion then sinks 

from the extrusion tip to the bottom of the coagulant bath and comes to a rest on the 

surface of the containing vessel.  The weight of the sinking coagulating wire induces 

mechanical tension on the SWCNT-CSA dispersion as it exits the extrusion tip.  The 

amount of tension induced in this manner can then be controlled by varying the depth of 

the coagulant bath used (Figure 14).  Wires were extruded into several coagulant baths 

from 4-30 cm deep and characterized by specific conductivity to determine a trend or 

optimal coagulant bath depth. 
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Figure 14.  Schematic of the extrusion process and the method which will be used to 

induce increasing degrees of tension on the coagulating SWCNT-CSA dispersion. 

The results from extrusions conducted from the top of coagulant vessels of 

varying depths, shown in Figure 15, demonstrate a positive correlation between coagulant 

bath depth and improved wire mechanical and electrical properties with a 25.5 cm 

increase in the depth of the coagulant bath resulting in a 35% increase in specific 

conductivity.  Vertical extrusion allows for the weight of the coagulating wire to induce 

mechanical tension on the SWCNT dispersion as it exits the syringe needle.  Extrusion 

into deeper coagulant baths promotes a longer segment of coagulated wire to contribute 

to this weight, thus inducing greater mechanical tension. The additional tensioning of the 

coagulating wire causes the wire to solidify in a highly uniform and crystalline structure, 

improving both mechanical and electrical properties. 
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Figure 15. Specific conductivity and specific tensile strength of SWCNT wires 

extruded into coagulant baths of varying depths.  Error bars are the standard 

deviation in 5 replicate samples. 

3.4.2 Post-Extrusion Wire Straining 

In addition to the coagulant bath optimization, an ex situ post processing 

technique utilizing a fixed mechanical strain of 5% prior to and during the drying process 

was employed at room temperature for 15 min on wires extruded from purified SWCNT-

CSA dispersions into acetone coagulant baths with a depth of 30 cm. After drying, the 

wires do not contract to their original lengths.  The ex situ mechanically strained 

segments have higher maximum specific conductivity (2200 S m2 kg-1) than those 

extruded into shallower acetone baths without mechanical straining (1300 S m2 kg-1).  

The highest specific conductivity segments have been analyzed via SEM and exhibit a 

ribbon-like morphology (see Figure 16a).  The cross-section is estimated to be 

rectangular in geometry, and results in a calculated area ranging from 1200 - 1500 µm2 

(Figure 16a). Based upon this cross-section and the measured electrical resistance, the 

conductivity of the post-processed SWCNT wires ranges from 4.1-5.0×106 S/m with a 

tensile strength ranging from 210-250 MPa.  The combination of both in situ and ex situ 

mechanical tensioning has created SWCNT wires that exhibit highly aligned and dense 

bundles on their surfaces (Figure 16b).  Several continuous meters of wire have been 

extruded under these conditions with consistent wire properties (Figure 16c).  Figure 5d 

compares the electrical conductivity and tensile strength range for the wires in the present 

study to recently published extruded CNT wires at room temperature [52], [53], [73].  

Thus, the use of high purity laser-synthesized SWCNTs in CSA extruded wires, based 
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upon optimized extrusion and post-processing conditions, leads to marked improvement 

in bulk SWCNT conductivity.  The tensile strength is lower in the present wires than 

those in reference [53], which may be attributed to the shorter  lengths of laser 

vaporization synthesized SWCNTs than the few-walled CNTs used in that study.  The 

coagulation dynamics based on coagulant selection and coagulant bath depth are a critical 

aspect affecting CNT wire crystallinity and multi-functionality performance, and may be 

further improved with additional understanding of the interactions between extrusion 

factors.  

 

Figure 16. (a) SEM image of wire extruded into 30 cm deep, room temperature 

acetone bath and then mechanically strained while drying which yielded a 

conductivity of 4.1-5.0×106 S/m.  (b) Higher magnification SEM image showing the 

aligned nature of SWCNT bundles on the surface of the wire in (a).  (c) Spool of 

several continuous meters of wire in (a).  (d) Comparison of the electrical and 

mechanical properties of wires extruded from purified laser SWCNTs to other CNT 

wires produced from similar wet-spinning techniques used in [47], [52], [53]. 
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3.5 Extruded Laser-Vaporized SWCNT Wire Conclusions 

Bulk wires of pure SWCNTs produced by laser vaporization were successfully 

fabricated using a CSA dispersion and extrusion technique.  Extrusions were conducted 

from CSA-SWCNT dispersions made using either AP-SWCNT material directly from the 

reactor or purified SWCNT material.  Wires made using the purified SWCNT material 

had specific conductivities two orders of magnitude higher than those made from AP-

SWCNTs indicating that the purity of SWCNT material used greatly impacts the 

resulting wire performance due to impurities preventing coagulation of crystalline 

bundles of SWCNTs.  Different liquids were surveyed for their use as coagulants in the 

extrusion process with each coagulant yielding unique wire morphologies.  Coagulants 

such as acetone and acetonitrile, which yielded highly uniform wires with visibly aligned 

bundles on their surface, resulted in the highest mechanical and electrical properties.  In 

addition to the choice of coagulant bath composition having a direct impact on the 

resulting wire performance, an increase in the depth of the coagulant bath used in the 

vertical extrusion setup was found to influence the resulting wires properties. Increased 

coagulant bath depth induced greater mechanical tension on the CSA-SWCNT dispersion 

as it coagulated and formed more uniform, higher specific conductivity wires.  

Mechanical straining of the wire segments prior to the coagulant evaporating resulted in 

wires with the highest room temperature, CSA-doped conductivity to date.  Greater 

understanding of the coagulation factors impacting SWCNT coagulation and ordering 

will allow for design and engineering of CNT wires, which may replace metal conductors 

for power and data cable applications. 
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Chapter 4. Engineering Factors Influencing Extruded Wire 

Fabrication 

4.1 Introduction to Additional Factors Available 

 

As depicted in Figure 6, there are a number of factors in the wire extrusion 

process available for modification.  In the previous chapter, high-conductivity CNT wires 

were fabricated by using high-purity SWCNTs from laser vaporization, tailoring the 

coagulant composition and temperature, and introducing in-situ and post-processing 

tension to impact the uniformity of and alignment in the extruded wire.  Several 

additional factors were investigated and results are presented in this chapter (Figure 17).  

These factors include the type of CNT material used for dispersion and extrusion to 

evaluate the performance of commercially available CNT materials and factors that 

impact the dynamics of the CNT-CSA dispersion as it is introduced into the coagulant 

bath.  It is instructive to conduct these optimizations one at a time due to the variability 

involved which can render designed experiments with insufficient replicates 

inconclusive.   

Tasks: 
• Compare the performance of extruded laser-SWCNT wires to extruded wires made from 

other CNT types. 
• Investigate and optimize blends of multiple CNT types in CSA dispersions for improved 

wire multifunctionality. 
• Study how modified laser synthesis parameters impact extruded wire properties. 
• Demonstrate the effects of varying extrusion parameters on the performance of 

extruded SWCNT wires. 
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Factors that impact the dynamics of the CNT-CSA dispersion introduction into 

the coagulant bath include the syringe needle diameter.  The diameter of the extrusion 

spinneret opening influences the volume of dispersion entering the coagulant.  Larger 

volumes may experience different coagulation dynamics due to greater distances required 

for CSA/coagulant diffusion or more uniform flow in the interior volume of extruded 

dispersion.  This diameter is controlled by selecting different gauge syringe needles for 

extrusion.  Adjustment of the extrusion rate, in terms of the volume of dispersion 

introduced into the coagulant bath per unit time, may alter resulting wire properties.  This 

is an important factor to study to determine if extrusions conducted by hand using a 

syringe, which may have small variations in extrusion rate, could have confounded the 

results of other studies.  Extrusion rate will be controlled though the use of a mechanized 

syringe pump.  The syringe needle length is also varied by cutting syringe needles to 

various lengths, and extrusion through polytetrafluoroethylene spinnerets are conducted.  

Extrusions conducted through an air-gap between the syringe needle opening and the 

coagulant bath surface are conducted in an effort to introduce greater in-situ wire 

tensioning. 

Concentric coagulant flow is experimented with by using coaxial syringe needles 

that allow for coagulant to be pumped through an outer outlet while the SWCNT-CSA 

dispersion is pumped through the inner outlet.  Multiple coagulant flow rates are 

investigated as are various diameter coaxial syringes.  Coagulant bath temperature is 

investigated again using a one-factor-at-a-time approach and temperatures below 0 °C are 

achieved using dry ice baths.  Factors which strongly influence extruded wire 
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performance are selected and high conductivity wires are fabricated using these 

conditions.  Calendering is employed to densify the resulting wires. 

Finally, this chapter concludes with the construction of an automated extrusion 

apparatus.  The apparatus is designed and built to accommodate improvements and 

interchange between extrusion processing conditions easily. The modular design of the 

apparatus is a feature meant to easily incorporate the results of future studies that identify 

in-line processes that impact wire performance. 

 

Figure 17. Process diagram of factors impacting extruded wire performance, with 

factors investigated in this chapter highlighted in blue, and factors investigated in 

Chapter 3 highlighted in red. 

4.2 Carbon Nanotube Types for Extruded Wires 

4.2.1 Commercially-Sourced Carbon Nanotube Materials 

In the previous chapter, laser vaporization SWCNTs were explored due to their 

high conductivity and the lack of existing data on extruded wires of this type.  Many 

other types of CNTs exist, as discussed in Chapter 1, which may be suitable for CSA 
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dispersion and extrusion.  Benefits of optimizing the extrusion process with other CNT 

types may include reduced costs, commercial availability, and increased tensile strength. 

CNT types of interest for experimentation with extrusion include arc SWCNTs and CVD 

SWCNTs of varying length, diameter, and number of walls. 

Extrusions were conducted from dispersions of purified HiPco SWCNTs (which 

have been explored in refs [47], [52]) for comparison to laser SWCNT extruded wires, 

with the resulting wires shown in Figure 18.  The HiPco SWCNT extruded wires had 

lower specific conductivity and tensile strength than the laser SWCNT wires extruded 

under the same conditions (Figure 19).  Because the performance of the HiPco extruded 

wires did not match that of HiPco extruded wires in refs [47], [52], it is likely the 

extrusion set up used can be further improved. 

 

Figure 18. SEM images of (a) extruded wire made from purified laser SWCNT-CSA 

dispersion, and (b) extruded wire made from purified HiPco SWCNT-CSA 
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dispersion under the same extrusion conditions.  (c) higher magnification image of 

the surface of the wire in (b). 

 

Figure 19. (a) Boxplot of 5 specific conductivity measurements from laser and HiPco 

SWCNT extruded wires.  (b) Boxplot of 5 tensile strength measurements from laser 

and HiPco SWCNT extruded wires.  (c) Representative Stress-Strain curves for 

HiPco and laser SWCNT extruded wires. 

Another CNT material of interest is the commercially available NCTI CNT sheet 

material.  As a preliminary study, this sheet material was purified with a 560 °C thermal 

oxidation, concentrated HCl rinse, and subsequent 560 °C thermal oxidation.   5 mg of 

the purified NCTI material per ml of CSA was then added to a 35 mg/ml laser SWCNT 

in CSA dispersion.  The resulting wires can be seen in panels a and b of Figure 20, 

displaying the width and thickness of these ribbon-like wires respectively.  The specific 

conductivity and specific strength of the hybrid wires was lower than that of wires 

extruded from a dispersion of 40 mg/ml laser SWCNTs (Figure 20c and d respectively).  

This may be due to poor dispersion of the NCTI CNTs, since it is difficult to assess 

material breakup with pre-dispersed material in the CSA.  Future studies of hybrid 
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dispersions will thus combine multiple dispersions for better determination of dispersion 

homogeneity.  

 

Figure 20. (a) and (b) SEM images of extruded wires made from a dispersion 

containing both purified laser SWCNTs and purified NCTI CNTs.  (c) Specific 

conductivity measurements on these wires and extruded wires of only purified laser 

SWCNTs as a control.  (d) Specific tensile strength measurements on these wires 

and extruded wires of only purified laser SWCNTs as a control. 

Fabrication of CNT wires using double-walled carbon nanotubes (DWCNTs) was 

tested since the concentric format of the DWCNTs may allow for an increase in the 

number of SWCNT conductors without increasing the bundle size.  To test this 

hypothesis, DWCNTs were purchased from SkySpring Nanomaterials.  An SEM image 

of the as-purchased DWCNT material can be seen in Figure 21a.  The as-purchased 

DWCNT material was purified by a 520 °C thermal oxidation at a 10 °C/min ramp rate, 

followed by mixing the resulting powder material into concentrated HCl and filtering and 

rinsing with deionized water.  This thermal oxidation and acid treatment was repeated a 

second time on the resulting filter cake.  An SEM of the resulting material can be seen in 

Figure 21b, and some impurities can still be observed.  The purified DWCNT material 

was then dispersed in CSA at a weight loading of 67.9 mg/mL, a concentration which 
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provided a similar level of viscosity as a 40-50 mg/mL dispersion of SWCNTs from laser 

vaporization synthesis in CSA. The DWCNT-CSA dispersion was extruded through a 20 

Ga syringe needle at 0.1 mL/min into the top of a 2 °C acetone bath 28 cm deep.  Upon 

loading the syringe with DWCNT-CSA dispersion, a much greater tendency to form long 

liquid strands as it spilled over from a microspoon.  Depression of the syringe plunger 

was also noted to require much greater force than typically required when the syringe is 

loaded with a SWCNT-CSA dispersion.  The resulting DWCNT wires were uniform as 

seen in the side-on SEM image in Figure 21c.  The resulting specific conductivity was on 

average 1100 S m2 kg-1.  The low specific conductivity of these wires may be due to the 

presence of impurities in these wires, preventing ideal packing and alignment of the 

DWCNTs as seen in the side-on SEM in Figure 21d.  Cross-sectional SEM images of 

laser-cut wire segments such as those displayed in Figure 21e and f show that these wires 

have the same layered morphology of SWCNT extruded wires and were used to 

determine the wire cross-sectional area and calculate an average conductivity of 1.4 

MS/m.  High conductivities have been achieved in DWCNT extrusions in the literature 

[53].  Conductivity improvements in the extruded DWCNT wires presented here will 

likely come from improved purification techniques for these materials and optimization 

of the type (diameter, length, defect density) of the constituent DWCNTs.   
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Figure 21.  Characterization of DWCNTs and DWCNT extruded wires.  a. SEM 

image of powdered, as-purchased DWCNTs.  b. SEM image of DWCNTs after 560 

°C thermal oxidation, HCl treatment, a second 560 °C thermal oxidation, and a 

second HCl treatment.  c.  Multiple SEM images stitched together of an extruded 

wire made from purified DWCNTs.  d. High-magnification SEM image of DWCNT 
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extruded wire with the wire axis mounted vertically.  e and f.  Cross-sectional SEM 

images of two laser-cut DWCNT extruded wire segments. 

4.2.2 Modified Laser Synthesis Parameters 

Modification of the temperature, pressure, and carrier gas during laser SWCNT 

synthesis impacts physical properties of the resulting CNTs and provides a different 

distribution of SWCNT diameters [22].  This fact can be used to obtain laser SWCNT 

samples with different properties which can be purified and dispersed in CSA.  Wires can 

be extruded from these dispersions to determine the effect of diameter distribution on the 

electrical and mechanical properties of CNT structures. 

Figure 22a shows historical data of the radial breathing modes of SWCNT 

samples synthesized via laser vaporization under the specified ambient gasses at 1150 °C 

and 900 °C.  The peak positions in the RBMs can be used to quantify the diameter ranges 

for SWCNTs in the sample using the relationship in equation (6), where 𝜔𝜔𝑟𝑟 is the 

wavenumber of a peak in the RBMs (in cm-1), and 𝑑𝑑 is the SWCNT diameter in nm [61]. 

 𝜔𝜔𝑟𝑟 =
223.75
𝑑𝑑

 (6) 

The diameter of a SWCNT impacts its conductivity in the axial direction by 

reducing its cross-sectional area while theoretically maintaining its quantized 

conductance [74], [75].  Figure 22b demonstrates the effect of this principle, by plotting 

the conductivity of a SWCNT bundle versus the diameter of the constituent SWCNTs.  

Overlaid in this figure are the potential ranges of SWCNT diameters that can be produced 

from the use of nitrogen and argon carrier gasses during laser vaporization synthesis.   
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Figure 22. a. Raman spectroscopy of products of SWCNT synthesis run at 1150 

(black) and 900 °C (blue) in nitrogen (top) and 1150 (black) and 900 °C (blue) in 

helium (bottom).  b. plot of SWCNT diameter and the conductivity of an ideal 

bundle of SWCNTs with that diameter (red data points).  Inset diagrams 

demonstrate the effect of SWCNT diameter on bundle size.  Blue and green bands 

demonstrate the diameter ranges possible from SWCNT synthesis under nitrogen at 

900-1150 °C and Argon at 1150 °C, respectively.  

Experimental work was conducted to determine the practical effects of changing 

carrier gas type and temperature on the conductivity of extruded SWCNT wires.  

