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Abstract

Tracing Vulnerabilities Across Product Releases

Adriana Sejfia, M.S.

Rochester Institute of Technology, 2018

Supervisor: Dr. Mehdi Mirakhorli

When a software development team becomes aware of a vulnerability,

it generally only knows that the last version of that software product is vul-

nerable. However, today most software products have more than one version

being actively used at a time. Garnering information on which versions con-

tain a vulnerability, and which do not, is crucial for the users, to know which

versions of a software product are safe to use, and also for the developers,

to know where to apply the patch. The patch, i.e. the fix of the vulnerabil-

ity, contains valuable information in the form of changes made to the known

vulnerable code to fix it. This information could be leveraged to analyze the

presence of this known vulnerability across releases of a software product. The

problem of tracing vulnerabilities in different releases has been addressed in

two separate research projects. Both of these projects rely on the changed
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lines of code to fix a vulnerability, and conclude whether a version is vulner-

able or not based on the presence of these lines of code. However, relying

simply on lines of code fails to consider the changes in the source code context

where the patch has been introduced from a version to a version. In addressing

this problem, this research project will focus on representing the patch and

the versions to be evaluated in a more flexible format such as an Abstract

Syntax Tree (AST). This approach is more robust compared to the line-based

approach, because ASTs abstract away these changes in the context and allow

us to focus more efficiently on the structure and behavior of the code in the

patch. As such, instead of using lines of code, the unit of comparison in our

approach will be nodes in an AST. Moreover, our approach will generate com-

prehensive artifacts that could guide developers to more efficiently patch the

different versions of their product. We implemented our approach in a Java

tool named Patchilyzer and we tested it in 174 Tomcat versions for a total of

39 vulnerabilities.
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Chapter 1

Introduction

The multitude of software products has swept the financial, health care,

and even shopping domains. Customers in these domains become users of soft-

ware products, which often time translates to them providing their personal

information, e.g. credit cards, social security numbers, and addresses, to these

programs. Moreover, the smooth running of these software solutions is re-

quired to successfully carry out critical processes, varying from stock exchange

to surgeries. With the ever-increasing permeation of software in everyday pro-

cesses, ensuring its security becomes a highly important task. Lack of security

in a widely used software could mean that critical processes are interrupted or

that personal information of users is leaked to malicious parties.

In January, 2017, 1141 vulnerabilities1 have been reported in the Na-

tional Vulnerability Database(NVD). In January, 2018, 17162 vulnerabilities

were reported in the same database. The same increasing trend is noted in

February and March as well3. The increasing trend of vulnerabilities is con-

cerning. Parallel to that, the pressure that software developers face to mini-

1https://nvd.nist.gov/vuln/full-listing/2017/1
2https://nvd.nist.gov/vuln/full-listing/2018/1
3https://nvd.nist.gov/vuln/full-listing
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mize the risk for vulnerabilities is increasing as well. As such, there is a need

to speed up the process of fixing vulnerabilities and helping developers to deal

with the ever-increasing burden of ensuring the security of their products. In

other words, there is a need for automated solutions that help in detecting

vulnerabilities, among other issues.

Once a vulnerability is identified in the source code of a software prod-

uct, the developers usually tend to it by creating and testing a patch that fixes

the vulnerability. Nonetheless, usually, this patch or fix is released only for

the particular version of that software product in which that vulnerability was

found. This is so despite it being a widely employed practice in the industry to

have more than one version of a software product available for users at a time.

On the one hand, since versions of the software product usually share at least

some parts of source code, it could happen that other versions are vulnerable

to the same vulnerability. At the same time, users could be using versions

other than the one in which the vulnerability has been found and fixed. In

fact, a study found out that the most of vulnerabilities in Firefox stem from

unmaintained code in older versions [9]. While these versions are not patched,

they could be exploited by malicious parties. Moreover, there is always the

possibility that, in newer versions, with rolling changes, the source code can

regress and the vulnerability could be re-introduced.

On the other hand, it could very well be that the vulnerability is not

present in the earlier versions. NVD, one of the most reputable online sources

that tags software products as vulnerable or not has been shown to make
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‘spurious claims’ regarding the vulnerable status of a software product [13, 14].

These spurious claims could make users of these products stop using them or

go through the expensive process of switching to other products, unnecessarily.

Considering this information, it is clear that there is a need to check

for the presence of a vulnerability in versions other than the one in which that

vulnerability was found. Performing this task manually would be tedious and

time-consuming for the developers. Hence, one approach to solve this problem

would be to automate the process of checking for a given vulnerability in

different versions of the software product.

There has been studies that attempted to solve this problem. These

previous research projects focused on leveraging information from the patch in

terms of lines added and/or deleted in the source code to fix the vulnerability

[1, 13]. This approach works as follows: if added lines in the patch exist in

another version, that is proof that the vulnerability might not exist in that

version; if deleted lines in the patch exist in another version, that is proof

that the vulnerability might exist in that version. Although, this approach

laid the groundwork in this particular area, it doesn’t consider the flexibility

of the source code from one version to the other. While source code is shared

between versions, there are still changes between versions that are not relevant

to the vulnerability. Simply looking at the lines of code would not take into

account ways in which the vulnerability or the fix in another version could

change to fit the context in that particular version. To address this problem,

while automating the check for the presence of a given vulnerability, we pro-
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pose leveraging information from the patch in an Abstract Syntax Tree (AST)

representation that would allow for more comprehensive, flexible and accurate

checks of the presence of vulnerable nodes, as compared to vulnerable lines.

Moreover, our approach would produce comprehensive artifacts for developers

to analyze that would help in pinpointing the presence of a vulnerability, such

as highlighting the presence of vulnerable nodes, or nodes similar to those, in

different releases.
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Chapter 2

Background

2.1 Vulnerability Detection and Prediction

A software development team in charge of a product can come to know

of vulnerabilities in different ways. Users, third parties, or the team itself

can come across an attack vector that could be used to exploit the code.

Once the team obtains that knowledge, generally, it starts working through

first, identifying the cause of the problem and second, finding efficient and

appropriate solutions to the problem. Varying teams have different tools at

their disposal to help them in this process. Once a solution is created for the

problem, it is implemented in terms of changes such as deletions, additions

and modifications of the existing source code. The set of all changes made

to fix a vulnerability is known as the patch. As seen in Figure 2.1, part of a

patch to fix one of the vulnerabilities in Tomcat, a web server, from its github

mirror repository, consists of adding and deleting several lines of code. This

is just one part of the patch, as the full patch contains modifications to more

than one file.

Even though patching a software vulnerability is of utmost importance,

studies have shown that there are several factors, such as legal factors, eco-
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nomical factors and the type of vulnerability, that contribute to when patches

get released and what gets patched [18]. In the same paper, it is mentioned

that when a vulnerability was found in Tomcat, the first version to be fixed

was the last one, whereas two other older versions that were also affected by

the vulnerability were fixed one, respectively seven months later. One way

developers could be incentivized to patch all the other versions as soon as

possible, besides the economical factors, would be to facilitate the process of

knowing these versions and provide them with automated approaches that

could highlight vulnerable code elements for them. This is one of the goals of

this project.

One of the reasons behind the differences in the timing of releases of

patches is that the security issues developers face with are so numerous and

complex that they might end up taking a lot of resources. The resources the

teams have are finite and researchers have taken it upon themselves to try to

help developers to make better use of them. For instance, Theisen et al. [19]

try to develop a technique that would enable software developers to reduce the

risk surface attack of their products. This means that developers would try

early on to reduce the entry points to their program that could be exploited by

vulnerabilities. Researchers have also tried to predict when a vulnerability will

be discovered to help the developers plan their resources ahead to tackle these

issues [8, 21]. These papers overlap with our work in so far that the purpose of

these projects is to reduce the workload of developers; however, our approach

tries to do so by helping developers tag versions as vulnerable or not through
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Figure 2.1: Partial Patch for a CVE in Tomcat

an automated approach that would replace intensive manual effort.

