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Abstract: 

 

 Research in the wine industry has previously characterized many aspects of the wine 

making process from soil fertility to the community of microbes in must and wine, but the 

epiphytic bacterial and fungal communities have not been studied throughout grape 

development. This project aims to investigate the epiphytic grape microbiome to better 

understand its role in disease and grape development, and the effects of terroir on the 

microbiome, by examining the epiphytic microbiome of developing and sour rot infected grapes 

in New York and Tasmania. Sour rot is characterized by a distinct vinegar smell that is caused by 

the combination of Drosophila spp., fermentative yeasts, the acetic acid producing bacteria 

Acetobacter and Gluconobacter. Total DNA was extracted from rinsate berry samples, and the 

bacterial 16S ribosomal RNA (rRNA) and fungal internal transcribed spacer (ITS) regions were 

amplified for Illumina sequencing. The tool Quantitative Insights into Microbial Ecology 

(Qiime) was used to quality filter the sequences and identify the operational taxonomic units 

(OTUs) present in each sample. The taxonomies of these OTUs were assigned using the 

Greengenes and Unite databases. Statistical analysis was done in Statistical Analysis of 

Metagenomic Profiles (STAMP), and hierarchical clustering and data visualizations were done in 

R. Sour rot infected grapes were found to have large communities of acetic acid producing 

bacteria in both terroirs, however the typical fermentative yeasts were not present in large 

quantities in New York. In general, when microbes known to cause sour rot were present on 

symptomatic grapes, they were also present on asymptomatic grapes, supporting an active role 

for Drosophila spp. in the disease complex, rather than simply acting as a vector. The core 

epiphytic microbiome remained relatively consistent throughout development but varied 

dramatically by terroir and year. 
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Introduction: 
 

 This project aims to investigate the epiphytic grape microbiome to better understand its 

role in disease and grape development and effects of terroir on the microbiome. Research in the 

wine industry had previously studied many aspects of the wine making process from the soil 

fertility to the community of microbes in the wine, but the bacterial and fungal community on the 

surface of the grapes as they develop has yet to be studied. 

 

The Important Role of Grapes in the Economy 

 Grapes are an important part of the world’s economy. The wine industry is prominent in 

61 countries (“FAO Data - Dataset-Data-Filter - Crops Processed, National Production 

(FAOSTAT)”). In the United States alone wine sales totaled $38 billion in 2015, and wine and 

grape production contributed $162 billion to the United States’ economy in 2007 (Gordon, 2016; 

“Economic Impact Study”; Insel, 2017). A study done in 2007 on the impact of wine in the US 

found that an estimated 1.1 million people in the US are employed in the wine industry and the 

wine industry is continuing to grow (“Economic Impact Study”). Since 2006 the US had seen a 

relatively consistent trend of the US producing more tons of wine each year, as seen in Figure 1 

(“FAO Data - Dataset-Data-Filter - Crops Processed, National Production (FAOSTAT)”). With 

the wine industry playing such a significant role in the economy, research is needed to support 

the production of a consistent and viable crop of grapes. 
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Figure 1. 2000-2014 US Production of wine in tons per year (“FAO Data - Dataset-Data-Filter - Crops Processed, National 

Production (FAOSTAT)”). 

 

 

Current Problems the Wine Industry Faces 

 Fungal pathogens are one of the major problems that grape growers face. Some of the 

more severe grape diseases are powdery mildew, Botrytis bunch rot, sour rot, and black rot (Fig. 

2). These fungi have different environmental requirements and affect grapes via different 

mechanisms and therefore different treatments are needed to best manage each of them. For 

example, in California where low humidity and high heat is common, powdery mildew is able to 

thrive while other diseases such as sour rot are rarely an issue (Wunderlich et al., 2015). In New 

York, the higher humidity and moderate temperatures provide a suitable environment for many 

pathogens. Therefore vineyard managers cannot focus on managing a single pathogen but must 

consider the spectrum of diseases that can grow in their climate. Grapes are significantly more 

dependent on fungicide applications than other crops, with 95% of the grape crop yield being 

attributed to the use of fungicides compared to other crops which tend to range from 40% to 70% 

(Gianessi, 2006).  
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Figure 2. Comparison of grape disease phenotypes 

a) Black Rot b) Botrytis Bunch Rot 

  

c) Powdery Mildew d) Sour Rot 

  

 

a) (“Citrus Black Rot (Phyllosticta Ampelicida)”, 2011) 

b) (Taylor, 2017) 

c) (Jones, 2014) 

d) (Bordelon, 2016) 
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Pathogenic Fungi on Grapes 

 Each fungi can have different ideal climates, growing conditions, methods to infect the 

grape plant, means of propagating the infection, and ways to relocate to the next vine. This 

means that a treatment method that may be effective against powdery mildew may not affect 

Botrytis bunch rot. 

 

Black Rot 

 A black rot infection is caused by the fungi Guignardia bidwellii and it typically begins 

infecting grapes when they are halfway through their development (Ries, 1999). Once a grape 

has been infected the fungi will harden the grape, turning it into what is known as a mummy that 

contains fungal spores (Fig. 2a). Fungicides and canopy management are used to reduce spread 

of black rot. Proper canopy management allows for air flow throughout the vineyard by 

manipulating how the vines are trimmed and grown. By keeping the vineyard more open it 

decreases the overall humidity, and thus makes the growing conditions less favorable for 

pathogenic bacteria and fungi. Canopy management and sanitation (removing diseased plant 

tissue) are particularly important to prevent a new crop of grapes from being infected by the 

previous year’s grapes (Weigle, 2014).  

 

Botrytis Bunch Rot 

 Botrytis bunch rot is caused by Botrytis cinerea. Infection can begin at flowering or when 

the grape is wounded by either a previous infection, pests, or an excess of water causing the 

grape to split open (Smith, 2016). The fungus breaks down 35%-45% of the sugars in the grape, 

increases the pH, and degrades the aromatic components on the grape causing the grapes to turn 
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brown (Fig. 2b) (Dharmadhikari, 2017). Overall, B. cinerea greatly changes the grape epiphytic 

environment and therefore may also change what other organisms are able colonize to the grape. 