Nitrogen was selected as a carrier gas for comparison to the standard argon-synthesized 

SWCNTs.  SWCNTs were synthesized at 900, 1000, and 1100 °C under nitrogen and 

refluxed overnight using the standard procedure for argon-synthesized SWCNTs.  SEMs 

of the resulting SWCNT papers from filtration and rinsing of the refluxed synthesis 

products can be seen in Figure 23 panels a, b, and c.  After refluxing, few SWCNTs were 
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visible in the sample synthesized at 900 °C in panel a.  TGA was conducted on these 

samples and the % weight loss per degree C is shown in Figure 23d.  A double peak in 

this derivative is visible for the samples synthesized at 1000 and 1100 °C, while only a 

single peak in seen at ~540 °C for the sample synthesized at 900 °C.  The absence of a 

second peak in the TGA data and the low-visibility of SWCNT content in the SEMs 

indicate that the sample synthesized at 900 °C is of insufficient purity for further 

purification and use in extruded wire fabrication.  Raman spectroscopy analysis of the 

samples synthesized at 1000 and 1100 °C in nitrogen was also conducted and the RBMs 

are displayed in Figure 23e along with the RBM Raman spectra from a sample of purified 

SWCNTs synthesized in 1125 °C argon for comparison.  The peaks in the spectra 

indicate that the ranges of SWCNT diameters present in each sample are from 1.1 to 1.7 

nm for SWCNTs synthesized in argon at 1120 °C, from 1.0 to 1.5 nm SWCNTs 

synthesized in nitrogen at 1100 °C, and from 0.9 to 1.3 nm for SWCNTs synthesized in 

nitrogen at 1000 °C.  Therefore, SWCNTs synthesized in nitrogen at 1000 °C were 

selected for future study in extruded SWCNT wiring due to their sufficient purity for 

material handling and there greater dissimilarity in diameter range from standard 

SWCNTs synthesized in argon at 1125 °C than SWCNTs synthesized in nitrogen at 1100 

°C. 
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Figure 23.  a, b, and c. SEM images of SWCNTs synthesized under nitrogen carrier 

gas at each of the labeled temperatures in a sheet format after acid refluxing.  d. 

Derivative weight (change in mass per degree Celsius) as a function of temperature 

from thermogravimetric analysis of refluxed SWCNTs in sheet format synthesized 

under nitrogen at various temperatures.  e. Raman spectroscopy of the radial 

breathing modes of refluxed SWCNTs in sheet format synthesized under nitrogen at 

various temperatures. 

SWCNT samples synthesized in nitrogen at 1100 °C underwent additional 

purification after reflux and filtration before dispersion and extrusion.  A thermal 
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oxidation was used to remove non-SWCNT carbonaceous impurities.  The temperature of 

this thermal oxidation was determined from the TGA data in Figure 23d where the 

minima between peaks occurs at ~560 °C, the same temperature used in the standard 

purification procedure used for SWCNTs synthesized in argon at 1125 °C.  Thermal 

oxidation was followed by a concentrated HCl soak and deionized water rinse. The 

purified SWCNTs were then dried overnight in a vacuum oven before dispersing in CSA 

at 45 mg/ml following the standard procedure outlined in section 3.2.  Extrusions of this 

dispersion and a 45 mg/ml dispersion of SWCNTs synthesized in argon at 1125 °C were 

conducted at a rate of 0.1 ml/min though 22 Ga syringe needles into -10 °C acetone baths 

that were 30 cm deep.  The morphology of the resulting wires is compared in Figure 24.  

Panels a and b are stitched SEM images showing the macroscale morphology of the two 

wires.  Both display a high degree of uniformity, and panels c and f show a high degree 

of alignment (wire axis is vertical in these images).  Cross-sectional SEMs of laser-cut 

wires are shown in Figure 24d and e, and were used to calculate the cross-sectional areas 

of these wires.  Electrical measurements and cross-sectional areas were used to calculate 

the conductivity of these wires and results of this characterization are catalogued in Table 

1.   
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Figure 24.  Characterization of wires extruded from 45 mg/mL dispersions of either 

purified SWCNTs synthesized under 1000 °C nitrogen or 1125 °C.  a and b.  Side-on 

SEM images with the wires mounted horizontally and with a slight twist to show all 

sides.  c and f. High-magnification SEM images of the surfaces of both wires with 

the wire axis oriented vertically.  d and e. Cross-sectional SEMs of laser-cut sections 

of each wire. 

The performance of both wires fabricated from SWCNTs synthesized in nitrogen 

at 1000 °C and SWCNTs synthesized in argon at 1125 °C was similar, conductivities of 

1.5 and 1.7 MS/m respectively.  The similarity in wire performance many indicate that 

the differences in the diameter distributions were not large enough for the smaller 

diameters of SWCNTs synthesized in nitrogen at 1000 °C to significantly enhance 

conductivity, or that the purification procedure is more effective for the larger diameter 

SWCNTs synthesized in argon at 1125 °C. 
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SWCNT 
Type 

Resistance 
(Ω/m) 

Linear 
Density 
(mg/m) 

Specific 
Conductivity 

(S m2/kg) 

Cross-
sectional 

area 
(µm2) 

Conductivity 
(MS/m) 

N2 
1000°C  

424 1.2 2050 1600 1.5 

Ar 
1125°C  

268 1.7 2220 2200 1.7 

Table 1. Electrical properties of wires extruded using SWCNTs synthesized in either 

nitrogen or argon at 1000 °C or 1125 °C, respectively.  

4.3 Extrusion Process Factors Influencing Dispersion Coagulation 

Several extrusion design factors influence the dynamics of dispersion coagulation 

during extrusion.  One such factor is the diameter of the syringe needle used.  The 

diameter of the syringe needle determines the diameter of the extruded cylinder of 

SWCNT-CSA dispersion as it enters the coagulant.  This diameter affects the distance the 

coagulant and the CSA must diffuse in order for solidification to take place.  The syringe 

needle diameter also influence the flow dynamics of the dispersion as it enters the 

coagulant bath.  A series of SWCNT wires were extruded to determine the practical 

effect of syringe needle diameter on extruded wire specific conductivity.  A 40 mg/mL 

purified SWCNT in CSA dispersion was extruded through 33, 24, and 22 Ga syringe 

needles (inner diameters 110, 310, and 410 µm, respectively) into a 30 cm deep acetone 

coagulant bath at room temperature.  The resulting wires were characterized and the 

specific conductivities measured can be seen in Figure 25 as a function of the syringe 

needle inner diameter used to create them.  It is evident that larger diameter syringe 

needles promote higher conductivity extruded wire fabrication.  To determine why, SEM 

images of samples extruded from each diameter syringe needle are also presented in 
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Figure 25.  From these SEM images, it is apparent that samples extruded from smaller 

diameter syringe needles contain more void space in their interiors than samples extruded 

from the larger diameter syringe needles.  Void space may be an effect of greater non-

uniformities in the dispersion flow, which would also impact alignment of SWCNTs in 

the wire and reduce specific conductivity.   
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Figure 25.  Dependence of wire specific conductivity on syringe diameter with cross-

section SEMs of laser-cut samples from each extrusion. 

In previous studies, the rate of extrusion was manually controlled by hand.  This 

introduces small variations between sample sets, so if wire performance is sensitive to 

extrusion rate, this could invalidate previous sample sets.  For this study, wires were 

extruded through a 24 ga syringe into room temperature acetone.  The extrusion rate was 

controlled by loading the syringe into a programmable syringe pump and the rate was 
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varied from 0.05 0.25 ml/min for successive runs.  As displayed in Figure 26, the specific 

conductivity of three replicates at each rate was measured and found to be independent of 

the extrusion rate, validating previous studies conducted by hand.  It was noted however, 

that the wires extruded by the syringe pump were of higher uniformity than those 

conducted by hand (as determined by optical microscopy), likely due to the higher 

uniformity of the extrusion rate when conducted by the pump.  This indicates extrusions 

performed by an automated system when scaled industrially may be of even higher 

performance than those characterized in 3.4. 

 

Figure 26. Specific conductivity of extruded SWCNT wires while varying the 

extrusion rate. 

Another property of the syringe that influences coagulation of the dispersion is the 

length of the syringe needle.  Shear and surface forces from the sidewalls of the syringe 

needle impact the flow of the viscous SWCNT dispersion during extrusion, either 
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aligning the dispersed SWCNTs or causing flow non-uniformities.  To determine the 

effects of syringe needle length, three 22 Ga syringe needles were cut to 1, 16, and 32 

mm lengths by threading them with copper wire to prevent deformation and cutting them 

with a pair of diagonal pliers.  The cut tips were gently filed to remove any burring.  A 50 

mg/ml dispersion of purified SWCNTs in CSA was extruded though each cut syringe 

needle into a 30 cm deep bath of 12 °C acetone at a rate of 0.1 mL/min.  Wires were then 

stretched and dried under tension.  Characterization of the resulting wires can be found in 

Figure 27.  The mass per length and resistance per length of extruded wires depended on 

the length of the syringe needle used to fabricate them (Figure 27a).  Shorter syringe 

needles produced wires with greater linear density and lower resistance per length than 

longer syringe needles did.  These properties effectively canceled out and yielded wires 

with specific conductivities independent of syringe needle length as seen in Figure 27b.  

Tensile properties of these wires were also determined and are presented in Figure 27c.  

From these stress-strain curves it is apparent that most samples failed between 1 – 3 % 

strain and the breaking force required increased with decreasing syringe needle length, 

which is expected as the mass per length also increases with decreasing syringe needle 

length.  The specific conductivities measured in this study were on par with extrusions 

made from similar conditions with uncut syringe needles, and the conductivities 

calculated from laser cutting and cross-sectional SEM imaging were similar, with a 

highest attained value of 3.6 MS/m.  These results indicate that high-conductivity 

extruded SWCNT wires can be produced for any syringe needle length in the rage tested. 
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Figure 27.  Characterization of wires extruded through 22 Ga syringe needles cut to 

various lengths.  a. Resistance per length (left axis and red circle data points) and 

linear mass density (right axis and blue diamond data points) of wires extruded 

from various length syringe needles.  b. specific conductivity of the same samples.  d. 

Tensile force as a function of applied strain from 3 replicate samples extruded from 

each length syringe needle. 

While the length of the syringe needle was not found to have a significant effect 

in the range of the lengths tested, the syringe needle material may play a significant role 

in alignment of SWCNTs in dispersion during coagulation, impacting wire conductivity.  

The syringe needle material in all studies thus far has been stainless steel, which has 

displayed good stability in the presence of CSA.  Alternative materials would have 

different interfacial forces with the SWCNT-CSA dispersion, causing differences in 

dispersion flow dynamics.  To test the effects of this difference, polytetrafluoroethylene 

(PTFE) tubing was purchased with an inner diameter of ~720 µm.  An 8 cm segment of 

tubing was cut and fitted over a 3.8 cm long stainless steel syringe needle with a ~720 µm 

outer diameter so that 4.2 cm of tubing extended over the end of the stainless steel 

syringe needle, as seen in Figure 28a.  SWCNT wires were extruded from a 48 mg/mL 

dispersion of purified SWCNTs in CSA into the top of a 0 °C acetone coagulant bath that 
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was 22 cm deep at a rate of 0.1 ml/min.  Wires were then stretched and dried under 

tension.  Optical microscopy of two replicates of the resulting wires can be seen in Figure 

28b and c, and displays greater non-uniformity than typically seen in wires extruded 

without the PTFE tubing in place over the syringe needle.  Similarly, an average specific 

conductivity of 1100 S m2 kg-1 is lower than typically achieved without the PTFE tubing, 

and lower than the 2040 S m2 kg-1 measured average of control samples produced under 

the same conditions without the PTFE tubing in place.  Laser-cutting and cross-sectional 

SEM imaging were also conducted and the resulting SEM images can be seen in Figure 

28d, e, f, and g.  The conductivity calculated from cross-sectional area measurements 

from these images was on average 0.5 MS/m, only 20% of the conductivity achieved by 

the control samples fabricated using the same conditions without the PTFE tubing.  The 

low conductivity and specific conductivity of SWCNT wires extruded through PTFE 

tubing is likely due to the non-uniformity and void space in them.  The non-uniformities 

may be due to the flow dynamics induced from surface interactions between the 

SWCNT-CSA dispersion and the PTFE tubing, or it may be that the integration of the 

tubing into the experimental set up hinders the wire uniformity.  Flow non-uniformities 

may be induced at the point where flow expands from the stainless steel syringe with an 

inner diameter of 410 µm to the inner diameter of the PTFE tubing.  Future studies on 

syringe needle material should employ complete syringe needle replacements to avoid 

junctions like that previously described in this experiment and should test a wider range 

of materials.  All future extrusion experiments discussed in this document use stainless 

steel syringe needles without the use of PTFE tubing. 
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Figure 28.  a. Photograph of a glass syringe with a 22 Ga stainless steel syringe 

needle inserted into 8 cm of PTFE tubing.  b and c.  Optical microscopy images of 

two replicate samples extruded using the syringe in panel a.  d-g.  Cross-sectional 

SEM images of laser-cut wire segments extruded using the syringe in panel a. 

Inducing tension on the wire during coagulation was found to have a substantial 

effect on the uniformity and conductivity of extruded SWCNT wires in Section 3.4.1.  To 

further increase the elongation of the dispersion during coagulation, an experiment was 

designed where an air-gap was introduced between the syringe needle and the coagulant 



 

78 

 

bath, as opposed to the standard experimental setup, which places the tip of the syringe 

needle just below (1-3 mm) the surface of the coagulant (as seen in the “Standard” case in 

Figure 29a).  The hypothesis was that this air gap would allow for the dispersion to thin 

and elongate and induce alignment in the SWCNTs as it fell from the syringe needle 

opening, possibly also reducing wire diameter and increasing density as seen in the 

“Goal” scenario of Figure 29a.  To test the hypothesis, a 50 mg/ml dispersion of purified 

SWCNTs in CSA was extruded through a 22 Ga syringe needle into a 20 cm deep 

column of room-temperature acetone, either with the syringe needle submerged 1-3 mm 

into the coagulant bath (“submerged”) or held 1-2 mm above it (“air gap”).  Initially these 

experiments were conducted in an open laboratory hood, but concerns of dispersion 

coagulation due to interaction with humidity in the room caused the results presented 

here to be conducted in a dehumidified dry room at 0.1 % residual humidity.  In both 

cases, fumes were observed to be emitted from the SWCNT-CSA dispersion when there 

was an air gap, and the dispersion flowed through this gap non-uniformly.  While a 

continuous stream of dispersion was noted, there was also a “dripping” effect where 

droplets formed regularly at the tip of the syringe needle which fell down the continuous 

dispersion stream as depicted in the “Observed” schematic in Figure 29a.  As a result, 

wires formed with the submerged syringe needle were highly uniform while those 

extruded through the dehumidified air gap had highly-nonuniform morphology with 

alternating regions of small and large diameter as seen in the optical microscopy images 

in Figure 29b.  The electrical characteristics of wires extruded through the dehumidified 

air gap suffered as an effect of this nonuniformity.  Greater linear densities were observed 

with lower specific conductivities and greater variation in these metrics in wires extruded 
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through the dehumidified air gap than in wire extruded with the submerged syringe tip.  

Lower specific conductivities observed in this study for both sets of wires than in 

previous best-practices studies  are likely a result of the use of room-temperature acetone 

baths (as opposed to chilled) and shallower coagulant baths (20 cm as opposed to 30 cm 

deep).  In conclusion, it was determined that the CSA dispersion is best kept within the 

syringe and syringe needle until it is introduced into the coagulant bath.  Future work 

may have success using an air gap if faster extrusion rates are employed. 

 

Figure 29.  a. Schematics of the standard extrusion setup which involves a syringe 

needle with the tip submerged into the coagulant bath, the desired goal scenario of 

an air-gap extrusion in which the syringe needle is elevated above the surface of the 

coagulant bath and the stream of extruded dispersion uniformly thins before 

entering the coagulant bath, and the observed air-gap scenario in which droplets 

form in the air gap and prevent the resulting wire from having a high degree of 

uniformity.  b. optical microscopy images of a wire extruded with a submerged 

syringe needle (left) and of a wire extruded with a dehumidified air-gap (right).  c. 

Specific conductivities of wires extruded using the standard setup (blue circle data 

points) and with a dehumidified air-gap (red square data points) as a function of 

their linear mass density. 
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An additional method for inducing elongation in the coagulating SWCNT-CSA 

dispersion during wire extrusion is through coaxial coagulant flow.  Flowing coagulant in 

the direction of dispersion causes elongation and thinning of the coagulating SWCNT-

CSA dispersion which may induce greater alignment than extruding wires into a stagnant 

coagulant bath [44]. To test the performance of extruded SWCNT wires fabricated with 

coaxial coagulant flow, coaxial syringe needles (Figure 30a) were purchased from ramé-

hartwith a variety of inner and outer syringe needle diameters.  An initial study used a 52 

mg/mL purified SWCNT in CSA dispersion into a stagnant ~0 °C acetone coagulant bath 

20 cm deep extruded at a rate of 0.1 mL/min (6 mL/hr).  A coaxial syringe needle was 

selected with a 22 Ga inner syringe and an 18 Ga outer syringe (18/22) and ~10 °C 

acetone was flowed through the outer syringe at varying rates.  A vertical extrusion set up 

was used so that gravity was allowed to tension the wire as it entered the stagnant 

coagulant bath.  The tip coaxial syringe needle was held 1-3 mm beneath the surface of 

the stagnant coagulant bath for all trials after attempts to introduce a 1-2 mm gap between 

the coaxial syringe needle and the stagnant coagulant bath resulted in segmented wire 

formation.  Electrical results from wires extruded using this setup and four different 

coaxial acetone flow rates (0, 1000, 2000, and 3000 mL/hr) are presented in Figure 30b.  