The issue of tracing known vulnerabilities across releases of a software

product has been tackled in previous work as well. Specifically, other projects

have also been focused in leveraging information from the patch. In his work,

Craig [1] sets out a technique to trace vulnerabilities leveraging information on

the patch. The technique divides the patch in two parts: one part considers

only the additions and the other only the deletions. Having these two artifacts,
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the codebase of the subject version is evaluated twice: once for the presence

of the elements in the additions part of the patch, and once for presence of the

elements in the deletions part. After obtaining information on what lines are

present and what lines are not in the codebase, the technique uses thresholds

set by the author to conclude if a vulnerability is present or not. Similarly, the

method developed by Nguyen et al. [13] traces vulnerabilities across releases

by looking at the vulnerable code footprint, the equivalent of patch. Again,

the method looks for the presence of the vulnerability footprint in versions.

Looking retroactively at older versions, it tries to see at which version exactly

did the vulnerability start to be introduced in the program. All versions after

that point are considered vulnerable, and all before that are considered as

clean-slate. Both these approaches rely on lines of code as their method of

comparison. Our approach, on the other hand, lies on AST representation

of the source code. Moreover, on top of the similarities’ check we also look

at whether the nodes that contained the vulnerability in the first place were

there. This additional check is to make sure that we do not tag versions that

did not contain the vulnerability in the first place as vulnerable.

Previously, there has been work in helping developers detect any vul-

nerability, such as constraint-solving methods [20]. This method relies on a

search-driven technique to solve constraints for string variables in order to de-

tect potential vulnerabilities related to these variables. Moreover, there have

been studies that focus on detecting code clones as a means to detect known

buggy code across android applications [5]. In another work, the focus was do-
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main specific, namely looking at code clones in Operating Systems [7]. Other

studies have focused in predicting vulnerabilities using text analysis on source

code [6], using code metrics such as code churn and complexity as indica-

tors for vulnerabilities [2, 17], using the past history of bugs [10], or tagging

components that are more likely to be vulnerable [11]. Even though there

is an overlap between our project and these projects, the goal of our work

is different. Our approach leverages information about a known vulnerability

and attempts to trace that vulnerability in other versions, in a more flexible

manner than detecting code clones. Our method also is not limited in terms

of the existing data types it uses.

2.2 Alternative Code Representations

Previous studies have used AST representations of the source code to

increase the flexibility of their approaches, especially when considering changes

from one version to another version. For instance, Nguyen et al. used AST

representations to create statistical models for changes that co-occur in code

together to be able to give automatic API recommendations [13]. The changes

specifically are represented in AST format. While this paper focuses on API

recommendations, our approach focuses on representing those changes in the

most flexible manner, while not losing on accuracy, to enable a more thorough

comparison of the said changes to tag vulnerable versions. Moreover, Zhang

and Liu in their work use AST representations to detect code plagiarism [16].

While this paper bears some similarities to our approach, our goal is not
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simply to detect if code in two versions is the same, but rather to also detect

which parts are similar, and which are not, and how do these two pieces of

information enable us to conclude if a version is vulnerable or not.

In terms of comparing trees for similarities, previous studies have con-

sidered using edit distances. Pawlik and Augsten use the All Path Tree Edit

Distance to calculate differences between trees [15]. Moreover, Fischer et al. [4]

in their work use Hausdorff matching to approximate graph edit distances.

However, these techniques are not suitable for the purpose of our approach.

The changes that we will see through the AST differencing output will be in

terms of added, deleted, moved or updated node. To compare the differences

from a version to another version, the node types and actions, at the least,

need to perfectly match from a version to another. That is why the similarity

check relies on a perfect similarity in terms of individual nodes, when it comes

to types and the action that was performed on those nodes.

The technique developed by Falleri et al. [3] GumTree, is used to pro-

duce a fine-grained differencing output between two source code artifacts in

an AST format using nodes and edges. The technique developed by this paper

works in generating the fine-grained differencing output that we need for our

approach.
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Chapter 3

Methodology

3.1 Definitions

In order to facilitate the understanding of the approach, the following

terms need to be defined:

1. Fixed Version: A fixed version F is the version in which the vulner-

ability was fixed. In order to eliminate noise-introducing changes that

are not related to the fix of the vulnerability, the term version refers to

the exact revision in which the vulnerability was fixed.

2. Vulnerable Version: A vulnerable version V is the version in which

the vulnerability has been found. The term version here refers to the

exact revision of the software product in which the vulnerability was

found, aligning with our goal of eliminating changes not related to the

vulnerability from the picture. The vulnerable revision is identified as

the revision previous to the fixed version chronologically, unless stated

otherwise.

3. Subject Version: A subject version X is the version to be evaluated

for the presence of the vulnerability. When not suggested otherwise, the

subject version is actually the latest release of that version number.
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4. Source Version: Source version is a term defined in Gumtree as the

base version or initial version. It is the version based on which the actions

that represent the changes are computed.

5. Destination Version: Destination version, as defined in Gumtree, is

the second version. It is the second version based on which the actions

that represent the changes are computed, i.e. actions are computed from

the source version to the destination version.

6. Node Changes: Node Changes are objects that store information

about the change that happened to the node, i.e. the action that hap-

pened to it, identifying information about the node and information

about the surrounding context, such as parent node and children. When

we use the term node with no surrounding context, we are referring to

the subject node of the change, or the main node. When we use the

term parent node we are referring to the node that contains the subject

node in its immediate children array. The identifying information about

the nodes, referred to as features of Node Changes, depending on the

circumstances and action, could be:

• Action: one of the four actions that can happen to a nodeinsert,

insert, move, or delete.

• Node Type (NT): One part of the definition of the node, namely the

type of the code element that is being changed, e.g. NumberLiteral.
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• Node Label (NL): The second part of the definition of the node,

namely the value of the code element that is being changed, e.g. 0.

• Parent Node Type (PT): One part of the definition of the parent

node, namely the type of the code element that contains the subject

node in its immediate children array, e.g. MethodDeclaration.

• Parent Node Label (PL): The second part of the definition of the

parent node, namely the value of the code element that contains the

subject node in its immediate children array, e.g. calculateWages().

• New Value (for update actions only): the updated/new value of the

node, e.g. 1. Essentially, it is a new Node Label.

• ID: the location of a node in the AST, e.g. 12.

• Children: the array of the immediate children of a node, e.g. [Type-

Declaration, ClassDeclaration].

7. AST Diff Output (ADO): ADO represents the differencing output

between any two versions(source version and destination version) of the

same product in an AST format. In our approach, ADO is the differ-

encing output between the vulnerable version V and a subject version

X.

8. Patch AST Representation (PAR): PAR represents the ADO be-

tween the vulnerable version V and fixed version F. It is one of the

benchmark artifacts in our approach.

13



9. Origin Nodes: Origin nodes are defined as the nodes that initially

contained or introduced the vulnerability.

3.2 Approach

Our goal in this work was to leverage information from the patch that

fixed a vulnerability to detect the presence of that said vulnerability across

releases. Our approach to reach that goal was to represent the patch in an

AST format, and then look for vulnerable and fixing nodes in different versions

in order to reach a conclusion about the vulnerability. At the same time, our

approach relied in generating artifacts that highlight for the users which nodes

are vulnerable and which versions contain them. The conclusion combined

with the artifacts could provide a holistic approach to detecting the presence

a vulnerability, providing a reasoning for the presence of that vulnerability

and guiding developers to fix the vulnerable versions. While our goal was to

detect the presence or lack of the vulnerability, our primary focus was to not

let any vulnerable versions go undetected by our approach. Considering that

we are dealing with an important security issue, it is safer to increase the rate

of false positives than the opposite.