 

Powdery Mildew 

 Powdery mildew infections are caused by the fungi Erysiphe necator (Smith, 2016). This 

fungus infects young grapes and causes them to split open which then increases the grape’s risk 

for other types of infections (Taylor, 2017). The grapes and leaves then become coated in the 

white, powdery fungi as seen in Figure 2c. At minimum, 3 to 15 applications of 50 to 125 

gallons of fungicides are used per season to manage powdery mildew on grapes (Wunderlich, 

2015).  

 

Sour Rot 

 Unlike the other diseases there is no one specific fungus that causes sour rot which makes 

it more difficult to control. Sour rot is caused by a combination the acetic acid producing bacteria 

Acetobacter and Gluconobacter, fermentative yeasts, and Drosophila spp. (Bordelon, 2016). It is 

characterized by the smell of vinegar from acetic acid, which makes the resulting wine acidic and 

unpalatable. For sour rot to start the grapes need to be wounded, yeasts then start fermenting the 

sugars to ethanol, which Acetobacter or Gluconobacter will then convert to acetic acid. Research 

has shown that Drosophila spp. lay their eggs in the grapes and create wounds which cannot heal 

quickly and therefore allow this process to start (Barata et al., 2012; Hall et al., 2018). After the 

grapes have been infected they become tan and soft and begin to disintegrate as seen in Figure 2d 

(Bordelon, 2016; Smith, 2014). The best way to manage sour rot is to prevent grapes from being 

damaged so as to prevent the infection from starting. This means that all aspects of the vineyard 
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from the fertilizer to irrigation to canopy management must be properly taken care of to avoid 

damaging the grapes and creating an environment for Drosophila spp. (Smith, 2014). Chemical 

management methods that use antimicrobials in conjunction with insecticides to control 

microbes and Drosophila spp. have shown to be effective in reducing sour rot.  

 

Issues with the Current Methods Used To Manage Grape Diseases 

 The main expense that the wine industry faces is the cost of managing grape diseases. An 

estimated $369 per acre is spent per growing season on managing just powdery mildew (Fig. 3) 

(Fuller). The cost of controlling fungal diseases includes chemical sprays, the means to distribute 

them, canopy management, and the labor to accomplish these jobs. In addition to the monetary 

costs there are also costs to the health of the workers. The chemical sprays that are used are toxic 

not only to pathogenic bacteria and fungi, but also to those who have to apply them onto the 

grapes. Those employed to maintain vineyards are at risk for developing allergic reactions, 

granulomatous fibrosin lung disease, skin and eye irritation, and asthma from being exposed to 

the pesticides and fungicides (Youakim, 2006). 

Figure 3.  Monetary effects of Powdery Mildew on grapes (Fuller) 
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 In addition to the health there are also significant environmental costs. Copper is one of 

the most used fungicides, being used 54% of the time for grape fungal infections (Wightwick, 

2010). Figure 4 shows the severity of the ecotoxicological effects that the top four fungicides 

used in vineyards have on terrestrial and aquatic organisms (Wightwick, 2010).  

 

Figure 4.  Environmental effects of the top fungicides used (Wightwick, 2010) 

 

 

 Lastly, grape diseases negatively impact the wine produced with any diseased grapes. 

Wine made with 2%-3% of grapes being infected can taint the end product (Emmett, 2004). The 

resulting wine is poor quality and has a moldy and vinegary taste. Some of the fungi can survive 

fermentation and make the enzyme laccase which will degrade the pigmentation of the wine and 

spoil it (Steel, 2014).  
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Developmental Ecology of the Grape Surface Microbiome & Grape Disease 

 Microbiomes are the distinctive set of bacteria, fungi, and other microbes that have co-

evolved to fill specific niches on plants, animals, or in the environment. Recently research done 

on grape microbiomes has primarily focused on the microbiome of the crushed mixture of the 

grapes that is fermented called the must. One study by Bokulich et al. (2013) investigated if the 

microbiome of the must differed due to the differences in terroir. Terroir is the term used among 

wine enthusiasts to describe the subtle effects on flavor and aroma from the environmental 

factors affecting wine grapes, such as the climate, soil fertility, elevation, and many other 

environmental factors. The Bokulich et al. study found that these factors influenced the 

microbiome of the must to some degree, however their work did not look into the original 

epiphytic grape communities. The present research aims to investigate this by examining the 

epiphytic grape microbiomes in New York and Tasmania which have very different terroirs. 

There is currently no way to measure terroir in quantitative terms so another goal of this project 

is to study the epiphytic microbes of grapes and the possible influence they may have on the 

terroir of the wine. 

 This study will also investigate if the healthy epiphytic grape microbiome changes as the 

grape develops. Currently, only the organisms present at harvest are known. The scientific 

community therefore does not know in what ways the epiphytic grape microbiome may be 

affected by the development of the grape. In this project, samples were taken throughout the 

growing season directly from the surface of the grapes and were sequenced and analyzed to 

investigate how the microbiome changes throughout the growing season. Samples were taken at 

the following developmental stages of grapes: pea sized berry, bunch closure, veraison, 15º Brix, 

and harvest. The first takes place when the grape is the size of a pea and the second is when the 
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grapes on the bunch have grown enough to close the gaps within the bunch. Veraison is defined 

as the point when the grapes begin change color, indicating that they have started to ripen. The 

Brix is the measurement used to assess the amount of sugar in the grape and therefore it is used 

to quantify ripeness. 15 º Brix is slightly before harvest, when the grape are typically around 22º 

Brix.  

 This project also examines the effects of sour rot on the microbiome. By knowing if there 

are distinct changes in the microbiome that make the grapes more susceptible to sour rot then 

vineyard mangers could test their grapes to detect when they would need to take preventative 

measures. This could prevent a widespread outbreak of the disease and therefore increase yield 

and prevent poor quality wine production. Ideally a test like this would replace the current 

methods used to determine if a plant is infected, which is typically done by “visual inspection 

[and] does not give an accurate estimate of levels of infection” (Emmett, 2004). 

 

Known Fungi Present on Grapes 

 The scientific community has found that Hanseniaspora, Metschnikowia, Candida, and 

Aureobasidium are the most common yeasts found on the surface grapes (König et al., 2009). 