These results demonstrate that at 0 mL/hr coaxial acetone flow rate, lower specific 

conductivities are attained using this setup than with a standard single-outlet syringe 

needle.  This may be due in part to the syringe needle outlet preventing complete 

submersion of the SWCNT dispersion outlet into the coagulant bath or from the 

decreased bath depth.  Increasing coaxial coagulant flow rates produced wires with 

higher specific conductivities, with a maximum value for this study being 2400 S m2 k-1, 
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higher than using previous best practices.  Despite the high specific conductivities 

observed in this study, conductivity values in Figure 30b are all below 1 MS/m.  The 

reason for the lack of high conductivities in this study is apparent when considering the 

morphology of the wire cross sections, as exemplified in the laser-cut cross-section SEM 

image in Figure 30c.  While the coaxial flow has enhanced specific conductivity through 

enhanced alignment on the surface of SWCNT extruded wires, the flow has caused 

substantial void space in the interior of the wire, reducing the cross-section dependent 

conductivity.  Further work with coaxial syringes is needed to optimize the proper ratio 

of sizes and geometry of inner and outer syringe and the relative flow rates of dispersion 

and coagulant in order to reduce void space inside wires extruded with coaxial flow. 

 

Figure 30.  a. Schematic of the opening of a coaxial syringe needle.  b. Specific 

conductivity (left axis and red circle data points) and conductivity (right axis and 
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green square data points) of wires extruded using a 18/22 Ga coaxial syringe needle 

with various rates of coagulant flow through the outer (18 Ga) syringe opening. 

An additional study using coaxial syringe needles to deliver coagulant flow 

during wire extrusion was conducted to assess the impacts of coaxial syringe needle size.  

For this study, one coaxial syringe needle with a 14 Ga outer syringe needle and a 18 Ga 

inner syringe needle (14/18) was compared to a coaxial syringe needle with an 18 Ga 

outer syringe needle and an 22 Ga inner syringe needle (18/22 - the same size as used in 

the previous study).  Wires were extruded from a 50 mg/mL dispersion of purified 

SWCNTs in CSA at a rate of 0.1 mL/min (6 mL/hr) into a 5 °C stagnant bath of acetone 

28 cm deep.  The coaxial flow rate was chosen to be 3000 ml/hr due to the high specific 

conductivities attained with this flow rate in the previous study.  Optical images of both 

sets of extruded wires can be seen in Figure 31a and b.  Despite the larger size of the 

14/18 Ga syringe needle, the wires produced from this coaxial syringe needle were of 

smaller diameter and mass per length (1.2 tex) than those produced from the smaller 

18/22 Ga coaxial syringe needle (3.4 tex).  However, both sets of wires had similar 

specific conductivities; the average specific conductivity of the wires extruded from the 

14/18 Ga syringe needle was 1500 S m2 kg-1, and the average specific conductivity of 

wires extruded from the 18/22 Ga syringe needle was 1700 S m2 kg-1.  Representative 

cross-sectional SEMs of laser-cut wire segments can be seen in Figure 31c and d.  The 

smaller cross section of the wires extruded from the larger 14/18 Ga syringe needle lead 

to a higher conductivity of 1.3 MS/m than the wires extruded from the smaller 18/22 Ga 

coaxial syringe needle, which had a conductivity of 0.8 MS/m.  Future studies using 

coaxial syringe needles for wire extrusion should take into account the relative rates of 
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flow between the dispersion and the coagulant bath, as well as the flow rate of the 

individual flows. 

 

Figure 31.  Characterization of wires extruded using coaxial syringes.  a. Optical 

microscopy images of two replicate wire segments extruded from the 14/18 Ga 

coaxial syringe needle.  b. Optical microscopy images of two replicate wire segments 

extruded from the 18/22 Ga coaxial syringe needle.  c. Cross-sectional SEM of a wire 

extruded through the 14/18 Ga coaxial syringe needle.  d. Cross-sectional SEM of a 

wire extruded through the 18/22 Ga coaxial syringe needle. 
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Influencing the rate of coagulation of SWCNT-CSA dispersion during extrusion 

is of interest because an ideal coagulation rate allows for the solidifying dispersion to 

stretch and reorient its constituent SWCNTs into alignment in the wires axial direction 

but does not coagulate so slowly that the wire breaks under its own weight.  One method 

of controlling coagulation rate is by controlling the thermal energy available in the 

coagulant bath.  The coagulant bath temperature can be controlled by immersing the 

coagulant vessel in a temperature-controlled bath such as a water and ice bath, acetone 

and dry ice bath, or a heated water bath on a hotplate.  Using these temperature control 

techniques, extrusions were conducted using a 48 mg/mL purified SWCNT in CSA 

dispersion extruded through a 22 Ga syringe needle at 0.1 mL/min into a 22 cm deep 

acetone coagulant bath.  The acetone bath temperature was held at -10 °C through the use 

of a dry ice and acetone bath (dry ice was introduced into the cooling bath, not the 

coagulant bath), 0 °C though the use of an ice and water bath, 10 °C by refrigerating the 

coagulant bath prior to extrusion, 20 °C by leaving the coagulant bath at room 

temperature, and 35 °C and 45 °C through the use of a hot plate.  The average specific 

conductivities of wires extruded into baths held at each of these temperatures are 

presented in Figure 32.  A clear trend is noted where decreased coagulant bath 

temperature produces higher specific conductivity extruded wires.  This increase is 

expected to be due to slower rates of coagulation in colder baths, allowing greater time 

for the wire to stretch under its own weight in the vertical extrusion setup than in warmer 

baths, creating a greater degree of alignment and uniformity.  The use of a dry ice and 

acetone bath to chill the coagulant bath can offer temperatures as low as -78 °C.  The 

main challenge in using < -10 °C coagulant baths are maintaining the uniformity of the 



 

85 

 

bath temperature so that the top of the bath is not significantly warmer than the bottom, 

and preventing boiling of the chilled acetone which disrupts uniform wire coagulation. 

 

Figure 32.  Specific conductivities of extruded SWCNT wires extruded into acetone 

baths of various temperatures. 

4.4 Extrusion of SWCNT Wires using Best-Practices 

Using acetone baths chilled to -10 °C, wires were extruded using the best 

practices determined throughout the present work.  A 66 cm deep coagulant vessel was 

used (a burette), which could not be fully immersed in a dry ice and acetone bath.  

Instead, the acetone coagulant was chilled in a beaker partially submerged in a dry ice 

and acetone bath and then poured into the burette.  Challenges in using this system were 

in keeping the coagulant bath cold and in preventing the sinking extruded wire from 

contacting the sides of the vessel.  A high weight loading of 61 mg/mL purified SWCNT 

in CSA was used for the dispersion, which was extruded though a 22 Ga syringe needle 
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at 0.1 mL/min.  The resulting wires were stretched and dried under tension prior to 

characterization and achieved specific conductivities as high as 2200 S m2 k-1.  A 

representative optical microscopy image is included in Figure 33a, which demonstrates 

the highly uniform nature of the resulting wires.  High-magnification SEM images in 

Figure 33b and c show the high degree of alignment present.  The cross-sectional images 

of laser-cut wires sections in Figure 33d-g show these wires have the typical layered 

morphology of extruded SWCNT wires.  These cross-sectional images combined with 

width and thickness measurements from the side-on SEM image of a twisted wire (Figure 

33h) were used to calculate a conductivity of 5.1 MS/m, indicating that this wire has the 

conductivity of the most conductive wire regions from the best practices extruded wires 

from Section 3.4.2. 
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Figure 33.  Characterization of wires extruded into a -10 °C, 66 cm deep acetone 

bath from a 61 mg/mL weight loading dispersion.  a. Optical microscopy image.  b 

and c. Side-on SEM images of the wire, with the wire axis oriented vertically.  d-g. 

Cross-sectional SEM images of wire segments cut with a laser cutter.  h. Side-on 

SEM image of a wire mounted with a slight twist.  Width and thickness 

measurements are superimposed. 
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Due to the presence of void space in the wires from Figure 33 and other extruded 

CNT wires, experiments with wire calendering were conducted.  Calendering involves 

pressing a sample between two rollers which are spun in opposite directions to facilitate 

the sample pressing without causing shear forces on the sample surface.  This treatment is 

of interest for removing the void spaces inside extruded wires and providing an estimate 

of the conductivity attainable through current extrusion methods if less void space was 

created during extrusion.  Though calendering causes densification in one plane, the lack 

of frictional shear force on the sample and the small diameter of extruded wires makes 

calendering a preferable process for densifying extruded wires compared to radial 

densification (see Section 7.3), which requires wires to be pulled though a stationary die 

with a fixed diameter opening, even though radial densification preserves the cylindrical 

nature of a wire.  Wires were extruded from a 50 mg/ml dispersion of purified SWCNTs 

in CSA through a 22 ga syringe tip into an 30 cm deep, 5°C acetone coagulant bath at 0.1 

mL/min and the conductivity was calculated to be 5.4 MS/m using laser-cut corss-

sectional SEM imaging.  These wires were then subjected to calendering with the gap 

between the rollers kept at a minimum, less than 5 µm.  Wires had a tendency to stick to 

the steel rollers.  The resulting wires were significantly flattened, increasing the ribbon-

like nature of the wires, as seen in the two replicate laser-cut segments in Figure 34a and 

b.  In these segments, laser cutting took place after the wire segments had been 

calendered.  The flaring observed at the laser-cut ends of the wire segments in Figure 34a 

and b is likely a result of the laser cutting as thicker regions are not observed elsewhere in 

the calendered wire.  These flared regions make determining the cross-sectional area 

from SEM imaging difficult, but upper bounds can be established and profilometry was 



 

89 

 

used to confirm an approximate thickness of 11 µm.  The wire was assumed to be 

rectangular in cross-section and a conductivity of 2.4 MS/m was calculated.  The fact that 

calendering did not reduce the measured wire cross-sectional area indicates that cross-

sectional area was overestimated in the laser-cut sections measured prior to calendering.  

Future work should involve calendering SWCNT wires after they are laser-cut for 

imaging instead of before to mitigate the effects of flaring during laser cutting, and 

should investigate methods for laser-cutting and cross-sectional imaging with more 

accuracy, even when calendering is not employed. 

 

Figure 34.  a. and b. SEM images of two replicate segments of extruded SWCNT 

wires that were calendered and then laser-cut.   

4.5 Extrusion Automation and Apparatus Construction 

After determining the major factors in fabricating high conductivity CNT wires, it 

is desirable to construct an automated system for wire production that can be optimized 

and easily adapted to accommodate the optimization of additional extrusion factors not 

yet explored.  An extrusion apparatus has been built to accomplish this objective and can 

be seen in Figure 35a.  The scaffold of the apparatus is build from slotted aluminum rail 
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which should resist corrosion from acidic vapors from the CSA dispersion and acetone or 

other organic solvent vapors from an open coagulant bath.  A syringe pump is mounted at 

a variable angle, allowing for either vertical or angled extrusion.  The angle selected for 

use in Figure 35 allows for a horizontal extrusion.  The coagulant bath can be seen in 

Figure 35b, with the syringe needle submerged on the left, and two custom 2 in diameter 

PTFE spools.  The mechanized spools allow for wire tensioning during extrusion in the 

horizontal configuration.  Extruded wire can be fed from one spool to the next so that he 

first spool applies tension on the wire as it coagulates and the second spool applies 

tension post-coagulation.  The user can set the speed of the first spool and the percent 

difference in speed from the first spool to the second, which is equivalent to the percent 

elongation applied to the wire, through the use of two potentiometers and quantitative 

data on these two metrics is displayed on two numeric readouts on the control panel 

shown in Figure 35c.  The spools are computer controlled by an Arduino Uno R3 which 

can be seen along with its wiring in Figure 35d.   Instructions for use of this apparatus 

can be found in Appendix B. 

A test run of the extrusion apparatus was conducted using a 50.1 mg/mL 

dispersion of purified SWCNTs in CSA.  A 22 Ga syringe needle was fitted onto the 

extrusion apparatus and an extrusion rate of 0.1 mL/min was used.  The coagulant bath 

was acetone at room temperature and the second spool was not used to tension the wires 

post-coagulation.  11 wire segments were characterized and found an average resistance 

per length of 101 Ω/m with a standard deviation of only 6% (compared to 10-15% 

standard deviation for extrusions conducted by hand), and an average linear mass density 
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of 7.2 tex with a standard deviation of 17%.  From these measurements, an average 

specific conductivity of 1400 S m2 k-1 was calculated, with a standard deviation of 10%.  

Optical microscopy images of these highly-uniform wires can be seen in Figure 35e and 

f.   Cross-sectional SEM images of laser-cut wire segments can be seen in Figure 35g-j, 

and were used to calculate a conductivity of 1 MS/m.  These wires demonstrate that the 

extrusion apparatus is capable of producing highly uniform extruded SWCNT wires.  

Future modifications to the extrusion apparatus to enhance extruded SWCNT wire 

conductivity include chilling the coagulant bath and including temperature control 

measures (such as an integrated ice bath), using more precise motor controllers to allow 

for wire tensioning post-coagulation, and integrating a spooling guide to facilitate easier 

wire removal from the spools. 
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Figure 35.  The extrusion apparatus and characterization of wires produced using it.  

a. Photograph of the extrusion apparatus.  b. Close-up photograph of the coagulant 

bath in the extrusion apparatus, in which the submerged syringe and extruded wire 

can be seen on the left, and the two PTFE spools can be seen on the right.  The first 

(leftmost) PTFE spool has extruded wire winding around it.  c. Photograph of the 

extrusion apparatus control panel, which at this time consists of two potentiometers 

and two numeric display panels.  d. The Arduino Uno R3 and wiring which connects 

and controls the components of the control panel and the spooling motors.  e and f. 
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Optical microscopy images of two replicate wire segments extruded from the 

extrusion apparatus.  g-j. Four replicate cross-sectional SEMs of laser-cut wire 

segments produced using the extrusion apparatus.   

4.6 Extruded Wire Fabrication Conclusions 

Several types of CNTs are employed for CSA dispersion and extrusion in the 

chapter, and many extrusion processing techniques are analyzed.  In terms of specific 

conductivity, extruded wires made from laser-vaporized SWCNTs out-perform extruded 

wires made from HiPCO SWCNTs by 3.7x, Nanocomp MWCNT/SWCNT hybrids by 

1.5x, and SSNano DWCNTs by 1.9x.  Extrusions of SWCNTs synthesized using 1000 °C 

nitrogen carrier gas performed similarly to extruded wires made from SWCNTs 

synthesized using the standard 1125 °C argon carrier gas, attesting to the robust high-

conductivity of laser-vaporization SWCNTs synthesized under different conditions.   

Of the extrusion process variables study that influence dispersion introduction 

into the coagulant bath several were found to have strong effects on wire performance 

while others were insignificant at the values studied.  High specific conductivity extruded 

wires were produced regardless of the length of the syringe needle and the extrusion rate 

used.  Air gaps reduced wire uniformity and it was found that keeping the syringe needle 

submerged 1-3 mm below the coagulant bath surface was best for controlling wire 

coagulation.  Changing the material of the spinneret had a significant impact on the wires 

extruded through it, but PTFE was not found to produce better wire than the standard 

stainless steel used in other studies.  This effect may be a product of the non-uniform 

pathway the dispersion flows through as an effect of the test set up used, and not the 

surface forces influencing dispersion flow and alignment. 
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Larger diameter syringe needles promoted higher extruded wire specific 

conductivity, as did colder acetone coagulant baths and increased rates of coagulant flow 

through coaxial syringe needles.  Wires extruded from a 61 mg/mL SWCNT in CSA 

dispersion through a 22 Ga syringe needle into a -10 °C, 66 cm deep acetone coagulant 

bath had uniformly high conductivities of 5.1 MS/m.  A constructed extrusion apparatus 

was able to extrude extremely uniform SWCNT wires with 1.1 MS/m conductivity and 

only 6% variation. 
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Chapter 5. High-Current Behavior of Carbon Nanotube Yarns and 

Wires 

5.1 Introduction to High Current Conditions 

Carbon nanotube electrical wiring is of interest in power and electrical 

transmission applications.  In certain applications such as high-power transmission lines 

and motor windings, the ability for wires to withstand high electrical currents is of 

interest.  To determine the relevance of CNT wires for these applications, it is desirable 

to design high-current testing methodology, measure the behavior of CNT wires in high-

current conditions, and to analyze the mechanisms by which CNT wires fail if exposed to 

very high currents.  The goal of studying high-current behavior is to determine the 

environments and conditions that impact CNT wire high-current behavior and their high-

current failure mechanisms in order to design high-ampacity CNT wires and methods of 

treating CNT wires, such as developing coating processes, to enhance their ampacities.   

When working at high currents, traditional wiring is rated by several metrics.  The 

ampacity of a conductor (in Amperes, A) is the maximum current that the conductor can 

continuously withstand before reaching a specified temperature.  The temperatures that 

ampacities are given at are often insulation dependent or dependent on the maximum 

allowable temperatures of system components that will be located in proximity to the 

conductor, and the ampacity at 100 °C is frequently used [76].  The failure current, or 

fusing current, is the current expressed in Amperes at which a conductor becomes an 

open circuit, while the maximum current (also known as fusing current, expressed in 

Amperes) is the greatest current that a conductor can withstand [77], [78].  The maximum 
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and failure currents may be the same for a given material, but occasionally differ as will 

be discussed in the case of carbon nanotubes in the following sections.  Maximum and 

failure currents are often given as current densities in A/m2, which are normalized to the 

cross-sectional area of the conductor. 

