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Abstract

CMOS/Memristor integrated architectures have shown to be powerful for realizing

energy-efficient learning machines. These architectures are recently demonstrated in

reservoir computing networks, which have reduced training complexity and resource

utilization. In reservoir computing, the training time is curtailed due to random

weight initialization in the hidden layer, which will remain constant during training.

The CMOS/memristor variability can be exploited to generate these random weights

and reduce the area overhead. Recent studies have shown that the CMOS/memristor

crossbars are ideal for on-device learning machines, including reservoir computing

networks. An exemplary CMOS/memristor crossbar based on-device accelerator,

Ziksa, was demonstrated on several of these learning networks.

While the crossbars are generally area and energy efficient, the peripheral circuitry

to control the read/write logic to the crossbars is extremely power hungry. This work

focuses on improving the Ziksa accelerator peripheral circuitry for a spiking reservoir

network. The optimized training circuitry for Ziksa includes transmission gates, a

control unit, and a current amplifier and is demonstrated within a layer of spiking

neurons for training and neuron behavior. All the analog circuits are validated using

the Cadence 45 nm GPDK on a 2x4 and 1x4 crossbar. For a 32x32 crossbar, the area

and power of the peripheral circuitry is ∼2,800 µm2 and ∼3.685 mW respectively,

demonstrating the overall efficacy of the proposed circuits.
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Chapter 1

Introduction

1.1 Motivation

The human brain vastly outperforms modern computing in speed, computational

complexities, and power usage. For years, software has advanced in mimicry of neu-

ral pathways to capture the advanced learning capabilities of the human brain. It

started with the perceptron in 1958: a highly abstracted version of a biological neuron

[6]. Connecting multiple perceptrons together can create artificial neural networks

that, with advancements in training algorithms and architectures, have cemented

themselves as the future of learning and data processing in modern computing. Re-

current neural networks (RNNs) take a step closer to the biological neural networks

by adding recurrent connections that add a temporal aspect to the processing [7].

While powerful, the training time for these networks increases exponentially with an

increase in size. An architectural solution is to use reservoir computing [8]. In reser-

voir computing (RC), the massive interconnect of neurons is initialized with random

weights which do not change during training. Instead, only the output layer has its

weights updated which cuts down on training significantly while allowing for large,

interconnected networks.

While training only the output layer has reduced the training time, larger and

larger networks are needed leading to research into digital and analog implementations

2



CHAPTER 1. INTRODUCTION

of the neural networks. RNNs are a highly generalizable solution to a multitude of

machine learning problems because training for a new problem only requires retraining

of the output layer, not a redesign of the architecture [8]. This makes it feasible to

build the network in hardware to provide significant gains in speed. While the neurons

can be made with simple circuits, the weights of the network need to be non-volatile.

Every synaptic connection requires a weight and increasing the precision of the weights

greatly increases the size of the network in traditional CMOS technology. Unlike with

traditional Von Neuman architectures, neural networks need their data (the weights)

to be intermingled with the computational hardware (the neural connections). One

way to address this challenge is to use non-volatile memory devices like memristors

that retain the weights and can store higher-precision bits due to multi-level storage

[9].

The memristor was theorized by Leon Chua in 1971 as the 4th fundamental circuit

element [10]. A memristor has a non-linear relationship between electrical charge and

magnetic flux. There is debate on whether the experimental memristors available

today can meet the requirements, however, they offer a unique property as a two ter-

minal, non-volatile memory device [11]. The device remembers the previous current

passed through it by changing its resistance in a hysteresis relationship between cur-

rent and resistance. The simplest memristors offer single bit precision. Experimental

memristor devices with six states are demonstrated in literature and theoretically

they can offer infinite states [12]. This device, especially in consideration of the mul-

tiple states, offers a significant decrease in size required for memory storage. In the

network, the memristor forms the connections inbetween neurons.

While the memristors themselves can be made very small, what determines the

circuit usefulness is the size of the analog circuitry that surrounds the memristors.

Depending on the architecture, the circuitry can be broken into four functions: the

neurons, training the memristor weights, reading the results, and calculating the

3



CHAPTER 1. INTRODUCTION

new weights. Calculations can be accomplished in digital hardware which will use

minimal space compared to the analog. Reading the results can be kept minimal by

using spiking neurons that pass data as 1’s and 0’s so that a simple counter can read

them. The neurons themselves have been extensively researched, but the circuitry

that trains the memristors can easily be massive due to the multiple operational

amplifiers required. The objective of the thesis is to provide and validate training

circuitry for memristor crossbars in the Cadence 45nm GPDK.

1.2 Objectives

For this thesis, the focus is on the circuitry that trains the memristors. In particular,

it is improving on the Ziksa training circuit in functionality and area usage [2]. This

leads to the following objectives

1. Improve upon functional design issues in the Ziksa training circuit and the space

required for its implementation.

2. Implement the new design in Cadence with the GPDK 45nm PDK. For each of

the main analog components:

(a) Justify the topology choice and the specifications needed for their design.

(b) Pass these specifications over process, temperature, and supply voltage

corners.

(c) Pass these specifications over 1000 Monte Carlo runs at nominal voltage

and temperature.

3. Show the new circuitry training memristors in positive and negative directions

with minimal power usage.

4. Demonstrate the integration of the training unit within a spiking neuron for

future use in spiking neural networks.

4



CHAPTER 1. INTRODUCTION

5. Analyze the area usage of the training circuitry within neural networks.

1.3 Document Structure

Chapter 2 overviews the background and related works with a brief overview of neu-

ral networks, memristor devices, existing research, and a break down of the Ziksa

training circuitry and the problems with the design. Chapter 3 starts with the im-

provements to Ziksa and the high-level architecture. It then delves into the individual

analog components, their topologies, and how the high-level architecture forces cer-

tain specifications. Chapter 4 is the results from high-level nominal simulations and

in depth simulations of the individual analog components. Chapter 5 discusses the

final thoughts for this research and how it can be used in future works for hardware

neural networks.

5



Chapter 2

Background and Related Works

For years, computer performance and power has been improved by parallelism, pipelin-

ing, and moving to smaller CMOS technology nodes. Unfortunately, smaller transis-

tor sizings are causing increasing difficulties as non-ideal behaviors overpower basic

functionality [13]. This has encouraged a resurgence in neuromorphic computing us-

ing memristive devices that can provide an energy efficient alternative to traditional

CMOS computing.

2.1 Neurons

Neuromorphic computing, often referred to as brain inspired computing, researches

implementing neural networks in hardware. The high-level architectures are the same

as used in Machine Learning, including two different common neurons, the first shown

in Figure 2.1.

The first model of the neuron was the perceptron back in 1958 [6]. This is a highly

simplified version of a biological neuron where the output is a linear combination of

the input values (X) multiplied by weights (W). This is similar to an FIR filter with

the taps being replaced by the input values of X. In a traditional perceptron, a simple

threshold is used to determine if the output would be a 1 or a 0. More complicated

activation functions such as the sigmoid shown in Figure 2.1 can be used. The output

6



CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.1: A single perceptron neuron

would then be as follows.

Y = sigmoid(
n∑

i=1

[XiWi]) (2.1)

In hardware, the input values would need to be analog values which creates issues

with accuracy and reading the values. Training requires reading the exact input value

which would require at least one analog to digital converter (ADC). The ADC could

occupy a significant amount of area. An alternative is a neuron that is closer to

biological neurons shown in Figure 2.2.

Figure 2.2: A leaky integrate and fire neuron

7



CHAPTER 2. BACKGROUND AND RELATED WORKS

In the leaky integrate and fire (LIF) neuron, a type of spiking neuron, data is

encoded into spikes of 1’s and 0’s. This solves this issue of ADCs because the data is

inherently digital so a simple counter can be used. There are many ways of encoding

data into spikes, such as rate or latency, but the LIF still functions the same [14]. The

example on the right side of Figure 2.2 shows inputs encoded into spikes according to

rate such that “2” is twice the frequency of “1” and “4” is twice the frequency of “2”.

In step 2, the inputs are multiplied against the weights of the neurons which changes

the height of the spikes and some can become negative. Step 3 shows the result of

summing the three multiplied inputs while step 4 shows the internal ’voltage’ of the

neuron. In an LIF neuron, the values from step 3 are integrated over time into this

voltage. If the voltage passes a set threshold, represented as a red line, the voltage

resets to 0 V, fires its own spike seen in step 5, and begins to integrate again.