Previous work on the development of the epiphytic grape microbiome have found 

Aureobasidium to be one of the main genera on “immature, mature, and both damaged and 

undamaged grapes” (Prakitchaiwattana et al., 2004). This same study, done on grapes from New 

South Wales, Australia, found high abundancies of Metschnikowia and Hanseniaspora species 

on wounded grapes however they also state that their methods could not detect certain species 

event when they were known to be present in high quantities (Morgan, 2017). In addition to 

these benign fungi there are also many pathogenic ones that cause mildews and rots on the grape 
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berries. Some of these pathogens are “Aspergillus spp., Botrytis cinerea, Cladosporium spp., 

Penicillium spp. and Rhizopus spp.” (Hocking, 2007). There have been several fungi that have 

specifically been associated with sour rot which are: Candida, Saccharamycopsis, 

Hanseniaspora, Pichia, and Zygosaccharomyces (Barata et al., 2012). Saccharomyces is not 

common on healthy grapes but in rare cases has been found on damaged grapes (Barata et al., 

2012). 

 

Known Bacteria Present on Grapes 

 There have been fewer studies on the bacteria in the vineyard than on the fungi as most 

research projects tend to focus on the yeasts present to better understand how the organisms in 

the vineyard may be affecting fermentation. Recently however there have been more studies that 

are also examining the bacteria. The bacteria that are thought to be part of the natural grape 

microbiome include “Enterobacter spp., Enterococcus spp., Bacillus spp., Burkholderia spp., 

Serratia spp., Staphylococcus spp., among others, [that] have been isolated from grapes but do 

not have the ability to grow in wines” (Barata el al., 2012). A recent study by Mezzasalma et al. 

investigated the grape berry surface microbiomes at harvest in Italy and found that the grapes 

from the different locations had a “core composition characterized by Enterobacteriales, 

Pseudomonadales, Bacillales, and Rhodospirillales” (Mezzasalma et al., 2017). However, they 

also noted that the different areas each had additional specific microbial traits. Another study 

done in Italy in 2014 examined the bacterial communities on Merlot and Chardonnay grown 

using different agricultural practices and found high abundancies of Burkholderia, Ralstonia, 

Staphylococcus, and Pseudomonas by doing 16S rDNA pyrosequencing (Campisano et al., 

2014).  



12 
 

 
 

Potential Pitfalls and Complications when Analyzing Microbiomes 

 One of the first plant microbiomes to be studied was the microbiome surrounding roots, 

known as the rhizosphere, in 2010. The rhizosphere is a well-known and thoroughly studied area 

of plants that was first defined in 1904 and therefore was logically one of the first areas to be 

studied in the context of microbiomes (Burg, 2014). Just a few years later in 2012 the 

28th New Phytologist Symposium: Functions and Ecology of the Plant Microbiome conference 

“brought together genetics/genomics, soil science, microbiology, computational biology, and 

plant and microbial physiology” to discuss the emerging field. This conference also started 

examining the “new challenges including analysis of huge amounts of data and the need to 

establish best practice standards for an emerging research field” (Lebeis, 2012). The speakers 

also acknowledged that this studying plant microbiomes would require a large interdisciplinary 

effort to correctly create the experiments and analyze the data in a consistent and replicable way. 

 The main goal when analyzing microbiome data is to determine what taxa are present and 

the abundances of those taxa. However, these data sets are large and complex and there are many 

ways that one analysis could differ from another. For example, when starting a microbiome 

experiment one of the first choices that needs to be made is what is going to be sequenced from 

the microbiome samples (Fig. 5). One option is to sequence a highly conserved region of the 

DNA that can be used to establish the taxa present. For bacteria the region used for this is the 

16S rRNA gene and in fungi it is the internal transcribed spacer (ITS) region. Alternatively, all 

of the DNA present in the sample could be sequenced, which is called whole genome sequencing 

(WGS). While WGS is more expensive, however it gives a full picture of the genes and alleles 

are present in the microbiome. These two methods allow for different end results and therefore 

answer different questions, as seen in Figure 5.  The WGS method returns the various genes and 
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their functionalities, which is useful when investigating what the community as a whole is doing. 

The benefit of sequencing a highly conserved region is that it can be used to find the relative 

abundances of the taxa present. This is important to know when examining the composition of 

the community. 

 

Figure 5. Variation between 16s RNA and WGS microbiome workflows (Microbiome Sequencing 16S rRNA Sequencing, 2017) 

 

 

 OTUs, operational taxonomic units, are identifiers that represent a group of similar 

sequences and are clustered by their similarity to other OTUs, in much the same way a species 

on a phylogenetic tree is clustered with other, closely related species. There are two methods that 

can be used to assign sequences to OTUs. One is the closed reference picking method, which 
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aligns the input sequences from the microbiome samples to those in the given database and 

groups them into OTUs if the sequences share a user-defined identity threshold. The standard 

threshold values are 95%, 97%, and 99% with 97% being used most commonly due to not being 

too lenient or too restrictive. In this method “[i]f the input sequence does not match any 

reference sequence at a user-defined percent identity threshold, that sequence is excluded” 

(Qiime). The taxonomic information for each OTU can then be obtained from the reference 

sequences. It is important to note that this is the only Qiime method that can be used for the 16S 

rRNA V2 and V4 regions because they are non-overlapping amplicons. This method works well 

for identifying known sequences but does not provide any taxonomic information for unknown, 

or de novo, sequences. The second method is open reference picking, also known as the de novo 

method, which assigns unmatched sequences to an OTU ID. This allows for some taxonomic 

information to be gained for these new sequences as it provides their relationship to known taxa 

(Fig. 6). 

 

Figure 6. OTU assignment of de novo sequences (Scholz, 2017) 
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 The database used as a reference also influences the end result. The different databases 

have different sequences in them which means that depending on what database is used there 

will be different references sequences when building the OTUs. When analyzing 16s rRNA 

sequences in Qiime, either the Greengenes or SILVA database can be used. When analyzing the 

ITS region the UNITE database is the only given option (“Data Files and Other Resources”). It is 

important to note here that not all sequences will be able to be assigned to a full taxonomy and in 

those cases the taxa is assigned by using the closest taxonomic level that can be determined. 

 

Methods: 

 

Data collection 

 Data collection was done by Megan Hall in 2014, 2015, and 2016 using the methods 

described in Hall et al., manuscript in preparation. Briefly, 12 panels of grape vines were 

randomly selected in each vineyard from which to collect samples. Three grapes were collected 

from each cluster to make up one sample and the cluster was marked with flagging tape so they 

would not be selected at a later time point. For monitoring the epiphytic community during 

development, intact berries were rinsed with an extraction buffer, and the rinsate was used for 

DNA isolation. Primers were added to amplify the V2 and V4 16S rRNA and ITS regions. 