Electromigration limits the current density of nanoscale metallic wiring and 

interconnects to 10 nA/nm2, while CNTs are less sensitive to electromigration and can 

achieve current densities of 10 µA/nm2, three orders of magnitude greater than metals 

[11], [74].  Previous experimental work determining the high current failure of individual 

multi-wall CNTs, CNT sheets, and double-wall CNT fibers has been conducted in the 

literature.  In 2000, individual multi-wall carbon nanotubes (MWCNTs) were deposited 

onto electrical contacts and a constant voltage was driven across segments of each 

MWCNT [79].  Stepwise failures were observed over time, and the authors attribute these 

failures to individual carbon shells failing.  High-current failures in air and in vacuum are 

compared, and higher powers were reached before breakdown in vacuum, with vacuum 

failures occurring 1000x more rapidly than in air.  [79] 

The high-current behavior and breakdown in CNT sheets and thin film transistors 

has also been studied [80], [81].  Studies on CNT sheets found that randomly aligned 

(HiPCO) SWCNT sheets failed with a current density of 6.7 MA/m2 while those with 

alignment induced through high magnetic fields during filtration failed at 11 MA/m2, 

indicating that sample morphology plays a strong role in the maximum current density of 

a CNT conductor [80].  The high-current failure of dry-spun fibers of DWCNTs with 

diameters of 5-20 µm has also been studied and found that the smallest diameter samples 
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had the highest maximum current densities of 1 GA/m2 while other samples typically 

measured ~490 MA/m2 in air [82].  Current-controlled testing of the high-current failure 

of extruded DWCNT wires determined the maximum current density of these wires in 

vacuum (136 MA/m2), argon (303 MA/m2), nitrogen (455 MA/m2), and air (211 MA/m2) 

[83].  Larger diameter (> 1 cm) radially densified wires have demonstrated the ability to 

sustain > 20 A for 40 days [84].  This study correlated the maximum wire temperature 

during high-current testing to be equivalent to the onset of material oxidation through 

TGA analysis. 

5.2 Current Carrying Capacity Test Conditions 

In order to assess the high-current behavior or CNT wires and be able to 

objectively compare the performance between commercially sources CNT yarns and 

extruded SWCNT wires under varying ambient conditions, a test fixture was designed 

and built and the relevant factors in the testing procedure were evaluated. 

The test fixture consisted of a chamber formed by a glass cylinder 35 cm in length 

and 8.5 cm in diameter with steel endcaps.  One endcap included 6 mm diameter gas inlet 

while the other had a 6 mm diameter gas outlet.  An insulated rod was fixed to one 

endcap so that it projected into the center of the chamber, and two copper electrical clip-

type contacts were mounted to this rod using hose clamps so that the number and distance 

between electrical contacts could be easily adjusted.  The electrical probes can be seen 

inside the test chamber in Figure 36.  Gas flow rate to the gas inlet was regulated and 

measured by a Key Instruments flow meter with a range of 0.2 to 2.5 SCFH.  For 

electrical testing, the chamber was purged for 20 min with the selected gas (either dry air, 
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nitrogen (99.998% purity), or helium (99.999% purity), all from Airgas) for 20 min at a 

flow rate of 2.2 SCFH.  A two point electrical test was used for the data presented here.  

The electrical contacts were 2 mm in width and were separated by 48 mm unless 

otherwise noted.  The electrical contacts were connected to a Keysight N8924A high-

voltage direct-current power supply. 

 

Figure 36.  Photograph of 4 electrical probes mounted inside the glass cylinder test 

chamber. 

Initial experiments on the influence of test conditions were conducted using 

Miralon yarn material supplied by Nanocomp Technologies, Inc., which will be referred 

to as “CNT yarn”.  This material is made using a dry spinning technique.  Two separate 

lots (lot #’s 60025 and 60027) of the yarn were tested with 0.5 SCFH of nitrogen flowing 

through the test fixture after the initial 20 minute nitrogen purge at 2.2 SCFH.  All yarn 

segments were 7 cm long and each was loaded in the chamber individually and the 

applied voltage was increased by 150 mV every 30 seconds until an open circuit was 

obtained, and the chamber was allowed to cool for at least 10 min before loading the next 

sample and purging for 20 min.  The current and voltage data acquired by the Keysight 

N8924A is plotted in Figure 37a.  In the 10-15 volt range, both lots of yarn have similar 

behavior, but after an initial peak in measured current, the behavior between the two lots 
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begins to differ.  Samples of CNT yarn lot 60025 reach a secondary, increased maximum 

current while samples of CNT yarn lot 60027 begin degrading.  Yarns from lot 60025 

failed at ~50 V (this is the voltage where the wire becomes an open circuit) and reached 

maximum currents of 590 – 660 mA, while CNT yarn samples from lot 60027 failed at 

~44 V and had a maximum currents of 620-640 mA.  For future studies using CNT yarns, 

lot 60027 was selected due to this closer grouping of maximum currents. 

Next, the effect of ambient gas flow rate on maximum current and the voltage 

required to reach maximum current was determined.  Flowing gas introduces convective 

cooling on the wire being tested, whereas a wire without flowing gas is only subject to 

radiative and conductive thermal losses.  Induced cooling theoretically increases the 

electrical current required for joule heating to reach the thermal decomposition 

temperature of the material in the wire.  For this test, nine CNT yarn samples were 

subjected to 150 mV increases every 5 seconds with one of three rates of air flow.  For 

the 0 SCFH scenario, the chamber was not purged, but closed with room air filling it.  

Results of this study can be seen in Figure 37b.  From this plot, it can be determined that 

with either 0.5 SCFH or 1.0 SCFH of flowing air, both the maximum current and the 

voltage at which maximum current was reached are slightly increased over their values 

without air flow.  These differences may be due to convective cooling from the airflow, 

or due to the differences in humidity of the room air vs the dry tank air, or likely a 

combination of both factors.  In order for similar rates of convention between various 

ambient gasses, a flow rate of 0.5 SCFH was selected for future studies to maintain 

positive pressure in the test chamber to prevent room air from entering the chamber 
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during a test and to minimize convective cooling to model practical application scenarios 

where ambient flow is not controlled.   

Lastly, the dependence of failure voltage and maximum current on the rate of 

voltage increase during testing was evaluated.  It was expected that faster voltage ramp 

rates would increase the maximum current due to insufficient time for heat generation 

from joule heating to affect wire performance.  100 mV increases were used with three 

equilibration times before the next increase: 15, 30, and 60 seconds.  These tests were 

conducted in the test fixture while under 0.5 SCFH of flowing nitrogen.  The measured 

current as a function of applied voltage from these tests can be seen in Figure 37c.  The 

100 mV increase every 30 seconds ramp rate (red curve) had the highest failure voltage 

and maximum current of 22 V and 525 mA, respectively.  This was 37 % and 33 % 

higher than the lowest failure voltage (16 V) and maximum current (395 mA), 

respectively, both measured on the sample tested with a 100 mV every 60 seconds ramp 

rate.  The lack of a strictly increasing or decreasing trend in this data may indicate that 

either these ramp rates are insufficiently different to cause significant differences in the 

data, or that the relationship between ramp rate and failure voltage and maximum current 

is more complex than previously theorized.  While slower ramp rates allow for heat 

buildup, they also allow for heat dissipation from low-conductivity areas in wires, 

possibly presenting competing effects.  Further study of this effect with additional ramp 

rates and multiple replicates at each rate could elucidate the reasons for the observed lack 

of trend in this data. 
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Figure 37.  a. Comparision of the current-voltage characteristics of two different lots 

of yarn with 3 replicates from lot 60027 and two replicates from lot 60025, all tested 

under nitrogen flowing at 0.5 SCFH with  voltage increases of 150 mV every 5 sec.  

b. Plot of max current (left axis, black circle datapoints) and the voltage at which 

maximum current was reached (right axis, red square datapoints) of nine samples of 

CNT yarn lot 60027 for three different flow rates of air in the test fixtrure.  c. 

Measured current as a function of applied voltage for three segments of CNT yarn 

lot 60027 under 0.5 SCFH of nitrogen with the applied voltage increasing by 100 mV 

every 60, 30, or 15 seconds.   

A major factor in testing the high current failure points of a wire is in the type of 

test used, which can be either a current-controlled test or a voltage-controlled test.  To 

experimentally compare the two, six segments of CNT yarn were subjected to either a 

current-controlled or voltage-controlled test under 0.5 SCFH of flowing nitrogen.  The 

ramp rates were chosen so that similar currents and voltages would be expected during 

the initially linear (ohmic) region of wire testing in both current- and voltage-controlled 

scenarios at equal times into the test.  Using a resistance of 22 Ω, the current-controlled 

tests were performed using 5 mA increases every 30 seconds and the voltage-controlled 

tests were performed using 110 mV increases every 30 seconds.  The measured currents 

from these tests as a function of applied voltage are plotted in Figure 38a.  While all 
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curves overlay for voltages below ~8 V, drastic differences can be seen in the curve 

shape and maximum currents attained between the data from current-controlled tests 

(blue curves) and voltage-controlled tests (red curves).  To investigate the source of these 

differences, the measured current from all 6 tests is plotted as a function of the test time 

in Figure 38b, and the applied voltage is plotted as a function of the test time in Figure 

38c.  In Figure 38b, it is seen that in the current-controlled test the current increases 

linearly with time as expected since this is the programmed behavior of the power supply, 

while the measured current from the voltage-controlled tests is initially linear until 

approximately 35 min (300 mA) where it deviates from linearity and the rate of current 

increase begins to decrease.  The opposite behavior is observed in Figure 38c, where the 

voltage over time from the voltage-controlled tests is always linear as programmed, but 

the rate of voltage increase in voltage applied to the current-controlled tests begins to 

increase after 35 min (6 V).  This behavior indicates that the CNT yarns begin to change 

their resistances after applying 6 V or 300 mA.  In the voltage-controlled tests, the 

resistance change means that measured current begins to increase at a lower rates and 

eventually becomes a current decrease.  Conversely, in the current-controlled test, the 

increase in resistance means that the applied voltage must be applied with increasing 

rapidity to maintain current increases at the programmed rate.   

This behavior is analogous stress-strain testing in mechanical engineering.  For 

comparison, CNT yarns were placed in a TA Q800 Dynamic Mechanical Analyzer which 

induces axial strain on the CNT yarns and measures the resulting tensile force.  Like the 

power supply, it was operated in both strain-controlled and force-controlled manners until 
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the yarn was completely bisected.  The results of applying 0.2 % strain per minute in the 

strain controlled scenario (red curve) and of applying 0.233 N per minute in the force 

controlled scenario (blue curve) are plotted with tensile force as a function of applied 

strain in Figure 38d.  Unlike in the electrical case, both of these curves are highly similar, 

but a key difference is evident at ~15 % strain: the data from the strain-controlled test has 

a turnover point where force begins to decrease with increasing strain, similar to how 

current begins to decrease with increasing voltage in the voltage-controlled test.  In 

mechanical analysis, the point at ~2 % strain and 1.8 N, when the curves are no longer 

linear, is known as the yield point, after this point material deformation is known as 

plastic deformation [85].  The data is again broken out into tensile force as a function of 

time and strain as a function of time in Figure 38e and f, respectively.  In Figure 38e, the 

force in the force-controlled (blue curve) test increases linearly with time, as it is 

programmed to do, while the force in the strain-controlled (red curve) test deviates from 

linearity when it reaches 1.8 N, the yield point, after which the rate of force increase 

decreases.  In Figure 38f, the increase in strain in the strain-controlled scenario is always 

linear, as it is programmed to be, while the strain in the force-controlled scenario 

increases at an increasing rate past the yield point of the material.  This is because during 

plastic deformation, the sample must be strained at an increasing rate to generate the 

desired tensile force.  For this reason, mechanical testing standards of fibers, yarns, 

plastics, and composites require tensile testing using a fixed strain rate or extension rate 

[86-89].  It is therefore selected that voltage-controlled tests will be conducted when 

assessing the high current behavior of CNT yarns and SWCNT wires, due to the parallel 

between voltage-controlled electrical tests and strain-controlled mechanical tests. 
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Figure 38.  a. Measured current as a function of applied voltage of six CNT yarns 

with either a current-controlled test with 5 mA increases every thirty seconds or a 

voltage controlled test with 110 mV increases every 30 seconds.  b. The measured 

current of the samples from panel a, plotted as a function of the test time.  c. The 

applied voltage on the samples from panel a, plotted as a function of test time.  d. 

Measured tensile force as a function of applied strain for CNT yarns with either a 

force-controlled test where force in increased by 0.233 N/min or a strain-controlled 

test where strain is increased by 0.2 %/min.  e. The measured tensile force from 

both samples in panel d, as a function of test time.  f. The applied strain from both 

samples in panel d, as a function of test time.  

5.3 Ambient Gas Dependence of CNT Yarn and SWCNT Wire Failure 

With the testing conditions determined, several CNT yarns and SWCNT wires 

were brought to their high-current failure points for characterization and failure analysis.  

The effects of three ambient gasses were determined.  Air was selected as one ambient 
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gas due to its prevalence in practical scenarios.  Nitrogen gas allowed for testing in an 

environment with similar thermal conductivity to air but without the presence of oxygen, 

which can react with carbon at high temperature (“oxidation”).  Finally, helium provided 

a second non-oxidative environment with higher thermal conductivity than nitrogen for 

determination of the effect of the ambient gas thermal conductivity.  Three CNT yarns 

were brought to failure in each of these three gasses flowing at 0.5 SCFH by increasing 

the applied voltage (a voltage-controlled test) by 150 mV every 5 seconds.  The current 

as a function of applied voltage from this testing is plotted in Figure 39.  The three CNT 

yarns brought to failure in air reach an average maximum current of 330 mA and fail 

immediately – their maximum current and failure current are the same.  The maximum 

current in nitrogen reached an average of 635 mA, a 94 % increase over the maximum 

current in air.  This increase is likely due to a difference in failure modes.  In air, once the 

CNT yarn reaches a temperature high enough for it to oxidize, the resistance rapidly 

increases and the wire fails abruptly.  In nitrogen, oxidation of the wire is suppressed due 

to the lack of oxygen presence and the wire must reach a temperature high enough to 

thermally decompose [90].  CNT yarns in helium reach an average maximum current of 

880 mA, a 38 % increase over the maximum current in nitrogen and a 138 % increase 

over the maximum current in air.  The increase in maximum current in helium compared 

to nitrogen is due to the higher thermal conductivity of helium, which allows for rapid 

wire conductive cooling, requiring a higher current for joule heating to overcome 

conductive cooling and reach the thermal decomposition temperature for the CNT yarn.   
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Using the average cross-sectional area determined by cross-sectional SEM 

imaging laser-cut samples of CNT yarn lot 60027 (see Figure 40), the maximum currents 

recorded in each ambient gas were converted into current densities.  In air, the average 

maximum current density reached by CNT yarns was 15 MA/m2.  The average maximum 

current density attained in nitrogen was 30 MA/m2, 1.9x greater than attained in air.  The 

average maximum current density measured in helium was 41 MA/m2, 1.4x greater than 

in nitrogen and 27x greater than in air.  This data guides wire coating techniques toward 

materials that have high thermal conductivity to dissipate heat from the wire and have 

low permeability to oxygen to prevent wire oxidation at elevated temperature. 

 

Figure 39.  Measured current as a function of the applied voltage on nine CNT yarn 

samples in 0.5 SCFH of the specified ambient gas.   
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Figure 40.  Cross-sectional SEM images of both sides of 4 laser-cut CNT yarn lot 

60027 samples and the accompanying area measurements recorded from each 

image. 

Optical microscopy images of the failure points of the CNT yarns tested in Figure 

39 were acquired and representative images from this set can be seen in Figure 41.  CNT 

yarns brought to failure in air had a long taper (approximately 10 mm taper on either side 

of the failure point) towards their failure point with several discernable regions.  A 

coating of red material, presumably oxidized residual iron catalyst from the CNT yarn 

synthesis can be seen in regions approximately 5-8 mm from the failure point (Figure 

41a).  Closer to their failure point in air (Figure 41b), spheres of metal can be seen on the 

wire surface (see Figure 41c for detail).  There are presumed to be ripened droplets of 

residual iron catalyst.  Catalyst is present on the surface of the CNT yarns that failed in 

air since the high temperatures were able to oxidize the carbonaceous coatings on the 

catalyst particles, leaving them to oxidize further from the failure point or ripen into 
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droplets closer to it.  Optical microscopy images of CNT yarn failure points in nitrogen 

(Figure 41d) and (Figure 41e) do not display catalyst features on their surfaces and have 

much more abrupt failure points than the yarns that were brought to high current failure 

in air.  This demonstrates the strong effect of oxygen presence during wire failure. 

 

Figure 41.  Optical microscopy images of CNT yarns after failure.  a. ~7 mm from 

failure point in air.  b. Failure point in air.  c. ~0.5 mm from failure point in air, 

same scale bar as panel a.  d. Failure point in nitrogen.  e. Failure point in helium. 

For further visual analysis of the CNT yarn failure points, the CNT yarn segments 

were characterized by SEM after failure.  SEM images of the tip of the CNT yarn failure 

point in air show few CNTs with several spheres of catalyst present (Figure 42a).  

Approximately 1 mm from the failure point, several scattered spherical catalyst particles 

can be seen in the CNT network.  It is important to note that while the catalyst 

morphology changes from a CNT yarn not exposed to high currents, the CNTs in the yarn 

appear largely unchanged.  The application of heat essentially oxidizes the impurities 

near the failure point, purifying the wire.  Figure 42b shows and SEM of the point of 
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failure of a CNT yarn in nitrogen.  A highly-conical failure point is not observed in this 

image as was in Figure 42a, instead there is a blunt failure point where the wire abruptly 

ends without much taper.  A higher magnification SEM image of the CNT yarn in Figure 

42b, approximately 1 mm from the failure point, is seen in Figure 42e.  The yarn 

structure in this image is largely unchanged from as-received CNT yarns.  SEM images 

of the high-current failure point of CNT yarns in helium (Figure 42c) resemble those of 

the high-current failure point in nitrogen – a blunt failure point without much taper in 

which the constituent CNTs appear unchanged from the as-received CNT yarn. 
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Figure 42.  Top Row: SEM images of high-current failure point of a CNT yarn in: a. 

Air, b. Nitrogen. c. Helium.  Bottom Row:  SEM image of CNT yarn approximately 

1 mm from high-current failure point in: d. Air, e. Nitrogen, f. Helium. 