Two things not shown in this graphic are the leaky part of an LIF neuron and

the refractory period. Both would occur in step 4. In an LIF neuron, there is a

constant leakage of the internal voltage over time. This allows the neuron to ’forget’

old data if it hasn’t received spikes in a long time and prevents very low inputs from

firing. The refractory period occurs after a spike has been triggered. The neuron

must take a short period of recovery time and will not integrate or fire another spike

until the recovery period is over. Stringing perceptrons together creates traditional

artificial neural networks (ANNs) while combining LIF neurons creates a spiking

neural network (SNN). For this thesis, all networks created are SNNs.

2.2 Neural Networks and Reservoir Computing

Connecting perceptron or LIF neurons together can create the neural networks shown

in Figure 2.3.

A feed-foward networks network only connects the neurons in one direction and

has no memory of previous inputs. A recursive network adds in backwards connec-

8



CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.3: Feed-foward and recursive neural networks

tions that give it a memory of previous inputs. This allows for the processing of

time series data, but increases training time significantly. To decrease training time

architecturally, Reservior Computing (RC) networks can be used.

Figure 2.4: A high level view of the reservoir computing architecture

The architecture can be broken down into three parts: the input layer, the recur-

rently connected reservoir, and the output layer. The recurrent connections in the

reservoir are what give RC architectures the ability to classify temporal data and add

massive complexity to training. To save training time, the reservoir weights and the

weights from the input layer are never trained. By only training the output layer,

the back propagation can be simplified to a single linear equation. The downside is

that to achieve a similar accuracy as a fully trained network, the reservoir must be

made large.This leads to a large amount of weights which becomes a major issue in

9



CHAPTER 2. BACKGROUND AND RELATED WORKS

neuromorphic computing.

Reservoir Computing (RC) is used for solving temporal classification, regression,

or prediction tasks such as weather prediction, system control, or speech recognition

[8] [15]. There are two main types of RC: Echo State Networks (ESN) and Liquid

State Machines (LSM). ESNs often use a standard sigmoidal neuron and depend on a

linear combination of the output of the reservoir to determine the output [16]. LSMs

are closer to the biological inspiration by using LIF neurons [8]. The neurons and

training circuits for this thesis are designed to be able to work on feed-forward or RC

networks.

2.3 Memristor

The memristor, also known as a memory resistor, was theorized in 1971 by Leon

Chua [10]. It is a passive, two terminal element with a state-dependent ohm’s law.

A memristor is a thin semiconductor film sandwiched between two metals as shown

below [11].

Figure 2.5: The different doping regions of a memristor

One end of the memristor has a much higher doping concentration than the other

where the resistance is determined by

R(t) = Rdoped
w(t)

D
+Rundoped(1−

w(t)

D
). (2.2)

A higher doping concentration leads to a lower resistance. If a voltage is applied

10



CHAPTER 2. BACKGROUND AND RELATED WORKS

across the memristor that exceeds a device threshold, the ratio of doped to undoped

regions will change according to the magnitude, polarity, and length of time the

voltage has been applied such that

δw(t)

δt
= µv

Rdoped

D
i(t) (2.3)

where µv is the doping mobility. In general, increasing the resistance and decreas-

ing the resistance will occur at different rates. This is because when training to a

lower resistance, the diffusion forces and applied electric field act in the same direc-

tion. When training to a higher resistance, the applied flied is opposite of the Fickian

diffusive force causing the doping boundary to move at a slower rate [17]. The mem-

ristor follows a hysteresis curve that varies greatly depending on the material and

process.

Figure 2.6: The pinched hysteresis loop of a memristor [1]

Figure 2.6 shows that once the voltage passes a high threshold, the resistance

state changes so that as the voltage drops, there is a different slope relating current

and voltage. wo is the frequency at which the signal is being passed through the

memristor. When it reaches higher frequencies, the memristor’s resistance changes

at a lower rate until it behaves like a linear resistor.

11



CHAPTER 2. BACKGROUND AND RELATED WORKS

The first memristor was demonstrated by HP labs in 2008 [11]. Memristors can

be made with SrTiO3, TiO2, NiO, and others with varying resistance ranges from

hundreds of Ohms to Gigaohms [18]. Whatever resistance the memristor is set to

will hold when not powered allowing memristors to be used as non-volatile memory.

A typical use is to force the memristor to its high resistance state (HRS) or low

resistance state (LRS) leading to a 1-bit memory. Memristors can also be set to the

in between resistances, theoretically providing infinite states.

2.4 Memristor Crossbar

To use the memristor in RC, a common architecture for the neurons and their con-

nections is the memristor crossbar shown in Figure 2.7 [9].

Figure 2.7: A 3x4 memristor crossbar

The inputs enter through the top of the crossbar as either analog values for per-

ceptrons or as spikes, ranging from 0 to 1 (with 0 and 1 being any voltage required)

for spiking neurons. If the output nodes are held at 0 V, the output currents can be

represented as

Iout1 =
Vin1
M11

+
Vin2
M12

+
Vin3
M13

+
Vin4
M14

(2.4)

12



CHAPTER 2. BACKGROUND AND RELATED WORKS

where MXY is the resistance of the memristor. The memristor resistances behave

like the weights in a neural network with a high resistance equating to a low weight.

The crossbar allows for a compact design when using a highly interconnected network.

These outputs can then be fed into different activation functions for perceptrons or

LIF neurons. One crossbar represents a single layer in a neural network and completes

the expensive matrix multiplication through analog computation. Multiple crossbars

can then be combined to create feed-forward networks of RC architectures.

2.5 Related works

Using memristor crossbars is a well researched area with proposed architectures pub-

lished before HP labs produced a working memristor [19]. The first designs focused

on using crossbars purely for condensed non-volatile memory storage due to its high

density of 154 to 309 Gb/cm2 making it 2-4x as dense as a hard drive when used

as single bit memory [20] [21]. Unfortunately, crossbars have a limit in size due to

current sneak paths affecting the accuracy of reading and training [22]. An equivalent

number of memristors, but at lower density, can be accomplished by chaining multiple

crossbars together. This is the approach used for current neuromorphic systems [23].

For these neural networks, the circuitry around the crossbar is vital to preform

training, reading, and isolation of the different crossbars. Some require transistors

inside the crossbar for every memristor that work as switches for training and reading

[24]. Others require multiple op-amps for every row and column such as [25] which

require amplifiers and DACs for training. The Ziksa training unit utilizes only one

amplifier per neuron, but has other set backs that will be improved upon in this thesis

[2]. The ziksa circuitry can be seen in Figure 2.8.

The input voltage and VDD/2 are set to be less than the threshold voltage of

the memristor to avoid training. During a read, the ZRow and ZCol circuits are

turned off and a read signal allow the input signals through the columns. When a

13



CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.8: The Ziksa training unit [2]

memristor is being trained, the ZRow and ZCol surrounding that memristor are set

to VDD and GND so that the memristor will train. All other columns are set to

VDD/2 and all other rows have their ZRow circuits disabled so that the row floats.

This prevents the other memristors from having a voltage across them greater than

the threshold voltage so they will not train. If the memristor is being trained in the

positive direction, the ZCol will be set to VDD and the ZRow set to GND to provide

a voltage greater than the threshold voltage. For training in the negative direction,

the training units switch their voltage. This design presents two main problems:

memristor weight linearity and current draw during training.

The first problem was introduced due to the ZRow circuit. Since it forces the row

to VDD or VDD/2, a resistor was needed between the crossbar and the negative input

of the differential amplifier since the negative input is forced to GND. Because of this

14
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resistor, the output current during a read of four memristors would be expressed as

Iout =
Vin1M2M3M4 + Vin2M1M3M4 + Vin3M1M2M4 + Vin4M1M2M3

1 +R(M2M3M4 +M1M3M4 +M1M2M4 +M1M2M3)
(2.5)

where VinX is the input signal, MX the resistance of the memristor, and R is

the the resistor between the amplifier and the crossbar. The main issue with this

equation is that the memristor weights no longer follow the neuron behavior of linear

independence seen in Equation 2.4. Instead, to increase the weight of one memristor,

all other memristors must be taken into account.