To that end, our approach was seeking to categorize versions of a soft-

ware product in three categories with respect to a known vulnerability. The

first category contains those versions that do not have any resemblance to the

vulnerable, neither fixed version. These are versions that are not vulnerable:

they did not contain the vulnerable nodes in the first place and as such, did

14



not need to fix them. In the second category are those versions that have

significant similarities to the vulnerable version, but not so much to the fixed

version. These are versions that might be vulnerable, as they contain vulner-

able nodes but not fixes to those vulnerable nodes. Lastly, the third category

contains those versions that bear some similarities with the vulnerable ver-

sion, but even more to the fixed version. These versions are the ones that

have higher chances of being not vulnerable, as they might contain traces of

vulnerable nodes, but they also have the fixes for them. Having said that, we

designed our approach to input a subject version through several checks, with

strict thresholds, that would yield a reasonable conclusion pertaining to one

of these categories.

The core of the developed methodology revolves around similarities

between the PAR and the ADO between the vulnerable version V and a subject

version X.

Considering this and our goal to categorize the versions in three cate-

gories, our work is based on the following assertions:

• If the ADO and the PAR have high similarities, it is highly probable

that the subject version X is not vulnerable.

• If the subject version X is indeed vulnerable, its ADO and the relevant

PAR would have little to no similarities.

These two cases set the spectrum of decision options for our approach. On one

side of the spectrum, we have cases with almost perfect similarities between

15



the PAR and a subject version’s ADO. These cases are the ones in which it

is highly likely that the version is indeed not vulnerable. On the other side

of the spectrum, we have the cases which are indeed vulnerable, and where

the similarity would be very low. Based on this spectrum, all the versions

with almost perfect similarity will be considered as not vulnerable. However,

defining the scenarios for cases on the other hand of the spectrum is a bit more

complicated. Low similarity cases encompass situations where the version is

indeed vulnerable, but they can also encompass situations where the version

does not contain the elements that introduced the vulnerability. In order to

ensure that both of these scenarios are addressed in our approach, we intro-

duced the concept of origin nodes. Origin nodes are nodes that introduced or

contained the vulnerability in the first place. We identify these nodes through

a list of several heuristics that will be explained in details in section 3.3. If the

similarity check suggests that the similarity of the ADO and PAR is less than

a threshold, the subject version is submitted to another process that checks for

the presence of the origin nodes in that version. If then, the origin nodes check

locates origin nodes in the subject version, an additional check is performed to

see if those nodes were addressed in the differencing output, if the similarity

score is more than 0. If they have not been addressed, we can conclude that

the subject version X is vulnerable, as it contains the node and it does not

address it. Figure 1 summarizes the methodology.

In general, our approach relies on fine-grained changes between nodes in

an AST. Moreover, there are multiple checks the subject version is submitted
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Figure 3.1: Summary of the Approach

to under very high thresholds. This level of strictness is this high to ensure

that our approach is concise and especially to not miss-tag versions that are

indeed vulnerable. In the following sections, the steps of our approach are

described in detail.

3.2.1 AST differencing: PAR and ADO

In our approach, we make use of the Gumtree tool to generate the

changes between any two versions [3]. Gumtree takes as input two versions of

a software product, i.e. a source version and a destination version, and outputs

the AST node changes from the source version to the destination version. The

output contains the nodes that have been inserted, moved, deleted, or updated.

17



The nodes themselves are identified by their type, value or label, ID in the

AST, and sometimes their parent node, its value or label, and ID as well, and

the index in the parent’s node children array. As shown in the figure 3.2,

the output produces the changes from the source version to the destination

version, including the ID number of the node(3 and 16) in the tree and the

parent type represented as an integer(55 and 32).

Figure 3.2: Gumtree Output Example

It should be noted that for different actions, the level of information

is different. For instance for move and insert actions, information about the

parent node is always present, as the nodes are always inserted or moved to

an existing node. However, for update and delete actions, information about

the parent node is not present by default.

In the fist step of our approach, the PAR has to be generated. The

PAR, ultimately, is the set of all changes from the vulnerable version to the

fixed version presented as changes in AST nodes. PAR is a crucial artifact in

our approach as it serves as the benchmark through which the presence of the

vulnerability in the other versions is traced. PARs are unique to one particular
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CVE, given the fine-level of granularity of changes considered in this approach.

Similarly, the changes in AST from the vulnerable version to the subject

version are also generated in the artifact called ADO. Each ADO has an

identifier that relates it to the subject version it belongs to. The ADO is

compared against the PAR for similarities, and as such, is part of the evidence

to reach the conclusion for the presence of the vulnerability in the subject

version it belongs to.

3.2.2 Origin Nodes Identification

Origin nodes are those nodes that introduced the vulnerability in the

first place. In order to identify these nodes, we leveraged the information in

the PAR and filtered it with several heuristics presented below. Because of

different characteristics of the different actions performed on the nodes, the

heuristics had to be characterized based on the actions.

1. Move Actions: If the action representing the change in the node is move,

that means that one node had to be moved to another node. In those

cases, considering the general strict level of our approach, we assume

that the vulnerability was introduced due to the fact that the node was

not in the parent node, or said differently, the parent node did not con-

tain the node. This assumption leads us to consider both the node that

was moved and the new parent node as nodes that introduced the vul-

nerability or origin nodes.
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2. Delete and Update Actions: If the action representing the change in the

node is either delete or update, that means that that node was vulnerable

and needed to be deleted or updated to fix the vulnerability. In these

cases, these nodes are considered origin nodes.

3. Insert Actions: If the action representing the change in the node is insert,

that means that the parent node needed to have an inserted node for

it to be fixed. As such, the parent node was vulnerable. However,

based on the format of the PAR, an additional check has to be made

for insert actions. Usually, the PAR can contain multiple insert actions

that show how multiple nodes have been inserted to different parent

nodes. Moreover, nodes that have been inserted themselves through the

patch, can become parent nodes for other nodes that are inserted in

them. In these cases, all the parent nodes that were themselves inserted

through the patch are discarded and not considered as origin nodes. This

check makes sure that these parent nodes are the ones that existed in

the vulnerable version, and not introduced as part of the patch. Those

parent nodes that pass the check are considered origin nodes.

4. Compilation Unit and Import Declaration Nodes: Lastly, the Compila-

tion Unit nodes, that refer to the file, and Import Declaration nodes,

that refer to import statements, do not bear significant information for

the presence of the vulnerability. As such, they are ignored from the

origin nodes identification.
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Algorithm 1 Origin Node Identifier Algorithm

1: Input: NodeChanges← {∀(NodeChange ∈ PAR)}
2: Output: OriginNodes←{}
3: while NodeChanges textbfis not empty do do
4: if NodeChange.Action is INS or MOV then
5: if NodeChange.PN is ImpDecl or ComplUnit then
6: NodeChanges = NodeChanges \NodeChange

7: if NodeChange.Action is DEL or UPD or MOV then
8: if NodeChange.Node is ImpDecl or ComplUnit then
9: NodeChanges = NodeChanges \NodeChange

10: while NodeChanges is not empty do
11: if NodeChange.Action is INS then
12: if ¬∃NodeChange.PN ∈ {∀NodeChanges.Node if NodeChanges.Action is INS}

then
13: OriginNodes← NodeChange.PN

14: else if NodeChange.Action is DEL or UPD then
15: OriginNodes← NodeChange.Node
16: else if NodeChange.Action is MOV then
17: OriginNodes← NodeChange.Node
18: OriginNodes← NodeChange.PN

19: return OriginNodes
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Algorithm 1 details the steps that our approach follows to implement

those heuristics. Initially, all the Node Change objects in PAR are added to a

set. Node Change objects involving Import Declaration and Compilation Unit

nodes are discarded as seen in steps 3-9, respecting the fourth heuristic. Since,

for insert actions, the parent node is considered as an origin node, the value

of the parent node is considered in these steps for these actions. For update

and delete actions, the node itself is considered an origin node, and as such

it is the value of the node that is considered in these steps. Lastly, for move

actions both the node and the parent node are considered origin nodes, so the

values of both are considered in these steps for the move action. In steps, 6

and 9 the set of Node Changes is updated by removing the nodes that do not

pass this check.