Samples were sequenced using an Illumina MiSeq. 

  

Software 

 The raw compressed fastq files from Illumina were downloaded to the server for analysis. 

The following software were installed on this sever to perform the analysis: Qiime 1.9.1, 
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BlastAll and its databases, FastX, FastQC, STAMP, and R v.3.3.2 (Caporaso, 2010; Andrews, 

2010; FASTX-Toolkit; Babraham Bioinformatics;Parks, 2014; R Core Team (2013)). The 

software Qiime (Quantitative Insights into Microbial Ecology) is commonly used in the field of 

metagenomics as a robust tool for analyzing microbiomes (Gregory, 2010). The pipeline 

developed here used Qiime for the key components of analysis because of its capability to start 

with large datasets of raw sequences and produce an easy to work with file containing the 

number of sequences of each OTU in each sample and its taxonomy. Statistical analysis was 

done using STAMP (Statistical Analysis of Metagenomic and other Profiles) because easily uses 

Qiime’s output file called a biom file along with a metadata file to group samples according to 

their metadata. STAMP then produces the relative mean frequencies (RMF) of taxonomies in 

these groups depending on the taxonomy level of interest. The RMF of a taxonomy in sample is 

calculated by dividing the number of sequences of that taxonomy by the number of all the 

sequences in that sample. In addition to STAMP, R was used to produce plots and heatmaps 

representing the populations of bacteria and fungi within the various experiments and treatments. 

 

Preprocessing 

 In order to get the files ready to be processed, Qiime’s multiple_extract_barcodes was 

executed on two folders, one containing all of the forward reads (R1) and the other containing all 

of the reverse reads (R2). The length of the barcodes was set to 17, location of the barcodes was 

specified to be in the label of the sequence, and “:0:” was set as the character delimiter. Fastq 

files of the barcodes were made using the multiple_extract_barcodes script in Qiime. Mapping 

files containing the metadata for each sample were created using the original Illumina 

demultiplexing file and were formatted according to Qiime’s requirements. All file names were 
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changed to only contain alphanumeric and period characters, with the exception of an underscore 

before the specifier (ie _barcode, _map, _R1, _R2) to allow Qiime to correctly identify the 

specifiers.  

 

Qiime Processing 

 Next, the fastq files were combined by executing multiple_split_libraries_fastq on a 

directory containing all R1 fastq files and their corresponding mapping and barcode files. The 

same was done for all R2 fastq files and their mapping and barcode files. The forward and 

reverse sequences could not be merged because the sequences did not have sufficient overlap. 

This was because the primer locations were greater than 150bp away. To still use both the 

forward and reverse sequences the pipeline was ran separately until the final biom files were 

made at which point they were joined together. Multiple_split_libraries_fastq was given the 

following parameters: mapping extension was set to txt, the demultiplexing method was 

mapping_barcode_files, and the read, barcode, and sample ID, and mapping indicators were 

_R[1/2].fastq, _barcodes.fastq, ‘.’ , and _map.txt respectively. To determine the filtering 

parameters a comparison was done on a subset of the data between Qiime’s filter method in 

split_libraries_fastq and FastX’s fastq_quality_filter. The outputs from the trimming methods 

were then compared to the untrimmed file using FastQC. Multiple_split_libraries_fastq calls the 

function split_libraries_fastq multiple time and was given the following parameters: barcode 

length was 17, phred offset was 33, and phred quality threshold was 20.  

 Next, to assign the sequences to OTUs, the seqs.fastq file created from 

multiple_split_libraries_fastq was used as input for pick_closed_reference_otus and 

pick_open_reference_otus. Open and closed reference OTU-picking methods used uclust and 
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used a pairwise identity of 97% (Edgar, 2010). The bacterial database for 16S rRNA was 

Greengenes 13_5_97 as it has species level taxonomic identification, unlike the other database 

available Silva; the fungal database for ITS was UNITE 7_97 as it was the only option available 

in Qiime (DeSantis, 2006; Kõljalg, 2010). 

 Pick_closed_reference_otus was used to determine what bacterial taxonomies were 

present because pick_open_reference_otus could not be used. This was due to Qiime’s 

specifications that states: “You must use closed-reference OTU picking if [y]ou are comparing 

non-overlapping amplicons, such as the V2 and the V4 regions of the 16S rRNA. Your reference 

sequences must span both of the regions being sequenced”. The regions that had been sequenced 

for this study were the V2 and the V4 regions of the 16S rRNA. Pick_closed_reference_otus was 

executed with reverse strand match and assign taxonomy enabled to automatically assign 

taxonomies to OTUs after clustering. The Greengenes 13_5 97_otu_taxonomy.txt and 

97_otus.fasta files were selected for alignment, which used the PyNAST alignment method and a 

97% identity threshold (Caporaso, 2010). 

 For fungal taxonomies, pick_open_reference_otus was executed with the reference file 

path, the template file path, and reference sequence file path all set to the UNITE 97% file 

named sh_refs_qiime_ver7_97_28.06.2017.fasta. The ID to taxonomy file path was set to the 

UNITE file called sh_taxonomy_qiime_ver7_97_28.06.2017.txt. In addition to assigning OTU 

this function also does de novo OTU picking which creates new OTU IDs for sequences that do 

not belong to any pre-determined OTU. Reverse strand match and suppress lane mask filter were 

set to true and the assignment method was set to BLAST (Altschul, 1990). The biom files from 

the R1 and R2 reads containing the OTUs in each sample and their assigned taxa were then 

merged using Qiime’s merge_otu_tables. 
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OTU Filtering, Statistical Analysis, and Visualization 

 Rare OTUs were defined as having less than 0.0001% of the total abundance from within 

that biom file and were removed from subsequent analyses. Biom files were converted into spf 

files using the biom_to_stamp script provided by STAMP. The mapping and spf files were read 

into STAMP and if an OTU was not identified to the genus level the lowest level of 

classification was used. If there was no classification the sequences were only used to calculate 

the total number of reads in the sample. ANOVA tests were done using the Tukey-Kramer 

method using a 95% CI, and a p-value filter of 0.05. The relative mean frequency (RMF) of each 

taxa in each sample was calculated. The RMFs of the taxa were plotted in R v.3.3.2 using 

ggplot2 with one standard error represented by errors bars (H. Wickham, 2009). The standard 

error was calculated by dividing the standard deviation by square root of the number of samples 

that contributed sequences to the group (i.e. asymptomatic and symptomatic). 