This resistor also causes the second issue of current draw during training. When

training a memristor in either direction, all other columns are forced to VDD/2

causing a constant VDD/2 over the R. When training a memristor in the negative

direction, that column is forced to VDD causing twice the current draw. A large

resistor will reduce the current, but needs to be sized in relation to the memristor

resistance range because of Equation 2.5.

2.6 Robustness of Memristor Neural Networks

A key concern with analog design is how much leeway is allowed with certain specifi-

cations. This is discussed in detail in [26] through the Matlab simulation of a Liquid

State Machine (LSM) with memristor crossbars. The focus was on the variability of

memristor read and write times. The general conclusion was that if the noise was

inherent to the device and did not change over the course of training, the network was

robust to read and write noise due to the training algorithm adjusting the memristor

weights. If the noise varied while it was training, the accuracy was seriously affected.

With this in mind, circuits such as the voltage and current reference that drive train-

ing and reading can not significantly vary over time, temperature, or voltage, but

15
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variation is allowed across process variation as this would be fixed with the training

of the neural network.
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Chapter 3

Circuit Designs

3.1 High-Level Design

While the focus of this thesis is on the training circuitry, the functionality must also

be demonstrated in the context of a fully functioning neuron. The circuits built for

this thesis create a layer of spiking neurons that have the following functionality:

1. Randomly initialize weights

2. Possess the ability to train individual weights

3. Use a spike train for the neuron inputs

4. Multiply the inputs against the weights and sum them

5. Use a leaky integrate and fire neuron to determine output

6. Produce spike trains of varying frequency based on input frequency and mem-

ristor weights

7. Can be connected to other columns of spiking neurons in a feed-forward or

recursive network

The high-level circuit design can be seen in Figure 3.1.

The Ziksa training circuitry (ZTC) satisfies points 1 through 3 while the crossbar

satisfies point 4. The inverting and non-inverting inputs of the current amplifier are
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Figure 3.1: A high-level overview of the spiking neurons

necessary for ZTC to function and force the outputs of the crossbar to 0 V so that

the memristor weights remain linearly independent. The current amplifier passes the

current into the spiking neuron which satisfies points 5 through 6. All the output

spikes are clocked to avoid delay issues and are buffered from the next layer of neurons

with SR latches to satisfy point 7.

3.2 Arbitrary Constraints

There are a few constraints to the system that were arbitrarily chosen to begin the

design process. The rails of the system were set to 1 V and -1 V with a GND rail

available as well. This provides more headroom to work with positive and negative

crossbars in future designs. The 2 V rails also encourage the use of the GPDK45 2

V devices in topologies where the transistors are minimally stacked. The downside is

that these devices have thicker oxide layer leading to a decreased transconductance

according to

gm = µnCox(
W

L
)(Vgs − Vth) (3.1)
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because Cox is inversely proportional and Vth is proportional to the oxide thickness.

The latter is due to

Vth = VTO + γ(
√
|VSB + 2φf | −

√
|2φf |) (3.2)

where VTO is the threshold voltage with zero substrate bias, VSB is the source

to body substrate bias, 2φf is the surface potential and γ is the is the body effect

parameter

γ = (
tox
εox

)
√

2qεsiNA (3.3)

where tox is the oxide thickness, εox is the permitivity of oxide, εsi is the permitivity

of silicon, q is the elementary charge, and NA is the doping concentration.

The next constraint was to set the positive input signal to a square wave spike of

0 V to 1 V. This allowed spikes to easily work with digital logic at the 45nm scale

which uses rails from 0 V to 1 V. If negative spikes are used, they would range from

0 V to -1 V and would be level shifted. The width of the spikes was set to 25 ns to

match the RC constant of the spiking neuron that is discussed in Section 3.6.

The memristors were set to have resistances from 200 kΩ to 1 MΩ with a crossbar

of 2x4. Therefore, the highest current through the system would be 4 memristors in

parallel(50 kΩ) leading to 20 µA for a 1 V spike. Though training will have 1.2 V

across, only 1 memristor can be trained at a time so the highest current needed would

be 6 µA from a single amplifier.

Of these constraints, the rails and the spike characteristics are unlikely to change

when used for other applications. The memristor values and the size of the crossbars

could vary depending on the devices being used and the network needed to solve a

classification problem. The only circuit that should need to change would be the

current amplifier. While the amplifier could technically be designed to work over a

19



CHAPTER 3. CIRCUIT DESIGNS

wide range of devices, that could lead to a large, over-designed op-amp.

3.3 Improving The Ziksa Crossbar

The first major improvement was to move the row control to the positive input of the

differential amplifier as seen in Figure 3.2 [3].

Figure 3.2: Memristor crossbar with the first improvement to the Ziksa training circuitry
[3]

Since the output of the differential amplifier would be a voltage, the plan was

to follow it with a voltage to current converter (another amplifier) and then dump

the current into the spiking neuron as shown in Figure 3.1. In simulation with an

ideal differential amplifier, this functioned perfectly so a simple two stage differential

amplifier was designed and substituted in. Unfortunately, the amplifier was unable

to force the negative input of the amplifier to VDD or GND so training could not

occur. The original thought was that the issue was the amplifier being unable to

sink and source enough current so the amplifier was redesigned to use an AB output

stage. After a few different topologies were attempted, this too was unable to force
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the column to the necessary voltage.

The problem was finally narrowed down to the Input Common Mode Range.

ICMR dictates the range of input voltages under which the amplifier can meet the

desired specification. For this design, the specification was to keep all transistors

within saturation. While topologies exist that allow rail-to-rail ICMR , they are

often very large[27]. Instead, the ideal amplifier was replaced and the memristors

tested to determine the lowest Vthmem that would allow training and prevent the

memristor from changing during a normal read. With the input signals from 0 V to

1 V, the lowest was a Vthmem of 1.05 V with the training at 1.1 V. Since this was with

ideal amplifiers, it was decided to push to a Vthmem of 1.1 V and train at 1.2 V to

give more room for variation. This required a slight change where certain transistor

control switches were replaced with transmission gates because they would no longer

be passing rail values. At the same time, it was determined that the differential

amplifier and the voltage to current converter could be combined into a single-ended

current amplifier. The end result is the Ziksa training circuitry seen in Figure 3.3 on

a 2x4 crossbar.

Figure 3.3: Memristor crossbar with Ziksa training circuitry
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Each column has it’s own ZCol, and each row it’s own ZRow, circuitry with

individual control signals. For ZCol, Rd en controls whether the input voltage is

passed through while ColH and ColL set the column to 1 V or -1 V during training.

For ZRow, RowOn sets the row to 0 V during reading and when a different row

is training. RowH and RowL set the row to 0.2 V and -0.2 V when training its

memristors. There are three modes of operation: read, train high, and train low.

During the read operation, no memristive device can have a voltage across it greater

than Vthmem, which is set to 1.1 V. Figure 3.4 shows the voltages across a single

memristor during training and reading.

Figure 3.4: Voltages and memristor resistance during training and reading

During training, read is disabled to isolate the crossbar from the behavior of other

neurons. When training high, the control signals set ZCol to 1 V and ZRow to -0.2V

so that there is 1.2 V across the memristor. The voltage is greater than Vthmem thus

increasing the memristor’s resistance. The opposite occurs during training low so

that the resistance will be decreased. During this training, the unused rows will have

their ZRow set to 0 V so that it is impossible for any memristor on that row to have

a voltage across greater than the threshold voltage. Unused columns will have their
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ZCol completely turned off so that the node floats and will never supply the current

to train a memristor, even if it is in the same row as a memristor being trained. To

change the amount a memristor is trained, simply vary the length of time the voltage

is applied. During read, the Zrow is set to 0 V and Rd en is set high so that Vin can

pass through to the resistor. Since the input spikes are set from 0 V to 1 V, they will

never trigger a memristor to train.

This design fixes the issues with the old Ziksa crossbar. By removing the resistor

between the amplifier and the crossbar, the memristor weights are once again linearly

independent and power is saved because there is no longer a voltage forced across the

resistor during training. Finally, size is saved due to the removal of the resistor be-

tween the crossbar and differential amplifier and a second resistor is removed because

of the combination of the amplifier and voltage to current converter.

3.4 Control Unit

The Ziksa control unit initializes and trains the memristive devices. The general

order is to train all memristors to their lowest value then randomly initializes them

by training high for a period of time determined by an LFSR (Linear Feedback Shift

Register). A simplified state machine can be seen in Figure 3.5.