The updated set is re-iterated again in step 10. This time, the nodes

are added to the Origin Nodes set when they respect heuristics 1-3. In step 12,

our approach checks if the parent node of an insert Node Change exists in the

set of all insert Node Changes nodes. This is equivalent to picking only those

parent nodes that have not been inserted by the same patch, but rather should

have existed in the vulnerable version. In the end, the algorithm returns a set,

which holds only unique elements, of origin nodes.

The set of origin nodes is used in comparing the nodes found in ASTs

of subject version(s). The origin nodes are stored in an artifact that is unique

for each vulnerability. Each artifact has an identifier that relates it to its CVE.
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3.2.3 Similarity Check

After the artifacts have been generated, the next step is checking the

PAR and each ADO for similarity. This process takes in the PAR and the

ADO between the vulnerable and the subject version as input. It tries to

match the Node Changes from the PAR to ADO. The matching is performed

across different dimensions for different actions.

If all Node Changes are matched, the similarity is 100%. The percent-

age of similarity is the number of nodes matched over the total number of

nodes in the PAR. The similarity score returned from this step is compared to

the threshold/s set for similarity.

Algorithm 2 Similarity Check Algorithm

Input: PARNodeChanges← {∀(NodeChange ∈ PAR)}
Input: ADONodeChanges← {∀(NodeChange ∈ ADO)}
Output: simscore
SimilarNodes← {PARNodeChanges ∩ ADONodeChange}
simscore = |PARNodeChanges|\|SimilarNodes|
return simscore

3.2.4 Origin Nodes Check

If the similarity check results in a similarity less than a threshold, the

next step is checking for the presence of origin nodes. If the subject version

does not contain the origin nodes, this is sufficient evidence to say that the

vulnerability did not exist in it. To perform this step, the subject version’s file

or files involved in the vulnerability are parsed into their AST representation

using Gumtree [3]. After the parsing of these files, the program searches for

23



the origin nodes identified from step II. While searching for the origin nodes,

the program keeps a counter. If the counter is 0, the program concludes that

the subject version is not vulnerable, and any similarity in the process was

due to changes not related to the vulnerability per se. If the counter is higher

than 0, the subject version is submitted to an additional check.

3.2.5 Origin Nodes Addresser Check

In the last step, the program checks if the origin nodes are addressed in

the similar nodes between the PAR and the ADO. If the counter from origin

nodes returns a number different from 0, this is indicative that there is one or

more origin nodes present in the subject version. However, the mere presence

of those nodes does not indicate that the vulnerability still exists.

For instance, let’s assume that a vulnerable node was an if condition

that was checking if the value of a variable A was 0. Let’s assume that the

fix involved adding an additional check for the value of another variable B, in

the same if condition. If we parse the subject version X, and if we see that

the if condition checking for the value 0 of variable A is there, its counter

for origin nodes will increase. However, in the similar Node Changes between

the ADO of subject version X and the relevant PAR, there could be a Node

Change object that suggests that the check for the variable B has been added.

Our approach needs to evaluate if the identified origin nodes are addressed

in the ADO or not. That is why the last step of the approach checks if the

origin nodes are among the nodes in similar Node Changes. The program looks
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through all origin nodes that the subject version contains and compares them

against the nodes found in the similar Node Changes check. If the origin nodes

are addressed with the fix, it means that the vulnerability has been addressed

and the version is not vulnerable. Otherwise, the origin nodes have not been

addressed and the version is vulnerable.

3.2.6 Multiple-File Changes

The patches that fix a vulnerability often times involve more than one

file. In cases where multiple-file changes are involved, our approach evaluates

all of the files individually. Each file involved in the change has a PAR and

Origin Nodes set. All of the subject versions’ files are compared against these

two artifacts. The subject version is considered not vulnerable if all of the files

are evaluated to be non vulnerable; otherwise, if at least one file is considered

vulnerable, the version is considered to be vulnerable.

3.2.7 The Five Versions of Patchilyzer

To get a better understanding on what type of information is needed

to trace a vulnerability better, we implemented our approach in a tool named

Patchilyzer. In deciding how much information to consider when searching and

identifying origin nodes, we experimented with five different levels of informa-

tion. Through this, we wanted to see if there was any correlation between

more information regarding origin nodes and higher accuracy. We considered

Node Type, Node Label, Parent Node Type, Parent Node Label, and Children
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V. Definition Example
I NT + PT + Location TypeDeclaration 32 190
II NT + Children TypeDeclaration [43@@Map]
III NT + NL + Children TypeDeclaration int [43@@Map]
IV NT + NL + PT + Children TypeDeclaration int 32 [43@@Map]
V NT + NL + PT + PL + Children TypeDeclaration int 32 Block [43@@Map]

(3.1)

Table 3.1: The Five Versions of the Patchilyzer

as valuable points of information. The five different versions of Patchilyzer are

presented in table 3.1.

The differences among five versions are also present in the PAR and

ADO. Because the origin nodes stem from it, the information present in the

PAR has to be compatible with the definition of each version for its origin

nodes. Because ADO has to be compared to the PAR, its format is condi-

tioned upon PAR by default. For instance, in Patchilyzer I, the PAR and the

ADO, always contain information about the Parent Node Type, but not for

the node’s Children. However, in Patchilyzer II the PAR and the ADO do

contain information about the Children as well. Moreover, these differences

are reflected on how the five Patchilyzer versions parse the subject version

files when doing the Origin Nodes Check, too. Since in this step, the program

looks for the origin nodes in the parsed files of the subject version, the parsing

format needs to be compatible with the origin nodes format. That is why, for

each different version, the parsing follows a different format.
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3.3 Experiments

In order to evaluate our approach, we implemented it in the Patchilyzer

tool in Java and tested it in 174 versions of Tomcat across 39 vulnerabilities, i.e.

CVEs that were found and fixed in Tomcat. Apache Tomcat is an open source

web server written in Java, that is used in numerous large applications1.We

chose Tomcat as our case study because it is open source, with numerous

vulnerabilities identified and fixed throughout the years. This enabled us to

easily access and analyze its source code and the fixes for vulnerabilities. The

Tomcat source code is managed in Subversion. However, it also has a mirror

repository on github2. For the purposes of this experiment, we used Tomcat

github repository to collect information about the CVE-s and their fixes. The

experiments were carried out in Windows 10, in a 64 bit machine with 3.60

GHz Intel Core CPU.

In this section, we explain the process of gathering the data, the pre-

processing, and the evaluation process.

3.3.1 Gathering Data and Preprocessing

For our approach to work, we needed to collect several data points from

the Tomcat repository. First, we needed to obtain all the CVE-s that were

fixed. To do that, we followed some heuristics. Usually, when developers fix

a vulnerability, they refer to the CVE they fixed in the commit message as

1http://tomcat.apache.org/
2https://github.com/apache/tomcat/

27



seen in Figure 3.3. Using this piece of information, we ran a crawler in the

Tomcat github mirror repository, to search free-text on the commit message

and identify a CVE-XXX-XXX regex pattern. We also needed to get the

commits that fixed those patches. Based on our CVE search, we obtained

the hash of the resulting commit, i.e. the fix version, the previous commit,

i.e. the vulnerable version, and the files changed in the fixed version. After

Figure 3.3: Tomcat CVE Fix Commit Message Example

the information had been obtained, a semi-automatic processing of the data

ensued. First, all non-source code files were discarded, including test files,

xml files or change logs. Second, in our dataset, we had cases where a CVE

was fixed by two or more consecutive commits. In these cases, the definition

for the vulnerable version and fixed version changes. Specifically, the revision

were vulnerability was found, i.e. the vulnerable version, is the one previous

to the earliest commit, and the revision where the vulnerability was fixed is

the most recent one where that CVE was mentioned. Since our approach

relies on leveraging all the information that fixed a vulnerability, we had to

combine the patches in cases like this to get the full picture of all the changes

that happened. The only way to do that is adding up and combining the

changes from the two patches. Therefore, in cases with multiple fix-commits,

our vulnerable version was the revision previous to the first time that CVE
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was mentioned and the fixed version was the last revision where the CVE

was mentioned. To address this issue, we merged the cases with the CVEs

from consecutive commits. As such, we essentially combined the two patches

together in one.