 Heatmaps were made in R v.3.3.2 using the pheatmap package (R Core Team, 2013; 

Kolde, 2012). The color of each cell represents the log of the RMF for each taxa. If a taxa was 

not present in a given group the value was assigned to the lowest value in the matrix. 

Hierarchical clustering was done using the complete method, the rows were clustered using the 

Euclidean method, and the columns were clustered using the Manhattan method. Euclidean was 

selected to cluster the taxonomies because of its ability to calculate distanced using continuous 

relative mean frequencies and weight strongly correlated variables. The Manhattan clustering 

method was chosen to cluster the groups because it accounts for multiple variables, in this case 

the many taxonomies, and reports the absolute distance between groups which was the desired 

result. 
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Results: 

 

Section 1: Data Filtering 

 Two filtering methods were considered to improve the quality of the fastq files. Figure 9 

shows the FastQC per base quality plots for one of the files before filtering, where the mean 

Phred scores are below 20 indicate trimming would improve the quality of the data. The same 

file was trimmed with Qiime (Fig. 10) and FastX (Fig. 11). The untrimmed and FastX-trimmed 

fastq files had large error bars frequently below a Phred score of 20 start at base pair 45 (Fig. 9 

and 11) while the error bars in the Qiime-trimmed fastq file did not fall below a score of 20 until 

base pair 150 (Fig. 10). The Qiime trimming method was therefore selected as it provided a 

consistently better median quality score and smaller standard errors.  
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Figure 7. Per base quality scores without  trimming 

 

Figure 8. Per base quality scores using Qiime trimming 

 

Figure 9. Per base quality scores using FastX trimming 
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Section 2: Unclassified Taxonomies 

 Of all OTUs that could be identified to at least the kingdom level, 99.25% were identified 

to the genus level. There was a higher percentage of unidentified orders in the bacteria (0.360%) 

compared to fungi (0.087%), but this difference was less distinct at the genus level (Figs. 7 and 

8). The New York 2015 dataset overall all had more OTUs that were unidentified at the genus 

and order level compared to the other two data sets.  

 

Figure 10. Percentage of unidentified bacterial OTUs when identified to at least the kingdom level 
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Figure 11. Percentage of unidentified fungal OTUs when identified to at least the kingdom level 

 

 

Section 3: Taxa Associated with Sour Rot Symptoms 

 The average New York 2015 sample size was 22.5 (including fungi and bacteria) and the 

average Tasmania 2016 sample size was 39.5 (Table 1). Table 1 shows the number of samples 

with identified bacterial or fungal sequences in the asymptomatic and symptomatic groups after 

alignment and filtering. When interpreting the following bar plots, there are two reasons why 

each group may not add up to 100% RMF. First, of the sequences that remained after filtering 

and OTU assignment, those that did not have a taxonomic assignment are not shown but were 

used to calculate the RMF values. Second, only genera that had RMFs higher than a few percent 

and could be shown legibly on the plot were included. Any bacteria or fungi that were not able to 

be identified at to genus level were instead identified to the family or order level. 
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Table 1. Number of samples in each group from Tasmania and New York for fungi and bacteria 

Fungi    Bacteria   

 Asymptomatic Symptomatic   Asymptomatic Symptomatic 

NY 2015 22 29  NY 2015 18 21 

Tas 2016 56 44  Tas 2016 24 34 

 

 In New York in 2015 and Tasmania in 2016 the most biologically relevant yeast genera 

to sour rot that were present were Pichia, Candida, and Hanseniaspora (Barata et al., 2012) 

(Figures 12 and 13). In addition to these the genera Cladosporium is also potentially interesting 

as this genus causes its own distinct rots. In New York 2015 Talaromyces had an increased RMF 

in the symptomatic group compared to the asymptomatic group (RMFs of 37.1+6.4% and 

10.1+17% respectively) (Fig. 12).  

 In 2016 in Tasmania there was a higher RMFs of Pichia in the symptomatic group, with 

15.5+19.4% in the asymptomatic group and 27.5+3.0% in the symptomatic (Fig. 13). 

Cladosporium was present only in the symptomatic group with a RMF of 2.54+2.2%. Both 

groups had similar abundancies of Candida and Hanseniaspora however the asymptomatic 

group again had larger standard errors (Fig. 13). 
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Figure 12. Comparison of fungi present in asymptomatic and sour rot symptomatic samples from New York in 2015 

 

 

Figure 13. Comparison of fungi present in asymptomatic and sour rot symptomatic samples from Tasmania in 2016 
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 The relevant bacteria to sour rot have been found to be Acetobacter and Gluconobacter as 

they are acetic acid producing bacteria. The 2015 New York data set had one of the most 

dramatic differences of bacteria between the two treatments, with nine species being present only 

in the asymptomatic of symptomatic samples (Fig. 14). Acetobacter was present in both 

treatments, but had a 25-fold greater RMF in symptomatic samples (Fig. 14). Further, 16 of the 

21 (76.2%) symptomatic samples had Acetobacter, while only 3 of the 18 (16.7%) asymptomatic 

samples had Acetobacter present (p=1.37x10-5; Fig. 15). Note in red the Acetobacter positive 

controls both show 100% of their sequences being Acetobacter. 

 

Figure 14. Comparison of bacteria present in asymptomatic and sour rot symptomatic samples from New York in 2015 
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Figure 15. Percentages of Acetobacter in sour rot asymptomatic and symptomatic samples from New York in 2015 

 

 

 In the 2016 Tasmania data set both Acetobacter and Gluconobacter had slightly large 

RMFs in the symptomatic group compared to the asymptomatic group (Fig. 16), however those 

difference were non-significant (p=0.215 and 0.155, respectively). Gluconobacter in the 

asymptomatic group had a RMF of 13.5+26.2% and in the symptomatic group it was 

22.04+4.1%. Acetobacter in asymptomatic was 6.9+11.1% and in symptomatic it was 

10.44+2.3%.  
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Figure 16. Comparison of bacteria present in asymptomatic and sour rot symptomatic samples from Tasmania in 2016 

 

 

