
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-4-2018

Advances and Challenges in Software Refactoring: A Tertiary Advances and Challenges in Software Refactoring: A Tertiary

Systematic Literature Review Systematic Literature Review

Mazen Alotaibi
mfa2886@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Alotaibi, Mazen, "Advances and Challenges in Software Refactoring: A Tertiary Systematic Literature
Review" (2018). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9755?utm_source=repository.rit.edu%2Ftheses%2F9755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ROCHESTER INSTITUTE OF TECHNOLOGY

MASTER’S THESIS

Advances and Challenges in Software
Refactoring: A Tertiary Systematic Literature

Review

Author:
Mazen ALOTAIBI

Supervisor:
Dr. Mohamed Wiem MKAOUER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Software Engineering

in the

Department of Software Engineering
B. Thomas Golisano College of Computing and Information Sciences

May 4, 2018

https://www.rit.edu
http://www.se.rit.edu/~mwm
https://www.se.rit.edu
https://www.rit.edu/gccis

i

The thesis "Advances and Challenges in Software Refactoring: A Tertiary Systematic Literature

Review " by Mazen ALOTAIBI, has been examined and approved by the following Examination

Committee:

Dr. Mohamed Wiem Mkaouer

Assistant Professor

Thesis Committee Chair

Dr. Christian Newman

Assistant Professor

Dr. Yasmine El-Glaly

Lecturer

Dr. Scott Hawker

Associate Professor

Graduate Program Director

ii

Acknowledgements

I would like to express my special thanks of gratitude to my adviser, Dr. Mohamed Wiem Mkaouer,

for the invaluable support, comments, and suggestions he gave me throughout this thesis. From

the start, his endless enthusiasm encouraged me and energized me after every meeting. His guid-

ance, assistance, and expertise were indispensable to me, and without him, this thesis would have

been impossible.

I would like to thank Dr. Christian Newman for all the advice and feedback he provided on

my thesis.

I would like to thank Dr. Yasmine El-Glaly for her feedback on my thesis and on the inserted,

she shewed on my research.

I would like to thank everyone, who supported me in making this study possible.

Finally, I would like to thank my parents for providing my needs and let me travel half the

world to pursue my dreams. They offer me endless support and inspire me throughout my entire

academic career, and for never once failing to remind me that they believed in me.

iii

Rochester Institute of Technology

Abstract
Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences

Master of Science in Software Engineering

Advances and Challenges in Software Refactoring: A Tertiary Systematic Literature Review

by Mazen ALOTAIBI

Software refactoring is one of the most critical aspects of software maintenance. It improves

the quality of the software, reduces potential occurrence of bugs and keeps the code easier to

maintain, extend and read. The process of refactoring supports and enables the developers to

improve the design of software without changing the behavior. However, the automation of this

process is complex for developers and software engineers since it is subjective, time and resource

consuming. In this context, many literature reviews have analyzed the existing effort made by

researchers to facilitate refactoring, as a core software engineering practice. This paper, aims in

integrating all the existing research outcomes by performing a tertiary study on all the secondary

studies, done in the area of refactoring. Based on our analysis we notice that there are many area of

software refactoring that are under studied. As an outcome of this review, several classifications of

existing studies were provided to showcase all the studies targeting the automation of refactoring

along with explaining what metrics and objectives were used as means to drive refactoring and

how it was assessed. This thesis also aims in unveiling areas of future directions for the research

community in order to consolidate their efforts in improving the refactoring as a practice.

https://www.rit.edu
https://www.se.rit.edu
https://www.rit.edu/gccis

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

2 Background and related work 3

3 Research Methodology 7

3.1 GQM and Research questions . 7

3.2 Primary studies selection . 9

3.2.1 Digital libraries selection and search keywords 10

3.2.2 Inclusion and exclusion criteria . 10

3.2.3 Final pool of primary studies . 11

3.2.4 Quality assessment . 11

3.3 Data extraction . 12

4 Results 14

4.1 RQ1. What are the system levels that are covered by refactorings? 14

4.2 RQ2. What are the existing strategies to detect refactoring opportunities? How

papers identify refactoring opportunities? . 15

4.2.1 Search-based refactoring . 16

4.3 RQ3. What are the existing strategies to automate the application of refactorings? . . 19

v

4.4 RQ4. How approaches verify the correctness of refactorings? How they test the

behavior preservation? . 23

4.5 RQ5. How refactoring strategies have been validated? 24

5 Discussions 26

5.1 Threats to validity . 27

6 Conclusion 29

6.1 Future Work . 30

A Appendix 31

A.1 Secondary Studies . 40

References 42

vi

List of Figures

3.1 Literature Search Process . 9

4.1 Most used search-based in secondary studies. 18

4.2 Most used data sets in secondary studies . 25

A.1 Primary studies vs years . 31

vii

List of Tables

2.1 List of systematic review of systematic reviews in software engineering. 4

3.1 Number of studies per Database . 10

3.2 Primary studies quality assessment. 12

3.3 Primary Studies bibliography info. 13

4.1 Types of System refactoring per study . 14

4.2 Most detected bad smells in secondary studies . 16

4.3 Most used Metrics. 20

A.1 Top-3 cited secondary studies based on total number of citations. 32

A.2 Type of secondary studies. 32

A.3 Secondary studies pool of papers. 32

A.4 Research questions classification in secondary studies. 33

A.5 Refactoring scenario accounted in secondary studies. 38

1

Chapter 1

Introduction

Refactoring is the process of restructuring the internal structure of the software without chang-

ing its external behaver to improve its quality[1]. Since refactoring is a vital task in software

engineering in general, and in software maintenance in particular, it has been the focus of much

research. Various studies look into how to recommend code changes to idealize and correct ex-

isting models, in order to support software developers with handling the increasing complexity

of today’s designs of software systems. That’s why, refactoring is considered one of the most

important practices of software evolution. Yet, this practice tends to be complex, subjective and

manually demanding. Many primary studies have been conducted to automate and improve this

process, and many secondary studies have analyzed the trends among the primary studies. In

this thesis, we plan on conducting a tertiary study to connect the existing knowledge of previous

secondary studies and present a more summarized overview of all the concepts and methodolo-

gies that researches and practitioners have been following when automating and recommending

refactorings.

Based on our search for literature reviews, surveys, and systematic mappings in refactoring,

we resulted with selecting 10 secondary studies in different area of refactoring to review. Since

all our selected papers are secondary studies, we followed the practices of performing a tertiary

study. A Tertiary study is a systematic review of systematic reviews, that helps in uncovering the

Chapter 1. Introduction 2

missing area of current research and answer wider research questions [2]. A tertiary study fol-

low the same methodology as in a Systematic Literature Review (SLR). An SLR is a well-known

methodology to analyze existing studies on a specific research area. The means of SLR is to ana-

lyze research papers, also known as Primary Studies (PS), to gather information about a specific

topic in software engineering or answering research questions[3]. SLR studies also known as sec-

ondary studies which is the review of primary studies. SLRs can be conducted in many forms, for

example, surveys, Systematic Mapping (SM) and Systematic Literature Reviews (SLR) studies[4].

The following thesis was conducted because there is no existing tertiary study in the area of

refactoring, and because I believe that there is a need of gathering the current advances in the

knowledge of refactoring along with exposing the current challenges and future directions of this

area. Such a study will be helpful to researchers and practitioners who want to know what out

there in the area of software refactoring.

3

Chapter 2

Background and related work

As a part of our related work, we follow a similar approach as [4] in conducting related work,

where we analyzed other tertiary studies in the field of software engineering. This helps in cap-

turing what areas of software engineering these existing studies have been covering. Based on

our knowledge and search we did not find any tertiary study in the are of software refactoring.

Nevertheless, we found an overall of 14 tertiary studies [3]–[16] in various areas related to test-

ing, design, requirements, etc. Our search results for tertiary studies in SE are shown in Table

2.1, which are sorted by the year of publication. Since these tertiary studies have similar research

setting, we review them briefly.