To illustrate this process with an hypothetical example, as seen in Fig-

ure 3.4, let’s assume that CVE-AAA-AAA was fixed in two consecutive com-

mits, namely commit 2 and commit 3. In the second instance this CVE is

mentioned, the fix commit from the previous time, i.e. commit 2, became the

vulnerable version according to our initial definition. However, this is not the

case for this CVE. The vulnerable version is commit 1. In order to evaluate

all of the changes done to fix the vulnerability, we need to combine all changes

from commit 1 to commit 2, and then all the changes from commit 2 to commit

3. The easiest way to do this, is look at all the changes from commit 1, the

vulnerable version, to commit 3, the final fixed version. The changes reported

from commit 1 to commit 3 will contain the changes done in commit 2 as well.

As such, in this case, we considered the revision previous to the revision with

the earliest mention of the CVE id, i.e. commit 1, as our vulnerable version.

Similarly, the last commit, i.e. commit 3, where the CVE was mentioned is

considered as the fixed commit.

There were also cases where the same CVE was fixed from non-consecutive

commits. In those cases we evaluated the subject version for all of the consec-

utive commits individually, and the final conclusion regarding the version was

an aggregate of all the individual decisions.
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Figure 3.4: CVE Merging Example

Simultaneously, the source code of all supported versions of Tomcat

was cloned in the local machine where we were carrying our experiments.

Finally, the paths to the vulnerable and fixed versions of 39 CVEs, the

names of the files that changed in the commit, and the directory with the 174

subject versions to be evaluated was given as input to Patchilyzer. This was

the data used to perform the experiments. The experiments were carried out

across the five versions of Patchilyzer from section 3.2.7. Moreover, they were

carried out with three different thresholds for similarity check, namely 0.7, 0.8,

and 0.9.

3.3.2 Evaluation Process

In the end, after the experiments were carried out, we had a total of

6,786 combinations of CVEs and versions that had been evaluated by our

approach. In order to evaluate the accuracy of our approach, going through

all these combinations would have been a very tedious and time-consuming

task. However, there were some ways in which we could remove some of the

combinations automatically. There were cases where the similarity score was

one, and there were also cases where the similarity score was 0, with 0 origin
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nodes found in the subject version. In both of these cases, our confidence that

the subject version is not vulnerable is higher. Moreover, there were cases

where the files that were changed as part of a vulnerability fix did not exist

at all in the subject version. All of these cases were scenarios in which we a

manual analysis was not highly necessary. As such they were discarded.

What we needed to more urgently was evaluate cases that were in the

middle part of the decision spectrum, namely cases with similarities from 0

with some original nodes present, inclusive, to less than 1, non-inclusive. These

were the cases where the presence of the vulnerability was not straightforward.

As such, we ended up with a combination of around 3,000 CVEs and versions

to be evaluated. The amount of data was still high and required a lot of

manual work to be done. Ultimately, we chose a random sample of 35 com-

binations of CVEs and versions to be manually evaluated by four reviewers

with relevant background. The four reviewers were given all the information

they needed, i.e. the vulnerable version, the fixed version, the patch and the

subject version, and they were asked to perform manual analyses on the source

code of the 35 subject versions to try to pinpoint if a particular vulnerability

was still located there. The reviewers were asked to provide a reasoning for

their conclusion. The reasoning was thoroughly manually vetted for validity.

If issues were encountered, the reviewers were asked to re-do the review, until

it was considered valid and contained sufficient evidence to pass the vetting.

31



Chapter 4

Results and Discussion

Our approach was evaluated using Tomcat’s source code and its vulner-

abilities. For our experiments, we used three different thresholds, specifically,

0.7, 0.8, and 0.9, for the similarity check. The thresholds were set at this high

level because one of our goals was to have a strict approach when it comes to

evaluating the similarity between PAR and ADO. Moreover, our origin node

threshold was set to at least 1, in all the cases, i.e. even if one origin node

existed that was not addressed, the version was tagged as vulnerable. It was

our primary goal and focus to not miss-tag vulnerable versions for not vulner-

able and our thresholds reflect this goal. Lastly, the five different versions of

Patchilyzer were used when running the experiment; as such, their accuracy

was evaluated as well. Through the five different versions, we wanted to dis-

cern any significant changes in accuracy level with differing features in origin

nodes definition.

After obtaining the evaluation results from our reviewers, we calculated

the accuracy of our approach for every threshold and every version of Patchi-

lyzer. The results are summarized in Table 4.1. As it can be seen from the

table, Patchilyzer III demonstrates higher accuracy than all other versions,

32



V./ Thresholds 0.7 0.8 0.9
Patchilyzer I 0.8 0.77 0.66
Patchilyzer II 0.83 0.74 0.57
Patchilyer III 0.86 0.8 0.69
Patchilyzer IV 0.83 0.74 0.63
Patchilyzer V 0.86 0.78 0.66

(4.1)

Table 4.1: Accuracy Results for Patchilzyer’s Versions and Thresholds

under all thresholds, with 86% being its highest accuracy. Patchilyzer V has a

similar accuracy level, but for thresholds 0.7 and 0.9 its accuracy lowers com-

pared to Patchilyzer III. Patchilyzers II and IV have similar accuracy levels as

well, besides on the 0.9 threshold, where Patchiylzer IV has a slightly higher

accuracy. Lastly, Patchilyzer I performs worse than all of the other versions.

In section 4.1., we dwell into the rationale behind these results.

The different thresholds also have varying accuracy levels. However,

the ranking is the same for all of the cases. Threshold 7.0 has the highest

accuracy levels, followed by 0.8 and 0.9. A discussion of this perspective on

the results is presented in section 4.2.

4.1 Versions’ Comparison

The results reveal an interesting picture. First, in terms of the five

versions of Patchilyzer, the results show that while up to some point having

more information on origin nodes increases the accuracy, this is not always the

case. If we compare Patchilyzer III with Patchilyzers I and II, that use less
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information in how they define origin nodes, we see that the accuracy always

increases for Patchilyzer III.

Regarding Patchilyzer I, one rationale behind its performance is that

it uses the location or ID of the node as one of the defining features for origin

nodes. Since the overall AST of a file might have changes that are not related

to the vulnerability at all, the location of the nodes that are indeed involved

in the change is impacted because of this. As such, due to the non-relevant

changes in the ID, this comparison point, i.e. the location, did not match for

instances when they should have matched, or it accidentally matched when it

should not have.

Let’s take for instance CVE-2010-4172. For both Patchilyzer I and

Patchilyzer III, the similarity score was below all the thresholds. Patchilyzer I

detected that Tomcat 7-0-4 did not contain this vulnerability, whereas Patchi-

lyzer III detected that it did. When we look into the artifacts produced by

both of the approaches, we can see that Patchilyzer I, in the first file that

was changed in the patch, identified three origin nodes. That means that,

per the approach taken by Patchilyzer I, there were three different nodes that

contained or introduced the vulnerability. Patchilyzer III also identified three

origin nodes, but the information it used to define those origin nodes was

slightly different. When Patchilyzer I looked for the origin nodes in the parsed

file of the subject version, it couldn’t identify any. However, Patchilyzer III

did in fact find one origin nodes in the file, a Return Statement. Moreover, it

found that that node was not addressed. When we look at the source code,
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Version Sim. Score Add. ON/Prs. ON Conclusion
Patchilyzer I 0.33 0/0 NOT VULN

Patchilyzer III 0.33 0/1 VULN

Table 4.2: Evaluation of Tomcat 7-0-4 for CVE-2010-4172

the origin node, that Return Statement, was indeed there, but due to other

changes, it ended up in a different location in the AST and Patchilyzer I was

not able to catch it. As such, Patchilyzer I ended up miss-tagging Tomcat

7-0-14 as not vulnerable, when it really was. Cases like this have negatively

impacted the accuracy of Patchilyzer I. The case study of Patchilyzer I sug-

gests that the location might not be a good comparison point when trying to

identify origin nodes.