High-current failure tests were conducted with SWCNT extruded wires for 

comparison to CNT yarns.  SWCNT wires were fabricated by dispersing purified laser-

SWCNTs in CSA at a weight loading of 61 mg SWCNT per mL CSA and extruding this 

dispersion through a 22 Ga stainless steel syringe needle at 0.1 mL/min into a 66 cm deep 

cylinder of -10 °C acetone.  Wires were then stretched and dried under tension before 

characterization (see Figure 33).  Cross-sectional analysis indicates the conductivity of 

these wires is ~5 MS/m.  Segments of extruded wire were mounted in the same test 
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fixture as the CNT yarns for failure current measurements using two-point measurements 

with a probe separation of 3 cm.  Applied voltage was increased by 100 mV every 2.5 

seconds until wire failure.  Results of this testing in three ambient gases are presented in 

Figure 43.  In air, current increases linearly with increasing applied voltage until 240 mA 

of current are attained, after which there is an abrupt drop in current to ~180 mA.  Thus 

current is sustained with increasing voltage until the wire fails at 8 V.  In nitrogen, the 

same behavior is observed until the 8 V point, but instead of the wire failing and 

becoming an open circuit as in air, the current begins to increase linearly again with 

increasing applied voltage.  This difference is due to the lack of oxygen present in the 

nitrogen environment.  After reaching a maximum current of 360 mA (1.5x greater than 

the maximum in air) at 26 V, the current begins to decrease until the wire abruptly fails at 

34 V.  The high-current behavior of extruded SWCNT wires in helium resembles that of 

extruded SWCNT wires in nitrogen:  there is a linear increase in current with increasing 

applied voltage until 440 mA is reached at 5 V followed by an abrupt drop in current to ~ 

300 mA which is maintained until 18 V, when the current begins to increase linearly once 

again to a maximum current of 570 mA (1.6x greater than the maximum in nitrogen) at 

44 V, when the current begins to decrease with additional applied voltage.  To explain 

these multiple regimes of current increase and decrease with applied voltage, the change 

in resistance of the SWCNT wire is investigated in the next section. 

The currents attained in the SWCNT wires are lower than those attained in the 

CNT yarns. For comparison to other wire types, the maximum currents have been 

converted to current densities.  The maximum current density in air of an extruded 
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SWCNT wire is 180 MA/m2, 11.5x greater than that of CNT yarns in air.  The maximum 

current attained by extruded SWCNT wires in nitrogen was 260 MA/m2, 8.9x greater 

than that of CNT yarns in nitrogen.  The maximum current attained by extruded SWCNT 

wires in helium was 420 MA/m2, 10.2x greater than that of CNT yarns in helium.  

Greater current densities were achieved by extruded SWCNT wire than CNT yarns likely 

due to the higher purity, better alignment, and smaller diameter of extruded SWCNT 

wires, as well as the higher conductivity of the individual SWCNTs when compared to 

MWCNTs.   

 

Figure 43.  Measured current as a function of applied voltage for three segments of 

extruded SWCNT wire under three different ambient gasses.  

The instantaneous resistance (applied voltage divided by measured current) from 

each of the tests in Figure 43 have been plotted as a function of the applied voltage in 

Figure 44 in order to elucidate the origin of the current-voltage behavior of SWCNT 

wires under high current in different ambient gasses.  Extruded SWCNT wires in all three 
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ambient gasses are constant at low voltages, but eventually the resistance begins to climb 

linearly with additional applied current.  This explains the initially linear regions of the 

current-voltage curves in Figure 43, followed by the constant current regimes.   After a 

period of linear increase in resistance, the SWCNT wire in air is generating enough heat 

from joule heating (since power dissipation is increasing as resistance increase since 𝑃𝑃 =

𝐶𝐶2𝑅𝑅) that the oxidation takes place and the wire fails.  This failure is avoided in the 

nitrogen and helium ambient conditions due to the lack of oxygen present.  Instead, in 

these wires, after the resistance increases linearly for some time, it begins another region 

of remaining relatively constant with increasing applied voltage until the resistance 

begins to increase exponentially until the wire fails.  The region of constant resistance 

with increasing voltage in Figure 44 corresponds to the second region of linear current 

increase in Figure 43.  When the resistance begins to increase exponentially, additional 

applied voltage is not enough to keep the measured current rising, and this region of 

Figure 44 corresponds to the region of decreasing current with increasing applied voltage 

in the nitrogen and helium testing environments in Figure 43.  
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Figure 44.  Instantaneous resistance (applied voltage divided by measured current) 

calculated from the data in Figure 43 as a function of the applied voltage. 

The origin of the different regions of resistance change can be explained by 

oxidation, wire de-doping, and wire degradation.  The region of constant resistance at low 

applied voltages occurs before wire temperature has reached sufficient temperatures to 

cause desorption of residual acid dopants, water, and oxygen.  The region of linear 

resistance increase corresponds the de-doping region, where currents are high enough for 

the heat generated to cause a loss of adsorbed dopants, which causes an increase in wire 

resistance.  Once the dopants have completely desorbed in the nitrogen and helium test 

scenarios, the resistance is once again constant until high enough temperatures are 

reached for degradation of SWCNTs in the wire to begins, and the resistance increases 

further due to the loss of these conductors.   

These regimes of resistance change have been explored previously in the 

literature.  In [83], similar high current tests were conducted to those used in this work.  
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The authors use a current-controlled test in vacuum and plot current density vs resistance 

relative to the initial resistance of extruded CNT fibers before high-current testing, and 

the results can be seen in the main panel of Figure 45b.  The data from the present work 

on extruded SWCNT wires is plotted in Figure 45a as applied voltage vs instantaneous 

resistance so that the two datasets can be easily compared.  The authors of [83] 

demonstrate the reversibility of resistance changes in the regions where resistance 

increases due to de-doping and degradation (labeled Regime 2 and Regime 4, 

respectively) and the reversibility of the current-voltage characteristics in the regions 

where resistance is constant (labeled Regime 1 and Regime 4, respectively).   

 

Figure 45.  a. Applied voltage plotted as a function of the instantaneous resistance of 

extruded SWCNT wires tested in different ambient gases derived from the data in 

Figure 43 and Figure 44, which derive from a voltage-controlled test.  b. Plot of 

current density as a function of relative resistance change of an extruded CNT yarn 

in vacuum from current-controlled testing in which repeated cycles of  current were 

applied with each cycle reaching a new maximum value, adapted from [83]. 
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After extruded SWCNT wire samples were brought to their high-current failure in 

air, nitrogen and helium, samples were subjected to SEM characterization for failure 

analysis.  While taper in the failure point of SWCNT wires when tested in air was greatly 

reduced from that observed in CNT yarns brought to high-current failure in air (Figure 

46a), a conical failure point is still observed.  In higher-magnification SEMs of the 

SWCNT wire surface near (<80 µm away) the failure point in air, no metallic impurities 

are present and the SWCNT network is largely intact (compare to as-produced SEM 

images in Figure 33).  The failure point of extruded SWCNT wires tested in nitrogen 

displays less taper than the failure point from samples tested in air (Figure 46b).  In 

higher magnification SEMs of the SWCNT network near (<80 µm away) the failure point 

in nitrogen, degradation of the SWCNT network is apparent as the bundles have become 

shortened, porous, and fractured (Figure 46e).  Similar behavior is seen in the high-

current failure point in helium: a blunt failure point with very little taper (Figure 46c) and 

the nearby SWCNT network has become highly degraded (Figure 46f). 

Comparisons between the SEMs in Figure 46 and those in Figure 42 can elucidate 

differences in failure between CNT yarns and SWCNT wires, and between failure modes 

in different ambient conditions.  The change in catalyst morphology in  

The SWCNT wire brought to high-current failure in air does not show network 

degradation because only the SWCNTs near the hottest potion of the wire oxidized.  

Once oxidation took place during the test, the SWCNT wire became a short and began 

cooling before an extended region of the wire reached high enough temperature to 

oxidize.  In the nitrogen and helium environments, the entire region of the SWCNT wire 
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between the electrical contacts rises in temperature (as evident from the wire glow) and 

so wire degradation takes place in SWCNT bundles further from the failure point. 

 

Figure 46.  Top Row: SEM images of high-current failure point of extruded 

SWCNT wires in: a. Air, b. Nitrogen. c. Helium.  Bottom Row:  SEM images of 

extruded SWCNT wires <80 µm from their high-current failure point in: d. Air, e. 

Nitrogen, f. Helium. 

To quantitatively assess the failures of CNT yarns and extruded SWCNT wires, 

Raman spectroscopy was performed at the failure points, and at 1 mm intervals from the 

failure point along the yarn/wire axis.  In Figure 47a, the D/G ratio in the 5 mm closest to 

the failure point is below that of the as-received CNT yarn.  This is further evidence that 
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the high temperatures and oxidation removed carbonaceous impurities which do not have 

a regular structure and contribute to the D/G ratio [91].  Increased D/G ratio past the 5 

mm point in this sample may be due to the presence of oxidized catalyst coating on the 

surface of the yarn, which becomes more continuous further from the failure point where 

there is insufficient thermal energy to cause droplet ripening.  In extruded SWCNT wires, 

the catalyst particles have been removed during purification of the material prior to 

dispersion and extrusion, and so no decrease in the D/G ratio is observed (Figure 47b).  

Instead, in the sample brought tot high-current failure in air, the D/G ratio is increased 

due to the oxidation of SWCNTs near the failure point, but because this oxidation is 

localized, the D/G ratio tends back toward the D/G ration of an as-extruded sample after 

3-4 mm.  In contrast, the D/G ratio is elevated in the entire region measured in the 

SWCNT wire that was brought to high current failure in nitrogen, since the entire region 

of the wire between the electrical contacts was elevated in temperature. 
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Figure 47.  Raman D/G ratios as a function of distance from the high-current failure 

point.  a. measured on a CNT yarn brought to high-current failure in air.  b. 

Measured on extruded SWCNT wires brought to failure in air (red circle data 

points) and in nitrogen (green square data points). 

5.4 High-Current Wire and Yarn Conclusions 

The behavior of both commercially available Nanocomp Miralon CNT yarns and 

extruded SWCNT wires has been characterized under three different ambient gases and 

failure analysis has been conducted.  A test chamber was constructed to allow for a DC 

high-voltage power supply to apply controlled currents and voltages to yarns and wires 

under controlled ambient conditions.  High-current tests were conducted on CNT yarns in 

both current-controlled and voltage-controlled scenarios.  The current-voltage 

characteristics from yarns tested under these two conditions varied greatly, and this 

variance was ascribed to rapid voltage increases per unit time in the current-controlled 

scenario.  By drawing analogy to mechanical stress-strain testing, voltage-controlled 

testing is determined to be the more informative testing type. 
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CNT yarns in nitrogen and helium failed at 94 % and 169 % greater currents than 

those in air due to the lack of oxygen in their surroundings.  Greater failure current in 

helium is a product of the greater thermal conductivity in helium than nitrogen or air, 

which increases the current required for joule heating and 

convective/conductive/radiative cooling to equilibrate at a high enough temperature for 

wire degradation to cause failure.  Extruded SWCNT wires failed at current densities of 

180 MA/m2 in air, 11.5x greater than those of CNT yarns in air.  Maximum current 

densities of 420 MA/m2 for extruded wires were reached in helium.  SEM and Raman 

spectroscopy failure analysis of CNT yarns and SWCNT wires demonstrated that the lack 

of impurities in SWCNT wires was an enabling factor in the enhancement of their 

maximum current over CNT yarns.  
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Chapter 6. Doping of Carbon Nanotube Wires for Enhanced 

Conductivity 

 

6.1 Chapter Abstract 

Purified commercially available carbon nanotube (CNT) sheet and yarn materials 

have been chemically doped in solutions of IBr using varying solvents to enhance the 

CNT bulk electrical conductivity.  Time dependent optical absorption spectroscopy was 

employed to quantify IBr adsorption onto the CNT samples and results correlate dopant 

adsorption with CNT conductivity enhancement. Two independent solvent systems were 

evaluated (hexanes and ethanol) leading to 40% greater conductivity for CNTs doped 

with IBr in hexanes compared to CNTs doped with IBr in ethanol.  A comparative 

analysis of IBr in 9 solvents with varying polarities at 2.1 g IBr/L solvent was employed 

to evaluate CNT doping efficacy and supports a mechanism whereby saturated solutions 

in hexanes and water favor dopant-CNT interactions that shift the equilibrium in favor of 

dopant adsorption, and yield the highest CNT electrical conductivity.  Saturated dopant 

solution loadings of 10-20 g IBr/L hexanes resulted in the maximum electrical 

conductivity of 0.85 MS/m compared to an initial CNT conductivity of 0.1 MS/m.  The 

optimal IBr doping conditions from the work (60 minute exposure of 20.7g IBr/L 

hexanes) were applied to commercial CNT yarns leading to an improvement in 

Tasks: 
• Identify and study chemicals species which enhance bulk CNT conductivity. 
• Determine the time-dependence of CNT doping 
• Utilize UV-vis spectroscopy to quantify dopant uptake on bulk CNT materials for various 

dopants. 
• Evaluate the effects of solvent selection on conductivity enhancement and dopant 

adsorption amount for IBr dopant. 
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conductivity of 13.4× to a value of 1.4 MS/m. High voltage testing in air shows a 36% 

increase in maximum current carrying capacity at failure compared to as-received yarn. 

Thus, proper combination of dopant-solvent leads to enhanced electrical transport 

properties in advanced carbon conductors. 

6.2 Introduction to Chemical Doping of CNTs 

Bulk carbon nanotube (CNT) electrical conductors are of interest for aerospace 

and terrestrial electrical transmission applications due to their low density, flexure 

tolerance, chemical stability, and high electrical and thermal conductivities.[69], [92]  A 

critical need for improvement of these materials is the enhancement of the electrical 

conductivity of bulk CNT structures towards the exceptionally high intrinsic conductivity 

of individual CNTs.  Conductivity enhancements of CNT conductors have been obtained 

previously through the optimization of conductor fabrication, and by the incorporation of 

chemical dopants [93-95].  Several methods of dopant delivery, such as gaseous 

deposition and aqueous soaking, have demonstrated success depending on the specific 

dopant species of interest [53], [96], [97].  Promising work using I2 and KAuBr4 to 

achieve exceptionally high bulk CNT conductivity [53], [96], [98] motivates the study of 

iodine and bromine containing compounds, and recent work with interhalogen 

compounds, such as iodine monobromide (IBr) and iodine monochloride (ICl), [97], [99], 

[100] has shown an increase in the conductivity of CNT thin films and wires.  Previously, 

these dopants have been applied to CNT materials using either water [97] or 

dichloromethane [100] as a solvent without explicit study of the effects of varying dopant 

delivery solvent.  Additionally, while ICl is a liquid at room temperature, IBr is a sold.  
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Therefore, doping in neat IBr requires that either a solvent be used at room temperature, 

or that doping take place in melted IBr.  Doping in melted IBr has the undesired effect of 

leaving a dopant “crust” on CNT samples when it returns to room temperature.  Thus, 

there is motivation to study and refine the delivery methodology for these dopants to 

further enhance the electrical conductivity of doped CNTs. 

Chemical doping of CNTs refers to intercalation of the dopant species into void 

spaces between CNT aggregates, bundles, and onto the CNT surfaces in a solid bulk 

structure [95], [101].  The dopant species shifts the Fermi level of individual CNTs, 

thereby altering their intra-CNT electronic properties [101].  The presence of chemical 

dopants also influences charge transport between individual CNTs (i.e., inter-CNT) in a 

network [102-104]. Therefore, chemical dopants can be developed and exploited to 

enhance the electrical conductivity of bulk CNT structures for applications such as power 

transmission and electrical contacts, which require high conductivity materials.  Solution 

phase doping represents a scalable strategy to introduce many solid-phase species, but 

can be highly influenced by solvent selection, exposure time, and concentration [69], 

[98].   

In the present work, a systematic study of solvent type has been conducted, and its 

influence on IBr adsorption and resulting bulk CNT electrical conductivity has been 

determined.  IBr adsorption is quantified by adapting published techniques that uses 

optical absorption spectroscopy to monitor changes in solution concentration [105].  

Additional studies investigate the effects of IBr concentration on CNT doping 

performance and evaluate the impact of solution concentrations exceeding the solubility 
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limit. Overall, results show that CNT conductivity enhancement is dependent on the 

combined effects from the dopant-solvent, dopant-CNT, and CNT-solvent interactions.  

Using these results, CNT yarns were doped under determined conditions to increase 

conductivity more than an order of magnitude to show influence of enhanced dopant on 

high current carrying capacity carbon conductors. 

6.3 Experimental 

6.3.1 Doping Solution and CNT Preparation 

IBr (98% purity) was purchased as a solid from Sigma-Aldrich. Acetone, 

dimethyl sulfoxide (DMSO), and isopropanol (IPA) were purchased from BHD (ACS 

reagent grade).  Chloroform (0.5 – 1.0 % ethanol stabilizer, 99.9% purity), 

dimethylacetamide (DMA, >99.9% purity), ethanol (ACS reagent grade), and hexanes 

(mix of isomers, ACS reagent grade) were purchased from Sigma-Aldrich.  

Spectrophotometric grade methanol (>99.8% purity) was purchased from Alfa Aesar.   

Carbon nanotube sheet material (lot # 70160) was purchased from Nanocomp 

Technologies, Inc.  The CNT material was purified using a previously reported 

procedure[97] by thermal oxidation in a quartz tube furnace under flowing air by ramping 

from room temperature to 520 °C at 10 °C/min then immediately removing the sample 

from the furnace for cooling.  Thermal oxidation was followed by a 30 minute soak in 

37% hydrochloric acid (Sigma-Aldrich, ACS reagent grade), a 1 h dry in a vacuum oven 

at 80 °C, and an additional thermal oxidation from room temperature to 520 °C at 10 

°C/min.  The resulting purified sheet material was cut into 7 mm square samples with a 

razor blade for doping studies and characterization.  Raman spectra were recorded from 
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samples after purification and after doping using a JY-Horiba Labram-HR using a 633 

nm excitation laser. 