Based on our findings, the first tertiary study was introduced in 2009 by Kitchenham. Where

the authors have thought of building a literature review to asses the other existing literature re-

views [5]. They applied the concept of evidence-based software engineering (EBSE) by performing

systematic literature review to assess the impact of other SLRs in software engineering. Kitchen-

ham et al. reviewed 20 relevant studies as their primary studies set, where they analyzed the

quality of their set of primary studies and have found that the quality of SLRs is improving and

more researchers are becoming interested in SLR [5]. The same paper [5] was updated a year

later[3]. The updated paper has 35 additional SLRs on a broad automated search [3]. The pa-

per concluded that the quality of SLRs published in conference and workshop has improved and

more and more researchers are using SLR guidelines that they advocated for in their initial papers

Chapter 2. Background and related work 4

TABLE 2.1: List of systematic review of systematic reviews in software engineering.

Topic Number of secondary studies Year Rfe.
1 SLRs in SE – A SLR 20 2009 [5]
2 SLRs in SE– A tertiary study 33 2010 [3]
3 Critical appraisal of SLRs in SE from the per-

spective of the research questions
53 2010 [6]

4 Research synthesis in SE-A tertiary study 49 2011 [7]
5 Six years of SLRs in SE-An updated tertiary

study
67 2011 [8]

6 Signs of Agile Trends in Global SE Research-A
Tertiary Study

12 2011 [9]

7 Systematic approach for identifying relevant
studies in SE

38 2011 [10]

8 SLRs in Distributed SE-A Tertiary Study 14 2012 [11]
9 A tertiary study: experiences of conducting

SLRs in SE
116 2013 [12]

10 A SR of systematic review process research in
software engineering

68 2013 [13]

11 Risks and risk mitigation in global software de-
velopment: A tertiary study

37 2014 [14]

12 SR in requirements engineering: A tertiary
study

53 2014 [15]

13 A SLR of literature reviews in software testing 101 2016 [4]
14 SLR in agile software development:A tertiary

study
28 2017 [16]

Chapter 2. Background and related work 5

[3]. Another update of the two previous studies [3] was reported in[8]. The updated study found

67 new SLRs where the authors of the paper concluded that software engineering community is

starting to adapt SLRs as a research method.

A critical appraisal of SLR in SE from the perspective of the research questions asked in the

reviews study was proposed by Silva and Santos [6]. Silva and Santos work analyzed 53 literature

reviews that had been gathered in two previous tertiary studies [3], [5]. The study found that over

65% of the research questions were exploratory questions. However, 15% of the questions were

casual questions.

The better understanding of types, methods and challenges in synthesizing software engineer-

ing research and implication for the progress of research and practices was the objective of [7].

The study analyzed 49 reviews and more then half did not include any research synthesis.

Another study [9] investigated the role of Agile trends in global/distributed software engi-

neering (GSE) research. The study reported that, despite recent beliefs that agile and global are

two incoherent, global agile development has become more and more accepted. The paper con-

cluded that there are signs that both globalaization and "agilization" of software companies are

stable trends for the future, but there is a strong need for future studies in this area of research.

The article in [10] provides a systematic approach to design, execute, and evaluate search strat-

egy to retrieve literature from digital libraries. The authors claimed that the search strategy is one

of the critical steps in conducting SLRs because this step is time-consuming and error-prone.

The tertiary study in [11] reviewed SLRs in Distributed Software Development (DSD) to create

a catalog reference of SLRs in DSD area. The study analyzed 14 SLRs, seven address aspects of

managing distributed development. Four SLRs addressed topics of the engineering process, and

the rest of SLRs were related to requirement, design, and software engineering education in the

topic of distributed software development.

The authors of [12] conduct a tertiary study to report the experiences of conducting an SLR

for the benefit of new researchers. The study has gathered 116 studies that have implicitly or

explicitly reported their experiences in conducting SLRs in software engineering.

Chapter 2. Background and related work 6

A Systematic review (SR) reported in [13] that is discussing the problem with SRs methodol-

ogy and suggesting for an improvement of the SRs methodology. The paper analyzed the 2007

guideline for SRs in software engineering and belief its time to update the guideline. The study

has identified 68 papers from 2005 to mid-2012 and recommend removing advice to use structured

quotations to contract search string for the SRs.

The tertiary study reported in [14] conduct and SLR in risk and risk mitigation in global/distributed

software development.

An SRs in requirements engineering (RE) [15] is the first tertiary study that fully focused on

published SLRs in RE. The study has conducted an automated and manual search of RE and re-

lated SLRs. The authors of the study have notice that the quality of SLRs in RE has been decreasing

in the recent years and the authors stated there is strong need to replicate these SLR and increase

there quality.

An SLR of literature reviews in software testing [4] performed a systematic map study to sec-

ondary studies in software testing topic. The paper analyzed 101 studies between 1994 and 2015

in the area of software testing. The paper found that there is a lack of secondary studies in many

important sub-areas of software testing, e.g., test management, the role of product risk in testing,

human factors in software testing, etc.

The tertiary study in [16] provides an overview of SLRs on agile software development (ASD).

The study looks at 28 SLRs and found that ten of the SLRs that studying ASD focus on: adapta-

tion, methods, practices, human and social aspects, CMMI, usability, global software engineering

(GSE), organizational agility, embedded systems, and software product line engineering as re-

search area.

7

Chapter 3

Research Methodology

This tertiary study follows the same research methodology as advocated by Kitchenham et al.

[2]. To conduct this tertiary study, we have the choice of performing an SLR or SM. Kitchenham

et al.[2] presented detailed guidelines on how to conduct SLR in SE. While, Petersen et al.[17]

provided guidelines to conduct SM. The guidelines provide insight into building and structuring

classification schema. Although we are conducting an SLR, some of Petersen et al.[17] guidelines

can be useful for our study, where we incorporated some techniques related to the assessment of

the selected studies, from Petersen et al. with Kitchenham et al.[2] guidelines to perform an SLR.

3.1 GQM and Research questions

We followed Goal-Question-Metric (GQM) methodology [18] in developing our research ques-

tions. The goal of this study is to systematically review the current state-of-art literature in sec-

ondary studies in the area of software refactoring, to find out the current states of how researcher

and practitioners identify software refactoring opportunities and how refactoring strategy have

been applied and validated. We also want to grasp how research in software refactoring has been

developed as a secondary study. Based on our goal, we raised 5 Research Questions (RQs) that

investigate the area of software refactoring in this study:

Chapter 3. Research Methodology 8

• RQ1: What are the system levels that are covered by refactorings in the literature?

Refactoring can be applied to many software artifacts (e.g., requirements, design model,

etc.), but commonly refactoring applied to source code [19]. Answering this RQ will help

us to learn which system levels are commonly covered by refactoring. Knowing such infor-

mation will shed the light on what is the most studied software layer, and also what are the

other software artifact that are under-studied in terms of refactoring.

• RQ2: What are the existing strategies to detect refactoring opportunities? How do researchers

identify refactoring opportunities?

This RQ presents various strategies used by research to detect refactoring opportunities. Ini-

tially, refactoring opportunities are usually identified by the level of quality in a software,

and this quality is evaluated either through design metrics or code smells. Answering this

allows us to understand the different ways that existing tools identify refactoring opportu-

nities.

• RQ3: What are the existing strategies to automate the application of refactorings?

Answering this RQ will help us know the existing mechanisms of refactoring execution

automation. The degree of automation of refactoring tool can be classified into: Fully-

automated, Semi-automated, and Manual. A fully-automated tool is stable to apply the

detection opportunities and the execution of refactoring strategies to software artifact with-

out any user interaction. Semi-automated refactoring tools require some user interaction,

either by suggesting the changes to the user, or either through providing the user the possi-

bility to express a preference during the generation of refactorings. The Manual refactoring

tools rely on the user’s expertise to decide about the refactoring opportunity and they just

automate the execution of refactoring i.e., they just automate the decisions made by the user

and they also ensure the behavior preservation of the refactored system [20].