Patchilyzer II, on the other hand, does not rely on the ID of the node,

but on the Node Label and Children. By looking at the data, it seems like for

the cases that Patchilyzer III detected correctly that were missed by Patchi-

lyzer II, the problem was that origin nodes were defined loosely in Patchilyzer

II. Because of this, there was a higher probability for each identified origin

node to be located in the parsed AST of the subject version. If an origin node

was simply defined as Block, with no children, there were higher chances of a

Block code element to exist in the parsed AST of the subject version. This

increased the rate of matching origin nodes, contributing in false positives.

Patchilyzer III fixes this problem by adding one more point of comparison

that helps increase the accuracy.

A case like this happened with a partial fix for CVE-2011-2526. For
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Version Sim. Score Add. ON/Prs. ON Conclusion
Patchilyzer II 0.67 2/3 VULN
Patchilyzer III 0.33 1/1 NOT VULN
Patchilyzer IV 0.33 0/1 VULN

Table 4.3: Evaluation of Tomcat 7-0-4 for CVE-2010-4172

both Patchilyzers II and III, the similarity score was below all the thresholds.

Patchilyzer II identified three origin nodes in that fix, and it also identified their

presence in the subject version, Tomcat 8-5-8. Moreover, it found out that only

one of those origin nodes was actually addressed in the similar nodes. As such,

it concluded that this version did contain the vulnerability. Patchilyzer III, on

the other hand, also identified three origin nodes, but it found only one in the

same subject version. That same origin node had been addressed and fixed,

and Patchilyzer III concluded that the version was not vulnerable. The version

was indeed not vulnerable. What had happened is that because the parsing

in Patchilyzer II is vaguer than in Patchilyzer III, Patchilyzer II had located

other false-positive nodes with similar characteristics as the origin nodes that

were not really vulnerable. Because of the additional information required by

Patchilyzer III, it was able to decrease the vagueness in this case.

However, if, on the other hand, we look at the results of Patchilyzers IV

compared to Patchilyzer III, we see that the accuracy level does not increase,

and it even slightly decreases. This information suggests that more information

does not necessarily increase the detection accuracy. Why is that? For starters,

the level of information provided in Patchilyzer III can be the level in which
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our approach reaches information saturation. Any piece of information after

that does not add to the detection accuracy, but just strengthens it. However,

this answer does not address the one case in which the conclusion reached by

Patchilyzers III and V differs from that achieved by Patchilyzer IV, namely

CVE-2011-2526. In this case, the similarity scores were below the thresholds

for Patchilyzer III and IV, but the problem was presented after the origin

nodes check. Because Patchilyzer III allowed for more flexibility in the origin

nodes, it was able to detect better the fixed origin nodes. However, the stricter

approach of Patchilyzer IV, which was looking in the similarity nodes for exact

matches of their more complex origin nodes, failed to detect the fix which was

a bit different.

In conclusion, the cross comparison of the version suggests that up

to a point, more information in defining origin nodes increases the accuracy;

however, after a certain point that accuracy does not improve, and it might

actually be harmed.

4.2 Thresholds’ Comparison

The threshold results paint, to some degree, the same picture as the

version comparison. Nonetheless, the threshold comparison gives us another

perspective since, differently from versions that alter the origin node check,

they are set for the similarity check. Because of our spectrum categorization,

and because we were looking for cases with almost perfect similarities, we

set the thresholds for similarity very high. However, looking at the data, if
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our thresholds were set lower, the detection accuracy would have decreased

for thresholds lower than 0.7. Nonetheless, despite this, we also see that on

average, the lowest of our thresholds, 0.7, performs better than the other two.

Moreover, the 0.9 thresholds, which is even closer to perfect similarity, always

performs the worse out of the three. In the Patchilyzer II example, the decrease

in accuracy from the 0.8 to 0.9 thresholds is for 23%. The reasoning behind

this has again to do with how the fixes would look like from one version to

another. The more dimensions added to the matching criteria between the

Node Changes objects, the less realistic the detection becomes, as it assumes

that all the versions will have the same fix as the fixed version. However,

the fixes from one version to another might have similar elements, but also

might adjust to accommodate other changes in that version. That is why the

threshold at 0.7 allows for a more realistic representation of the fix, which

enables it to perform better in terms of accuracy.

4.3 Common Threads and Validity of Our Approach

Across all the versions and thresholds, there were some common cases

that give us better insights on how the overall approach performs. Apart from

Patchilyzer I, all of other Patchilyzers in all of the thresholds successfully

identified the versions that were indeed vulnerable. In other words, in all of

the cases were reviewers said a version was vulnerable, Patchilyzers II to V

accurately identified them as vulnerable as well. This reflects that our strict

approach for the aim of not missing true vulnerable versions was successful.
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On the other hand, in all of the cases in which Patchilyzers II to V

did not agree with the reviewers was on cases where the vulnerability was

not there, but our approach tagged them as vulnerable. In other words, all

of the false positives for Patchilyzer II, III, IV, and V involve mis-tagging

non-vulnerable versions for vulnerable. In terms of our overall goals, this is a

trade-off between loosening our thresholds and risking to miss true vulnerable

versions and this scenario in which we miss-tag non-vulnerable versions for

vulnerable. The present scenario, in which we keep our thresholds tight and

miss-tag non-vulnerable versions for vulnerable, is a trade-off scenario which

serves the purpose of this work better. In terms of achieving security, it is

better to be more cautious than less cautious. Moreover, cases like the ones

our approach have mis-tagged, that detect some similarity between the PAR

and the ADO, could point to partial fixes or to instances that require the

developers’ attention to be completely fixed.

4.4 Results from Previous Work

There were two previous research studies that focused on tracing vul-

nerabilities across different releases. As mentioned above, their focus is lines of

code changed, i.e. added or deleted, to fix a vulnerability. Comparing the ac-

curacy of these tools to ours is a bit tricky, as they have used different datasets

and number of conclusions. For instance, in [1], the dataset included several

CVEs from Apache Hadoop, Cloudstack and HTTP Server. In their approach,

they used different thresholds, namely 0.5 for additions and 0.25 for deletions.
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The way they used the thresholds is as follows: if the subject version contains

less than 0.5 of additions or more than 0.25 of deletions, a version is considered

vulnerable. Moreover, they made use of three different conclusions for their

evaluation set: vulnerable, not vulnerable, or indeterminate. After removing

the indeterminate results from the dataset, for the remaining of the data, the

reported accuracy level was 86%.

In another work of this nature, the presence of deleted lines in a patch

was considered as what makes a subject version vulnerable [13]. The re-

searchers obtained what is called the vulnerability footprint, containing the

deleted lines in the patch, and looked for its presence back in other releases.

When lines of code were only added to fix a vulnerability, the entire file where

these lines of coded were added was considered as vulnerable. To evaluate the

accuracy of their approach, the researchers tested their approach in 80 vulner-

abilities from Firefox, and then manually evaluated those. The accuracy level

was 80%.

Comparing these data to our evaluation process cannot be done directly,

as in all three works the evaluation datasets are different from one another.

Moreover, in [1], the types of conclusions the approach can reach differ from

our approach, as they include the indeterminate result. As such, it’s best to

interpret these results on all the different approaches against the datasets used

in their respective work.
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4.5 Threats to Validity

The work presented in this thesis is subject to some threats to validity.