Doping solutions were prepared by dispensing melted IBr at 50 °C and massing 

the resulting aliquots in glass vials sealed with polytetrafluoroethylene-lined caps on an 

Ohaus EP214C Explorer Pro Analytical Balance.  The appropriate volume of solvent was 

then added to the cooled, solid mass of IBr to create solutions of the desired 

concentration.  All CNT doping was achieved by soaking the CNT squares in these 

solutions at room temperature immediately after IBr dissolution.  

6.3.2 Electrical Conductivity and Optical Absorption Characterization 

Electrical resistance was measured for each CNT square and CNT yarn using a 

four-point probe and van der Pauw method following purification and again after doping 

using a National Instruments NI PXI-5652 source/measure unit and an NI PXI-4071 

digital multimeter at ∼20°C.  Electrical conductivity was computed based upon the 

measured resistance values and the cross-sectional area of the sheets or yarns based 

upon electron microscopy.  All plotted electrical conductivities of CNT sheets are the 

averaged result of three conductivity measurements. The standard deviation in the 

conductivity of the starting material was 21% of the mean, while standard deviations in 

doped sample lots were 3 – 28% of their means. 

Optical absorption studies were conducted using a Perkin-Elmer Lambda 900 

spectrometer using a 1 cm path-length, quartz cuvette with a polytetrafluoroethylene 

stopper plug to minimize solvent evaporation.  Absorption data was collected from 200 to 
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600 nm in 1 nm intervals using the set-up described in Figure 48, with each scan 

occurring every 10 min for 100 min.  Beer’s Law was used to relate the percent change in 

absorbance to percent change in concentration, which is attributed to IBr adsorption onto 

the CNT sample, and can be used to compare relative adsorption of IBr between solvents.  

The peak used in this analysis is assumed to be representative of total IBr concentration 

and no peak assignments have been made to particular dissolved halogen species.[106]  

Therefore, the amount of IBr adsorbed onto the CNT samples was calculated using the 

difference of relative changes in optical absorbance between a control sample and a 

CNT-containing sample using the equation at the same wavelength: 

 
𝑞𝑞 = �

𝐴𝐴C(𝑡𝑡)
𝐴𝐴C(0)

−
𝐴𝐴CNT(𝑡𝑡)
𝐴𝐴CNT(0)

� �
𝐶𝐶𝑖𝑖𝑉𝑉𝑀𝑀
𝑀𝑀CNT

� 
(7) 

Where q is the mass of IBr adsorbed onto CNT sample per mass of CNT 

(expressed in this work as µg/mg), AC(t) is the optical absorbance of the control sample 

(IBr solution without CNT sample present) at time t, ACNT(t) is the optical absorbance of 

the IBr solution with a CNT sample present in the cuvette at time t, Ci is the initial 

concentration of the IBr solution that the CNT sample was immersed in (in mol/L), V is 

the volume of solution in the cuvette (in L), M is the molar mass of IBr (in µg/mol), and 

MCNT is the mass of CNTs in the cuvette (in mg).  All solutions were prepared 

immediately prior to time-dependent optical absorption studies to ensure equal solution 

age. The solution concentration was approximately 0.2 g/L (1 mM) and the cuvette 

volume was 3.2 mL for all optical absorption studies.  IBr concentrations for doping 

studies are presented in units of mM for solutions below the solubility limit when 

complete dissolution of the IBr is expected (such as for spectroscopy).  Additionally, 
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concentrations are supplied in units of g/L to reflect the amount of IBr added to a given 

volume of solvent, which is potentially relevant in scenarios when more IBr is present 

than can be dissolved in a given solvent. 

 

Figure 48. Schematic of optical absorbance spectroscopy experimental set up, where 

a solid CNT sample is present in the dopant solution within the cuvette. ∆𝑨𝑨 is the 

change in optical absorbance at a given wavelength between a control doping 

solution sample and a doping solution sample with CNTs present at a given time 

after solution preparation , and ∆𝑪𝑪 is the change in doping solution concentration 

between its as-prepared concentration and its concentration at a given time. 

 

6.3.3 IBr Time-Dependent Conductivity Study 

CNT samples were exposed to IBr in ethanol (selected as the solvent for the initial 

studies due to high IBr solubility) over time using two methods.  The first method was an 

iterative approach, whereby three CNT samples were each soaked in separate 5 mL 

solutions of 0.2 g/L (1 mM) IBr in ethanol for ten minutes, removed from the solution, 

blotted dry, and electrically characterized after five minutes of drying at room 

temperature under ambient conditions.  The CNT samples were returned after 
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characterization to the IBr doping solution and the process was repeated 6 times for a 

total doping time of 60 min.  The second method was a single time exposure, whereby 

CNT samples were immersed in an IBr solution for 30, 45, 60, or 90 minutes each before 

being dried and characterized in the same manner as in the first method.   

6.3.4 Tensile and High-Current Characterization of CNT Yarns 

The efficacy of IBr doping in high-current applications was tested on similar CNT 

material in a conductive yarn format.  Nanocomp Miralon® yarn (lot # 60027) was used 

as-received, without purification.  Stress-strain properties were determined using a TA 

Q800 Dynamic Mechanical Analizer (DMA) with a film-tension clamp and an 

approximately 1 cm gauge length. Mechanical testing took place by increasing the strain 

by 0.5 %/min until yarn failure.  The high-current characteristics of both the as-received 

yarn and yarns treated with IBr were measured using an Arbin BT-2000 power supply by 

applying a constant current through two source/measure probes (separated by 25 mm of 

yarn), which was increased every 30 seconds by 10 mA until wire failure, similar to 

procedures previously used to test high-current characteristics of CNT wires and 

yarns.[83], [84] 

6.4 Results of IBr Doping Studies 

Initial studies were conducted to examine solvent effects on the bulk CNT 

conductivity using I2, which is a commonly reported CNT dopant in the literature [53], 

[96].  Purified CNT samples (see inset of Figure 49a) with a conductivity of 1.0×105 S/m 

were exposed to 5 mM solutions of I2 in hexanes and ethanol for 1 hour at 20°C, after 

which time, the samples were removed from the dopant solution and air dried for 5 min. 
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Figure 49a shows that the CNT samples doped with I2 in hexanes had higher 

conductivities than those doped with I2 in ethanol (3.4×106 S/m compared to 2.3×106 S/m 

respectively).   

Optical absorption spectroscopy is used to determine dopant adsorption onto CNT 

samples.  Figure 49b and 1c show the I2 optical absorption peaks in ethanol and hexanes 

respectively, and their decay over time when CNT samples are present in the solution.  

Note that these peaks occur at different wavelengths (445 nm in ethanol and 520 nm in 

hexanes), and corresponding to different solution colors as shown in the insets of Figure 

49b and c, respectively.  This is due to the solvatochromic shift that I2 experiences in 

solution, which indicates differing interactions between the solvents and the I2 [107].  

The black data points in Figure 49d demonstrate a less-than 1% change in the optical 

absorbance intensity at the I2 peak maxima of the I2 solutions in hexanes and ethanol 

without CNTs over time.  Optical absorbance intensity from the hexanes and ethanol 

solutions with CNTs present is displayed as the red data points in Figure 49d, which 

indicates a significant reduction in absorbance intensity at the I2 peak maxima over time.  

Figure 49e shows the mass of dopant adsorbed over time using equation (7), normalized 

to the mass of the CNT sample present.  This figure indicates ~50% greater adsorption of 

I2 onto the CNTs when using hexanes as a solvent than ethanol at 60 min doping time 

(38 µg I2 / mg CNT compared to 25 µg I2 / mg CNT, respectively).  Thus, while both I2 

doping solutions increase bulk CNT conductivity, the hexanes doping solutions promotes 

greater I2 adsorption onto the CNTs and therefore, a greater conductivity enhancement is 

observed when doping in hexanes compared to ethanol.  Therefore, studying the dopant 
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delivery solvent for novel dopants of interest, such as IBr, in addition to I2 is important 

for optimizing their enhancement of CNT electrical conductivity. 

 

Figure 49. (a.)  Conductivity of CNT samples doped with 5 mM I2 in ethanol and 

hexanes for 60 min.  Inset shows an example of a purified CNT sample (7 mm 

square) used in all following studies.  (b.) Optical absorbance spectra of I2 in ethanol 

at specified times after introducing a CNT sample into the cuvette.  Inset shows 

photograph of 1 mM IBr in ethanol.  (c.) Optical absorbance spectra of I2 in hexanes 

at specified times after introducing a CNT sample into the cuvette.  Inset shows 

photograph of 1 mM IBr in hexanes.  (d.) Normalized absorbance intensity at peak 
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wavelengths over time for I2 in ethanol and hexanes after solution preparation with 

and without CNTs present in the cuvette.  (e.) Mass of I2 dopant absorbed per mass 

of CNT sample during doping in ethanol and hexane solutions. 

 

IBr was selected as a dopant due to its efficacy[97] and recent interest in 

interhalogen species.[99], [100]  Purified CNT material (morphologically characterized 

by SEM in Figure S1) was exposed to a 0.2 g/L (1 mM) IBr doping solution in ethanol to 

determine the time dependency of doping using both iterative and single time exposure 

methods.  The electrical conductivity results from both methods are compared in Figure 

50a.  In the case of the iterative method, a doubling in conductivity is observed after the 

first 10 min exposure, while the increase in conductivity thereafter is progressively less 

and approaches a maximum value around 60 min.  In comparison, the single time 

exposure results for 30, 45, or 60 minutes coincide with the iterative method results, and 

a single exposure time of 90 min (yellow data point) shows minimal additional 

conductivity enhancement. Significant initial conductivity enhancement at short exposure 

times followed by a much lower rate of change after ~60 min is similar to results for 

KAuBr4 (aq) doping of CNTs.[69]   

The time dependence of IBr adsorption onto CNTs was measured using an optical 

absorption procedure for IBr solutions with CNTs present.  Figure 50b shows the 

absorbance spectra for 0.2 g/L (1 mM) IBr in ethanol, and the suppression in the peak at 

390 nm over time when CNTs are present.  Figure 50c summarizes the 390 nm peak 

intensity over time with the CNTs present in solution (black diamond data points) 
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compared to a control solution of 0.2 g/L (1 mM) IBr in ethanol without CNTs present 

(black circle data points).  The IBr peak intensity of the control sample remains relatively 

constant over time (less than 1% change), whereas the IBr peak intensity of the sample 

containing CNTs decreases until approximately 60 min, after which point the rate of 

decrease is reduced.  The amount of IBr adsorbed onto the CNT sample (normalized to 

the CNT sample mass) is calculated by Eq. 1 and shown as the blue square data points in 

Figure 50c.  This data demonstrates rapid IBr adsorption that levels off at 60 minutes, 

which parallels the trend in conductivity enhancement observed in Figure 50a.  The 

optical absorption data is used to determine the time-dependence of the interaction 

between the doping solution and the CNTs.  The doping solution may contain species 

derivative of IBr such as I2, Br2, I-, Br-, I3
-, etc., and the products of reactions between 

these species and the solvent due to the reactivity of interhalogen compounds and organic 

solvents.[108]  The origin of the optical absorption peaks studied may be one of these 

derivatives or product compounds, but because the change in peak intensity is compared 

to a control sample without CNTs present, the computational result from Eq. 1 can be 

used as a metric for comparing the relative effects of CNT doping using different solvents 

and its time dependence.  Thus, the results illustrate the strong correlation between time-

dependent CNT conductivity enhancement and IBr adsorption. 
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Figure 50.  (a.) Time-dependent doping studies using 0.2 g/L (1 mM) IBr in ethanol.  

(b.) Optical absorbance of 0.2 g/L (1 mM) IBr in ethanol solution (data collected 

every 10 minutes but shown every 20 minutes for clarity) after introducing a CNT 

sample into the cuvette. Inset shows photograph of the 0.2 g/L (1 mM) IBr in 

ethanol solution.  (c.) Optical absorbance values at 390 nm for a solution of 0.2 g/L 

(1 mM) IBr in ethanol both with (black diamond markers) and without (black circle 

markers) CNTs present in the cuvette over time.  Optical absorbance data is 

normalized to absorbance at 0 min.  Calculated values of the amount of IBr 

adsorbed onto the CNT sample are shown as blue square markers and plotted on 

the right y-axis over time.  

Studies of IBr adsorption onto CNTs were repeated with hexanes as the dopant 

delivery solvent for comparison to IBr adsorption onto CNTs in ethanol to determine the 

effects of solvent polarity.  Figure 51a shows the IBr in hexanes absorption peak at 503 

nm and its decay over time when a CNT sample is present in the solution.  Note that the 

peak absorption of IBr in hexanes occurs at a different wavelength than in ethanol (503 

nm compared to 390 nm) and that the solution color differs as well (insets of Figure 50b 

and Figure 51a).  This is due to the solvatochromic shift that halogen species exhibit in 

solution, which indicates differing interactions between the solvents and the IBr.[107], 

[109], [110]  Figure 51b shows the IBr optical absorption peak intensity over time with 

(black diamond data points) and without (black circle data points) a CNT sample present.  

The amount of IBr adsorbed onto the CNT samples was calculated using Eq. 1, and the 

results are shown as the blue square data points on Figure 51b.  For CNT samples doped 

with IBr in hexanes at 60 min, 129 µg IBr are adsorbed per 1 mg of CNT material 

present.  By comparison, samples exposed to 0.2 g/L (1 mM) IBr in ethanol for 60 min 

yield adsorption of 40 µg IBr per 1 mg of CNT material. This implies a 3.2× increase in 



 

135 

 

IBr adsorption onto CNTs when delivered in hexanes compared to ethanol.  As shown in 

Figure 50, the amount of IBr adsorbed onto the CNTs from an ethanol solution has been 

shown to correlate with the enhancement in electrical conductivity.  Therefore, it is 

expected that the increase in IBr adsorption promoted by delivery in hexanes compared to 

ethanol will also lead to an increase in doped CNT electrical conductivity.  Under 

identical doping conditions (0.2 g/L (1 mM) concentration, 60 min IBr exposure time, 5 

mL IBr solution volume), doping CNT samples with IBr in ethanol yields an electrical 

conductivity of 0.25 MS/m, while CNT samples doped with IBr in hexanes had a 

conductivity of 0.35 MS/m, confirming that the greater IBr adsorption promoted by 

hexanes yields greater electrical conductivity enhancement. 

 

 

Figure 51. (a.) Optical absorbance of IBr in hexanes solution (data collected every 

10 minutes but shown every 20 minutes for clarity) after introducing a CNT sample 

into the cuvette. Inset shows photograph of the 0.2 g/L (1 mM) IBr in hexanes 

solution.  (b.) Optical absorbance values at 503 nm of an IBr solution in hexanes 
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both with (black diamond markers) and without (black circle markers) CNTs 

present in the cuvette over time.  Optical absorbance data is normalized to 

absorbance at 0 min.  Calculated values of the amount of IBr adsorbed onto the 

CNT sample are shown as blue square markers and plotted on the right y-axis over 

time.   

While solution concentrations at this point have been 0.2 g/L (1 mM) for 

spectroscopy, electrical doping of CNTs typically takes place at 5-10 mM [97] and the 

observed effect with solvent polarity warranted a more systematic analysis of the solvent 

properties.  At 2.1 g/L (10 mM), IBr is soluble in a variety of solvents that span the 

dipole moment range from ~0-4, which allows for the examination of dopant delivery 

solvent on CNT conductivity.  CNT samples were exposed to 9 different solvents that 

span the range of typical solvent polarity from hexanes to dimethyl sulfoxide (DMSO) at 

a concentration of 2.1 g/L (10 mM) for 60 min and the results are shown in Figure 52a.  

In addition, IBr solutions were prepared in a DMA solvent, which is known to disperse 

CNTs effectively.[111] The electrical conductivity of the starting material is 0.10 MS/m, 

and the resulting CNT conductivity after exposure for 60 min in each doping solution 

shows differing enhancement by solvent type.  In particular, CNTs exposed to IBr in 

DMSO exhibit the least improvement in conductivity, achieving only 0.18 MS/m.  By 

comparison, doping CNTs with IBr in hexanes resulted in an electrical conductivity of 

0.67 MS/m and IBr in water achieved 0.75 MS/m.  There was no change in sample 

resistance when purified sheets were exposed to solvents without IBr present, the range 

of samples thicknesses were similar pre- (18 to 30 µm, median 21 µm) and post-dopant 

exposure (14 to 26 µm, median 20 µm), and no morphological changes were seen via 

SEM before and after solvent exposure (see Figure S1).  While bulk CNT exposure to 
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solvents has been demonstrated to influence CNT packing in the literature[32], [112-

114], the lack of change in this study is likely due to prior solvent treatment to achieve 

high-density CNT structures by the manufacturer.  Because the CNT starting material 

was the same for all IBr solutions studied, it was expected to contain similar degrees of 

surface functionalization so that the comparison between each doping solution’s efficacy 

can be made.  In general, a dependence on the solvent dipole moment is observed, where 

solvents with a lower dipole moment result in improved IBr adsorption on the CNTs and 

larger conductivity enhancement.  