• RQ4: How do approaches verify the correctness of refactorings? How do they test the be-

havior preservation?

Chapter 3. Research Methodology 9

Answering this RQ will give us insight on how refactoring techniques have been validated

in research. Do studies verify the correctness of refactoring by techniques using qualita-

tive analysis and through human validation? or through only static analysis? or dynamic

analysis?

• RQ5: How refactoring strategies have been validated?

This research question will uncover how refactoring approaches have been validated in liter-

ature, and what are the datasets used in the evaluation process. Knowing such information

will point out what validation strategy needs to be improved.

3.2 Primary studies selection

FIGURE 3.1: Literature Search Process

Based on the process that was followed by this study (Fig. 3.1), the first phase was identifying

digital libraries and constructing the search phrase. In this step we followed the following steps

in order:

• Digital libraries selection and search keywords.

• Inclusion and exclusion criteria.

• Final pool of primary studies.

Chapter 3. Research Methodology 10

TABLE 3.1: Number of studies per Database

Database Search result
IEEE 338
ACM 326

ScienceDirect 231
Springer 233

Total 1128

• Quality assessment.

3.2.1 Digital libraries selection and search keywords

According to the guideline for performing an SLR [2], to find primary studies, we conducted our

search in four major digital libraries: ACM DigitalLibrary, IEEE Xplore, SpringerLink and Sci-

enceDirect. Our search keywords for the digital libraries:

((refactor*) AND (survey OR review OR mapping))

We search the digital libraries by the above-mentioned keywords, where we limited the search

in articles title by variation of the word refactor and a full-text search by one of these words survey,

review or mapping. Our search terms have been modified to fit the capability of digital libraries

search engines.

The initial search resulted in 1128 papers, Table 3.1 shows the number of papers per digital

libraries. Moreover, we performed the snowballing (forward and backward)[21] to reduce the risk

of missing any studies, where we found 3 more studies as shown in Fig. 3.1. The search for related

articles conducted until January 2018 without specifying a time limit.

3.2.2 Inclusion and exclusion criteria

We included articles based on the following criteria:

Chapter 3. Research Methodology 11

• Articles must be in the form of: SLRs, SMs, or Surveys.

• Articles must be related to software refactoring topics.

• Articles must be written in English.

We excluded articles based on:

• Master studies that are not published in the listed conferences or journals.

• Short and tool papers were excluded.

• Articles that not fully focused on refactoring as a central topic.

3.2.3 Final pool of primary studies

After applying inclusion and exclusion criteria, our final pool resulted in 10 secondary studies

(also called primary studies). We assess the quality of the studies and extract data from the studies

based on our research questions. We will be referring to the secondary studies by these labels

[SSX], where X represents the paper ID, throughout the paper. Appendix A.1. contains a full list

of the primary studies.

3.2.4 Quality assessment

Each primary study was assessed using the same set of quality criteria that have been adopted by

many research studies (e.g., by Kitchenham) in tertiary studies [4], [16]. The quality criteria were

defined by the Center for Reviews and Dissemination (CDR) Database of Abstracts of Reviews of

Effects (DARE) in the York University [22]. Also, we added the last question [23] to quality criteria

for assessing the aim of each primary study. Our quality assessment criteria are composed of five

questions:

1. Are the review’s inclusion and exclusion criteria described and appropriate?

2. Is the literature search likely to have covered all relevant studies?

Chapter 3. Research Methodology 12

TABLE 3.2: Primary studies quality assessment.

Study ID Q1 Q2 Q3 Q4 Q5 Paper score
[SS1] 1 1 0 1 1 4
[SS2] 0 1 0.5 1 1 3.5
[SS3] 0 0.5 0.5 1 1 3
[SS4] 1 0.5 1 1 1 4.5
[SS5] 1 1 0.5 1 1 4.5
[SS6] 1 1 0 1 1 4
[SS7] 1 1 1 0.5 1 4.5
[SS8] 1 1 1 0.5 1 4.5
[SS9] 1 1 1 0.5 1 4.5

[SS10] 1 1 1 0.5 1 4.5

3. Did the reviewers assess the quality/validity of the included studies?

4. Were the primary data/studies adequately described?

5. Is there a clear statement of the aims of the study?

Each question was scored by the same scoring scale that was proposed by Kitchenham et al. [5].

All primary studies on our pool were evaluated by calculating the quality, by assessing the score

of {0, 0.5, 1} to each question and adding them up to get the overall score of a primary study.

3.3 Data extraction

We reviewed each study in our pool with a focus on each RQ and extracted the required infor-

mation from primary studies to answer our RQs. Additionally, we extracted all meta-data infor-

mation (bibliography) from all secondary studies as shown in Table 3.3. Also, we classify papers

based on their types (e.g., SLRs, surveys, or SMs) of each primary studies in our pool, also, we

look at the secondary studies that were reviewed by each SLR in our pool.

We handled data extracting activity by creating an online spreadsheet on Google Doc. The

spreadsheet has all the detailed information about the primary studies such as bibliography, type

of secondary study, quality assessment and our RQs with their answer per primary studies.

Chapter 3. Research Methodology 13

TABLE 3.3: Primary Studies bibliography info.

Study
ID

Authors Paper title Publication
year

Venue

[SS1] Michael Mohan,
Des Greer

A survey of search-based refactor-
ing for software maintenance

2018 Journal of Software En-
gineering Research and
Development

[SS2] Tom Mens, Mem-
ber, IEEE, Tom
Tourwe

A Survey of Software Refactoring 2004 IEEE Transactions on
Software Engineering

[SS3] Outi Räihä A survey on search-based software
design

2010 Computer Science Re-
view

[SS4] Satwinder Singh,
Sharanpreet Kaur

A systematic literature review:
Refactoring for disclosing code
smells in object oriented software

2017 Ain Shams Engineering
Journal

[SS5] Miguel A. La-
guna, Yania
Crespo

A systematic mapping study on
software product line evolution:
From legacy system reengineering
to product line refactoring

2013 Science of Computer
Programming

[SS6] Thainá Mariani,
Silvia Regina
Vergilio

A systematic review on search-
based refactoring

2017 Information and Soft-
ware Technology

[SS7] Jehad Al Dallal,
Anas Abdin

Empirical Evaluation of the Impact
of Object-Oriented Code Refactor-
ing on Quality Attributes: A Sys-
tematic Literature Review

2018 IEEE Transactions on
Software Engineering

[SS8] Jehad Al Dallal Identifying refactoring opportuni-
ties in object-oriented code: A sys-
tematic literature review

2015 Information and Soft-
ware Technology

[SS9] Mesfin Abebe,
Cheol-Jung Yoo

Trends, Opportunities and Chal-
lenges of Software Refactoring: A
Systematic Literature Review

2014 International Journal of
Software Engineering
and Its Applications

[SS10] Mohammed
Misbhauddin,
Mohammad
Alshayeb

UML model refactoring: a system-
atic literature review

2013 Empir Software Eng

14

Chapter 4

Results

4.1 RQ1. What are the system levels that are covered by refactorings?

We classified all primary studies in our pool by system level that are covered by refactorings. The

classification falls into four categories that are mostly studied by research: source code, model,

product line and package. We noticed that the most studied type is source code, where all sec-

ondary studies in our pool except [SS10], were mainly focused on studying source code refactor-

ing. In design model refactoring, we found out 6 studies have mentioned software model refac-

toring as part of their study to software refactoring. Although, the majority of primary studies

on our pool have covered both source code and design model refactoring, [SS10] devoted only to

studying design model refactoring. There was only one study devoted to understanding how the

changes in requirements impact the changes in models and source code. The title and abstract of

[SS5] give the intuition of a study in product line refactoring, but after reading the paper, we real-

ized that it was focused on how product lines influence the design and implementation of existing

TABLE 4.1: Types of System refactoring per study

Type of system refactoring Number of secondary studies References
Source code 9 [SS1, SS2, SS3,SS4, SS5, SS6, SS7, SS8, SS9]

Model 6 [SS1, SS2, SS3, SS5, SS6, SS10]
Product line 1 [SS5]

Package 2 [SS1, SS5]

Chapter 4. Results 15

software systems. Table 4.1, show each primary studies per type of system levels that are covered

by refactoring.