The reset stages train all the memristors down to their lowest weight using a

preset max value that is sufficient to train a memristor from the highest possible

value to the lowest. Since all are being trained for the same time and each column

has it’s own op-amp, multiple rows can be trained at the same time. The reset stage

simply sets col to the number of columns it will be training over. In the resetStart

stage, the outputs are set to train the memristors low except the rows remain off

until resetMem. This is because switching to full training causes a large current spike

which can alter the weights of the memristors. Splitting the transition to training

between two states removes the current spike and adds minimal time in comparison
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Figure 3.5: Control unit for initializing the memristor weights

to the length of training.

Once all memristors are set to their lowest value, mid sets up the LFSR for

randomly initializing the memristors. The LFSR is sized so that its highest values will

train a memristor to it’s highest resistance. Due to the interconnect of the crossbar,

the write stages must train only one memristor at a time so the stages writeSetup,

writeStart, and write are repeated row by row, for every column in those rows. For

each memristor, the next value generated by the LFSR is used to determine how long

the memristor will train. Once all have been trained, it returns to idle ,which allows

data to pass through the crossbar.

3.5 Current Amplifier

For the Ziksa training unit, a single differential input current amplifier is needed per

row. The driving constraints of the op-amp, from Section 3.2, are that it must be

able to sink/source 20µA of current, have an input common mode range (ICMR) of

-0.2 V to 0.2 V, and a current gain of -1 A/A. The topology chosen can be seen in

Figure 3.6
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Figure 3.6: Differential amplifier with current output

While the op-amp is used for current gain, the voltage gain of the feedback loop

determines the accuracy of the current gain. The gain can be expressed as

Av = gm1(ro1||ro3)gm7(ro7||ro8)(
gm10/gm15

1 + gm10/gm15

) (3.4)

where gm1(ro1||ro3) is the gain of the differential amplifier, gm7(ro7||ro8) is the gain

of M7, and gm10/gm15

1+gm10/gm15
is the gain of M10. The offset of the amplifier is determined

by the matching of M1/M2 and the matching of M3/M4. Matching is improved with

larger transistors and layout techniques. The ICMR is determined by how high and

low the inputs can be pushed without pushing the transistors out of saturation. Since

the voltage of Vin+ is equal to the voltage of Vin−, the ICMR can be determined by

either the differential portion or the current mirror stacks, depending on sizing. This

can be seen in (3.5) and (3.6).
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ICMRmax = min(V DD − VdsSat4 − Vth2, V DD − VdsSat13 − Vth13 − VdsSat10,

V DD − VdsSat7 − Vdssat10 − Vth10) (3.5)

ICMRmin = max(V SS + VdsSat5 + Vgs1, V SS + VdsSat15 + Vth15 + VdsSat12,

V SS + Vdssat8 + Vdssat12 + Vth12) (3.6)

The required range is -0.2 v to +0.2 v which is possible because the rails run from

-1v to 1v.

The current gain is determined by the ratio of the current mirrors at the output.

If Iin is positive, it will be reflected across M15/M16 forcing Iout to be negative. A

negative input current will reflect across M13/M14 causing a positive output current.

The gain can then be expressed as

Iout
IIn

= −(sgn(−Iin)(
(W/L)14
(W/L)13

) + sgn(Iin)(
(W/L)16
(W/L)15

)) (3.7)

where the function sgn() is 1 for positive values and 0 for negative values.

A problem arises at the output due to the spiking neuron configuration. The

output voltage will move as the capacitors charge up. Operating at the rails would

cause issues due to M14 and M16 going out of saturation, so the output node is set

to operate between 0 V and -0.3 V. With ideal transistors, as long as Vgs remains

constant, the provided current should remain constant while in saturation. In reality,

the curves follow Figure 3.7.

As Vds increases, the output current will increase as well. A higher Vgs, until it

reaches the limiting current, causes a larger change in drain current. This behavior
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Figure 3.7: The arbitrary current supplied over increasing Vds with varying Vgs [4]

gets worse with smaller technology nodes such as the GPDK45. For this topology,

The solution is larger transistors and smaller Vgs leading to a smaller current. The

downside is that a small Vgs can cause worse Monte Carlo results because there is less

voltage headroom before the transistor will enter the linear region of operation. The

smaller current would also increase the resistance of the transistor because resistance

is inversely proportional to current. A high resistance becomes an issue with the

poles of the amplifier. Another solution would be to change the topology to use a

cascoded output layer. This would provide an increased output resistance so that as

the voltage changes, the current change will be smaller.

Poles occur at every node where a signal passes through and can be approximated

with

pole =
1

2πRC
(3.8)

where R and C are the resistance and capacitance at the node being analyzed.

To get a high phase margin, the poles must be manipulated so that there is a single

dominant pole and the second pole does not occur until after the gain is less than one.

Technically, any two pole system with a phase margin greater than 0◦ will be stable,
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though it will oscillate for a long time. The oscillations will decrease in duration until

approximately 60◦, at which point any higher phase margin will be over-damped

causing it to settle slowly, but without oscillation. Figure 3.8 shows what the bode

plots look like as compensation is added.

Figure 3.8: Bode plots with varying levels of compensation

The first set of bode plots shows a system with three poles that are very close

together causing a low phase margin and an unstable system. These poles can be

moved by adding adding CC and RZ in Figure 3.6. The compensation capacitor, Cc,

utilizes Miller capacitance to increase its effective capacitance so that

Ceq = Cc(1 + Av) (3.9)

where Av is the gain across the capacitor [28]. This forces one pole to become

dominant and move to left as seen in the second graph in Figure 3.8. The phase

margin has improved significantly but is still very low because the second and third

poles are close together. Adding Rz creates a zero that can be adjusted to cancel out

the secondary pole as seen in the third set of bode plots. Where equations can not

inform an exact size, such as the ratios in Equation 3.7, the starting transistor sizes
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were kept small to avoid low poles.

3.6 Spiking Neuron

The resulting current from the op-amp then enters a spiking neuron shown in Figure

3.9.

Figure 3.9: A spiking neuron that takes in current and outputs spikes of 0 V - 1 V [5]

The capacitor builds up charge and the resistor allows for leakage to mimic the

biological leaky integrate and fire neurons. Since the op-amp has a current gain of -1

A/A, the capacitor charges from 0 V down to -0.3 V. Figure 3.10 shows the different

nodes interacting while the neuron charges, fires, and discharges.

Figure 3.10: The different nodes of the spiking neuron in Figure 3.9

Vref is set to -0.3 V and is represented as the red line in the Vin plot. Once Vin
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reaches -0.3 V, the comparator’s negative output will fire high. The SR latch holds

onto the result and is ANDed with the 50 ns clk signal so that the spike width will

only be 25 ns. The rst signal ranges from -1 V to 1 V and triggers the transmission

gate so that the capacitor will be discharged to 0 V. The two inverters after the rst

signal are used to level shift the spikes lower voltage from -1 V to 0 V so that it will be

prepared for the next crossbar. The comparator is a double tail latched comparator

from [29] shown in Figure 3.11.

Figure 3.11: Double tail latched comparator

The basic operation is that when the clock switches high, the differential amplifier

made of M1 - M5 will output a high enough difference that the latch, made of M7,

M8, M11, and M12, will grab onto the difference and force the output to the rails.

The important internal nodes can be seen in Figure 3.12.
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Figure 3.12: The timing of internal nodes in the comparator

At t1, the clock is low so M3 and M4 pre-charge the top of the diff-amp to VDD

while M5 is turned off so no computations can occur. Once the clock goes high at t2,

Vin is higher than Vref so the drain of M3 drops slightly faster than the drain of M4.

This pull of current starts to push the latch so that Out+ rises higher than Out−.

Feedback kicks in at t3 and it latches onto the difference and pulls to the rails by t4.

The key to functionality is that by t3 there is a large enough difference between the

two outputs that the latch can decide correctly.

For this to occur fast enough, the gain of the diff-amp must be high so that the

difference between the sides will be large enough for the latch to detect. Also, the

time constants of the the diff-amp and the latch must be small so that the nodes

can charge quickly. Finally, the output loads of Out+ and Out− must be equivalent

for the nodes to have the same time constant and charge equivalently. Having the

comparator followed by a SR latch assures that the output nodes will always have

the same load.
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3.7 Voltage and Current Reference

The reference voltage for the comparator is supplied by a Banba bandgap voltage

reference shown in Figure 3.13 [30].