 The samples from New York 2015 had vastly different microbiomes from those from 

Tasmania 2016 (Fig. 17). The heatmap shown in Figure 17 illustrates this, with the colors 

indicate the log of the RMFs of the bacterial and fungal in the asymptomatic and symptomatic 

groups. The groups clustered clearly by dataset, with asymptomatic and symptomatic samples 

from the same environment sharing many of the same taxa at similar abundances. The one taxa 

that was seen across all groups was Acetobacter, which had higher RMFs in the symptomatic 

groups compared to their respective asymptomatic groups. Other taxa that are associated with 

sour rot such as Pichia, Gluconobacter, Hanseniaspora, and Candida were clustered with or near 

to Acetobacter. 
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Figure 17. Heatmap comparing asymptomatic and symptomatic groups of NY 2015 and Tasmania 2016 at the genus level 

 

 

Section 4: Drosophila spp. Microbiomes in the Vineyard 

 Bacterial and fungal DNA was amplified from 15 Drosophila spp. found in the vineyards 

sampled in Tasmania in 2016. The fungi present in these Drosophila spp. are commonly found 

on grapes in the later stages of development (Figure 18) (König et al., 2009). All of these fungi 

with the exception of Metschnikowia were also seen in the Tasmania symptomatic group with 

similar RMFs. Pichia contributed the most to this fungal community, having a RMF of 

35.3+4.2% followed by Hanseniaspora, which had a RMF of 17.4+ 3.7% (Figure 18). The 
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Pearson correlation between the Drosophila spp. microbiome and the other grape microbiomes 

sampled ranged from -0.05 to 0.33.  

 

Figure 18. Fungi found in Drosophila spp. from Tasmania 2016 

 

 

 As with the fungi, that bacteria seen in the Drosophila spp. were mostly the same genera 

that were seen on the grapes in Tasmania (Figure 19). Gluconobacter and Bacillus had the 

highest RMFs on the Drosophila spp. with values of 26.4+3.6% and 30.4+4.6%, respectively. 

Acetobacteraceae, the family of acetic acid producing bacteria, had a RMF of 14.6+3.0%. Over 

all, the majority of the bacteria on the Drosophila spp. were acetic acid producing bacteria. 
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Figure 19. Bacteria found in Drosophila spp. from Tasmania 2016 

 

 

 Drosophila spp. were sampled at three time points in the later part of the growing season 

in New York in 2014. These time points were veraison, 15º Brix, and harvest and the sample 

sizes of bacteria and fungi at each time point is shown in Table 2. Mucor was present at veraison, 

15º Brix, and harvest with RMFs of 4.5+1.7%, 13.4+8.7%, and 17.6+10.3% (Figure 20). Mucor 

causes a post-harvest rot on grapes called Mucor rot (König et al., 2009). The fungal community 

at 15º Brix was primarily composed of Penicillium (RMF of 19.0+6.7%) and Aspergillus (RMF 

of 11.5+6.4%). Cladosporium, Vishniacozyma, and Apiotrichum were only present in the 

veraison group. Overall, the 15º Brix and harvest communities were very similar to each other 

compared to veraison community. 
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Table 2. Sample sizes of Drosophila spp. in 2014 NY 

 Veraison 15º Brix Harvest 

NY 2014 fungi 10 16 6 

NY 2014 bacteria 10 16 4 

 

Figure 20. Fungi present on Drosophila spp. in NY 2014 

 

 

 The Drosophila spp. at all three time points in New York in 2014 had similar RMFs for 

the Planococcaceae family and Halomonas (Figure 21). Specifically, 15º Brix, veraison and 

harvest had RMFs of Planococcaceae of 58.3+3.4%, 57.3+3.7%, and 47.3+ 11.1% and 

Halomonas RMFs of 16.8+1.3%, 17+1.7%, and 19.2+3.2%. In addition to this, the 

corresponding time points from the grapes in 2014 in New York, which are discussed in the next 

section, show the same abundancies of the Planococcaceae and Halomonas, around 50% and 
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10%-20%, respectively. The harvest community also had Alicyclobacillus, which a bacteria that 

is able to grow in acidic conditions. 

 

Figure 21. Bacteria present on Drosophila spp. in NY 2014 

 

 

Section 5: Grape Epiphytic Microbiomes throughout Development 

 Samples were taken at five time points of grape development in 2014 and 2015 in New 

York and 2016 in Tasmania. These time points in sequential order are: pea-sized berry, bunch 

closure, veraison, 15º Brix, and harvest. Note that there were not sufficient fungal samples after 

sequencing and filtering for a 2014 NY fungal data set (Table 3). The fungal sample sizes varied 

greatly, ranging from 10 to 100 (Table 3) and the same trend was seen in the bacterial samples 

(Table 4). There were no 2015 NY harvest samples that had sufficient bacterial or fungal DNA 
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to be included (Table 4). The Tasmania dataset overall had the largest sample sizes for both 

bacteria and fungi.  

 

Table 3. Number of samples in each group at the genus level for fungi 

 Pea sized Berry Bunch Closure Veraison 15º Brix Harvest 

NY 2015 10 12 39 14 0 

Tas 2016 40 40 86 100 40 

 

Table 4. Number of samples in each group at the genus level for bacteria 

 Pea sized Berry Bunch Closure Veraison 15º Brix Harvest 

NY 2014 4 7 13 7 4 

NY 2015 10 12 39 14 0 

Tas 2016 30 9 41 87 11 

 

 

 In the 2015 New York data set, only three taxa were identified in multiple developmental 

stages (Figure 22). Nearly all of the 39 veraison samples had either frequencies of approximately 

8% for Pichia with a few having 0% (data not shown), resulting in a RMF of 4.7+1.2%. The 

other fungi seen in Figure 22 had on average RMFs of 2.4% and were either yeasts (Bullera and 

Sporobolomyces) or plant pathogens (Cladosporium, Ramularia, and Dissoconium).  
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Figure 22. Comparison of fungi present throughout the grape’s development in New York in 2015 

 

 

 The Tasmania fungal data set had an average sample size of 61.2 (Table 3). Pichia was 

present in all groups and was a major contributor to the pea sized berry, 15º Brix, and harvest 

time points (24+1.8%, 22+3.4%, and 15.5+2.1% respectively) (Fig. 23). The pea-sized berry and 

15º Brix time points also shared Aureobasidium, which as previously mentioned is likely to be a 

common contributor to the epiphytic grape microbiome as are the other fungi that were present, 

Hanseniaspora and Candida.    