4.2 RQ2. What are the existing strategies to detect refactoring opportu-

nities? How papers identify refactoring opportunities?

The first step in applying refactoring is to detect refactoring opportunities. Refactoring opportu-

nities mainly can be detected in a software either by metrics or bad smells [19]. Most secondary

studies in our pool stated that metrics and bad smells are the main drives to detect refactoring

opportunities, except [SS3]. In [SS3], the process to detect refactoring opportunities is different

than the traditional approaches that mentioned by other studies in our pool. The secondary study

mentioned that fitness function is used to measure software quality after a refactoring solution

has been applied randomly to a software. [SS5] is a systematic mapping study for re-engineering

legacy system to software product line (SPL) mentioned that refactoring opportunities detected in

SPL by metrics, usually quality metrics (e.g., COC, WMC, etc.), yet there are a specific metrics that

are designed to use with SPL to detect refactoring opportunities (e.g., PrR, IPrR, etc.).

The secondary study [SS1] reported that the methods used to detect refactoring either by de-

tecting bad smell or using quality metrics (fitness function) to refactor the software randomly.

[SS2], [SS4] and [SS6] studies, majority of refactoring opportunities detected by identifying code

smells and some by using object-oriented metrics (QMOOD). As for [SS4], the authors identified

the most detected code smell based on their pool of studies: 1. Gad class. 2. blob. 3. feature envy.

In [SS7] and [SS8], most used approaches to identify refactoring opportunities are based on quality

metrics. [SS9] mentioned that refactorings are identified by the detection of bad smells and then

the application of specific refactoring patterns.

The secondary study [SS10] has been gathering studies that detect different type system of

Chapter 4. Results 16

TABLE 4.2: Most detected bad smells in secondary studies

Type of bad smell Smell Name References

Class
Blob [SS4, SS6, SS9, SS10]
God Class [SS4, SS9, SS10]
Large Class [SS4, SS9]
Lazy Class [SS6]

Method
Feature Envy [SS4, SS6]
Log Parameter List [SS4, SS6]
Functional Decomposition [SS10]
Log Method [SS4]

level refactoring than other above-mentioned studies. The study investigated UML model refac-

toring. The paper identified three basic approaches to detect model smells which are Metrics-

based approach, Pattern-based approach and Rule-based approach.

Since we identified what refactoring detection strategies that are mention in literature we also,

identified the most detected bad smells in source code and UML model. Table 4.2 has the most

studied bad smells in the application of refactoring.

4.2.1 Search-based refactoring

Several studies tackle the challenge of refactoring as an optimization problem. These studies con-

stitute the state-of-art of Search-Based Software Engineering (SBSE). SBSE is defined as the appli-

cation of search-based approaches to solving optimization problems in software engineering [24].

Once a software engineering task is framed as a search problem, there are numerous approaches

that can be applied to solving that problem, from local searches such as exhaustive search and hill-

climbing to meta-heuristic searches such as Genetic Algorithms (GAs) and ant colony optimiza-

tion. Many contributions have been proposed for various problems, mainly in cost estimation,

testing, and maintenance. According to Harman [25], SBSE methodology can be summarized in

the following steps:

Solution representation: The formulation of a given SE problem is achieved by defining a

possible solution representation that solves that problem.

Chapter 4. Results 17

Solution Evaluation: For multiple candidate solutions to the same problem, the evaluation of

their quality is assessed by a fitness function, which can be defined by the degree of which, it is

meeting the expected result for the problem.

Solution variation: In each search algorithm, the variation operators play the key role of mov-

ing candidate solutions within the search space with the aim of driving them towards optimal

solutions. These recombination operators need to be defined respectfully to the solution presen-

tation and their application should derive new solutions with eventually different fitness values.

The deployed algorithm has the responsibility to conduct the search and evolve the candidate

solutions until stopping criteria are being met.

Consequently, the tackled refactoring problems are presented in the primary studies accord-

ing to the above mentioned steps. More particularly, the refactoring problem formulation shows

a popularity in using a population-based, single and multi-objective optimization, where solu-

tions are defined similarly to genes, their reproduction is maintained by crossover and mutation

operators along with the repeated calculation of their fitness values to select the best solutions

and constitute the next generation. Through the generations, solutions are being guided in the

search space using the problem’s fitness functions until stopping criteria is being met, and a near

optimum is found.

It is important to note that, Based on these SLRs, treating software engineering (SE) problems

from a single-objective perspective is insufficient, as most SE problems are naturally complex in

which many conflicting objectives need to be optimized. As a consequence, many newer refactor-

ing studies has been formulated as multi/many objectives. Figure 4.1 has the most used search-

based technique by secondary studies in the application of refactoring.

Chapter 4. Results 18

FIGURE 4.1: Most used search-based in secondary studies.a
a HC: Hill climbing, SA: Simulated Annealing, EA: Evolutionary algorithm, GA: Greedy Algorithm, SOA: Swarm

optimization algorithms

Chapter 4. Results 19

4.3 RQ3. What are the existing strategies to automate the application

of refactorings?

As we mentioned in the previous section the degree of automation in refactoring tools are gen-

erally classified to Fully, Semi and Manual automation. In the secondary studies [SS1, SS3] of

search-based refactoring, [SS1] study identified 7 fully automation tools (e.g., DPT, TrueRefactor,

etc.) in a pool of 50 studies about search-based refactoring. Where [SS3] present an overview

of search based software engineering (SBSE) in designing software from requirements until the

maintenance phase of a software. The study identified different approach for fully automating

refactoring but did not mention the tools for applying these approaches. The secondary studies

[SS2, SS5, SS6, SS7, SS8, SS9], identifies two level of automation, semi and fully in the applica-

tion of refactoring. [SS4], has analyzed metrics-based refactoring approaches (semi-automated)

mainly focus on tools like JDeodorant to apply refactoring. Where in [SS10], a secondary study

that studies UML Model refactoring. The SLR identified 63 primary studies, 62% of these stud-

ies are supported by tools, 8 studies have fully automated tool for applying refactoring to UML

Model, 24 studies are semi-automated and 6 studies are manual.

Based on our results we gather to answer RQ3, we notice that the most used approach in the ap-

plication of refactoring is semi-automated. Although semi-automated approach required human

interaction and consume time, it leaves the decision of applying refactoring to the developers.

We looked at all refactoring scenario that have been accounted in our pool and summarizing

them into a table with their studies, Table A.5. The table is self-explanatory, it seems that refactor-

ing activity for source code is the most studied one.

Chapter 4. Results 20

TABLE 4.3: Most used Metrics.