Figure 3.13: A Banba bandgap voltage reference with startup circuitry

The Banba bandgap was chosen for its functionality at low voltages. The Banba

bandgap works to remain consistent over varying temperatures by using an op-amp

to equalize the sections that are proportional to absolute temperature (PTAT) with

sections that are complimentary to absolute temperature (CTAT). Diode connected

BJTS (Q1 and NQ1) are CTAT with resistors usually being PTAT.

In Figure 3.13, NQ1 is N BJTs connected together to make the combination of

R2, R3, and NQ1 CTAT while the single BJT paired with R1 will be PTAT. N is

usual set to 8. These sides enter into opposite terminals of the op-amp so that it can

sum them and and set the gates of M1 through M3. Equation (3.10) is then used to

determine what the reference voltage is assuming R1 is equal to R2.

Vref = R4(
Vf1
R2

+
dVf
R3

) (3.10)

where Vf1 is the voltage across a diode connected BJT and is inherent to the
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technology. dVf is the difference between the voltages across Q1 and NQ1 and can

be determined by

dVf =
kT

q
ln(N) (3.11)

where K is the Boltzmann constant, q is the electron charge,, and T is the current

temperature in Kelvin.

The startup circuit supplies a small current when the chip is turned on so that

the nodes will not get stuck at either rail and the voltage reference will function. One

voltage reference can supply to all spiking neurons in the circuit and can be used to

produce multiple different voltages as seen in Figure 3.14.

Figure 3.14: Generating different voltages from the Banba bandgap reference

The 700 mV reference voltage is generated off of the VSS rail because it is also

used for the current reference which needs the difference between it’s supplied voltage

and VSS to remain constant when the rail voltages vary. The +/- 200 mV references

needed to be referenced off of GND because they are used to drive the inputs of the

current amplifier and are restricted by ICMR. To get the negative voltage, the current

from M3−200 is mirrored and negated with CM1 and CM2.
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To supply the reference current for the current amplifier, the circuit at Figure 3.15

is used.

Figure 3.15: A current reference for the current amplifier

The op-amp takes in a reference voltage (700 mV) in the positive terminal and the

voltage across R1 into the negative terminal. The feedback loop through M7 allows

it to compensate and keep the voltage across R1 equal to Vref . The required current

can then be easily set by adjusting the resistance of R1. M6 is used to create a bias

point to mirror the current into the op-amp. For each reference current needed, an

additional current mirror is added on.

3.8 Memristor Variation

For this thesis, an ideal memristor model was used. General variation in read times,

write times, and resistance values can be accounted for during neural network training

as was shown in Section 2.6. If the resistance range causes a larger current draw, the

crossbar input voltage can be made smaller. if the current is too low, the amplifier

can have its gain increased. There is a concern if the memristor threshold voltage

changes significantly. In this design, the threshold allows for a 100 mV buffer which
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will be partially used by the transmission gates. If a memristor has a wide variance in

threshold voltage, the ICMR of the amplifier would need to be increased. In the same

vein, a majority of the noise on the signal will be due to the noise of the memristor.

If it is too large, higher input voltages can be used to allow for a higher current so

the noise would have minimal effect.
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Results

The results are split into three sections: training, spike generation, and sub-circuits.

Training is tested on a 2x4 crossbar and shows the capability of the Ziksa crossbar

to train in both directions and is tested in nominal only. Spike generation tests a

1x4 crossbar with preset memristor values for it’s ability to generate different spiking

frequencies in nominal operation. The sub-circuits tests the current amplifier, the

comparator, the voltage reference, and the current reference over various corners and

in Monte Carlo analysis. This chapter contains mostly tables and few graphs of the

results. Details on the sizing and area usage of the circuits can be found in the

Appendix.

4.1 Training

To test the training capabilities of the crossbar, A 2x4 crossbar was set up with

memristors initialized at varying weights. The test was run for 20 µs The results of

training can be seen in Figure 4.1.

In Figure 4.1, the memristor resistance is recorded as a proportional weight of 0

to 1, with 0 being 1 MΩ and 1 being 200 kΩ. This is because when used in a neural

network, the lowest resistance will provide the highest current and therefore would be

the highest weight. The memristors are first all trained to 0 for 2.25 µs. Due to the

higher voltage needed for training, the current required to train all memristors at once
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Figure 4.1: Randomly initializing the memristors for use in a neural network

is too much for the current op-amp so they are trained one column at a time. Once

all memristors are set to 0, they are individually trained high for random periods of

time chosen by an LFSR. This completes the random weight initialization needed in

neural networks and shows

During this, the current remains around 190 µA because the largest current needed

across a memristor for training is 6 µA. At most, the crossbar could draw 12 µA

when training all memristors to 0. This would only be for a short time because as

the memristors reach a higher resistance (a relatively lower weight), the current will

drop. The rest of the current comes from the external circuitry: transmission gates,

voltage reference, current reference, and the current amplifiers. The spiking neuron

and it’s comparator were not included in this test. With larger crossbars, the number

of current amplifiers will increase as there is one needed for every row, but only one
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voltage reference and current reference is needed for the entire chip. The spikes in

current are from the switching of control signals but have been isolated from the

memristors so that the memristors do not accidentally change weight. The current

and controls for training a single memristor can be seen in Figure 4.2.

Figure 4.2: The control signals, current across, and resulting weight from training a single
memristor.

The top 5 plots are the control signals for the row and column of the memristor

being observed. Vm is the voltage across that memristor, Im is the current entering

the positive terminal, and Wm is the relative weight of the memristor. The spikes in

RowH, RowL, and RowOn occur during the switching of memristors for two reasons:

first, to allow for the set-up without training any memristor and second, they are

slightly staggered (not visible in this graph) to decrease the current spikes so that

the memristors will not train unintentionally. While all memristors are being trained

down, the current through the memristor remains around 0 A with spikes that max
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at 261.9 nA, until this memristor is trained. Part of the reason for the small current

is that the memristors are being trained to 1 MΩ. Once it begins training, the current

maxes at 6 µA and decreases as the memristor is trained to a higher resistance. During

the random initialization phase, the first half is training memristors in the other rows

so the current remains around 90 nA, a higher current due to lower resistances. The

current does increase at the end when a memristor in the same column is being

trained, but since the row is held to 0 V with the RowOn signal, the voltage never

exceed 1 V so the memristor remains the same value. During the last phase, the

Row is set low so the current hovers around 100 nA while ranging from 1.2 µA to

1.5 µA during training. This demonstrates the low current necessary for memristor

crossbars: the majority of power usage comes from the surrounding circuitry.

4.2 Spike Generation

To show the ability of spike generation, five tests were chosen and verified against a

Matlab script. The settings can be seen in Table 4.1.

Table 4.1: The frequencies and weights of the spike generation tests

Test In Frequency (Hz) Weight (kΩ) Out
1 20 M, 20 M, 20 M, 20 M 200, 200, 200, 200 23 spikes
2 625 k, 625 k, 625 k, 625 k 1000, 1000, 1000, 1000 None
3 5 M, 2.4 M, 1.25 M, 20 M 500, 200, 750, 400 5 spikes
4 2.5 M, 2.5 M, 2.5 M, 2.5 M 200, 200, 200, 200, 200 None
5 20 M, 20 M, 20 M, 20 M 600, 600, 600, 600 15 spikes

The highest frequency and weight possible was 20 MHz and 200 kΩ. The tests

were set up so that test 1 demonstrated the highest values, test 2 the lowest, and

tests 3 through 5 showed the variability in between and show the leaking capability

of the spiking neuron. The results for test 3 can be seen in Figure 4.3.
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Figure 4.3: The results of the third test from Table 4.1

The first four plots show the input spikes before they pass over their respective

memristors. Sum shows the summed up currents of these inputs at the input to the

current op-amp. V is the voltage in the spiking neuron as it charges, leaks, and

spikes. The input spikes were aligned so that there would be moments of 0 A to show

the leakage of the spiking neuron. The red line shows the threshold of -0.3 V. Out- is

the result from the comparator and Spike is the final result that would be passed onto

further crossbars. At t1, the comparator trips as the voltage passes the threshold. At

the next clock edge, t2, the SR latch picks up the new value, ANDs it with the clock

so that it only be 25 ns wide, and inverters level shift it to 0 V to 1 V. Between t2

and t3, a non-shifted Spike signals the spiking neuron to drain it’s voltage back to 0

V. Finally, at t3, the spiking neuron can begin charging again. The delay on charging

mimics the inhibitory behavior displayed in biological neurons.
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Figure 4.4 shows the voltages and spikes of all five tests.