A proposed mechanism for the data in Figure 3a is explained by lower dipole 

moment solvents having weaker interactions with both the dopant and the CNTs, which 

shifts the equilibrium of dopant in solution to dopant adsorbed onto CNTs by favoring 

dopant-CNT interaction over dopant-solvent or CNT-solvent interactions.  Therefore, 

when selecting a dopant delivery solvent, it is important to consider both the solvent’s 

interactions with the dopant and with the CNTs.  Weak interactions with both the solvent 

and CNTs are favorable for promoting high electrical conductivity.  Further support for 

this mechanism includes DMA which has strong interactions with CNTs and the IBr 

dopant, and this dopant solution is observed to only minimally enhance CNT electrical 

conductivity.  These results indicate that not all solvents in which a dopant is soluble will 

promote a large conductivity enhancement.  Figure 52a also highlights that water as an 

IBr delivery solvent yields a high CNT electrical conductivity, and loosely follows the 

observed trend with dipole moment.  The performance of water as an IBr delivery solvent 

fits the mechanism due to its weak interaction with IBr (low solubility) and weak 
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interactions with CNT sheet materials, which are often hydrophobic.[115]  The 

importance of dopant delivery mechanism for conductivity enhancement may in part 

explain why some species with large-magnitude redox potential are not always effective 

dopants.[97]  Therefore, the dopant redox potential is a critical property for selection, but 

the data presented in this work implies that consideration for the dopant delivery 

methodology must also be made.  

Since the results suggest an equilibrium dominated mechanism, increasing the 

concentration of dopant solution can drive the amount adsorbed for conductivity.  Figure 

52b shows the trend between the amount of IBr added to a solution of water or hexanes 

and the resulting CNT electrical conductivity after IBr exposure for 60 min.  IBr reaches 

its maximum solubility at ~2.1 g/L in water and 12.4 g/L in hexanes, with additional IBr 

added to these solutions settling out as a solid.  Raman spectra from purified CNT sheets 

and purified CNT sheets doped with 20.1 g/L IBr in hexanes are plotted in Figure S2, and 

show typical spectra of multi-walled CNTs with prominent, D-, G-, and G’-bands. [116], 

[117]  The presence of a low frequency peak around 180-200 cm-1 in the doped sample 

spectra is attributed to the presence of some crystallized halogen species, which has been 

shown previously for I2(s).[118]  Below the solubility limit in hexanes, increasing the IBr 

concentration correlates with an increase in doped CNT electrical conductivity.  The 

samples doped in 12.4 g/L (60 mM) IBr in hexanes have the highest conductivity of 0.85 

MS/m, 2.4x greater conductivity than samples doped in 0.2 g/L (1 mM) IBr in hexanes 

solutions. This conductivity of 0.85 MS/m from enhanced solvent delivery is a marked 

improvement over previously published results for IBr doped sheets which achieved 0.5 
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MS/m.[97]  Above the solubility limit in both hexanes and water, the presence of 

undissolved IBr added to the doping solution does not significantly improve CNT 

conductivity enhancement beyond that of a saturated doping solution, indicating that 

doping with solutions at a saturated level provides the highest increase in conductivity.  

This explains how the conductivity enhancement at 2.1 g/L (10 mM) is greatest when 

using water as a solvent (Figure 52a), because water is fully saturated with IBr at this 

concentration.  The trend between dopant concentration in solution and the resulting CNT 

electrical conductivity in Figure 52b is further evidence for an equilibrium-based 

mechanism, as increasing concentration yields an equilibrium shift toward an increased 

amount of IBr adsorbed onto CNTs and the presence of additional IBr yields no 

additional conductivity increase.  These results motivate future studies with additional 

dopant systems of interest such as ICl, which can be used neat[100] or in a solvent[99]. 

 

Figure 52.  (a.) Conductivity of CNT samples after exposure to 2.1 g/L (10 mM) IBr 

for 60 min in the specified solvent versus that solvent’s dipole moment. [119]  (b.) 
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Conductivity of CNT samples doped with various solution loadings of IBr in 

hexanes for 60 min.  

The efficacy of IBr doping in high-current applications was tested on similar CNT 

material in a conductive yarn format.  The as-received yarn was exposed to a saturated 

(20.7 g/L) solution of IBr in hexanes for one hour, which did not influence the wire 

dimensions, as shown by optical microscopy in Figure S4. The conductivity of the as-

received yarn (0.1 MS/m) increased 13.4× to 1.4 MS/m, using a cross section determined 

by SEM (see Figure S3).  Stress-strain characteristics of the as-received yarn and doped 

yarn are presented in Figure 53a and demonstrate that IBr dopant exposure in hexanes 

does not decrease the tensile strength of CNT yarns.  High-current testing of the as-

received yarn and doped yarn was performed and the results of this testing are presented 

in Figure 53b.  The maximum current sustained in a CNT yarn doped with IBr in hexanes 

(490 mA) is increased by 36% over the maximum current withstood an as-received yarn 

(360 mA) to a current density of 26.6 MA/m2., demonstrating that proper dopant delivery 

can enhance the current density at failure of CNT yarns and wires without compromising 

their mechanical integrity.   
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Figure 53.  (a.) Stress-strain characteristics of CNT yarns with and without IBr 

solution doping.  (b.) Current-voltage characteristics of CNT yarns with and 

without IBr solution doping. 

It is important to note that the power at failure is reduced in the sample exposed to 

IBr in hexanes when compared to the as-received yarn sample.  This is possibly due to 

changes in thermal conductivity that arise from the presence of dopants.  Chemisorbed 

species on CNTs as well as substitutional dopants have been shown to lower CNT 

thermal conductivity [120], [121], while surface-adsorbed oxygen has been shown to 

either increase [122] thermal conductivity or have little effect [123] on it.  If adsorbed 

halogen species lower the thermal conductivity of CNT yarns, the temperature of a doped 

yarn under high current could be higher than an as-received yarn for a given applied 

power.  Thus the failure temperature for the wire could be reached with lower applied 

powers. 
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6.5 Additional Considerations for the Study of IBr Doping 

The highly volatile and reactive nature of IBr created several challenges.  

Reactions with some of the solvents, solvatochromic shift, and the multiple forms of the 

dissolved IBr species (IBr, Br-, Br2, I2, I-, I3, etc.) [106], [108] make optical absorption 

peak assignment difficult.  As an example, I2 and Br2 were dissolved separately in 

chloroform as a solvent and their optical absorption spectra were recorded in Figure 54.  

The Br2 solution (red curve) has a peak at 270 nm and a broader, less intense peak at 400 

nm, while the I2 solution (blue curve) has a single peak at 510 nm and some absorption 

below 250 nm.   When these two solutions were combined in equal volumes, the resulting 

solution (black curve) had a much more intense peak in absorption at 270 nm, and the 

absorbance peak at 510 nm was blue-shifted to 500 nm and also decreased in intensity, 

indicating complex interactions between the two species when simultaneously in 

solution.  When compared to an equal-concentration solution of IBr (green curve), 

similarly strong absorbance is noted at 270 nm, and the peak at 500 nm is of increased 

intensity.  This study highlights the difficulty in assigning optical absorption peaks for 

solutions of IBr in different solvents to specific dissolved species, leading to the use of 

time-dependent optical absorption spectroscopy in previous IBr studies as a relative and 

qualitative technique. 
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Figure 54.  Optical absorption spectra of a 1 mM solution of Br2 in chloroform 

(red), a 1 mM solution of I2 in chloroform (blue), a mixture of the two previous 

solutions mixed in equal volumes (black) and a 1 mM solution of IBr in chloroform. 

Additionally, the optical absorption spectrum of IBr in hexanes presents two 

peaks, one at 279 nm, and one at 503 nm.  When using either peak in the spectrum, both 

give qualitatively similar results are obtained, as seen in Figure 55.  Computing the IBr 

adsorption onto CNTs by assuming either peak is indicative of total IBr adsorption using 

equation (7) at 60 minutes yields 115 µg IBr/mg CNT when using the peak at 297 nm, 

and 129 µg IBr/mg CNT when using the peak at 503 nm.  These two values are similar 

and show the same relative difference from IBr adsorption when compared to ethanol. 
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Figure 55.  a. Optical absorbance (left axis) at 279 nm of a solution of IBr in hexanes 

(black circle datapoints) as a function of time after mixing the solution, and of a 

solution of IBr in hexanes with CNTs as a function of time after solution mixture 

and CNT addition (black diamond data points).  The amount of IBr adsorbed onto 

the CNTs (blue square data points, right axis) calculated from the optical 

absorption data in this plot and equation (7).  b. Optical absorbance (left axis) at 503 

nm of a solution of IBr in hexanes (black circle datapoints) as a function of time 

after mixing the solution, and of a solution of IBr in hexanes with CNTs as a 

function of time after solution mixture and CNT addition (black diamond data 

points).  The amount of IBr adsorbed onto the CNTs (blue square data points, right 

axis) calculated from the optical absorption data in this plot and equation (7).   

Optical spectra was taken of solutions of IBr in solvents other than hexanes and 

ethanol as well.  Figure 56a shows optical absorption spectra of a 1 mM IBr solution in 

chloroform with CNTs present, and two distinct peaks are visible at 256 and 503 nm.  

This data, along with a control study performed using a 1 mM IBr solution in chloroform 

without CNTs present was analyzed for use in IBr absorption calculations.  The peak 

intensities at  256 and 503 nm are plotted for both the samples with and without CNTs in 

Figure 56b.  The drastic difference in relative absorption change at the two peak values 
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presented in this plot make the chloroform solvent a difficult system to determine IBr 

adsorption onto and was not used for further study.  Similarly, Figure 56c shows optical 

absorption spectra of 1 mM IBr solution with CNTs present.  The peak intensity is seen 

in increase over time, which does not fit the model of dopant absorption used in this 

work.  In Figure 56d, it can be seen the peak intensity increased regardless of the 

presence of CNTs in the cuvette, and is likely due to reactions between DMSO and IBr 

taking place over time (strong interactions as described in section 6.6).  This fact, and the 

lack of a distinct peak presence in the IBr in DMSO optical spectrum make this system 

non-ideal for dopant absorption study. 
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Figure 56.  a. optical absorption spectra of 1 mM IBr solution in chloriform with 

CNTs present in the cuvette at several times after mixing.  b. optical absorbance 

intensity at 503 and 256 nm, with and without CNTs in present in the cuvette as a 

function of time after mixing or mixing and CNT addition, normalized to the optical 

absorbance intensity at 0 min.  c. optical absorption spectra of 1 mM IBr solution in 

DMSO with CNTs present in the cuvette at several times after mixing.  d. Optical 

absorbance intensity at 414 nm of 1 mM IBr solutions with and without CNTs 

present in the cuvette as a function of time after mixing or mixing and CNT 

addition, normalized to the optical absorbance intensity at 0 min. 
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6.6 IBr Doping Conclusions 

The time dependency of IBr doping was measured via electrical and optical 

absorbance techniques in ethanol, which demonstrated a correlation between conductivity 

enhancement and dopant adsorption, and established a timescale for subsequent doping 

studies.  Dopant adsorption and electrical conductivity enhancement from IBr in hexanes 

and ethanol were compared, and the hexanes dopant delivery solvent promoted 40% 

higher doped CNT conductivity and 3.2× greater dopant adsorption, indicating that 

solvent selection is an important factor in solution-based CNT doping.  A systematic 

survey of IBr delivery solvent polarity was conducted, and the data supports a proposed 

mechanism whereby solvent properties strongly influence the dopant-solvent and CNT-

solvent interactions, which mediate the strength of the preferred dopant-CNT interaction.  

Thus, water and low dipole moment solvents such as hexanes have been determined as 

optimal dopant delivery solvents for enhancing the electrical conductivity of CNT 

materials using IBr. The concentration dependency of doping in hexanes and water was 

determined, with samples doped in 12.4 g/L (60 mM) IBr in hexanes have the highest 

conductivity of 0.85 MS/m, and finding that doping with solutions at a saturated level 

provides the highest increase in conductivity.  Applying these doping conditions (20.7 

g/L (100mM) IBr in hexanes for one hour) to commercially available CNT yarns resulted 

in a 13.4× increase in conductivity and a 36% increase in current density at failure of 

these yarns. The results in this work demonstrate the importance of solvent selection, 

doping time, and concentration to doping of CNTs in sheet and yarn format when 

enhancing conductivity toward practical wires for electrical and high current applications. 
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Figure 57. (left) Flow diagram of how dipole moment governs the interactions 

between the solvent and IBr, and the solvent and the CNTs, and how these 

combined interactions affect doped CNT conductivity.  (right) pictoral 

representations of the favored interactions in the IBr-solvent-CNT system for a 

solvent that promoted low CNT conductivity enhancement (DMA) and a solvent 

which promoted high CNT conductivty (hexanes).  The favored interactions are 

those that the arrows point to. 
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Chapter 7. Influence of Purification and Doping in Radial Densification 

of CNT Sheet Material 

 

7.1 Purification of Commercially Sourced CNT Sheet Material 

NRPL has worked closely with Nanocomp Technologies Inc. (NCTI) on 

improving and applying their CNT materials, including both yarns and sheet materials.  

NCTI CNT sheets are produced in industrial quantities using a floating catalyst CVD 

synthesis method.  The resulting product contains carbonaceous and metallic impurities 

from synthesis as evidenced in SEM and TGA data in Figure 58 (a) and (b) respectively. 

Tasks: 
• Determine and evaluate methods for obtaining phase-pure commercially sourced CNT sheet 

material. 
• Analyze the effect of purity on the electrical and mechanical properties of commercial CNTs. 
• Apply planar or radial densification and purification techniques to commercial CNT sheet 

materials and optimize both properties for high strength and conductivity. 
• Hybridize commercial CNT materials with metals or other nanomaterials through mechanical 

inclusion or chemical deposition to improve electrical, mechanical, and thermal properties. 
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Figure 58. (a) SEM of AR NCTI CNT sheet material. (b) TGA data from oxidizing 

AR NCTI sheet material  

Past purification techniques have utilized a thermal oxidation to remove 

amorphous carbons which oxidize into gaseous compounds at lower temperatures than 

NCTI MWCNTs.  This oxidation exposes residual Fe catalyst particles that remain from 

synthesis.  Soaking the NCTI material in HCl after oxidation solubilizes the exposed Fe 

as indicated by a color change in the HCl from clear to yellow.  This color change does 

not occur when non-oxidized NCTI material is soaked in HCl, indicating that residual Fe 

is encapsulated in non-HCl-soluble carbon.  Typically, an HCl soak is followed by a 

second thermal oxidation at an identical temperature to the first in order to vaporize HCl 

which has adsorbed onto the NCTI CNTs.  The temperature of the initial oxidations 

limited by the formation of hot-spots, which occur due to the exothermic oxidation of Fe.  

It may be possible to improve purity further by increasing the temperature of the second 

thermal oxidation due to the reduced Fe content in a sample.  The initial thermal 

oxidation should be optimized for maximal Fe removal, and the second oxidation 
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optimized to remove non-MWCNT carbons.  It is not clear how increased purity affects 

the mechanical and electrical properties of these materials. 

7.2 Influence of Purity on Electrical and Mechanical Properties 

Carbonaceous impurities in NCTI samples are not as conductive as the MWCNTs 

themselves.  However, purification by thermal oxidation and HCl soaking does not 

drastically alter the morphology of the MWCNT network.  Removing the impurities 

leaves microscale voids in a sample.  As such, purified samples tend to have lower tensile 

strengths and conductivities after purification than they did prior to purification.  

However, purification allows chemical doping of NCTI samples to be more effective, and 

allows for modification of the network morphology.  Thus, doping and morphology 

modification techniques, such as mechanical densification, is further studied in 

conjunction with high purity NCTI samples.  

7.3 Radial Densification of Carbon Nanotube Wires 

CNT wires can be fabricated from commercial sheet materials through radial 

densification through standard steel, tungsten carbide, or diamond drawing dies [54], 

[124].  Wire drawing requires that the sheet materials possess sufficient mechanical 

strength to withstand the frictional force generated by the drawing die.  For instance, 

sheets provided by NCTI have been drawn into wires while those from NanoTech Labs 

(NTL) frequently broke during drawing and did not lead to coherent wires.  While radial 

densification leads to cylindrical-form conductors, it is unclear if this process improves 

the electrical or mechanical characteristics of a wire as compared to the conductivity of 

its constituent sheet materials which are already highly dense.  Purified NCTI materials 
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contain a higher fraction of highly conductive MWCNTs, yet also contain voids remnant 

from the removal of Fe and non-MWCNT carbons from the AR material.  Thus, radial 

densification in combination with purification may yield higher conductivities and tensile 

strengths than measured in AR NCTI material.  Tensile testing data on densified wires 

made from NCTI material, AR or purified, has not been published.  Electrical data from 

densified wires made from purified NCTI material has not been published. 

 

Figure 59. (left) Cross section schematic of the radial densification of CNT wires. 

(right) Photo of a CNT wire being densified. [98] 

Preliminary experimentation on densified wires to determine the impact of 

thermal treatments in conjunction with doping.  Thermal treatments included a 30 min, 

900 °C anneal in 95 % Ar, 5 % H2, and a purification process that consists of a thermal 

oxidation under flowing air at 520 °C followed by a 30 min soak in concentrated HCl and 

a subsequent 520 °C thermal oxidation under flowing air.  Samples that were both 

annealed and purified were done so in two manners: purification preceding annealing, 

and purification subsequent to annealing.  The CNT sheet material used in this study was 

from NCTI Lot 71244 which are ribbons of acetone-densified sheet material, 0.75 inch 
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wide by 7 ft long.  All samples were rolled and densified through drawing dies of 

decreasing diameter with a final die diameter of 0.7 mm.  Samples were doped in either 

KAuBr4 (aq) or IBr (dissolved in hexanes) for 30 min, or left untreated as controls.  All 

thermal treatments were conducted prior to densification, and doping was conducted after 

densification. 