First, the final results excluded the versions that had a similarity score

of 1, and those that had a similarity score 0. This was done to focus on the

most challenging section of the spectrum of our results; however, this prohibits

us from displaying the full tracing power of the tool. Further analysis done for

cases like this needs to be conducted to eliminate this threat.

Second, the cases in which files involved in the patch did not exist

in the subject versions were not looked into further to consider changes in

the filenames or directories. This might have affected the final results and an

approach that traces these files back to older versions needs to be implemented

as a complimentary approach to the Patchilyzer.

Lastly, although the reviewers were asked to provide a rationale for

each of their decisions and were given instructions, a firmer conclusion could

be reached if exploits of these CVEs would be ran against the source code.

Such an approach could be used in the future.
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Chapter 5

Conclusion and Future Work

5.1 Future Work

Future work in this area can initially focus in testing the approach

in products written in different programming languages and platforms. As

of now, our approach has been tested only in Tomcat. A variety of prod-

ucts and programming languages could analyze how our tool works with other

languages and give us better insights on the strengths and drawbacks. More-

over, statistical models and machine learning algorithms could be used to give

weights to origin nodes that better detect the presence of a vulnerability. The

ground-truth that could be used for such a project could be the dataset build in

this work coupled with the reviewers’ evaluation. Based on theoretical knowl-

edge, we already discarded too broad origin nodes such as CompilationUnit,

or the ones that do not bear significant information to the functionality of

the software product, such as ImportDeclaration. However, such a project,

involving machine learning, could give us better insights in how to increase

the detection accuracy through giving more weight to certain origin nodes

and discarding others. Lastly, future work can be focused towards making

the PAR generalizable and abstract away program-specific features, to detect

known vulnerabilities across projects.
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5.2 Conclusion

Ensuring the security of software products is increasingly taking a cen-

tral role in the engineering software practices. Due to its importance and

complexity, this task becomes time consuming for developers. As such, there

is a need to automate processes that could help developers ensure the security

of their products with high accuracy. To that end, through this project, we

created an approach that relies on AST representation of source code to trace

known vulnerabilities across releases of software product. Our work, to the

best of our knowledge, is the first of its kind, in that it relies on a more flexible

representation of the source code to solve this problem. Previous work relies

on lines of code as means of detecting vulnerabilities. Moreover, our approach

generates comprehensive artifacts that could help developers with guidance

on what and how to patch. Simultaneously, our main aim was to make this

approach as strict as possible to not miss-tag any vulnerable versions as non

vulnerable, as the opposite would have serious security effects for those who

rely on our tool.

We implemented our approach in a Java tool named Patchilyzer. The

accuracy of our tool was evaluated through five different versions and three

different thresholds. Three reviewers were asked to manually review the accu-

racy of our tool. We reached an accuracy of 86% in detecting the presence of

a vulnerability. The cases in which we mis-tagged the vulnerable status of a

subject version where cases where the subject version was not vulnerable. This

comes from our approach being strict in that it has high thresholds for versions
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to pass not to be considered vulnerable. This reflects our overall tendency not

to miss versions that are indeed vulnerable. In our view, miss-tagging some

versions as vulnerable, when they are not, is better than the opposite: not

warning developers and users that a version is vulnerable when it really is.

The risk of having to make this trade-off was the reason behind holding on to

stricter thresholds.
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Chapter 6