Figure 4.4: The internal voltages and spikes of all five tests from Table 4.1

The first test shows the highest frequency and memristor weight leading to the

highest frequency of output spikes. The second test shows a slight increase in voltage,

but ultimately returns close to 0 V. The reason the voltage does not reach a true 0

V is due to a slight current that will still be produced with a 0 A input. This is due

to non-idealities in the current op-amp and is discussed in Section 4.3.1. The current

does not cause a major issue because the leaking constant of the spiking neuron will

keep low currents from charging up the neuron to spike. The third test was discussed

in detail above. Test 4 reaches a voltage of -0.3 V, but the comparator has a limit for

how close it must be to regularly fire, so it does not spike. This also shows the voltage

discharging slowly. The rate of discharge is entirely controlled by the timing constant

of the spiking neuron. The final test simply shows another possible frequency being

generated. The rate at which the neuron fires can be altered by changing the input
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currents, memristor range, threshold voltage of the spiking neuron, or the timing

constant of the spiking neuron.

4.3 Analog Circuits

The next section is a detailed analysis of the current amplifier, comparator, volt-

age reference, and current reference. All were tested over PVT (Process, Voltage,

Temperature) corners with process covering five corners of device variation (fast-fast,

fast-slow, slow-slow, slow-fast, typical-typical), voltage changing setting VDD to typ-

ical and +/- 0.2 V, and temperature tested at 0 ◦C, 27 ◦C, and 100 ◦C. They were also

tested over 1000 runs of Monte Carlo simulation at nominal voltage and temperature.

Monte Carlo varies the variables used to describe individual transistor behavior using

a Gaussian distribution. The variation highlights the issues that might arise due to

transistor mismatch.

4.3.1 Current Amplifier

The current amplifier was tested with a load resistance of 100 kΩ and a capacitance

of 500 fF, to match the spiking neuron. The resulting nominal, PVT, and Monte

Carlo results can be seen in Table 4.2.

Table 4.2: PVT and Monte Carlo simulation results for the current amplifier

Specs Nom PVT MC
Power(uW) minimize 78.47 [63.07, 96.37] [74.9, 83.75]
Gain (A/A) [-0.95,-1.05] 1.01 [1.004, 1.049] [1.003, 1.022]
Phase Margin (◦) ≥ 60 75.66 [61.53, 88.65] [64.79, 96.62]
Bandwidth (MHz) ≥ 20 87.5 [43.18, 100.2] [56.03, 72.77]
ICMR Max (mV) ≥ 200 364.2 [249.4, 476.2] [329.4, 409.2]
ICMR Min (mV) ≤ -200 -355.1 [-510.1, -205.1] [-385.1, -320.1]
Input Offset (mV) ≤ 10 514.9u [372.9u, 880.9u] [2.087u, 4.711m]
Intersect (nA) [-1uA, 1uA] -231.1 [-388.1, -127.8] [-423.1, 13.15]
Curr In Offset (nA) ≤ 100 7.952 [4.297, 41.76] [0.2463, 88.65]
Curr Out Diff (uA) ≤ 1.5 1.101 [0.891, 1.289] [1.057, 1.209]
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Most specifications tested were standard for an amplifier. Power was minimized

but had no hard requirement. The only required gain was the current gain of -1

A/A with a 5% variation. Phase margin was limited to 60◦ and was measured over

the feedback loop of the current amplifier which ran from the differential inputs to

inbetween M10 and M12 of Figure 3.6. The resulting bode plot can be seen in Figure

4.5.

Figure 4.5: Bode plot of the loop gain and phase during the nominal run

The dark gray line shows where the gain is 1 dB and the phase margin is measured.

For nominal simulation, this was 75.66◦. The exact bandwidth of the loop does not

matter because it is connected in unity gain configuration. Instead bandwidth was

measured over the full current amplifier at the current gain of -1 A/A. It was limited

to 20 MHz to match the spiking inputs. A square wave will have higher harmonics,

but the RC pair of the spiking neuron works as a low pass filter so only a bandwidth of

20MHz is needed. ICMR (Input Common Mode Range) had a very strict requirement

of -0.2 V to 0.2 V so that it would be able to train the memristors. A higher range

would be preferred so that the memristors could be trained faster, but that would have

required a larger op-amp output stage such as the Monticelli output stage [31]. ICMR
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was measured by connecting the op-amp in unity gain configuration and sweeping the

positive input from -1 V to 1 V. The voltage was measured at the output and the

double derivative used to determine the maximum and minimum voltages at which

the output would follow the sweeping input. The input offset of the amplifier was

measured as the difference between the input voltages and the histogram for the

Monte Carlo simulation is contained in Figure 4.6.

Figure 4.6: Histogram of input offset over Monte Carlo simulations

Input offset was limited to 10 mV for accurate training voltages and input current.

Training voltages only have 100 mV of space above the memristor threshold voltage

so an inaccurate input voltage, coupled with transmission gates passing an inaccurate

VDD and VSS, could prevent training. With input spikes at 1 V, a large offset would

lead to a significant change in input current. Over Monte Carlo, the mean offset was

1.1206 mV with a standard deviation of 828 µV.

The last three specifications are unique to the transfer function of the current
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amplifier. Figure 4.7 shows the graphs that these results were pulled from.

Figure 4.7: Graphs used to determine intersect, current input offset, and current output
difference

The intersect was determined by sweeping the input current and finding the point

at which the input current intersects the output current. This measures the offset

between input and output current. Ideally, they should intersect at 0 A, but a small

variation due to offset and gain error will not cause an issue because any small current

generated will not effect the spiking neuron due to the leaking constant. The current

input offset tests that the amplifier is able to source enough current for operation.

The maximum current needed is 20 µA so the offset is how far off the current is from

20 µA. This was averaged from 3 ns to 25 ns to avoid the beginning undershoot. The

effect of the undershoot is already measured in the slew rate for data being passed

through the op-amp. For training, since the signal will always be at least 50 ns long,

the first 3 ns are not as important as verifying that the remaining signal is close to

the required current. The Monte Carlo simulation histogram can be seen in Figure

4.8.

The mean offset was 21.1179 nA and the standard deviation was 15.5562 nA. In

relation to the 20 µA signal, this offset will cause minimal effect.
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Figure 4.8: Histogram of current input offset over Monte Carlo simulations

The current output difference was measured in Figure 4.7 by pushing a constant

20µA into the amplifier and sweeping the output voltage. The output should only

move between -0.3 V and 0 V due to the spiking neuron behavior, so the requirement

was that there is a max of 500 nA change in output current over each 0.1 V of output

voltage change. This essentially is measuring the output impedance of the current

amplifier. For a 500 nA over 0.1 V, that leads to a minimum output resistance of 200

kΩ.

Of the op-amp specifications, the largest difficulty was balancing ICMR and the

current output difference. ICMR could be lowered by making the M15/M16 pair

larger, but this significantly increased the current difference. The internal current

mirrors, M9/M10 and M11/M12, could be made wide and short to improve ICMR,

but this also hurt the output difference. A careful balance of sizing these brought

values within specification. Other topologies could’ve provided better ICMR, but
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they would’ve required a much larger amplifier. Seeing as one amplifier is required

for every neuron, keeping the size minimal is paramount.

4.3.2 Comparator

The comparator was also tested over PVT and 1000 runs of Monte Carlo at nominal.

The tabular results can be seen in Table 4.3 while the graphical results are in the

Appendix.