36 
 

 
 

Figure 23. Comparison of fungi present throughout the grape’s development in Tasmania in 2016 

 

 

 The sample sizes of the groups in New York 2014 for bacteria are relatively low, with the 

average sample size being 7 (Table 4). Across time points the family Planococcaeae had an 

average RMF of 51.6+13.2% and Halomonas had an average RMF of 14.5+4.4% (Figure 24). 

The former is in the Bacillales order and the latter is a halophilic bacteria that has previously 

been found on grape berries (Morgan, 2017). Other bacteria present were from orders and 

families that are also commonly found on grape such as Bacillales (Bacillus, Virgibacillus, and 

Staphylococcus), Burkholderiales (Comamonadaceae), and Enterobacteriaceae. 
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Figure 24. Comparison of bacteria present throughout the grape’s development in New York in 2014 

 

 

 The family Burkholderiaceae was a major contributor to the veraison and 15 degree Brix 

communities in New York 2015, with each having 61.2+3.1% and 67.3+ 4.1% RMFs 

respectively (Fig. 25). The pea sized berry and bunch closure communities had RMFs of 

Streptophyta as 53.3+9.9% and 54.6+4.8%. The family Pseudomonadaceae was also present, 

along with the Acetobacteraceae family and Sphingomonas, which is found on roots and plants. 
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Figure 25 Comparison of bacteria present throughout the grape’s development in New York in 2015 

 

 

 In the Tasmania 2016 data set Gluconobacter, Bacillus, and Acetobacter were seen in 

every time point and together composed the majority of the bacterial communities (Figure 26). 

The pea sized berry group had a RMF of 20.6+ 0.9% for Gluconobacter and 6.3+0.4% for 

Acetobacter. Samples in the other time points that had Gluconobacter tended to either have 

100% of their RMF composed Gluconobacter or 0%.  The pea sized berries, 15º Brix, and 

harvest time points had similar frequencies of Gluconobacter, and had an average RMF of 

17.4+3.7%. The average RMF for the bunch closure and veraison groups was 43.5+12.1%. All 

of the time points had similar RMFs for Acetobacter and the average of their RMFs was 

4.9+2.3%. Bacillus was found in 76.7% of all samples and had an average RMF of 21.8+5.2%.  
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Figure 26. Comparison of bacteria present throughout the grape’s development in Tasmania in 2016 

 

 

 Each location and year had its own distinct set of bacteria and fungi regardless of 

developmental time points, as shown in Figure 27, and clustering of the groups was clearly 

determined by the data set (environment). Acinetobacter was the most common bacteria, 

followed by Pseudomonas, Bacillales, and Gluconobacter. Other than Pichia there were few 

fungi that were present in more than one data set. Each data set had as set bacteria and fungi that 

were seen in large abundancies throughout the growing season.  
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Figure 27. Developmental groups heatmap genus level 

 

 

Section 6: Core Analysis across Sample Types 

 Above, data have been presented for three different sample types: 1) epiphytic washes 

from symptomatic versus asymptomatic whole berry samples; 2) epiphytic washes of whole 

berry samples over the course of development; and 3) macerated Drosophila fruit flies. In this 
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section, taxa frequencies were compared across these sample types within each environment to 

identify taxa that were shared and unique to each sample type. 

 The Tasmaniaian Drosophila spp., developmental stages, and sour rot asymptomatic and 

symptomatic grapes samples all shared a tightly clustered ‘core set’ of yeast and bacteria (Figure 

28). Drosophila spp. had a set of bacteria and fungi that were unique to them. 

 

Figure 28. Heatmap of all Tasmanian groups 

 

 

 Across the New York 2015 developmental and disease data sets there were five bacteria 

and fungi shared among all of them (Figure 29), all of which are common grape epiphytes. This 
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is particularlly interesting because the asympomatic and sympomatic grapes were mancerated. 

The 15º Brix group lacked ten microbes that were present in three ealier time points. There were 

many differences in bacterial and fungal populations between the two data sets.  

 

Figure 29. Heatmap of all New York 2015 groups 
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 Of all of the taxa present in the 2014 New York data sets, Acinetobacter was the only 

organism commonly present in all sample types in all environments (Figure 30). Many of the 

organisims only present in the Drosophila spp. are fungi as the there was no grape fungal data. 

The bacteria present on the grapes and Drosophila spp. had relativly the similar abundances, 

especially Planococcaceae and Halomonas. The Drosophila spp. and grape communities each 

had several bacteria that were not present in the other.  
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Figure 30. Heatmap of all New York 2014 groups 
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Discussion: 

 

Section 1: Data Filtering 

 FastQC was used to assess the quality of the sequences before and after quality filtering. 

Figure 7, Figure 8, and Figure 9 shows an example comparison between an untrimmed sequence 

and the same sequence trimmed using Qiime’s and FastX’s trimming methods. Qiime’s 

trimming methods were used as they provided a better approach to trimming compared to FastX 

which only trims from the end until a base above the threshold is reached. In addition to this, 

Qiime’s trimming method was incorporated into the function split_libraries_fastq that is used in 

this pipeline meaning it was easily integrated. 

 

Section 2: Unclassified taxonomies 

 The difference in the number of OTUs that were unidentified at the genus and order 

levels is likely due to the well-known problem known as the ‘1000bp barrier of genus 

classification’ (Brady, 2009). The ‘1000bp barrier’ describes the problem of classifying bacteria 

to the genus level using less than 1000bp. Given this, achieving genus classification of 99.25% 

of classifiable OTUs is a very successful result. The percentage of unidentified bacterial genera 

was around 0.4% and percentage of unidentified bacterial orders was around 0.01% (Fig. 7). The 

fungal genera and orders had the same number of unidentified taxa, which could indicate that 

closed-reference OTU picking, in combination with the de novo method, contribute to a greater 

depth of identification (Fig. 8). The average percentage of unidentified fungal reads was 0.4%.  



46 
 

 
 

 

Section 3: Taxa Associated with Sour Rot Symptoms 

 The scientific community has found there to be three components of sour rot that must be 

present for the disease to start, and these are acetic acid producing bacteria, yeasts, and 

Drosophila spp. (Bisiach et al., 1986). As previously mentioned, these acetic acid producing 

bacteria are from the genera Acetobacter and Gluconobacter (Barata el al., 2012). In sour rot 

there are also large populations of the fermentative species Pichia membranifaciens, 

Hanseniaspora uvarum, Metschnikowia pulcherrima, and Candida stellate (Barata et al., 2012). 