Appendix - Raw Results

In this chpater, we will present the raw results from the evaluation pro-

cess. The results from each version of Patchilyzer are presented in a separate

table. The table contains the conclusion from all of the thresholds used and

the conclusion reached by the reviewer.
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Table 6.1: Pathilyzer I Raw Results
CVE-ID Version 0.7 0.8 0.9 Review
CVE-2007-0450 tomcat 7 0 21 NOT VULN NOT VULN NOT VULN VULN
CVE-2007-2450 tomcat 7 0 23 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-1947 tomcat 7 0 14 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-5515 tomcat 7 0 65 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-2693 tomcat 8 0 11 NOT VULN VULN VULN NOT VULN
CVE-2009-2901 tomcat 8 0 1 NOT VULN NOT VULN VULN NOT VULN
CVE-2009-2902 tomcat 8 5 21 NOT VULN NOT VULN VULN NOT VULN
CVE-2009-3555 tomcat 7 0 19 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-3555 1 tomcat 8 5 22 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-1157 tomcat 7 0 63 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-1622 tomcat 8 0 16 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-2227 1 tomcat 7 0 12 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-3718 tomcat 8 0 49 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-4172 tomcat 7 0 4 NOT VULN NOT VULN NOT VULN VULN
CVE-2010-4476 tomcat 7 0 6 NOT VULN NOT VULN NOT VULN VULN
CVE-2011-0013 tomcat 7 0 64 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-0534 tomcat 7 0 26 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1088 tomcat 7 0 62 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1088 1 tomcat 7 0 77 NOT VULN NOT VULN NOT VULN VULN
CVE-2011-1088 2 tomcat 7 0 37 NOT VULN NOT VULN NOT VULN VULN
CVE-2011-1183 tomcat 8 0 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1184 tomcat 7 0 71 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1475 tomcat 9 0 0 NOT VULN NOT VULN NOT VULN VULN
CVE-2011-1582 tomcat 8 0 37 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2204 tomcat 8 5 20 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2481 tomcat 7 0 36 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-2481 1 tomcat 7 0 43 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-2526 tomcat 7 0 40 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 1 tomcat 8 5 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 2 tomcat 8 0 20 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 3 tomcat 7 0 44 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-3190 tomcat 8 0 41 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2014-0050 tomcat 8 0 36 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2016-5388 tomcat 7 0 49 NOT VULN NOT VULN NOT VULN VULN
CVE-2017-12617 tomcat 7 0 20 NOT VULN NOT VULN NOT VULN NOT VULN
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Table 6.2: Patchilyzer II Raw Results
CVE-ID Version 0.7 0.8 0.9 Review
CVE-2007-0450 tomcat 7 0 21 VULN VULN VULN VULN
CVE-2007-2450 tomcat 7 0 23 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-1947 tomcat 7 0 14 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-5515 tomcat 7 0 65 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-2693 tomcat 8 0 11 NOT VULN VULN VULN NOT VULN
CVE-2009-2901 tomcat 8 0 1 NOT VULN NOT VULN VULN NOT VULN
CVE-2009-2902 tomcat 8 5 21 NOT VULN VULN VULN NOT VULN
CVE-2009-3555 tomcat 7 0 19 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-3555 1 tomcat 8 5 22 VULN VULN NOT VULN VULN
CVE-2010-1157 tomcat 7 0 63 NOT VULN VULN VULN NOT VULN
CVE-2010-1622 tomcat 8 0 16 VULN VULN VULN NOT VULN
CVE-2010-2227 1 tomcat 7 0 12 NOT VULN NOT VULN VULN NOT VULN
CVE-2010-3718 tomcat 8 0 49 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-4172 tomcat 7 0 4 VULN VULN VULN VULN
CVE-2010-4476 tomcat 7 0 6 VULN VULN VULN VULN
CVE-2011-0013 tomcat 7 0 64 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-0534 tomcat 7 0 26 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1088 tomcat 7 0 62 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1088 1 tomcat 7 0 77 VULN VULN VULN VULN
CVE-2011-1088 2 tomcat 7 0 37 VULN VULN VULN VULN
CVE-2011-1183 tomcat 8 0 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1184 tomcat 7 0 71 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1475 tomcat 9 0 0 VULN VULN VULN VULN
CVE-2011-1582 tomcat 8 0 37 VULN VULN VULN NOT VULN
CVE-2011-2204 tomcat 8 5 20 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2481 tomcat 7 0 36 VULN VULN VULN NOT VULN
CVE-2011-2481 1 tomcat 7 0 43 VULN VULN VULN NOT VULN
CVE-2011-2526 tomcat 7 0 40 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 1 tomcat 8 5 8 VULN VULN VULN NOT VULN
CVE-2011-2526 2 tomcat 8 0 20 VULN VULN VULN NOT VULN
CVE-2011-2526 3 tomcat 7 0 44 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-3190 tomcat 8 0 41 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2014-0050 tomcat 8 0 36 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2016-5388 tomcat 7 0 49 VULN VULN VULN VULN
CVE-2017-12617 tomcat 7 0 20 NOT VULN NOT VULN NOT VULN NOT VULN
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Table 6.3: Patchilyzer III Raw Results
CVE-ID Version 0.7 0.8 0.9 Review
CVE-2007-0450 tomcat 7 0 21 VULN VULN VULN VULN
CVE-2007-2450 tomcat 7 0 23 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-1947 tomcat 7 0 14 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-5515 tomcat 7 0 65 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-2693 tomcat 8 0 11 NOT VULN VULN VULN NOT VULN
CVE-2009-2901 tomcat 8 0 1 NOT VULN NOT VULN VULN NOT VULN
CVE-2009-2902 tomcat 8 5 21 NOT VULN VULN VULN NOT VULN
CVE-2009-3555 tomcat 7 0 19 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-3555 1 tomcat 8 5 22 VULN VULN VULN NOT VULN
CVE-2010-1157 tomcat 7 0 63 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-1622 tomcat 8 0 16 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-2227 1 tomcat 7 0 12 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-3718 tomcat 8 0 49 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-4172 tomcat 7 0 4 VULN VULN VULN VULN
CVE-2010-4476 tomcat 7 0 6 VULN VULN VULN VULN
CVE-2011-0013 tomcat 7 0 64 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-0534 tomcat 7 0 26 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1088 tomcat 7 0 62 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1088 1 tomcat 7 0 77 VULN VULN VULN VULN
CVE-2011-1088 2 tomcat 7 0 37 VULN VULN VULN VULN
CVE-2011-1183 tomcat 8 0 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1184 tomcat 7 0 71 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1475 tomcat 9 0 0 VULN VULN VULN VULN
CVE-2011-1582 tomcat 8 0 37 VULN VULN VULN NOT VULN
CVE-2011-2204 tomcat 8 5 20 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2481 tomcat 7 0 36 VULN VULN VULN NOT VULN
CVE-2011-2481 1 tomcat 7 0 43 VULN VULN VULN NOT VULN
CVE-2011-2526 tomcat 7 0 40 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 1 tomcat 8 5 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 2 tomcat 8 0 20 VULN VULN VULN NOT VULN
CVE-2011-2526 3 tomcat 7 0 44 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-3190 tomcat 8 0 41 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2014-0050 tomcat 8 0 36 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2016-5388 tomcat 7 0 49 VULN VULN VULN VULN
CVE-2017-12617 tomcat 7 0 20 NOT VULN NOT VULN NOT VULN NOT VULN
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Table 6.4: Patchilyzer IV Raw Results
CVE-ID Version 0.7 0.8 0.9 Review
CVE-2007-0450 tomcat 7 0 21 VULN VULN VULN VULN
CVE-2007-2450 tomcat 7 0 23 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-1947 tomcat 7 0 14 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-5515 tomcat 7 0 65 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-2693 tomcat 8 0 11 NOT VULN VULN VULN NOT VULN
CVE-2009-2901 tomcat 8 0 1 NOT VULN NOT VULN VULN NOT VULN
CVE-2009-2902 tomcat 8 5 21 NOT VULN VULN VULN NOT VULN
CVE-2009-3555 tomcat 7 0 19 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-3555 1 tomcat 8 5 22 VULN VULN VULN NOT VULN
CVE-2010-1157 tomcat 7 0 63 NOT VULN VULN VULN NOT VULN
CVE-2010-1622 tomcat 8 0 16 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-2227 1 tomcat 7 0 12 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-3718 tomcat 8 0 49 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-4172 tomcat 7 0 4 VULN VULN VULN VULN
CVE-2010-4476 tomcat 7 0 6 VULN VULN VULN VULN
CVE-2011-0013 tomcat 7 0 64 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-0534 tomcat 7 0 26 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1088 tomcat 7 0 62 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1088 1 tomcat 7 0 77 VULN VULN VULN VULN
CVE-2011-1088 2 tomcat 7 0 37 VULN VULN VULN VULN
CVE-2011-1183 tomcat 8 0 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1184 tomcat 7 0 71 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1475 tomcat 9 0 0 VULN VULN VULN VULN
CVE-2011-1582 tomcat 8 0 37 VULN VULN VULN NOT VULN
CVE-2011-2204 tomcat 8 5 20 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2481 tomcat 7 0 36 VULN VULN VULN NOT VULN
CVE-2011-2481 1 tomcat 7 0 43 VULN VULN VULN NOT VULN
CVE-2011-2526 tomcat 7 0 40 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 1 tomcat 8 5 8 VULN VULN VULN NOT VULN
CVE-2011-2526 2 tomcat 8 0 20 VULN VULN VULN NOT VULN
CVE-2011-2526 3 tomcat 7 0 44 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-3190 tomcat 8 0 41 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2014-0050 tomcat 8 0 36 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2016-5388 tomcat 7 0 49 VULN VULN VULN VULN
CVE-2017-12617 tomcat 7 0 20 NOT VULN NOT VULN NOT VULN NOT VULN
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Table 6.5: Patchilyzer V Raw Results
CVE-ID Version 0.7 0.8 0.9 Review
CVE-2007-0450 tomcat 7 0 21 VULN VULN VULN VULN
CVE-2007-2450 tomcat 7 0 23 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-1947 tomcat 7 0 14 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2008-5515 tomcat 7 0 65 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-2693 tomcat 8 0 11 NOT VULN VULN VULN NOT VULN
CVE-2009-2901 tomcat 8 0 1 NOT VULN NOT VULN VULN NOT VULN
CVE-2009-2902 tomcat 8 5 21 NOT VULN VULN VULN NOT VULN
CVE-2009-3555 tomcat 7 0 19 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2009-3555 1 tomcat 8 5 22 VULN VULN VULN NOT VULN
CVE-2010-1157 tomcat 7 0 63 NOT VULN VULN VULN NOT VULN
CVE-2010-1622 tomcat 8 0 16 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-2227 1 tomcat 7 0 12 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-3718 tomcat 8 0 49 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2010-4172 tomcat 7 0 4 VULN VULN VULN VULN
CVE-2010-4476 tomcat 7 0 6 VULN VULN VULN VULN
CVE-2011-0013 tomcat 7 0 64 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-0534 tomcat 7 0 26 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1088 tomcat 7 0 62 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1088 1 tomcat 7 0 77 VULN VULN VULN VULN
CVE-2011-1088 2 tomcat 7 0 37 VULN VULN VULN VULN
CVE-2011-1183 tomcat 8 0 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-1184 tomcat 7 0 71 NOT VULN NOT VULN VULN NOT VULN
CVE-2011-1475 tomcat 9 0 0 VULN VULN VULN VULN
CVE-2011-1582 tomcat 8 0 37 VULN VULN VULN NOT VULN
CVE-2011-2204 tomcat 8 5 20 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2481 tomcat 7 0 36 VULN VULN VULN NOT VULN
CVE-2011-2481 1 tomcat 7 0 43 VULN VULN VULN NOT VULN
CVE-2011-2526 tomcat 7 0 40 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 1 tomcat 8 5 8 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-2526 2 tomcat 8 0 20 VULN VULN VULN NOT VULN
CVE-2011-2526 3 tomcat 7 0 44 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2011-3190 tomcat 8 0 41 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2014-0050 tomcat 8 0 36 NOT VULN NOT VULN NOT VULN NOT VULN
CVE-2016-5388 tomcat 7 0 49 VULN VULN VULN VULN
CVE-2017-12617 tomcat 7 0 20 NOT VULN NOT VULN NOT VULN NOT VULN
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