Table 4.3: The resulting PVT and Monte Carlo simulation results for the comparator

Spec Nominal PVT Monte Carlo
Power (µW) minimize 145.6 [105.6, 196.9] [145.9, 167.7]
Input Drive (mV) ≤ 20 - - -
Offset Voltage (mV) ≤ 10 47.68n [-47.68n, 47.68n] [-9.194, 8.828]
Kickback (mV) ≤ 10 7.375 [6.720, 8.119] [7.7116, 7.594]
Hysteresis (mV) ≤ 5 1.503 [0.361, 3.377] [0.412, 2.577]

The input drive voltage is the minimum voltage difference the comparator can

detect and was tested by verifying the comparator correctly computed eight compar-

isons during transient operation. The offset voltage is the voltage difference between

the two inputs and was measured with a veriloga script [32]. Offset is negligable

during PVT simulations because the main cause of offset is mismatch between the

input transistors. Mismatch between the same types of transistors is only simulated

during Monte Carlo.

Kickback is how much the rising clock edge causes a voltage spike on the inputs.

A large kickback would cause changes in the current charge of the spiking neuron.

Finally, hysteresis is the comparator having memory of the previous result which can

influence the next comparison. To check for hysterisis, the internal nodes from the

left and right side were compared directly after the clock rose high. As long as the

difference was less than 5 mV, any memory effect was considered negligible.

Due to the voltage reference variation, the comparator was also tested at +/-

0.075V off of 700 mV. The results can be seen in Table 4.4.
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Table 4.4: The PVT results for +/- 75 mV off of a voltage reference of 700 mV

Spec Vref = 625mV Vref = 775mV
Power (µW) minimize [94.58, 190.9] [111.9, 204.9]
Input Drive (mV) ≤ 20 - -
Offset Voltage (mV) ≤ 10 [-47.68n, 47.68n] [-47.68n, 47.68n]
Kickback (mV) ≤ 10 [6.392, 7.945] [6.821, 8.247]
Hysteresis (mV) ≤ 5 [0.210, 2.079] [623.7, 4.872]

The results were very similar at 700mV or +/- 75 mV minus a slight increase in

hysteresis. The main problems with sizing the comparator was when testing it at

the low voltage corners where it would often miss comparisons due to needing more

current and lower RC constants at the nodes. First, the latching transistors were

kept small to reduce their RC constant. The bottom transistor of the differential

amplifier was made wide to increase the current it drew. The input transistors were

also made wide to increase the gain, but this increased the input capacitance which

would increase the kickback. Offset is also benefited by larger input transistors, but

these lead to a high power draw. A careful balance was achieved and the resulting

sizes can be seen in Table A.3.

4.3.3 Voltage and Current Reference

For both the voltage and current reference, their main requirement was accuracy

measured with PPM (Parts Per Million) which can be calculated with

PPM =
Max−Min

100 ∗ average
∗ 106. (4.1)

PPM is measured over sweeping the temperature and independent of the reference

voltage or current. Area is not a major concern because only one voltage and current

reference is needed for the entire chip. Since temperature was swept for PPM, both

reference circuits were tested over only PV and Monte Carlo at nominal. The results

can be seen in Table 4.5 and 4.6
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Table 4.5: PV and Monte Carlo simulation results for the voltage reference.

Spec Nom PV Monte Carlo
Power (µW) minimize 67.55 [54.47, 107] [71.42, 77.89]

700 mV
Vref (mV) 700 700.1 [678.5, 700.7] [650.2, 712.1]
PPM (PPM/◦C) ≤ 200 103 [45.8, 131.3] [27.32, 197.3]
Range (mV) - 7.213 [3.11, 9.044] [1.809, 13.93]

200 mV
Vref (mV) 200 200 [196.0, 207.4] [189.7, 211.1]
PPM (PPM/◦C) ≤ 200 66.72 [10.46, 174.1] [4.786, 194.2]
Range (mV) - 1.334 [0.213, 3.494] [0.099, 3.685]

-200 mV
Vref (mV) -200 -200 [-206.1, -195.7] [-211.6, -189.8]
PPM (PPM/◦C) ≤ 200 19.00 [5.624, 39.94] [2.827, 129.8]
Range (mV) - 0.380 [0.110, 0.810] [0.055, 2.737]

The 700 mV reference was referenced off the VSS rail because it would also be

used for the current reference. The 200 mV and -200 mV references were referenced

off the GND rail because they would be used for the op-amp positive input whose

ICMR is based off the GND rail as well. Reaching the required PPM was mostly

accomplished with using large BJTs and balancing the ratio of the resistors. While

all references shared the majority of the Banba bandgap, they each had their own

resistor to set their individual voltages. This lead to the major difference in variation

between the 700 mV reference and the +/-200 mV references. The smaller references

had similarly sized resistors while the 700 mV needed a much larger resistor leading

to a larger PTAT contribution. The bandgap could then be tuned to either the higher

PTAT of the 700 mV or the smaller PTAT of the +/-200 mV. Since the +/-200 mV

reference was limited by the training voltages and ICMR, is was more important

that the smaller references had minimal variation than the 700 mV. In particular,

the -200 mV reference needed to satisfy the minimum ICMR requirement of -205.1

mV from Table 4.2. This reference slightly misses the mark with a -210.9 mV Monte

Carlo result, but a few mV into the triode region should only decrease the op amp

gain slightly. A future improvement would be to push the op-amps ICMR a few mV

further to fix this issue. The current reference results can be seen in Table 4.6.

The current reference was easy to adjust due to it having a single resistor that
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Table 4.6: The PV and Monte Carlo simulation results for the current reference.

Spec Nominal PV Monte Carlo
Power (µW) minimize 53.19 [34.73, 83.48] [44.07, 80.69]
Iref (µA) 10 10 [8.566, 13.26] [8.26, 13.01]
PPM (PPM/◦C) ≤ 200 28.71 [10.69, 85.03] [11.47, 102.4]
Range (nA) - 28.71 [9.669, 72.84] [11.47, 116]

controls the output current. The amplifier was sized up to improve accuracy which

added to the large power draw. Since there is only a single current reference, the

power draw will be minimal in comparison to the full design.

4.3.4 Area and Power

Though there is no layout, the area for most circuitry can be grossly estimated using

Aest(µm
2) =

∑
transistors

W (L+ 0.28µm)+

∑
resistors

segments(W × L)+

∑
capacitors

multiplier(W × L).

(4.2)

The layout style, dummy transistors, and shielding will cause a large difference

in the actual sizings, but the equation is sufficient to ballpark the largest portions

of this circuitry. The 0.28µm comes from the Pcells of the transistor node and is

the additional area required for the source and drain of the transistor. Since it is

common to share sources and drains, the area during layout will be smaller. The

device size break-down and percentages can be found in Tables A.2 through A.5 in

the Appendix. The final areas can be seen in Table 4.7.
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Table 4.7: Approximate areas of the circuitry for a 2x4 crossbar

Area(µm2) Percentage (%)

ZTC 15.6 0.138

Current Amplifier 953 8.48

Comparator 26.9 0.239

Spiking Neuron Circuitry 3,120 27.8

Voltage Reference 6,800 60.6

Current Reference 312 27.8

Crossbar 0.065 0.0006

Total Area 11,227.5

This does not include the control unit circuitry. ZTC is all the circuitry required

for the training units minus the amplifier. The spiking neuron circuitry is the neuron,

SR latch, and inverters but not the comparator. Since this was not designed with

a specific crossbar in mind, the memristor crossbar size can be estimated based on

each memristor (and the area between memristors) taking up 4F 2 where F is the

minimum features size of the layout technique [33]. The resulting size is negligible

compared to the peripheral circuitry. For all components, the dominating factor in

size is their resistors and capacitors. The voltage reference has four resistors, the

largest at 270 kΩ, and the current reference has one resistor. The current amplifier

has a small resistor, but a 243.8fF capacitor that takes up 47% of its area. The

comparator and ZTC, minus the op-amp, are only transistors so are negligible size.

The spiking neuron circuitry contains a very large resistor and capacitor. While

smaller devices are available, they have large parasitic resistances and capacitances

that prevent them from following the expected charging and discharging curves. As

the number of neurons increases, the dominating circuitry changes as can be seen in

Figure 4.9.
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Figure 4.9: Area usage of different circuits over increasing numbers of neurons

For a neural network to achieve high accuracy on large problems, it needs hundreds

of neurons. The area usage was extrapolated from a 2x4 (2 neurons) to a 32x32

crossbar (32 neurons) and then to four 32x32 crossbars (128 neurons). With the

size increase, the dominating circuitry is the spiking neuron due to it’s resistor and

capacitor. The focus of this thesis was on the training circuitry so a simple spiking

neuron was chosen to prove the training unit functionality in a full circuit. More

complex, but smaller, spiking neurons exist such as in [34] with an area of 80.406

µm2 per neuron. In this case, the current amplifier would dominate as size increases.