Type metric # PS Layer Measurement

Estimated
External

Maintainability 2 Model/Source Customized combinations of inter-

nal design metrics

Reusability 5 Model/Source QMOOD

Understandability 5 Model/Source QMOOD

Flexibility 5 Model/Source QMOOD

Adaptability 2 Model/Source Combination of internal metrics

Testability 2 Model/Source Combination of internal metrics

Extensibility 5 Model/Source QMOOD

Effectiveness 5 Model/Source QMOOD

Completeness 2 Model/Source Combination of internal metrics

Functionality 5 Model/Source QMOOD

Modularity Neighbors (i.e., “number of neigh-

bor modules connected via depen-

dencies”

Measured
External

Reliability 2 Model/Source # of defected classes, B-R, Bug Fix

Rate, Bug Fix Time, Post Release

Failures, # of faults

Maintainability 2 Model/Source # changed files, # check-ins,

Analyzability, Change Entropy,

Changeability, relative churn, total

churn, # of changes, #changed

delta, #changed lines, #lines in

changed files

Chapter 4. Results 21

Continuation of Table 4.3

Type Metric # PS Layer Measurement

Efficiency 2 Model/Source Resource Utilization, Time Behav-

ior

Testability 3 Model/Source re-test SLOC

Internal

Coupling 10 Model/Source OCMEC, Afferent Coupling, Affer-

ent Coupling (Ca), Aggregated im-

port coupling, C, CBO, CC (Class

Coupling), CCBC, CDBC, CCC, CF,

Class Coupling, DAC, DAC2, DCC,

Efferent Coupling, Export Cou-

pling, Fan In, Fan Out, General

Coupling, ICP, LD, MPC, NOCM,

NR, Number of Parameters, RFC,

SeCoupling, StCoupling, ATFD

Cohesion 10 Model/Source C3, CAAI, CAIW, CAM, CBMC,

CMAI, CMW, Coh, Connectivity,

coverage, DCD, DCI, ICBMC, ICH,

LCC, LCCD, LCCI, LCOM1,

LCOM2, LCOM3, LCOM4,

LCOM5, LSCC, MSC, Non-

normalized Cohesion, Normalized

Cohesion, OL2, overlap, PCCC,

SCOM, SeCohesion, StCohesion,

TCC, tightness, LAA, CC

Chapter 4. Results 22

Continuation of Table 4.3

Type Metric # PS Layer Measurement

Complexity 9 Model/Source CC (Cyclomatic Complexity),

CDE, Classes in a Cycle, execution

modular size, function parameters,

immediate base classes, Lines of

Code Per Class, Lines of Code Per

Method, Max_Loc, Max_MCC,

McCabe Per Method, McCabe Per

Method (MVG), Member reads,

Member writes, Method Size,

MLOC, NOA, NOM, NPM, type

declarations in local functions,

WMC, AMW, ALCM

Size 10 Model/Source #blocks, #classes, #functions, #lo-

cal variables, #parameters, AMS,

ANA, Attributes Per Class, CIS,

CS, DSC, Duplicated Code Blocks,

JavaDoc Comment Blocks, LOC,

NOM (in a program), Non-JavaDoc

Comment Blocks, Number of Java

Classes, Number of Static Methods

(in a program), SLOC, CDP

Inheritance 7 Model/Source CAI, CMI, CSP, DIT, MFA, NOC,

NOH

Combination of attributes Q, Q1, Q2, Q3, Entity Placement

Chapter 4. Results 23

Continuation of Table 4.3

Type Metric # PS Layer Measurement

Composition 4 Source MOA, CPCC

Data encapsulation 4 Source CCDA, CIDA, COA, DAM

Polymorphism 4 Source NOP

Information hiding 2 Source AHF, MHF

4.4 RQ4. How approaches verify the correctness of refactorings? How

they test the behavior preservation?

Behavior preservation is a fundamental part of refactoring since it gives the complete sense of its

definition. This explains how it was initially originated when refactoring where introduced by

William Opdyke [26].

The original definition of behavior preservation presents the notion of preconditions. An ex-

ample of refactoring precondition can be seen when considering extract class refactoring in which

naming conflicts must be avoided. Other studies have introduced later the notion of postcondi-

tion to guarantee the success the refactoring execution. Even though, there were many studies

specialized in better optimizing the definition and execution of pre/postconditions, none of the

existing SLRs has explicitly focused on it.

The concept of preserving the behavior was vaguely mentioned as part of the refactoring def-

inition, without going into the details of the possible approaches who discussed their efficiency

and their classification. This is one of the main limitations that we encountered in these studies.

Chapter 4. Results 24

4.5 RQ5. How refactoring strategies have been validated?

We checked all studies in our pool for evaluation method to evaluate refactoring strategies. Major-

ity of papers (7 out 10) do not show explicitly the evaluation method of refactoring. Other studies

[SS6, SS8, SS10] have provided a section of the paper that have all evaluation method that has

been gathered by the secondary studies. The kind of evaluation conducted on refactoring strate-

gies mostly empirical and case studies. Usually, the evaluation method performed by paper either

to answer research questions or to validate a hypothesis.

Since not that many papers have provided information about refactoring evaluation method,

we decided to investigate each research question in each secondary studies. Where we classify

each RQs based classification scheme proposed by [27] and adapted in [4]. Table A.4 contains the

classification for RQs in secondary studies.

We also, checked the secondary studies for the most used software system to evaluate refactor-

ing approaches. Figure 4.2, show number of studies that have been analyzed by each secondary

studies. The figure compares software system among 5 secondary studies.

Chapter 4. Results 25

FIGURE 4.2: Most used data sets in secondary studies

26

Chapter 5

Discussions

In this tertiary study focusing on software refactoring, we analyzed 1128 related articles, 10 was

selected as primary studies. Majority of these studies primarily studying source code refactor-

ing. Only one study [SS10] that was focusing UML model refactoring. In this section, we will be

discussing our finding based on our RQs.

• (RQ1) "What are the system levels that are covered by refactorings?" this is the first question

we asked in this study. Based on the results we can clearly see that as we mentioned above

that source code is the most studied one, in comparison to other type of system refactoring.

There are two mainly reasons behind that, first refactoring by nature was made initially

for source code. The second reason is that source code is the most practical aspect that

developers deal with on daily basis.

• (RQ2) "What are the existing strategies to detect refactoring opportunities? How papers

identify refactoring opportunities?" The results of this question show that two approaches

to detect refactoring opportunities have been identified literature which are either metrics

or bad smells. With exception of 3 studies, all other studies identify refactoring by metrics

or bad smells detection. The three studies have another approach in detecting refactorings.

Where search-based refactoring methods are implemented to tackle the different refactor-

ings.

Chapter 5. Discussions 27

• (RQ3) "What are the existing strategies to automate the application of refactorings?"The re-

sults of this question show that semi-automated approach is the most used one in our pool of

studies. The reason behind that is semi-automated give the developers a control over apply-

ing certain refactoring approach and ensure the refactoring will not change the behavioral

of the software.

• (RQ4) "How approaches verify the correctness of refactorings? How they test the behavior

preservation?" Behavior preservation is a fundamental part of refactoring that ensures the

preservation of software behavior. Research in this area is lacking behind. Many studies that

were mentioning the concept of Behavior preservation vaguely.

• (RQ5) "How refactoring strategies have been validated?" Based on the results we got in an-

swering this question. It seems that not that many studies provide an evaluation method for

the refactoring. This is one of the limitations we notice in these studies.

5.1 Threats to validity

Since this is a tertiary study, that is limited to the number of literature to be reviewed. There

is a possibility of studies that have been missed out because there are not an SLR or survey. A

main threats to validity to this study are the selection of search engine, inaccurate data extraction,

possibility of missed studies due to the limitation of the search term, and researcher bias with the

regard to include or exclude paper based on inclusion/exclusion criteria.

To limit any threats related to the construction of the study, i.e., research questions and their

suitability. we used the Goal-Questions-Metrics approach better emphasize on the aim of this

study along with how it is being answered through various research questions. We also linked

metrics to each research questions. The used RQs were conceived to make a coverage of all the

spectrum of software refactoring along with summarizing the existing results of the secondary

Chapter 5. Discussions 28

studies. Questions addressed according to specific metrics, like advocated in [3]. For the assess-

ment of the secondary studies, we minimized the bias by performing two rounds of evaluation

and the scores were assigned based on a voting system.