Nine replicate samples were produced with each of the five treatments: no 

treatment (denoted “As-Received”), purified, annealed, purified then annealed (denoted 

Purified/Annealed), and annealed then purified (denoted Annealed/Purified).  Three of 

each type were doped with each dopant or left as controls.  The tensile results from this 

study are presented in Figure 60.  From the raw, non-normalized data (Figure 60a) it can 

be observed that purified samples, regardless of annealing and doping, have lower tensile 

strengths than non-purified samples.  Since all samples were densified to the same 

diameter and started with the same width of material, the tensile strength in N is 

indicative of the cross-sectional area normalized tensile strength in MPa.  This is 

corroborated by diameter measurements via caliper.  When mass-normalizing the data 

and observing the specific tensile strength (Figure 60b), it is apparent that KAuBr4 

doping increases the mass per length of a sample without increasing its tensile strength.  

The same effect is not observed for IBr doping.  Most samples have similar specific 

tensile strengths, indicating the mass lost during purification makes up for the reduced 

tensile strength in this metric. 
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Figure 60. (a) tensile and (b) mass-normalized tensile properties of densified NCTI 

CNT wires made from materials with varying treatments and doped with either 

KAuBr4 in water or IBr in hexanes. 

Electrical results from this study are displayed as inverse resistance per length 

(Figure 61a) which is a measure of conductivity without area normalization.  Area 

normalization is not necessary for comparison between samples in this study because all 

samples have similar cross-sectional area.  This data demonstrates that doped samples, 

regardless of thermal treatment, have higher conductivity than samples that were not 

doped.  It also shows that similar conductivities are obtained from all samples with the 

same doping, i.e. thermal treatments such as purification do not substantially alter the 

conductance of a sample.  The specific conductivity of these samples (Figure 61b) is 

significantly improved by IBr doping, but not by KAuBr4 doping.  This is because of the 

increased mass per length of KAuBr4 doped samples decreases their specific conductivity 

despite the conductance increase due to doping. 



 

155 

 

 

Figure 61. (a) L/R and (b) specific conductivity of densified NCTI CNT wires made 

from materials with varying treatments and doped with either KAuBr4 in water or 

IBr in hexanes. 

The thermally treated ribbons used in this study were characterized by Raman 

spectroscopy prior to densification to determine relative defect levels.  Figure 62a shows 

representative Raman spectra of each treatment type with their intensities normalized to 

the G-peak max of the as-received sample.  The D/G and D/G’ ratios are extracted from 

these spectra and shown in Figure 62b.  The purified sample has the largest set of ratios 

likely due to defects created during oxidation.  The annealed samples have lower ratios 

which may be attributed to defect healing at high temperatures or oxidation reduction due 

to the presence of H2.  The anneal especially helps to reduce the D/G and D/G’ ratios 

after purification where some of the defects created during purification are healed and 

reduced.  Annealing prior to densification also helps reduce the final ratios.  This may be 
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due to a reduction in defects which would have otherwise been exacerbated through 

oxidation during purification.   

 

Figure 62. (a) Raman spectra of NCTI materials used to create the samples Figure 

60 and Figure 61.  (b) D/G and D/G’ ratios calculated from the spectra in (a). 

Radial densification in concert with purification may improve conductivity by 

eliminating carbonaceous and iron impurities that are less conductive than CNTs and 

removing the void space created by their elimination.  The density of CNTs in sheet 

format cannot be improved much by mechanical densification due to mechanical pressing 

and solvent densification during their manufacture, so densification without purification 

cannot achieve a large degree of conductivity improvement.  Likewise, purification 

without densification leaves behind a CNT network with voids that are less conductive 

than the impurities that were filling them, so conductivity is not increased.  Figure 63 

demonstrates conductivity and density improvement due to combined purification and 
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densification.  Purification in this study consisted of a thermal oxidation under flowing 

air to the temperature specified, flowed by a concentrated HCl rinse, and subsequent 

thermal oxidation at the same conditions as the initial oxidation.   

 

Figure 63. Electrical conductivities of densified CNT wires which have been 

densified to various densities and thermally oxidized at different temperatures. 
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Chapter 8. Dissertation Conclusions and Impact 

Wires were formed from laser-vaporized SWCNTs by dispersing them in CSA 

and extruding the dispersion into a coagulant bath (Chapter 3).  Established purification 

methods were employed to increase the purity of SWCNTs in dispersion, which led to a 

4x improvement in extruded wire conductivity over as-produced SWCNT material.  

Coagulant selection was investigated using both one-factor-at-a-time and designed 

experiments approaches, and pure acetone was selected as the optimal solvent due to its 

low viscosity, which facilitates removal of acid dispersant, and high volatility, which 

ensures complete coagulant removal from the wire post-coagulation.  Conductivity 

enhancements in extruded wires were developed by inducing tension on the SWCNT-

CSA dispersion as it coagulated by increasing the depth of the coagulant vessel.  This in-

situ tensioning combined with additional tensioning applied to the wires post-extrusion 

led to a 2x improvement in specific conductivity over wires extruded into shallower baths 

without post-extrusion tensioning, due to the greater CNT alignment induced from 

tensioning.  Overall, combination of the optimized coagulation parameters has yielded 

acid-doped wires with electrical conductivities of 4.1-5.0 MS/m and tensile strengths of 

210-250 MPa.  These conductivities are the highest reported electrical conductivities for 

extruded wires without additional doping reported to date, and they exceed the 

conductivities of any other CNT type extruded (Section 4.2).   

Additional improvements to the extrusion process were developed from 

investigation of the coagulant bath temperature and syringe needle geometry (Section 

4.3).  Larger diameter syringe needles promoted higher extruded wire specific 
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conductivity, as did colder acetone coagulant baths and increased rates of coagulant flow 

through coaxial syringe needles.  Wires extruded from a 61 mg/mL SWCNT in CSA 

dispersion through a 22 Ga syringe needle into a -10 °C, 66 cm deep acetone coagulant 

bath had uniformly high conductivities of 5.1 MS/m.  These results highlight the 

importance of the coagulation dynamics in the extrusion process as a major determining 

factor of wire uniformity and alignment, and thus electrical performance.  An automated 

extrusion apparatus was built that extruded wires with variability in conductivity as low 

as 6 % (Section 4.5).  This modular apparatus was designed and built to easily tailor 

additional extrusion factors identified to have significant influence on resulting wire 

properties.  Process scale-up and automation, including post processing tensioning and 

treatment, can be achieved with this device. 

Both commercial CNT yarns and extruded SWCNT wires were characterized at 

high applied currents (Chapter 5).  By comparing current-controlled and voltage-

controlled testing scenarios and drawing analogies from them to mechanical testing, 

voltage-controlled testing was determined to be the fitting method of characterizing CNT 

wires at high currents to avoid rapid voltage increases, which occur during current-

controlled testing and do not allow for thermal equilibration of the wire with its 

surroundings or assessment of progressive wire failure.  This comparison and its 

outcomes are useful to the CNT wire community as it informs testing standards for these 

materials when subjected to electrical testing.  The high current failure of CNT yarns and 

extruded SWCNT wires was found to be dependent on the ambient gas present, with 

enhancements in maximum current in nitrogen due to the lack of oxygen present, and 
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further enhancement in helium due to the lack of oxygen and the higher thermal 

conductivity of helium compared to air and nitrogen.  Extruded SWCNT wires failed at 

current densities of 180 MA/m2 in air, 11.5x greater than those of CNT yarns in air.  

Maximum current densities of 420 MA/m2 for extruded wires were reached in helium.  

SEM and Raman spectroscopy failure analysis of CNT yarns and SWCNT wires 

demonstrated that the lack of impurities in SWCNT wires was an enabling factor in the 

enhancement of their maximum current over CNT yarns. 

Finally, IBr was selected as a CNT chemical dopant for study on purified CNT 

sheets based on its electrochemical potential, optical properties, and recent interest in 

interhalogen doping compounds (Chapter 6).  The time-dependence of electrical 

enhancement in the conductivity of CNT sheets was determined and compared to the 

time-dependent dopant adsorption onto CNT sheets using optical absorption 

spectroscopy.  A correlation was found between dopant adsorption amount and electrical 

conductivity enhancement.  Dopant adsorption and electrical conductivity enhancement 

from IBr in hexanes and ethanol were compared, and the hexanes dopant delivery solvent 

promoted 40% higher doped CNT conductivity and 3.2× greater dopant adsorption, 

indicating that solvent selection is an important factor in solution-based CNT doping.  A 

study of IBr solvents for dopant delivery to CNT sheets determined that IBr low-polarity 

solvents promoted higher conductivity enhancement in CNT sheets exposed to them than 

did IBr in high-polarity solvents.  Thus, water and low dipole moment solvents such as 

hexanes have been determined as optimal dopant delivery solvents for enhancing the 

electrical conductivity of CNT materials using IBr. The concentration dependency of 
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doping in hexanes and water was determined, with samples doped in saturated solutions 

of IBr in hexanes having the highest conductivity of 0.85 MS/m, compared to the purified 

CNT sheet conductivity of 0.11 MS/m.  Applying these doping conditions to CNT yarns 

resulted in a 13.4x increase in conductivity and a 36% increase in current density at 

failure.   

This dissertation research demonstrates the importance of SWCNT purity and 

selection of coagulation conditions in promoting high-density, aligned SWCNT wires.  

Delivery of chemical dopants with high electrochemical potential through solvents which 

favor dopant-CNT interactions also enhances electrical conductivity and maximum 

current density, achieving CNT wires capable of competing with metal conductors for 

electrical transmission applications.  The testing methodologies developed for both 

voltage-controlled high-current characterization and determination of ideal dopant 

delivery can be adapted for other CNT conductors and dopants of interest, respectively.  

This work has also provided the highest conductivity extruded CNT wires to date and an 

extrusion apparatus that can scale up their production and decrease their variability.  This 

work contributes to the understanding of the factors impacting SWCNT dispersion 

coagulation in wire fabrication, high-current wire behavior, and chemical doping and will 

allow for design and engineering of CNT wires, which may replace metal conductors for 

power and data cable applications. 
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Appendix B: Wire Extrusion Standard Operating Procedure 

I) Dispersion Preparation 
1) Have all CNT materials ready for dispersion (purified, dried, etc.). 
2) Mass a scintillation vial with a labeled, PTFE-lined cap on it, and record the 

mass.  PTFE caps have a BROWN liner inside.  Failure to use a PTFE will result 
a ruptured cap and loss of the dispersion. 

3) In the hood or acid glove box, pour CSA into scintillation vial.  2mL is a 
minimum so that dispersion can be scooped into the syringe for extrusion.  If a 
specific quantity is desired, dispense the amount of water into the scintillation 
vial, mark the water level, and then empty and dry it before adding CSA to that 
mark.  It is not recommended to dispense CSA using a glass pipette and bulb 
because the painted on graduations will decay in CSA vapor. 

4) Be sure to wipe down the threads of both the scintillation vial and the csa 
container before replacing their caps.  Failure to do so will cause the sides of 
the cap to degrade and fail over time. 

5) Mass the vial with CSA and cap and record the mass.  Calculate the exact 
volume of CSA by subtracting the vial & cap mass from this mass.  The density 
of CSA is 1.753 g/mL. 

6) In a separate scintillation vial, mass out the exact amount of CNTs needed to 
achieve the desired weight loading.  Standard weight loading for purified NPRL 
SWCNTs is 45 mg/mL. 

7) In the hood or acid glove box, add the CNTs into the vial containing CSA. Be 
sure to wipe down the treads of the scintillation vial before replacing the 
PTFE cap. 

8) Record the mass the vial with CSA, cap, and CNTs. Subtract the mass of the 
vial, cap, and CSA to determine the amount of CNTs added and calculate the % 
by mass CNT, and the mg CNT per mL CSA. 

9) Ensure the dispersion cap is on tightly, and wrap it in parafilm. 
10) Load the dispersion into the Thinky AR-100 and mix for 20 min.  Make sure to 

set the counterweight in the Thinky to the mass of the vial plus the Thinky 
adapter. 

11) After Thinky mixing is complete, place the dispersion vial into the LabRAM vial 
holder. Make sure all the other vial slots are filled with empty vials (with PTFE 
caps) except for the center slot.  Screw the top clamp down.  If any of the blank 
vials are loose, unscrew its cap until tight.  Set the timer on the LabRAM for 1-2 
hrs.  Mix at 30-50% intensity or higher. 

12) Repeat steps 10 and 11 until 4 or more rounds have occurred.  Complete mixing 
with one or more additional 20 minute runs in the Thinky. 

II) Assemble the following materials prior to extrusion: 
1) Dispersion - Dispersions are typically mixed for one 20 minute round in the 

Thinky immediately prior to extrusion. 
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2) Glass Slides - Extruded samples for characterization are mounted to 7.5 cm glass 
slides with double-stick tape on both ends.  When preparing these slides, ensure 
that the tape is place precisely so that the spacing between the tape edges is 
exactly 5 cm. 

3) Glass Syringe – Use the smallest glass syringe from Cadence that will fit the 
dispersion needed.  Typically 2 mL syringes are used. 

4) Syringe Needle – select a gauge, attach one needle to the syringe and have 
additional ready in case a needle change is needed. 

5) Coagulant vessel – either a deep test tube or horizontal bath is needed. 
6) Coagulant – select a coagulant (typically acetone) and chill or heat it to the 

desired temperature using ice baths, the refrigerator, or a hot plate.  Remember to 
label all containers. 

7) Pump Stand – set up the extrusion apparatus in a hood.  Raise the platform for 
vertical extrusions (high enough for the depth of the bath + the length of the 
syringe needle) or lower it for horizontal, automated extrusions.  

8) Syringe pump – Plug in and set the syringe pump on the pump stand.  Set the rate 
(typically 0.1 mL/min) and the volume to dispense (typically set to 2 mL and 
manually started and stopped).  The syringe inner diameter will need to be 
programmed if it is different from the last syringe used.  The syringe inner 
diameter can be measured accurately enough from the outer diameter of the 
plunger. 

9) Tweezers – at least two sets of high quality tweezers are needed. 
10) CSA Microspoon – a dedicated stainless microspoon/spatula is available for 

CSA. 
11) De-ionized water bath – a large beaker of DI water should be kept in the hood for 

disposal of materials.  Be sure to label it. 
12) Pliers – pliers are needed to change syringe needles during extrusion. 

III) Extrusion 
1) Load dispersion into syringe 

i) Remove the plunger from the syringe, ensure the syringe needle is in place. 
ii) Hold the syringe horizontally and the dispersion vial at an angle, both in your 

off hand. 
iii) Use the dedicated CSA microspoon to transfer several scoops of dispersion 

into the syringe.  Be careful to not allow the dispersion to flow into the 
syringe needle yet.  The volume needed will depend on the length of 
extruded wire desired.  Typically 0.5-1 mL is enough for 3-10 m. 

iv) Place the CSA microspoon into the DI water bath. 
v) Set the dispersion vial down. 
vi) Place the syringe plunger into the opening in the syringe but to not depress it 

yet. 
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vii) Hold the syringe and plunger vertically with the needle pointing up.  
SLOWLY depress the plunger so that all air is removed and no bubbles form.  
BE CAREFUL NOT TO EJECT DISPERSION MATERIAL. 

viii) When a small droplet of dispersion begins to emerge from the needle, all the 
air has been removed.  Set the syringe down. 

ix) Wipe down the threads of the dispersion vial and replace its cap. 
2) Set up syringe and pump 

i) Place the loaded syringe into the syringe pump and set the clamp to hold the 
syringe in place. 

ii) Unlock the syringe pump pusher block, slide it up to the syringe plunger, and 
lock it in place.  

3) Extrusion 
i) Fill the coagulant bath with coagulant. 
ii) For vertical extrusions: 

(1) Tip the syringe pump onto its side and raise/lower the coagulant bath so 
that just the tip of the syringe needle is below the coagulant surface. 

(2) Press the run button on the syringe pump.  It may take a moment for 
dispersion to begin being ejected. 

(3) When the desired length of wire has been extruded (usually serval times 
the depth of the coagulant bath, grab the top of the extruded wire with 
tweezers, stop the pump, and slowly remove the wire from the bath. 

(4) Hand tension the extruded wire. 
(5) Drape segments over the glass slides with double-sided tape.  Press gently 

on the sections over the tape to adhere them.  Cut multiple more segments, 
5+ should fit on each slide. 

iii) For Automated extrusions: 
(1) Start the spoolers at a slow speed.  The top knob controls the first spool, 

and the second knob controls the % elongation (at set point 0, the second 
spool runs the same speed as the first). 

(2) Run the syringe pump. 
(3) When wire begins extruding, feed it under the first spooler. 
(4) Increase spooler speed to match extrusion rate. 
(5) After wire has wrapped around the first spooler 2 or more times, feed it 

under the second spooler. 
(6) Adjust spooler speeds for desired amounts of tension. 
(7) When desired length of wire has been extruded, stop the syringe pump and 

allow the remaining wire to run over the first spooler and collect entirely 
on the second. 

(8) Unwind the wire and section out onto glass slides with double-sided tape 
for characterization or wrap around a glass spool such as a test tube for 
storage. 

4) Clean Up and Disposal: 
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i) Eject any remaining dispersion left in the syringe into a coagulant bath by 
hand until the syringe is empty. 

ii) Remove the syringe needle using a pair of pliers and carefully drop it into 
the DI water bath. 

iii) Remove the syringe plunger and carefully drop it into the DI water bath. 
iv) Carefully drop the syringe body into the DI water bath with the open 

(plunger) end facing upwards. 
v) Remove CNT solids from DI water bath using tweezers and retain for 

recycling. 
vi) Neutralize the DI water bath. 
vii) Remove and clean the syringe body and plunger.  Dry them in the drying 

oven. 
viii) Place the syringe needle into the sharps disposal. 
ix) Discard the neutralized DI water bath as aqueous or inorganic waste. 
x) Return all materials to their storage locations. 
xi) Immediately characterize all wire segments. 
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