The main cause of area usage, the compensation capacitor, is necessary to keep the

phase margin high enough to prevent oscillations. Careful resizing could potentially

reduce it’s size, but the main factor in its size will depend on the final layout.

A table of the power usage for a 1x4 crossbar can be seen in Figure 4.8.
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Table 4.8: Power usage for a 1x4 crossbar

Power (µW ) Percentage (%)

Current Amplifier 85.16 36.74

Comparator 2.339 1.01

Voltage Reference 67.69 29.2019

Current Reference 52.69 22.7308

Crossbar 10.00 4.314

Extra 23.921 6.005

Total 231.8

These power measurements were taken over the 1x4 transient tests because the

included all the components. It can be seen that the current amplifier is the dominant

usage of power at 36.74 µW . The comparator’s power usage is much smaller than

what was reported in Table 4.3 because the majority of power is used when the clock

switches and in these simulations, the clock switches once every 25 ns. For simplicity,

the power usage of all transmission gates, inverters, and the SR latch were included

in the extra category. If extrapolating to a 32x32 crossbar, the total power would be

3.685 mW with the amplifier using 73.9% of the power.
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Final Remarks

The work presented is a stepping stone for larger networks and circuitry and a signif-

icant improvement on the Ziksa training circuitry which was previously only imple-

mented with ideal amplifiers. High-level simulations show it training a 2x4 memristor

crossbar with minimal wasted current and show it functioning within the context of

a spiking neuron. Each analog component passes specifications over process, supply

voltage, and temperature corners along with 1000 runs of Monte Carlo simulation.

While not tested on a data set, it shows the behavior necessary to function in a full

neural network.

5.1 Future Works

While functional, many improvements can be made to the circuitry. The main issue

discussed was the massive size of the spiking neuron due to it’s resistor and capacitor.

Other designs exist that use only a capacitor and the inherent resistance of transis-

tors. Also, a smaller capacitor could be used if the current is reduced. Of course a

smaller current will mean noise has a larger impact on the signal. For the amplifier,

it was briefly mentioned that a different output stage could improve the ICMR of the

amplifier. A higher ICMR would open the circuit to work with less accurate memris-

tors and analog circuitry which can help reduce the size. While the different output

stage would be larger, the amplifier is dominated by the compensation capacitor and
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resistor so the additional transistors may not cause a major issue. Another simple

improvement would be to change the output stage to a cascoded output which would

decrease the variation in output current as the output voltage varies.

The next major step is to use the Ziksa training circuitry in a full neural network.

This would involve larger crossbars which, depending on the memristor resistance

ranges, may necessitate slight changes in the amplifier. More likely if the current

draw is too high, simply reducing the input signal voltage with level shifting will

reduce the read current. Since memristors are only trained one at a time, the amount

of current needed during training will not change with larger crossbars. It should also

be implemented with models of an existing memristor with process variation. Process

variation will not break the overall design, but specifications such as the ICMR and

the training voltages may need to change if the memristor threshold voltage varies

too much.

While the area estimations are a good starting point for the area consumption, a

layout is needed to truly determine if this design is an improvement over other similar

designs. Since the amplifier depends heavily on current mirrors, matching will be a

major issue in the final accuracy. To improve the matching, dummy transistors and

interdigitizing will be necessary which can greatly increase the area used. Since

these amplifiers are used repeatedly, some accuracy will need to be sacrificed to keep

the area from significantly increasing. Similarly, the control unit needs to be fully

synthesized. While it should be small in comparison to the analog circuits, there is a

large number of control signals that need to be carefully laid out.

In simulation, a small test-case can be used to verify functionality and accuracy of

learning, but simulating large networks will only be possible with a Matlab approxi-

mation due to Cadence simulation run-time. To see the full performance, the circuit

needs to be physically built.
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Appendix A

Device Sizes

Table A.1: Resistor and capacitor values for all circuitry

Circuit Device Value

Current Amplifier
Rz 3.25 kΩ
Cc 243.8 fF

Voltage Reference

R1 275 kΩ
R2 275 kΩ
R3 18.3 kΩ
R4 (700 mV) 140.29 kΩ
R4 (200 mV) 46.44 kΩ
R4 (-200 mV) 38.34 kΩ

Current Reference R1 73.13 kΩ

Spiking Neuron Circuitry
R 100 kΩ
C 500 fF
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Table A.2: All device sizes for the current amplifier

Device W (µm) L (µm) Multiplier Area (µm2) Percentage (%)
M1 8 1 1 10.2 2.15
M2 8 1 1 10.2 2.15
M3 12 1 1 15.4 3.22
M4 12 1 1 15.4 3.22
M5 15 2 1 34.2 7.18
M6 15 2 1 34.2 7.18
M7 10 0.750 1 1.03 2.16
M8 10 2u 1 2.28 4.792
M9 10 0.300 1 5.8 1.22
M10 10 0.300 1 5.8 1.22
M11 10 0.200 1 4.8 1.01
M12 10 0.200 1 4.8 1.01
M13 5 2.5 1 13.9 2.92
M14 5 2.5 1 13.9 2.92
M15 10 2 1 22.8 4.79
M16 10 2 1 22.8 4.79
Rz 0.500 8.13 1 4.06 0.853
Cc 5 5 9 225 47.2

Table A.3: All device sizes for the comparator

Device W (nm) L (nm) Multiplier Area (µm2) Percentage (%)
M1 10,000 150 1 2.3 32
M2 10,000 150 1 2.3 32
M3 360 180 1 0.166 1.23
M4 360 180 1 0.166 1.23
M5 2,000 150 1 0.86 6.4
M6 360 180 2 0.331 2.47
M7 360 180 2 0.331 2.47
M8 360 180 2 0.331 2.47
M9 360 180 2 0.331 2.47
M10 360 180 2 0.331 2.47
M11 720 180 2 0.662 4.93
M12 720 180 2 0.662 4.93
M13 360 180 2 0.331 4.93
M14 360 180 1 0.166 2.47
M15 360 180 1 0.166 2.47
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Table A.4: All device sizes for the Banba bandgap reference. The CM devices are current
mirror transistors used to generate the -200 mV reference.

Device W (µm) L (µm) M Area (µm2) Percent (%)
M1 10 2 1 22.8 0.335
M2 10 2 1 22.8 0.335

700 mV
M3 10 2 1 22.8 0.335
R4 0.750 16.4 32 395 5.8

200 mV
M3 10 2 1 22.8 0.335
R4 1 58.1 4 232 3.41

-200 mV

M3 10 2 1 22.8 0.335
CM1 10 5 1 52.8 0.776
CM2 10 5 1 52.8 0.776
R4 1 24 8 192 2.82
M4 20 2 1 45.6 0.670
M5 20 2 1 45.6 0.670
M6 10 5 1 52.8 0.776
M7 10 5 1 52.8 0.776
M8 10 5 1 52.8 0.776
M9 10 2.5 1 27.8 0.409
M10 10 5 1 52.8 0.776
M11 0.720 0.360 1 0.461 0.0068
M12 0.720 0.360 1 0.461 0.0068
M13 0.720 0.360 1 0.461 0.0068
M14 0.720 0.360 1 0.461 0.0068
M15 0.720 0.360 1 0.461 0.0068
Q 17 17 1 289 4.25
Qn 17 17 8 2,310 34.0
R1 1 43 32 1,380 20.2
R2 1 43 32 1,380 20.2
R3 0.950 10.9 8 82.6 1.21

Table A.5: All device sizes for the current reference

Device W (µm) L (µm) Multiplier Area (µm2) Percentage (%)
M1 10 2 1 22.8 7.32
M2 10 2 1 22.8 7.32
M3 3.6 1.8 1 7.49 2.4
M4 3.6 1.8 1 7.49 2.4
M5 10 2 2 45.6 14.6
M6 3.6 1.8 1 7.49 2.4
M7 3.6 1.8 1 7.49 2.4
M8 5 2 1 11.4 3.66
M9 7.5 2 1 27.1 5.49
R1 1.2 33.8 4 162 52
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