29

Chapter 6

Conclusion

In this thesis, we performed a tertiary study in the form of a systematic literature review on soft-

ware refactoring. The survey contained 10 various existing SLRs. Based on results found, the

thesis has shown the spectrum of refactoring application that targets researchers to better coin

the existing areas in which refactoring has been advancing. To do so, we have defined 5 research

questions that we answer throughout the thesis.

we have exposed all the techniques utilized to detect refactoring opportunities, our findings

show the strong correlation to the use of design metrics in the form of their internal or external

attributes to drive refactoring operations. Other studies have been faithful to the original defi-

nition of refactoring as a response to the existence of code smells. This body of knowledge has

shown that the automation of refactorings tends to be challenging. Since the problem of gener-

ating the suitable set of refactoring operations is computationally expensive, several studies rely

on the use of search-based algorithms to approximate near optimal solutions to refactoring their

systems. Another important finding relies on the absence of explicit studies on how the behavior

preservation of refactoring is being verified.

By reviewing existing studies, we summarized the knowledge of several studies targeting dif-

ferent layers of software, sub-locations, and given the evaluation methods of their refactoring.

Also, the thesis presented the bibliometry of all the primary studies included in the 10 analyzed

studies. The thesis also followed the guidelines of assessing the existing studies and provided

Chapter 6. Conclusion 30

guidelines on how to improve them.

6.1 Future Work

To summarize, this study has shown preliminary results of a systematic review that needs to be

expanded by exploring with more details all the results of all the selected studies. We believe that

combining their results will shed the light where the refactoring research community is falling

short.

There are a number of future work that can be done after this tertiary study. For example, a

replication of this study can be done later after there are a good amount of available secondary

studies on software refactoring. Also, this study can be conducted in sub-area of software engi-

neering e.g., software requirements, etc.

31

Appendix A

Appendix

FIGURE A.1: Primary studies vs years

Appendix A. Appendix 32

TABLE A.1: Top-3 cited secondary studies based on total number of citations.

References Paper title Study Type Publication
year

Total number
of citations

[SS2] A survey of Software Refactoring Survey 2004 1267
[SS3] A survey on search-based software

design
Survey 2010 159

[SS5] A systematic mapping study on
software product line evolution:
From legacy system reengineering
to product line refactoring

SM 2013 69

TABLE A.2: Type of secondary studies.

Paper Type Number of studies per type References

SLRs 6 [SS4, SS6, SS7, SS8, SS9, SS10]
Regular surveys 3 [SS1, SS2, SS3]

SMs 1 [SS5]

TABLE A.3: Secondary studies pool of papers.

Study ID # of primary studies before exclusion # of primary studies in final pool Ratio

[SS1] 408 50 12.25%
[SS2] 111 111 1
[SS3] 157 157 1
[SS4] 1053 238 22.60%
[SS5] 83 74 89.16%
[SS6] 283 71 25.09%
[SS7] 2259 76 3.36%
[SS8] 2338 47 2.01%
[SS9] 1358 58 4.27%

[SS10] 3259 94 2.85%

Appendix A. Appendix 33

TABLE A.4: Research questions classification in secondary studies.

Reference RQs Type

[SS1]

RQ1. How many papers were published per year? frequency distribution

RQ2. What are the most common methods of publication

for the papers?

description and classification

RQ3. Who are the most prolific authors investigating

search-based refactoring in software maintenance?

frequency distribution

RQ4. What types of studies were used in the papers? description and classification

RQ5. What refactoring approaches were used in the litera-

ture?

description and classification

RQ6. What search techniques were used in the refactoring

studies?

description and classification

RQ7. What types of programs were used to evaluate the

refactoring approaches?

description and classification

[SS4]

RQ1. What is the current status of refactoring with respect

to code smells and anti-patterns?

description and classification

RQ2. What are the different approaches used for the detec-

tion of code smells and how the smells are removed using

these approaches?

frequency distribution

RQ3. What are the different tools used by the researchers

to identify code smells?

descriptive-process

RQ4. What are the different datasets used by the authors in

order to detect code smells?

causality

RQ5. What are the different types of code smells spotted in

the papers?

description and classification

Appendix A. Appendix 34

Continuation of Table A.4

Reference RQs Type

[SS5]

RQ1 - What approaches have been proposed on SPL ori-

ented evolution and what is their focus and origin?

description and classification

RQ1.1 - Which methods or techniques have been investi-

gated and to what extent?

existence

RQ1.2 - What is the maturity level of the approach? Which

tools are already available and which ones are currently

used in industry? What types of validation studies are rep-

resented and to what extent?

frequency distribution

RQ2 - Which challenges for SPL oriented evolution have

been identified?

existence

[SS6]

RQ1. What type of artifact is refactored, and how is the

artifact represented?

description and classification

RQ2. What are the considered refactorings? description and classification

RQ3. What are the methods employed to preserve behav-

ior?

description and classification

RQ5. What are the most common metrics used to assess the

software quality during the search

frequency distribution

RQ6. Does the approach take into consideration the consis-

tency with other software artifacts?

causality

RQ7. What are the most common obtained solutions and

their representations?

frequency distribution

RQ8. What are the most common used search-based algo-

rithms?

frequency distribution

Appendix A. Appendix 35

Continuation of Table A.4

Reference RQs Type

RQ9. Is any additional information used to guide the opti-

mization process?

existence

RQ10. What are the used evaluation methods? description and classification

RQ11. What are the most common used systems? frequency distribution

RQ12. What are the most common used refactoring tools? frequency distribution

[SS7]

RQ1. What refactoring scenarios were accounted for in the

PSs?

description and classification

RQ2. What quality attributes and measures were consid-

ered in the PSs?

description and classification

RQ3. What approaches and statistical techniques were con-

sidered by the PSs to investigate the impact of refactoring

on software quality?

description and classification

RQ4. What datasets were used in the PSs to explore the

linkage between refactoring scenarios and software qual-

ity?

description and classification

RQ5. What is the overall impact of refactoring scenarios on

software quality across empirical studies?

description and classification

[SS8]

RQ1. What are the refactoring activities considered in the

PSs?

description and classification

RQ2. What are the approaches followed by the PSs to iden-

tify the refactoring opportunities?

descriptive-process

RQ3. What are the approaches followed by the PSs to em-

pirically evaluate the proposed or existing identification

techniques for refactoring opportunities?

descriptive-process

Appendix A. Appendix 36

Continuation of Table A.4

Reference RQs Type

RQ4. What data sets were used to evaluate the identifica-

tion techniques proposed in the PSs?

description and classification

[SS9]

RQ. What are the trends, opportunities, challenges and

gaps in software refactoring research activities?

description and classification

SQ. What are the general studies areas (classification) in

software refactoring research activities?

description and classification

SQ. Which part of the research area is exhaustively stud-

ied and what are the significant contributions of each study

area?

frequency distribution

SQ. Which part of the research area does not received suffi-

cient attention of study as well as what are the gaps in each

study area?

descriptive-comparative

[SS10]

RQ1. Which model specification and transformation lan-

guages (also known as Model Transformation System

(MTS)) are used to perform model refactoring?

descriptive-process

RQ2. What model smell detection strategies have been

used to identify refactoring opportunities for model refac-

toring? Do these strategies consider a single or multiple

UML views?

description and classification

RQ3. Which UML model(s) have been used for model

refactoring application and what refactoring operations are

defined for each of them?

frequency distribution

Appendix A. Appendix 37

Continuation of Table A.4

Reference RQs Type

RQ4. How is model behavior defined in each approach and

how is behavior preservation verified after model refactor-

ing?

description and classification

RQ5. What techniques or methods are used to study the

effect of model refactoring on model quality?

descriptive-process

RQ6. Is the refactoring approach integrated seamlessly

within existing CASE tools? If integration is not offered,

prototype tools in order to facilitate the use of the approach

will be considered.

existence

Appendix A. Appendix 38

TABLE A.5: Refactoring scenario accounted in secondary studies.