 High RMFs of acetic acid producing bacteria were present the New York and Tasmania 

sour rot groups. The Tasmanian sour rot group also had Pichia compose the majority of its 

fungal community and had Candida and Hanseniaspora present as well. There was no 

significant differential abundance between the symptomatic group and asymptomatic group 

(Figure 13). In fact almost all groups from Tasmania had these fungi and bacteria as part of their 

core microbiome (Figure 28). For example, the Drosophila spp. sampled in Tasmania had Pichia 

and Hanseniaspora compose the majority of the Drosophila spp. fungal community and acetic 

acid producing bacteria were the most abundant bacteria (Figure 28). This supports previous 

research that have found Drosophila spp. are capable transporting the microorganisms needed to 

start sour rot (Rombaut et al., 2017). 

 The New York data set did not have any of the fungi that are typically associated with 

sour rot. This is likely be because Pichia, Candida and Hanseniaspora were not present during 

the later stages of development, as seen in Figure 22. This may have allowed for other fungi to 

colonize wounded grapes and start sour rot (Figure 29). There was a large population of the yeast 

Talaromyces marneffei, which until recently was named Penicillium marneffei (“Talaromyces 
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Marneffei Infection”, 2018), that was present only in the sour rot symptomatic group. It therefore 

seems likely that Talaromyces marneffei was able to take place of Pichia and the other fungi and 

start sour rot. 

 

Section 4: Microbiomes and Terroir 

 The grape microbiome is known to influence “phenotypic characteristics, such as flavour, 

colour, and sugar content, thus influencing the winemaking process as well” (Mezzasalm et al. 

2017). Papers such as Bokulich et al. have even speculated that the microbiome on grapes “could 

significantly affect grapevine and fruit health and development” (Bokulich et al. 2013). Because 

of this the relevant scientific community has researched how differences in location and terroir 

may be affected the microbiome and therefore the quality of the wine. So far the grape 

microbiome at harvest has been found to be effected by the cultivar, climate, terroir, and 

agricultural practices (Morgan, 2017). However, there has be little work done investigating the 

microbiome of the grape as it develops. The present research was therefore investigating if the 

microbiome changes as the grape develops or if the microbiome remains stable until harvest 

(Bokulich et al., 2013). 

 Figure 27 shows that the developmental stage of the grapes does not affect the core 

microbiome as much as the terroir, where the core microbiome is the set of bacteria and fungi 

that are present throughout the growing season. Each data set was clustered into its own clade 

and many organisms were only present in a specific data set. The common bacteria and fungi 

that were present in at least two data sets were: Enterobacteriaceae, Comamonadaceae, 

Streptophyta, Erwinia, Pseudomonas, Acinetobacter, Burkholderia, Gluconobacter, 

Aureobasidium, Pichia, and Bacillus. 
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 The Tasmania 2016 data set had the largest sample sizes and had samples from sour rot 

infected grapes, Drosophila spp., and all five developmental time points. The most constant and 

abundant organisms present throughout all sample types were Pichia, Gluconobacter, Bacillus, 

and Acetobacter (Figure 28). Because of this it is likely that all that was needed for sour rot to 

develop was for Drosophila spp. to lay their eggs in the grapes to create the initial wounds.  

 As mentioned in the background, Prakitchaiwattana et al. found that Metschnikowia and 

Hanseniaspora were common on wounded grapes from New South Wales, Australia 

(Prakitchaiwattana et al., 2004). In the Tasmania data set, which is relatively close to New South 

Wales, Hanseniaspora was present not only the on damaged sour rot symptomatic grapes but at 

all time points and on the Drosophila spp. However, Metschnikowia was not seen in any 

Tasmania group. A recent study investigating grape surface microbiomes at harvest in Italy 

found that the most ubiquitous and abundant fungal families that were Dothioraceae, 

Pleosporaceae, and Saccharomycodaceae (Mezzasalma et al., 2017). Unlike the Italian grape 

microbiomes, no fungi from either the Pleosporaceae or the Dothioraceae order was seen in 

Tasmania or New York. However, Hanseniaspora which is in the Saccharomycodaceae family 

was seen in all Tasmania groups.  

 In the New York 2015 growing season Streptophyta started as the predominate genus in 

the pea sized berry and bunch closure time points and then was replaced by bacteria from the 

Burkholderia family. All groups in this data set shared Sporobolomyces spp., a genus of non-

fermenting yeast, Burkholderia, and several water and soil bacteria (Methylobacteria, 

Pseudomonas, and Acinetobacter). The three earlier time points clustered together and had more 

taxa in common than the 15º Brix group (Figure 29). This could be due to a natural progress in 
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the microbial community, a change in weather conditions, or a change in the vineyard such as 

pesticides or canopy management. 

 In 2014 in New York the pea sized berry group had small sample sizes of 4 and 6 for the 

bacteria and fungi respectively. The earlier developmental stages started with Planococcaceae 

and Halomonas and these genera remained a large contributors to the later communities. There 

were relatively few changes in taxa present on the Drosophila spp. at the three time points 

sampled. The Drosophila spp. groups had many bacteria that were not found in the grape 

samples, and they did not have several of the soil bacteria seen in the grapes. Because the 2014 

New York data set lacked fungal information is it difficult to compare the differences and 

similarities between the 2014 and the 2015 New York data sets. 

 This project has shown that there no distinctive changes in the epiphytic grape 

microbiome throughout its development from a pea sized berry to harvest. Instead it has clearly 

exemplified the unique microbiomes that are on the grape surface in a region for a given year. It 

is likely that initial community at the beginning of the growing season along with factors such as 

climate, vineyard management practices, and other factors of terroir together affect the core 

epiphytic grape microbiome. 

 Further research should be done on possible yeasts such Talaromyces marneffei that may 

be associated with sour rot. Another project should be done to determine if there are core 

microbiomes that contain sets of bacteria and fungi that are commonly found that could be 

classified into subgroups. Figure 27 shows the three distinct core microbiomes present in three 

different locations and years, however if there was a larger sample size of locations it could be 

possible to see further trends in what bacteria and fungi cohabitate grape surfaces together. 

Lastly, this field of study could be further enriched with a study that accesses the core 
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microbiome of the different terroirs and if there is a correlation between the core microbiome 

and traits in the resulting wine. 
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