Reference Study area Refactoring Scenario

[SS4] source code Move method, Move attribute, Extract class and Inline

class, Extract Method

[SS5] SPL Extract Method/Resource to Aspect, Extract Context, Ex-

tract Before/After Block, Move Field to Aspect, Move Im-

port Declaration to Aspect, Move Interface Declaration to

Aspect, Move Method to Aspect, Move Extends Declara-

tion to Aspect, Extract Introduction, Extract Advice, Ex-

tract Beginning, Extract End, Extract Before/After Call,

Addition at the beginning, Addition at the end of the

method, Addition anywhere with a hook method, Over-

write method , Move entire method, Move field, Remove

field modifiers declarations, Move entire class, Renaming

of files and functions, splitting of long files, moving of func-

tions from one module to another, conversion of macros to

inline functions, changing of data type,Removal of internal

and external code clones, Merging of different implementa-

tions and realization using conditional compilation, Reduc-

tion of the scale and complexity of functions.

Appendix A. Appendix 39

Continuation of Table A.5

Reference Study area Refactoring Scenario

[SS6] source code Pull up method, Move method, Push down method, Pull

up field, Push down field, Extract class, Move field, In-

line class, Collapse hierarchy, Extract superclass, Rename

method, Add parameter, Extract interface, Encapsulate

field, Extract method, Replace delegation with inheritance,

Replace inheritance with delegation, Inline method, Re-

move parameter, Extract subclass, Extract hierarchy, En-

capsulate collection, Encapsulate downcast, Hide method,

Remove setting method, Self encapsulate field, Form tem-

plate method, Make class abstract,Make class concrete, De-

crease method visibility, Increase method visibility, De-

crease field visibility, Increase field visibility, Rename field,

Move class, Extract package, Remove method, Rename

class, Remove class, Remove interface, Merge packages,

Delete generalization, Add relationship, Change superclass

down, Change superclass up.

[SS7] source code Move method, Extract class, Extract method, Encapsulate

field, Pull up method, Extract subclass, Introduce null ob-

ject, Move class, Move field, Replace method with Method

object, Replace data value with object, Replace magic num-

ber with symbolic constant, push down method, Replace

conditional with polymorphism, Replace type code with

state/strategy.

Appendix A. Appendix 40

Continuation of Table A.5

Reference Study area Refactoring Scenario

[SS8] source code Extract Subclass, Move Method, Extract Class, Extract

Method, Move Class, Replace Method with Method Ob-

ject, Replace Data Value with Object, Pull Up Method ,Ex-

tract Superclass, Pull Up Method, Form Template Method,

Parameterize Method, Pull Up Constructor Form Template

Method, Remove Parameter, Eliminate Return Value, Sepa-

rate Query from Modifier, Encapsulate Downcast, Replace

Temp with Query Pull Up Method, Form Template Method,

Extract Interface, Remove Parameter, Pull Up Method, ex-

tract method Replace Type Code with State/Strategy, Re-

place Conditional with polymorphism.

A.1 Secondary Studies

[SS1] M. Mohan, D. Greer, A survey of search-based refactoring for software maintenance, Journal

of Software Engineering Research and Development 6 (1) (2018) 3

[SS2] T. Mens, T. Tourw’e, A survey of software refactoring, IEEE Transactions on software engi-

neering 30 (2) (2004) 126–139

[SS3] O. Raiha, A survey on search-based software design, Computer Science Review 4 (4) (2010)

203–249

[SS4] S. Singh, S. Kaur, A systematic literature review: Refactoring for disclosing code smells in

object oriented software, Ain Shams Engineering Journal

Appendix A. Appendix 41

[SS5] M. A. Laguna, Y. Crespo, A systematic mapping study on software product line evolution:

From legacy system reengineering to product line refactoring, Science of Computer Pro-

gramming 78 (8) (2013) 1010–1034

[SS6] T. Mariani, S. R. Vergilio, A systematic review on search-based refactoring, Information and

Software Technology 83 (2017) 14–34

[SS7] J. Al Dallal, A. Abdin, Empirical evaluation of the impact of object-oriented code refactoring

on quality attributes: A systematic literature review, IEEE Transactions on Software Engi-

neering 44 (1) (2018) 44–69

[SS8] J. Al Dallal, Identifying refactoring opportunities in object oriented code: A systematic liter-

ature review, Information and software Technology 58 (2015) 231–249

[SS9] M. Abebe, C.-J. Yoo, Trends, opportunities and challenges of software refactoring: A sys-

tematic literature review, International Journal of Software Engineering & Its Applications

8

[SS10] M. Misbhauddin, M. Alshayeb, Uml model refactoring: a systematic literature review, Em-

pirical Software Engineering 20 (1) (2015) 206–251

42

References

[1] M. Fowler and K. Beck, Refactoring: Improving the design of existing code. Addison-Wesley

Professional, 1999.

[2] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews

in Software Engineering”, Keele University and Durham University Joint Report, Tech. Rep.

EBSE 2007-001, 2007.

[3] B. Kitchenham, R. Pretorius, D. Budgen, O. Pearl Brereton, M. Turner, M. Niazi, and S.

Linkman, “Systematic literature reviews in software engineering - a tertiary study”, Inf.

Softw. Technol., vol. 52, no. 8, pp. 792–805, Aug. 2010, ISSN: 0950-5849. DOI: 10.1016/j.

infsof.2010.03.006. [Online]. Available: http://dx.doi.org/10.1016/j.

infsof.2010.03.006.

[4] V. Garousi and M. V. Mäntylä, “A systematic literature review of literature reviews in soft-

ware testing”, Information and Software Technology, vol. 80, pp. 195 –216, 2016, ISSN: 0950-

5849. DOI: https://doi.org/10.1016/j.infsof.2016.09.002. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950584916301446.

[5] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic

literature reviews in software engineering – a systematic literature review”, Information and

Software Technology, vol. 51, no. 1, pp. 7 –15, 2009, Special Section - Most Cited Articles in

2002 and Regular Research Papers, ISSN: 0950-5849. DOI: https://doi.org/10.1016/

j.infsof.2008.09.009. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0950584908001390.

http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2016.09.002
http://www.sciencedirect.com/science/article/pii/S0950584916301446
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2008.09.009
http://www.sciencedirect.com/science/article/pii/S0950584908001390
http://www.sciencedirect.com/science/article/pii/S0950584908001390

REFERENCES 43

[6] F. Q. B. da Silva, A. L. M. Santos, S. C. B. Soares, A. C. C. França, and C. V. F. Monteiro, “A

critical appraisal of systematic reviews in software engineering from the perspective of the

research questions asked in the reviews”, in Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ser. ESEM ’10, Bolzano-Bozen,

Italy: ACM, 2010, 33:1–33:4, ISBN: 978-1-4503-0039-1. DOI: 10.1145/1852786.1852830.

[Online]. Available: http://doi.acm.org/10.1145/1852786.1852830.

[7] D. S. Cruzes and T. Dybå, “Research synthesis in software engineering: A tertiary study”,

Information and Software Technology, vol. 53, no. 5, pp. 440 –455, 2011, Special Section on Best

Papers from XP2010, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.

2011.01.004. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S095058491100005X.

[8] F. Q. da Silva, A. L. Santos, S. Soares, A. C. C. França, C. V. Monteiro, and F. F. Maciel, “Six

years of systematic literature reviews in software engineering: An updated tertiary study”,

Information and Software Technology, vol. 53, no. 9, pp. 899 –913, 2011, Studying work practices

in Global Software Engineering, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.

infsof.2011.04.004. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0950584911001017.

[9] G. K. Hanssen, D. mite, and N. B. Moe, “Signs of agile trends in global software engineer-

ing research: A tertiary study”, in 2011 IEEE Sixth International Conference on Global Software

Engineering Workshop, 2011, pp. 17–23. DOI: 10.1109/ICGSE-W.2011.12.

[10] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering”,

Information and Software Technology, vol. 53, no. 6, pp. 625 –637, 2011, Special Section: Best

papers from the APSEC, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.

2010.12.010. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0950584910002260.

http://dx.doi.org/10.1145/1852786.1852830
http://doi.acm.org/10.1145/1852786.1852830
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2011.01.004
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2011.01.004
http://www.sciencedirect.com/science/article/pii/S095058491100005X
http://www.sciencedirect.com/science/article/pii/S095058491100005X
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2011.04.004
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2011.04.004
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://dx.doi.org/10.1109/ICGSE-W.2011.12
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2010.12.010
http://www.sciencedirect.com/science/article/pii/S0950584910002260
http://www.sciencedirect.com/science/article/pii/S0950584910002260

REFERENCES 44

[11] A. B. Marques, R. Rodrigues, and T. Conte, “Systematic literature reviews in distributed

software development: A tertiary study”, in 2012 IEEE Seventh International Conference on

Global Software Engineering, 2012, pp. 134–143. DOI: 10.1109/ICGSE.2012.29.

[12] S. Imtiaz, M. Bano, N. Ikram, and M. Niazi, “A tertiary study: Experiences of conducting

systematic literature reviews in software engineering”, in Proceedings of the 17th International

Conference on Evaluation and Assessment in Software Engineering, ser. EASE ’13, Porto de Gal-

inhas, Brazil: ACM, 2013, pp. 177–182, ISBN: 978-1-4503-1848-8. DOI: 10.1145/2460999.

2461025. [Online]. Available: http://doi.acm.org/10.1145/2460999.2461025.

[13] B. Kitchenham and P. Brereton, “A systematic review of systematic review process research

in software engineering”, Information and Software Technology, vol. 55, no. 12, pp. 2049 –2075,

2013, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2013.07.010.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0950584913001560.

[14] J. Verner, O. Brereton, B. Kitchenham, M. Turner, and M. Niazi, “Risks and risk mitigation

in global software development: A tertiary study”, Information and Software Technology, vol.

56, no. 1, pp. 54 –78, 2014, Special sections on International Conference on Global Software

Engineering – August 2011 and Evaluation and Assessment in Software Engineering – April

2012, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2013.06.005.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0950584913001341.

[15] M. Bano, D. Zowghi, and N. Ikram, “Systematic reviews in requirements engineering: A

tertiary study”, in 2014 IEEE 4th International Workshop on Empirical Requirements Engineering

(EmpiRE), 2014, pp. 9–16. DOI: 10.1109/EmpiRE.2014.6890110.

[16] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, “Systematic literature reviews in agile soft-

ware development: A tertiary study”, Information and Software Technology, vol. 85, pp. 60 –70,

2017, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2017.01.007.

http://dx.doi.org/10.1109/ICGSE.2012.29
http://dx.doi.org/10.1145/2460999.2461025
http://dx.doi.org/10.1145/2460999.2461025
http://doi.acm.org/10.1145/2460999.2461025
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2013.07.010
http://www.sciencedirect.com/science/article/pii/S0950584913001560
http://www.sciencedirect.com/science/article/pii/S0950584913001560
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2013.06.005
http://www.sciencedirect.com/science/article/pii/S0950584913001341
http://www.sciencedirect.com/science/article/pii/S0950584913001341
http://dx.doi.org/10.1109/EmpiRE.2014.6890110
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2017.01.007

REFERENCES 45

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0950584917300538.

[17] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic map-

ping studies in software engineering: An update”, Information and Software Technology, vol.

64, pp. 1–18, 2015.

[18] V. R. Basili, “Software modeling and measurement: The goal/question/metric paradigm”,

Tech. Rep., 1992.

[19] T. Mens and T. Tourwé, “A survey of software refactoring”, IEEE Transactions on software

engineering, vol. 30, no. 2, pp. 126–139, 2004.

[20] M. Misbhauddin and M. Alshayeb, “Uml model refactoring: A systematic literature review”,

Empirical Software Engineering, vol. 20, no. 1, pp. 206–251, 2015.

[21] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication

in software engineering”, in Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering, ser. EASE ’14, London, England, United Kingdom: ACM,

2014, 38:1–38:10, ISBN: 978-1-4503-2476-2. DOI: 10.1145/2601248.2601268. [Online].

Available: http://doi.acm.org/10.1145/2601248.2601268.

[22] U. Centre for Reviews and Dissemination, “The database of abstracts of reviews of effects

(dare)”, Effectiveness Matters, vol. 6, no. 2, pp. 1–4, Dec. 2002.

[23] B. Kitchenham and P. Brereton, “A systematic review of systematic review process research

in software engineering”, Information and software technology, vol. 55, no. 12, pp. 2049–2075,

2013.

[24] M. Harman and B. F. Jones, “Search-based software engineering”, Information and software

Technology, vol. 43, no. 14, pp. 833–839, 2001.

[25] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering: Trends,

techniques and applications”, ACM Computing Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

http://www.sciencedirect.com/science/article/pii/S0950584917300538
http://www.sciencedirect.com/science/article/pii/S0950584917300538
http://dx.doi.org/10.1145/2601248.2601268
http://doi.acm.org/10.1145/2601248.2601268

REFERENCES 46

[26] W. F. Opdyke, “Refactoring object-oriented frameworks”, UMI Order No. GAX93-05645,

PhD thesis, Champaign, IL, USA, 1992.

[27] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods for

software engineering research”, in Guide to advanced empirical software engineering, Springer,

2008, pp. 285–311.

[28] M. Mohan and D. Greer, “A survey of search-based refactoring for software maintenance”,

Journal of Software Engineering Research and Development, vol. 6, no. 1, p. 3, 2018.

[29] O. Räihä, “A survey on search-based software design”, Computer Science Review, vol. 4, no.

4, pp. 203–249, 2010.

[30] S. Singh and S. Kaur, “A systematic literature review: Refactoring for disclosing code smells

in object oriented software”, Ain Shams Engineering Journal, 2017.

[31] M. A. Laguna and Y. Crespo, “A systematic mapping study on software product line evo-

lution: From legacy system reengineering to product line refactoring”, Science of Computer

Programming, vol. 78, no. 8, pp. 1010–1034, 2013.

[32] T. Mariani and S. R. Vergilio, “A systematic review on search-based refactoring”, Information

and Software Technology, vol. 83, pp. 14–34, 2017.

[33] J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-oriented code refac-

toring on quality attributes: A systematic literature review”, IEEE Transactions on Software

Engineering, vol. 44, no. 1, pp. 44–69, 2018.

[34] J. Al Dallal, “Identifying refactoring opportunities in object-oriented code: A systematic lit-

erature review”, Information and software Technology, vol. 58, pp. 231–249, 2015.

[35] M. Abebe and C.-J. Yoo, “Trends, opportunities and challenges of software refactoring: A

systematic literature review”, International Journal of Software Engineering & Its Applications,

vol. 8, 2014.

	Advances and Challenges in Software Refactoring: A Tertiary Systematic Literature Review
	Recommended Citation

	Acknowledgements
	Abstract
	Introduction
	Background and related work
	Research Methodology
	GQM and Research questions
	Primary studies selection
	Digital libraries selection and search keywords
	Inclusion and exclusion criteria
	Final pool of primary studies
	Quality assessment

	Data extraction

	Results
	RQ1. What are the system levels that are covered by refactorings?
	RQ2. What are the existing strategies to detect refactoring opportunities? How papers identify refactoring opportunities?
	Search-based refactoring

	RQ3. What are the existing strategies to automate the application of refactorings?
	RQ4. How approaches verify the correctness of refactorings? How they test the behavior preservation?
	RQ5. How refactoring strategies have been validated?

	Discussions
	Threats to validity

	Conclusion
	Future Work

	Appendix
	Secondary Studies

	References

